JP2000107512A - Method for reducing dissolved oxygen and device therefor - Google Patents

Method for reducing dissolved oxygen and device therefor

Info

Publication number
JP2000107512A
JP2000107512A JP10283952A JP28395298A JP2000107512A JP 2000107512 A JP2000107512 A JP 2000107512A JP 10283952 A JP10283952 A JP 10283952A JP 28395298 A JP28395298 A JP 28395298A JP 2000107512 A JP2000107512 A JP 2000107512A
Authority
JP
Japan
Prior art keywords
liquid
gas
pressure
dissolved oxygen
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10283952A
Other languages
Japanese (ja)
Inventor
Shoji Sekihara
章司 関原
Naoko Takeuchi
直子 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP10283952A priority Critical patent/JP2000107512A/en
Publication of JP2000107512A publication Critical patent/JP2000107512A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently reduce the content of a dissolved oxygen by performing the pressure boosting and the pressure reduction of a liquid containing the dissolved oxygen once or more, then mixing the liquid after the pressure boosting with an inert gas and separating the insert gas containing a dissipated oxygen from the liquid after the pressure reduction and exhausting the inert gas. SOLUTION: A liquid introduced into a liquid feed pump 1 through a valve 12 from a flow path 11 is pressurized to a preset pressure level using the liquid feed pump 1 and then is made to flow into liquid feed piping 2a in a gas introduction part 2 through a flow path 13, a valve 14 and a flow path 15. The liquid pressure is boosted by the pump 1 in such a manner that the difference between the primary side and the secondary side of the pump 1 side of a throttle part 3 is as specified. An inert gas introduced through valves 22, 23 from flow paths 21, 21 is adjusted to a specified pressure level using a pressure setter 23, and this pressure-adjusted inert gas is jetted into the liquid from a sparger 5 through an inert gas supply passage 6 to produce a fluid which is in a gas/liquid mixed state. The gas/liquid mixed fluid is fed into a tank 4 through a flow path 31 to be separated into a gas and a liquid after a dissolved oxygen is dissipated and then is loaded into inert gas bubbles, passing through the throttle part 3. After this process, the inert gas containing the oxygen is exhausted from an exhaust passage 8. Thus it is possible to remove the dissolved oxygen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶存酸素の低減方
法及び装置に関し、詳しくは、各種液体、例えば、食用
油,ワイン,日本酒,醤油,食品加工用水等の液状食品
類、写真用現像液等に含有されている溶存酸素を低減す
るための方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for reducing dissolved oxygen, and more particularly, to liquids such as edible oil, wine, sake, soy sauce, water for food processing, and photographic developers. The present invention relates to a method and an apparatus for reducing dissolved oxygen contained in, for example.

【0002】[0002]

【従来の技術】各種液体中の溶存酸素を低減する方法と
して、液体中に不活性ガスをバブリングさせるガス脱気
法,液体を加熱する加熱脱気法,亜硫酸塩等の脱酸素剤
を液体中に注入する化学的脱気法,液体を貯留した容器
内を減圧する真空脱気法,脱酸素膜を使用した膜式脱気
法等が知られている。
2. Description of the Related Art As a method for reducing dissolved oxygen in various liquids, a gas degassing method in which an inert gas is bubbled in a liquid, a heat degassing method in which a liquid is heated, and a deoxidizing agent such as a sulfite in a liquid. There are known a chemical degassing method in which a liquid is stored in a container, a vacuum degassing method in which the pressure in a container storing a liquid is reduced, and a film type degassing method using a deoxygenation film.

【0003】これらの方法の中で、ガス脱気法は、単純
な不活性ガスのバブリングだけでは十分な酸素除去が困
難であることから、溶存酸素の除去効率を向上させるた
めの方式が種々提案されている。例えば、特開平6−2
96959号公報に記載された溶存酸素低減装置では、
複数のバブリング槽を直列に配置して窒素ガスのバブリ
ングをそれぞれ行うことにより、溶存酸素を徐々に除去
するようにしている。また、特開平5−184811号
公報,特開平1−297105号公報,特開平1−31
7586号公報等に記載された脱酸素方法は、窒素ガス
等の微細気泡を含む液体を超高速で流したり、激しい撹
拌状態としたりすることによって、溶存酸素を窒素ガス
中に取込むようにしている。さらに、特開昭62−29
4482号公報に記載された脱気装置では、真空脱気と
ガス脱気とを組合わせている。
[0003] Among these methods, the gas degassing method has various proposals for improving the efficiency of removing dissolved oxygen since it is difficult to remove oxygen sufficiently only by simple bubbling of an inert gas. Have been. For example, JP-A-6-2
In the dissolved oxygen reducing device described in US Pat.
Dissolved oxygen is gradually removed by arranging a plurality of bubbling tanks in series and bubbling nitrogen gas. In addition, Japanese Patent Application Laid-Open Nos. 5-184711, 1-297105, and 1-31
In the deoxygenation method described in JP 7586 and the like, dissolved oxygen is introduced into nitrogen gas by flowing a liquid containing fine bubbles such as nitrogen gas at an ultra-high speed or by vigorous stirring. Further, JP-A-62-29
In the degassing apparatus described in Japanese Patent No. 4482, vacuum degassing and gas degassing are combined.

【0004】また、脱気操作に際しては、液体中に窒素
ガス等の微細気泡を形成することが望ましいが、液体中
に微細気泡を発生させるための方法としては、特開平6
−63371号公報や特開平6−205813号公報に
記載された方法が知られている。
In the degassing operation, it is desirable to form microbubbles such as nitrogen gas in the liquid.
The methods described in JP-A-63371 and JP-A-6-205813 are known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
方法では、溶存酸素の脱気効率が十分に高いとはいえな
かった。また、ワイン等の熟成工程では、溶存酸素量が
多いと液が酸化される不都合があるが、一方、熟成のた
めには、ある程度の溶存酸素を確保しておく必要があ
る。
However, in the conventional method, the efficiency of deaeration of dissolved oxygen cannot be said to be sufficiently high. In the aging process of wine and the like, if the amount of dissolved oxygen is large, there is a disadvantage that the liquid is oxidized. On the other hand, it is necessary to secure a certain amount of dissolved oxygen for aging.

【0006】そこで本発明は、簡単な操作で溶存酸素を
効率よく低減することができ、酸素除去量の調整も容易
に行える溶存酸素の低減方法及び装置を提供することを
目的としている。
Accordingly, an object of the present invention is to provide a method and an apparatus for reducing dissolved oxygen which can efficiently reduce dissolved oxygen with a simple operation and can easily adjust the amount of oxygen removed.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の溶存酸素の低減方法は、溶存酸素を含む液
体に対して少なくとも一回の昇圧操作及び減圧操作を行
うとともに、昇圧操作後の液体に不活性ガスを導入して
液体と不活性ガスとを混合する不活性ガス混合操作と、
減圧操作後の液体と該液体中から放散された酸素分を含
む不活性ガスとを分離して排気するガス分離操作とを行
うことを特徴としている。
In order to achieve the above object, a method for reducing dissolved oxygen according to the present invention comprises performing at least one pressure raising operation and one pressure reducing operation on a liquid containing dissolved oxygen, and An inert gas mixing operation of introducing an inert gas into the liquid to mix the liquid and the inert gas,
A gas separation operation of separating and exhausting the liquid after the pressure reduction operation and the inert gas containing oxygen released from the liquid is performed.

【0008】さらに、本発明の溶存酸素の低減方法は、
前記ガス分離操作で分離したガスを、該ガス中の酸素濃
度に応じて前記不活性ガス混合操作で液体に導入する不
活性ガスとして再利用することを特徴とし、前記昇圧操
作後の圧力と減圧操作後の圧力との差を0.1MPa以
上とすることを特徴としている。
Further, the method for reducing dissolved oxygen according to the present invention comprises:
The gas separated by the gas separation operation is reused as an inert gas introduced into a liquid by the inert gas mixing operation according to the oxygen concentration in the gas, and the pressure after the pressure increasing operation and the pressure reduction are reduced. The difference from the pressure after the operation is 0.1 MPa or more.

【0009】また、本発明の溶存酸素の低減装置は、溶
存酸素を含む液体を昇圧する送液ポンプと、該送液ポン
プで昇圧後の液体中に不活性ガスを導入するガス導入部
と、該ガス導入部でガスを導入後の液体を減圧する絞り
部とを備えていることを特徴としている。
Further, the dissolved oxygen reducing device of the present invention comprises: a liquid sending pump for increasing the pressure of a liquid containing dissolved oxygen; a gas introducing unit for introducing an inert gas into the liquid after the pressure is increased by the liquid sending pump; And a throttle unit for reducing the pressure of the liquid after the introduction of the gas in the gas introduction unit.

【0010】さらに、本発明の溶存酸素の低減装置は、
前記絞り部の二次側に気液分離器、あるいは、減圧後の
液体を貯留するとともにガス排出経路を有するタンクを
備えていることを特徴とし、該タンクには、パージ用の
不活性ガスを導入するパージガス導入経路を備えている
ことを特徴としている。
[0010] Further, the apparatus for reducing dissolved oxygen of the present invention comprises:
A gas-liquid separator on the secondary side of the throttle unit, or a tank that stores a decompressed liquid and has a gas discharge path, wherein the tank contains an inert gas for purging. It is characterized by having a purge gas introduction path for introduction.

【0011】また、前記ガス導入部が送液配管の中心部
に設けられ、配管中心部から放射状に前記不活性ガスを
噴出するスパージャーを備えており、さらに、該スパー
ジャーの不活性ガスの噴出部が焼結金属で形成されてい
ることを特徴としている。
The gas inlet is provided at the center of the liquid feed pipe, and has a sparger for ejecting the inert gas radially from the center of the pipe. The ejection part is formed of a sintered metal.

【0012】[0012]

【発明の実施の形態】図1は本発明を適用した溶存酸素
の低減装置の一形態例を示す系統図である。この溶存酸
素低減装置は、溶存酸素を含む液体を昇圧する送液ポン
プ1と、昇圧後の液体中に不活性ガスを導入するガス導
入部2と、ガス導入後の液体を減圧する絞り部3と、減
圧後の液体を貯留するタンク4と、前記ガス導入部2に
設けられたスパージャー5に不活性ガスを供給する不活
性ガス供給経路6と、前記タンク4内にパージ用の不活
性ガスを導入するパージガス導入経路7と、液体から分
離された酸素を同伴した不活性ガスをタンク4内から排
出するための排気経路8とを備えている。
FIG. 1 is a system diagram showing one embodiment of a device for reducing dissolved oxygen to which the present invention is applied. This apparatus for reducing dissolved oxygen includes a liquid feed pump 1 for increasing the pressure of a liquid containing dissolved oxygen, a gas introduction unit 2 for introducing an inert gas into the liquid after the pressure increase, and a throttle unit 3 for reducing the pressure of the liquid after gas introduction. A tank 4 for storing the decompressed liquid, an inert gas supply path 6 for supplying an inert gas to a sparger 5 provided in the gas introduction unit 2, and an inert gas for purging in the tank 4. A purge gas introduction path 7 for introducing a gas and an exhaust path 8 for discharging an inert gas accompanied by oxygen separated from the liquid from the tank 4 are provided.

【0013】前記不活性ガス供給経路6の先端に設けら
れるスパージャー5は、ガス導入部2を構成する送液配
管2aの中心部から放射状に不活性ガスを噴出するよう
に形成されており、例えば、図2に示すように、円筒体
の周面に微細な通孔からなる多数の噴出口5aを設けた
ものや、図3に示すように、ガス噴出部を円筒状の焼結
金属5bで形成したものを用いることができる。
A sparger 5 provided at the tip of the inert gas supply passage 6 is formed so as to radially eject an inert gas from a central portion of a liquid feed pipe 2a constituting the gas introducing section 2. For example, as shown in FIG. 2, a cylindrical body is provided with a large number of injection ports 5 a formed of fine through holes on the peripheral surface, or as shown in FIG. Can be used.

【0014】このようなスパージャー5を用いて微細な
気泡を形成し、該気泡を放射状に噴出させることによ
り、気液の接触混合を促進させることができ、液体と活
性ガスとを効率よく混合することができるが、液体の流
量や溶存酸素の除去程度によっては、送液経路に不活性
ガス供給経路を接続するだけで十分な場合もある。
By using the sparger 5 to form fine air bubbles and jetting the air bubbles radially, contact and mixing of gas and liquid can be promoted, and the liquid and the active gas can be efficiently mixed. Depending on the flow rate of the liquid and the degree of removal of the dissolved oxygen, it may be sufficient to simply connect the inert gas supply path to the liquid supply path.

【0015】経路11から弁12を経て送液ポンプ1に
導入された液体は、送液ポンプ1で所定の圧力に昇圧さ
れた後、経路13,弁14,経路15を経てガス導入部
2の送液配管2a中に流入する。送液ポンプ1での昇圧
操作は、該送液ポンプ1の一次側圧力や前記絞り部3の
二次側圧力によっても異なるが、絞り部3における一次
側圧力と二次側圧力との差が0.1MPa以上となるよ
うに液体を昇圧することが好ましい。この圧力差が小さ
いと十分な分離効果を得ることが困難となる。一方、圧
力差を大きくし過ぎると、送液経路の耐圧性を高めなけ
ればならず、装置コストが上昇するので、1MPa以
下、通常は、0.5MPa以下が適当である。昇圧操作
後の液体の圧力は圧力計(PI)16で測定され、流量
は流量計(FI)17で測定される。
The liquid introduced into the liquid feed pump 1 from the path 11 via the valve 12 is boosted to a predetermined pressure by the liquid feed pump 1, and then passed through the path 13, the valve 14, and the path 15 to the liquid introducing section 2. It flows into the liquid sending pipe 2a. The pressure increasing operation in the liquid feed pump 1 also differs depending on the primary pressure of the liquid feed pump 1 and the secondary pressure of the throttle unit 3, but the difference between the primary pressure and the secondary pressure in the throttle unit 3 is different. It is preferable to increase the pressure of the liquid so as to be 0.1 MPa or more. If this pressure difference is small, it will be difficult to obtain a sufficient separation effect. On the other hand, if the pressure difference is too large, the pressure resistance of the liquid feed path must be increased, and the cost of the apparatus increases. Therefore, 1 MPa or less, usually 0.5 MPa or less is appropriate. The pressure of the liquid after the pressure raising operation is measured by a pressure gauge (PI) 16, and the flow rate is measured by a flow meter (FI) 17.

【0016】一方、経路21,21から弁22,22を
経て導入された不活性ガスは、圧力設定器(レギュレー
ター)23で所定の圧力に調節された後、前記不活性ガ
ス供給経路6を通って前記スパージャー5に供給され、
液体中に噴出して気液混合状態の流体を生成する。この
不活性ガスの圧力は、圧力計(PI)24によって測定
される。
On the other hand, the inert gas introduced from the passages 21 and 21 through the valves 22 and 22 is adjusted to a predetermined pressure by a pressure setter (regulator) 23 and then passes through the inert gas supply passage 6. And supplied to the sparger 5,
The gas is jetted into the liquid to generate a gas-liquid mixed fluid. The pressure of the inert gas is measured by a pressure gauge (PI) 24.

【0017】不活性ガスの供給量は、液体の流量や溶存
酸素量,所望の酸素除去量により異なってくるが、一般
に、不活性ガス供給量を多くすれば、すなわち、気液混
合流における気液比を高くすれば、溶存酸素の除去量も
多くすることができ、処理後の溶存酸素量を、より低減
することができる。
The supply amount of the inert gas varies depending on the flow rate of the liquid, the dissolved oxygen amount, and the desired oxygen removal amount. In general, if the supply amount of the inert gas is increased, that is, the gas in the gas-liquid mixed flow is increased. If the liquid ratio is increased, the amount of dissolved oxygen that can be removed can be increased, and the amount of dissolved oxygen after the treatment can be further reduced.

【0018】上記不活性ガス混合操作でスパージャー5
から噴出した不活性ガスを同伴した気液混合状態の流体
は、液体と不活性ガスとが接触すること、及び、前記絞
り部3を通過することにより、液体中から溶存酸素が放
散して不活性ガスの気泡中に取り込まれた状態の流れと
なり、経路31から前記タンク4内に送られる。このと
き、液体と混合している気泡は、液体との比重差によっ
て経路31内で徐々に気液分離されるとともに、タンク
4内で略完全に気液分離され、タンク4の頂部に設けら
れた前記排気経路8から酸素分を含む不活性ガスが排気
される。
In the above inert gas mixing operation, sparger 5
The fluid in a gas-liquid mixed state entrained with the inert gas ejected from the nozzle is in contact with the liquid and the inert gas, and when passing through the throttle unit 3, the dissolved oxygen is diffused out of the liquid and becomes insoluble. The active gas flows into the tank 4 in a state of being taken in the bubbles, and is sent from the path 31 into the tank 4. At this time, the air bubbles mixed with the liquid are gradually gas-liquid separated in the path 31 by the difference in specific gravity from the liquid, and almost completely gas-liquid separated in the tank 4, and provided at the top of the tank 4. The inert gas containing oxygen is exhausted from the exhaust path 8.

【0019】減圧後の液体の圧力は、圧力計(PI)3
2により測定され、液体中の溶存酸素濃度は、溶存酸素
濃度計(DO)33により測定される。また、タンク4
内の液体の溶存酸素濃度は、溶存酸素濃度計(DO)3
4により測定される。
The pressure of the liquid after decompression is measured by a pressure gauge (PI) 3
2, and the dissolved oxygen concentration in the liquid is measured by a dissolved oxygen concentration meter (DO) 33. In addition, tank 4
The dissolved oxygen concentration of the liquid in the tank is measured by a dissolved oxygen concentration meter (DO) 3.
4 measured.

【0020】前記タンク4内の圧力は、経路41から弁
42を経てレギュレーター43で圧力調整された不活性
ガスが前記パージガス導入経路7から導入され、タンク
4内のガスが排気経路8の保圧弁81を経て排気される
ことにより所定の圧力に保持されている。すなわち、タ
ンク4内の液体の消費によってタンク4内の圧力がレギ
ュレーター43で設定した圧力より低下すると、不活性
ガスがパージガス導入経路7からタンク4内に導入され
る。また、分離処理された液体の流入によってタンク4
内の圧力が保圧弁81で設定した圧力より高くなると、
タンク4内のガスが排気経路8から排出される。
The pressure in the tank 4 is controlled such that an inert gas, the pressure of which has been adjusted by a regulator 43 from a passage 41 via a valve 42, is introduced from the purge gas introduction passage 7, and the gas in the tank 4 is maintained at a pressure holding valve in an exhaust passage 8. It is kept at a predetermined pressure by being exhausted through 81. That is, when the pressure in the tank 4 becomes lower than the pressure set by the regulator 43 due to the consumption of the liquid in the tank 4, the inert gas is introduced into the tank 4 from the purge gas introduction path 7. In addition, the tank 4
When the internal pressure becomes higher than the pressure set by the pressure holding valve 81,
The gas in the tank 4 is exhausted from the exhaust path 8.

【0021】このタンク内の圧力は、大気の侵入を防止
できる範囲であって、圧力損失を考慮した配管内圧力未
満で、かつ、タンク4の常用圧力以下であればよく、例
えば500mmAq程度が適当である。パージガス導入
経路7におけるパージガスの圧力は、圧力計(PI)4
4によって測定される。
The pressure in the tank is within a range that can prevent the invasion of the atmosphere, is lower than the pressure in the pipe in consideration of the pressure loss, and is equal to or lower than the normal pressure of the tank 4. For example, about 500 mmAq is appropriate. It is. The pressure of the purge gas in the purge gas introduction path 7 is measured by a pressure gauge (PI) 4
4 measured.

【0022】したがって、絞り部3以降での減圧操作に
おける減圧後の圧力(二次側圧力)は、減圧後の流体が
タンク4内に流入可能な圧力以上に設定されることにな
るが、絞り部3の一次側圧力と二次側圧力との差を大き
くするほど溶存酸素低減効果も向上する。すなわち、こ
の絞り部3以降での溶存酸素の低減効果に応じて前記送
液ポンプ1の昇圧圧力を適当に設定することにより、溶
存酸素の除去低減を効率よく効果的に行うことができ
る。
Therefore, the pressure (secondary pressure) after the pressure reduction in the pressure reducing operation after the throttle unit 3 is set to be higher than the pressure at which the fluid after the pressure reduction can flow into the tank 4. As the difference between the primary side pressure and the secondary side pressure of the part 3 is increased, the dissolved oxygen reduction effect is also improved. That is, by appropriately setting the boost pressure of the liquid sending pump 1 in accordance with the effect of reducing dissolved oxygen in the throttle section 3 and thereafter, the removal and reduction of dissolved oxygen can be performed efficiently and effectively.

【0023】このように、昇圧した液体中に不活性ガス
を導入してから一気に減圧することにより、液体中の溶
存酸素濃度を2ppm以下、さらに、0.8ppm程度
にまで除去することができ、昇圧圧力や不活性ガスの導
入量等を適当に設定することにより、所望の溶存酸素量
に調節することができる。また、不活性ガスの気泡径が
ある程度大きくても十分な分離効果が得られ、しかも、
流速を極端に早くしたり、高温に加温したり、脱酸素剤
等を使用したりしないので、簡単な装置構成で実施する
ことが可能であり、食品衛生上の問題もない。
As described above, by introducing the inert gas into the pressurized liquid and then reducing the pressure at once, the dissolved oxygen concentration in the liquid can be reduced to 2 ppm or less, and further to about 0.8 ppm. By appropriately setting the boosting pressure, the amount of the inert gas introduced, and the like, the desired dissolved oxygen amount can be adjusted. In addition, even if the bubble diameter of the inert gas is large to a certain extent, a sufficient separation effect can be obtained, and
Since the flow rate is not made extremely fast, heated to a high temperature, or an oxygen scavenger is not used, it can be implemented with a simple apparatus configuration, and there is no problem in food hygiene.

【0024】図4は、絞り部3の二次側に気液分離器5
1を設けた例を示すものである。このように、気液分離
器51を設けることにより、液体中に混合している酸素
分を取り込んだ不活性ガスは、この気液分離器9で速や
かに分離して経路91から排気されるので、タンク4内
に流入するガス量、即ち酸素量を大幅に低減することが
できる。これにより、タンク4の気相中の酸素濃度の上
昇が少なくなるので、パージガス導入経路7から導入す
る不活性ガス量を低減することができる。
FIG. 4 shows a gas-liquid separator 5 on the secondary side of the throttle section 3.
1 shows an example in which 1 is provided. As described above, by providing the gas-liquid separator 51, the inert gas containing oxygen mixed in the liquid is quickly separated by the gas-liquid separator 9 and exhausted from the passage 91. The amount of gas flowing into the tank 4, that is, the amount of oxygen can be significantly reduced. As a result, the increase in the oxygen concentration in the gas phase of the tank 4 is reduced, so that the amount of the inert gas introduced from the purge gas introduction path 7 can be reduced.

【0025】気液分離器9には、各種形式のものを用い
ることができ、例えば遠心分離式気液分離器を用いるこ
とができる。他の装置構成は、図1に示した形態例と同
一に形成することができるので、前記第1形態例におけ
る構成要素と同一の構成要素には同一符号を付して詳細
な説明は省略する。
Various types of gas-liquid separators 9 can be used. For example, a centrifugal gas-liquid separator can be used. Since the other device configuration can be formed in the same manner as the embodiment shown in FIG. 1, the same reference numerals are given to the same components as those in the first embodiment, and the detailed description is omitted. .

【0026】また、上述のような送液ポンプ1,ガス導
入部2,絞り部3及び気液分離器9を一組としてこれを
複数組並列又は直列に配置することも可能であり、タン
ク4内の液体を送液ポンプ1の上流側に循環させて再処
理することも可能である。
It is also possible to arrange a plurality of sets of the liquid feed pump 1, the gas introduction section 2, the throttle section 3 and the gas-liquid separator 9 as described above, and to arrange them in parallel or in series. It is also possible to circulate the liquid in the upstream of the liquid feed pump 1 and reprocess the liquid.

【0027】さらに、減圧後の液体から分離した不活性
ガス(分離ガス)中には、液体から除去された酸素が含
まれており、初期の不活性ガスよりも酸素濃度は上昇し
ているが、この酸素濃度の上昇は僅かなものであるか
ら、この分離ガスを、その酸素濃度に応じて昇圧後の液
体に導入する不活性ガスとして再利用することができ
る。これにより、不活性ガスの利用効率を高めて、その
消費量を低減することができる。
Further, the inert gas (separated gas) separated from the liquid after the pressure reduction contains oxygen removed from the liquid, and the oxygen concentration is higher than that of the initial inert gas. Since the increase in the oxygen concentration is slight, the separated gas can be reused as an inert gas to be introduced into the liquid after the pressurization according to the oxygen concentration. As a result, the usage efficiency of the inert gas can be increased, and its consumption can be reduced.

【0028】なお、液体の昇圧は、液ヘッドやガス加圧
等でも行うこともでき、不活性ガスには、窒素ガス,ア
ルゴンガス,二酸化炭素等、液体の種類や不活性ガスの
供給環境に応じたものを選択することができる。また、
絞り部としては、オリフィス,ニードル弁,ダイヤフラ
ム弁等、所定の減圧操作を行えるものならば各種のもの
を用いることができ、ニードル弁等を用いることによ
り、減圧の程度を連続的に調節することができる。その
他、配管の径を一気に拡大させたり、容積の大きなタン
クに流入させたりして圧力を下げることもできるが、昇
圧した液体の圧力の保持や配管の施工上の価格や手間を
考慮すると、オリフィスのような単純な絞り部が好適で
ある。
The pressure of the liquid can also be increased by a liquid head, gas pressurization, or the like. The inert gas includes nitrogen gas, argon gas, carbon dioxide, etc., depending on the type of liquid and the supply environment of the inert gas. You can select the one that suits you. Also,
As the throttle portion, various types such as an orifice, a needle valve, and a diaphragm valve can be used as long as they can perform a predetermined depressurizing operation, and the degree of depressurization can be continuously adjusted by using a needle valve or the like. Can be. In addition, the pressure can be reduced by expanding the diameter of the piping at once, or by flowing it into a tank with a large volume.However, considering the pressure of the pressurized liquid and the cost and labor involved in installing the piping, the orifice A simple throttle portion such as described above is preferable.

【0029】[0029]

【実施例】液体として水を使用し、図1に示す構成の溶
存酸素低減装置により溶存酸素を除去する実験を行っ
た。水は、常温(約20℃)、常圧のものとし、粘度は
1cP、溶存酸素濃度は9ppmであった。また、不活
性ガスには高純度窒素ガス(酸素含有量0.1ppm以
下)を使用した。
EXAMPLE An experiment was conducted in which water was used as a liquid and dissolved oxygen was removed by a dissolved oxygen reducing device having the structure shown in FIG. Water was normal temperature (about 20 ° C.) and normal pressure, the viscosity was 1 cP, and the dissolved oxygen concentration was 9 ppm. A high-purity nitrogen gas (oxygen content: 0.1 ppm or less) was used as the inert gas.

【0030】送液ポンプ1における吐出圧力と、ガス導
入部2における窒素ガス導入量とを種々設定し、絞り部
3以降で略大気圧に減圧した後の水に含まれる溶存酸素
濃度を測定した。その結果を表1に示す。
The discharge pressure of the liquid feed pump 1 and the amount of nitrogen gas introduced in the gas introduction unit 2 were variously set, and the concentration of dissolved oxygen contained in water after the pressure was reduced to approximately atmospheric pressure after the throttle unit 3 was measured. . Table 1 shows the results.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
簡単な装置構成で確実に溶存酸素を除去することがで
き、従来のものに比べて安価であり、また、処理後の液
体に悪影響を与えることがないので、食品等も安全に処
理することができる。さらに、装置本体を小型に形成で
きるので、既存設備にも容易に取付けることができる。
As described above, according to the present invention,
Dissolved oxygen can be reliably removed with a simple device configuration, it is cheaper than conventional ones, and it does not adversely affect the liquid after treatment, so that foods etc. can be treated safely. it can. Further, since the apparatus main body can be formed in a small size, it can be easily attached to existing facilities.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の溶存酸素低減装置の一形態例を示す
系統図である。
FIG. 1 is a system diagram showing one embodiment of a dissolved oxygen reducing device of the present invention.

【図2】 スパージャーの一形態例を示す断面図であ
る。
FIG. 2 is a cross-sectional view illustrating an example of a form of a sparger.

【図3】 スパージャーの他の形態例を示す断面図であ
る。
FIG. 3 is a cross-sectional view illustrating another example of a sparger.

【図4】 溶存酸素低減装置の他の形態例を示す系統図
である。
FIG. 4 is a system diagram showing another embodiment of the dissolved oxygen reducing device.

【符号の説明】[Explanation of symbols]

1…送液ポンプ、2…ガス導入部、3…絞り部、4…タ
ンク、5…スパージャー、6…不活性ガス供給経路、7
…パージガス導入経路、8…排気経路、9…気液分離器
DESCRIPTION OF SYMBOLS 1 ... Liquid sending pump, 2 ... Gas introduction part, 3 ... Restriction part, 4 ... Tank, 5 ... Sparger, 6 ... Inert gas supply path, 7
... Purge gas introduction path, 8 ... Exhaust path, 9 ... Gas-liquid separator

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 溶存酸素を含む液体に対して少なくとも
一回の昇圧操作及び減圧操作を行うとともに、昇圧操作
後の液体に不活性ガスを導入して液体と不活性ガスとを
混合する不活性ガス混合操作と、減圧操作後の液体と該
液体中から放散された酸素分を含む不活性ガスとを分離
して排気するガス分離操作とを行うことを特徴とする溶
存酸素の低減方法。
1. An inert gas that performs at least one pressurizing operation and a depressurizing operation on a liquid containing dissolved oxygen, and introduces an inert gas into the liquid after the pressurizing operation to mix the liquid with the inert gas. A method for reducing dissolved oxygen, comprising: performing a gas mixing operation and a gas separation operation of separating and exhausting a liquid after the pressure reduction operation and an inert gas containing oxygen released from the liquid.
【請求項2】 前記ガス分離操作で分離したガスを、前
記不活性ガス混合操作で液体に導入する不活性ガスとし
て再利用することを特徴とする請求項1記載の溶存酸素
の低減方法。
2. The method for reducing dissolved oxygen according to claim 1, wherein the gas separated by the gas separation operation is reused as an inert gas introduced into a liquid by the inert gas mixing operation.
【請求項3】 前記昇圧操作後の圧力と減圧操作後の圧
力との差を0.1MPa以上とすることを特徴とする請
求項1記載の溶存酸素の低減方法。
3. The method for reducing dissolved oxygen according to claim 1, wherein a difference between the pressure after the pressure increasing operation and the pressure after the pressure reducing operation is 0.1 MPa or more.
【請求項4】 溶存酸素を含む液体を昇圧する送液ポン
プと、該送液ポンプで昇圧後の液体中に不活性ガスを導
入するガス導入部と、該ガス導入部でガスを導入後の液
体を減圧する絞り部とを備えていることを特徴とする溶
存酸素の低減装置。
4. A liquid sending pump for increasing the pressure of a liquid containing dissolved oxygen, a gas introduction unit for introducing an inert gas into the liquid after the pressure is increased by the liquid sending pump, and a gas introduction unit for introducing the gas in the gas introduction unit. An apparatus for reducing dissolved oxygen, comprising: a throttle section for reducing the pressure of a liquid.
【請求項5】 前記絞り部の二次側に、気液分離器を備
えていることを特徴とする請求項4記載の溶存酸素の低
減装置。
5. The apparatus for reducing dissolved oxygen according to claim 4, wherein a gas-liquid separator is provided on a secondary side of the throttle section.
【請求項6】 前記絞り部の二次側に、減圧後の液体を
貯留するとともに、ガス排出経路を有するタンクを備え
ていることを特徴とする請求項4記載の溶存酸素の低減
装置。
6. The apparatus for reducing dissolved oxygen according to claim 4, wherein a tank having a gas discharge path and storing a liquid after decompression is provided on a secondary side of the throttle section.
【請求項7】 前記タンクは、パージ用の不活性ガスを
導入するパージガス導入経路を備えていることを特徴と
する請求項6記載の溶存酸素の低減装置。
7. The apparatus for reducing dissolved oxygen according to claim 6, wherein the tank has a purge gas introduction path for introducing an inert gas for purging.
【請求項8】 前記ガス導入部は、送液配管の中心部に
設けられ、配管中心部から放射状に前記不活性ガスを噴
出するスパージャーを備えていることを特徴とする請求
項4記載の溶存酸素の低減装置。
8. The gas introduction part according to claim 4, wherein the gas introduction part includes a sparger that is provided at a central part of the liquid feed pipe and that jets the inert gas radially from the central part of the pipe. Equipment for reducing dissolved oxygen.
【請求項9】 前記スパージャーは、不活性ガスの噴出
部が焼結金属で形成されていることを特徴とする請求項
8記載の溶存酸素の低減装置。
9. The apparatus for reducing dissolved oxygen according to claim 8, wherein the sparger has a spouted portion of an inert gas formed of a sintered metal.
JP10283952A 1998-10-06 1998-10-06 Method for reducing dissolved oxygen and device therefor Pending JP2000107512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10283952A JP2000107512A (en) 1998-10-06 1998-10-06 Method for reducing dissolved oxygen and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10283952A JP2000107512A (en) 1998-10-06 1998-10-06 Method for reducing dissolved oxygen and device therefor

Publications (1)

Publication Number Publication Date
JP2000107512A true JP2000107512A (en) 2000-04-18

Family

ID=17672359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10283952A Pending JP2000107512A (en) 1998-10-06 1998-10-06 Method for reducing dissolved oxygen and device therefor

Country Status (1)

Country Link
JP (1) JP2000107512A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269287A (en) * 2009-05-25 2010-12-02 Immatek Corp Method and apparatus for removing dissolved oxygen in liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269287A (en) * 2009-05-25 2010-12-02 Immatek Corp Method and apparatus for removing dissolved oxygen in liquid

Similar Documents

Publication Publication Date Title
US5514267A (en) Apparatus for dissolving a gas into and mixing the same with a liquid
JP2003181260A (en) Process and device for aerating liquid with gas
JPS6020052B2 (en) Reflux deaeration system
US20140291258A1 (en) Method and device for enriching a liquid with oxygen
JP2008006397A (en) Microbubble generation apparatus
CN102861521A (en) Gas-liquid mixed fluid generation apparatus, gas-liquid mixed fluid generation method, processing apparatus and processing method
JP2004298840A (en) Vessel for adjusting amount of gas to be dissolved
JP3555557B2 (en) Aeration device
JP2000107512A (en) Method for reducing dissolved oxygen and device therefor
JPH06254538A (en) Removing device for dissolving oxygen
JP4323631B2 (en) Dissolved oxygen reduction device
JP2001238648A (en) Method for preliminarily saturating carbon dioxide to reduce foaming
JP2005218955A (en) Gas/liquid contactor
JP2000042530A (en) Deaerator
US20030111429A1 (en) Cavitation method and apparatus for deaeration
US5759408A (en) Method and equipment for treatment of a liquid flow to be cleaned and passed into a flotation plant or equivalent
JPH10225696A (en) Pressurization type ozone treating device
JP2877923B2 (en) Removal method of dissolved gas in liquid
JPH01317586A (en) Device to remove dissolved oxygen in water as material to be used for drinks such as beer and soft drink
CN114695181A (en) Substrate processing method and substrate processing apparatus
EP0111488A1 (en) A method of extracting gas from liquid
JP2019141771A (en) Manufacturing equipment and manufacturing method of carbonated beverage
WO2020028646A1 (en) Apparatus and method for expanding nano-bubbles in a liquid carrier
JP2004298793A (en) Ejector and deaeration apparatus using the same
JP2021146283A (en) Apparatus and method for producing extract