JP2000042530A - Deaerator - Google Patents

Deaerator

Info

Publication number
JP2000042530A
JP2000042530A JP10227601A JP22760198A JP2000042530A JP 2000042530 A JP2000042530 A JP 2000042530A JP 10227601 A JP10227601 A JP 10227601A JP 22760198 A JP22760198 A JP 22760198A JP 2000042530 A JP2000042530 A JP 2000042530A
Authority
JP
Japan
Prior art keywords
liquid
gas
water
treated
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10227601A
Other languages
Japanese (ja)
Inventor
Hirotake Marutani
博毅 丸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP10227601A priority Critical patent/JP2000042530A/en
Publication of JP2000042530A publication Critical patent/JP2000042530A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To maintain stable gas-liquid contact to improve the liquid quality of treated liquid, and furthermore, to obtain the treated liquid having stable liquid quality without lowering gas-liquid contact efficiency even if the feed liquid pressure is lowered. SOLUTION: This deaerator 10 is provided with a spray mechanism 13 arranged in a space in a vessel 11 and for spraying water to be treated from a water supply line 12 to the upper space, a circulating line 18 for making treated water by the spray mechanism 13 merge with water to be treated of the water feeding line 12 from the vessel 11 to circulate it, and a circulating pump 19 arranged in the circulating line 18 to circulate a part of the treated water in the vessel 11 through the circulating line 18.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、気液接触による脱
気装置に関し、更に詳しくは処理液の液質を向上させる
と共に、給液量が低下しても安定した液質を維持するこ
とができる脱気装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a degassing apparatus using gas-liquid contact, and more particularly, to improving the liquid quality of a processing liquid and maintaining a stable liquid quality even when the supply amount decreases. It relates to a possible deaerator.

【0002】[0002]

【従来の技術】この種の脱気装置としては例えば充填塔
方式や気泡塔方式あるいはスプレー塔方式のものが知ら
れており、例えば純水製造装置の脱炭酸装置や、地下水
中のトリクロロエタン等の揮発性有害物質を除去する水
処理装置として広く用いられている。
2. Description of the Related Art As a deaerator of this type, for example, a packed tower system, a bubble column system or a spray tower system is known. For example, a decarbonation system of a pure water production system or a trichloroethane in groundwater is used. It is widely used as a water treatment device for removing volatile harmful substances.

【0003】例えば図3は充填塔方式の脱気装置を示す
図である。この方式の脱気装置は、同図に示すように、
塔本体1と、この塔本体1内にラシヒリング、テラレッ
ト等の充填材が充填された充填層2と、この充填層2の
上方に配設された散水管3と、上記充填層の下部に配設
された気体供給部4とを備えた充填塔として構成されて
いる。従って、例えば散水管3から例えば二酸化炭素等
の気体やトリクロロエチレン等の揮発性成分が溶存する
被処理水を供給すると共に、気体供給部4から空気を供
給すると、被処理水が同図に実線矢印で示すように下降
流で充填層2を通過し、空気が同図に破線矢印で示すよ
うに上昇流で充填層2を通過し、充填層2において気液
接触が促進されて二酸化炭素やトリクロロエチレン等の
揮発性成分を被処理水から除去する。ところが、上記脱
気装置は塔本体1内に充填層2や散水管3等を有するた
め、気液負荷変動に対する融通性があり、脱気効率に優
れている反面、塔高が高く、設置スペースが大きく、フ
ラッディング現象が生じ易いという問題があった。
[0003] For example, FIG. 3 is a diagram showing a deaerator of a packed tower system. This type of deaerator, as shown in the figure,
A tower body 1, a packed layer 2 in which a filler such as Raschig ring, terraret, or the like is filled in the tower body 1, a sprinkler pipe 3 disposed above the packed layer 2, and a lower part of the packed layer. It is configured as a packed tower having the provided gas supply unit 4. Therefore, for example, when water to be treated in which a gas such as carbon dioxide or a volatile component such as trichlorethylene is dissolved is supplied from the water sprinkling pipe 3 and air is supplied from the gas supply unit 4, the water to be treated becomes solid arrow in FIG. As shown in the figure, the air passes through the packed bed 2 in a downward flow, and the air passes through the packed bed 2 in an upward flow as shown by a dashed arrow in FIG. And other volatile components are removed from the water to be treated. However, since the degassing apparatus has the packed bed 2 and the water sprinkling pipe 3 in the tower main body 1, it has flexibility for gas-liquid load fluctuation and is excellent in degassing efficiency, but has a high tower height and installation space. However, there is a problem that the flooding phenomenon easily occurs.

【0004】また、気泡塔方式は充填塔方式のようなフ
ラッディング現象を生じ難いため、空気を過剰気味に供
給し、極力気液接触を図って処理水質を高めるようにし
ているが、充填塔方式と比較して圧力損失が大きく、し
かも空気による気液接触効率が劣るため、気液比(空気
/水)を高める必要がある。従って、気泡塔方式を充填
塔方式の代替として使用する場合には多段階処理を検討
する必要がある。一方、スプレー塔方式は圧力損失が小
さいため、少ないエネルギーロスで良好な気液接触を図
ることができるため、ガス吸収装置として広く採用され
ている。
[0004] In addition, since the bubble tower system is unlikely to cause a flooding phenomenon as in the packed tower system, air is supplied in an excessive amount and air-liquid contact is made as much as possible to improve the quality of treated water. Therefore, the gas-liquid ratio (air / water) needs to be increased because the pressure loss is large and the gas-liquid contact efficiency by air is inferior. Therefore, when using the bubble column system as an alternative to the packed column system, it is necessary to consider a multi-stage treatment. On the other hand, since the spray tower method has a small pressure loss and can achieve good gas-liquid contact with a small energy loss, it is widely used as a gas absorbing device.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
脱気装置は前述したようにいずれの場合にも一長一短が
あり、中でもスプレー塔方式の場合には少ないエネルギ
ーロスで良好な気液接触を図ることができるものの、給
液量(給液圧)が低下した場合は噴霧粒子の粒子径が不
安定になって気液接触効率が低下するという課題があっ
た。
However, the conventional degassing apparatus has advantages and disadvantages in each case as described above. In particular, in the case of the spray tower system, good gas-liquid contact is achieved with small energy loss. However, when the liquid supply amount (liquid supply pressure) is reduced, there is a problem that the particle diameter of the spray particles becomes unstable and the gas-liquid contact efficiency is reduced.

【0006】本発明は、上記課題を解決するためになさ
れたもので、安定した気液接触を維持して処理液の液質
を向上させることができ、しかも給液圧が低下しても気
液接触効率を低下させることなく液質の安定した処理液
を得ることができ、更には装置を簡素化することができ
る脱気装置を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and can maintain the stable gas-liquid contact to improve the quality of the processing liquid. An object of the present invention is to provide a deaerator capable of obtaining a treatment liquid having a stable liquid quality without lowering the liquid contact efficiency and further simplifying the apparatus.

【0007】[0007]

【課題を解決するための手段】本発明者は、充填塔方
式、気泡塔方式及びスプレー塔方式それぞれの気液接触
と処理液の液質について種々検討した結果、スプレー塔
方式に特別の工夫を施すことにより給液圧が低下しても
常に気液接触効率の良好な噴霧粒子が得られることを知
見した。更に、スプレー塔方式と他の方式を組み合わせ
た複合処理を行うことにより気液接触効率を向上できる
ことを知見した。
The inventor of the present invention has conducted various studies on the gas-liquid contact and the liquid quality of the processing liquid in each of the packed tower system, bubble column system and spray tower system. It has been found that spraying can always provide spray particles having good gas-liquid contact efficiency even when the supply pressure decreases. Furthermore, it has been found that the gas-liquid contact efficiency can be improved by performing a composite treatment combining the spray tower method and another method.

【0008】本発明は上記知見に基づいてなされたもの
で、請求項1に記載の脱気装置は、被処理液を脱気し、
その中に含有される溶存気体及び/または揮発性成分を
除去して処理液を得る脱気装置において、容器内に脱気
用の気体を供給する気体給送手段と、上記容器内の空間
に配設され且つ給液配管からの被処理液を上記空間へ噴
霧して上記気体給送手段から供給される気体と気液接触
させるスプレー機構と、このスプレー機構による処理液
を上記容器から上記給液配管の被処理液へ合流、循環さ
せる循環配管と、この循環配管に配設され且つ上記容器
内の処理液の一部を循環配管を介して上記給液配管へ合
流させる液体給送手段とを備えたことを特徴とするもの
である。
The present invention has been made based on the above findings, and a degassing apparatus according to claim 1 degass a liquid to be treated,
In a deaerator for removing a dissolved gas and / or a volatile component contained therein to obtain a treatment liquid, a gas feeding means for supplying a deaeration gas into a container; A spray mechanism for spraying the liquid to be treated from the liquid supply pipe into the space and making gas-liquid contact with the gas supplied from the gas supply means; and supplying the processing liquid by the spray mechanism from the container to the space. A circulation pipe that joins and circulates the liquid to be treated in the liquid pipe, and a liquid feeding unit that is disposed in the circulation pipe and that joins a part of the processing liquid in the container to the liquid supply pipe through the circulation pipe. It is characterized by having.

【0009】また、本発明の請求項2に記載の脱気装置
は、被処理液を脱気し、その中に含有される溶存気体及
び/または揮発性成分を除去して処理液を得る脱気装置
において、容器内に脱気用の気体を供給する気体給送手
段と、上記容器内の空間に配設され且つ給液配管からの
被処理液を上記空間へ噴霧して上記気体給送手段から供
給される気体と気液接触させるスプレー機構と、このス
プレー機構による処理液を上記気体給送手段から供給さ
れる気体と気液接触させる気液接触手段と、この気液接
触手段による処理液を上記容器から上記給液配管の被処
理液へ合流、循環させる循環配管と、この循環配管に配
設され且つ上記容器内の処理液の一部を循環配管を介し
て上記給液配管へ合流させる液体給送手段とを備えたこ
とを特徴とするものである。
The degassing apparatus according to a second aspect of the present invention degass a liquid to be treated and removes dissolved gas and / or volatile components contained therein to obtain a treatment liquid. A gas supply means for supplying a gas for deaeration into a container, and a gas supply means disposed in a space in the container and spraying a liquid to be treated from a liquid supply pipe into the space. A spray mechanism for bringing the gas supplied from the means into gas-liquid contact, a gas-liquid contact means for bringing the treatment liquid by the spray mechanism into gas-liquid contact with the gas supplied from the gas supply means, and a treatment by the gas-liquid contact means A circulating pipe that joins and circulates the liquid from the container to the liquid to be treated in the liquid supply pipe, and a part of the processing liquid disposed in the circulation pipe and in the container to the liquid supply pipe via the circulation pipe And a liquid feeding means for merging. It is.

【0010】また、本発明の請求項3に記載の脱気装置
は、請求項2に記載の発明において、上記気液接触手段
は、上記容器内の上記スプレー機構の下方に配設された
充填層であることを特徴とするものである。
According to a third aspect of the present invention, in the degassing apparatus according to the second aspect, the gas-liquid contacting means includes a filling device disposed below the spray mechanism in the container. Characterized in that it is a layer.

【0011】また、本発明の請求項4に記載の脱気装置
は、請求項2に記載の発明において、上記気液接触手段
は、上記容器内に貯留された処理液中に配設され、上記
気体給送手段から供給される気体を処理液中にバブリン
グさせる気体分散手段であることを特徴とするものであ
る。
According to a fourth aspect of the present invention, in the degassing apparatus according to the second aspect, the gas-liquid contacting means is disposed in the processing liquid stored in the container. The gas supply means is a gas dispersion means for bubbling a gas supplied from the gas supply means into the processing liquid.

【0012】[0012]

【発明の実施の形態】以下、図1、図2に示す実施形態
に基づいて本発明を説明する。尚、図1は本発明の脱気
装置の一実施形態を示す概念図、図2は本発明の脱気装
置の他の実施形態を示す概念図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiments shown in FIGS. FIG. 1 is a conceptual diagram showing one embodiment of the deaerator of the present invention, and FIG. 2 is a conceptual diagram showing another embodiment of the deaerator of the present invention.

【0013】本実施形態の脱気装置10は、例えば図1
に示すように、略円筒状の容器11と、この容器11内
に配設されて給水配管12から供給された被処理水を二
段回で気液接触させて処理水を得るスプレー機構13及
び気液接触手段としての充填層14とを備え、被処理水
を脱気し、炭酸ガス等の溶存気体やトリクロロエタン等
の揮発性有害成分を除去して処理液を得るものである。
容器11は、被処理水を処理する塔部11Aと、この塔
部11Aの下側に連接された貯水部11Bからなってい
る。塔部11Aの上部空間には複数のスプレーノズル1
3Aを有するスプレー機構13が配設され、このスプレ
ー機構13の下方にはラシヒリング、テラレット等の充
填材からなる充填層14が形成されている。また、給水
配管12には給水ポンプ15が配設され、給水ポンプ1
5を介してスプレー機構13へ被処理水を供給すると、
スプレー機構13から被処理水を噴霧し、後述のブロワ
17から供給された空気との気液接触により被処理水に
含有される炭酸ガス等の溶存気体及び/または揮発性成
分を除去、脱気するようにしてある。スプレー機構13
による処理水は図1の破線矢印で示すように下降流で充
填層14を通水する間に充填材表面で気液接触して更に
溶存気体及び/または揮発性成分を除去、脱気し、処理
水の水質を更に高めることができる。このように二段階
処理による処理水は貯水部11Bに溜まる。
The deaerator 10 of the present embodiment is, for example, shown in FIG.
As shown in FIG. 2, a substantially cylindrical container 11, a spray mechanism 13 for subjecting the water to be treated, which is provided in the container 11 and supplied from a water supply pipe 12, to gas-liquid contact in two stages to obtain treated water, It is provided with a packed layer 14 as a gas-liquid contact means, and degass water to be treated, and removes dissolved gases such as carbon dioxide gas and volatile harmful components such as trichloroethane to obtain a treatment liquid.
The vessel 11 includes a tower 11A for treating the water to be treated, and a water storage 11B connected to the lower side of the tower 11A. A plurality of spray nozzles 1 are provided in the upper space of the tower 11A.
A spray mechanism 13 having 3A is provided, and a filling layer 14 made of a filler such as Raschig ring or teralet is formed below the spray mechanism 13. Further, a water supply pump 15 is provided in the water supply pipe 12, and the water supply pump 1 is provided.
When the water to be treated is supplied to the spray mechanism 13 through 5,
The water to be treated is sprayed from the spray mechanism 13 to remove and degas the dissolved gas such as carbon dioxide and / or volatile components contained in the water to be treated by gas-liquid contact with air supplied from the blower 17 described later. I have to do it. Spray mechanism 13
As shown by the dashed arrow in FIG. 1, the treated water is in gas-liquid contact with the surface of the filler while passing through the packed bed 14 in a downward flow to further remove dissolved gas and / or volatile components, and degas. The quality of the treated water can be further improved. In this way, the water treated by the two-stage treatment accumulates in the water storage part 11B.

【0014】また、上記容器11の充填層14と貯水部
11Bの間には給気配管16を介してブロワ17が接続
され、ブロワ17から充填層14と貯水部11Bの間に
形成された容器11内の下部空間へ空気を供給するよう
にしてある。この下部空間内に供給された空気は、図1
の白抜き矢印で示すように上昇流で充填層14を通過す
る。空気は充填層14を上昇する間にスプレー機構13
による処理水と気液接触し、更にスプレー機構13によ
る噴霧水と気液接触した後、容器11の上端に形成され
た排気口11Cから除去された溶存気体及び/または揮
発性成分を随伴して流出するようにしてある。
A blower 17 is connected between the filling layer 14 and the water storage section 11B of the container 11 via an air supply pipe 16, and a container formed between the filling layer 14 and the water storage section 11B from the blower 17 is provided. Air is supplied to a lower space in the inside 11. The air supplied into this lower space is shown in FIG.
And passes through the packed bed 14 in ascending flow as shown by the white arrow. Air rises through the packed bed 14 while the spray mechanism 13
Gas-liquid contact with the treated water by the spraying process, and further gas-liquid contact with the spray water by the spray mechanism 13, followed by the dissolved gas and / or volatile components removed from the exhaust port 11 </ b> C formed at the upper end of the container 11. It is leaked.

【0015】また、上記貯水部11Bと給水配管12は
循環配管18を介して接続され、貯水部11B内の処理
水の一部(例えば、被処理水の給水量の40%相当分)
を循環配管18に配設された循環ポンプ19を介して給
水配管12へ戻し、被処理水と合流させ、給水配管12
内の水圧を高めるようにしてある。従って、スプレー機
構13には給水量の1.4倍の水量が供給され、スプレ
ー機構13を通過する給水圧は被処理水の給水圧の1.
4倍になる。また、給水配管12には圧力計20が配設
され、圧力計20により給水配管12内の水圧を監視
し、この水圧が所定値より低下した場合には圧力計20
に基づく信号(図1では一点鎖線で示してある)21で
循環配管18の循環ポンプ19を制御し、循環流量を増
加させて給水配管12内の水圧を所定値に戻すようにし
てある。
Further, the water storage section 11B and the water supply pipe 12 are connected via a circulation pipe 18, and a part of the treated water in the water storage section 11B (for example, equivalent to 40% of the supply amount of the water to be treated).
Is returned to the water supply pipe 12 via a circulation pump 19 disposed in the circulation pipe 18 and is combined with the water to be treated.
The internal water pressure is raised. Therefore, the spray mechanism 13 is supplied with a water amount 1.4 times the water supply amount, and the water supply pressure passing through the spray mechanism 13 is equal to 1.
4 times. Further, a pressure gauge 20 is provided in the water supply pipe 12, and the water pressure in the water supply pipe 12 is monitored by the pressure gauge 20, and when the water pressure falls below a predetermined value, the pressure gauge 20 is provided.
The signal (indicated by a dashed line in FIG. 1) 21 controls the circulation pump 19 of the circulation pipe 18 to increase the circulation flow rate and return the water pressure in the water supply pipe 12 to a predetermined value.

【0016】従って、処理水の一部は給水配管12へ戻
ってその水圧を高めるため、被処理水の給水量が減少し
てもスプレー機構12での給水圧を所定値に維持し、噴
霧水の粒子径を小さく維持することができると共に処理
水の40%を再びスプレー機構13及び充填層14にお
いて脱気することができ処理水の水質が更に向上する。
しかも、給水配管12内の給水圧を圧力計20を介して
常に所定値に維持するようにしてあるため、スプレー機
構13からの噴霧水の粒子径を一定に維持し、安定した
気液接触を行うことができる。また、貯水部11Bには
送水配管22が接続され、送水配管22に配設された送
水ポンプ23を介して貯水部11B内に溜まった処理水
を送水配管22から送水するようにしている。
Therefore, since a part of the treated water returns to the water supply pipe 12 to increase the water pressure, the water supply pressure in the spray mechanism 12 is maintained at a predetermined value even if the supply amount of the treated water is reduced, and the spray water is maintained. Can be kept small, and 40% of the treated water can be degassed again in the spray mechanism 13 and the packed bed 14, so that the quality of the treated water can be further improved.
Moreover, since the water supply pressure in the water supply pipe 12 is always maintained at a predetermined value via the pressure gauge 20, the particle diameter of the spray water from the spray mechanism 13 is maintained constant, and stable gas-liquid contact is achieved. It can be carried out. Further, a water supply pipe 22 is connected to the water storage section 11B, and the treated water accumulated in the water storage section 11B is supplied from the water supply pipe 22 via a water supply pump 23 provided in the water supply pipe 22.

【0017】次に、図1を参照しながら動作について説
明する。給水ポンプ15が駆動すると、被処理水が給水
配管12を介してスプレー機構13に達し、スプレー機
構13から被処理水が噴霧される。これと同時にブロワ
17が駆動し、空気が給気配管16を介して容器11内
の下部空間に流入し、図1の白抜き矢印で示すように上
昇流で充填層14を通過して上部空間に達する。上部空
間ではスプレー機構13から噴霧された被処理水は充填
層14を通過した空気と気液接触し、炭酸ガス等の溶存
気体が被処理水から脱気されて充填層14上面全面に散
布される。一方、被処理水から除去された溶存気体は空
気と共に排気口11Cから排気される。
Next, the operation will be described with reference to FIG. When the water supply pump 15 is driven, the water to be treated reaches the spray mechanism 13 via the water supply pipe 12, and the water to be treated is sprayed from the spray mechanism 13. At the same time, the blower 17 is driven, and the air flows into the lower space in the container 11 through the air supply pipe 16 and passes through the packed bed 14 by ascending flow as shown by a white arrow in FIG. Reach In the upper space, the water to be treated sprayed from the spray mechanism 13 comes into gas-liquid contact with the air that has passed through the filling layer 14, and a dissolved gas such as carbon dioxide gas is degassed from the water to be treated and sprayed over the entire upper surface of the filling layer 14. You. On the other hand, the dissolved gas removed from the water to be treated is exhausted from the exhaust port 11C together with the air.

【0018】上述のようにして第一段の脱気処理がなさ
れたスプレー機構13の処理水は図1の破線矢印で示す
ように下降流で充填層14を通過する間に上昇流で充填
層14を通過する空気と気液接触し、スプレー機構13
による処理水中に残留する溶存気体を上昇空気との気液
接触によって更に脱気し、容器11内の貯水部11Bに
貯留される。貯水部11B内の処理水の一部(被処理水
の給水量の40%相当分)は循環ポンプ19を介して循
環配管18から被処理水の給水配管12に合流し、被処
理水と共にスプレー機構13及び充填層14において更
に溶存気体が脱気される。また、被処理水の給水量が低
下しても圧力計20が作動して循環ポンプ19による循
環水量が増加し、スプレー機構13での水圧を所定の値
に維持し、スプレー機構13からの噴霧水の粒子径を安
定化し、安定した気液接触を行う。尚、貯水部11Bに
溜まった処理水は送水ポンプ23を介して送水管22か
ら送水される。
The treated water of the spray mechanism 13 which has been subjected to the first-stage deaeration treatment as described above, passes through the packed bed 14 in a downward flow as shown by the dashed arrow in FIG. 14 comes into gas-liquid contact with the air passing through
The dissolved gas remaining in the treated water is further degassed by gas-liquid contact with the rising air, and is stored in the water storage portion 11B in the container 11. Part of the treated water in the water storage section 11B (corresponding to 40% of the supply amount of the treated water) joins the treated water supply pipe 12 from the circulation pipe 18 via the circulation pump 19, and is sprayed together with the treated water. The dissolved gas is further degassed in the mechanism 13 and the packed bed 14. Further, even if the supply amount of the water to be treated decreases, the pressure gauge 20 operates to increase the circulating water amount by the circulating pump 19, maintain the water pressure in the spray mechanism 13 at a predetermined value, and spray the water from the spray mechanism 13. Stabilizes the particle size of water and provides stable gas-liquid contact. The treated water stored in the water storage section 11 </ b> B is sent from the water pipe 22 through the water pump 23.

【0019】以上説明したように本実施形態によれば、
容器11内の上部空間でスプレー機構13により給水配
管12から供給された被処理水を噴霧して気液接触させ
た後、この処理水を充填層14において二回目の気液接
触させた処理水を貯水部11B内に溜め、しかも、貯水
部11Bの処理水の一部を循環ポンプ19を介して循環
配管18から給水配管12へ戻し、被処理水と合流させ
るようにしたため、被処理水はスプレー機構13及び充
填層14において二段階の脱気処理を受け、更に処理水
の40%は更に二段階の脱気処理を受けるため、被処理
水の気液接触時間が長くなって処理水の水質が向上し、
安定した水質の処理水を得ることができる。しかも、処
理水の40%を被処理水と合流させてスプレー機構13
の通過水の圧力を高圧状態に維持することができるた
め、被処理水の給水量が低下することがあってもスプレ
ー機構13における噴霧水の粒子径が細かくなって空気
との十分な気液接触を図ることができる。
As described above, according to the present embodiment,
After the water to be treated supplied from the water supply pipe 12 is sprayed by the spray mechanism 13 in the upper space in the container 11 to make gas-liquid contact, the treated water is subjected to the second gas-liquid contact in the filling layer 14. Is stored in the water storage unit 11B, and a part of the treated water in the water storage unit 11B is returned from the circulation pipe 18 to the water supply pipe 12 via the circulation pump 19 to be combined with the water to be treated. The spray mechanism 13 and the packed bed 14 undergo a two-stage degassing process, and 40% of the treated water undergoes a further two-stage degassing process. Water quality is improved,
It is possible to obtain treated water having stable water quality. In addition, 40% of the treated water is combined with the water to be treated to form
Since the pressure of the passing water can be maintained at a high pressure state, the particle size of the spray water in the spray mechanism 13 becomes fine even if the supply amount of the water to be treated is reduced, so that sufficient gas-liquid Contact can be established.

【0020】更に、本実施形態によれば、一基の容器1
1内のスプレー機構13及び充填層14を被処理水がそ
れぞれ複数回ずつ通過して多段階処理されるため、多段
階処理とは云え、容器11内の構造を簡素化し、装置の
部品点数を削減することができる。また、被処理水の給
水量の変動に対して循環ポンプ19を制御することで対
応できるため、運転管理が容易で、ランニングコストを
低減することができる。
Further, according to the present embodiment, one container 1
Since the water to be treated passes through the spray mechanism 13 and the packed bed 14 in each one a plurality of times, and is subjected to multi-stage treatment, the multi-stage treatment is simplified. Can be reduced. In addition, since fluctuations in the amount of water to be treated can be handled by controlling the circulation pump 19, operation management is easy and running costs can be reduced.

【0021】図2に示す脱気装置30は、容器31、給
水配管32、スプレー機構33、散気機構34、給水ポ
ンプ35、給気配管36、ブロワ37、循環配管38、
循環ポンプ39、圧力計40、送水配管42及び送水ポ
ンプ43を備え、図1に示す充填層14に代えて容器3
1内に散気機構34を設けた以外は上記実施形態に準じ
て構成されている。
The deaerator 30 shown in FIG. 2 includes a container 31, a water supply pipe 32, a spray mechanism 33, a diffuser mechanism 34, a water supply pump 35, a supply pipe 36, a blower 37, a circulation pipe 38,
A circulation pump 39, a pressure gauge 40, a water supply pipe 42, and a water supply pump 43 are provided.
The configuration is the same as that of the above embodiment, except that the air diffusing mechanism 34 is provided in 1.

【0022】従って、本実施形態では、給水ポンプ35
が駆動すると、被処理水が給水配管32を介してスプレ
ー機構33に達し、スプレー機構33から被処理水が噴
霧される。これと同時にブロワ37が駆動し、空気が給
気配管36を介して容器31の底部の散気機構34から
空気の細かい気泡が供給されて容器31内の貯留水と気
液接触しながら上昇し、容器31内の上部空間に達す
る。上部空間ではスプレー機構33からの噴霧水と貯留
水中を通過した空気とが気液接触し、被処理水は炭酸ガ
ス等の溶存気体が脱気されて容器31内に貯留される。
一方、被処理水から除去された溶存気体は空気と共に排
気口31Cから排気される。このように被処理水はスプ
レー機構33によって一回目の脱気処理を受け、次いで
容器31内の貯留水として散気機構34によって二回目
の脱気処理を受ける。
Therefore, in the present embodiment, the water supply pump 35
Is driven, the water to be treated reaches the spray mechanism 33 via the water supply pipe 32, and the water to be treated is sprayed from the spray mechanism 33. At the same time, the blower 37 is driven, and the air is supplied with fine air bubbles from the air diffusing mechanism 34 at the bottom of the container 31 through the air supply pipe 36 and rises while contacting the stored water in the container 31 with the gas-liquid. Reaches the upper space in the container 31. In the upper space, the water sprayed from the spray mechanism 33 and the air passing through the stored water come into gas-liquid contact, and the water to be treated is stored in the container 31 after the dissolved gas such as carbon dioxide is degassed.
On the other hand, the dissolved gas removed from the water to be treated is exhausted from the exhaust port 31C together with the air. As described above, the water to be treated is subjected to the first deaeration treatment by the spray mechanism 33, and is then subjected to the second deaeration treatment by the diffusion mechanism 34 as stored water in the container 31.

【0023】容器31内の貯留水の一部(例えば被処理
水の給水量の40%相当分)は循環ポンプ39を介して
循環配管38から被処理水の給水配管32に合流し、被
処理水と共にスプレー機構33及び散気機構34におい
て更に溶存気体が脱気される。また、給水量の低下によ
り給水ポンプ35による給水量が低下しても、圧力計4
0に基づく信号41で循環ポンプ39による循環量が増
加し、スプレー機構33での水圧を所定の値に維持し、
スプレー機構33からの噴霧水の粒子径を常に小さく維
持し、安定した脱気処理を行う。
A part of the water stored in the container 31 (for example, equivalent to 40% of the amount of water to be treated) is circulated from a circulation pipe 38 via a circulation pump 39 to a water supply pipe 32 for the water to be treated. The dissolved gas is further degassed in the spray mechanism 33 and the air diffusing mechanism 34 together with the water. Even if the amount of water supplied by the water supply pump 35 decreases due to the decrease in the amount of water supply, the pressure gauge 4
With the signal 41 based on 0, the circulation amount by the circulation pump 39 increases, the water pressure in the spray mechanism 33 is maintained at a predetermined value,
The particle diameter of the spray water from the spray mechanism 33 is always kept small, and a stable deaeration process is performed.

【0024】以上説明したように本実施形態によれば、
容器31内の上部空間でスプレー機構33により給水配
管32から供給された被処理水を噴霧して気液接触させ
て一回目の脱気処理を行った後、この処理水が貯留水と
して散気機構34からの気泡と気液接触させて二回目の
脱気処理を行い、しかも、この処理水の一部を循環ポン
プ39を介して循環配管38から給水配管32へ戻し、
被処理水と合流させるようにしたため、被処理水はスプ
レー機構33及び散気機構34それぞれによって複数回
の脱気処理を受け、上記実施形態と実質的に同一の作用
効果を期することができる。
According to the present embodiment as described above,
After the water to be treated supplied from the water supply pipe 32 is sprayed by the spray mechanism 33 in the upper space in the container 31 to make gas-liquid contact and perform the first deaeration treatment, the treated water is diffused as stored water. A second deaeration process is performed by bringing the bubbles from the mechanism 34 into gas-liquid contact, and a part of the treated water is returned from the circulation pipe 38 to the water supply pipe 32 via the circulation pump 39.
Since the water to be treated is merged with the water to be treated, the water to be treated is subjected to a plurality of deaeration treatments by the spray mechanism 33 and the air diffusing mechanism 34, respectively, and substantially the same operation and effect as in the above embodiment can be expected. .

【0025】尚、上記各実施形態では、気液接触手段と
して前段にスプレー機構を、後段に充填層または散気機
構を設けた場合について説明したが、本発明の脱気装置
は、前段のスプレー機構だけであっても良く、要は、ス
プレー機構による処理水を循環配管を介して被処理水側
に戻すようにした脱気装置であれば本発明に包含され
る。また、上記各実施形態では、処理水の一部が常時循
環する場合について説明したが、圧力計20あるいは圧
力計40の圧力を監視し、この圧力が所定値より低下し
た場合、即ち、給水ポンプ15あるいは給水ポンプ35
による被処理水の給水量が減少した場合にのみ処理水の
循環を行うようにしても良い。
In each of the above-described embodiments, the case where the spray mechanism is provided at the front stage as the gas-liquid contact means and the packed layer or the air diffusing mechanism is provided at the rear stage has been described. The mechanism may be only a mechanism, and the point is that the present invention is included in a deaerator that is configured to return the treated water by the spray mechanism to the treated water side through the circulation pipe. In each of the above embodiments, the case where a part of the treated water is constantly circulated has been described. However, the pressure of the pressure gauge 20 or the pressure gauge 40 is monitored, and when the pressure falls below a predetermined value, 15 or water supply pump 35
The circulation of the treated water may be performed only when the supply amount of the treated water is reduced.

【0026】[0026]

【発明の効果】本発明の請求項1〜請求項4に記載の発
明によれば、安定した気液接触を維持して処理液の液質
を向上させることができ、しかも給液圧が低下しても気
液接触効率を低下させることなく液質の安定した処理液
を得ることができ、更には装置を簡素化することができ
る脱気装置を提供することができる。
According to the first to fourth aspects of the present invention, the quality of the processing liquid can be improved while maintaining stable gas-liquid contact, and the supply pressure is reduced. Thus, a processing liquid having a stable liquid quality can be obtained without lowering the gas-liquid contacting efficiency, and further, a deaerator capable of simplifying the apparatus can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の脱気装置の一実施形態を示す概念図で
ある。
FIG. 1 is a conceptual diagram showing one embodiment of a deaerator of the present invention.

【図2】本発明の脱気装置の他の実施形態を示す概念図
である。
FIG. 2 is a conceptual diagram showing another embodiment of the deaerator of the present invention.

【図3】従来の脱気装置の一例を示す概念図である。FIG. 3 is a conceptual diagram showing an example of a conventional deaerator.

【符号の説明】[Explanation of symbols]

10、30 脱気装置 11、31 容器 13、33 スプレー機構 14 充填層(気液接触手段) 17、37 ブロワ(気体給送手段) 18、38 循環配管 19、39 循環ポンプ(液体給送手段) 34 散気機構(気体分散手段) 10, 30 Degassing device 11, 31 Container 13, 33 Spray mechanism 14 Packing layer (gas-liquid contact means) 17, 37 Blower (gas supply means) 18, 38 Circulation pipe 19, 39 Circulation pump (liquid supply means) 34 Aeration mechanism (gas dispersion means)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被処理液を脱気し、その中に含有される
溶存気体及び/または揮発性成分を除去して処理液を得
る脱気装置において、容器内に脱気用の気体を供給する
気体給送手段と、上記容器内の空間に配設され且つ給液
配管からの被処理液を上記空間へ噴霧して上記気体給送
手段から供給される気体と気液接触させるスプレー機構
と、このスプレー機構による処理液を上記容器から上記
給液配管の被処理液へ合流、循環させる循環配管と、こ
の循環配管に配設され且つ上記容器内の処理液の一部を
循環配管を介して上記給液配管へ合流させる液体給送手
段とを備えたことを特徴とする脱気装置。
1. A degassing apparatus for degassing a liquid to be treated and removing a dissolved gas and / or a volatile component contained therein to obtain a treatment liquid, wherein a gas for degassing is supplied into a container. A gas supply means for supplying a gas to be supplied from the gas supply means, and a spray mechanism disposed in the space in the container and spraying a liquid to be treated from a liquid supply pipe into the space to make gas-liquid contact with the gas supplied from the gas supply means. A circulation pipe that joins and circulates the processing liquid from the container to the liquid to be processed in the liquid supply pipe from the container, and a part of the processing liquid disposed in the circulation pipe and in the container through the circulation pipe. And a liquid supply means for joining the liquid supply pipe to the liquid supply pipe.
【請求項2】 被処理液を脱気し、その中に含有される
溶存気体及び/または揮発性成分を除去して処理液を得
る脱気装置において、容器内に脱気用の気体を供給する
気体給送手段と、上記容器内の空間に配設され且つ給液
配管からの被処理液を上記空間へ噴霧して上記気体給送
手段から供給される気体と気液接触させるスプレー機構
と、このスプレー機構による処理液を上記気体給送手段
から供給される気体と気液接触させる気液接触手段と、
この気液接触手段による処理液を上記容器から上記給液
配管の被処理液へ合流、循環させる循環配管と、この循
環配管に配設され且つ上記容器内の処理液の一部を循環
配管を介して上記給液配管へ合流させる液体給送手段と
を備えたことを特徴とする脱気装置。
2. A degassing apparatus for degassing a liquid to be treated and removing a dissolved gas and / or a volatile component contained therein to obtain a treatment liquid, wherein a gas for degassing is supplied into a container. A gas supply means for supplying a gas to be supplied from the gas supply means, and a spray mechanism disposed in the space in the container and spraying a liquid to be treated from a liquid supply pipe into the space to make gas-liquid contact with the gas supplied from the gas supply means. Gas-liquid contacting means for bringing the processing liquid by the spray mechanism into gas-liquid contact with the gas supplied from the gas feeding means,
A circulating pipe for joining and circulating the processing liquid from the container to the liquid to be processed in the liquid supply pipe from the container, and a circulating pipe disposed in the circulating pipe and passing a part of the processing liquid in the container. And a liquid supply means for joining the liquid supply pipe through the liquid supply pipe.
【請求項3】 上記気液接触手段は、上記容器内の上記
スプレー機構の下方に配設された充填層であることを特
徴とする請求項2に記載の脱気装置。
3. The degassing device according to claim 2, wherein the gas-liquid contact means is a packed bed disposed below the spray mechanism in the container.
【請求項4】 上記気液接触手段は、上記容器内に貯留
された処理液中に配設され、上記気体給送手段から供給
される気体を処理液中にバブリングさせる気体分散手段
であることを特徴とする請求項2に記載の脱気装置。
4. The gas-liquid contacting means is a gas dispersing means disposed in the processing liquid stored in the container and for bubbling a gas supplied from the gas supply means into the processing liquid. The degassing device according to claim 2, characterized in that:
JP10227601A 1998-07-28 1998-07-28 Deaerator Pending JP2000042530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10227601A JP2000042530A (en) 1998-07-28 1998-07-28 Deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10227601A JP2000042530A (en) 1998-07-28 1998-07-28 Deaerator

Publications (1)

Publication Number Publication Date
JP2000042530A true JP2000042530A (en) 2000-02-15

Family

ID=16863501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10227601A Pending JP2000042530A (en) 1998-07-28 1998-07-28 Deaerator

Country Status (1)

Country Link
JP (1) JP2000042530A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100151A (en) * 2006-10-18 2008-05-01 Kobelco Eco-Solutions Co Ltd Organic wastewater treatment method and organic waste water treatment device
JP2009106943A (en) * 2009-01-19 2009-05-21 Toyobo Engineering Kk Method and apparatus for producing deoxidized water
JP2009285641A (en) * 2008-06-02 2009-12-10 Toyobo Engineering Kk Method for effectively controlling nitrogen type deoxidation apparatus
JP2011098344A (en) * 2010-12-24 2011-05-19 Kobelco Eco-Solutions Co Ltd Organic wastewater treatment method and organic wastewater treatment apparatus
JP2014050820A (en) * 2012-09-10 2014-03-20 Ebara Jitsugyo Co Ltd Decarboxylation processing unit
JP2020032321A (en) * 2018-08-27 2020-03-05 パナソニックIpマネジメント株式会社 Ion removal system
CN113772772A (en) * 2021-08-31 2021-12-10 国网冀北电力有限公司电力科学研究院 Dissolved oxygen removal device, internal cooling water system of converter valve and dissolved oxygen removal method thereof
JP7250880B1 (en) 2021-10-19 2023-04-03 野村マイクロ・サイエンス株式会社 Electrode water recovery method and ultrapure water or pharmaceutical water production method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008100151A (en) * 2006-10-18 2008-05-01 Kobelco Eco-Solutions Co Ltd Organic wastewater treatment method and organic waste water treatment device
JP4682116B2 (en) * 2006-10-18 2011-05-11 株式会社神鋼環境ソリューション Organic wastewater treatment method and organic wastewater treatment equipment
JP2009285641A (en) * 2008-06-02 2009-12-10 Toyobo Engineering Kk Method for effectively controlling nitrogen type deoxidation apparatus
JP2009106943A (en) * 2009-01-19 2009-05-21 Toyobo Engineering Kk Method and apparatus for producing deoxidized water
JP2011098344A (en) * 2010-12-24 2011-05-19 Kobelco Eco-Solutions Co Ltd Organic wastewater treatment method and organic wastewater treatment apparatus
JP2014050820A (en) * 2012-09-10 2014-03-20 Ebara Jitsugyo Co Ltd Decarboxylation processing unit
JP2020032321A (en) * 2018-08-27 2020-03-05 パナソニックIpマネジメント株式会社 Ion removal system
JP7157951B2 (en) 2018-08-27 2022-10-21 パナソニックIpマネジメント株式会社 ion removal system
CN113772772A (en) * 2021-08-31 2021-12-10 国网冀北电力有限公司电力科学研究院 Dissolved oxygen removal device, internal cooling water system of converter valve and dissolved oxygen removal method thereof
CN113772772B (en) * 2021-08-31 2023-07-18 国网冀北电力有限公司电力科学研究院 Dissolved oxygen removal device, converter valve internal cooling water system and dissolved oxygen removal method thereof
JP7250880B1 (en) 2021-10-19 2023-04-03 野村マイクロ・サイエンス株式会社 Electrode water recovery method and ultrapure water or pharmaceutical water production method
WO2023067912A1 (en) * 2021-10-19 2023-04-27 野村マイクロ・サイエンス株式会社 Electrode water recovery method and method for producing ultrapure water or pharmaceutical water
JP2023061181A (en) * 2021-10-19 2023-05-01 野村マイクロ・サイエンス株式会社 Electrode water collection method, and ultrapure water or pharmaceutical water manufacturing method

Similar Documents

Publication Publication Date Title
US5380471A (en) Aeration apparatus for producing ultrapure water
JP5950790B2 (en) Wastewater treatment method and system
JPH04190803A (en) Vacuum degassing method
JP2000042530A (en) Deaerator
JPH06254538A (en) Removing device for dissolving oxygen
US5632885A (en) Hydrogen peroxide removal equipment capable of treating both waste water and waste gas
JPH08132100A (en) Device for ozonating biological sludge
JP2601379B2 (en) Gas deodorization and oxidation treatment method, liquid ozone oxidation treatment method, and pretreatment method for aerobic biological treatment
JP2003040649A5 (en)
JP3068244B2 (en) Method and apparatus for heating and multi-step degassing of makeup water using steam in a power plant
JP4608726B2 (en) Biological treatment equipment
JP3087914B2 (en) Aeration treatment equipment
JP2002102649A (en) Gas treatment method and apparatus
JP3453339B2 (en) Degassing device
JP3387190B2 (en) Biological sludge ozonation equipment
JP3452471B2 (en) Pure water supply system, cleaning device and gas dissolving device
JP2885997B2 (en) Degassing device
JP3643979B2 (en) Purification equipment for water containing volatile organic compounds
JP2019084509A (en) Deodorizer
JPH057799A (en) Pressurized floatation separation
JPH08267099A (en) Ozonetreatment equipment for biological sludge
JP2009183890A (en) Oil and water separation apparatus
JPH06178971A (en) Deaeration device
JP2021146283A (en) Apparatus and method for producing extract
JP2000202236A (en) METHOD FOR DENITRATING WASTE GAS WITH NOx CONCENTRATION VARIABLE