JP2014050820A - Decarboxylation processing unit - Google Patents

Decarboxylation processing unit Download PDF

Info

Publication number
JP2014050820A
JP2014050820A JP2012198632A JP2012198632A JP2014050820A JP 2014050820 A JP2014050820 A JP 2014050820A JP 2012198632 A JP2012198632 A JP 2012198632A JP 2012198632 A JP2012198632 A JP 2012198632A JP 2014050820 A JP2014050820 A JP 2014050820A
Authority
JP
Japan
Prior art keywords
treated water
unit
tank
treated
decarboxylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012198632A
Other languages
Japanese (ja)
Other versions
JP6105879B2 (en
Inventor
Takayuki Saito
孝行 斉藤
Toshihiro Tanaka
俊博 田中
Takayuki Kobayashi
孝幸 小林
Hidetoshi Mizuno
英俊 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Jitsugyo Co Ltd
Original Assignee
Ebara Jitsugyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Jitsugyo Co Ltd filed Critical Ebara Jitsugyo Co Ltd
Priority to JP2012198632A priority Critical patent/JP6105879B2/en
Publication of JP2014050820A publication Critical patent/JP2014050820A/en
Application granted granted Critical
Publication of JP6105879B2 publication Critical patent/JP6105879B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an energy saving-type decarboxylation processing unit which can reduce an electric power cost required for supplying with treated water that free carbon dioxide component is removed.SOLUTION: A decarboxylation processing unit 10 comprises: a tank unit 20 being supplied water to treat 31 and air 61 for decarboxylation; an exhaust outlet 50 disposed on a top part of the tank unit and releasing exhaust gas 51 outside the tank unit; a treated water outflow unit 80 containing a pipe 82 communicating to a treated water storage unit 70 which is lower part of the tank unit and rising up to a position which is higher than the treated water storage unit, and supplying with the treated water to a treated water tank 90 (devices using the treated water); and a displacement volume control unit 100 controlling displacement volume of exhaust gas in the exhaust outlet. The decarboxylation processing unit controls the displacement volume in the exhaust outlet 50 by the displacement volume control unit, holds a treated water level 72 in the treated water storage unit in a water level set in advance, and supplies with the treated water only by differential pressure of the pressure in the tank unit and the pressure in the treated water tank through the treated water outflow unit.

Description

本発明は、被処理水の水中から遊離炭酸成分を除去する脱炭酸処理装置に係り、特に構造を簡便にし、送水ポンプを不要にした省エネルギー型の脱炭酸処理装置に関する。   The present invention relates to a decarboxylation apparatus that removes free carbonic acid components from water to be treated, and more particularly to an energy-saving decarboxylation apparatus that has a simple structure and does not require a water pump.

水源として井水を用いる場合、一般的に河川水に比べて遊離炭酸が多く存在している。このため、配管がスケールで閉塞したり、配管が腐食したりするトラブルが発生しやすい。このような井水中の炭酸の形態は、pHによって変化するが、遊離炭酸の多くはCOガスの状態で存在しており、一部は分子状の炭酸(HCO)の形態で存在している。また、井水には遊離炭酸以外に解離した重炭酸イオン(HCO )や炭酸イオン(CO 2−)が存在している。 When well water is used as a water source, there is generally more free carbonic acid than river water. For this reason, troubles in which the piping is clogged with the scale or the piping is corroded easily occur. The form of carbonic acid in such well water varies depending on the pH, but most of the free carbonic acid exists in the state of CO 2 gas, and part of it exists in the form of molecular carbonic acid (H 2 CO 3 ). doing. The well water contains dissociated bicarbonate ions (HCO 3 ) and carbonate ions (CO 3 2− ) in addition to free carbonic acid.

例えば、下記の(1)式に示すように、水中に炭酸水素塩を溶存させておくために必要な従属性遊離炭酸を除いた残りの遊離炭酸が、いわゆる浸食性遊離炭酸となるが、この浸食性遊離炭酸が配管等を腐食させる原因となる。逆に、従属性遊離炭酸が少なければ、(1)式は左辺に移動し、このため炭酸カルシウムが析出してスケールを形成することになる。   For example, as shown in the following formula (1), the remaining free carbonic acid excluding the dependent free carbonic acid necessary for dissolving the bicarbonate in water becomes so-called erodible free carbonic acid. Erosive free carbonic acid causes corrosion of piping and the like. On the contrary, if there is little dependent free carbonic acid, Formula (1) will move to the left side, and for this reason, calcium carbonate will precipitate and a scale will be formed.

Figure 2014050820
Figure 2014050820

また、純水製造プロセスにおいてイオン交換処理装置で純水を製造する場合、遊離炭酸ばかりでなく重炭酸イオンおよび炭酸イオンはアニオン交換樹脂へのイオン負荷となり、アニオン交換樹脂の処理容量を低下させる原因となる。あるいは、RO処理装置においては、RO膜では解離していない遊離炭酸の除去ができないことから、RO処理水に遊離炭酸がリークし処理水の導電率等の水質を悪化させる原因となる。   In addition, when pure water is produced with an ion exchange treatment device in the pure water production process, not only free carbonic acid but also bicarbonate ions and carbonate ions become an ionic load on the anion exchange resin, causing a reduction in the treatment capacity of the anion exchange resin. It becomes. Alternatively, in the RO treatment apparatus, free carbonic acid that has not been dissociated by the RO membrane cannot be removed, so that free carbonic acid leaks into the RO treated water, which deteriorates the water quality such as the conductivity of the treated water.

このように、遊離炭酸は配管を腐食したりスケールを形成して詰まらせたり、さらに純水製造プロセスでは純水製造装置の性能を低下させる原因となっている。したがって、一般的には、脱炭酸塔によって遊離炭酸の除去が行われている。   As described above, free carbonic acid corrodes piping and clogs by forming a scale, and further causes the performance of the pure water production apparatus to deteriorate in the pure water production process. Therefore, generally, free carbonic acid is removed by a decarboxylation tower.

例えば、特許文献1は、脱酸素及び脱炭酸処理装置並びに処理方法に関する発明を開示している。公報に開示された窒素脱気塔は、いわゆる従来型脱炭酸塔の構造と同じ構造を有し、従来型脱炭酸塔において、空気を窒素に変更することによって脱酸素の機能を付加している。すなわち、窒素脱気塔(脱炭酸塔)に導入される被処理水のpHを、予め酸を添加して6.5以下に調整し、酸性に調整した被処理水を充填層の上部から供給する。充填層下部に配置された窒素散気ノズルから窒素を噴出し、充填層において窒素と被処理水とを接触させて酸素及び遊離炭酸を除去している。そして、この処理水にアルカリを添加してpHを6.5〜9に調整した後、処理水を送水ポンプによって排出するようにした技術が記載されている。なお、脱炭酸処理水のpHを中性以上に調整する理由は、被処理水のpHを予め酸性に調整するため、脱炭酸処理水のpHが酸性領域となる場合があり、給水配管やボイラを腐食させる恐れがあるためである。   For example, Patent Document 1 discloses an invention relating to a deoxygenation and decarboxylation apparatus and a treatment method. The nitrogen deaeration tower disclosed in the publication has the same structure as that of a so-called conventional decarboxylation tower, and in the conventional decarboxylation tower, a function of deoxygenation is added by changing air to nitrogen. . That is, the pH of the water to be treated introduced into the nitrogen deaeration tower (decarbonation tower) is adjusted to 6.5 or less by adding acid in advance, and the water to be treated adjusted to acidity is supplied from the upper part of the packed bed. To do. Nitrogen is spouted from a nitrogen aeration nozzle arranged in the lower part of the packed bed, and nitrogen and treated water are brought into contact with each other in the packed bed to remove oxygen and free carbonic acid. A technique is described in which alkali is added to the treated water to adjust the pH to 6.5 to 9, and then the treated water is discharged by a water pump. The reason for adjusting the pH of the decarboxylated water to be neutral or higher is that the pH of the water to be treated is adjusted in advance to be acidic. This may cause corrosion.

上記特許文献1に開示されているように、従来型の脱炭酸塔は、充填材を用い、送水ポンプによって、処理水を次工程に送水するのが一般的である。   As disclosed in Patent Document 1, a conventional decarboxylation tower generally uses a filler and feeds treated water to the next process by a water pump.

特開2003−47950号公報JP 2003-47950 A

従来の脱炭酸塔は、充填材を用い、被処理水を充填層の上部から供給し、充填層下部に配置された散気ノズルから空気を噴出し、充填層で空気と被処理水とを接触させて遊離炭酸を除去している。このため、従来型脱炭酸塔は充填層の炭酸ガス分圧を下げるために、塔上部からの排気を十分に行う必要がある。これによって、密閉構造にすることや、加圧して脱炭酸処理することが困難である。したがって、処理水を次工程に移送するためには、送水ポンプの使用が不可欠である。   A conventional decarbonation tower uses a filler, supplies water to be treated from the upper part of the packed bed, blows out air from an aeration nozzle disposed at the lower part of the packed bed, and air and treated water in the packed bed. Free carbonic acid is removed by contact. For this reason, in the conventional decarboxylation tower, in order to lower the carbon dioxide partial pressure of the packed bed, it is necessary to sufficiently exhaust from the top of the tower. As a result, it is difficult to form a sealed structure or pressurize and decarboxylate. Therefore, in order to transfer treated water to the next process, it is indispensable to use a water pump.

ところで、昨今の省エネルギーを強く求められる社会では、電力コストの低減が課題となっている。しかしながら、従来型脱炭酸塔にあっては処理水を次工程へ送水するポンプを必要とすることから、電力コストの低減を図ることが難しい。   By the way, in recent society where energy saving is strongly demanded, reduction of electric power cost is an issue. However, since the conventional decarboxylation tower requires a pump for sending treated water to the next process, it is difficult to reduce the power cost.

本発明は、このような従来の技術が有する問題点に着目してなされたものであり、遊離炭酸成分が除去された処理水を送水するのに要する電力コストの削減が可能となる省エネルギー型の脱炭酸処理装置を提供することを目的とする。   The present invention has been made paying attention to such problems of the conventional technology, and is an energy-saving type that can reduce the power cost required to feed treated water from which free carbonic acid components have been removed. An object is to provide a decarboxylation apparatus.

本発明の目的は下記の手段によって達成される。   The object of the present invention is achieved by the following means.

(1)被処理水の水中から遊離炭酸成分を除去する脱炭酸処理装置であって、
被処理水および脱炭酸用の空気が供給されるタンク部と、
前記タンク部の上部に接続され前記被処理水を導入する被処理水導入管と、
前記被処理水導入管の端部に設けられ前記タンク部内に前記被処理水を噴射するノズル部と、
前記被処理水導入管に接続され前記被処理水のpH調整用の酸を添加する酸導入管と、
前記タンク部の頂部に配置され排気ガスを前記タンク部の外部に放出する排気部と、
前記タンク部の下部に接続され前記空気を導入する空気導入管と、
前記空気導入管の端部に設けられ前記タンク部内に前記空気を供給する空気供給部と、
前記タンク部の下部に配置され遊離炭酸成分が除去された処理水を貯溜する処理水貯留部と、
前記処理水貯留部に連通して前記処理水貯留部よりも高い位置まで立ち上がる導管を含み、前記処理水を使用する機器等に前記処理水を送水する処理水流出部と、
前記排気部において前記タンク部の外部に放出する排気ガスの排気量を制御する排気量制御部と、を有し、
前記排気量制御部によって前記排気部における排気量を制御して前記処理水貯留部における処理水水位を予め定められた水位に保持し、前記タンク部内の圧力と前記処理水を使用する機器等における圧力との差圧のみによって前記処理水流出部を介して前記処理水を送水してなる脱炭酸処理装置。
(1) A decarboxylation device for removing free carbonic acid components from water to be treated,
A tank unit to which water to be treated and air for decarboxylation are supplied;
A treated water introduction pipe connected to the upper part of the tank section for introducing the treated water;
A nozzle part that is provided at an end of the treated water introduction pipe and injects the treated water into the tank part;
An acid introduction pipe connected to the treated water introduction pipe for adding an acid for adjusting the pH of the treated water;
An exhaust part disposed at the top of the tank part for discharging exhaust gas to the outside of the tank part;
An air introduction pipe connected to the lower part of the tank part for introducing the air;
An air supply unit provided at an end of the air introduction pipe to supply the air into the tank unit;
A treated water storage section for storing treated water from which free carbonic acid components have been removed, disposed at the bottom of the tank section;
A treated water outflow section that includes a conduit that communicates with the treated water storage section and rises to a position higher than the treated water storage section, and that feeds the treated water to a device that uses the treated water;
An exhaust amount control unit for controlling an exhaust amount of exhaust gas discharged to the outside of the tank unit in the exhaust unit,
In an apparatus that uses the pressure in the tank and the treated water to maintain the treated water level in the treated water storage unit at a predetermined water level by controlling the exhaust amount in the exhaust unit by the exhaust amount control unit. A decarboxylation apparatus in which the treated water is fed through the treated water outflow portion only by a pressure difference from the pressure.

(2)前記排気量制御部は、
前記処理水貯留部における処理水水位を検知する検知部と、
前記排気部に配置される電気的駆動弁であって、前記検知部によって検知した処理水水位に連動して弁体の開度が調整される電気的駆動弁と、を有している上記(1)に記載の脱炭酸処理装置。
(2) The displacement control unit
A detection unit for detecting a treated water level in the treated water storage unit;
An electrically driven valve disposed in the exhaust part, the electrically driven valve having an opening degree of the valve body adjusted in conjunction with the treated water level detected by the detecting part ( The decarboxylation apparatus as described in 1).

(3)前記処理水貯留部における処理水水位よりも上方の位置と、前記処理水貯留部における処理水水位よりも下方の位置とにおいて前記タンク部に連通する水位計測部をさらに有し、
前記検知部は、前記水位計測部における処理水水位を検知することによって、前記処理水貯留部における処理水水位を検知する、上記(2)に記載の脱炭酸処理装置。
(3) It further has a water level measurement unit that communicates with the tank unit at a position above the treated water level in the treated water storage unit and a position below the treated water level in the treated water storage unit,
The said detection part is a decarboxylation processing apparatus as described in said (2) which detects the treated water level in the said treated water storage part by detecting the treated water level in the said water level measurement part.

(4)前記排気量制御部は、
前記排気部に配置される機械的駆動弁であって、弁体を閉じる方向に付勢する力を設定自在な機構を備え、前記タンク部内の圧力に連動して弁体の開度が調整される機械的駆動弁を有している上記(1)に記載の脱炭酸処理装置。
(4) The displacement control unit
A mechanically driven valve disposed in the exhaust part, comprising a mechanism capable of setting a force for biasing the valve body in the closing direction, and the opening degree of the valve body is adjusted in conjunction with the pressure in the tank part. The decarboxylation apparatus according to (1), which has a mechanically driven valve.

(5)前記空気供給部は、前記処理水貯留部に貯溜される前記処理水の中に浸漬されて、前記処理水の中に前記空気を散気する上記(1)〜(4)のいずれか1つに記載の脱炭酸処理装置。   (5) Any of (1) to (4), wherein the air supply unit is immersed in the treated water stored in the treated water storage unit and diffuses the air into the treated water. The decarboxylation apparatus as described in any one.

上記(1)の脱炭酸処理装置によれば、排気量制御部によって排気部における排気量を制御して処理水貯留部における処理水水位を予め定められた水位に保持し、タンク部内の圧力と処理水を使用する機器等における圧力との差圧のみによって処理水流出部を介して処理水を送水している。処理水を送水するポンプを用いないことから、遊離炭酸成分が除去された処理水を送水するのに要する電力コストの削減が可能となり、省エネルギー型の脱炭酸処理装置を提供することができる。   According to the decarbonation apparatus of (1) above, the exhaust amount control unit controls the exhaust amount in the exhaust unit to maintain the treated water level in the treated water storage unit at a predetermined water level, The treated water is sent through the treated water outflow part only by the pressure difference with the pressure in the equipment or the like using the treated water. Since the pump for feeding the treated water is not used, it is possible to reduce the power cost required to feed the treated water from which the free carbonic acid component has been removed, and an energy-saving decarboxylation treatment apparatus can be provided.

上記(2)の脱炭酸処理装置によれば、排気量制御部は、検知部によって検知した処理水水位に連動して弁体の開度が調整される電気的駆動弁を備えているので、処理水水位の下降に伴って電気的駆動弁の開度を大きくしてタンク部の内圧を下げ、逆に処理水水位の上昇に伴って電気的駆動弁の開度を小さくして内圧を上げるように制御することによって、内圧を一定の加圧状態に保持することが可能となる。   According to the decarboxylation processing apparatus of (2) above, the displacement control unit includes an electrically driven valve in which the opening of the valve body is adjusted in conjunction with the treated water level detected by the detection unit. As the treated water level drops, the opening of the electrically driven valve is increased to lower the internal pressure of the tank, and conversely, as the treated water level rises, the opening of the electrically driven valve is reduced to increase the internal pressure. By controlling in this way, it becomes possible to keep the internal pressure in a constant pressure state.

上記(3)の脱炭酸処理装置によれば、検知部によって水位計測部における処理水水位を検知することによって、水面の波打ちによる検知部のハンチングを防止することができる。処理水貯留部における処理水水位の検知が安定することから、処理水水位に連動して弁体の開度が調整される電気的駆動弁の作動も安定する。その結果、処理水水位を一定にする最適な排気量を制御することが可能である。   According to the decarboxylation device of (3) above, hunting of the detection unit due to waving of the water surface can be prevented by detecting the treated water level in the water level measurement unit by the detection unit. Since the detection of the treated water level in the treated water storage unit is stabilized, the operation of the electrically driven valve in which the opening degree of the valve body is adjusted in conjunction with the treated water level is also stabilized. As a result, it is possible to control the optimum exhaust amount that keeps the treated water level constant.

上記(4)の脱炭酸処理装置によれば、排気量制御部は、弁体を閉じる方向に付勢する力を設定自在な機構を備え、タンク部内の圧力に連動して弁体の開度が調整される機械的駆動弁を備えているので、タンク部の内圧が高くなると処理水水位は下降するが、このとき、機械的駆動弁の弁体が、内圧によって押し上げられ排気量が増加する。逆に、内圧が低くなると機械的駆動弁の弁体は閉じる方向に動作し、内圧が高まるまで開放されない。このように機械的に、内圧を一定の加圧状態に保持することが可能となる。   According to the decarboxylation device of (4) above, the exhaust amount control unit includes a mechanism that can freely set the force for urging the valve body in the closing direction, and the opening degree of the valve body in conjunction with the pressure in the tank unit. As the internal pressure of the tank part increases, the treated water level drops, but at this time, the valve body of the mechanical drive valve is pushed up by the internal pressure and the exhaust amount increases. . On the contrary, when the internal pressure becomes low, the valve body of the mechanically driven valve operates in the closing direction and is not released until the internal pressure increases. In this way, it becomes possible to maintain the internal pressure in a constant pressure state mechanically.

上記(5)の脱炭酸処理装置によれば、空気供給部が処理水の中に空気を散気することから、処理水の中にわずかに残った遊離炭酸をさらに除去することができ、遊離炭酸成分の除去効率を高めることが可能となる。   According to the decarboxylation processing apparatus of (5) above, since the air supply unit diffuses air into the treated water, it is possible to further remove the free carbonic acid remaining slightly in the treated water. It becomes possible to improve the removal efficiency of a carbonic acid component.

本発明の実施形態に係る脱炭酸処理装置を示す基本的な系統図である。1 is a basic system diagram showing a decarboxylation apparatus according to an embodiment of the present invention. pHと炭酸成分の理論的割合とを示す図である。It is a figure which shows pH and the theoretical ratio of a carbonic acid component. 電気的駆動弁を有する排気量制御部を適用した脱炭酸処理装置を示す系統図である。It is a systematic diagram which shows the decarboxylation processing apparatus to which the displacement control part which has an electrically driven valve is applied. 機械的駆動弁を有する排気量制御部に適用するスイング式逆止弁を示す断面図である。It is sectional drawing which shows the swing type non-return valve applied to the displacement control part which has a mechanical drive valve. 脱炭酸処理装置におけるタンク部の内圧とガス流量比との関係を示すグラフである。It is a graph which shows the relationship between the internal pressure of the tank part in a decarboxylation processing apparatus, and gas flow ratio. 電気的駆動弁を用いる排気量制御部を適用した脱炭酸処理装置に、水位計測部をさらに設けた形態を示す系統図である。It is a systematic diagram which shows the form which further provided the water level measurement part in the decarboxylation processing apparatus to which the displacement control part using an electrically driven valve was applied. 図7(A)は、被処理水を噴射するノズル部を上向きに配置した脱炭酸処理装置を示す系統図、図7(B)は、被処理水を噴射するノズル部を下向きに配置した脱炭酸処理装置を示す系統図である。FIG. 7A is a system diagram showing a decarboxylation apparatus in which a nozzle part for injecting water to be treated is arranged upward, and FIG. 7B is a schematic view of a decarbonation apparatus in which a nozzle part for injecting water to be treated is arranged downward. It is a systematic diagram which shows a carbonic acid treatment apparatus. ノズル部の向きが遊離炭酸の除去率に与える影響を示すグラフである。It is a graph which shows the influence which the direction of a nozzle part has on the removal rate of free carbonic acid. 空気量と被処理水量との比が遊離炭酸の除去率に与える影響を示すグラフである。It is a graph which shows the influence which the ratio of the air quantity and the amount of to-be-processed water has on the removal rate of free carbonic acid. 被処理水のpHと処理水のpHとの関係を示すグラフである。It is a graph which shows the relationship between pH of to-be-processed water and pH of treated water. 実施例1において用いた脱炭酸装置を示す系統図である。1 is a system diagram showing a decarbonation apparatus used in Example 1. FIG. 実施例1および比較例1の処理性能を示すグラフである。6 is a graph showing the processing performance of Example 1 and Comparative Example 1. 図13(A)は、実施例2において用いた脱炭酸装置を示す系統図、図13(B)は、比較例2において用いた脱炭酸装置を示す系統図である。FIG. 13 (A) is a system diagram showing the decarboxylation device used in Example 2, and FIG. 13 (B) is a system diagram showing the decarboxylation device used in Comparative Example 2.

以下、添付した図面を参照しながら、本発明の実施形態を説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. The dimensional ratios in the drawings are exaggerated for convenience of explanation, and are different from the actual ratios.

図1を参照して、実施形態に係る脱炭酸処理装置10は、概説すれば、被処理水31の水中から遊離炭酸成分を除去するために使用され、被処理水31および脱炭酸用の空気61が供給されるタンク部20を有している。脱炭酸処理装置10は、タンク部20の上部領域においては、タンク部20の上部に接続され被処理水31を導入する被処理水導入管30と、被処理水導入管30の端部に設けられタンク部20内に被処理水31を噴射する噴射ノズル32(ノズル部に相当する)と、被処理水導入管30に接続され被処理水31のpH調整用の酸41を添加する酸導入管40と、タンク部20の最上部である頂部に配置され排気ガス51をタンク部20の外部に放出する排気部50と、を有している。脱炭酸処理装置10は、タンク部20の下部領域においては、タンク部20の下部に接続され空気61を導入する空気導入管60と、空気導入管60の端部に設けられタンク部20内に空気61を供給する散気管62(空気供給部に相当する)と、タンク部20の下部に配置され遊離炭酸成分が除去された処理水71を貯溜する処理水貯留部70と、を有している。脱炭酸処理装置10はさらに、処理水貯留部70に連通して処理水貯留部70よりも高い位置まで立ち上がる導管82を含み、処理水71を使用する機器等90に処理水71を送水する処理水流出部80と、排気部50においてタンク部20の外部に放出する排気ガス51の排気量を制御する排気量制御部100と、を有している。そして、脱炭酸処理装置10は、排気量制御部100によって排気部50における排気量を制御して処理水貯留部70における処理水水位72を予め定められた水位に保持し、タンク部20内の圧力と処理水タンク90(「処理水71を使用する機器等」に相当する)における圧力との差圧のみによって処理水流出部80を介して処理水71を送水している。図示する実施形態にあっては、散気管62は、処理水貯留部70に貯溜される処理水71の中に浸漬されて、処理水71の中に空気61を散気している。以下、実施形態に係る脱炭酸処理装置10について詳述する。   With reference to FIG. 1, the decarboxylation apparatus 10 according to the embodiment is generally used to remove free carbonic acid components from the water of the water to be treated 31, and the water to be treated 31 and the air for decarboxylation. The tank part 20 to which 61 is supplied is provided. In the upper region of the tank unit 20, the decarbonation apparatus 10 is provided at the end of the treated water introduction pipe 30 and the treated water introduction pipe 30 that is connected to the upper part of the tank unit 20 and introduces the treated water 31. An acid nozzle for adding an acid 41 for adjusting the pH of the water to be treated 31 connected to the water to be treated introduction pipe 30 and an injection nozzle 32 (equivalent to the nozzle part) for injecting the water to be treated 31 into the tank 20 It has a pipe 40 and an exhaust part 50 that is disposed at the top that is the uppermost part of the tank part 20 and discharges the exhaust gas 51 to the outside of the tank part 20. In the lower region of the tank unit 20, the decarbonation treatment apparatus 10 is connected to the lower part of the tank unit 20 and introduces air 61, and is provided at an end of the air introduction tube 60. A diffuser pipe 62 (corresponding to an air supply unit) that supplies air 61, and a treated water storage unit 70 that stores the treated water 71 that is disposed below the tank unit 20 and from which free carbonic acid components have been removed. Yes. The decarbonation treatment apparatus 10 further includes a conduit 82 that communicates with the treated water storage unit 70 and rises to a position higher than the treated water storage unit 70, and supplies the treated water 71 to equipment 90 that uses the treated water 71. A water outflow unit 80 and an exhaust amount control unit 100 that controls the exhaust amount of the exhaust gas 51 discharged to the outside of the tank unit 20 in the exhaust unit 50 are provided. Then, the decarbonation apparatus 10 controls the exhaust amount in the exhaust unit 50 by the exhaust amount control unit 100 to maintain the treated water level 72 in the treated water storage unit 70 at a predetermined water level. The treated water 71 is fed through the treated water outflow part 80 only by the differential pressure between the pressure and the pressure in the treated water tank 90 (corresponding to “equipment etc. using the treated water 71”). In the illustrated embodiment, the air diffuser 62 is immersed in the treated water 71 stored in the treated water reservoir 70 and diffuses the air 61 into the treated water 71. Hereinafter, the decarboxylation apparatus 10 according to the embodiment will be described in detail.

脱炭酸処理装置10においては、被処理水31がタンク部20に流入する前に、被処理水31のpHを酸性に調整する。その手段は、被処理水31の被処理水導入管30に接続された酸導入管40を介して定量ポンプ等を用いて酸41を所定量添加することによってなされる。   In the decarboxylation apparatus 10, the pH of the water to be treated 31 is adjusted to be acidic before the water to be treated 31 flows into the tank unit 20. The means is made by adding a predetermined amount of acid 41 using a metering pump or the like through an acid introduction pipe 40 connected to the treated water introduction pipe 30 of the treated water 31.

使用する酸は、塩酸、硫酸、硝酸、リン酸等の無機酸、あるいはクエン酸、シュウ酸、ギ酸、酢酸等の有機酸であるが、この他の有機酸として一般的にカルボン酸やスルホン酸を用いることができる。   The acid to be used is inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, or organic acid such as citric acid, oxalic acid, formic acid, acetic acid, and other organic acids are generally carboxylic acid and sulfonic acid. Can be used.

図2に示すように、被処理水31のpHを4以下とすることによって、被処理水31の重炭酸イオンおよび炭酸イオンを含めて炭酸成分のほぼ100%を遊離炭酸に変換することができる。また、被処理水31のpHを5.7以下に調整することによって、炭酸成分の80%を遊離炭酸に変換することができる。少なくとも被処理水31のpHを6以下に調整することによって、70%の炭酸成分を遊離炭酸にすることができ、脱炭酸処理装置10において、70%の遊離炭酸を除去することが可能となる。   As shown in FIG. 2, by setting the pH of the water to be treated 31 to 4 or less, almost 100% of the carbonic acid component including bicarbonate ions and carbonate ions in the water to be treated 31 can be converted into free carbonic acid. . Moreover, 80% of the carbonic acid component can be converted into free carbonic acid by adjusting the pH of the water to be treated 31 to 5.7 or lower. By adjusting at least the pH of the water to be treated 31 to 6 or less, 70% of the carbonic acid component can be converted to free carbonic acid, and the decarbonation apparatus 10 can remove 70% of the free carbonic acid. .

脱炭酸処理装置10においては、空気導入管60を介して散気管62から放出された加圧空気61と、噴射ノズル32から噴射された被処理水31とを向流接触させて遊離炭酸を除去する。さらに、噴射された水滴がタンク部20の内壁に衝突して壁面を濡らし、内壁に沿って流下する所謂濡れ壁効果によって遊離炭酸が除去される。次に、流下した処理水71を下部の処理水貯留部70に導入し、処理水貯留部70の処理水水位72よりも下部に配置された散気管62に加圧空気61を圧送する。散気管62から放出された加圧空気61によって、処理水71を曝気する。処理水71の中にわずかに残った遊離炭酸をさらに除去することができるため、遊離炭酸成分の除去効率が高くなる。   In the decarbonation processing apparatus 10, the pressurized air 61 discharged from the diffuser pipe 62 through the air introduction pipe 60 and the water to be treated 31 sprayed from the spray nozzle 32 are brought into countercurrent contact to remove free carbonic acid. To do. Furthermore, the injected water droplets collide with the inner wall of the tank unit 20 to wet the wall surface, and free carbonic acid is removed by a so-called wet wall effect that flows down along the inner wall. Next, the treated water 71 that has flowed down is introduced into the lower treated water reservoir 70, and the pressurized air 61 is pumped to the air diffuser 62 disposed below the treated water level 72 in the treated water reservoir 70. The treated water 71 is aerated by the pressurized air 61 released from the air diffuser 62. Since the free carbonic acid remaining slightly in the treated water 71 can be further removed, the efficiency of removing the free carbonic acid component is increased.

pHを調整した被処理水31を被処理水導入管30を介して噴射ノズル32からタンク部20の内壁に向けて噴射する。噴射ノズル32を用いる点に関しては、特開平11−319803号公報に記載がある。   The treated water 31 with adjusted pH is sprayed from the spray nozzle 32 toward the inner wall of the tank unit 20 through the treated water introduction pipe 30. Regarding the point of using the injection nozzle 32, there is description in JP-A-11-31803.

前記特許公報は脱気装置に関する特許である。前記特許公報に記載されている脱気装置は、従来型脱炭酸装置の構造とまったく同じ構造であり、従来型脱炭酸装置において、空気を窒素等の脱気するためのガスに変更することによって脱気の機能を付加したものである。すなわち、充填物を収容した充填層の下部にガス分散器を設置し、塔上部には排気管と、被処理水を導入する給水配管とが配設され、この給水配管に接続されたスプレーノズルから、被処理水を充填層面に噴霧することが記載されている。前記特許公報に記載された排気管は、単にガスを排出するためのものであり、排気量を調節あるいは制御する機能を具備していない。   The patent publication is a patent relating to a deaeration device. The deaeration device described in the above-mentioned patent publication has the same structure as that of the conventional decarboxylation device. In the conventional decarboxylation device, the air is changed to a gas for degassing nitrogen or the like. Deaeration function is added. That is, a gas disperser is installed below the packed bed containing the packing material, and an exhaust pipe and a water supply pipe for introducing the water to be treated are arranged at the top of the tower, and a spray nozzle connected to the water supply pipe The spraying of the water to be treated on the packed bed surface is described. The exhaust pipe described in the patent publication is merely for exhausting gas and does not have a function of adjusting or controlling the exhaust amount.

これに対して、本実施形態の脱炭酸処理装置10は、排気量を制御する排気量制御部100を備えており、上記特許公報に記載された技術とは大きな相違がある。   On the other hand, the decarbonation processing apparatus 10 of this embodiment includes an exhaust amount control unit 100 that controls the exhaust amount, and is greatly different from the technique described in the above-mentioned patent publication.

従来型脱炭酸塔は、脱炭酸された処理水を別途設置された処理水タンクに送水するためには、送水ポンプを用いている。   The conventional decarboxylation tower uses a water pump to feed decarboxylated treated water to a separately installed treated water tank.

これに対して、本実施形態の脱炭酸処理装置10にあっては、排気部50においてタンク部20の外部に放出する排気ガス51の排気量を制御する排気量制御部100を有し、この排気量制御部100によって排気部50における排気量を制御して処理水貯留部70における処理水水位72を予め定められた水位に保持し、タンク部20内の圧力と処理水タンク90における圧力との差圧のみによって処理水流出部80を介して処理水71を送水できる。処理水貯留部70における処理水水位72の保持は、目標とする処理水水位72のプラスマイナス20%の範囲で保持できていればよい。   On the other hand, the decarbonation apparatus 10 of the present embodiment has an exhaust amount control unit 100 that controls the exhaust amount of the exhaust gas 51 discharged to the outside of the tank unit 20 in the exhaust unit 50. The exhaust amount control unit 100 controls the exhaust amount in the exhaust unit 50 to maintain the treated water level 72 in the treated water storage unit 70 at a predetermined water level, the pressure in the tank unit 20 and the pressure in the treated water tank 90. The treated water 71 can be fed through the treated water outflow part 80 only by the differential pressure of The retention of the treated water level 72 in the treated water storage unit 70 is only required to be within a range of plus or minus 20% of the target treated water level 72.

脱炭酸処理装置10の内圧を加圧し維持するために、処理水貯留部70に接続した処理水流出部80の導管82を所定の高さ、すなわち、処理水タンク90の満水水位の高さまで立ち上げ、空気導入管60から導入された空気量と、上部に設けられた排気部50からの排気量とを制御し、脱炭酸処理装置10の内圧を加圧状態に維持する。これによって、処理水タンク90に送水することが可能となる。このように、送水ポンプを用いずに被処理水31の供給ポンプの揚程を利用して、処理水71を送水することが可能である。   In order to pressurize and maintain the internal pressure of the decarbonation treatment apparatus 10, the conduit 82 of the treated water outlet 80 connected to the treated water reservoir 70 is raised to a predetermined height, that is, the level of the full water level of the treated water tank 90. The amount of air introduced from the air introduction pipe 60 and the amount of exhaust from the exhaust unit 50 provided at the upper portion are controlled to maintain the internal pressure of the decarbonation processing apparatus 10 in a pressurized state. As a result, water can be supplied to the treated water tank 90. In this manner, the treated water 71 can be fed using the head of the supply pump of the treated water 31 without using the water pump.

本実施形態の脱炭酸処理装置10にあっては、送水ポンプを用いないことから、遊離炭酸成分が除去された処理水71を送水するのに要する電力コストの削減が可能となり、省エネルギー型の脱炭酸処理装置10を提供することができる。   In the decarbonation processing apparatus 10 of the present embodiment, since a water pump is not used, it is possible to reduce the power cost required to feed the treated water 71 from which free carbonic acid components have been removed. A carbonic acid treatment apparatus 10 can be provided.

充填材を使用する従来型脱炭酸装置にあっては、充填材が複雑な構造を有しているため、微粒子等の微細な不純物が充填材の表面に沈着して、汚染が進行し易い。バクテリアの繁殖を避けることが困難であり、充填層にスライムが発生する場合がある。本実施形態の脱炭酸処理装置10にあっては、充填材を使用していないことから、バクテリアの繁殖によるスライムの発生も抑えることが可能となる。   In a conventional decarboxylation apparatus using a filler, since the filler has a complicated structure, fine impurities such as fine particles are deposited on the surface of the filler, and contamination easily proceeds. It is difficult to avoid bacterial growth, and slime may be generated in the packed bed. In the decarboxylation apparatus 10 of the present embodiment, since no filler is used, generation of slime due to bacterial propagation can be suppressed.

図1に示される排気量制御部100は、手動により弁体の開度を調整自在な流量調整弁101を有している。タンク部20内に導入される被処理水量、導入される空気量、タンク部20内から送水される処理水量の変動が小さい場合には、流量調整弁101を手動調整することによって、処理水貯留部70における処理水水位72を予め定められた水位に保持することができる。   The exhaust amount control unit 100 shown in FIG. 1 has a flow rate adjustment valve 101 that can manually adjust the opening degree of the valve body. When fluctuations in the amount of treated water introduced into the tank unit 20, the amount of introduced air, and the amount of treated water fed from the tank unit 20 are small, the flow rate adjusting valve 101 is manually adjusted to store the treated water. The treated water level 72 in the unit 70 can be maintained at a predetermined water level.

一方、タンク部20内に導入される被処理水量、導入される空気量、あるいはタンク部20内から送水される処理水量などが変動し、処理水貯留部70における処理水水位72の変動が比較的大きい場合には、排気量制御部100を次のように構成することができる。   On the other hand, the amount of treated water introduced into the tank unit 20, the amount of air introduced, or the amount of treated water fed from the tank unit 20 fluctuates, and the variation of the treated water level 72 in the treated water storage unit 70 is compared. If the target is large, the displacement control unit 100 can be configured as follows.

図3には、電気的駆動弁102を有する排気量制御部100を適用した脱炭酸処理装置10が示される。図3に示される排気量制御部100は、処理水貯留部70における処理水水位72を検知する検知部103と、排気部50に配置される電気的駆動弁102であって、検知部103によって検知した処理水水位72に連動して弁体の開度が調整される電気的駆動弁102と、を有している。検知部103には、例えば、処理水貯留部70の処理水水位72を検知し、制御信号を出力するレベル制御計を適用することができる。電気的駆動弁102には、例えば、電動式排気バルブを適用することができる。開閉動作のみを行う電磁弁を使用する場合には、電磁弁の開時間のデューティ比を変更することによって、排気ガス51の排気量を制御することができる。   FIG. 3 shows a decarbonation processing apparatus 10 to which an exhaust amount control unit 100 having an electrically driven valve 102 is applied. The exhaust amount control unit 100 shown in FIG. 3 includes a detection unit 103 that detects the treated water level 72 in the treated water storage unit 70 and an electrically driven valve 102 that is disposed in the exhaust unit 50. And an electrically driven valve 102 whose opening degree is adjusted in conjunction with the detected treated water level 72. For example, a level control meter that detects the treated water level 72 of the treated water storage unit 70 and outputs a control signal can be applied to the detection unit 103. For example, an electrically driven exhaust valve can be applied to the electrically driven valve 102. When an electromagnetic valve that performs only an opening / closing operation is used, the exhaust amount of the exhaust gas 51 can be controlled by changing the duty ratio of the opening time of the electromagnetic valve.

そして、レベル制御計103の水位出力信号を用いて電動式排気バルブ102の開度を制御することによって、空気導入管60から導入された空気量と、排気部50からの排気量とを制御することができる。さらに詳しくは、処理水水位72の下降に伴って電動式排気バルブ102の開度を大きくしてタンク部20の内圧を下げ、逆に処理水水位72の上昇に伴って電動式排気バルブ102の開度を小さくして内圧を上げるように制御すれば、内圧を一定の加圧状態に保持することが可能となる。   The amount of air introduced from the air introduction pipe 60 and the amount of exhaust from the exhaust section 50 are controlled by controlling the opening degree of the electric exhaust valve 102 using the water level output signal of the level controller 103. be able to. More specifically, as the treated water level 72 is lowered, the opening of the electric exhaust valve 102 is increased to lower the internal pressure of the tank unit 20. Conversely, as the treated water level 72 is raised, the electric exhaust valve 102 If control is performed to increase the internal pressure by reducing the opening, the internal pressure can be maintained in a constant pressure state.

図4には、機械的駆動弁110を有する排気量制御部100に適用するスイング式逆止弁が示される。図4に示される排気量制御部100は、排気部50に配置される機械的駆動弁110であって、弁体111を閉じる方向に付勢する力を設定自在な機構112を備え、タンク部20内の圧力に連動して弁体111の開度が調整される機械的駆動弁110を有している。機械的駆動弁110には、カウンター・ウェイト114を備えるスイング式逆止弁を適用することができる。スイング式逆止弁110は、弁体111を閉じる方向に付勢する力を設定自在な機構112として、弁体111の回転軸と同軸に取り付けられるレバー113と、レバー113に対する固定位置が調整自在なカウンター・ウェイト114とを有している。カウンター・ウェイト114のレバー113に対する固定位置を調整することによって、弁体111を閉じる方向に付勢する力を設定できる。   FIG. 4 shows a swing type check valve applied to the displacement control unit 100 having the mechanical drive valve 110. The exhaust amount control unit 100 shown in FIG. 4 is a mechanically driven valve 110 disposed in the exhaust unit 50, and includes a mechanism 112 that can freely set a force for urging the valve body 111 in the closing direction. 20 has a mechanically driven valve 110 in which the opening degree of the valve body 111 is adjusted in conjunction with the pressure in the valve 20. A swing type check valve including a counterweight 114 can be applied to the mechanically driven valve 110. The swing type check valve 110 is a mechanism 112 capable of setting a force for biasing the valve body 111 in the closing direction, and a lever 113 attached coaxially to the rotation shaft of the valve body 111 and a fixing position with respect to the lever 113 can be adjusted. Counter weight 114. By adjusting the fixing position of the counter weight 114 with respect to the lever 113, the force for biasing the valve body 111 in the closing direction can be set.

そして、スイング式逆止弁110を用いることによって、機械的に内圧を制御することができる。さらに詳しくは、タンク部20の内圧が高くなると処理水水位72は下降するが、このとき、スイング式逆止弁110の弁体111が、内圧によって押し上げられ排気量が増加する。逆に、内圧が低くなるとスイング式逆止弁110の弁体111はカウンター・ウェイト114により閉まる方向に動作し、内圧が高まるまで開放されない。弁体111の動作はカウンター・ウェイト114の重さやレバー113に対する固定位置によって調整することができ、処理水水位72を一定にする最適な排気量を制御することが可能である。   The internal pressure can be mechanically controlled by using the swing type check valve 110. More specifically, when the internal pressure of the tank unit 20 is increased, the treated water level 72 is lowered. At this time, the valve body 111 of the swing type check valve 110 is pushed up by the internal pressure, and the exhaust amount is increased. On the contrary, when the internal pressure becomes low, the valve element 111 of the swing type check valve 110 operates in a direction to be closed by the counter weight 114 and is not released until the internal pressure increases. The operation of the valve body 111 can be adjusted by the weight of the counter weight 114 and the fixed position with respect to the lever 113, and it is possible to control the optimum exhaust amount for making the treated water level 72 constant.

ここで、排気バルブに逆止弁を用いる点に関しては、特開昭62−74413号公報に記載がある。記特許公報に記載された技術では、被処理水にインジェクション装置により加圧空気または不活性ガスを導入し、このガス/水の混合物を脱ガス用装置のスプレー装置からスプレーし、遊離したガスを導管および逆止弁を介して装置外へ排出する。また、脱ガスされた水が捕集タンクを介して脱塩装置に導入される。逆止弁が内圧を制御する機能を有するという記載は一切ない。したがって、前記特許公報に記載された技術は、(1)被処理水を処理装置に導入する前に加圧空気または不活性ガスを被処理水に混合する点、(2)逆止弁が内圧を制御する機能を有していない点において、本実施形態の脱炭酸処理装置10と明らかな相違がある。   Here, the use of a check valve as the exhaust valve is described in JP-A-62-74413. In the technology described in the patent publication, pressurized air or an inert gas is introduced into water to be treated by an injection device, and this gas / water mixture is sprayed from a spray device of a degassing device. Drain out of device through conduit and check valve. Further, the degassed water is introduced into the demineralizer through the collection tank. There is no description that the check valve has a function of controlling the internal pressure. Therefore, the technology described in the above-mentioned patent gazette is that (1) the pressurized air or the inert gas is mixed with the water to be treated before introducing the water to be treated into the treatment device, and (2) the check valve has an internal pressure. There is a clear difference from the decarboxylation apparatus 10 of the present embodiment in that it does not have the function of controlling.

圧力容器の容積と充填ガスの圧力との関係は以下のとおりである。   The relationship between the volume of the pressure vessel and the pressure of the filling gas is as follows.

例えば、圧力容器にガスを封入する場合、圧力容器の容積と封入しなければならない圧力の関係から、断熱圧縮を前提として封入したガスの容積は以下の式(2)で求められる。   For example, when gas is sealed in a pressure vessel, the volume of the sealed gas is obtained by the following equation (2) from the relationship between the volume of the pressure vessel and the pressure that must be sealed.

V2=V1×(P2/P1)×(K2/K1) …(2)
ここに、封入ガスの容積;V2
圧力容器の容積;V1
封入ガス圧;P2
大気圧;P1
封入後の絶対温度;K2
封入前の絶対温度;K1
である。
V2 = V1 × (P2 / P1) × (K2 / K1) (2)
Here, the volume of the enclosed gas; V2
Volume of pressure vessel; V1
Filled gas pressure; P2
Atmospheric pressure; P1
Absolute temperature after sealing; K2
Absolute temperature before sealing; K1
It is.

実際の脱炭酸処理装置10では、加圧空気61の流入量と排気部50からの排気量の動的なバランス関係で内圧が維持されている。すなわち、流入する空気量をQ1とし、排出される空気量をQ2とすれば、ガス流量比Q1/Q2はガス容積比V2/V1と等しい関係となり、式(2)からP2とQ1/Q2の関係を求めることができる。その結果を図5に示す。   In the actual decarbonation apparatus 10, the internal pressure is maintained by a dynamic balance between the inflow amount of the pressurized air 61 and the exhaust amount from the exhaust unit 50. That is, if the inflowing air amount is Q1 and the exhausted air amount is Q2, the gas flow rate ratio Q1 / Q2 is equal to the gas volume ratio V2 / V1, and P2 and Q1 / Q2 are obtained from the equation (2). A relationship can be sought. The result is shown in FIG.

図5から設定する内圧に対してガス容積比を求めることができ、Q1を測定すればQ2の制御が可能となる。例えば、装置内圧を0.03MPaに設定するためには、Q1/Q2を1.3に調節すればよく、任意の内圧に合わせてガス流量比を決めればよい。   The gas volume ratio can be obtained with respect to the internal pressure set from FIG. 5, and Q2 can be controlled by measuring Q1. For example, in order to set the internal pressure of the apparatus to 0.03 MPa, Q1 / Q2 may be adjusted to 1.3, and the gas flow rate ratio may be determined in accordance with an arbitrary internal pressure.

ガス流量比の制御は、排気量を制御することであり、可変式排気バルブの開度を調整することに他ならない。このとき、空気流入量と排気量との動的なバランスが成立しており、処理水水位72は一定レベルを維持することができる。結局、処理水水位72を一定レベルに調整し維持すれば、ガス流量比を求める必要もなく、単純に処理水水位72が一定になるように排気バルブの開度を制御すればよいことになる。   The control of the gas flow rate ratio is to control the exhaust amount, and is nothing but adjusting the opening of the variable exhaust valve. At this time, a dynamic balance between the air inflow amount and the exhaust amount is established, and the treated water level 72 can maintain a constant level. After all, if the treated water level 72 is adjusted and maintained at a constant level, it is not necessary to obtain the gas flow rate ratio, and the opening degree of the exhaust valve may be simply controlled so that the treated water level 72 becomes constant. .

このように脱炭酸処理装置10の内圧制御、すなわち排気量の制御は、電気的に行っても、機械的に行ってもよく、処理水水位72をあるレベルで一定に維持できればよい。例えば、脱炭酸処理装置10の内圧が30kPaであれば約3mの高さの処理水タンク90まで送水可能となり、内圧が50kPaであれば約5mの高さの処理水タンク90まで送水可能となる。   As described above, the internal pressure control of the decarbonation treatment apparatus 10, that is, the control of the exhaust amount may be performed electrically or mechanically as long as the treated water level 72 can be kept constant at a certain level. For example, if the internal pressure of the decarboxylation apparatus 10 is 30 kPa, water can be supplied to the treated water tank 90 having a height of about 3 m, and if the internal pressure is 50 kPa, water can be supplied to the treated water tank 90 having a height of about 5 m. .

脱炭酸処理装置10において、散気管62から加圧空気61を放出して処理水71を曝気するため、処理水71の水面が激しく波打ち、レベル制御計103の信号がハンチングして排気量の制御が困難となる場合がある。このような場合には、脱炭酸処理装置10を次のように構成すればよい。   In the decarbonation treatment apparatus 10, the pressurized air 61 is discharged from the diffuser pipe 62 to aerate the treated water 71, so that the surface of the treated water 71 undulates and the signal of the level controller 103 hunts to control the exhaust amount. May be difficult. In such a case, the decarboxylation apparatus 10 may be configured as follows.

図6には、電気的駆動弁102を用いる排気量制御部100を適用した脱炭酸処理装置10に、水位計測部120をさらに設けた形態が示されている。図6に示される脱炭酸処理装置10は、図3に示した脱炭酸処理装置10の構成に加えて、処理水貯留部70における処理水水位72よりも上方の位置と、処理水貯留部70における処理水水位72よりも下方の位置とにおいてタンク部20に連通する水位計測部120をさらに有している。そして、検知部103は、水位計測部120における処理水水位122を検知することによって、処理水貯留部70における処理水水位72を検知するようにしている。水位計測部120は、上部側の連通管123を介して、処理水貯留部70における処理水水位72よりも上方の位置においてタンク部20に連通する。水位計測部120は、下部側の連通管124を介して、処理水貯留部70における処理水水位72よりも下方の位置においてタンク部20に連通する。レベル制御計103を水位計測部120に取り付けることによって、水面の波打ちによるレベル制御計103のハンチングを防止することができる。処理水貯留部70における処理水水位72の検知が安定することから、処理水水位72に連動して弁体の開度が調整される電気的駆動弁102の作動も安定する。その結果、処理水水位72を一定にする最適な排気量を制御することが可能である。   FIG. 6 shows a form in which a water level measuring unit 120 is further provided in the decarbonation processing apparatus 10 to which the displacement control unit 100 using the electrically driven valve 102 is applied. In addition to the configuration of the decarbonation processing apparatus 10 illustrated in FIG. 3, the decarbonation processing apparatus 10 illustrated in FIG. 6 includes a position above the treated water level 72 in the treated water storage unit 70 and the treated water storage unit 70. And a water level measuring unit 120 communicating with the tank unit 20 at a position below the treated water level 72. The detection unit 103 detects the treated water level 72 in the treated water storage unit 70 by detecting the treated water level 122 in the water level measuring unit 120. The water level measuring unit 120 communicates with the tank unit 20 at a position above the treated water level 72 in the treated water storage unit 70 via the upper communication pipe 123. The water level measuring unit 120 communicates with the tank unit 20 at a position below the treated water level 72 in the treated water storage unit 70 via the lower communication pipe 124. By attaching the level controller 103 to the water level measuring unit 120, it is possible to prevent hunting of the level controller 103 due to undulations on the water surface. Since the detection of the treated water level 72 in the treated water storage unit 70 is stabilized, the operation of the electrically driven valve 102 in which the opening degree of the valve body is adjusted in conjunction with the treated water level 72 is also stabilized. As a result, it is possible to control the optimum exhaust amount that keeps the treated water level 72 constant.

脱炭酸処理装置10において、噴射ノズル32から被処理水31を噴射するにあたり、図7(B)に示したように、噴射ノズル32からの噴流水の方向が略下方であっても構わないが、図7(A)に示したように、噴射ノズル32からの噴流水の方向が略上方である方が遊離炭酸の除去性能に優れている。   In the decarbonation treatment apparatus 10, when the water to be treated 31 is jetted from the jet nozzle 32, the direction of the jet water from the jet nozzle 32 may be substantially downward as shown in FIG. 7B. As shown in FIG. 7A, the direction of the jet water from the jet nozzle 32 is substantially upward, and the free carbonic acid removal performance is superior.

図8に示すように、処理水水位72から噴射ノズル32までの高さを横軸にして、噴射ノズル32からの噴流方向について、縦軸に示した遊離炭酸の除去率で比較した結果、噴流方向が上向きの方が下向きよりも明らかに除去性能が良好であった。したがって、噴射ノズル32からの噴流水の方向は、遊離炭酸の除去率が高い、略上方が好ましい。噴流方向を上向きとすることによって遊離炭酸の除去率が高くなる理由は、次のように考察される。すなわち、噴流方向を下向きにしたときには、円錐状に広がった噴流体の形状はいわゆるカサのようになり、排気ガスの上昇を妨げた部分において炭酸ガスの分圧が高くなって遊離炭酸が除去され難くなるが、噴流方向を上向きにしたときには、タンク部20内の排気ガスが上昇しやすく、炭酸ガスの分圧が高くならず遊離炭酸が除去されやすくなるからと考察される。   As shown in FIG. 8, the horizontal axis represents the height from the treated water level 72 to the injection nozzle 32, and the jet flow direction from the injection nozzle 32 was compared with the free carbon dioxide removal rate indicated on the vertical axis. The removal performance was clearly better when the direction was upward than when it was downward. Therefore, it is preferable that the direction of the jet water from the injection nozzle 32 is substantially upward where the free carbonic acid removal rate is high. The reason why the removal rate of free carbonic acid is increased by setting the jet direction upward is considered as follows. In other words, when the jet flow direction is downward, the shape of the jet fluid spreading in a conical shape becomes a so-called cocoon, and the partial pressure of carbon dioxide increases in the part that hinders the exhaust gas from rising, and free carbon dioxide is removed. Although it becomes difficult, it is considered that when the jet flow direction is directed upward, the exhaust gas in the tank portion 20 is likely to rise, and the partial pressure of the carbon dioxide gas is not increased, so that free carbon dioxide is easily removed.

脱炭酸処理装置10において、散気管62は処理水貯留部70の処理水水位72よりも下部に配置するが、散気管62の水深が100〜500mmであればよい。曝気効率を考えれば、散気管62の水深は深い程よいと思われる。しかし、脱炭酸装置では、一般的にブロアーで空気61を散気管62に導入することが多いため、散気管62の水深が深いと空気61の押し込み抵抗が大きくなり、ブロアーの必要電力が増加したり、場合によっては空気61を押し込むことが困難となったりする。したがって、散気管62の実用的な水深範囲は、100〜500mmである。   In the decarbonation apparatus 10, the air diffuser 62 is disposed below the treated water level 72 of the treated water storage unit 70, but the water depth of the air diffuser 62 may be 100 to 500 mm. Considering the aeration efficiency, it seems that the deeper the water depth of the air diffuser 62 is, the better. However, in the decarboxylation device, since the air 61 is generally introduced to the diffuser pipe 62 by a blower in general, if the water depth of the diffuser pipe 62 is deep, the pushing resistance of the air 61 increases, and the required power of the blower increases. In some cases, it becomes difficult to push in the air 61. Therefore, the practical water depth range of the air diffuser 62 is 100 to 500 mm.

脱炭酸処理装置10において、散気管62から放出される空気量は、被処理水31の流量に対して1:10であればよい。従来の充填式脱炭酸処理装置10では、(空気量)/(被処理水31量)が5〜20であるのに対して、図9に示すように、脱炭酸処理装置10では、(空気量)/(被処理水量)が10以上で遊離炭酸の除去率がほぼ平衡となる。このように、従来の充填式脱炭酸装置より(空気量)/(被処理水量)が少ないにもかかわらず、遊離炭酸の除去率は85%と良好である。   In the decarbonation apparatus 10, the amount of air released from the air diffuser 62 may be 1:10 with respect to the flow rate of the water to be treated 31. In the conventional filling type decarboxylation apparatus 10, (air amount) / (amount of water to be treated 31) is 5 to 20, whereas in the decarbonation apparatus 10, as shown in FIG. The amount of free carbonic acid is almost balanced when the amount is 10 or more. As described above, the removal rate of free carbonic acid is as good as 85% in spite of the fact that the amount of (air amount) / (the amount of water to be treated) is smaller than that of the conventional filling type decarboxylation device.

このように、本実施形態の脱炭酸処理装置10は、噴射ノズル32のスプレー効果、濡れ壁効果、さらに曝気効果が複合的に作用して、従来よりも高い遊離炭酸除去効率を示していると思われる。   As described above, the decarbonation treatment apparatus 10 of the present embodiment exhibits a higher free carbonic acid removal efficiency than the conventional one by combining the spray effect of the injection nozzle 32, the wet wall effect, and the aeration effect. Seem.

本実施形態において、被処理水31が脱炭酸処理装置10に流入する前に、あらかじめ被処理水31のpHを酸性に調整するが、脱炭酸処理装置10で炭酸を除去された処理水71のpHは、遊離炭酸が除去されるため中性側にシフトする。このため、処理水71のpHはアルカリ剤で中和処理することなく、水道水基準のpH範囲、5.8〜8.6になることが好ましい。   In the present embodiment, the pH of the water to be treated 31 is adjusted to be acidic in advance before the water to be treated 31 flows into the decarboxylation device 10, but the treated water 71 from which the carbonation has been removed by the decarbonation device 10. The pH shifts to the neutral side as free carbonic acid is removed. For this reason, it is preferable that the pH of the treated water 71 falls within a pH range of 5.8 to 8.6 based on tap water without neutralizing with an alkaline agent.

そこで、被処理水31(水道水)のpHと処理水71のpHとの関係について調べた。その結果を図10に示す。なお、被処理水31の全炭酸は40mg−CaCO/Lであり、被処理水31のpHは硫酸を添加して調整した。 Therefore, the relationship between the pH of the treated water 31 (tap water) and the pH of the treated water 71 was examined. The result is shown in FIG. In addition, the total carbonic acid of the to-be-treated water 31 was 40 mg-CaCO 3 / L, and the pH of the to-be-treated water 31 was adjusted by adding sulfuric acid.

図10から、処理水71のpHがアルカリ剤を添加することなく、水道水基準の5.8〜8.6となるためには、被処理水31のpHを5以上に調整すればよい。   From FIG. 10, the pH of the treated water 31 may be adjusted to 5 or more so that the pH of the treated water 71 becomes 5.8 to 8.6 based on tap water without adding an alkaline agent.

本発明の効果を、以下の例を用いて説明する。ただし、本発明の技術的範囲が以下の例のみに制限されるわけではない。   The effect of this invention is demonstrated using the following examples. However, the technical scope of the present invention is not limited to the following examples.

(実施例1)
図11に示される構成を備える脱炭酸処理装置10によって、下記に示した水質の水道水を被処理水31として、pHを調整後、脱炭酸処理を行った。
Example 1
The decarboxylation apparatus 10 having the configuration shown in FIG. 11 was used to treat the tap water having the water quality shown below as the water 31 to be treated, and then the pH was adjusted, followed by decarboxylation.

[被処理水水質]
水温;13.5℃
調整後のpH;6.05
遊離炭酸濃度;27.5mg−CaCO/L
使用した脱炭酸処理装置10は、直径125mm、高さ2800mmであり、装置内部を空洞とするために充填材は充填していない。
[Quality of treated water]
Water temperature: 13.5 ° C
PH after adjustment: 6.05
Free carbonic acid concentration: 27.5 mg-CaCO 3 / L
The used decarboxylation apparatus 10 has a diameter of 125 mm and a height of 2800 mm, and is not filled with a filler in order to make the inside of the apparatus hollow.

被処理水31を500L/hの流速で、被処理水導入管30より脱炭酸処理装置10に導入する。被処理水31には酸導入管40から定量ポンプで約5%の硫酸を添加し、pHが6.05となるように調整した。酸性に調整した被処理水31を噴射ノズル32から上方向に噴射し、処理水71を、内壁を伝わらせて処理水貯留部70へ流下させた。   The treated water 31 is introduced into the decarboxylation apparatus 10 through the treated water introduction pipe 30 at a flow rate of 500 L / h. About 5% sulfuric acid was added to the water 31 to be treated from the acid introduction tube 40 with a metering pump, and the pH was adjusted to 6.05. The treated water 31 adjusted to be acidic was jetted upward from the jet nozzle 32, and the treated water 71 flowed down to the treated water reservoir 70 along the inner wall.

処理水流出部80の導管82を2000mmの高さまで立ち上げ、処理水貯留部70に設置された散気管62から加圧空気61で処理水71を曝気し、処理水水位72が約500mm(±20%)になるように、レベル制御計103の出力信号と電動式排気バルブ102の開度を連動させて制御し、脱炭酸処理装置10の内圧を約20kPaに維持した。このときの加圧空気量と被処理水量の比率を6〜12の範囲で変化させ、遊離炭酸の除去率を求めた。その結果を図12に示す。   The pipe 82 of the treated water outflow part 80 is raised to a height of 2000 mm, the treated water 71 is aerated with the pressurized air 61 from the diffuser pipe 62 installed in the treated water storage part 70, and the treated water level 72 is about 500 mm (± 20%), the output signal of the level controller 103 and the opening of the electric exhaust valve 102 were controlled in conjunction with each other, and the internal pressure of the decarbonation treatment apparatus 10 was maintained at about 20 kPa. At this time, the ratio of the pressurized air amount and the amount of water to be treated was changed in the range of 6 to 12, and the removal rate of free carbonic acid was determined. The result is shown in FIG.

遊離炭酸の除去率は、以下の式で求めた。
遊離炭酸除去率(%)=
(原水遊離炭酸−処理水遊離炭酸)÷(原水遊離炭酸)×100
原水の遊離炭酸濃度;原水のpHから遊離炭酸の成分比(図2)を求め、
原水の全炭酸濃度に成分比を掛けて求めた。
処理水71の遊離炭酸濃度;処理水71のpHから遊離炭酸の成分比を求め、
処理水71の全炭酸濃度に成分比を掛けて求めた。
The removal rate of free carbonic acid was determined by the following formula.
Free carbonation removal rate (%) =
(Raw water free carbonic acid-treated water free carbonic acid) ÷ (raw water free carbonic acid) x 100
Free water concentration of raw water; find the component ratio of free carbonic acid from the pH of raw water (Figure 2)
The total carbonic acid concentration of raw water was determined by multiplying the component ratio.
Free carbonic acid concentration of treated water 71: The component ratio of free carbonic acid is determined from the pH of treated water 71,
The total carbonic acid concentration of the treated water 71 was obtained by multiplying the component ratio.

(比較例1)
比較例1は、図11において、処理水流出部80の導管82の立ち上げ高さを500mmとし、レベル制御計103の電源をOFFとし、電動式排気バルブ102の開度を全開にした。これら以外は、実施例1と同様に処理を行った。その結果を図12に示す。
(Comparative Example 1)
In Comparative Example 1, in FIG. 11, the rising height of the conduit 82 of the treated water outflow portion 80 is set to 500 mm, the power source of the level controller 103 is turned off, and the opening degree of the electric exhaust valve 102 is fully opened. Except for these, the same processing as in Example 1 was performed. The result is shown in FIG.

(実施例1と比較例1との対比)
実施例1および比較例1の結果(図12)から、脱炭酸処理装置10の内圧を20kPaに加圧した実施例1の遊離炭酸除去率が、加圧しなかった比較例1の遊離炭酸除去率より明らかに高い傾向を示した。
(Contrast between Example 1 and Comparative Example 1)
From the results of Example 1 and Comparative Example 1 (FIG. 12), the free carbonation removal rate of Example 1 in which the internal pressure of the decarboxylation apparatus 10 was increased to 20 kPa was the same as the free carbonation removal rate of Comparative Example 1 that was not pressurized. The tendency was clearly higher.

したがって、本発明の脱炭酸処理装置10は、加圧状態に保持することによって、高い遊離炭酸除去率を示し良好な性能であった。   Therefore, the decarboxylation processing apparatus 10 of the present invention showed a high free carbonic acid removal rate by holding it in a pressurized state, and had good performance.

また実施例1では、脱炭酸処理装置10の内圧を保持することで、処理水71の送水ポンプを用いずに処理水71を移送できることができた。   Moreover, in Example 1, the treated water 71 was able to be transferred without using the water pump of the treated water 71 by maintaining the internal pressure of the decarbonation treatment apparatus 10.

(実施例2)
図13(A)に示される構成を備える脱炭酸処理装置10によって、下記に示した水質の水道水を被処理水31として、pHを調整後、脱炭酸処理を行った。
(Example 2)
A decarbonation treatment apparatus 10 having the configuration shown in FIG. 13A was used to treat the tap water having the water quality shown below as the water 31 to be treated, and the pH was adjusted, followed by decarboxylation treatment.

[被処理水水質]
水温;14.1℃
調整後のpH;6.02
遊離炭酸濃度;28.4mg−CaCO/L
使用した脱炭酸処理装置10は、直径125mm、高さ2800mmであり、装置内部を空洞とするために充填材は充填していない。
[Quality of treated water]
Water temperature: 14.1 ° C
PH after adjustment: 6.02
Free carbonic acid concentration; 28.4 mg-CaCO 3 / L
The used decarboxylation apparatus 10 has a diameter of 125 mm and a height of 2800 mm, and is not filled with a filler in order to make the inside of the apparatus hollow.

被処理水31を500L/hの流速で、被処理水導入管30より脱炭酸処理装置10に導入する。被処理水31には酸導入管40から定量ポンプで約5%の硫酸を添加し、pHが6.02となるように調整した。酸性に調整した被処理水31を噴射ノズル32から下方向に噴射し、処理水71を、内壁を伝わらせて処理水貯留部70へ流下させた。   The treated water 31 is introduced into the decarboxylation apparatus 10 through the treated water introduction pipe 30 at a flow rate of 500 L / h. About 5% sulfuric acid was added to the water 31 to be treated from the acid introduction tube 40 with a metering pump, and the pH was adjusted to 6.02. The treated water 31 adjusted to be acidic was jetted downward from the jet nozzle 32, and the treated water 71 was caused to flow down to the treated water reservoir 70 along the inner wall.

処理水流出部80の導管82を2000mmの高さまで立ち上げ、処理水貯留部70に設置された散気管62から加圧空気61で処理水71を曝気し、処理水水位72が約500mm(±20%)になるように、流量調整弁101の開度を手動で調整して、脱炭酸処理装置10の内圧を約20kPaに維持した。このときの加圧空気量と被処理水量との比率を10に設定し、遊離炭酸の除去率を求めた。その結果、遊離炭酸の除去率は87.1%であった。   The pipe 82 of the treated water outflow part 80 is raised to a height of 2000 mm, the treated water 71 is aerated with the pressurized air 61 from the diffuser pipe 62 installed in the treated water storage part 70, and the treated water level 72 is about 500 mm (± The internal pressure of the decarboxylation device 10 was maintained at about 20 kPa by manually adjusting the opening degree of the flow rate adjustment valve 101 so that the flow rate was 20%. The ratio of the amount of pressurized air and the amount of water to be treated at this time was set to 10, and the removal rate of free carbonic acid was determined. As a result, the removal rate of free carbonic acid was 87.1%.

(比較例2)
比較例2は、図13(B)に示したように、脱炭酸処理装置10aの底部から800mmを基準にして、中央部に充填材130であるラッシリング(TFE製、6φ×6mm)を充填層高約1000mmとなるように充填した。これら以外は、実施例2と同様に処理を行った。その結果、遊離炭酸の除去率は84.8%であった。
(Comparative Example 2)
In Comparative Example 2, as shown in FIG. 13 (B), the lashing ring (made by TFE, 6φ × 6 mm), which is the filler 130, is filled at the center with reference to 800 mm from the bottom of the decarboxylation apparatus 10a. The layer height was about 1000 mm. Except for these, the same processing as in Example 2 was performed. As a result, the removal rate of free carbonic acid was 84.8%.

(実施例2と比較例2との対比)
実施例2および比較例2の結果から、充填材を用いない本発明の脱炭酸処理装置10の方が、充填材130を用いた従来の脱炭酸処理装置10aよりも明らかに高い遊離炭酸除去性能を示した。すなわち、本発明の脱炭酸処理装置10は、スプレー効果、濡れ壁効果、更に曝気効果が複合的に作用して、従来の充填式脱炭酸処理装置10aよりも高い遊離炭酸除去効率を示したと考えられる。
(Contrast between Example 2 and Comparative Example 2)
From the results of Example 2 and Comparative Example 2, the decarboxylation apparatus 10 of the present invention that does not use the filler is clearly higher in free carbonic acid removal performance than the conventional decarboxylation apparatus 10 a that uses the filler 130. showed that. That is, it is considered that the decarbonation treatment apparatus 10 of the present invention exhibited a higher free carbonic acid removal efficiency than the conventional filling-type decarbonation treatment apparatus 10a due to the combined action of the spray effect, the wet wall effect, and the aeration effect. It is done.

(実施例3)
実施例2と同様の条件で、図13(A)に示す本発明の脱炭酸処理装置10により、脱炭酸処理を約2週間連続して行った。ただし、この試験期間中の水温は14.1〜14.9℃であった。
(Example 3)
Under the same conditions as in Example 2, the decarboxylation treatment of the present invention shown in FIG. 13A was performed continuously for about two weeks. However, the water temperature during this test period was 14.1-14.9 ° C.

試験開始直後の処理水71と2週間後の処理水71について、水に含まれる懸濁物質の量を比較するため、その指標の1つであるSDI(Silt Density Index)を測定した。但し、SDIの測定にはApplied Membranes 社製の「SimpleSDI」を用いた。   In order to compare the amount of suspended solids contained in water for the treated water 71 immediately after the start of the test and the treated water 71 two weeks later, SDI (Silt Density Index), which is one of the indicators, was measured. However, “Simple SDI” manufactured by Applied Membranes was used for SDI measurement.

その結果、試験開始直後の処理水71のSDIは3.5であった。また、2週間後の処理水71のSDIは3.7であった。   As a result, the SDI of the treated water 71 immediately after the start of the test was 3.5. Further, the SDI of the treated water 71 after 2 weeks was 3.7.

(比較例3)
比較例2と同様の条件で、図13(B)に示したように、脱炭酸処理装置10aの底部から800mmを基準にして、中央部に充填材130であるラッシリング(TFE製、6φx6mm)を充填層高約1000mmとなるように充填した充填式脱炭酸処理装置10aにより、脱炭酸処理を約2週間連続して行った。但し、この試験期間中の水温は14.1〜14.9℃であった。
(Comparative Example 3)
Under the same conditions as in Comparative Example 2, as shown in FIG. 13 (B), a lashing ring (made by TFE, 6φ × 6 mm) which is a filler 130 at the center with reference to 800 mm from the bottom of the decarboxylation apparatus 10a. Decarbonation treatment was continuously carried out for about two weeks by a filling type decarboxylation apparatus 10a filled with a packed bed height of about 1000 mm. However, the water temperature during this test period was 14.1-14.9 ° C.

実施例3と同様に、試験開始直後の処理水71と2週間後の処理水71について、SDIを測定した。   As in Example 3, the SDI was measured for the treated water 71 immediately after the start of the test and the treated water 71 after 2 weeks.

その結果、試験開始直後の処理水71のSDIは3.7であった。また、2週間後の処理水71のSDIは4.8であった。   As a result, the SDI of the treated water 71 immediately after the start of the test was 3.7. Further, the SDI of the treated water 71 after 2 weeks was 4.8.

(実施例3と比較例3との対比)
実施例3および比較例3の結果から、本発明である脱炭酸処理装置10は、試験開始2週間後においても、SDI値は3.7と低い値を維持していた。しかし、従来の充填式脱炭酸処理装置10aである比較例3においては、2週間後のSDI値は4.8と大きな値となり、処理水71に含まれる懸濁物質の量が大幅に増加したことが判明した。
(Contrast between Example 3 and Comparative Example 3)
From the results of Example 3 and Comparative Example 3, the decarboxylation apparatus 10 according to the present invention maintained a low SDI value of 3.7 even after 2 weeks from the start of the test. However, in Comparative Example 3 which is the conventional filling-type decarboxylation apparatus 10a, the SDI value after 2 weeks was a large value of 4.8, and the amount of suspended substances contained in the treated water 71 was significantly increased. It has been found.

したがって、本発明である脱炭酸処理装置10は、装置内の構造が簡便であることから、懸濁物質の増加が起こりにくく、特にバクテリアの増殖を抑えられるものと期待できる。   Therefore, since the decarboxylation apparatus 10 according to the present invention has a simple structure in the apparatus, it can be expected that the suspended solids hardly increase, and in particular, the growth of bacteria can be suppressed.

以上詳述したように、本発明の脱炭酸処理装置10によれば、処理水71の送水ポンプが不要となる。例えば、1000m/日の送水ポンプの消費電力は5.5kw程度であるから、電気料金を15円/kw・hとして計算すると、年間70万円以上の送水に要する電力コストが削減できる。 As described in detail above, according to the decarboxylation apparatus 10 of the present invention, the water pump for the treated water 71 is not necessary. For example, since the power consumption of the water pump of 1000 m 3 / day is about 5.5 kw, calculating the electricity rate as 15 yen / kw · h can reduce the power cost required for water supply of 700,000 yen or more per year.

また、本発明の脱炭酸処理装置10によれば、水中の重炭酸イオンや炭酸イオンを遊離炭酸に変換し、スプレー効果、濡れ壁効果、更に曝気効果が複合的に作用するため、従来の充填式脱炭酸処理装置よりも高効率で遊離炭酸を除去することができる。   In addition, according to the decarboxylation apparatus 10 of the present invention, since bicarbonate ions and carbonate ions in water are converted into free carbonates, the spray effect, the wet wall effect, and the aeration effect act in a complex manner. Free carbonic acid can be removed with higher efficiency than the conventional decarboxylation apparatus.

したがって、本発明で得られた脱炭酸水をプロセス水として用いれば、給水配管の腐食やスケールでの詰りを防止することができ、食品工場のプロセス水や、純水製造プロセスの前処理装置として用いることができる。   Therefore, if the decarbonated water obtained in the present invention is used as process water, corrosion of the water supply piping and clogging with the scale can be prevented, and as a pretreatment device for food factory process water or pure water production process Can be used.

10 脱炭酸処理装置、
20 タンク部、
30 被処理水導入管、
31 被処理水、
32 噴射ノズル(ノズル部)、
40 酸導入管、
41 pH調整用の酸、
50 排気部、
51 排気ガス、
60 空気導入管、
61 加圧空気、
62 散気管(空気供給部)、
70 処理水貯留部、
71 遊離炭酸成分が除去された処理水、
72 処理水水位、
80 処理水流出部、
82 導管、
90 処理水タンク(処理水を使用する機器等)、
100 排気量制御部、
102 電動式排気バルブ(電気的駆動弁)、
103 レベル制御計(検知部)、
110 機械的駆動弁、
111 弁体、
112 弁体を閉じる方向に付勢する力を設定自在な機構、
120 水位計測部、
122 水位計測部における処理水水位。
10 Decarbonation processing equipment,
20 tank section,
30 treated water introduction pipe,
31 treated water,
32 injection nozzle (nozzle part),
40 acid introduction tube,
41 acid for pH adjustment,
50 exhaust section,
51 exhaust gas,
60 air inlet pipe,
61 pressurized air,
62 Air diffuser (air supply part),
70 treated water reservoir,
71 treated water from which free carbonic acid components have been removed,
72 treated water level,
80 treated water outflow part,
82 conduits,
90 treated water tank (equipment using treated water, etc.),
100 displacement control unit,
102 electric exhaust valve (electrically driven valve),
103 level controller (detector),
110 mechanically driven valve,
111 disc,
112 Mechanism capable of setting the force for biasing the valve body in the closing direction,
120 water level measurement unit,
122 The treated water level in the water level measurement unit.

Claims (5)

被処理水の水中から遊離炭酸成分を除去する脱炭酸処理装置であって、
被処理水および脱炭酸用の空気が供給されるタンク部と、
前記タンク部の上部に接続され前記被処理水を導入する被処理水導入管と、
前記被処理水導入管の端部に設けられ前記タンク部内に前記被処理水を噴射するノズル部と、
前記被処理水導入管に接続され前記被処理水のpH調整用の酸を添加する酸導入管と、
前記タンク部の頂部に配置され排気ガスを前記タンク部の外部に放出する排気部と、
前記タンク部の下部に接続され前記空気を導入する空気導入管と、
前記空気導入管の端部に設けられ前記タンク部内に前記空気を供給する空気供給部と、
前記タンク部の下部に配置され遊離炭酸成分が除去された処理水を貯溜する処理水貯留部と、
前記処理水貯留部に連通して前記処理水貯留部よりも高い位置まで立ち上がる導管を含み、前記処理水を使用する機器等に前記処理水を送水する処理水流出部と、
前記排気部において前記タンク部の外部に放出する排気ガスの排気量を制御する排気量制御部と、を有し、
前記排気量制御部によって前記排気部における排気量を制御して前記処理水貯留部における処理水水位を予め定められた水位に保持し、前記タンク部内の圧力と前記処理水を使用する機器等における圧力との差圧のみによって前記処理水流出部を介して前記処理水を送水してなる脱炭酸処理装置。
A decarboxylation device for removing free carbonic acid components from water to be treated,
A tank unit to which water to be treated and air for decarboxylation are supplied;
A treated water introduction pipe connected to the upper part of the tank section for introducing the treated water;
A nozzle part that is provided at an end of the treated water introduction pipe and injects the treated water into the tank part;
An acid introduction pipe connected to the treated water introduction pipe for adding an acid for adjusting the pH of the treated water;
An exhaust part disposed at the top of the tank part for discharging exhaust gas to the outside of the tank part;
An air introduction pipe connected to the lower part of the tank part for introducing the air;
An air supply unit provided at an end of the air introduction pipe to supply the air into the tank unit;
A treated water storage section for storing treated water from which free carbonic acid components have been removed, disposed at the bottom of the tank section;
A treated water outflow section that includes a conduit that communicates with the treated water storage section and rises to a position higher than the treated water storage section, and that feeds the treated water to a device that uses the treated water;
An exhaust amount control unit for controlling an exhaust amount of exhaust gas discharged to the outside of the tank unit in the exhaust unit,
In an apparatus that uses the pressure in the tank and the treated water to maintain the treated water level in the treated water storage unit at a predetermined water level by controlling the exhaust amount in the exhaust unit by the exhaust amount control unit. A decarboxylation apparatus in which the treated water is fed through the treated water outflow portion only by a pressure difference from the pressure.
前記排気量制御部は、
前記処理水貯留部における処理水水位を検知する検知部と、
前記排気部に配置される電気的駆動弁であって、前記検知部によって検知した処理水水位に連動して弁体の開度が調整される電気的駆動弁と、を有している請求項1に記載の脱炭酸処理装置。
The displacement control unit
A detection unit for detecting a treated water level in the treated water storage unit;
An electrically driven valve disposed in the exhaust part, the electrically driven valve having an opening degree of a valve body adjusted in conjunction with a treated water level detected by the detection part. 2. The decarboxylation apparatus according to 1.
前記処理水貯留部における処理水水位よりも上方の位置と、前記処理水貯留部における処理水水位よりも下方の位置とにおいて前記タンク部に連通する水位計測部をさらに有し、
前記検知部は、前記水位計測部における処理水水位を検知することによって、前記処理水貯留部における処理水水位を検知する、請求項2に記載の脱炭酸処理装置。
A water level measuring unit communicating with the tank unit at a position above the treated water level in the treated water storage unit and a position below the treated water level in the treated water storage unit;
The decarboxylation apparatus according to claim 2, wherein the detection unit detects a treated water level in the treated water storage unit by detecting a treated water level in the water level measurement unit.
前記排気量制御部は、
前記排気部に配置される機械的駆動弁であって、弁体を閉じる方向に付勢する力を設定自在な機構を備え、前記タンク部内の圧力に連動して弁体の開度が調整される機械的駆動弁を有している請求項1に記載の脱炭酸処理装置。
The displacement control unit
A mechanically driven valve disposed in the exhaust part, comprising a mechanism capable of setting a force for biasing the valve body in the closing direction, and the opening degree of the valve body is adjusted in conjunction with the pressure in the tank part. The decarboxylation apparatus according to claim 1, further comprising a mechanical drive valve.
前記空気供給部は、前記処理水貯留部に貯溜される前記処理水の中に浸漬されて、前記処理水の中に前記空気を散気する請求項1〜4のいずれか1つに記載の脱炭酸処理装置。   The said air supply part is immersed in the said treated water stored by the said treated water storage part, and diffuses the said air in the said treated water as described in any one of Claims 1-4. Decarboxylation device.
JP2012198632A 2012-09-10 2012-09-10 Decarboxylation device Active JP6105879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012198632A JP6105879B2 (en) 2012-09-10 2012-09-10 Decarboxylation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012198632A JP6105879B2 (en) 2012-09-10 2012-09-10 Decarboxylation device

Publications (2)

Publication Number Publication Date
JP2014050820A true JP2014050820A (en) 2014-03-20
JP6105879B2 JP6105879B2 (en) 2017-03-29

Family

ID=50609824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012198632A Active JP6105879B2 (en) 2012-09-10 2012-09-10 Decarboxylation device

Country Status (1)

Country Link
JP (1) JP6105879B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017000940A (en) * 2015-06-09 2017-01-05 株式会社ウェルシィ Treatment method for underground water and treatment apparatus for underground water
JP2018130661A (en) * 2017-02-14 2018-08-23 三浦工業株式会社 Water treatment equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057386U (en) * 1991-05-23 1993-02-02 株式会社サンワード Continuous water supply deaerator
JPH07178387A (en) * 1993-12-22 1995-07-18 Seisui Kogyo Kk Degassing treatment and decarbonation column used in this method
JPH0957361A (en) * 1995-08-18 1997-03-04 Otsuka Chem Co Ltd Blow forming method for super-plastic sheet by gas generating agent
JP2000042530A (en) * 1998-07-28 2000-02-15 Japan Organo Co Ltd Deaerator
JP2003047950A (en) * 2001-08-01 2003-02-18 Kurita Water Ind Ltd Deoxygenation and decarboxylation treatment apparatus and treatment method
JP2004036809A (en) * 2002-07-05 2004-02-05 Kurimoto Ltd Check valve device
JP2006212492A (en) * 2005-02-01 2006-08-17 Mitsui Eng & Shipbuild Co Ltd Method for removing residual ozone in water and method for removing residual ozone in ballast water
JP2007190530A (en) * 2006-01-23 2007-08-02 Miura Co Ltd Degassing apparatus
JP2012035202A (en) * 2010-08-06 2012-02-23 Mitsubishi Heavy Ind Ltd Aeration apparatus and seawater flue gas desulfurization apparatus including the same, and humidifying method of aeration apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057386U (en) * 1991-05-23 1993-02-02 株式会社サンワード Continuous water supply deaerator
JPH07178387A (en) * 1993-12-22 1995-07-18 Seisui Kogyo Kk Degassing treatment and decarbonation column used in this method
JPH0957361A (en) * 1995-08-18 1997-03-04 Otsuka Chem Co Ltd Blow forming method for super-plastic sheet by gas generating agent
JP2000042530A (en) * 1998-07-28 2000-02-15 Japan Organo Co Ltd Deaerator
JP2003047950A (en) * 2001-08-01 2003-02-18 Kurita Water Ind Ltd Deoxygenation and decarboxylation treatment apparatus and treatment method
JP2004036809A (en) * 2002-07-05 2004-02-05 Kurimoto Ltd Check valve device
JP2006212492A (en) * 2005-02-01 2006-08-17 Mitsui Eng & Shipbuild Co Ltd Method for removing residual ozone in water and method for removing residual ozone in ballast water
JP2007190530A (en) * 2006-01-23 2007-08-02 Miura Co Ltd Degassing apparatus
JP2012035202A (en) * 2010-08-06 2012-02-23 Mitsubishi Heavy Ind Ltd Aeration apparatus and seawater flue gas desulfurization apparatus including the same, and humidifying method of aeration apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017000940A (en) * 2015-06-09 2017-01-05 株式会社ウェルシィ Treatment method for underground water and treatment apparatus for underground water
JP2018130661A (en) * 2017-02-14 2018-08-23 三浦工業株式会社 Water treatment equipment

Also Published As

Publication number Publication date
JP6105879B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
US11339068B2 (en) Eductor-based membrane bioreactor
KR101024658B1 (en) Ozonized Water Generator
WO2012122271A2 (en) Systems and methods for delivering a liquid having a desired dissolved gas concentration
KR101161257B1 (en) H2C03 saturated aqueous solution Manufacturing Method and System
JP5020784B2 (en) Ozone water production apparatus and production method
JP4978592B2 (en) Pure water production equipment
JP6105879B2 (en) Decarboxylation device
JP5412135B2 (en) Ozone water supply device
CN102249361B (en) Ozone gas supply pressure stabilizing device and air flotation reactor using same
KR101370327B1 (en) The dissolution method and apparatus for carbon dioxide at low pressure
JP4232490B2 (en) Deaerator
KR102288440B1 (en) Gas dissolution apparatus and micro bubble generator comprising same
JP4133045B2 (en) Gas dissolver and water treatment apparatus equipped with them
JP5759839B2 (en) Anaerobic treatment equipment for organic wastewater
JP2007190530A (en) Degassing apparatus
JP5025021B2 (en) Deoxygenation decarboxylation device
KR20200142964A (en) Micro bubble nozzle and micro bubble generator comprising same
US11642634B2 (en) Gas saturation of liquids with application to dissolved gas flotation and supplying dissolved gases to downstream processes and water treatment
CN111819156A (en) Method and system for producing fresh water using a reverse osmosis membrane system
JP2014094350A (en) Vacuum deaeration apparatus
JPH05138180A (en) Treatment of city water
JP5817081B2 (en) Dissolved oxygen remover
JP2004237264A (en) Vacuum deaeration apparatus
KR101972934B1 (en) Apparatus for Preventing Tube Plugging and Fire Due to Monosilane Produced in Semiconductor or Silicon Manufacturing Process and Method for Preventing Tube Plugging and Fire Thereby
JP2005224677A (en) Apparatus for feeding oxygen into water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170303

R150 Certificate of patent or registration of utility model

Ref document number: 6105879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250