JP5759839B2 - Anaerobic treatment equipment for organic wastewater - Google Patents

Anaerobic treatment equipment for organic wastewater Download PDF

Info

Publication number
JP5759839B2
JP5759839B2 JP2011200138A JP2011200138A JP5759839B2 JP 5759839 B2 JP5759839 B2 JP 5759839B2 JP 2011200138 A JP2011200138 A JP 2011200138A JP 2011200138 A JP2011200138 A JP 2011200138A JP 5759839 B2 JP5759839 B2 JP 5759839B2
Authority
JP
Japan
Prior art keywords
alkalinity
water
methane fermentation
tank
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011200138A
Other languages
Japanese (ja)
Other versions
JP2013059729A (en
Inventor
一将 蒲池
一将 蒲池
本間 康弘
康弘 本間
祐司 塚本
祐司 塚本
田中 俊博
俊博 田中
三良 愛澤
三良 愛澤
夕子 飯嶋
夕子 飯嶋
勇雄 小野寺
勇雄 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Swing Corp
Original Assignee
Nippon Paper Industries Co Ltd
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Swing Corp filed Critical Nippon Paper Industries Co Ltd
Priority to JP2011200138A priority Critical patent/JP5759839B2/en
Publication of JP2013059729A publication Critical patent/JP2013059729A/en
Application granted granted Critical
Publication of JP5759839B2 publication Critical patent/JP5759839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、食品工場、化学工場、紙パルプ工場などの各種工場より排出される有機性廃水等の中で、蒸留廃水等のアルコールを主成分とし全有機物に対するSSが極端に少ないものを対象とし、この廃水を処理するメタン発酵処理装置に関するものである。   The present invention is intended for organic wastewater discharged from various factories such as food factories, chemical factories, and pulp and paper factories, whose main component is alcohol such as distilled wastewater and whose SS is extremely small for all organic substances. The present invention relates to a methane fermentation treatment apparatus for treating this waste water.

有機性廃水をメタン発酵により分解して処理するメタン発酵処理法は、活性汚泥法等の好気性処理に比べると曝気のためのエネルギーが不要であり、余剰汚泥が少なく、発生するバイオガスからエネルギーを回収できるため、省エネルギーの点で優れている。しかし、メタン生成菌は、増殖量が少なく沈降性が悪いので、微生物が処理水と共に流出しやすい。そのため、メタン発酵処理に用いる発酵槽内の微生物濃度を上げることが困難であった。さらに、コストや敷地等の面で問題点を抱えていた。
微生物濃度の高い高効率型のメタン発酵槽として、上向流嫌気性汚泥床法(Up-flow Anaerobic Sludge Blanket Process;以後「UASB」と記す)や膨張式汚泥床法(Expanded Granular Sludge Blanket ;以後「EGSB」と略す)がある。これは近年普及してきた方法で、メタン菌等の嫌気性菌をグラニュール状に造粒化することにより、メタン発酵槽内のメタン菌の濃度を高濃度に維持できるという特徴があり、その結果、廃水中の有機物の濃度が相当高い場合でも効率よく処理できる。
The methane fermentation treatment method, which decomposes organic wastewater by methane fermentation and treats it, requires less energy for aeration than the aerobic treatment such as the activated sludge method, reduces the amount of excess sludge, and generates energy from the generated biogas. Is excellent in terms of energy saving. However, since the methanogen has a small amount of growth and poor sedimentation, the microorganism tends to flow out with the treated water. Therefore, it was difficult to increase the microorganism concentration in the fermenter used for the methane fermentation treatment. Furthermore, there were problems in terms of cost and site.
As a high-efficiency methane fermenter with high microorganism concentration, an up-flow anaerobic sludge bed process (hereinafter referred to as “UASB”) and an expanded sludge bed process (hereinafter referred to as “Expanded Granular Sludge Bed”). Abbreviated as “EGSB”). This is a method that has become widespread in recent years, characterized by the ability to maintain a high concentration of methane bacteria in the methane fermentation tank by granulating anaerobic bacteria such as methane bacteria into granules. Even when the concentration of organic matter in the wastewater is considerably high, it can be treated efficiently.

糖分やたんぱく質からなる廃水においては、高効率型の処理を行う方法として、メタン発酵の前段に酸発酵を行う2相式(酸発酵−メタン発酵)が一般的である。この2相式の場合は、廃水が酸発酵槽にて有機物が低分子化し、酢酸などの揮発性有機酸に変換すると共に、炭酸ガスも生成する。この酸発酵槽では、有機酸生成でpHは減少するために、アルカリでpHを概ね6〜7の範囲とし、アルカリの節減のために、メタン発酵槽からメタン発酵処理水の一部を、pH調整用のアルカリの補給も兼ねて循環している。酸発酵槽流出液が、メタン発酵槽の原水となる。一般的には、UASB処理を行うときには、酸発酵液は、CODCr 5000mg/Lで、M−アルカリ度の範囲は、CaCO換算で2000mg/L以上はある。すなわち、酸発酵液のアルカリ度は、CODCrの40%〜150%値の範囲に通常なっている。 In wastewater composed of sugar and protein, a two-phase method (acid fermentation-methane fermentation) in which acid fermentation is performed before methane fermentation is generally used as a method for performing high-efficiency treatment. In the case of this two-phase system, waste water is converted into a volatile organic acid such as acetic acid and carbon dioxide gas is generated while the organic matter is reduced in molecular weight in an acid fermenter. In this acid fermenter, since the pH decreases due to the production of organic acid, the pH is set in the range of approximately 6 to 7 with alkali, and in order to save the alkali, a part of the methane fermentation treated water from the methane fermenter is adjusted to pH. It also circulates to replenish alkali for adjustment. The acid fermenter effluent becomes the raw water for the methane fermenter. In general, when performing UASB treatment, the acid fermentation broth is 5000 mg / L of COD Cr , and the range of M-alkalinity is 2000 mg / L or more in terms of CaCO 3 . That is, the alkalinity of the acid fermentation liquor is usually in the range of 40% to 150% of COD Cr .

酸発酵液は、メタン発酵槽で処理され、有機酸はメタンガスと炭酸ガスに分解され、バイオガスとして排出される。上記の酸発酵処理水がメタン発酵処理されると、アルカリ度は上昇すると共に、pHも上昇する。これは、有機酸が分解することで、水素イオンがメタンに変換し、水素イオン濃度が減少すること、有機酸が減少することによる。なお、アルカリ度は、液中のpHを4.8に下げるときの酸の必要量である。
汚泥や畜産廃棄物などの有機性廃棄物等を、汚泥の減容化とバイオガス発生を目的として、嫌気タンクの一過性の嫌気性消化槽で処理しているが、この場合は、供給汚泥濃度が少なくとも1%以上あり、消化槽で分解する間でM−アルカリ度は数千mg/Lとなり、pHは概ね8.5以上9程度まで上昇するし、緩衝性の非常に高いケースの処理として上げられる。
The acid fermentation broth is processed in a methane fermentation tank, and the organic acid is decomposed into methane gas and carbon dioxide gas and discharged as biogas. When the acid fermentation water is subjected to methane fermentation, the alkalinity increases and the pH also increases. This is because hydrogen ions are converted to methane due to decomposition of the organic acid, the hydrogen ion concentration decreases, and the organic acid decreases. The alkalinity is a necessary amount of acid when the pH in the liquid is lowered to 4.8.
Organic waste such as sludge and livestock waste is processed in a temporary anaerobic digester for the purpose of reducing sludge volume and generating biogas. The sludge concentration is at least 1%, the M-alkalinity becomes several thousand mg / L during decomposition in the digestion tank, the pH rises to about 8.5 to about 9, and the buffering property is very high. Raised as a process.

しかし、アルコールが主成分である蒸留廃液をメタン発酵する場合は、上記 糖や有機酸、汚泥などとは全く異なるため、この廃水の処理にあたっての操作条件は、特異的な面が多い。この廃水の排出工程では、炭酸ガスが蒸留過程で大気中に放出されるために、pH緩衝性の少ない廃水となる。この廃水処理のメタン発酵処理の例は極めて少なく、今までの文献にも、この廃水を処理した例は見当たらない。本発明者らは、メタノ−ルが主成分である紙パルプ工場廃水のUASB処理を行ったところ、UASB反応器で今までの糖質や有機酸が主成分の廃水処理とは異なる現象を観察した。
第1には、通常メタノサルシナ属のメタン菌により、直接メタンと炭酸ガスに分解される。この過程で式(3)に示すように、中性のメタノールから弱酸の炭酸が生成し、メタン発酵槽内のpHが低下することである。
4CHOH→3CH+HCO+HO・・・ 式(3)
第2には、メタノール基質でメタン発酵を行った場合、メタン発酵菌に対して栄養塩の不足等のストレスが与えられると、メタノールから酢酸が生成され、反応器内では酢酸生成によるpH低下がおこり、処理が極めて不安定となったことである。
However, in the case of methane fermentation of distilled waste liquid containing alcohol as the main component, the operating conditions for treating this wastewater have many specific aspects because it is completely different from the sugars, organic acids, sludge and the like. In this waste water discharging step, carbon dioxide gas is released into the atmosphere during the distillation process, so that the waste water has a low pH buffering property. There are very few examples of methane fermentation treatment of this wastewater treatment, and there is no example of treating this wastewater in the literature so far. When the present inventors performed UASB treatment of pulp and paper mill wastewater containing methanol as a main component, the UASB reactor observed a phenomenon different from conventional wastewater treatment mainly containing carbohydrates and organic acids. did.
First, it is decomposed directly into methane and carbon dioxide gas by methane bacteria belonging to the genus Methanosarcina. In this process, as shown in the formula (3), weak acid carbonic acid is generated from neutral methanol, and the pH in the methane fermentation tank is lowered.
4CH 3 OH → 3CH 4 + H 2 CO 3 + H 2 O (3)
Second, when methane fermentation is performed with a methanol substrate, acetic acid is generated from methanol when stress such as lack of nutrients is applied to the methane-fermenting bacteria. The process was extremely unstable.

すなわち、紙パルプ工場廃水等のpH緩衝性の少ない有機性廃水での従来型UASB法には、以下に示すような課題がある。
(1)メタン発酵槽流入水のpHを、メタン発酵に適しているといわれる6.5
8.0にpH調節すると、 pH緩衝性の少ない廃水であるため、分解生成物であ
る二酸化炭素や生成した有機酸により、発酵槽内のpHは、メタン発酵に阻害を
及ぼす6.5以下、極端な場合は6以下まで低下する。
(2)過大なアルカリ剤の添加は、運転コストが高額になる。
(3)メタン発酵槽の水深が深いと、槽内底部では溶解する二酸化炭素が増加し、大気圧条件で測定される処理水pHに比べて、水深10mのメタン発酵槽の底部pHは0.3も低くなる。その結果、槽内のpH低下でメタン菌の活性が大幅に低下し、除去率が低く維持される。
That is, the conventional UASB method using organic wastewater having a low pH buffering property such as pulp and paper mill wastewater has the following problems.
(1) The pH of methane fermentation tank influent water is said to be suitable for methane fermentation 6.5.
When the pH is adjusted to 8.0, the wastewater has a low pH buffering property. Therefore, the pH in the fermenter is 6.5 or less, which inhibits methane fermentation, due to the decomposition product, carbon dioxide and the generated organic acid. In extreme cases, it drops to 6 or less.
(2) Addition of an excessive alkali agent increases the operating cost.
(3) When the water depth of the methane fermentation tank is deep, dissolved carbon dioxide increases at the bottom of the tank, and the bottom pH of the methane fermentation tank having a depth of 10 m is 0. 0 compared with the treated water pH measured at atmospheric pressure. 3 is also lower. As a result, the activity of the methane bacterium is greatly reduced due to the pH drop in the tank, and the removal rate is kept low.

特公平5−67358号公報Japanese Patent Publication No. 5-67358 特開平7−136694号公報Japanese Patent Laid-Open No. 7-136694

本発明は、上記既知事実に鑑み、食品工場、化学工場、紙パルプ工場などの各種工場より排出される有機性廃水の中でも、特異的な蒸留廃水等のアルコールを主成分とし、全有機物に対するSSが極端に少ない有機性廃水の安定かつ高性能なメタン発酵処理装置を提供することを課題とする。   In view of the above-mentioned known facts, the present invention is mainly composed of alcohol such as specific distilled waste water among organic waste water discharged from various factories such as food factories, chemical factories, and pulp and paper factories, and SS for all organic matters. An object of the present invention is to provide a stable and high-performance methane fermentation treatment apparatus with extremely little organic wastewater.

上記課題を解決するために、本発明では、廃水の全CODCrに対して、CODCr換算でアルコール成分が60%以上、SSが1%未満の有機性廃水を処理する嫌気性処理装置において、廃水調整槽と、該廃水調整槽から流出した被処理水が供給される1槽式のメタン発酵槽とを有し、該メタン発酵槽には、被処理水の流入部と処理水の流出部とを有し、該廃水調整槽には、pHが測定できる水質測定計を備え、該流出部には、pH、M−アルカリ度及び有機酸濃度が各々測定できる水質測定計を備え、該メタン発酵槽からのバイオガス流出部には、ガス中の二酸化炭素分圧の測定計を備え、該M−アルカリ度測定値から該有機酸濃度測定値のM−アルカリ度換算値を差し引いて算出された有効M−アルカリ度が100mg/L以上となるようにM−アルカリ度調整剤添加量を制御するか、又は、該流出部のpH測定値及び該二酸化炭素分圧測定値より算出されたアルカリ度に関係する有効K値が1以上となるようにM−アルカリ度調整剤添加量を制御する制御装置を備え、該制御装置からの信号に基いて、M−アルカリ度調整剤を該廃水調整槽へ添加する添加装置を有することを特徴とする有機性廃水の嫌気性処理装としたものである。
前記嫌気性処理方法おいて1槽式のメタン発酵槽は、上向流嫌気性汚泥床又は膨張式汚泥床を用いた発酵槽とすることができる。

In order to solve the above problems, the present invention, the total COD Cr in wastewater, the alcohol component in COD Cr in terms of 60% or more, in the anaerobic treatment apparatus SS processes the organic wastewater of less than 1%, A wastewater conditioning tank, and a single tank type methane fermentation tank to which treated water flowing out of the wastewater conditioning tank is supplied. The methane fermentation tank includes an inflow portion of treated water and an outflow portion of treated water. The wastewater adjustment tank is equipped with a water quality meter that can measure pH, and the outflow part is equipped with a water quality meter that can measure pH, M-alkalinity, and organic acid concentration, respectively, and the methane The biogas outflow part from the fermenter is equipped with a meter for measuring the partial pressure of carbon dioxide in the gas, and is calculated by subtracting the M-alkalinity conversion value of the organic acid concentration measurement value from the M-alkalinity measurement value. The effective M-alkalinity is 100 mg / L or more. M-Alkalinity adjusting agent added amount is controlled, or the effective K value related to the alkalinity calculated from the pH measurement value and the carbon dioxide partial pressure measurement value of the outflow part is 1 or more. -Organic having a control device for controlling the amount of alkalinity adjusting agent added, and having an adding device for adding an M-alkalinity adjusting agent to the wastewater adjusting tank based on a signal from the control device It is a wastewater anaerobic treatment equipment.
The methane fermentation tank 1 tank type keep anaerobic treatment method may be a fermenter using the upflow anaerobic sludge blanket or inflatable sludge bed.

本発明の有機性廃水の嫌気性処理装置によって、メタン発酵槽流入水に制御されたM−アルカリ度調整剤を添加することにより、メタン発酵槽内のpHを適正範囲内に収め、高い負荷及び除去率を維持できる。   By adding an M-alkaline adjuster controlled to the methane fermenter influent by the anaerobic treatment apparatus of the organic wastewater of the present invention, the pH in the methane fermenter is kept within an appropriate range, and a high load and The removal rate can be maintained.

本発明の嫌気性処理装置の一例を示すフロー構成図。The flow block diagram which shows an example of the anaerobic processing apparatus of this invention. 実施例で用いた運転日数とCODCr容積負荷の関係を示すグラフ。The graph which shows the relationship between the operation days used in the Example, and COD Cr volumetric load. (a)、(b)は実施例1の処理経過を示すグラフ。(A), (b) is a graph which shows process progress of Example 1. FIG. (a)、(b)、(c)は実施例2の処理経過を示すグラフ。(A), (b), (c) is a graph which shows process progress of Example 2. FIG. (a),(b)、(c)は実施例3の処理経過を示すグラフ。(A), (b), (c) is a graph which shows process progress of Example 3. FIG. (a),(b)、(c)は実施例4の処理経過を示すグラフ。(A), (b), (c) is a graph which shows process progress of Example 4. FIG.

本発明は、メタン発酵槽内で生成した二酸化炭素及び有機酸によるpH低下を最小限にとどめ、安定したメタン発酵処理を行うことにあり、メタン発酵槽内へのM−アルカリ度調整剤の添加量を最小限とする装置である。
つまり、二酸化炭素及び有機酸生成によるpHの低下、さらに、pH低下によるメタン発酵阻害が生じる悪循環を止めることができ、メタン発酵装置を停止することなく、運転を継続することができる。
本発明は、メタン発酵槽流出水のM−アルカリ度を有機酸濃度で補正した有効M−アルカリ度を算出し、少なくとも設定された有効M−アルカリ度以上の値となるように、メタン発酵槽流入水へM−アルカリ度調整剤を制御して添加することとした有機性廃水の嫌気性処理方法である。前にも述べたように、二酸化炭素及び有機酸によるpH低下を加味して有効M−アルカリ度という指標を用いる。
有効M−アルカリ度(mg/L)=M−アルカリ度(mg/L)−[有機酸濃度(mg/L)×0.83]・・・式(1)
The present invention is to perform a stable methane fermentation treatment by minimizing pH drop due to carbon dioxide and organic acid generated in the methane fermenter, and adding an M-alkalinity adjusting agent to the methane fermenter A device that minimizes the volume.
That is, it is possible to stop the vicious cycle in which the decrease in pH due to the generation of carbon dioxide and organic acid and the inhibition of methane fermentation due to the decrease in pH occur, and the operation can be continued without stopping the methane fermentation apparatus.
The present invention calculates the effective M-alkalinity obtained by correcting the M-alkalinity of the methane fermenter effluent water with the organic acid concentration, and at least has a value equal to or greater than the set effective M-alkalinity. This is an anaerobic treatment method for organic wastewater in which an M-alkalinity adjusting agent is added to inflow water in a controlled manner. As described above, an index of effective M-alkalinity is used in consideration of pH reduction due to carbon dioxide and organic acid.
Effective M-alkalinity (mg / L) = M-alkalinity (mg / L)-[organic acid concentration (mg / L) × 0.83] Formula (1)

式(1)が理論的であるが、便宜上係数0.83を1として、廃水によっては以下の式(2)でも代用でき、実用上問題はない。実際は、反応が起こるメタン発酵槽内のM−アルカリ度及び有機酸濃度の測定が好ましいが、メタン発酵槽流出液の水質データで実用上支障はない。
有効M−アルカリ度(mg/L)=M−アルカリ度(mg/L)−[有機酸濃度(mg/L)] ・・・式(2)
また、本発明は、メタン発酵槽流出水のpH及び発生ガス中の二酸化炭素分圧Pcoより、アルカリ度に関係する有効K値を(3)式よりもとめる。
有効K値=7.36×10pH-6×分圧Pco ・・・式(3)
Although the formula (1) is theoretical, the coefficient 0.83 is set to 1 for convenience, and depending on the wastewater, the following formula (2) can be substituted, and there is no practical problem. Actually, it is preferable to measure the M-alkalinity and the organic acid concentration in the methane fermentation tank where the reaction takes place, but there is no practical problem with the water quality data of the methane fermentation tank effluent.
Effective M-alkalinity (mg / L) = M-alkalinity (mg / L)-[organic acid concentration (mg / L)] Formula (2)
Further, the present invention is from carbon dioxide partial pressure Pco 2 in pH and generation gas methane fermenter effluent, the effective K values related to the alkalinity (3) halt than formula.
Effective K value = 7.36 × 10 pH-6 × partial pressure Pco 2 Formula (3)

メタン発酵が安定するためには、少なくとも該有効K値として1以上が必要となることが実験的に明らかとなっている。この方法は、pHと二酸化炭素の自動測定から、操作パラメーターである有効K値が精度よく連続測定できる特徴がある。実験的には処理の安定のためには、K値が1以上であることが必要であることが判明した。
さらに、本発明は、液状のアルカリを用いて、メタン発酵槽流入水のpHを低くても8.5以上とすることとし、この操作方法と前記した本発明の方法とを併用する方法である。
複数の方法を組み合わせてアルカリ剤の供給量を決定することで、適切なアルカリ剤の供給量とすることができ、過剰なアルカリ剤の供給によるランニングコストの増加を抑えることができるだけではなく、Ca含有のアルカリ剤を使用した場合に生じるスケールの問題を回避できる。
In order to stabilize methane fermentation, it has become experimentally clear that at least 1 is required as the effective K value. This method has a feature that an effective K value as an operation parameter can be continuously measured with high accuracy from automatic measurement of pH and carbon dioxide. Experimentally, it has been found that the K value needs to be 1 or more in order to stabilize the treatment.
Furthermore, the present invention is a method of using liquid alkali and setting the pH of the methane fermenter influent water at least to 8.5 or more, and using this operation method and the above-described method of the present invention in combination. .
By determining the supply amount of the alkaline agent by combining a plurality of methods, it is possible to obtain an appropriate supply amount of the alkaline agent, and not only can suppress an increase in running cost due to an excessive supply of the alkaline agent. The problem of the scale which arises when using the contained alkaline agent can be avoided.

本発明の対象とする廃水は、食品工場、化学工場、紙パルプ工場などの各種工場より排出される有機性廃水であるが、そのなかでも蒸留廃水等で、有機酸ではなくアルコールが主成分であり、全有機物に対するSSが極端に少ない有機性廃水が対象となる。具体的には、廃水の全CODCrに対してアルコール成分がCODCr換算60%以上、好ましくは70%以上、SSがCODCr換算で1%未満、CaCO換算のM−アルカリ度が10%以下であり、アルコールはメタノール、エタノール、イソプロパノール等炭化水素の水素原子を水酸基で置換した化合物で、一般式R−OHで表される。一価アルコール、二価アルコール、三価アルコールがあるが、本発明ではC以下の水に溶解するものが対象となる。特に、このような廃水には、有機酸は全CODCrに対して10%未満である。
なお、汚泥や畜産廃棄物などの有機性廃棄物は、アルコール成分はCODCr換算で70%未満で、SSがCODCr換算で1%以上であり、このような有機性廃棄物は、アルコール以外の物質によりメタン発酵処理によりpH緩衝性が増加し、また、CaCO換算のM−アルカリ度が10%より多いと廃水中のアルカリ度でpHが維持でき、本発明のような、M−アルカリ度調整剤の添加を制御する必要がないため、本発明では前記のように、本発明を適用すべき有機性廃水を規定した。
The wastewater targeted by the present invention is organic wastewater discharged from various factories such as food factories, chemical factories, and pulp and paper factories. Among them, it is distilled wastewater and the like, and alcohol is the main component instead of organic acid. Yes, organic wastewater with extremely low SS for all organic substances is targeted. Specifically, the alcohol component to the total COD Cr in wastewater COD Cr in terms of 60% or more, preferably 70% or more, SS is less than 1% COD Cr terms, M- alkalinity of terms of CaCO 3 10% The alcohol is a compound in which a hydrocarbon hydrogen atom such as methanol, ethanol or isopropanol is substituted with a hydroxyl group, and is represented by the general formula R—OH. Monohydric alcohols, dihydric alcohols, there is a trihydric alcohol, which dissolves the C 5 or less of water of interest in the present invention. In particular, in such wastewater, the organic acid is less than 10% with respect to the total COD Cr .
In addition, organic waste such as sludge and livestock waste is less than 70% of alcohol component in terms of COD Cr and SS is 1% or more in terms of COD Cr. Such organic waste is other than alcohol The pH buffering property is increased by the methane fermentation treatment with the substance, and when the M-alkalinity in terms of CaCO 3 is more than 10%, the pH can be maintained with the alkalinity in the wastewater. Since it is not necessary to control the addition of the degree adjusting agent, the present invention defines the organic wastewater to which the present invention is applied as described above.

本発明におけるメタン発酵処理とは、溶解性物質を嫌気処理する上向流汚泥床法(UASB)、流動床法(EGSB)、固定床法などの高負荷嫌気性処理や、嫌気性消化槽(AD)方式であるが、いずれの方式でも良い。
メタン発酵装置が、GSS(ガスとグラニュールと処理液を分離するセパレーター)を多段に有し、外部壁面とGSSの角度が30度以下で且つ、各段のバイオガスを、水封槽を経由して排出する水封槽を外部に取り付けた多段UASB型あるいはEGSB型の反応器では、バイオガスを各GSSから排出できることで、バイオガスの成分から各GSSの下部の反応状況が判断される。特に、前記した本発明のように、バイオガスで処理状況がモニターできるので、アルカリ度の調整も容易となる。
The methane fermentation treatment in the present invention is a high load anaerobic treatment such as an upward flow sludge bed method (UASB), a fluidized bed method (EGSB), a fixed bed method or the like for anaerobic treatment of soluble substances, an anaerobic digester ( AD) method, but any method may be used.
The methane fermentation apparatus has GSS (separator that separates gas, granule, and processing liquid) in multiple stages, the angle between the external wall surface and GSS is 30 degrees or less, and the biogas in each stage passes through the water-sealed tank In the multistage UASB type or EGSB type reactor in which the water-sealed tank to be discharged is attached to the outside, the biogas can be discharged from each GSS, so that the reaction state below each GSS is judged from the biogas components. In particular, as in the present invention described above, since the treatment status can be monitored with biogas, the alkalinity can be easily adjusted.

図1は、メタン発酵処理方法を実施するのに好ましい本発明の上向流嫌気性処理装置(UASB)の一形態の概要を例示したフロー構成図である。
原水送液管が連通し、上下を閉塞した筒状のメタン発酵槽2を設けてある。メタン発酵槽2内部の左右両側壁には、それぞれに一方の端部を固定し、他方の端部を反対側の側壁方向に向かって下降しながら延ばしているGSS4を設けてある。GSS4は、上下方向に2箇所左右交互に設けてある。反応が開始すると発生ガスが集まる気相部には、外部と通じる発生ガス回収配管の排出口を設けてある。
なお、気相部から接続されている発生ガス回収配管の吐出口は、水を充填した水封槽7の水中内で開口している。開口位置は、水圧が異なる適宜な水深位にあり、水封槽7には発生ガス回収配管から吐き出されたガス流量を測定するガスメーターを設けてある。ガスメーターの先には、ガスホルダー8が設けられている。また、メタン発酵槽の上端には上澄み液を排出する処理水配管及び必要に応じて原水を希釈する循環水配管が接続している。
FIG. 1 is a flow configuration diagram illustrating an outline of an embodiment of the upward flow anaerobic treatment apparatus (UASB) of the present invention that is preferable for carrying out a methane fermentation treatment method.
A cylindrical methane fermentation tank 2 in which the raw water feed pipe communicates and the upper and lower sides are closed is provided. The left and right side walls inside the methane fermentation tank 2 are provided with GSSs 4 each of which has one end fixed and extends while lowering the other end toward the opposite side wall. The GSS 4 is provided alternately in two places on the left and right in the vertical direction. In the gas phase part where the generated gas collects when the reaction starts, an outlet of the generated gas recovery pipe communicating with the outside is provided.
Note that the discharge port of the generated gas recovery pipe connected from the gas phase part opens in the water in the water-sealed tank 7 filled with water. The opening position is at an appropriate water depth with different water pressures, and the water sealing tank 7 is provided with a gas meter for measuring the flow rate of the gas discharged from the generated gas recovery pipe. A gas holder 8 is provided at the tip of the gas meter. Moreover, the upper end of the methane fermentation tank is connected to a treated water pipe for discharging the supernatant and a circulating water pipe for diluting the raw water as required.

調整槽1には、pH計、処理水配管の途中には水質計(pH、M−アルカリ度、有機酸を測定)、バイオガスのラインには二酸化炭素濃度計が設置してある。これらの計測器は、制御方法に応じて適宜設置される。
メタン発酵槽2は、嫌気性菌からなるグラニュール汚泥を投入して使用する。本発明の対象となる嫌気性処理は、30 ℃〜35 ℃を至適温度とした中温メタン発酵処理、及び、50 ℃〜55 ℃を至適温度とした高温メタン発酵処理の温度範囲の嫌気性処理を対象としている。嫌気性菌からなるグラニュール汚泥を投入し、原水5を調整槽1からメタン発酵槽2へ導入する。原水は、メタン発酵槽流出水の一部である循環液6や系外から供給する希釈水等により必要に応じて希釈を行い、メタン発酵槽流入水が、メタン発酵槽内部での通水速度が0.1〜5 m/hとなるように調節する。
The adjustment tank 1 is provided with a pH meter, a water quality meter (measuring pH, M-alkalinity, and organic acid) in the middle of the treated water piping, and a carbon dioxide concentration meter in the biogas line. These measuring instruments are appropriately installed according to the control method.
The methane fermentation tank 2 is used by introducing granular sludge made of anaerobic bacteria. The anaerobic treatment that is the subject of the present invention is an anaerobic treatment in the temperature range of a medium temperature methane fermentation treatment with an optimum temperature of 30 ° C. to 35 ° C. and a high temperature methane fermentation treatment with an optimum temperature of 50 ° C. to 55 ° C. Intended for processing. Granule sludge composed of anaerobic bacteria is introduced, and raw water 5 is introduced from the adjustment tank 1 to the methane fermentation tank 2. The raw water is diluted as necessary with the circulating fluid 6 that is part of the methane fermenter effluent, diluted water supplied from outside the system, etc., and the methane fermenter inflow water is the flow rate inside the methane fermenter. Is adjusted to 0.1 to 5 m / h.

原水にCo、Ni、Feなどの微量金属を添加することで、メタン細菌の活性を高め、グラニュール形成能を向上させることができる。ここでは、メタン発酵槽でpH低下した場合に、アルカリ剤を使用する場合について説明する。
アルカリ剤の供給は、メタン発酵槽前段に廃水調整槽1を設けて、そこに供給してもよいし、メタン発酵槽2内に直接供給してもよい。メタン発酵槽内に直接アルカリ剤を供給する場合は、アルカリ剤の供給箇所を1箇所でも複数箇所でもよく、複数箇所の場合は供給箇所を高さ方向の異なる位置に配置しても良い。
供給方法は、連続的あるいは間欠的のいずれを選択しても良い。廃水のアルカリ度、有機成分の種類、濃度により供給方法を選択する。
By adding trace metals such as Co, Ni, and Fe to the raw water, the activity of methane bacteria can be increased and the granule forming ability can be improved. Here, the case where an alkaline agent is used when pH is lowered in a methane fermenter will be described.
The supply of the alkaline agent may be performed by providing the wastewater adjusting tank 1 in the preceding stage of the methane fermentation tank and supplying it to the methane fermentation tank 2. When supplying the alkaline agent directly into the methane fermentation tank, the supply location of the alkaline agent may be one or a plurality of locations, and in the case of a plurality of locations, the supply locations may be arranged at different positions in the height direction.
The supply method may be either continuous or intermittent. The supply method is selected according to the alkalinity of wastewater, the type and concentration of organic components.

使用するM−アルカリ度調整剤は、1種類を選択できるが、溶解度の高い群、低い群の中から適宜組み合わせて使用することも可能である。(a)溶解度の高い群には(液状アルカリ)、NaOH、NaHCO、NaCO、があり、(b)溶解度の低い群には、Ca(OH)、CaCO、CaO、リン酸マグネシウムアンモニウム(MAP)、Mg(OH)、MgOなどがある。このほかにも、例えば紙パルプ工場において工場内に流通している黒液、白液、弱液、緑液をいった薬液を使用しても良いし、M−アルカリ度を生成するような廃液を使用してもよい。メタン発酵槽内に間欠的に投入する場合は、固形物として保持されるが、発酵槽内pHや二酸化炭素濃度に応じて徐々に溶解することで、アルカリ度の供給が可能であり、かつ、コストが低いCa(OH)、CaCOが適している。 One type of M-alkalinity adjusting agent to be used can be selected, but it can also be used in appropriate combination from a group with high solubility and a group with low solubility. (A) High solubility group (liquid alkali), NaOH, NaHCO 3 , Na 2 CO 3 , (b) Low solubility group includes Ca (OH) 2 , CaCO 3 , CaO, phosphoric acid Examples include magnesium ammonium (MAP), Mg (OH) 2 , and MgO. In addition, for example, chemicals such as black liquor, white liquor, weak liquor, and green liquor distributed in the factory in a paper pulp factory may be used, or waste liquid that generates M-alkalinity. May be used. When intermittently charged into the methane fermentation tank, it is retained as a solid, but by gradually dissolving according to the pH and carbon dioxide concentration in the fermentation tank, it is possible to supply alkalinity, and Low cost Ca (OH) 2 and CaCO 3 are suitable.

アルカリ剤の添加は、少なければ効果がなく、多すぎればコストがかかるだけでなく、スケール生成の危険性があるため、この点も考慮して適切なアルカリ度調整剤の選択が重要である。
メタン発酵処理水のpH緩衝性、すなわちM−アルカリ度を測定することで、適切なM−アルカリ度調整剤の添加量を制御することができる。ただし、メタン発酵処理水に有機酸が含まれている場合は、M−アルカリ度として測定されるが、有機酸はメタン発酵槽流入水に含まれていたM−アルカリ度を消費しているので、有機酸を酢酸とした上でM−アルカリ度を補正する必要がある。
補正は測定されるメタン発酵槽内もしくはメタン発酵槽流出水のM−アルカリ度から、有機酸のM−アルカリ度換算値を差し引く。有機酸は、すべて酢酸とみなすと、補正係数は、式(4)より0.83と求められる。
The addition of the alkali agent is ineffective if it is small, and not only is it costly, but also there is a risk of scale formation. Therefore, it is important to select an appropriate alkalinity adjusting agent in consideration of this point.
By measuring the pH buffering property of methane fermentation treated water, that is, the M-alkalinity, it is possible to control the amount of the appropriate M-alkaliness adjusting agent added. However, when organic acid is contained in methane fermentation treated water, it is measured as M-alkalinity, but organic acid consumes M-alkalinity contained in methane fermentation tank inflow water. It is necessary to correct the M-alkalinity after using an organic acid as acetic acid.
In the correction, the M-alkaline conversion value of the organic acid is subtracted from the M-alkaline degree in the methane fermenter or methane fermenter effluent to be measured. If all organic acids are regarded as acetic acid, the correction coefficient is obtained as 0.83 from the equation (4).

50(炭酸カルシウムの等量)/60(酢酸の等量) = 0.83・・・式(4)
有効M−アルカリ度(mg/L)=M−アルカリ度(mg/L)−[有機酸濃度(mg/L)×0.83]・・・式(1)
式(1)が理論的であるが、便宜上係数0.83を係数1として、廃水によっては以下の式(2)でも代用でき実用上問題はない。実際は、反応が起こるメタン発酵槽内のM−アルカリ度及び有機酸濃度の測定が好ましいが、メタン発酵槽流出液の水質データで実用上支障はない。
有効M−アルカリ度(mg/L)=M−アルカリ度(mg/L)−[有機酸濃度(mg/L) ]・・・式(2)
50 (equivalent amount of calcium carbonate) / 60 (equivalent amount of acetic acid) = 0.83 Formula (4)
Effective M-alkalinity (mg / L) = M-alkalinity (mg / L)-[organic acid concentration (mg / L) × 0.83] Formula (1)
Although the equation (1) is theoretical, the coefficient 0.83 is set as the coefficient 1 for convenience, and depending on the wastewater, the following equation (2) can be substituted and there is no practical problem. Actually, it is preferable to measure the M-alkalinity and the organic acid concentration in the methane fermentation tank where the reaction takes place, but there is no practical problem with the water quality data of the methane fermentation tank effluent.
Effective M-alkalinity (mg / L) = M-alkalinity (mg / L)-[organic acid concentration (mg / L)] Formula (2)

pH緩衝性の少ない有機性廃水をメタン発酵する方法において、メタン発酵槽内もしくはメタン発酵槽流出水のM−アルカリ度及び有機酸濃度を測定し、前述の(1)の式から有効M−アルカリ度を算出し、有効M−アルカリ度 の値が、少なくとも100mg/L以上、好ましくは200mg/L以上で、上限は特に定めないが400mg/Lが目安になる。少なくとも100mg/L以上の有効M−アルカリ度を満たすように、M−アルカリ調整剤をメタン発酵槽流入水もしくはメタン発酵槽内に連続あるいは間欠的に添加して運転することで、安定してメタン発酵処理を行え、pH調整剤のコストも低減できることが、実験の結果から確認できた。ここで、M−アルカリ度及び有機酸は、手分析や機器分析で測定しても良いし、滴定法による自動計測で測定してもよい。   In the method of methane fermentation of organic wastewater with low pH buffering properties, the M-alkaliness and organic acid concentration in the methane fermenter or effluent from the methane fermenter are measured, and effective M-alkali is calculated from the above-mentioned formula (1). The effective M-alkalinity value is at least 100 mg / L or more, preferably 200 mg / L or more, and the upper limit is not particularly defined, but 400 mg / L is a standard. Methane can be stably operated by continuously or intermittently adding an M-alkali regulator to the methane fermenter influent or methane fermenter so as to satisfy an effective M-alkalinity of at least 100 mg / L or more. It was confirmed from the experimental results that fermentation treatment can be performed and the cost of the pH adjusting agent can be reduced. Here, the M-alkalinity and the organic acid may be measured by manual analysis or instrumental analysis, or may be measured by automatic measurement by a titration method.

また、本発明では、メタン発酵槽内もしくはメタン発酵槽流出水のpH及びバイオガス中の二酸化炭素分圧からも、適切なアルカリ剤の添加量を求めることができる。
二酸化炭素と水の間には、気液平衡が成立し、式(5)で示される関係となる。
[H+]=K Pco / [HCO ]・・・式(5)
ここで、水温35℃、イオン強度0.0において
= 0.48 × 10 -6
= 0.0257 mol/(L・atm)
pH : 処理水のpH
Pco :発生したバイオガス中の二酸化炭素の分圧(atm)
式(5)より、[HCO ]をアルカリ度換算すると式(6)が導出される。
アルカリ度/100 = 7.36 × 10pH-6 × Pco = K値・・・式(6)
Moreover, in this invention, the addition amount of an appropriate alkaline agent can be calculated | required also from the pH of carbon dioxide partial pressure in the methane fermentation tank inside or methane fermentation tank outflow water, and biogas.
A vapor-liquid equilibrium is established between carbon dioxide and water, and the relationship shown by the equation (5) is established.
[H +] = K 1 K H Pco 2 / [HCO 3 -] ··· Equation (5)
Here, at a water temperature of 35 ° C. and an ionic strength of 0.0, K 1 = 0.48 × 10 −6
K H = 0.0257 mol / (L · atm)
pH: pH of treated water
Pco 2 : partial pressure of carbon dioxide in the generated biogas (atm)
From Expression (5), Expression [6] is derived by converting [HCO 3 ] to alkalinity.
Alkalinity / 100 = 7.36 × 10 pH-6 × Pco 2 = K value Equation (6)

式(6)より、pH緩衝性の少ない有機性廃水をメタン発酵する方法において、メタン発酵槽内もしくはメタン発酵槽流出水のpH、及び、発生するバイオガス中の二酸化炭素分圧を測定し、(6)の式からK値を算出し、K値が少なくとも1以上で好ましくは2以上で、特に上限はないが目安として4が上限としては十分であり、これを満たすようにM−アルカリ調整剤をメタン発酵槽流入水に添加することで、安定してメタン発酵処理を行え、pH調整剤のコストも低減できることが実験の結果から確認できた。
メタン発酵槽内もしくはメタン発酵槽流出水のpH及びバイオガス中の二酸化炭素は、手分析や機器分析で測定しても良い。
M−アルカリ度、有機酸、処理水pH及びバイオガス中の二酸化炭素は、連続測定可能であるので、これらのデータをもとにpH調節剤の添加量を自動制御することができる。
From the formula (6), in the method of methane fermentation of organic wastewater having a low pH buffering property, the pH of the methane fermenter or the effluent of the methane fermenter and the carbon dioxide partial pressure in the generated biogas are measured, The K value is calculated from the formula (6), and the K value is at least 1 or more, preferably 2 or more, and there is no particular upper limit, but 4 is sufficient as a guideline, and M-alkali adjustment to satisfy this It was confirmed from the experimental results that the methane fermentation treatment can be stably performed by adding the agent to the methane fermentation tank influent, and the cost of the pH adjuster can be reduced.
The pH of carbon dioxide in the methane fermentation tank or the methane fermentation tank effluent and the carbon dioxide in the biogas may be measured by manual analysis or instrumental analysis.
Since M-alkalinity, organic acid, treated water pH, and carbon dioxide in biogas can be continuously measured, the amount of pH regulator added can be automatically controlled based on these data.

さらに、本発明は、液状のアルカリを用いてメタン発酵槽流入水のpHを低くても8.5以上とすることとし、この操作方法と前記の本発明とを併用する方法である。
安定したメタン発酵処理を行うためには、処理水pHを6.5以上に保つ必要があるが、原水にアルカリ剤を添加したメタン発酵槽流入水のpHが高くなりすぎた場合には、メタン発酵槽内部で局所的に高アルカリとなり、メタン菌に阻害を及ぼす可能性がある。pH緩衝性の少ない有機性廃水を、メタン発酵すると分解生成した二酸化炭素によりただちにpHが低下するので、あらかじめメタン発酵流入水pHを高くすることで、メタン発酵槽内のpHを適切に保つことができる。このときのメタン発酵槽流入水pHを、11以下、好ましくは8.5以上10以下とすることで、メタン発酵槽内の流入水吹き込み部付近のpHを、メタン発酵が可能な中性域に保つことができる。この操作は単独でも可能であるが、単独よりは、前記した本発明との併用が、よりM−アルカリ調整剤の節減やメタン発酵処理の安定性に効果がある。
すなわち、複数の方法を組み合わせてアルカリ剤の供給量を決定することで、適切なアルカリ剤の供給量とすることができ、過剰なアルカリ剤の供給によるランニングコストの増加を抑えることができるだけではなく、Ca含有のアルカリ剤を使用した場合に生じるスケールの問題を回避できる。
Furthermore, the present invention is a method in which liquid alkali is used and the pH of the methane fermenter influent water is at least 8.5 or lower, and this operation method and the present invention are used in combination.
In order to perform stable methane fermentation treatment, it is necessary to maintain the pH of the treated water at 6.5 or higher. However, if the pH of the methane fermentation tank inflow water in which an alkaline agent is added to the raw water becomes too high, methane Inside the fermenter, it becomes locally highly alkaline and may inhibit methane bacteria. When organic wastewater with low pH buffering properties is subjected to methane fermentation, the pH immediately decreases due to the carbon dioxide that is decomposed and produced, so the pH in the methane fermentation tank can be maintained appropriately by increasing the pH of the methane fermentation influent water in advance. it can. The pH of the methane fermentation tank inflow water at this time is 11 or less, preferably 8.5 or more and 10 or less, so that the pH in the vicinity of the inflow water blowing portion in the methane fermentation tank is in a neutral region where methane fermentation is possible. Can keep. Although this operation can be performed alone, the combined use with the present invention described above is more effective in saving the M-alkali regulator and in the stability of the methane fermentation treatment than using the operation alone.
That is, by determining the supply amount of the alkaline agent by combining a plurality of methods, it is possible to obtain an appropriate supply amount of the alkaline agent, and not only can suppress an increase in running cost due to an excessive supply of the alkaline agent. The problem of the scale which arises when using Ca containing alkali agent can be avoided.

以下、本発明を実施例により具体的に説明する。
実施例1〜4
メタノ−ル含有の紙パルプ廃水を対象としたUASB処理を行った。
図1に示す本発明の装置にて処理した。メタン発酵槽の容量は3mである。各GSSで捕集された発生ガスの量は、水封槽に設けられたガスメーターで測定した。メタン発酵槽内部の水温は35℃に保たれるよう温度制御されている。処理水の一部を循環液として原水とともにメタン発酵槽へ流入させることで、通水速度を3m/hに設定した。原水流量と処理水循環水量の割合は、CODCr負荷に応じて設定した。
原水には、メタノールを主成分とする廃水(CODCr:2200〜2500mg/L、M−アルカリ度100〜200mg/L)に、窒素、リンなどの無機栄養塩類、微量元素としてNi、Co、Feを添加したものを用いた。運転は、図2に示すように、CODCr容積負荷をかけた。第三の発明については、90日目に比較例から実施例に運転を切り替えた。
Hereinafter, the present invention will be specifically described by way of examples.
Examples 1-4
UASB treatment was performed on methanol-containing pulp and paper wastewater.
Processing was performed with the apparatus of the present invention shown in FIG. Capacity of the methane fermentation tank is 3m 3. The amount of generated gas collected by each GSS was measured with a gas meter provided in a water-sealed tank. The temperature of the water inside the methane fermentation tank is controlled to be kept at 35 ° C. The flow rate was set to 3 m / h by allowing a part of the treated water to flow into the methane fermentation tank together with the raw water as a circulating liquid. The ratio of the raw water flow rate and the treated water circulating water amount was set according to the CODCr load.
The raw water includes waste water mainly composed of methanol (COD Cr : 2200 to 2500 mg / L, M-alkalinity 100 to 200 mg / L), inorganic nutrient salts such as nitrogen and phosphorus, Ni, Co, Fe as trace elements The one to which was added was used. The operation was performed with a COD Cr volumetric load as shown in FIG. About 3rd invention, the driving | operation was switched to the Example from the comparative example on the 90th day.

(1)実施例1と比較例1
実施例1は、処理水の水質計を設置し、処理水のM−アルカリ度及び有機酸濃度を測定し、有効M−アルカリ度(mg−CaCO/L)として200mg/Lを維持できるように、調整槽に炭酸カルシウム(CaCO)の注入量を制御した。有効M−アルカリ度の算出には、式(1)を用いた。このとき、有機酸は、ほぼ0mg/Lとなり、CODCr除去率81%となった。
有効M−アルカリ度(mg/L)=M−アルカリ度(mg/L)−[有機酸濃度(mg/L)×0.83]・・・式(1)
比較例1は、実施例1と同じ装置を用い、有効M−アルカリ度が50mg/Lを維持するように、調整槽に炭酸カルシウム(CaCO)の注入量を制御した。このとき、有機酸は460mg/L残留して、CODCr除去率55%となった。
図3に処理の経過を示す。
(1) Example 1 and Comparative Example 1
Example 1 installs the water quality meter of treated water, measures M-alkalinity and organic acid concentration of treated water, and can maintain 200 mg / L as effective M-alkalinity (mg-CaCO 3 / L). In addition, the amount of calcium carbonate (CaCO 3 ) injected into the adjustment tank was controlled. Formula (1) was used for calculation of the effective M-alkalinity. At this time, the organic acid was approximately 0 mg / L, and the COD Cr removal rate was 81%.
Effective M-alkalinity (mg / L) = M-alkalinity (mg / L)-[organic acid concentration (mg / L) × 0.83] Formula (1)
In Comparative Example 1, the same apparatus as in Example 1 was used, and the injection amount of calcium carbonate (CaCO 3 ) was controlled in the adjustment tank so that the effective M-alkalinity was maintained at 50 mg / L. At this time, 460 mg / L of the organic acid remained, and the COD Cr removal rate reached 55%.
FIG. 3 shows the process.

(2)実施例2と比較例2
実施例2は、処理水ラインにpH計及びバイオガスのラインに二酸化炭素濃度計を設置し、有効K値が少なくとも2以上になるように設定し、メタン発酵流入水である調整槽での炭酸カルシウム(CaCO)の注入量を制御した。このとき、有機酸はほぼ0mg/Lとなり、CODCr除去率80%となった。
比較例2は、実施例2と同じ装置を用い、有効K値が0.5を維持するようにメタン発酵流入水である調整槽での炭酸カルシウム(CaCO)の注入量を制御した。このとき、有機酸は400mg/L残留して、CODCr除去率62%となった。
図4に処理の経過を示す。
(2) Example 2 and Comparative Example 2
In Example 2, a pH meter and a carbon dioxide concentration meter are installed in the treated water line, the effective K value is set to be at least 2 or more, and carbonation in the adjustment tank that is methane fermentation influent water. The injection amount of calcium (CaCO 3 ) was controlled. At this time, the organic acid was almost 0 mg / L, and the COD Cr removal rate was 80%.
In Comparative Example 2, the same apparatus as in Example 2 was used, and the injection amount of calcium carbonate (CaCO 3 ) in the adjustment tank as methane fermentation influent was controlled so that the effective K value was maintained at 0.5. At this time, the organic acid remained at 400 mg / L, and the COD Cr removal rate reached 62%.
FIG. 4 shows the process.

(3)実施例3と比較例3
比較例3では、有効M−アルカリ度を100mg/L以上に設定したところ、炭酸カルシウムの添加率は170〜300 mg/Lであった。このときの流入水のpHは7.5〜8.0、有機酸は190mg/L残留して、CODCr除去率73%となった。
実施例3では、この原水に炭酸カルシウム添加量は同量として、流入水のpHをNaOHの水溶性アルカリを用いて9.0まであげた。その結果、有機酸はほぼ0mg/Lとなり、CODCr除去率83%となった。すなわち、流入pHをあげることとの併用効果が確認された。
図5に処理の経過を示す。
(3) Example 3 and Comparative Example 3
In Comparative Example 3, when the effective M-alkalinity was set to 100 mg / L or more, the addition rate of calcium carbonate was 170 to 300 mg / L. The pH of the influent of this time 7.5-8.0, the organic acid remains 190 mg / L, was a COD Cr removal rate of 73%.
In Example 3, the amount of calcium carbonate added to the raw water was the same, and the pH of the influent water was raised to 9.0 using NaOH water-soluble alkali. As a result, the organic acid was almost 0 mg / L, and the COD Cr removal rate was 83%. That is, the combined effect of increasing the inflow pH was confirmed.
FIG. 5 shows the process.

(4)実施例4と比較例4
比較例4では、有効K値が少なくとも1に設定したところ、水酸化マグネシウムの添加率は100〜180 mg/Lであった。このときの流入水のpHは7.5〜8.0、有機酸は220mg/L残留して、CODCr除去率72%となった。
実施例4では、この原水に水酸化マグネシウム添加量は同量として、流入水のpHをNaOHの水溶性アルカリを用いて9.0まであげた。このときの有効K値は2.2となった。その結果、有機酸はほぼ0mg/Lとなり、CODcr除去率85%となった。すなわち、流入pHをあげることとの併用効果が確認された。
図6に処理の経過を示す。
これらの結果を表1に示す。
(4) Example 4 and Comparative Example 4
In Comparative Example 4, when the effective K value was set to at least 1, the addition rate of magnesium hydroxide was 100 to 180 mg / L. The pH of the influent of this time 7.5-8.0, the organic acid remains 220 mg / L, was a 72% COD Cr removal rate.
In Example 4, the amount of magnesium hydroxide added to the raw water was the same, and the pH of the influent water was raised to 9.0 using NaOH water-soluble alkali. The effective K value at this time was 2.2. As a result, the organic acid was almost 0 mg / L, and the COD cr removal rate was 85%. That is, the combined effect of increasing the inflow pH was confirmed.
FIG. 6 shows the process.
These results are shown in Table 1.

Figure 0005759839
Figure 0005759839

1:調製槽、2:メタン発酵槽、3:処理水槽、4:GSS、5:原水、
6:循環水、7:水封塔、8:ガスホルダー、
1: preparation tank, 2: methane fermentation tank, 3: treated water tank, 4: GSS, 5: raw water,
6: circulating water, 7: water seal tower, 8: gas holder,

Claims (2)

廃水の全CODCrに対して、CODCr換算でアルコール成分が60%以上、SSが1%未満の有機性廃水を処理する嫌気性処理装置において、廃水調整槽と、該廃水調整槽から流出した被処理水が供給される1槽式のメタン発酵槽とを有し、該メタン発酵槽には、被処理水の流入部と処理水の流出部とを有し、該廃水調整槽には、pHが測定できる水質測定計を備え、該流出部には、pH、M−アルカリ度及び有機酸濃度が各々測定できる水質測定計を備え、該メタン発酵槽からのバイオガス流出部には、ガス中の二酸化炭素分圧の測定計を備え、該M−アルカリ度測定値から該有機酸濃度測定値のM−アルカリ度換算値を差し引いて算出された有効M−アルカリ度が100mg/L以上となるようにM−アルカリ度調整剤添加量を制御するか、又は、該流出部のpH測定値及び該二酸化炭素分圧測定値より算出されたアルカリ度に関係する有効K値が1以上となるようにM−アルカリ度調整剤添加量を制御する制御装置を備え、該制御装置からの信号に基いて、M−アルカリ度調整剤を該廃水調整槽へ添加する添加装置を有することを特徴とする有機性廃水の嫌気性処理装置。 In an anaerobic treatment apparatus that treats organic waste water with an alcohol component of 60% or more and SS of less than 1% in terms of COD Cr , the waste water adjustment tank and the waste water adjustment tank flowed out of the total waste water COD Cr . and a 1-vessel methane fermentation tank of the water to be treated is supplied, the said methane fermentation tank, and a outflow portion of the treated water and the inlet portion of the water to be treated, the waste water regulation tank, A water quality meter capable of measuring pH is provided, and the outflow portion is provided with a water quality meter capable of measuring pH, M-alkalinity and organic acid concentration, and a biogas outflow portion from the methane fermenter is provided with a gas. comprising a meter of the carbon dioxide partial pressure in an effective M- alkalinity calculated by subtracting the M- alkalinity converted value of the organic acid concentration measurements from the M- alkalinity measurements 100 mg / L or more The amount of M-alkaline adjuster added is controlled so that Or, the outflow portion of the pH measurements and the carbon dioxide partial pressure measurement valid K values related to the calculated alkalinity than value is 1 or more and becomes as M- alkalinity adjusting agent amount for controlling the controlled device And an anaerobic treatment apparatus for organic wastewater, comprising an addition device for adding an M-alkaliness adjusting agent to the wastewater adjustment tank based on a signal from the control device. 前記1槽式のメタン発酵槽は、上向流嫌気性汚泥床又は膨張式汚泥床を用いた発酵槽であることを特徴とする請求項1記載の有機性廃水の嫌気性処理装置。   2. The anaerobic treatment apparatus for organic wastewater according to claim 1, wherein the one tank type methane fermentation tank is a fermenter using an upflow anaerobic sludge bed or an expanded sludge bed.
JP2011200138A 2011-09-14 2011-09-14 Anaerobic treatment equipment for organic wastewater Active JP5759839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011200138A JP5759839B2 (en) 2011-09-14 2011-09-14 Anaerobic treatment equipment for organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011200138A JP5759839B2 (en) 2011-09-14 2011-09-14 Anaerobic treatment equipment for organic wastewater

Publications (2)

Publication Number Publication Date
JP2013059729A JP2013059729A (en) 2013-04-04
JP5759839B2 true JP5759839B2 (en) 2015-08-05

Family

ID=48184917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011200138A Active JP5759839B2 (en) 2011-09-14 2011-09-14 Anaerobic treatment equipment for organic wastewater

Country Status (1)

Country Link
JP (1) JP5759839B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5846160B2 (en) * 2013-06-10 2016-01-20 栗田工業株式会社 Alcohol production wastewater treatment device and treatment method
CN106045256B (en) * 2016-07-11 2022-08-02 湖南屎壳郎环境科技有限公司 Fermentation reaction temperature control system and method for treating feces and urine pollution of farm

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261977B2 (en) * 2007-05-11 2013-08-14 栗田工業株式会社 Anaerobic treatment method and anaerobic treatment apparatus
JP5017725B2 (en) * 2007-12-20 2012-09-05 水ing株式会社 Anaerobic treatment method and apparatus
JP2011200792A (en) * 2010-03-25 2011-10-13 Kobelco Eco-Solutions Co Ltd Apparatus and method for anaerobic treatment

Also Published As

Publication number Publication date
JP2013059729A (en) 2013-04-04

Similar Documents

Publication Publication Date Title
EP2323954B1 (en) Methods for processing organic waste
CN101734827B (en) Method for treating yeast wastewater
JP4834021B2 (en) Methane fermentation treatment method
JP5114780B2 (en) Anaerobic treatment method and apparatus
US10590439B2 (en) Anaerobic process
JP5238518B2 (en) Method and apparatus for wastewater anaerobic treatment
US20120261338A1 (en) Methods and apparatus for struvite recovery using upstream phosphate injection
EP2489641A1 (en) Methods and apparatus for struvite recovery using upstream CO2 injection
JP4428188B2 (en) Organic wastewater treatment method and treatment apparatus
US11358892B2 (en) Method for recovering phosphorus from sludge and plant thereof
JP5759839B2 (en) Anaerobic treatment equipment for organic wastewater
JP4611204B2 (en) Method and apparatus for anaerobic treatment of wastewater containing sulfur compounds
JP2009233567A (en) Biological denitrification system
JP5997059B2 (en) Anaerobic treatment method and anaerobic treatment apparatus for organic wastewater
JP4893647B2 (en) Method and apparatus for treating water containing organic matter
JP2007190492A (en) Method and apparatus for treating nitrogen-containing wastewater
JP2001038378A (en) Method and device for anaerobically treating organic waste water
CN215327195U (en) Sponge biofilm reactor and system thereof
CA2881911A1 (en) A method and an apparatus for simultaneous removal of thiosalt and nitrogen compounds in waste water
Liu et al. Anaerobic granular sludge performance in an expanded granular sludge bed reactor treating calcium-rich wastewater by adjusting CaCO3 crystallization: Effect of upflow velocity and Ca2+ concentration
JPH08155486A (en) Anaerobic treatment method for organic drainage
KR101269379B1 (en) Treatment method for wastewater
KR100990167B1 (en) Method and apparatus for Bio-hydrogen gas production from organic waste by using inhibitor for methane producing microorganisms and gas purging under low pH condition
JP6101740B2 (en) Biological desulfurization method of biogas
CN109354344A (en) A kind of large-sized biogas engineering biogas slurry treatment reuse method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5759839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250