JP5025021B2 - Deoxygenation decarboxylation device - Google Patents

Deoxygenation decarboxylation device Download PDF

Info

Publication number
JP5025021B2
JP5025021B2 JP2008310471A JP2008310471A JP5025021B2 JP 5025021 B2 JP5025021 B2 JP 5025021B2 JP 2008310471 A JP2008310471 A JP 2008310471A JP 2008310471 A JP2008310471 A JP 2008310471A JP 5025021 B2 JP5025021 B2 JP 5025021B2
Authority
JP
Japan
Prior art keywords
water
treated
gas
tower
liquid contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008310471A
Other languages
Japanese (ja)
Other versions
JP2010131536A (en
Inventor
貴干 濱田
明史 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Engineering Co Ltd
Original Assignee
Toyobo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Engineering Co Ltd filed Critical Toyobo Engineering Co Ltd
Priority to JP2008310471A priority Critical patent/JP5025021B2/en
Publication of JP2010131536A publication Critical patent/JP2010131536A/en
Application granted granted Critical
Publication of JP5025021B2 publication Critical patent/JP5025021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、ボイラー等へ供給する原水中の酸素成分及び炭酸成分を事前に除去する脱酸素脱炭酸装置に関し、特に被処理水のpH調整と窒素ガスとの接触処理とにより脱酸素脱炭酸処理を行う脱酸素脱炭酸装置に関する。   The present invention relates to a deoxygenation decarboxylation device that removes in advance oxygen components and carbonic acid components in raw water supplied to a boiler or the like, and in particular, deoxygenation decarboxylation treatment by adjusting pH of water to be treated and contact treatment with nitrogen gas. The present invention relates to a deoxygenation decarboxylation apparatus.

ボイラー給水等の水処理分野では、給水中の溶存酸素がボイラーや配管の腐食の原因になる。また、給水中の炭酸ガス、及び重炭酸イオン、炭酸イオンが熱分解して生じる炭酸ガスも、ボイラーや配管の腐食の原因になる。このため、ボイラー給水等に対しては、脱酸素脱炭酸処理が行われており、その一つが特許文献1、2に記載されているようなpH調整と窒素ガスとの接触との組合せ処理である。また、窒素ガスとの接触による脱酸素装置の一つが特許文献3に記載されている。   In the water treatment field such as boiler feed water, dissolved oxygen in the feed water causes corrosion of the boiler and piping. Further, carbon dioxide gas in feed water and carbon dioxide gas generated by thermal decomposition of bicarbonate ions and carbonate ions also cause corrosion of boilers and piping. For this reason, deoxygenation and decarboxylation treatment is performed on boiler feed water, etc., one of which is a combination treatment of pH adjustment and contact with nitrogen gas as described in Patent Documents 1 and 2. is there. Further, Patent Document 3 describes one of deoxygenation devices by contact with nitrogen gas.

特開2001−129305号公報JP 2001-129305 A 特開2003−047950号公報JP 2003-047950 A 特開2005−95791号公報JP 2005-95791 A

pH調整と窒素ガスとの接触処理とによる従来の脱酸素脱炭酸処理は次のようにして行われる。原水中の酸素成分及び炭酸成分としては、溶存酸素、炭酸ガスの他、重炭酸イオン、炭酸イオンが存在している。溶存酸素、炭酸ガスは窒素ガスとの接触により除去されるが、イオン類は窒素ガスとの接触によっても除去されない。   The conventional deoxygenation and decarboxylation treatment by pH adjustment and contact treatment with nitrogen gas is performed as follows. As oxygen components and carbonate components in the raw water, there are bicarbonate ions and carbonate ions in addition to dissolved oxygen and carbon dioxide gas. Dissolved oxygen and carbon dioxide are removed by contact with nitrogen gas, but ions are not removed by contact with nitrogen gas.

そこで先ず、原水を窒素ガスによる脱気処理塔に送る前に、その原水をpHが6.5以下の酸性に調整する。そうすると、化学式1に示すように原水中の重炭酸イオン及び炭酸イオンが遊離の炭酸ガスとなる。   Therefore, first, before sending the raw water to the degassing treatment tower using nitrogen gas, the raw water is adjusted to an acidic pH of 6.5 or less. Then, as shown in Chemical Formula 1, bicarbonate ions and carbonate ions in the raw water become free carbon dioxide gas.

Figure 0005025021
Figure 0005025021

この状態で原水を窒素ガスによる脱気処理塔に送る。脱気処理塔では、原水に大量の窒素ガスが接触させられる。その結果、原水中の炭酸ガス及び溶存酸素が窒素ガスと置換され、原水中から除去される。特許文献1、2に記載された脱酸素脱炭酸処理では、この手順で脱酸素・脱炭酸処理が行われている。   In this state, the raw water is sent to a degassing treatment tower using nitrogen gas. In the degassing tower, a large amount of nitrogen gas is brought into contact with the raw water. As a result, the carbon dioxide gas and dissolved oxygen in the raw water are replaced with nitrogen gas and removed from the raw water. In the deoxygenation / decarboxylation treatment described in Patent Documents 1 and 2, deoxygenation / decarboxylation treatment is performed according to this procedure.

一方、特許文献3に記載された脱酸素装置は、原水を窒素ガスと接触させることにより、原水中の溶存酸素を除去するものであり、水槽上に気液接触筒が接続された対向流型の処理塔を使用すると共に、塔内に被処理水及び窒素ガスを循環させることにより、高効率な脱酸素処理を行う。   On the other hand, the deoxygenation device described in Patent Document 3 removes dissolved oxygen in raw water by bringing the raw water into contact with nitrogen gas, and is a counter flow type in which a gas-liquid contact tube is connected to the water tank. In addition to using the above treatment tower, high-efficiency deoxygenation treatment is performed by circulating water to be treated and nitrogen gas in the tower.

しかしながら、特許文献1、2に記載されたように、pH調整、窒素ガス接触の順で順列的に脱酸素脱炭酸処理を行うと次のような問題がある。硫酸等のpH低下剤を原水に混合するために、注入攪拌機構を備えた大規模なpH調整槽が、脱気処理塔の上流側に必要になり、設備規模及び設備コストが増大する。   However, as described in Patent Documents 1 and 2, if the deoxygenation and decarboxylation treatment is performed in order in the order of pH adjustment and nitrogen gas contact, there are the following problems. In order to mix a pH reducing agent such as sulfuric acid with raw water, a large-scale pH adjusting tank equipped with an injection stirring mechanism is required on the upstream side of the deaeration treatment tower, and the equipment scale and equipment cost increase.

本発明の目的は、高い脱酸素脱炭酸性能を小規模、低コストで得ることができる高効率な脱酸素脱炭酸装置を提供することにある。   An object of the present invention is to provide a high-efficiency deoxygenation and decarboxylation apparatus that can obtain high deoxygenation and decarboxylation performance on a small scale and at low cost.

上記目的を達成するために、本発明者は前述した諸問題の根源がpH調整、窒素ガス接触の順列処理にあると考え、窒素ガス接触を行う脱気処理塔へのpH低下剤の直接注入を企画し、その直接注入に適した脱気処理塔の形式、注入箇所等について比較検討を行った。その結果、特許文献3に記載された脱酸素装置の処理塔、特に水槽上に気液接触筒が接続された対向流型処理塔の水槽内にpH低下剤を直接供給するのが、有効性が非常に高いことが判明した。   In order to achieve the above object, the present inventor considers that the root of the above-mentioned problems lies in pH adjustment and permutation treatment of nitrogen gas contact, and direct injection of a pH lowering agent into a degassing treatment tower that performs nitrogen gas contact A comparative study was conducted on the type of deaeration tower suitable for direct injection and the injection location. As a result, it is effective to supply the pH lowering agent directly into the treatment tower of the deoxygenation apparatus described in Patent Document 3, particularly the water tank of the counter-flow treatment tower in which the gas-liquid contact tube is connected to the water tank. Turned out to be very high.

すなわち、特許文献3に記載された脱酸素装置では、水槽上に気液接触筒が接続され、被処理水が気液接触筒内に導入されて下方の水槽を経て外部へ排出されると共に、窒素ガスが水槽内に導入されて気液接触筒内を経て外部へ排出される対向流型の処理塔が使用される。そして、処理塔の気液接触筒から排出される使用済みの窒素ガスの一部が、水槽内に滞留する被処理水中に拡散導入されて塔内を循環すると共に、処理塔の水槽内の被処理水が気液接触筒内に再導入されて塔内を循環する。   That is, in the deoxygenation device described in Patent Document 3, a gas-liquid contact cylinder is connected to the water tank, and water to be treated is introduced into the gas-liquid contact cylinder and discharged to the outside through the lower water tank, A counter-flow type processing tower is used in which nitrogen gas is introduced into the water tank and discharged to the outside through the gas-liquid contact cylinder. Then, part of the used nitrogen gas discharged from the gas-liquid contact cylinder of the processing tower is diffused and introduced into the water to be treated that stays in the water tank, circulates in the tower, and the covered nitrogen gas in the water tank of the processing tower. The treated water is reintroduced into the gas-liquid contact cylinder and circulates in the tower.

被処理水を脱炭酸処理するためのpH低下剤を、前記処理塔の水槽内に供給すると、その水槽内では窒素ガスが被処理水中に拡散導入され、被処理水の攪拌が行われているために、格別の攪拌混合槽を用いずとも、pH低下剤を攪拌混合槽に投入したのと同様にpH低下剤の混合が進行し、被処理水中の重炭酸イオン及び炭酸イオンが遊離の炭酸ガスとなる。そして、その炭酸ガスが溶存酸素と共に窒素ガスと置換されて分離排出される。このとき、処理塔内を窒素ガス及び被処理水が循環し、気液接触を繰り返すので、炭酸ガス及び酸素ガスの分離排出効率も高い。   When a pH lowering agent for decarboxylating the water to be treated is supplied into the water tank of the treatment tower, nitrogen gas is diffused and introduced into the water to be treated in the water tank, and the water to be treated is stirred. Therefore, the mixing of the pH lowering agent proceeds in the same manner as when the pH lowering agent was added to the stirring and mixing tank without using a special stirring and mixing tank, and the bicarbonate ions and carbonate ions in the water to be treated were free of carbonate. It becomes gas. Then, the carbon dioxide gas is replaced with nitrogen gas together with dissolved oxygen and separated and discharged. At this time, nitrogen gas and water to be treated are circulated in the treatment tower and gas-liquid contact is repeated, so that the separation and discharge efficiency of carbon dioxide gas and oxygen gas is also high.

ちなみに、被処理水の循環が行われない場合に、処理塔の水槽内にpH低下剤を供給すると、窒素ガスの拡散注入により水槽内で被処理水から分離除去された炭酸ガスが、窒素ガスと共に気液接触筒内を上昇する過程で、中性の新規導入水と接触することより、炭酸ガスが被処理水中に再吸収され、炭酸ガスの分離排出効果が特に低下する。しかるに、被処理水を循環させると、気液接触筒内において新規導入水と酸性の循環水とが混合し、酸性の被処理水となるため、炭酸ガスの再吸収が防止される。処理塔の水槽へpH低下剤を直接供給する場合の被処理水の循環操作は、気液接触の繰り返しだけでなく、気液接触筒内のpH上昇による炭酸ガスの再吸収を阻止する点からも重要である。   By the way, when the water to be treated is not circulated and the pH reducing agent is supplied into the water tank of the treatment tower, the carbon dioxide gas separated and removed from the water to be treated in the water tank by the diffusion injection of nitrogen gas is converted into nitrogen gas. At the same time, in the process of rising in the gas-liquid contact cylinder, the carbon dioxide gas is reabsorbed into the water to be treated by coming into contact with the neutral newly introduced water, and the carbon dioxide separation and discharge effect is particularly reduced. However, when the water to be treated is circulated, newly introduced water and acidic circulating water are mixed in the gas-liquid contact cylinder and become acidic water to be treated, so that reabsorption of carbon dioxide gas is prevented. The circulation operation of the water to be treated when supplying the pH lowering agent directly to the water tank of the treatment tower is not only repeated gas-liquid contact, but also from the point of preventing carbon dioxide reabsorption due to pH increase in the gas-liquid contact cylinder. It is also important.

本発明の脱酸素脱炭酸装置は、かかる知見を基礎として開発したものであり、脱酸素脱炭酸処理すべき原水を原水タンクから原水消費部へ供給する給水系に付設されて、原水消費部へ供給する原水中の酸素成分及び炭酸成分を事前に除去する脱酸素脱炭酸装置であって、水槽上に気液接触筒が接続され、被処理水が気液接触筒内を下降し下方の水槽を経て外部へ排出されると共に、窒素ガスが気液接触筒内を上昇して外部へ排出される対向流型の処理塔と、処理塔の気液接触筒から排出される使用済みの窒素ガスの一部を、水槽内に滞留する被処理水中に拡散導入して塔内循環させる窒素ガス循環系と、処理塔の水槽内の被処理水を気液接触筒内に再導入して塔内循環させる被処理水循環系とを具備しており、被処理水を脱炭酸処理するために被処理水を酸性に調整するpH低下剤を、水槽内の窒素ガスが拡散導入される被処理水に注入する構成を採用している。   The deoxygenation decarboxylation apparatus of the present invention has been developed on the basis of such knowledge, and is attached to a water supply system that supplies raw water to be deoxygenated and decarboxylated from the raw water tank to the raw water consumption section, to the raw water consumption section. A deoxygenation and decarboxylation device that removes in advance oxygen components and carbonic acid components in the raw water to be supplied, wherein a gas-liquid contact cylinder is connected to the water tank, and the water to be treated descends in the gas-liquid contact cylinder, and the lower water tank The counterflow type treatment tower in which the nitrogen gas is exhausted to the outside through the gas-liquid contact cylinder and exhausted to the outside, and the used nitrogen gas discharged from the gas-liquid contact cylinder of the treatment tower A nitrogen gas circulation system in which a part of the water is diffused and introduced into the treated water staying in the water tank and circulated in the tower, and the treated water in the water tank of the treatment tower is reintroduced into the gas-liquid contact cylinder. A circulation system for circulating the water to be treated for decarboxylation of the water to be treated The pH-lowering agent for adjusting water to be treated is acidified, the nitrogen gas in the water tank is adopted a configuration to be injected into the water to be treated is introduced diffused.

本発明の脱酸素脱炭素装置においては、処理塔の気液接触筒内に導入された被処理水が気液接触筒内を経て下方の水槽内に一時滞留する。水槽内の被処理水の一部は処理水として塔外へ排出され、残りは気液接触筒内に再導入され、塔内を循環する。同時に、窒素ガスが処理塔の気液接触筒内を上昇し、被処理水と向流接触する。気液接触筒内を上昇した窒素ガスの一部は塔外へ排出され、残りは水槽内の被処理水中に拡散導入され、気液接触筒内を再度上昇し、塔内を循環する。そして、この状態で水槽内の被処理水中にpH低下剤が注入される。   In the deoxygenation decarbonization apparatus of the present invention, the water to be treated introduced into the gas-liquid contact cylinder of the treatment tower temporarily stays in the lower water tank through the gas-liquid contact cylinder. A part of the water to be treated in the water tank is discharged as treated water to the outside of the tower, and the rest is reintroduced into the gas-liquid contact tube and circulates in the tower. At the same time, nitrogen gas rises in the gas-liquid contact cylinder of the treatment tower and makes countercurrent contact with the water to be treated. Part of the nitrogen gas that has risen in the gas-liquid contact cylinder is discharged outside the tower, and the rest is diffused and introduced into the water to be treated in the water tank, rises again in the gas-liquid contact cylinder, and circulates in the tower. In this state, a pH lowering agent is injected into the water to be treated in the water tank.

水槽内の被処理水は、窒素ガスの拡散導入により攪拌されており、この状態でpH低下剤が注入されることにより、両者の混合が促進される。水槽内でpH低下剤が攪拌混合されることにより、被処理水中の炭酸イオン、重炭酸イオンは遊離した炭酸ガスとなる。この被処理水は気液接触筒内に導入され、窒素ガスと接触する。これを繰り返すことにより、被処理水中の炭酸ガス、溶存酸素が窒素ガスと置換され、被処理水中から分離除去される。炭酸ガス、溶存酸素を除去された被処理水は処理水として処理塔外へ排出される。   The water to be treated in the water tank is agitated by the diffusion and introduction of nitrogen gas, and in this state, the pH lowering agent is injected to promote the mixing of both. By stirring and mixing the pH lowering agent in the water tank, carbonate ions and bicarbonate ions in the water to be treated become free carbon dioxide gas. This water to be treated is introduced into the gas-liquid contact cylinder and comes into contact with nitrogen gas. By repeating this, carbon dioxide gas and dissolved oxygen in the water to be treated are replaced with nitrogen gas, and separated and removed from the water to be treated. The treated water from which carbon dioxide gas and dissolved oxygen are removed is discharged out of the treatment tower as treated water.

このように、本発明の脱酸素脱炭酸装置においては、処理塔の気液接触筒内において処理水と窒素ガスの接触が繰り返されるだけでなく、処理塔の水槽内においても、窒素ガスの拡散導入により被処理水と窒素ガスの接触が繰り返され、脱酸素・脱炭酸処理が行われる。その上、炭酸ガスの拡散導入によって激しく攪拌される被処理水中にpH低下剤が注入されることにより、攪拌混合機能を有する専用のpH調整槽を用いずに、pH低下剤の高効率な攪拌混合が行われ、被処理水中の重炭酸イオン及び炭酸イオンのガス遊離が促進される。   Thus, in the deoxygenation decarboxylation apparatus of the present invention, not only the contact of the treated water and nitrogen gas is repeated in the gas-liquid contact tube of the treatment tower, but also the diffusion of nitrogen gas in the water tank of the treatment tower. By the introduction, contact between the water to be treated and nitrogen gas is repeated, and deoxygenation / decarboxylation treatment is performed. In addition, the pH lowering agent is injected into the water to be vigorously stirred by the introduction of carbon dioxide gas, so that the pH lowering agent can be stirred efficiently without using a dedicated pH adjusting tank having a stirring and mixing function. Mixing is performed and gas release of bicarbonate ions and carbonate ions in the water to be treated is promoted.

すなわち、本発明の脱酸素脱炭素装置においては、処理塔の水槽がpH調整槽、脱酸素槽及び脱炭素槽を兼ね、本来の脱酸素装置及び脱炭酸装置である気液接触筒が加わることより、小型の設備で高効率な脱酸素脱炭酸処理が行われるのである。処理塔の水槽へpH低下剤を直接供給する場合の被処理水の循環操作の更なる重要性については前述したとおりである。しかも、処理塔内でpH調整を行うので、応答性がよく、制御精度も高い。   That is, in the deoxygenation and decarbonization apparatus of the present invention, the water tank of the treatment tower also serves as a pH adjustment tank, a deoxygenation tank and a decarbonization tank, and a gas-liquid contact cylinder which is an original deoxygenation apparatus and decarbonation apparatus is added. Thus, highly efficient deoxygenation and decarboxylation is performed with a small facility. The further importance of the circulation operation of the water to be treated when the pH reducing agent is directly supplied to the water tank of the treatment tower is as described above. In addition, since pH adjustment is performed in the treatment tower, the response is good and the control accuracy is high.

本発明の脱酸素脱炭酸装置における処理塔としては、処理塔が第1処理塔と第2処理塔とからなる2塔式のものが、脱酸素効率が高く好ましい。この場合、第1処理塔及び第2処理塔においては、第1処理塔の気液接触筒内に給水系からの被処理水が導入されると共に、第2処理塔の気液接触筒内に窒素ガスが導入され、窒素ガス循環系は第2処理塔の気液接触筒から排出される使用済みの窒素ガスを第1処理塔の水槽内の被処理水中に拡散導入し、被処理水循環系は第1処理塔の水槽内の被処理水を第1処理塔の気液接触筒内及び第2処理塔の気液接触筒内に導入する構成が望ましい。第1処理塔の水槽内の被処理水は酸性にpH調整されている。一方、給水系からの被処理水は基本的に中性である。両者が第1処理塔の気液接触筒内に導入されることにより、両者が混合し、酸性となるため、同気液接触筒内を上昇する窒素ガス中の炭酸ガスの被処理水への再吸収が防止される。   As the treatment tower in the deoxygenation decarboxylation apparatus of the present invention, a two-column tower having a treatment tower comprising a first treatment tower and a second treatment tower is preferable because of high deoxygenation efficiency. In this case, in the first treatment tower and the second treatment tower, the water to be treated from the water supply system is introduced into the gas-liquid contact cylinder of the first treatment tower and the gas-liquid contact cylinder of the second treatment tower is introduced. Nitrogen gas is introduced, and the nitrogen gas circulation system diffuses and introduces used nitrogen gas discharged from the gas-liquid contact tube of the second treatment tower into the treated water in the water tank of the first treatment tower, and the treated water circulation system It is desirable that the water to be treated in the water tank of the first treatment tower is introduced into the gas-liquid contact cylinder of the first treatment tower and the gas-liquid contact cylinder of the second treatment tower. The water to be treated in the water tank of the first treatment tower is pH adjusted to be acidic. On the other hand, the water to be treated from the water supply system is basically neutral. When both are introduced into the gas-liquid contact cylinder of the first treatment tower, both are mixed and become acidic, so that the carbon dioxide gas in the nitrogen gas rising in the gas-liquid contact cylinder enters the water to be treated. Reabsorption is prevented.

被処理水のpH調整のためのpH計については、処理槽の水槽内に滞留する被処理水のpH調整のため、pH計を水槽又は被処理水循環系に設けるのが好ましく、被処理水循環系に設けるのが特に好ましい。なぜなら、被処理水循環系に設ける方が、pH計内の電極への窒素ガスの気泡によるハンチングの影響を受けにくいからである。   About pH meter for pH adjustment of to-be-processed water, it is preferable to provide a pH meter in a water tank or a to-be-processed water circulation system for pH adjustment of to-be-processed water staying in a tank of a to-be-treated water, It is particularly preferable to provide it. This is because it is less likely to be affected by hunting caused by nitrogen gas bubbles on the electrode in the pH meter if it is provided in the treated water circulation system.

本発明の脱酸素脱炭酸装置は、水槽上に気液接触筒が接続された対向流式の処理塔に窒素ガス及び被処理水を循環させると共に、循環する窒素ガスを水槽内の被処理水中に拡散導入する形式の脱ガス装置において、被処理水を酸性に調整するpH低下剤の注入を前記水槽内の被処理水に対して行うので、処理塔の水槽がpH調整槽、脱酸素槽及び脱炭素槽を兼ね、本来の脱酸素装置及び脱炭酸装置である気液接触筒が加わることより、高い脱酸素脱炭酸性能を小規模、低コストで得ることができる。   The deoxygenation decarboxylation apparatus of the present invention circulates nitrogen gas and water to be treated in a counter-flow type treatment tower having a gas-liquid contact tube connected to a water tank, and circulates the nitrogen gas to be treated in the water to be treated in the water tank. In the degassing apparatus of the type introduced into diffusion, since the pH reducing agent for adjusting the water to be treated is injected into the water to be treated in the water tank, the water tank of the treatment tower is a pH adjusting tank and a deoxygenating tank. In addition, since a gas-liquid contact cylinder which is also an original deoxygenation device and decarbonation device is added to serve as a decarbonization tank, high deoxygenation and decarboxylation performance can be obtained on a small scale and at low cost.

以下に本発明の実施形態を図面に基づいて説明する。図1は本発明の一実施形態を示す脱酸素脱炭酸装置の構成図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a deoxygenation decarboxylation apparatus showing an embodiment of the present invention.

本実施形態の脱酸素脱炭酸装置は、ボイラー供給水等の原水をpH調整と窒素源からの窒素ガスとにより脱酸素脱炭酸処理するするものであり、処理装置本体として処理塔10と、処理塔10に窒素ガスを循環させる窒素ガス循環系20と、同じく処理塔10に被処理水を循環させる被処理水循環系30と、被処理水のpH調整を行うpH調整系40とを備えている。   The deoxygenation decarboxylation apparatus of the present embodiment performs deoxygenation decarboxylation treatment of raw water such as boiler feed water by pH adjustment and nitrogen gas from a nitrogen source. A nitrogen gas circulation system 20 that circulates nitrogen gas in the tower 10, a treatment water circulation system 30 that circulates the treatment water in the treatment tower 10, and a pH adjustment system 40 that adjusts the pH of the treatment water are provided. .

処理塔10は第1処理塔10aと第2処理塔10bを並列設置した2塔式である。第1処理塔10aは、被処理水を貯留する水槽11aの上に垂直な気液接触筒12aが連結された構成である。第2処理塔10bは、第1処理塔10aと同様に、被処理水を貯留する水槽11bの上に垂直な気液接触筒12bが連結された構成であり、それぞれの水槽11a,11bは並設されて一体化されると共に、両者を仕切る仕切り壁13の下部おいて連通している。気液接触筒12a,12b内には被処理水と窒素ガスの接触面積、接触時間を増大させるために、ラッシヒリング材などからなる静止型の接触促進部材(リアクタ)が充填されている。   The processing tower 10 is a two-column type in which a first processing tower 10a and a second processing tower 10b are installed in parallel. The 1st processing tower 10a is the structure by which the perpendicular | vertical gas-liquid contact cylinder 12a was connected on the water tank 11a which stores a to-be-processed water. Similarly to the first treatment tower 10a, the second treatment tower 10b has a configuration in which a vertical gas-liquid contact cylinder 12b is connected to a water tank 11b for storing water to be treated. The water tanks 11a and 11b are arranged in parallel. It is installed and integrated, and communicates at the lower part of the partition wall 13 that partitions the two. The gas-liquid contact cylinders 12a and 12b are filled with a stationary contact promoting member (reactor) made of a Raschig ring material or the like in order to increase the contact area and contact time between the water to be treated and nitrogen gas.

第1処理塔10aの容量は第2処理塔10bの容量より大きく、ここでは約1.5倍である。第1処理塔10aの水槽11aの反水槽31b側の側壁には、エアレータと呼ばれる自吸式散気装置14が取付けられている。自吸式散気装置14は、水平軸により支持された水槽11a内の回転羽根と槽外の羽根駆動モータとからなり、水槽11a内の被処理水中で回転羽根が回転駆動されることにより窒素ガスを吸引して槽内の被処理水中に拡散注入する。   The capacity of the first processing tower 10a is larger than the capacity of the second processing tower 10b, and is about 1.5 times here. A self-priming air diffuser 14 called an aerator is attached to the side wall of the water tank 11a of the first treatment tower 10a on the side opposite to the water tank 31b. The self-priming diffuser 14 is composed of a rotating blade in the water tank 11a supported by a horizontal axis and a blade driving motor outside the tank. The rotating blade is driven to rotate in the water to be treated in the water tank 11a. The gas is sucked and diffused and injected into the water to be treated in the tank.

本脱酸素脱炭酸装置においては、原水が、図示されない供給ポンプを備えた原水供給系50により、第1処理塔10aの気液接触筒11a内に上部から導入される。一方、溶存酸素、炭酸ガス等のガス類を除去する窒素ガスは、図示されない窒素源から窒素ガス供給系60により第2処理塔10bの水槽11b内、特に水槽11b内の被処理水の水面より上方の槽内空間に導入され、この空間部を経由して第2処理塔10bの気液接触筒11b内に最下部から導入される。脱酸素脱炭酸処理を終えた処理水は、第2処理塔10bの水槽11bの下部から、処理水ポンプ71を備えた処理水排出系70により塔外へ排出される。   In this deoxygenation decarboxylation apparatus, raw water is introduced into the gas-liquid contact cylinder 11a of the first treatment tower 10a from above by a raw water supply system 50 having a supply pump (not shown). On the other hand, nitrogen gas for removing gases such as dissolved oxygen and carbon dioxide gas is supplied from a nitrogen source (not shown) by the nitrogen gas supply system 60 in the water tank 11b of the second treatment tower 10b, particularly from the surface of the water to be treated in the water tank 11b. It introduce | transduces into the upper tank space, and introduce | transduces into the gas-liquid contact cylinder 11b of the 2nd processing tower 10b from this lowest part via this space part. The treated water that has been subjected to the deoxygenation and decarboxylation treatment is discharged from the lower portion of the water tank 11b of the second treatment tower 10b to the outside of the tower by the treated water discharge system 70 including the treated water pump 71.

処理塔10に装備される窒素ガス循環系20は、第2処理塔10bの気液接触筒11bの頂部から排出される窒素ガスの全部を、第1処理塔10aの水槽11aに取付けられた自吸式散気装置14に供給する。また、第1処理塔10aの水槽11a内の液面より上方の槽内空間、及び気液接触筒12aの上部から一部の窒素ガスを自吸式散気装置14に供給する。窒素ガス循環系20と共に処理塔10に装備される被処理水循環系30は、第1処理塔10aの水槽11aの底部から被処理水を循環ポンプ31より抜き出し、第2処理塔10bの気液接触筒12bの上部、及び第1処理塔10aの気液接触筒12aの上部へ導入する。   The nitrogen gas circulation system 20 equipped in the processing tower 10 is a self-supporting system in which all of the nitrogen gas discharged from the top of the gas-liquid contact cylinder 11b of the second processing tower 10b is attached to the water tank 11a of the first processing tower 10a. It supplies to the suction type diffuser 14. A part of nitrogen gas is supplied to the self-priming diffuser 14 from the tank space above the liquid level in the water tank 11a of the first processing tower 10a and the upper part of the gas-liquid contact cylinder 12a. The treated water circulation system 30 equipped in the treatment tower 10 together with the nitrogen gas circulation system 20 draws treated water from the bottom of the water tank 11a of the first treatment tower 10a from the circulation pump 31, and makes the gas-liquid contact of the second treatment tower 10b. It introduce | transduces into the upper part of the pipe | tube 12b, and the upper part of the gas-liquid contact pipe | tube 12a of the 1st processing tower 10a.

pH調整系40は、硫酸水溶液等の周知のpH低下剤を収容するタンク41と、タンク41内のpH低下剤を第1処理塔10aの水槽11a内の被処理水中に注入する流量調節が可能なポンプ42と、水槽11a内の被処理水のpH値を測定するpH計43とを有している。pH計43は、被処理水循環系30における循環ポンプ31の下流側から分流された被処理水のpH測定をする。pH測定を終えた被処理水は、第1処理塔30aの水槽31a内に戻される。pH計43の出力信号はマスフローコントローラーと呼ばれる制御器44に送られる。制御器44は測定されたpH値が目標値に一致するようにポンプ42の能力を制御する。これにより、第1処理塔30aの水槽31a内の被処理水のpH値が、例えば6.5以下の目標とする酸性値に管理される。   The pH adjustment system 40 is capable of adjusting a flow rate of injecting the pH lowering agent in the tank 41 containing a known pH lowering agent such as an aqueous sulfuric acid solution into the water to be treated in the water tank 11a of the first treatment tower 10a. And a pH meter 43 for measuring the pH value of the water to be treated in the water tank 11a. The pH meter 43 measures the pH of the water to be treated which is diverted from the downstream side of the circulation pump 31 in the water to be treated circulation system 30. The water to be treated after the pH measurement is returned to the water tank 31a of the first treatment tower 30a. The output signal of the pH meter 43 is sent to a controller 44 called a mass flow controller. The controller 44 controls the capacity of the pump 42 so that the measured pH value matches the target value. Thereby, the pH value of the to-be-processed water in the water tank 31a of the 1st processing tower 30a is managed by the target acidic value of 6.5 or less, for example.

次に、本実施形態の脱酸素脱炭酸装置の機能について説明する。   Next, the function of the deoxygenation decarboxylation apparatus of this embodiment will be described.

本実施形態の脱酸素脱炭酸装置の稼働中は、原水が原水導入系50を経由して第1処理塔10aの気液接触筒12a内に上部から導入される。導入された被処理水は気液接触筒12a内を流下し、水槽11a内に滞留する。水槽11a内の被処理水は、pH調整系40によりpH6.5以下の目標とする酸性に管理される。処理を終えた処理水は、第2処理塔10bの水槽11bから処理水排出系70により排出される。原水導入量と処理水排出量は実質同一である。   During operation of the deoxygenation decarboxylation apparatus of the present embodiment, raw water is introduced from above into the gas-liquid contact cylinder 12a of the first treatment tower 10a via the raw water introduction system 50. The introduced water to be treated flows down in the gas-liquid contact cylinder 12a and stays in the water tank 11a. The water to be treated in the water tank 11a is managed by the pH adjustment system 40 to have a target acidity of pH 6.5 or less. The treated water that has been treated is discharged by the treated water discharge system 70 from the water tank 11b of the second treatment tower 10b. The amount of raw water introduced and treated water discharged are substantially the same.

また、被処理水循環系30における循環ポンプ31が作動することにより、水槽11a内の被処理水か、第2処理塔10bの気液接触筒12b内、及び第1処理槽10aの気液接触筒11a内にそれぞれ上部から導入される。第2処理塔10bの気液接触筒12bに導入された被処理水は気液接触筒12b内を流下し、水槽11b内に滞留する。第1処理塔10aの気液接触筒12aに導入された被処理水は、原水と共に気液接触筒12a内を流下し、水槽11a内に滞留する。水槽11a,11b内は、下部で連通しているので同じ液面レベルとなる。かくして、処理塔10内を被処理水が循環する。被処理水の循環量は、通常は原水導入量(処理水排出量)の0.5〜5倍である。   In addition, when the circulation pump 31 in the treated water circulation system 30 is operated, the treated water in the water tank 11a, the gas-liquid contact cylinder 12b of the second treatment tower 10b, and the gas-liquid contact cylinder of the first treatment tank 10a. Each is introduced into 11a from above. The water to be treated introduced into the gas-liquid contact cylinder 12b of the second treatment tower 10b flows down in the gas-liquid contact cylinder 12b and stays in the water tank 11b. The water to be treated introduced into the gas-liquid contact cylinder 12a of the first treatment tower 10a flows down in the gas-liquid contact cylinder 12a together with the raw water and stays in the water tank 11a. Since the water tanks 11a and 11b communicate with each other at the lower part, they have the same liquid level. Thus, the water to be treated circulates in the treatment tower 10. The amount of water to be treated is usually 0.5 to 5 times the amount of raw water introduced (treated water discharge amount).

これと共に、窒素ガスが窒素ガス供給系20により第2処理塔10bの水槽11b内の液面より上方の空間部に導入されると共に、第1処理塔10aの水槽11aに取付けられた自吸式散気装置14が作動する。水槽内11b内の空間部に導入された窒素ガスは、第2処理槽10bの気液接触筒12b内を上昇し、気液接触筒12b内を流下する循環被処理水と対向流接触する。第2処理槽10bの気液接触筒12bから排出された窒素ガスは、第1処理塔10aの水槽11aに設けられた自吸式散気装置14に吸引され、水槽11a内の被処理水中に拡散注入される。かくして、処理塔10内を窒素ガスも循環する。窒素ガスの循環量は通常は窒素ガス供給量(窒素ガス排出量)の1.5〜20倍である。   At the same time, nitrogen gas is introduced into the space above the liquid level in the water tank 11b of the second processing tower 10b by the nitrogen gas supply system 20, and is self-priming attached to the water tank 11a of the first processing tower 10a. The air diffuser 14 is activated. Nitrogen gas introduced into the space in the water tank 11b rises in the gas-liquid contact cylinder 12b of the second treatment tank 10b and comes into counterflow contact with the circulating water to be treated flowing down in the gas-liquid contact cylinder 12b. Nitrogen gas discharged from the gas-liquid contact cylinder 12b of the second treatment tank 10b is sucked into the self-priming diffuser 14 provided in the water tank 11a of the first treatment tower 10a, and into the treated water in the water tank 11a. Diffusion injection. Thus, nitrogen gas is also circulated in the processing tower 10. The circulation amount of nitrogen gas is usually 1.5 to 20 times the nitrogen gas supply amount (nitrogen gas discharge amount).

このような運転が行われる結果、被処理水が次のようなプロセスを経て脱酸素・脱炭酸処理される。   As a result of such operation, the water to be treated is subjected to deoxygenation / decarboxylation treatment through the following process.

第1処理塔10aの水槽11a内に滞留する被処理水に対してpH調整系40によりpH低下剤が注入される。水槽11a内の被処理水は、自吸式散気装置14から窒素ガスが拡散導入されていることにより攪拌されている。このため、格別の攪拌混合装置を用いずとも、水槽11a内の被処理水にpH低下剤が攪拌混合される。これにより、被処理水中の炭酸イオン、重炭酸イオンが遊離した炭酸ガスとなる。   A pH lowering agent is injected by the pH adjusting system 40 into the water to be treated that stays in the water tank 11a of the first treatment tower 10a. The water to be treated in the water tank 11 a is agitated by the diffusion and introduction of nitrogen gas from the self-priming diffuser 14. For this reason, a pH lowering agent is stirred and mixed with the to-be-processed water in the water tank 11a, without using a special stirring and mixing apparatus. Thereby, it becomes carbon dioxide gas from which carbonate ions and bicarbonate ions in the water to be treated are liberated.

この被処理水は、被処理水循環系30を経て気液接触筒12a,12b内を流下する。このとき、気液接触筒12a,12b内を上昇する窒素ガスと向流接触する。これにより、気液接触筒12a,12b内を流下する被処理水中の炭酸ガス及び溶存酸素が窒素ガスによって置換されて被処理水中から分離除去される。気液接触筒12aにおいては原水も流下するが、pH調整された被処理水と混合し、酸性の混合液となるため、炭酸ガスの再吸収は生じない。   The treated water flows down through the treated water circulation system 30 and in the gas-liquid contact tubes 12a and 12b. At this time, the gas-liquid contact cylinders 12a and 12b come into countercurrent contact with the rising nitrogen gas. Thereby, the carbon dioxide gas and dissolved oxygen in the water to be treated flowing down in the gas-liquid contact cylinders 12a and 12b are replaced with nitrogen gas and separated and removed from the water to be treated. In the gas-liquid contact cylinder 12a, the raw water also flows down, but is mixed with the water to be treated whose pH has been adjusted to become an acidic mixed solution, so that carbon dioxide does not reabsorb.

第1処理塔10aの水槽11aにおいては、窒素ガスが自吸式散気装置14から細かい気泡となって、pH調整された被処理水に注入されるので、ここでも被処理水中の炭酸ガス及び溶存酸素の分離除去が行われる。分離除去された炭酸ガス及び酸素ガスは、第1処理塔10aの気液接触筒12aから排出される窒素ガスと共に塔外へ排出される。   In the water tank 11a of the first treatment tower 10a, nitrogen gas becomes fine bubbles from the self-priming diffuser 14 and is injected into the treated water whose pH has been adjusted. The dissolved oxygen is separated and removed. The carbon dioxide gas and oxygen gas separated and removed are discharged out of the tower together with the nitrogen gas discharged from the gas-liquid contact cylinder 12a of the first processing tower 10a.

このように、本実施形態の脱酸素脱炭酸装置においては、窒素ガスが被処理水との接触に繰り返し使用される。その接触は、処理塔10の気液接触筒12a、12bだけでなく、第1処理塔10aの水槽11aでの自吸式散気装置33による拡散注入によっても行われるので、接触効率が高い。しかも、その水槽11aでは窒素ガスの拡散注入により被処理水が攪拌されている。この被処理水にpH低下剤が注入されるので、格別の攪拌混合装置を用いずとも、pH低下剤が被処理水中に均一に混合される。また、処理塔10内での混合であるために、応答性が高く、制御精度も高い。   Thus, in the deoxygenation decarboxylation apparatus of this embodiment, nitrogen gas is repeatedly used for contact with the water to be treated. Since the contact is performed not only by the gas-liquid contact cylinders 12a and 12b of the processing tower 10, but also by diffusion injection by the self-priming air diffuser 33 in the water tank 11a of the first processing tower 10a, the contact efficiency is high. Moreover, in the water tank 11a, the water to be treated is stirred by diffusion injection of nitrogen gas. Since the pH lowering agent is injected into the water to be treated, the pH lowering agent is uniformly mixed in the water to be treated without using a special stirring and mixing device. Moreover, since it is mixing in the processing tower 10, responsiveness is high and control accuracy is also high.

自吸式散気装置14は、窒素ガス循環用の注入装置であると共に、水槽11a中の被処理水の攪拌機でもある。また、第1処理塔10aの水槽11aは、pH低下剤を被処理水に混合するpH調整槽、窒素ガスの拡散注入による脱ガス槽(脱酸素槽及び脱炭酸槽)を兼ねる。   The self-priming diffuser 14 is an injection device for circulating nitrogen gas, and is also a stirrer for water to be treated in the water tank 11a. The water tank 11a of the first treatment tower 10a also serves as a pH adjusting tank for mixing a pH lowering agent with the water to be treated and a degassing tank (deoxygenation tank and decarbonation tank) by nitrogen gas diffusion injection.

したがって、本実施形態の脱酸素脱炭酸装置は小型で経済的であるにもかかわらず、高い脱酸素脱炭酸処理効率を示す。具体的には、窒素ガスの使用量は、基本的に、原水導入量及び処理水排出量に見合う量とされるが、自吸式散気装置14を用いた循環使用により気液接触筒12a、12b及び水槽11aで繰り返し使用されるので、その削減が可能となる。   Therefore, although the deoxygenation decarboxylation apparatus of this embodiment is small and economical, it exhibits high deoxygenation decarboxylation efficiency. Specifically, the amount of nitrogen gas used is basically an amount commensurate with the amount of raw water introduced and the amount of treated water discharged, but the gas-liquid contact cylinder 12a is circulated by using a self-priming diffuser 14. , 12b and the water tank 11a, it can be reduced.

図1に示す脱酸素脱炭酸装置を使用してボイラー供給水中の酸素成分及び炭酸成分を除去した。原水の水温は25℃、pHは7.5、原水中の溶存酸素濃度は7.8mg/L、炭酸・重炭酸イオン濃度はMアルカリ度で表して60mg/Lである。第1処理塔における水槽の有効容量は100L、第2処理塔における水槽の有効容量は75Lである。単位時間あたりの原水処理量(原水供給量・処理水排出量)は3.0m3 /h、処理塔における循環量は6.0m3 /hとした。窒素ガス量は単位時間あたりでは0.45Nm3 /h、単位処理量あたりでは0.15Nm3 /m3 とし、循環量は4.5Nm3 /hとした。pH低下剤としては硫酸水溶液を用い、pH調整値は5.5とした。 The oxygen component and the carbonic acid component in boiler feed water were removed using the deoxygenation decarboxylation apparatus shown in FIG. The raw water temperature is 25 ° C., the pH is 7.5, the dissolved oxygen concentration in the raw water is 7.8 mg / L, and the carbonate / bicarbonate ion concentration is 60 mg / L in terms of M alkalinity. The effective capacity of the water tank in the first treatment tower is 100L, and the effective capacity of the water tank in the second treatment tower is 75L. The raw water treatment amount (raw water supply amount / treated water discharge amount) per unit time was 3.0 m 3 / h, and the circulation amount in the treatment tower was 6.0 m 3 / h. The nitrogen gas amount was 0.45 Nm 3 / h per unit time, 0.15 Nm 3 / m 3 per unit processing amount, and the circulation rate was 4.5 Nm 3 / h. A sulfuric acid aqueous solution was used as the pH lowering agent, and the pH adjustment value was 5.5.

pH低下剤の攪拌混合槽を使用していないにもかかわらず、処理水中の溶存酸素濃度は0.25mg/L、炭酸・重炭酸イオン濃度はMアルカリ度で表して7mg/Lとなった。   The dissolved oxygen concentration in the treated water was 0.25 mg / L and the carbonate / bicarbonate ion concentration was 7 mg / L in terms of M alkalinity, even though the stirring agent tank for the pH lowering agent was not used.

図1に示す脱酸素脱炭酸装置を使用してボイラー供給水の脱酸素脱炭酸処理を行ったときの調整pH値と処理水中の炭酸・重炭酸イオン濃度との関係を図2に示す。pH調整値以外の条件は上記と同じである。pH低下剤の攪拌混合槽を使用していないにもかかわらず、被処理水のpHの低下に伴って処理水中の炭酸・重炭酸イオン濃度は低下する。   FIG. 2 shows the relationship between the adjusted pH value and the carbonate / bicarbonate ion concentration in the treated water when the deoxygenation / decarboxylation treatment of the boiler feed water is performed using the deoxygenation / decarboxylation device shown in FIG. Conditions other than the pH adjustment value are the same as above. In spite of not using the stirring and mixing tank of the pH lowering agent, the concentration of carbonate / bicarbonate ions in the treated water decreases as the pH of the treated water decreases.

本発明の一実施形態を示す脱酸素脱炭酸装置の構成図である。It is a block diagram of the deoxygenation decarboxylation apparatus which shows one Embodiment of this invention. 同脱酸素脱炭酸装置の性能図で、調整pH値と処理水中の炭酸・重炭酸イオン濃度との関係を示す。The performance diagram of the deoxygenation decarboxylation apparatus shows the relationship between the adjusted pH value and the carbonate / bicarbonate ion concentration in the treated water.

符号の説明Explanation of symbols

10 処理塔
10a 第1処理塔
10b 第2処理塔
11a,11b 水槽
12a,12b 気液接触筒
13 仕切り壁
14 自吸式散気装置
20 窒素ガス循環系
30 被処理水循環系
31 循環ポンプ
40 pH調整系
41 タンク
42 ポンプ
43 pH計
44 制御器
50 原水供給系
60 窒素ガス供給系
70 処理水排出系
71 処理水ポンプ

DESCRIPTION OF SYMBOLS 10 Treatment tower 10a 1st treatment tower 10b 2nd treatment tower 11a, 11b Water tank 12a, 12b Gas-liquid contact cylinder 13 Partition wall 14 Self-priming air diffuser 20 Nitrogen gas circulation system 30 Water to be treated circulation system 31 Circulation pump 40 pH adjustment System 41 Tank 42 Pump 43 pH meter 44 Controller 50 Raw water supply system 60 Nitrogen gas supply system 70 Treated water discharge system 71 Treated water pump

Claims (3)

脱酸素脱炭酸処理すべき原水を原水タンクから原水消費部へ供給する給水系に付設されて、原水消費部へ供給する原水中の酸素成分及び炭酸成分を事前に除去する脱酸素脱炭酸装置であって、
水槽上に気液接触筒が接続され、被処理水が気液接触筒内を下降し下方の水槽を経て外部へ排出されると共に、窒素ガスが気液接触筒内を上昇して外部へ排出される対向流型の処理塔と、
処理塔の気液接触筒から排出される使用済みの窒素ガスの一部を、水槽内に滞留する被処理水中に拡散導入して塔内循環させる窒素ガス循環系と、
処理塔の水槽内の被処理水を気液接触筒内に再導入して塔内循環させる被処理水循環系とを具備しており、
被処理水を脱炭酸処理するために被処理水を酸性に調整するpH低下剤を、水槽内の窒素ガスが拡散導入される被処理水に注入する構成としたことを特徴とする脱酸素脱炭酸装置。
A deoxygenation decarboxylation device that is attached to the water supply system that supplies raw water to be deoxygenated and decarboxylated from the raw water tank to the raw water consumption unit, and removes oxygen components and carbonic acid components in the raw water supplied to the raw water consumption unit in advance. There,
A gas-liquid contact cylinder is connected to the water tank, and the treated water descends in the gas-liquid contact cylinder and is discharged to the outside through the lower water tank, and nitrogen gas rises in the gas-liquid contact cylinder and is discharged to the outside. A counter-flow type processing tower,
A nitrogen gas circulation system in which a part of used nitrogen gas discharged from the gas-liquid contact cylinder of the treatment tower is diffused and introduced into the treated water staying in the water tank and circulated in the tower;
A treated water circulation system for re-introducing treated water in the water tank of the treated tower into the gas-liquid contact cylinder and circulating in the tower;
Deoxygenation dehydrogenation characterized in that a pH lowering agent that adjusts the water to be treated to be acidic in order to decarboxylate the water to be treated is injected into the water to be treated in which nitrogen gas in the water tank is diffusely introduced. Carbonic acid equipment.
請求項1に記載の脱酸素脱炭酸装置において、処理塔が第1処理塔と第2処理塔とからなり、第1処理塔及び第2処理塔においては、第1処理塔の気液接触筒内に給水系からの被処理水が導入されると共に、第2処理塔の気液接触筒内に窒素ガスが導入され、窒素ガス循環系は第2処理塔の気液接触筒から排出される使用済みの窒素ガスを第1処理塔の水槽内の被処理水中に拡散導入し、被処理水循環系は第1処理塔の水槽内の被処理水を第1処理塔の気液接触筒内及び第2処理塔の気液接触筒内に導入することを特徴とする脱酸素脱炭酸装置。   2. The deoxygenation decarboxylation apparatus according to claim 1, wherein the processing tower includes a first processing tower and a second processing tower, and in the first processing tower and the second processing tower, the gas-liquid contact tube of the first processing tower. Water to be treated from the feed water system is introduced into the gas, nitrogen gas is introduced into the gas-liquid contact cylinder of the second treatment tower, and the nitrogen gas circulation system is discharged from the gas-liquid contact cylinder of the second treatment tower. Used nitrogen gas is diffused and introduced into the water to be treated in the water tank of the first treatment tower, and the water circulation system for treatment of the water to be treated in the water tank of the first treatment tower and in the gas-liquid contact cylinder of the first treatment tower and A deoxygenation decarboxylation apparatus, which is introduced into a gas-liquid contact cylinder of a second treatment tower. 請求項1又は2に記載の脱酸素脱炭酸装置において、処理槽の水槽内に滞留する被処理水のpH調整のためのpH計を被処理水循環系に設けたことを特徴とする脱酸素脱炭酸装置。

The deoxygenation decarboxylation apparatus according to claim 1 or 2, wherein a pH meter for adjusting the pH of the water to be treated staying in the water tank of the treatment tank is provided in the water circulation system. Carbonic acid equipment.

JP2008310471A 2008-12-05 2008-12-05 Deoxygenation decarboxylation device Active JP5025021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008310471A JP5025021B2 (en) 2008-12-05 2008-12-05 Deoxygenation decarboxylation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008310471A JP5025021B2 (en) 2008-12-05 2008-12-05 Deoxygenation decarboxylation device

Publications (2)

Publication Number Publication Date
JP2010131536A JP2010131536A (en) 2010-06-17
JP5025021B2 true JP5025021B2 (en) 2012-09-12

Family

ID=42343414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008310471A Active JP5025021B2 (en) 2008-12-05 2008-12-05 Deoxygenation decarboxylation device

Country Status (1)

Country Link
JP (1) JP5025021B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6565103B2 (en) * 2017-09-06 2019-08-28 株式会社昭和冷凍プラント Method for producing liquid product containing aroma component-containing aqueous solution
JP2020157224A (en) * 2019-03-26 2020-10-01 栗田工業株式会社 Reverse osmosis method and system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328603A (en) * 1994-06-13 1995-12-19 Toray Ind Inc Liquid treating device
JP2003047950A (en) * 2001-08-01 2003-02-18 Kurita Water Ind Ltd Deoxygenation and decarboxylation treatment apparatus and treatment method
JP4276038B2 (en) * 2003-09-25 2009-06-10 東洋紡エンジニアリング株式会社 Method and apparatus for producing deoxygenated water

Also Published As

Publication number Publication date
JP2010131536A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
KR101024658B1 (en) Ozonized Water Generator
KR102139679B1 (en) Equipment for removal of ammonia from waste water
JP2003220398A5 (en)
CN110540282A (en) Water pH value adjusting method
JP5025021B2 (en) Deoxygenation decarboxylation device
CN212151749U (en) High-efficient ozone catalytic oxidation processing apparatus of high salt waste water
CN113582323A (en) Automatic Fenton reaction device and control method
CN111807501A (en) Continuous high-concentration ozone oxidation sewage treatment device and sewage treatment method thereof
JP6285773B2 (en) Wastewater treatment method for exhaust gas treatment equipment
CN101659474B (en) Water treatment device of continuous flow ozone/ultraviolet/advanced oxidation
CN215208662U (en) Novel it is mainly to advanced treatment of pharmacy and agro-chemical industry class waste water device
JP2001347102A (en) Deaeration method and deaeration device
CN210313852U (en) Advanced oxidation device
JP4910452B2 (en) Contaminated water treatment method using ozone fine bubbles, and contaminated water treatment apparatus using ozone fine bubbles
KR102098238B1 (en) Mineral carbonation reactor and system
KR100763272B1 (en) Device for generating oxygen
JP2010075875A (en) Cleaning machine of gas-liquid mixed water
JP6105879B2 (en) Decarboxylation device
CN102328987B (en) Ozone reaction system
CN210237220U (en) Device for treating wastewater by catalytic oxidation of ozone
JP2020022957A (en) Water treatment method and water treatment apparatus
CN111886206A (en) Sludge discharge control device, water treatment system, and sludge discharge control method
JP2009285641A (en) Method for effectively controlling nitrogen type deoxidation apparatus
JPH05138180A (en) Treatment of city water
JP4011431B2 (en) Ozone treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5025021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250