JP2009183890A - Oil and water separation apparatus - Google Patents

Oil and water separation apparatus Download PDF

Info

Publication number
JP2009183890A
JP2009183890A JP2008027676A JP2008027676A JP2009183890A JP 2009183890 A JP2009183890 A JP 2009183890A JP 2008027676 A JP2008027676 A JP 2008027676A JP 2008027676 A JP2008027676 A JP 2008027676A JP 2009183890 A JP2009183890 A JP 2009183890A
Authority
JP
Japan
Prior art keywords
liquid
oil
treatment tank
treated
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008027676A
Other languages
Japanese (ja)
Inventor
Satoshi Tsukahara
聰 塚原
Kimio Saito
公男 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2008027676A priority Critical patent/JP2009183890A/en
Publication of JP2009183890A publication Critical patent/JP2009183890A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil and water separation apparatus capable of performing high-speed treatment up to a low oil concentration even when a treatment tank of an oil and water separation apparatus according to a flotation method is compact. <P>SOLUTION: The oil and water separation apparatus causes oil content in the liquid to be treated to float and performs oil and water separation by mixing and dissolving air into the liquid to be treated which is to be fed to the treatment tank 11, ejecting the liquid to be treated in which air is mixed and dissolved into liquid to be treated in the treatment tank 11 and supplying air which is mixed and dissolved in the liquid to be treated in the treatment tank 11 as air bubbles. A nozzle 33 is used for ejecting the liquid to be treated in which air is mixed and dissolved into the liquid to be treated in a first treatment tank 81, and a nozzle 47 is disposed for ejecting the liquid to be treated containing fine air bubbles in the first treatment tank 81 into the liquid to be treated in a second treatment tank 82, wherein two treatment tanks are communicated with each other in the neighborhood of the surface of the liquid to be treated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は油水分離装置に係わり、特に、処理槽に送る被処理液に空気を供給しポンプで加圧して被処理液に空気の一部または全部を溶解させ、被処理液を処理槽の下部から空気を気泡として被処理液とともに吹き出させることによって、処理槽における被処理液に含まれる油分を気泡とともに浮上させ被処理液を水と油分とに分離させる浮上分離法による油水分離装置に関するものである。   The present invention relates to an oil / water separator, and in particular, supplies air to a liquid to be processed to be sent to a processing tank and pressurizes it with a pump to dissolve part or all of the air in the liquid to be processed. It is related to the oil-water separator by the floating separation method in which the air contained in the treatment tank in the treatment tank is floated together with the bubbles by blowing out air as bubbles from the treatment liquid and the treatment liquid is separated into water and oil. is there.

従来の浮上分離法による油水分離装置は、下記の特許文献1に記述されたものでは、大容量の処理槽からポンプで汲み上げた被処理液にポンプ入口で空気を混合し、ポンプ出口の気液混合手段(空気粉砕手段)で更に空気を混合・溶解させた後に被処理液を処理槽内に戻し、その際ノズル(又は圧力弁)から噴射、減圧することによって微細気泡を発生させて、この微細気泡が被処理液中の油分に付着することで油分が水中を浮上し、油と水分が分離するようにしている。
特開2005−246183号公報
A conventional oil / water separation apparatus based on a flotation separation method is described in Patent Document 1 below, in which air is mixed with a liquid to be treated, which is pumped from a large-capacity treatment tank, at a pump inlet, and a gas liquid at a pump outlet is mixed. After the air is further mixed and dissolved by the mixing means (air pulverizing means), the liquid to be treated is returned to the treatment tank, and fine bubbles are generated by spraying and depressurizing from the nozzle (or pressure valve). The fine bubbles adhere to the oil in the liquid to be treated, so that the oil rises in the water and the oil and moisture are separated.
JP 2005-246183 A

上記従来技術において、気液混合手段(空気粉砕手段)の出口までに被処理液中に溶解できなかった空気は大部分が処理槽内で大気泡となり浮上分離性能を低下させるので、ノズルと処理槽をつなぐ大気泡分離器を設け、この大気泡分離器には大気泡のみを分離排出する大気泡排出管を設けている。   In the above prior art, since most of the air that could not be dissolved in the liquid to be processed by the gas-liquid mixing means (air pulverizing means) becomes large bubbles in the processing tank, the floating separation performance is deteriorated. A large bubble separator for connecting the tanks is provided, and the large bubble separator is provided with a large bubble discharge pipe for separating and discharging only the large bubbles.

そして、この装置の油分離能力を高める1つの方法として被処理液中に溶解する空気量を多くすることがあるが、実現手段として気液混合手段の容積を大きくし、被処理液滞留時間を長くして溶解量を増加する方法では、装置が大型化しかつ処理時間がかかるという問題がある。   One way to increase the oil separation capability of this apparatus is to increase the amount of air dissolved in the liquid to be treated. As an implementation means, the volume of the gas-liquid mixing means is increased, and the liquid retention time for the liquid to be treated is reduced. In the method of increasing the amount of dissolution by lengthening, there is a problem that the apparatus becomes large and takes a long processing time.

また、処理対象が空気圧縮機のドレンの場合は少量の被処理液が連続して排出され、大気中の水分量によってその流量および油分濃度が変化する。これを確実に処理するには最大の油分濃度の処理能力を備えていることが必要である。他方、ニーズとして油水分離装置自体の設置面積が小さく、処理槽を小型にすることが望まれる。   When the object to be treated is a drain of an air compressor, a small amount of liquid to be treated is continuously discharged, and the flow rate and oil concentration change depending on the amount of moisture in the atmosphere. In order to reliably handle this, it is necessary to have a processing capability with the maximum oil concentration. On the other hand, it is desired that the installation area of the oil / water separator itself is small and the treatment tank is made small.

設置面積を単純に小型化すると、処理槽を深く(高く)しなければならず、処理槽内で上下する循環流が強くなり、一旦液面上まで浮上した油粒子が水の下降流に乗って処理槽底部近傍まで下降するため、油分濃度が一定値以下には下がらない。   If the installation area is simply reduced in size, the treatment tank must be made deeper (higher), the circulating flow that rises and falls within the treatment tank becomes stronger, and the oil particles that have once floated to the liquid level ride on the downward flow of water. Therefore, the oil concentration does not drop below a certain value.

油分分離性能を向上させるべく、圧力弁(ノズル)から大量の微細気泡を発生させるように圧力弁から噴出させる被処理液量を増加させると、処理槽内を上下する循環流は一層強くなり、油水分離性能が低下する。   In order to improve the oil separation performance, increasing the amount of liquid to be treated ejected from the pressure valve so as to generate a large amount of fine bubbles from the pressure valve (nozzle), the circulating flow up and down in the treatment tank becomes stronger, Oil / water separation performance is reduced.

本発明の目的は、小型の処理槽であっても低油分濃度まで高速で処理できる浮上分離法に基づく油水分離装置を提供するものである。   An object of the present invention is to provide an oil / water separation apparatus based on a flotation separation method that can process even a small treatment tank at a high speed up to a low oil concentration.

上記目的を達成するために本発明は、処理槽に送る被処理液に空気を混合溶解せしめ、空気を混合溶解した被処理液を処理槽内の被処理液中に吐出し、被処理液に混合溶解した空気を気泡として処理槽内の被処理液に供給することによって被処理液中の油分を浮上させ油水の分離を行う油水分離装置において、前記処理槽は第1処理槽と第2処理槽からなり、第1処理槽に処理液を送る第1ポンプ、処理液に空気を混合溶解させる空気溶解器、およびこの空気溶解器からの空気を混合溶解した処理液を処理槽内の被処理液中に吐出する第1ノズルからなる第1循環系と、前記第1処理槽の気泡を含む被処理液を吸込む第2ポンプ、および吸込んだ被処理液を第2処理槽内に吐出して微細な気泡を供給する第2ノズルからなる第2循環系を備えたことを特徴とする。   In order to achieve the above object, the present invention comprises mixing and dissolving air in a liquid to be processed to be sent to a processing tank, and discharging the liquid to be processed in which the air is mixed and dissolved into the liquid to be processed in the processing tank. In the oil / water separation apparatus for separating the oil and water by floating the oil in the liquid to be treated by supplying the mixed and dissolved air as bubbles to the liquid to be treated in the treatment tank, the treatment tank includes the first treatment tank and the second treatment tank. 1st pump which consists of a tank and sends a process liquid to a 1st process tank, the air dissolver which mixes and dissolves air in a process liquid, and the to-be-processed in the process tank for the process liquid which mixed and dissolved the air from this air dissolver A first circulation system composed of a first nozzle that discharges into the liquid, a second pump that sucks in the liquid to be processed containing bubbles in the first processing tank, and the sucked liquid to be processed is discharged into the second processing tank. A second circulation system comprising a second nozzle for supplying fine bubbles is provided. It is characterized in.

また、前記第1処理槽の底面積を前記第2処理槽の底面積よりも大きくしたことを特徴とする。   The bottom area of the first treatment tank is larger than the bottom area of the second treatment tank.

また、本発明では、処理槽に送る被処理液に空気を混合せしめ、空気を含んだ被処理液を処理槽内の被処理液中に吐出し、被処理液に溶解した空気と溶解しなかった空気の一部を気泡として処理槽内の被処理液に供給することによって被処理液中の油分を浮上させ油水の分離を行う油水分離装置において、処理槽を被処理液液面下で水平方向に2つに分割する仕切壁を設けて第1処理槽と第2処理槽に分け、第1処理槽では被処理液に空気を混合溶解せしめ、空気を混合溶解した被処理液を処理部内の被処理液中にノズルを用いて吐出する第1循環系統を構成し、被処理液に混合溶解した空気を微細気泡として処理部内の被処理液に供給することによって被処理液中の油分を浮上させ、第2処理槽では第1処理槽から微細気泡を含む被処理液を汲み出し、空気を混合することなくポンプで加圧して処理槽下部のノズルから処理槽内の被処理液中に噴射する第2循環系統を構成する。第1処理槽と第2処理槽は液面を共有しており、処理運転中は被処理液が第2処理槽から第1処理槽へと連続して流れるようにした。   Further, in the present invention, air is mixed with the liquid to be processed to be sent to the processing tank, the liquid to be processed containing air is discharged into the liquid to be processed in the processing tank, and does not dissolve with the air dissolved in the liquid to be processed. In an oil / water separator that separates oil and water by supplying a part of the air as bubbles to the liquid to be treated in the treatment tank, the oil in the liquid to be treated is floated, and the treatment tank is horizontally below the liquid surface to be treated. A partition wall that is divided into two in the direction is provided and divided into a first treatment tank and a second treatment tank. In the first treatment tank, air is mixed and dissolved in the liquid to be processed, and the liquid to be processed is mixed and dissolved in the processing section. The first circulating system that discharges the liquid to be processed using a nozzle is configured, and the oil mixed in the liquid to be processed is supplied as fine bubbles to the liquid to be processed in the processing unit to reduce the oil content in the liquid to be processed. The liquid to be treated that floats and contains fine bubbles from the first treatment tank in the second treatment tank Pumping, constituting the second circulation system for injecting a pressurized treatment tank bottom nozzle by a pump without mixing air into the liquid to be treated in the treatment tank. The first treatment tank and the second treatment tank share the liquid level, and the treatment liquid is allowed to continuously flow from the second treatment tank to the first treatment tank during the treatment operation.

本発明によれば、第2処理槽の循環系統が第1処理槽から吸い込む被処理液に微細気泡を一様に含んでいるが、被処理液の溶解空気量が多いことと配管内滞留時間が短いことから、ポンプでの加圧だけではこの微細気泡の過半の被処理液への溶解に不足があるため、補強としてノズルから第2処理槽内の被処理液中に噴射される。この噴射によって噴射流近傍に負圧領域が形成されるので噴射流内の微細気泡が一旦膨張し、その下流部で圧力が回復することによって膨張した気泡が圧縮されることで分裂し、初期よりも径の小さい微細気泡になる。気泡径が小さくなると表面積が増加し、油粒子を吸着する性能が向上する。   According to the present invention, the liquid to be treated sucked from the first treatment tank by the circulation system of the second treatment tank uniformly contains fine bubbles, but the amount of dissolved air in the liquid to be treated is large and the residence time in the pipe Therefore, since the fine bubbles are not sufficiently dissolved in the liquid to be treated only by pressurization with the pump, the fine bubbles are injected from the nozzle into the liquid to be treated in the second treatment tank as a reinforcement. This injection forms a negative pressure region in the vicinity of the injection flow, so that the fine bubbles in the injection flow are expanded once, and the expanded bubbles are compressed by the pressure recovery in the downstream part, and split from the initial stage. Also become small bubbles with a small diameter. As the bubble diameter decreases, the surface area increases and the performance of adsorbing oil particles improves.

しかし、気泡径が小さくなると浮上分離に必要な浮上速度が小さくなるので油分離性能が低下すると考えられる。そこで第2処理槽では被処理液を下部から上部へ向けて一様に流している。このため、微細気泡はこの被処理液の上昇速度と静止液体中を浮上する速度を合計した速度で処理槽内を上昇することになり、第1処理槽内で微細気泡が浮上する速度と同等以上にできる。   However, it is considered that the oil separation performance is deteriorated when the bubble diameter is small because the floating speed necessary for the floating separation is small. Therefore, in the second treatment tank, the liquid to be treated is made to flow uniformly from the lower part to the upper part. For this reason, the fine bubbles will rise in the treatment tank at a total speed of the rising speed of the liquid to be treated and the speed of rising in the stationary liquid, which is equivalent to the speed at which the fine bubbles rise in the first treatment tank. More than that.

この結果、第1処理槽と同等径の微細気泡では油分離速度が遅い微細油粒子を、第2処理槽では短時間で分離でき、第1処理槽での大きめの油粒子分離の高い能力と合わせて、全体の油分離速度が速くなる。これらの効果によって、小さな処理槽でも直接排水路へ排出可能な低油分濃度にまで短時間でしかも確実に油水分離ができる。   As a result, the fine oil particles having the same diameter as that of the first treatment tank can be separated in a short time in the second treatment tank, and the high ability of separating large oil particles in the first treatment tank can be achieved. Together, the overall oil separation rate is increased. Due to these effects, even in a small treatment tank, oil-water separation can be reliably performed in a short time to a low oil concentration that can be discharged directly to the drainage channel.

以下、図に示す実施形態について説明する。   Hereinafter, embodiments shown in the drawings will be described.

図1は、本発明実施例の油水分離装置10を示している。図1において、処理槽11の内部は被処理液面位置61よりも下方の仕切壁13によって、第1処理槽81と第2処理槽82に区画してあり、遮蔽板12により第2処理槽82と浮上油受け部83とに区画している。第1処理槽81、第2処理槽82は処理液を収容して油水分離を行ない、浮上油受け部83では処理槽81、82で分離浮上し遮蔽板12を溢流した油分64を受ける。   FIG. 1 shows an oil-water separator 10 according to an embodiment of the present invention. In FIG. 1, the inside of the processing tank 11 is divided into a first processing tank 81 and a second processing tank 82 by a partition wall 13 below the liquid surface position 61 to be processed. 82 and a floating oil receiving portion 83. The first treatment tank 81 and the second treatment tank 82 contain the treatment liquid and perform oil / water separation, and the floating oil receiving portion 83 receives the oil content 64 that is separated and floated in the treatment tanks 81 and 82 and overflows the shielding plate 12.

この遮蔽板12は、設計上の被処理液面位置61および浮上油面位置62より高くなるように配置してある。   The shielding plate 12 is disposed so as to be higher than the designed liquid surface position 61 and the floating oil surface position 62.

処理槽11の第1処理槽81側の下方には大気泡分離器14があり、大気泡分離器14の内部には処理液を吐出するノズル(第1ノズル)33があり、大気泡分離器14から第1処理槽81の上部に連通するように大気泡排出管15が設けてある。大気泡分離器14の上部に下端部を接続してある大気泡排出管15はその上端部が処理液面位置61近傍に開口するようにしてある。大気泡分離器14は止む無く生じる大気泡を抜くものであるが、加圧しておらず上部は開放状態にあり、大気泡分離器14から第1処理槽81に吐出される微細気泡に影響しないようになっている。   A large bubble separator 14 is provided below the treatment tank 11 on the first treatment tank 81 side, and a nozzle (first nozzle) 33 for discharging a processing liquid is disposed inside the large bubble separator 14. A large bubble discharge pipe 15 is provided so as to communicate with the upper part of the first treatment tank 81 from the line 14. The large bubble discharge pipe 15 whose lower end is connected to the upper portion of the large bubble separator 14 is configured such that the upper end thereof opens near the processing liquid surface position 61. The large bubble separator 14 evacuates large bubbles that occur without stopping, but is not pressurized and the upper part is in an open state, and does not affect the fine bubbles discharged from the large bubble separator 14 to the first treatment tank 81. It is like that.

第1処理槽81には、油水分離されて浄化された被処理液を下部から排出する排出配管68が設けてあり、この排出配管68の途中にはバルブ66を設けている。   The first treatment tank 81 is provided with a discharge pipe 68 for discharging the liquid to be treated which has been separated and purified by oil and water from the lower part, and a valve 66 is provided in the middle of the discharge pipe 68.

第1処理槽81の底部には被処理液循環系統を構成する配管30が接続してあり、配管30の途中にはバルブ36を有し、配管32を介して第1ポンプ31に接続し、第1ポンプ31の出口側は配管35、空気溶解器39を介して大気泡分離器14内部に設けたノズル33に接続している。なお、第1ポンプ31出口の配管35には第1ポンプ入口の配管32とを接続する配管37を設けており、この途中にはバルブ38を設けている。   A pipe 30 constituting the liquid circulation system to be treated is connected to the bottom of the first treatment tank 81, and has a valve 36 in the middle of the pipe 30 and connected to the first pump 31 via the pipe 32. The outlet side of the first pump 31 is connected to a nozzle 33 provided inside the large bubble separator 14 via a pipe 35 and an air dissolver 39. A pipe 37 connecting the first pump inlet pipe 32 is provided in the pipe 35 at the outlet of the first pump 31, and a valve 38 is provided in the middle.

配管32には空気を導入する空気供給管51がバルブ52を介して接続しており、更に、被処理液タンク18から被処理液を導入する系統を構成する供給管23を接続しており、供給管23にはバルブ22を設けている。   An air supply pipe 51 for introducing air is connected to the pipe 32 via a valve 52, and further, a supply pipe 23 constituting a system for introducing the liquid to be processed from the liquid tank 18 to be processed is connected. The supply pipe 23 is provided with a valve 22.

また、処理槽11の第2処理槽82下方には気泡発生筒16を設けており、気泡発生筒16の内部には被処理液を吐出するノズル(第2ノズル)47を設けている。第1処理槽81の底部には第2の処理液循環系統を構成する配管42が接続してあり、配管42の途中に設けているバルブ44を介して第2ポンプ41に接続し、第2ポンプ41の出口側は配管43を介して気泡発生筒16内部に設けたノズル47に接続している。なお、第2ポンプ41出口の配管43には第2ポンプ入口の配管42とを接続する配管45を設けており、配管45の途中にはバルブ46を設けている。   Further, a bubble generating cylinder 16 is provided below the second processing tank 82 of the processing tank 11, and a nozzle (second nozzle) 47 for discharging the liquid to be processed is provided inside the bubble generating cylinder 16. A pipe 42 constituting a second processing liquid circulation system is connected to the bottom of the first processing tank 81, and is connected to the second pump 41 via a valve 44 provided in the middle of the pipe 42. The outlet side of the pump 41 is connected to a nozzle 47 provided inside the bubble generating cylinder 16 through a pipe 43. The pipe 43 at the outlet of the second pump 41 is provided with a pipe 45 that connects the pipe 42 at the inlet of the second pump, and a valve 46 is provided in the middle of the pipe 45.

第2処理槽82には清浄になった被処理液を下部から排出する排出配管68が設けてあり、この排出配管68は第1処理槽81からの排出配管67に接続しており、その位置はバルブ66よりも上流側である。浮上油受け部83の底部には、油分64を排出する油分排出管63を設けている。なお、供給管23を第1処理槽81の下部に接続してその途中にポンプを設置し、被処理液を第1処理槽81に直接供給するようにしてもよい。   The second treatment tank 82 is provided with a discharge pipe 68 for discharging the cleaned liquid to be treated from below, and this discharge pipe 68 is connected to a discharge pipe 67 from the first treatment tank 81, and its position Is upstream of the valve 66. An oil discharge pipe 63 for discharging the oil 64 is provided at the bottom of the floating oil receiver 83. Note that the supply pipe 23 may be connected to the lower portion of the first processing tank 81 and a pump may be installed in the middle thereof to supply the liquid to be processed directly to the first processing tank 81.

次にその動作を説明する。図1の油水分離装置10は第1処理槽81、第2処理槽82に被処理液を一定量供給し、油水分離の処理を行った後に排出する、間歇運転法で処理する。   Next, the operation will be described. The oil / water separator 10 in FIG. 1 supplies the first treatment tank 81 and the second treatment tank 82 with a certain amount of liquid to be treated, and performs the treatment by the intermittent operation method of discharging after performing the oil / water separation treatment.

先ず、処理槽11の第1処理槽81に清水または処理済液を大気泡分離器14の上端まで供給した状態で、第1ポンプ31を運転する。この時、バルブ36は開放状態にしてあり、バルブ38は第1ポンプ31の出口圧力が所定値になるように調節してある。この運転を行うと、第1処理槽81内部の清水または処理済液は、第1ポンプ31により配管30から汲み上げられ、配管32、35や空気溶解器39を経てノズル33から大気泡分離器14に吐出され、第1処理槽81に戻る第1の被処理液循環(第1循環系)が行なわれる。   First, the first pump 31 is operated in a state in which fresh water or treated liquid is supplied to the upper end of the large bubble separator 14 in the first treatment tank 81 of the treatment tank 11. At this time, the valve 36 is open, and the valve 38 is adjusted so that the outlet pressure of the first pump 31 becomes a predetermined value. When this operation is performed, the fresh water or the treated liquid inside the first treatment tank 81 is pumped up from the pipe 30 by the first pump 31, passes through the pipes 32 and 35 and the air dissolver 39, and then from the nozzle 33 to the large bubble separator 14. The first liquid to be processed (first circulation system) is returned to the first processing tank 81 and discharged.

続いて第1の被処理液循環系統を運転しながら、第1ポンプ31の入口圧力が負圧の所定値になるようにバルブ36の開度を調節する。そして被処理液供給系統のバルブ22を開放にすると、被処理液は第1ポンプ31、配管35、空気溶解器39、ノズル33を通って第1処理槽81に供給され、さらに仕切壁13の上部を通って第2処理槽82にも供給される。被処理液面位置61が所定位置に達したことが液面計71によって検知されると、バルブ22を閉じ被処理液供給を終了する。   Subsequently, while operating the first liquid circulation system, the opening degree of the valve 36 is adjusted so that the inlet pressure of the first pump 31 becomes a predetermined value of negative pressure. Then, when the valve 22 of the processing liquid supply system is opened, the processing liquid is supplied to the first processing tank 81 through the first pump 31, the pipe 35, the air dissolver 39, and the nozzle 33, It is also supplied to the second treatment tank 82 through the upper part. When the liquid level gauge 71 detects that the liquid level position 61 to be processed has reached a predetermined position, the valve 22 is closed and the supply of liquid to be processed is terminated.

次に負圧になっている空気供給管51の途中に設けてあるバルブ52を開くと、空気が吸引されるので所定量になるようにバルブ開度を調節する。流入した空気は配管32内を流れる被処理液に混合し、第1ポンプ31で加圧される過程で一部が被処理液に溶解する。溶解しきれなかった空気は第1ポンプ31下流の空気溶解器39で混合されることによって溶解量が増加し、空気の溶解した被処理液と一緒にノズル33から大気泡分離器14内に吐出する。   Next, when the valve 52 provided in the middle of the air supply pipe 51 having a negative pressure is opened, air is sucked, so that the valve opening is adjusted so as to be a predetermined amount. The inflowed air is mixed with the liquid to be processed flowing in the pipe 32, and a part of the air is dissolved in the liquid to be processed in the process of being pressurized by the first pump 31. The undissolved air is mixed in the air dissolver 39 downstream of the first pump 31 to increase the amount of dissolution, and is discharged into the large bubble separator 14 from the nozzle 33 together with the liquid to be treated in which the air is dissolved. To do.

ノズル33から吐出することで圧力の加わっていた液体および気体は減圧されるので、水に溶解していた空気は微細気泡となり、溶解しきれなかった空気の一部はそのまま微細気泡となり、残りは大気泡となる。空気溶解器39を設けると内部での攪拌効果によって大気泡が細かくなり、気泡と液体との接触面積が増加するとともに滞留時間も長くなるので溶解空気量が増加し、大気泡は大幅に減少する。   Since the liquid and gas that have been pressurized by discharging from the nozzle 33 are depressurized, the air dissolved in the water becomes fine bubbles, and a part of the air that could not be completely dissolved becomes fine bubbles, and the rest is It becomes a large bubble. When the air dissolver 39 is provided, the large bubbles become fine due to the internal stirring effect, the contact area between the bubbles and the liquid increases and the residence time increases, so the amount of dissolved air increases and the large bubbles greatly decrease. .

つぎにノズル33を出た被処理液と空気は大気泡分離器14内部を旋回しながら流れ、中心部の圧力が低下することで逆流領域が形成され、空気が被処理液によってせん断される。この効果によって大気泡の一部が粉砕され、溶解空気とともに微細気泡となる。そして第1処理槽81全体に微細気泡が存在する状態になる。被処理液に純水を用いるとこの微細気泡発生量は減少し、微細気泡径は大きくなる特性を有するが、上記の装置では純水を用いた場合でも不透明の乳白色状態になり、平均気泡径は40〜50μmである。そして第1処理槽81の底部、とくに大気泡分離器14よりも下部は被処理液の下降流速が遅いために、第1処理槽81内に存在する微細気泡のなかの特に微細な気泡が存在する。   Next, the liquid to be processed and the air that have exited the nozzle 33 flow while swirling inside the large bubble separator 14, and a reverse flow region is formed by reducing the pressure at the center, and the air is sheared by the liquid to be processed. Due to this effect, some of the large bubbles are crushed and become fine bubbles together with dissolved air. And the fine bubble exists in the 1st process tank 81 whole. When pure water is used as the liquid to be treated, the amount of fine bubbles generated decreases and the fine bubble diameter increases, but the above apparatus becomes opaque and white even when pure water is used. Is 40-50 μm. The bottom of the first treatment tank 81, particularly the lower part than the large bubble separator 14, has a slow downflow rate of the liquid to be treated, so that there are particularly fine bubbles among the fine bubbles present in the first treatment tank 81. To do.

つぎに第2処理槽82では前記第1の被処理液循環系統を運転しながら、第1処理槽81内の特に微細な気泡を含む被処理液を第1処理槽81の底部から汲み出し、配管42、バルブ44を介して空気を混合することなく第2ポンプ41で加圧して、配管43を経て気泡発生筒16内部のノズル47から、槽内の被処理液中に被処理液を噴射する第2の循環系統(第2循環系)を運転する。この第2循環系統運転時には外部から空気を供給しない。   Next, in the second treatment tank 82, the liquid to be treated containing particularly fine bubbles in the first treatment tank 81 is pumped out from the bottom of the first treatment tank 81 while operating the first treatment liquid circulation system. 42, pressurizing with the second pump 41 without mixing air through the valve 44, and spraying the liquid to be processed into the liquid to be processed in the tank from the nozzle 47 inside the bubble generating cylinder 16 through the pipe 43. The second circulation system (second circulation system) is operated. No air is supplied from the outside during the second circulation system operation.

第2の循環系統では、第1処理槽81から吸い込む被処理液に微細気泡を一様に含んでおり、被処理液の溶解空気量が多いことと配管内滞留時間が短いことから、ポンプでの加圧だけではこの微細気泡は被処理液にほとんど溶解しない。そして、ノズル47から第2処理槽82内の被処理液中に噴射されることによって噴射流近傍に負圧領域が形成され、噴射流内の微細気泡が一旦膨張し、その下流部で圧力が回復することによって膨張した気泡が圧縮されることで初期よりも径の小さい微細気泡(10〜20μm)になる。したがって、第2処理槽82内は第1処理槽81内よりも小さな微細気泡で満たされる。これらの小さな微細気泡には、第1処理槽81内では吸着できなかった微細な油粒子が吸着され、浮上することで油分離が進行する。   In the second circulation system, the liquid to be treated sucked from the first treatment tank 81 uniformly contains fine bubbles, and the amount of dissolved air in the liquid to be treated is large and the residence time in the pipe is short. The microbubbles are hardly dissolved in the liquid to be processed only by pressurization. Then, a negative pressure region is formed in the vicinity of the injection flow by being injected from the nozzle 47 into the liquid to be processed in the second processing tank 82, and the fine bubbles in the injection flow are once expanded, and the pressure is reduced in the downstream portion. The expanded bubbles are compressed by the recovery, and become fine bubbles (10 to 20 μm) having a smaller diameter than the initial one. Therefore, the inside of the second processing tank 82 is filled with smaller fine bubbles than the inside of the first processing tank 81. Fine oil particles that could not be adsorbed in the first treatment tank 81 are adsorbed by these small fine bubbles, and oil separation proceeds by floating.

被処理液油分濃度が所定値になるとバルブ52を閉止し、第1ポンプ31と第2ポンプ41を停止する。そしてバルブ66を開き、被処理液面位置61が大気泡分離器14の上面になるまで被処理液を排出して1回目の処理運転を終了する。2回目以降も同様の手順で油分離運転を繰り返す。この運転を繰り返すと浮上油が上部に溜まり、浮上油面位置62と被処理液面位置61との差が大きくなる。処理液面位置61が遮蔽板12と同一高さになるまで被処理液供給を続行することによって、浮上した油分は遮蔽板12を溢流(オーバフロー)し、浮上油受け部83へ流出させ、分離した油分64は配管63から回収する。   When the concentration of the liquid oil to be treated reaches a predetermined value, the valve 52 is closed and the first pump 31 and the second pump 41 are stopped. Then, the valve 66 is opened, the liquid to be processed is discharged until the liquid surface position 61 to be processed reaches the upper surface of the large bubble separator 14, and the first processing operation is completed. The oil separation operation is repeated in the same procedure after the second time. When this operation is repeated, the floating oil accumulates in the upper portion, and the difference between the floating oil surface position 62 and the liquid surface position 61 to be treated increases. By continuing the supply of the liquid to be processed until the processing liquid surface position 61 becomes the same height as the shielding plate 12, the floating oil overflows the shielding plate 12 and flows out to the floating oil receiving portion 83. The separated oil component 64 is recovered from the pipe 63.

この排出時期は運転時間で決定するだけでなく、浮上油量、浮上油厚さを測定することによっても決定できる。   This discharge time can be determined not only by the operation time but also by measuring the amount of floating oil and the thickness of the floating oil.

次に図2を用いて第1処理槽81内部及び第2処理槽82内部の被処理液流動状態と油分離機能を説明する。第1処理槽81の下部には、ノズル33から噴射した被処理液が微細気泡とともに大気泡分離器14から流入する。微細気泡は密度が被処理液よりも小さいので浮上するが、この際に被処理液も同伴流となって上昇する流れが形成される。上昇流が存在すると同流量の下降流が第1処理槽81内に形成される。   Next, the to-be-processed liquid flow state and oil separation function in the 1st processing tank 81 and the 2nd processing tank 82 are demonstrated using FIG. The liquid to be processed sprayed from the nozzle 33 flows from the large bubble separator 14 together with the fine bubbles into the lower portion of the first treatment tank 81. Since the fine bubbles have a density lower than that of the liquid to be treated, they float up. At this time, the liquid to be treated also rises as an accompanying flow. If an upward flow exists, a downward flow having the same flow rate is formed in the first treatment tank 81.

一方、第1処理槽81の上部には第2処理槽82から被処理液が流入しており、また、第1処理槽81の底部には第1ポンプ31へ被処理液を送る配管30と、第2ポンプ41へ被処理液を送る配管42が接続しており、連続して被処理液を送っている。このために第1処理槽81には底部に向かう下降流が形成される。微細気泡による油浮上分離を実現するためには油粒子が付着した微細気泡が一旦浮上した後に下降流によって第1処理槽81の底部へ戻ることを防ぐ必要があり、第1処理槽81の下降流速度が微細気泡の上昇速度よりも遅くなるように、第1処理槽81の底面積をより大きく形成するのが良い。   On the other hand, the liquid to be processed flows from the second processing tank 82 into the upper portion of the first processing tank 81, and the pipe 30 that sends the liquid to be processed to the first pump 31 at the bottom of the first processing tank 81 and A pipe 42 for sending the liquid to be processed to the second pump 41 is connected, and the liquid to be processed is continuously sent. Therefore, a downward flow toward the bottom is formed in the first treatment tank 81. In order to realize oil levitation separation by fine bubbles, it is necessary to prevent the fine bubbles to which the oil particles have adhered from floating once and then returning to the bottom of the first treatment tank 81 by the downward flow. It is preferable that the bottom area of the first treatment tank 81 is formed to be larger so that the flow speed is slower than the rising speed of the fine bubbles.

しかし、微細気泡径は一様ではないので平均よりも小さい微細気泡は下降流によって下降しやすく、油吸着性能は高いが浮上分離性能は低い。したがって、第1処理槽81では平均よりも大き目の微細気泡を活用して油を浮上分離することになる。   However, since the diameter of the fine bubbles is not uniform, fine bubbles smaller than the average are likely to descend by the downward flow, and the oil adsorption performance is high but the floating separation performance is low. Therefore, in the first treatment tank 81, oil is floated and separated by utilizing fine bubbles larger than the average.

第2処理槽82の下部には、ノズル47から噴射した被処理液が微細気泡とともに気泡発生筒16から低速で流入する。第2処理槽82では被処理液が仕切壁13の上部から第1処理槽81へと排出される。このため第2処理槽82内では被処理液が下部から上部へとゆるやかに流れ、微細気泡は密度が被処理液よりも小さいので、被処理液の上昇流に乗りながら被処理液よりもわずかに速い速度で浮上する。このように第2処理槽82内は一方向のゆるやかな流れであるので下降流はほとんど存在せず、油の浮上分離に必要な微細気泡の上昇速度を第1処理槽81と同等以上に設定することができる。なお、下降流がほとんど存在しないので、底面積は小さくても良い。   The liquid to be processed sprayed from the nozzle 47 flows into the lower portion of the second processing tank 82 from the bubble generating cylinder 16 together with the fine bubbles at a low speed. In the second treatment tank 82, the liquid to be treated is discharged from the upper part of the partition wall 13 to the first treatment tank 81. For this reason, the liquid to be processed flows gently from the lower part to the upper part in the second treatment tank 82, and the density of the fine bubbles is smaller than that of the liquid to be processed. Ascend at a fast speed. Thus, since the inside of the second treatment tank 82 is a gentle flow in one direction, there is almost no downward flow, and the rising speed of the fine bubbles necessary for the floating separation of oil is set equal to or higher than that of the first treatment tank 81. can do. Since there is almost no downward flow, the bottom area may be small.

この結果、第2処理槽82内では微細な油粒子を吸着しやすい非常に微細な気泡を活用して油粒子を高速で浮上分離できる。   As a result, oil particles can be levitated and separated at high speed in the second treatment tank 82 by utilizing very fine bubbles that easily adsorb fine oil particles.

本実施例と従来例の油分離特性を図3を用いて説明する。縦軸は対数表示の油分濃度であり、横軸は処理運転時間である。処理槽11内の被処理液の初期油分濃度がAであり、従来例では破線で示すように、油分濃度Bまでは処理運転時間に対してほぼ直線的に分離できる。しかし、油分濃度が低くなると、残留油粒子径が小さくなって径の大きい微細気泡では吸着しにくくなり、油分濃度の低下速度が小さくなる。この結果、排水基準の油分濃度Cまで分離する処理運転時間はT1となる。   The oil separation characteristics of this example and the conventional example will be described with reference to FIG. The vertical axis represents logarithmic oil concentration, and the horizontal axis represents processing operation time. The initial oil concentration of the liquid to be treated in the treatment tank 11 is A, and as shown by the broken line in the conventional example, the oil concentration B can be separated almost linearly with respect to the processing operation time. However, when the oil concentration is lowered, the residual oil particle diameter is reduced, and it becomes difficult to adsorb the fine bubbles having a large diameter, and the rate of decrease in the oil concentration is reduced. As a result, the processing operation time for separation to the oil content concentration C of the drainage standard is T1.

本実施例では、実線で示すように初期油分濃度Aから油分濃度B以下までほぼ直線的に分離でき、さらに排水基準の油分濃度Cまで分離した場合の油分濃度低減速度が小さくならず、全体の処理運転時間は従来法よりも短いT2で分離可能である。これは、油分濃度AからB近傍までは、比較的大きな粒子径の残留油が分離され、B以降は小さくなった粒子径の残留油が効率的に分離するためである。   In this embodiment, as shown by the solid line, the oil concentration can be separated almost linearly from the initial oil concentration A to the oil concentration B or less, and the oil concentration reduction rate when the oil concentration C is separated to the drainage standard is not reduced. The processing operation time can be separated at T2, which is shorter than the conventional method. This is because the residual oil having a relatively large particle size is separated from the oil concentration A to the vicinity of B, and the residual oil having a smaller particle size is efficiently separated after B.

本発明の実施例を示す油水分離装置の全体系統図である。1 is an overall system diagram of an oil / water separator according to an embodiment of the present invention. 同じく油水分離装置の処理槽内流動状態図である。It is a flow state figure in a processing tank of an oily water separator similarly. 本発明の実施例と従来例を比較して示す油分離特性図である。It is an oil separation characteristic figure which compares the Example of this invention, and a prior art example.

符号の説明Explanation of symbols

10…油水分離装置、11…処理槽、12…遮蔽板、13…仕切壁、31…第1ポンプ、33…第1ノズル、32、35…配管、39…空気溶解器、41…第2ポンプ、42、43…配管、47…第2ノズル、81…第1処理槽、82…第2処理槽、83…浮上油受け部、31、33、39…第1循環系、41、47…第2循環系。   DESCRIPTION OF SYMBOLS 10 ... Oil-water separator, 11 ... Processing tank, 12 ... Shielding plate, 13 ... Partition wall, 31 ... 1st pump, 33 ... 1st nozzle, 32, 35 ... Piping, 39 ... Air dissolver, 41 ... 2nd pump , 42, 43 ... piping, 47 ... second nozzle, 81 ... first treatment tank, 82 ... second treatment tank, 83 ... floating oil receiving part, 31, 33, 39 ... first circulation system, 41, 47 ... first Two circulation systems.

Claims (2)

処理槽に送る被処理液に空気を混合溶解せしめ、空気を混合溶解した被処理液を処理槽内の被処理液中に吐出し、被処理液に混合溶解した空気を気泡として処理槽内の被処理液に供給することによって被処理液中の油分を浮上させ油水の分離を行う油水分離装置において、
前記処理槽は第1処理槽と第2処理槽からなり、第1処理槽に処理液を送る第1ポンプ、処理液に空気を混合溶解させる空気溶解器、およびこの空気溶解器からの空気を混合溶解した処理液を処理槽内の被処理液中に吐出する第1ノズルからなる第1循環系と、前記第1処理槽の気泡を含む被処理液を吸込む第2ポンプ、および吸込んだ被処理液を第2処理槽内に吐出して微細な気泡を供給する第2ノズルからなる第2循環系を備えたことを特徴とする油水分離装置。
Air is mixed and dissolved in the liquid to be processed to be sent to the processing tank, and the liquid to be processed in which the air is mixed and dissolved is discharged into the liquid to be processed in the processing tank. In an oil-water separator that separates oil and water by levitation of the oil in the liquid to be treated by supplying it to the liquid to be treated,
The treatment tank includes a first treatment tank and a second treatment tank, and includes a first pump that sends a treatment liquid to the first treatment tank, an air dissolver that mixes and dissolves air in the treatment liquid, and air from the air dissolver. A first circulation system comprising a first nozzle for discharging the mixed and dissolved processing liquid into the processing liquid in the processing tank; a second pump for sucking the processing liquid containing bubbles in the first processing tank; An oil-water separator comprising a second circulation system comprising a second nozzle for discharging a treatment liquid into a second treatment tank and supplying fine bubbles.
前記第1処理槽の底面積を前記第2処理槽の底面積よりも大きくしたことを特徴とする請求項1に記載の油水分離装置。   The oil-water separator according to claim 1, wherein the bottom area of the first treatment tank is larger than the bottom area of the second treatment tank.
JP2008027676A 2008-02-07 2008-02-07 Oil and water separation apparatus Pending JP2009183890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008027676A JP2009183890A (en) 2008-02-07 2008-02-07 Oil and water separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027676A JP2009183890A (en) 2008-02-07 2008-02-07 Oil and water separation apparatus

Publications (1)

Publication Number Publication Date
JP2009183890A true JP2009183890A (en) 2009-08-20

Family

ID=41067717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027676A Pending JP2009183890A (en) 2008-02-07 2008-02-07 Oil and water separation apparatus

Country Status (1)

Country Link
JP (1) JP2009183890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102755846A (en) * 2012-07-28 2012-10-31 甘肃金桥给水排水设计与工程(集团)有限公司 Micro-bubble dissolved air generation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102755846A (en) * 2012-07-28 2012-10-31 甘肃金桥给水排水设计与工程(集团)有限公司 Micro-bubble dissolved air generation device

Similar Documents

Publication Publication Date Title
JP2011020025A (en) Oil-water separator
WO2009116711A2 (en) Apparatus of generating microbubbles
KR100919367B1 (en) Flotation device using high efficiency tank for dissolving a gases into liquids
JP2003181260A (en) Process and device for aerating liquid with gas
KR20050099530A (en) Method, device and system for controlling dissolved amount of gas
JP6104399B2 (en) Contaminated water purification system provided with fine bubble generating device and fine bubble generating device
CN103501886A (en) Method and device for enriching a liquid with oxygen
JP5687189B2 (en) Fluid processing apparatus and fluid processing method
KR101715564B1 (en) Flotation device using high efficiency tank for dissolving a gases into liquids
JP2009183890A (en) Oil and water separation apparatus
JP5147200B2 (en) Oil / water separator
JP4072334B2 (en) Oil / water separator
JP4038365B2 (en) Oil / water separator
JP2017209662A (en) Water treatment system and water treatment method
CN111003749A (en) Oil stain removal device and method for polishing solution wastewater
CN212151686U (en) Degreasing device for polishing solution wastewater
KR101162909B1 (en) Floatation tank for removing algae
JP7018403B2 (en) How to degas foam and foam
JP2005161174A (en) Gas dissolving method and gas dissolving device
JP6159495B2 (en) Floating separator
KR100377020B1 (en) a microbuble generator
JP4072507B2 (en) Oil / water separator
JP5548412B2 (en) Oil / water separator
JP2006334545A (en) Fine air bubble separator
JP2008194599A (en) Gas-dissolved water feeding system