JP4072507B2 - Oil / water separator - Google Patents

Oil / water separator Download PDF

Info

Publication number
JP4072507B2
JP4072507B2 JP2004058344A JP2004058344A JP4072507B2 JP 4072507 B2 JP4072507 B2 JP 4072507B2 JP 2004058344 A JP2004058344 A JP 2004058344A JP 2004058344 A JP2004058344 A JP 2004058344A JP 4072507 B2 JP4072507 B2 JP 4072507B2
Authority
JP
Japan
Prior art keywords
oil
liquid
processing
processing liquid
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004058344A
Other languages
Japanese (ja)
Other versions
JP2005246183A5 (en
JP2005246183A (en
Inventor
聰 塚原
公男 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2004058344A priority Critical patent/JP4072507B2/en
Publication of JP2005246183A publication Critical patent/JP2005246183A/en
Publication of JP2005246183A5 publication Critical patent/JP2005246183A5/ja
Application granted granted Critical
Publication of JP4072507B2 publication Critical patent/JP4072507B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Description

本発明は油水分離装置に係わり、特に微細気泡による浮上分離法を用いた油水分離装置に関するものである。   The present invention relates to an oil / water separator, and more particularly to an oil / water separator using a floating separation method using fine bubbles.

従来の浮上分離法による油水分離装置は、下記の特許文献1に記述されたものでは、大容量の処理槽からポンプで汲み上げた処理液に気液混合手段で加圧空気を混合・溶解させ、溶解できなかった余剰空気は加圧タンクで除去した後に処理液を処理槽内に戻し、その際圧力弁から噴射、減圧することによって微細気泡を発生させて、この微細気泡が油分に付着することで油分が水中を浮上し、油と水分を分離するようにしている。   In the conventional oil-water separator by the flotation separation method described in Patent Document 1 below, pressurized air is mixed and dissolved in the processing liquid pumped from a large-capacity processing tank by a gas-liquid mixing means, The excess air that could not be dissolved is removed in the pressurized tank, and then the treatment liquid is returned to the treatment tank. At that time, fine bubbles are generated by spraying and depressurizing from the pressure valve, and these fine bubbles adhere to the oil. The oil floats in the water and separates the oil and moisture.

特開平5−317847号公報JP-A-5-317847

上記従来技術において、気液混合手段の出口までに処理液中に溶解できなかった空気は処理槽内で大気泡となり浮上分離性能を低下させるので、加圧タンクで分離しエアアウトサイレンサから外部に開放している。   In the above prior art, air that could not be dissolved in the processing liquid by the outlet of the gas-liquid mixing means becomes a large bubble in the processing tank and lowers the floating separation performance. It is open.

しかし、加圧タンクの内部では大気泡が油粒子を浮上させ気液面に浮上油を発生させる油水分離を起こし、浮上油がタンク内部の気液面に存在する状態となる。この浮上油は、気液面の波動によって処理液中に少量ずつ混じる。従って、処理槽内の処理液を直接排水可能な油分濃度まで下げるための処理時間が非常に長い。   However, inside the pressurized tank, large bubbles cause oil particles to float and cause oil / water separation to generate floating oil on the gas-liquid surface, so that the floating oil exists on the gas-liquid surface inside the tank. This floating oil is mixed little by little in the processing liquid by the wave motion of the gas-liquid surface. Therefore, the treatment time for reducing the treatment liquid in the treatment tank to an oil concentration that can be directly drained is very long.

加圧タンクでは加圧下であるため余剰空気の気泡径が小さくなり、浮上速度が遅くなるので、余剰空気を分離するためには加圧タンクが大きくなり、装置が大型化になる。   Since the pressurized tank is under pressure, the bubble diameter of the surplus air becomes small and the ascending speed becomes slow. Therefore, the pressure tank becomes large to separate the surplus air, and the apparatus becomes large.

また、処理対象が圧縮機のドレンの場合は少量の処理液が連続して排出され、大気中の水分量によってその流量および油分濃度が変化する。また、油水分離装置自体の設置面積が限定されることがあり、処理槽を小型にすることが望まれる。そして、単純に小型化すると処理槽内を上下する循環流が強くなり、一旦液面上まで浮上した油粒子が水の下降流に乗って処理槽底部近傍まで下降するため、油分濃度が一定値以下にはならない。   Further, when the processing target is a compressor drain, a small amount of processing liquid is continuously discharged, and the flow rate and oil concentration change depending on the amount of moisture in the atmosphere. In addition, the installation area of the oil / water separator itself may be limited, and it is desirable to reduce the size of the treatment tank. And if the size is simply reduced, the circulating flow that goes up and down in the treatment tank becomes stronger, and the oil particles that have floated up to the liquid level once descend on the water and descend to the vicinity of the bottom of the treatment tank. It will not be below.

油分分離性能を向上させるべく圧力弁から大量の微細気泡を発生させるように圧力弁から噴出させる処理液量を増加させると、処理槽内を上下する循環流は一層強くなり、油水分離性能が低下する。   Increasing the amount of processing liquid ejected from the pressure valve to generate a large amount of fine bubbles from the pressure valve in order to improve the oil separation performance makes the circulating flow up and down in the treatment tank stronger and lowers the oil-water separation performance. To do.

それゆえ本発明の目的は、小型の処理槽であっても低油分濃度まで高速で処理できる浮上分離法に基づく油水分離装置を提供するものである。   Therefore, an object of the present invention is to provide an oil-water separation apparatus based on a flotation separation method that can process even a small treatment tank at a high speed up to a low oil concentration.

上記目的を達成するために本発明では、処理槽に送る処理液に空気を混合し、空気を溶解した処理液を処理槽内の処理液中に放出し、処理液に溶解した空気を微細気泡として処理槽内の処理液に供給することによって処理液中の油分を浮上させ油水の分離を行なう油水分離装置において、処理槽に処理液を送る配管に、複数の部屋を各部屋間における仕切板の開口を通して多段に連通してなる気泡粉砕手段を設けた。   In order to achieve the above object, in the present invention, air is mixed with the processing liquid sent to the processing tank, the processing liquid in which the air is dissolved is discharged into the processing liquid in the processing tank, and the air dissolved in the processing liquid is discharged into fine bubbles. In an oil-water separator that separates oil and water by floating the oil in the treatment liquid by supplying it to the treatment liquid in the treatment tank, a plurality of chambers are divided between the chambers in a pipe that sends the treatment liquid to the treatment tank The bubble crushing means connected in multiple stages through the openings was provided.

本発明によれば、気泡粉砕手段の各部屋において処理液は循環流を作り、混合してある空気は循環流で分断され微細化する。部屋が多段にあることにより微細化は促進され、微細化により大気泡は大幅に低減するのみならず気液接触の表面積は格段に増加して処理液への空気溶解量が増す。   According to the present invention, the treatment liquid creates a circulation flow in each chamber of the bubble crushing means, and the mixed air is divided and refined by the circulation flow. Since the chamber is multi-staged, miniaturization is promoted, and not only large bubbles are greatly reduced by the miniaturization, but also the surface area of gas-liquid contact is greatly increased and the amount of dissolved air in the processing liquid is increased.

従って、処理槽に供給したい微細気泡量は配管での少ない送液量で満たすことができて、送液速度を下げることができ、処理槽内の処理液中に放出する空気を溶解した処理液の速度は低下し、処理槽内での処理液の循環流を少なくして、分離し液面に浮上した油分が下降することを防止でき、分離性能は低下しない。   Therefore, the amount of fine bubbles to be supplied to the treatment tank can be filled with a small amount of liquid sent in the pipe, the liquid feed speed can be lowered, and the treatment liquid in which the air released into the treatment liquid in the treatment tank is dissolved The speed of the oil is reduced, the circulation flow of the treatment liquid in the treatment tank is reduced, and the oil component separated and floated on the liquid surface can be prevented from falling, and the separation performance is not lowered.

それで、処理槽は小さくても直接排水路へ排出可能な低油分濃度にまで高速にしかも確実に油水分離ができる。   Therefore, even if the treatment tank is small, oil / water separation can be performed at high speed and reliably even to a low oil concentration that can be discharged directly to the drainage channel.

以下、図に示す実施形態について説明する。   Hereinafter, embodiments shown in the drawings will be described.

本発明の一実施形態である油水分離装置10を示している図1において、処理槽11の内部は遮蔽板12により分離部81と浮上油受け部83とに区画してあり、分離部81は処理液Wを収容して油水分離を行ない、浮上油受け部83では分離部81で分離浮上し遮蔽板12を溢流した油分を受ける。この遮蔽板12は設計上の処理液面位置61および浮上油面位置62より高くなるように配置してある。   In FIG. 1 which shows the oil-water separator 10 which is one Embodiment of this invention, the inside of the processing tank 11 is divided into the isolation | separation part 81 and the floating oil receiving part 83 by the shielding board 12, and the isolation | separation part 81 is The processing liquid W is stored and oil-water separation is performed, and the floating oil receiving portion 83 receives the oil component separated and floated by the separating portion 81 and overflowing the shielding plate 12. The shielding plate 12 is disposed so as to be higher than the designed processing liquid surface position 61 and the floating oil surface position 62.

処理槽11の外部には大気泡分離部13があり、大気泡分離部13の内部には処理液を放出するノズル33があり、大気泡分離部13から分離部81上部と下部にそれぞれ連通するように大気泡排出管14および円管状の管路16が設けてある。 A large bubble separation unit 13 is provided outside the processing tank 11, and a nozzle 33 that discharges a processing liquid is disposed inside the large bubble separation unit 13, and communicates from the large bubble separation unit 13 to an upper portion and a lower portion of the separation unit 81. A large bubble discharge pipe 14 and a circular pipe line 16 are provided.

管路16には分離部81に処理液を放出するための複数の開口17が設けてあり、開口17の総面積は管路16の断面積よりも小さくしてある。管路長さ方向に管路16の断面積を順次小さくして管路内流速を一定にすると、各開孔17での分配量がより均等になる。   The pipe line 16 is provided with a plurality of openings 17 for discharging the processing liquid to the separation unit 81, and the total area of the openings 17 is smaller than the cross-sectional area of the pipe line 16. When the cross-sectional area of the pipe line 16 is sequentially reduced in the pipe length direction to make the flow velocity in the pipe line constant, the distribution amount in each opening 17 becomes more uniform.

大気泡分離器13の上部に下端部を接続してある大気泡排出管14は処理槽11の高さ方向の中間部近傍から分離部81に挿入してあり、その上端部が処理液の上面近傍に開口するようにしてある。大気泡分離器13は已む無く生じる大気泡を抜くものであるが、加圧しておらず上部は開放状態にあり自由面になっていて、管路16から分離部81に放出される微細気泡に影響しないようになっている。   The large bubble discharge pipe 14 having a lower end connected to the upper portion of the large bubble separator 13 is inserted into the separation unit 81 from the vicinity of the intermediate portion in the height direction of the treatment tank 11, and the upper end of the large bubble discharge pipe 14 is the upper surface of the treatment liquid. It opens in the vicinity. The large bubble separator 13 removes large bubbles that have been generated, but is not pressurized and the upper part is open and free, and the fine bubbles released from the pipe 16 to the separation unit 81 Does not affect the.

分離部81には上部から清浄な処理液を排出する排出配管41が設けてあり、分離部81の処理液面位置61よりも下方から排出し、一旦、処理液面位置61まで持ち上げ、その下流を処理液面位置61よりも低い位置まで配管している。この排出配管41の途中にはバルブ42を設けている。なお、分離部81における排出配管41の管座の周囲に分離部81から排出配管41へ流入する処理液に分離部81を上昇中の微細気泡および油粒子が混入することを防止する仕切板15を設けて吸入部82を形成してある。即ち、吸入部82に流入・流下する処理液の速度よりも分離部81を上昇中の微細気泡および油粒子の速度のほうが大きくなるようにして混入を防ぐようにしている。   The separation unit 81 is provided with a discharge pipe 41 for discharging a clean processing liquid from the upper part. The separation pipe 81 discharges from below the processing liquid level position 61 of the separation unit 81, and once lifts up to the processing liquid level position 61, downstream thereof. Is piped to a position lower than the processing liquid level position 61. A valve 42 is provided in the middle of the discharge pipe 41. In addition, the partition plate 15 prevents the fine bubbles and oil particles rising in the separation unit 81 from entering the processing liquid flowing into the discharge pipe 41 from the separation unit 81 around the pipe seat of the discharge pipe 41 in the separation unit 81. The suction part 82 is formed. In other words, the speed of the fine bubbles and oil particles rising in the separation unit 81 is made higher than the speed of the processing liquid flowing into and flowing into the suction unit 82 to prevent mixing.

分離部81の底部には処理液循環系統を構成する配管30を接続してあり、配管30はバルブ36を介して第2ポンプ31に接続し、第2ポンプ31の出口側は配管37,気泡粉砕器(気泡粉砕手段)38,配管39を介して大気泡分離器13部に設けたノズル33に接続している。配管30には、空気を導入する空気供給管35がバルブ34を介して接続してあり、更に、処理液導入系統を構成する供給管23を接続してあり、供給管23に第1ポンプ21とバルブ22を設けてある。   A pipe 30 constituting a processing liquid circulation system is connected to the bottom of the separation unit 81. The pipe 30 is connected to the second pump 31 via a valve 36, and the outlet side of the second pump 31 is connected to the pipe 37 and bubbles. A pulverizer (bubble pulverizing means) 38 and a pipe 39 are connected to the nozzle 33 provided in the large bubble separator 13. An air supply pipe 35 that introduces air is connected to the pipe 30 via a valve 34, and further, a supply pipe 23 that constitutes a processing liquid introduction system is connected to the first pipe 21. And a valve 22 is provided.

浮上油受け部83の底部には油分を排出する油分排出管51を設けてある。図示していないが、分離部81の底部から外部に配管を設け、その途中にバルブを設けて、分離部81内部の処理液を排出する必要がある場合にこれらを用いる。なお、供給管23は分離部81の下部に接続して処理液を分離部81に直接供給するようにしてもよい。   An oil discharge pipe 51 for discharging oil is provided at the bottom of the floating oil receiving portion 83. Although not shown in the drawing, pipes are provided outside from the bottom of the separation unit 81, and a valve is provided in the middle thereof, and these are used when it is necessary to discharge the processing liquid inside the separation unit 81. The supply pipe 23 may be connected to the lower part of the separation unit 81 so that the processing liquid is directly supplied to the separation unit 81.

図2は気泡粉砕器38を示す縦断面図で、気泡粉砕器38は複数の部屋R1〜Rnを各部屋間における仕切板Bの開口Pを通して多段に連通してある。仕切板Bの開口Pは、図3に示すように仕切板Bの中央に設けている。各仕切板Bの開口Pの断面積Apは処理槽11に処理液を送る配管37,39の断面積Ahと等しくしてあり、各仕切板の開口で連通した処理液の流路は気泡粉砕器38の函体の下方にある入口Eから上方にある出口Dに向けて上昇するようになっている。   FIG. 2 is a longitudinal sectional view showing the bubble pulverizer 38. The bubble pulverizer 38 communicates a plurality of rooms R1 to Rn in multiple stages through the openings P of the partition plate B between the rooms. The opening P of the partition plate B is provided in the center of the partition plate B as shown in FIG. The cross-sectional area Ap of the opening P of each partition plate B is equal to the cross-sectional area Ah of the pipes 37 and 39 that send the processing liquid to the processing tank 11, and the flow path of the processing liquid that communicates with the opening of each partition plate is bubble crushing It rises from an inlet E below the box of the vessel 38 toward an outlet D above.

次にその動作を説明する。
図1の装置10は連続運転と間歇運転の2つの方法で稼動することができる。
最初に、処理液を連続して供給する連続運転について説明する。
Next, the operation will be described.
The apparatus 10 of FIG. 1 can operate in two ways: continuous operation and intermittent operation.
Initially, the continuous operation | movement which supplies a process liquid continuously is demonstrated.

まず、処理槽11の分離部81に清水または処理済液を充満させた状態で第2ポンプ31を運転する。この時、バルブ34,バルブ36は開放状態とする。バルブ36からの清水または処理済液が配管30を流れることによって、空気供給管35側が負圧となり、空気が空気供給管35から流入する。流入した空気は配管30内を流れる液体に混入し、第2ポンプ31で加圧される過程で溶解する。   First, the second pump 31 is operated in a state where the separation unit 81 of the treatment tank 11 is filled with fresh water or a treated liquid. At this time, the valve 34 and the valve 36 are opened. As fresh water or treated liquid from the valve 36 flows through the pipe 30, the air supply pipe 35 side becomes negative pressure, and air flows from the air supply pipe 35. The inflowing air is mixed in the liquid flowing in the pipe 30 and dissolved in the process of being pressurized by the second pump 31.

溶解しきれなかった空気は第2ポンプ31下流の気泡粉砕器38の下部から流入して溶解量が増加し、空気の溶解した液体と一緒にノズル33から大気泡分離器13内に吐出する。ノズル33から吐出することで圧力の加わっていた液体、および空気は減圧され、水に溶解していた空気は微細気泡となり、溶解しきれなかった空気は大気泡となる。   The undissolved air flows from the lower part of the bubble crusher 38 downstream of the second pump 31 to increase the amount of dissolution, and is discharged into the large bubble separator 13 from the nozzle 33 together with the dissolved liquid. The liquid and air to which pressure has been applied by discharging from the nozzle 33 is reduced in pressure, the air dissolved in water becomes fine bubbles, and the air that cannot be completely dissolved becomes large bubbles.

気泡粉砕器38を設けることによって、大気泡は大幅に少なくなる。その理由は、図2に示すように気泡粉砕器38の複数の部屋R1〜Rnに仕切板Bの開口Pから流入するたびに各部屋R1〜Rnで循環流が起こり、流入した液体流は循環流で攪拌を受けて、気泡は分断され微細化することにある。各部屋R1〜Rnを通過するたびに微細化されて表面積は増加し、液体に空気は溶解していく。   By providing the bubble crusher 38, large bubbles are greatly reduced. The reason for this is that, as shown in FIG. 2, every time the air flows into the plurality of chambers R1 to Rn of the bubble crusher 38 from the opening P of the partition plate B, a circulating flow occurs in each of the chambers R1 to Rn, and the flowing liquid flow circulates. The bubbles are divided and refined by stirring in the flow. Each time it passes through each of the rooms R1 to Rn, the surface area is increased and the air is dissolved in the liquid.

各開口Pの断面積Apは配管37,39の断面積Ahと等しくされているので、各開口Pから各部屋R1〜Rnに流入したときに殆ど減圧は起こらず、溶解した空気や微細気泡が大気泡となることはなく、微細状態や溶解状態を維持できる利点がある。   Since the cross-sectional area Ap of each opening P is equal to the cross-sectional area Ah of the pipes 37 and 39, almost no decompression occurs when flowing into each of the rooms R1 to Rn from each opening P, and dissolved air and fine bubbles are not generated. There is an advantage that a fine state and a dissolved state can be maintained without forming large bubbles.

また、気泡粉砕器38は縦に配置してあり、下方から液体は流入するので、各部屋R1〜Rnの天井部に空気溜まりが発生することはなく、溶解する空気量は増加し、理論溶解量に近づく。   Moreover, since the bubble crusher 38 is arranged vertically and the liquid flows in from below, no air pool is generated in the ceiling of each of the rooms R1 to Rn, the amount of dissolved air increases, and the theoretical dissolution Approach the amount.

どうしても微細化しえなかった気泡については、大気泡分離器13では、気泡径が大きくなるほど液中上昇速度が速い特性を持っているため、大気泡は大気泡分離器13の上部へ溜り、大気泡排出管14から分離部81の上方部へ排出される。   As for the bubbles that could not be refined by any means, the large bubble separator 13 has a characteristic that the rising speed in the liquid increases as the bubble diameter increases, so that the large bubbles accumulate on the upper portion of the large bubble separator 13 and the large bubbles. It is discharged from the discharge pipe 14 to the upper part of the separation part 81.

従って、大気泡分離器13の出口に続く管路16の開口17から微細気泡のみを含む液体が分離部81に流出する。開口17から流出した液体は、分離部81に存在する液体と混合し、減速しながら流れる。   Accordingly, a liquid containing only fine bubbles flows out from the opening 17 of the pipe line 16 following the outlet of the large bubble separator 13 to the separation unit 81. The liquid flowing out from the opening 17 is mixed with the liquid present in the separation unit 81 and flows while decelerating.

その流れは図4に示すように分離部81に循環流を形成し、特に管路16周囲では開口17からの流れと配管30に向かっての下降流によって強い循環流が形成され、分離部81の上部では微細気泡の上昇に伴う弱い循環流が形成されている。   As shown in FIG. 4, the flow forms a circulation flow in the separation portion 81, and a strong circulation flow is formed around the pipe line 16 by the flow from the opening 17 and the downward flow toward the pipe 30. A weak circulating flow is formed along with the rising of fine bubbles.

分離部81下部の強い循環流が分離部81上部の循環流と一体になると、微細気泡が循環流から分離できなくなる。このため、分離部81内部に管路16を突き出し、管路16の長さ方向に流量を均等分配して局部的に循環流が強くなることを防止しているが、気泡粉砕器38を設けることによって、大気泡の発生を抑え微細気泡の供給量を増加せしめ、開口17からの流出する液体流量を少なくして流出に伴う循環流を弱めるだけでなく、配管30に吸い込まれる液体の下降速度が低下することによっても循環流は弱くなるので、微細気泡は下降する循環流の影響を受けずに浮上できるようになる。   When the strong circulation flow at the lower part of the separation unit 81 is integrated with the circulation flow at the upper part of the separation unit 81, the fine bubbles cannot be separated from the circulation flow. For this reason, the pipe line 16 is protruded into the separation part 81 and the flow rate is evenly distributed in the length direction of the pipe line 16 to prevent the circulation flow from becoming strong locally. Thus, the generation of large bubbles is suppressed and the supply amount of fine bubbles is increased, the flow rate of the liquid flowing out from the opening 17 is reduced to weaken the circulating flow accompanying the outflow, and the descending speed of the liquid sucked into the pipe 30 Since the circulating flow is weakened by the decrease, the fine bubbles can float without being influenced by the descending circulating flow.

この運転状態を保ちながら、第1ポンプ21を駆動しバルブ22を開いて処理液供給系統を運転し、処理液循環系統を循環している清水または処理済液に油分を含む処理液を混合させる。すると、開口17から微細気泡と共に油粒子が流出して、油分に微細気泡が付着浮上し、油分が分離できる。   While maintaining this operation state, the first pump 21 is driven to open the valve 22 to operate the processing liquid supply system, and the processing liquid containing oil is mixed with the fresh water or the processed liquid circulating in the processing liquid circulation system. . Then, oil particles flow out from the openings 17 together with the fine bubbles, and the fine bubbles adhere to and float on the oil, so that the oil can be separated.

上述したように、開口17から流出する処理液の量が少なくて、分離部81では下降する循環流が弱められている一方で微細気泡量は多いので、油分は微細気泡に殆ど付着して浮上し、浮上しても循環流で下降することがないために、容積が小さい分離部81であっても油分を確実に分離できる。   As described above, the amount of the treatment liquid flowing out from the opening 17 is small, and the circulating flow descending in the separation unit 81 is weakened, but the amount of fine bubbles is large, so that the oil is almost attached to the fine bubbles and floats. However, even if it rises, it does not descend in the circulating flow, so that the oil can be reliably separated even in the separation portion 81 having a small volume.

そして、処理済液は、バルブ42の開放により分離部81の上部である吸入部82から微細気泡の上昇速度よりも遅い速度で吸込まれて排出配管41から自然流出する。   Then, the treated liquid is sucked at a speed slower than the rising speed of the fine bubbles from the suction part 82 which is the upper part of the separation part 81 by opening the valve 42 and naturally flows out from the discharge pipe 41.

微細気泡供給量は被処理液流量に比例するが、循環水の通常圧力が0.3〜0.8MPaであること、溶解空気量が圧力に比例することを考慮すると循環水流量は処理液流量の30〜100倍である。従って、処理液は循環水によって30〜100倍に希釈されるので分離部81に供給される処理液は低濃度である。   The supply amount of fine bubbles is proportional to the flow rate of the liquid to be treated, but considering that the normal pressure of the circulating water is 0.3 to 0.8 MPa and the amount of dissolved air is proportional to the pressure, the circulating water flow rate is the processing liquid flow rate. 30 to 100 times. Therefore, since the processing liquid is diluted 30 to 100 times with circulating water, the processing liquid supplied to the separation unit 81 has a low concentration.

この連続運転では、処理液循環系統を通過した処理液中の油分を処理液が分離部81を上昇する時間内に処理することになる。 In this continuous operation , the oil in the processing liquid that has passed through the processing liquid circulation system is processed within the time during which the processing liquid ascends the separation unit 81.

分離部81上部の浮上油は、連続運転中に排出配管41の途中に設けたバルブ42を一時的に閉じて、分離部81内部の処理液面位置61および浮上油面位置62を上昇させ、遮蔽板高さに近くなると、大気泡排出管14から時折排出される大気泡によって処理液面位置61が波立つことを利用して、浮上油を遮蔽板12を溢流(オーバフロー)させて浮上油受け部83へ排出させて、分離油分63は配管51から回収する。   The floating oil at the top of the separation unit 81 temporarily closes the valve 42 provided in the middle of the discharge pipe 41 during continuous operation, and raises the treatment liquid level position 61 and the floating oil level position 62 inside the separation unit 81, When close to the height of the shielding plate, the floating liquid floats over the shielding plate 12 and floats by utilizing the fact that the processing liquid level position 61 undulates due to the large bubbles occasionally discharged from the large bubble discharge pipe 14. The separated oil 63 is recovered from the pipe 51 by being discharged to the oil receiver 83.

なお、上述したように縦に配置した気泡粉砕器38では処理液が常に流れて、空気溜まりが発生しないから、内壁に油分が付着することは殆ど無く、清掃の手間がかからない利点がある。   In addition, since the processing liquid always flows in the bubble crusher 38 arranged vertically as described above and no air pool is generated, there is an advantage that the oil hardly adheres to the inner wall and the cleaning work is not required.

次に、処理液を一定量供給し、処理を行った後に排出する間歇運転を説明する。 Next, a description will be given of intermittent operation in which a certain amount of processing liquid is supplied and discharged after processing.

まず、処理槽11の分離部81に清水または処理済液を充満させた状態で第2ポンプ31を運転する。この時、バルブ34,バルブ36は開放状態にしてある。   First, the second pump 31 is operated in a state where the separation unit 81 of the treatment tank 11 is filled with fresh water or a treated liquid. At this time, the valve 34 and the valve 36 are opened.

バルブ36からの清水または処理済液が配管30を流れることによって、空気供給管35側が負圧となり、空気が空気供給管35から流入する。この運転を行うと第2ポンプ31での発熱で分離部81内部の清水または処理済液の温度が上昇し、密度が小さくなる。   As fresh water or treated liquid from the valve 36 flows through the pipe 30, the air supply pipe 35 side becomes negative pressure, and air flows from the air supply pipe 35. When this operation is performed, the temperature of the fresh water or the treated liquid in the separation unit 81 rises due to heat generated by the second pump 31, and the density decreases.

続いて処理液循環系統の運転を停止し、処理液供給系統のバルブ22を開放にして第1ポンプ21を運転し、処理液を所定量供給する。処理液は配管30および配管37,気泡粉砕器38,配管39,ノズル33,管路16,開口17から分離部81に流入する。   Subsequently, the operation of the processing liquid circulation system is stopped, the valve 22 of the processing liquid supply system is opened, the first pump 21 is operated, and a predetermined amount of processing liquid is supplied. The processing liquid flows into the separation unit 81 from the pipe 30 and the pipe 37, the bubble crusher 38, the pipe 39, the nozzle 33, the pipe line 16, and the opening 17.

処理液は分離部81内の処理液よりも温度が低く密度が大きいために分離部81の底部に溜り、上部の密度が小さい処理液は吸入部82から排出配管41,バルブ42を経由して排出される。例えば、分離部81の仕切板12上端から下方の容積が40L,分離部81の処理液Wの温度が320K,処理液供給系統から供給(導入)する処理液の温度が283K,処理液の供給量が20L/hの場合に、処理済液のみを30L以上排出可能である。   Since the processing liquid has a lower temperature and a higher density than the processing liquid in the separation unit 81, the processing liquid accumulates at the bottom of the separation unit 81, and the processing liquid having a lower density passes through the suction pipe 82 and the discharge pipe 41 and the valve 42. Discharged. For example, the volume below the upper end of the partition plate 12 of the separation unit 81 is 40 L, the temperature of the treatment liquid W of the separation unit 81 is 320 K, the temperature of the treatment liquid supplied (introduced) from the treatment liquid supply system is 283 K, and the supply of the treatment liquid When the amount is 20 L / h, only the treated liquid can be discharged by 30 L or more.

次に、バルブ22,42を閉状態として,処理液循環系統を運転する。分離部81内の流動状態は図4と同様である。   Next, the processing liquid circulation system is operated with the valves 22 and 42 closed. The flow state in the separation part 81 is the same as that in FIG.

バルブ42は閉止してあり処理液中に気泡が存在することにより、処理液面位置61は排出配管41の最高位置よりも高くなる。この状態では、分離部81内部の処理液面位置61上側に浮上油が溜まるが、浮上油面位置62よりも遮蔽板12を高く配置している。この運転を繰り返すと、浮上油が上部に溜まり、浮上油面位置62と処理液面位置61との差が大きくなる。処理液面位置61が遮蔽板12と同一高さになるまで続行することによって、浮上油は遮蔽板12を溢流(オーバフロー)し、浮上油受け部83へ流出する。   Since the valve 42 is closed and bubbles are present in the processing liquid, the processing liquid level position 61 becomes higher than the highest position of the discharge pipe 41. In this state, the floating oil accumulates above the processing liquid level position 61 inside the separation unit 81, but the shielding plate 12 is disposed higher than the floating oil level position 62. When this operation is repeated, the floating oil accumulates at the top, and the difference between the floating oil surface position 62 and the processing liquid surface position 61 increases. By continuing until the processing liquid level position 61 becomes the same height as the shielding plate 12, the floating oil overflows (overflows) the shielding plate 12 and flows out to the floating oil receiving portion 83.

通常のスクリュー圧縮機では一週間の連続運転により浮上油が約1mm溜まるので、一週間に1回程度排出する。この排出時期は運転時間で決定するだけでなく、浮上油量,浮上油厚さを測定することによっても決定できる。   In a normal screw compressor, about 1 mm of floating oil is accumulated by continuous operation for one week, and is discharged about once a week. This discharge time can be determined not only by the operation time but also by measuring the floating oil amount and the floating oil thickness.

浮上油を排出させた分離部81における処理液Wの油濃度は低いので、処理液循環系統を運転して分離部81における処理液Wを昇温させ、その後、処理液供給系統から処理液を供給して分離部81の上部から処理済液を排出させるとともに下部に未処理の処理液を充満させてから、再び処理液循環系統を運転して油水分離を行う。   Since the oil concentration of the processing liquid W in the separation unit 81 from which the floating oil is discharged is low, the processing liquid circulation system is operated to raise the temperature of the processing liquid W in the separation unit 81, and then the processing liquid is supplied from the processing liquid supply system. After supplying and discharging the treated liquid from the upper part of the separation unit 81 and filling the lower part with the untreated treatment liquid, the treatment liquid circulation system is operated again to perform oil-water separation.

この処理液供給系統から処理液を間歇的に供給する間歇運転では、分離部81内に清水または処理済液と約50%の処理液を混合して処理することになるので、油分を高濃度から所定の低濃度まで下げることになる。浮上分離法は油分濃度の高い領域は処理能力が高く、中間濃度までは高速で処理できる。そして残った少量の油分すなわち低濃度の処理液は処理能力は低いが、分離部81内部に存在する量だけ処理することになるので比較的短い時間で処理できる。しかし、この方法は処理液の供給および処理済液の排出に要する時間が必要であるので、処理全体の単位時間当たりの処理量は少なく、高濃度の被処理液に適した処理方法である。 In the intermittent operation in which the treatment liquid is intermittently supplied from this treatment liquid supply system, the clean water or the treated liquid and about 50% of the treatment liquid are mixed and processed in the separation unit 81. To a predetermined low concentration. The flotation separation method has a high processing capacity in the region where the oil concentration is high, and can process at high speed up to an intermediate concentration. The remaining small amount of oil, that is, the low-concentration processing liquid has a low processing capacity, but can be processed in a relatively short time because it is processed in the amount existing in the separation unit 81. However, since this method requires time for supplying the processing liquid and discharging the processed liquid, the processing amount per unit time of the entire processing is small, and this processing method is suitable for a high concentration liquid to be processed.

図5は、気泡粉砕器38の他の形態を示している。図5に示す気泡粉砕器38では、気泡粉砕器38での流路が蛇行するように仕切板Bにおける開口Pを互い違いに設けている。   FIG. 5 shows another embodiment of the bubble pulverizer 38. In the bubble pulverizer 38 shown in FIG. 5, the openings P in the partition plate B are provided alternately so that the flow path in the bubble pulverizer 38 meanders.

この構成により、処理液は各部屋R1〜Rnを素通りすることはなくなり、必ず循環流となって乱流を形成し、気泡を分断し微細化する。   With this configuration, the processing liquid does not pass through each of the rooms R1 to Rn, and always forms a circulatory flow to form a turbulent flow, divides bubbles and refines them.

図6,図7は、仕切板Bに設ける開口Pの位置と形状を示している。図6の形態では2個の円形の開口P1,P2を設け、図7の形態では半円形の開口P1〜P4を内壁の周囲に設けている。このような仕切板Bを適宜に組み合せ、気泡粉砕器38での流路を複雑化させ、乱流を起させるとよい。なお、各仕切板Bにおいて多数の開口を設ける場合は、個々の仕切板Bにおいて開口の断面積の総和を配管37,39の断面積と等しくしておくと、各開口を通過する処理液に減圧は起らず、大気泡に戻ることはない。   6 and 7 show the position and shape of the opening P provided in the partition plate B. FIG. In the form of FIG. 6, two circular openings P1 and P2 are provided, and in the form of FIG. 7, semicircular openings P1 to P4 are provided around the inner wall. Such partition plates B may be appropriately combined to complicate the flow path in the bubble crusher 38 and cause turbulence. In addition, when providing many opening in each partition plate B, if the sum total of the cross-sectional area of opening in each partition plate B is made equal to the cross-sectional area of piping 37 and 39, it will be in the process liquid which passes each opening. Depressurization does not occur and does not return to large bubbles.

次に、前記2つの運転方法の選択について説明する。   Next, selection of the two operation methods will be described.

図8は一般的なスクリュー圧縮機のドレン流量と油分濃度の関係を示している。夏季に相当する大気中の水分量が多い時期には、ドレン流量が多く、油分濃度は低い。冬季に相当する大気中の水分量が少ない時には、ドレン流量が少なく、油分濃度は高い。   FIG. 8 shows the relationship between the drain flow rate and oil concentration of a general screw compressor. When the amount of moisture in the atmosphere corresponding to summer is high, the drain flow rate is high and the oil concentration is low. When the amount of moisture in the atmosphere corresponding to winter is small, the drain flow rate is small and the oil concentration is high.

この全範囲を1つの運転方法で処理するためには最大ドレン流量で最高油分濃度の能力を有する大型機が必要であり、設置面積およびコストの面で問題がある。また、処理液供給量を高精度に制御する方法があるが、ドレン流量または油分濃度を高精度に計測する必要があり、コスト面で問題があると共に高油分濃度のドレンを少量供給する場合のポンプの信頼性に問題がある。   In order to process this whole range by one operation method, a large machine having the capability of the maximum oil flow concentration at the maximum drain flow rate is necessary, and there is a problem in terms of installation area and cost. In addition, there is a method to control the treatment liquid supply with high accuracy, but it is necessary to measure the drain flow rate or oil concentration with high accuracy, which is problematic in terms of cost and when supplying a small amount of high oil concentration drain. There is a problem with the reliability of the pump.

そこで前記2つの運転方法の特徴を生かして、ドレン流量が多く、油分濃度が低い場合には連続処理を行い、ドレン流量が少なく、油分濃度が高い場合には間歇運転を行うことにより、小型で高速処理可能な油水分離装置を構成できる。   Therefore, by taking advantage of the characteristics of the two operation methods, a continuous treatment is performed when the drain flow rate is high and the oil concentration is low, and intermittent operation is performed when the drain flow rate is low and the oil concentration is high. An oil / water separator capable of high-speed processing can be configured.

図8には連続運転と間歇運転を示しているが、間歇運転を2パターンにして中間域の余裕を広くすることも可能である。これらの運転パターン選択にはドレン流量または油分濃度の情報が必要である。油分濃度は短時間で計測する方法が無いので、運転パターン選択にはドレン流量の情報を用いる。ドレン流量は大気中の水分量、圧縮機吐出空気圧力、空気冷却器出口温度、凝縮水補集効率から計算できる。従って、大気温度と大気湿度を計測する方法がある。一方、通常は圧縮機からのドレンを一旦溜めるタンクを設けており、この中に液面計を取付け、液面の変化からドレン流量を算出する方法がある。また、大気温度のみを測定して、大気湿度100%としたドレン最大流量を計算し、この値を制御に用いることも可能である。実際にはこれらの方法を単独もしくは組合わせて制御に用いる。   Although FIG. 8 shows continuous operation and intermittent operation, it is also possible to widen the margin in the intermediate region by using two patterns of intermittent operation. Information on the drain flow rate or oil concentration is necessary for selecting these operation patterns. Since there is no method for measuring the oil concentration in a short time, information on the drain flow rate is used for selecting an operation pattern. The drain flow rate can be calculated from the amount of moisture in the atmosphere, compressor discharge air pressure, air cooler outlet temperature, and condensate collection efficiency. Therefore, there is a method for measuring atmospheric temperature and atmospheric humidity. On the other hand, there is usually a method in which a tank for temporarily storing the drain from the compressor is provided, and a liquid level gauge is attached therein, and the drain flow rate is calculated from the change in the liquid level. It is also possible to measure only the atmospheric temperature, calculate the maximum drain flow rate with an atmospheric humidity of 100%, and use this value for control. In practice, these methods are used alone or in combination for control.

油水分離装置10を具体化した場合の配置構成を図9で説明する。図9は、図1と左右が反転した形になっている。処理槽11は処理済液および浮上油を重力で排出するので上方に設置している。処理槽11の下側空間を有効利用するために第1ポンプ21,第2ポンプ31を処理槽11の下に配置し、その横下に浮上油タンク71を設置し、これらを配管で接続している。そしてこれら全体を筐体内に収納している。   An arrangement configuration when the oil-water separator 10 is embodied will be described with reference to FIG. FIG. 9 is in the form of the left and right reversed from FIG. The treatment tank 11 is disposed above because the treated liquid and the floating oil are discharged by gravity. In order to effectively use the lower space of the processing tank 11, the first pump 21 and the second pump 31 are arranged under the processing tank 11, a floating oil tank 71 is installed under the side, and these are connected by piping. ing. These are all housed in a housing.

このような配置によれば、設置面積を縮小化できる。   According to such an arrangement, the installation area can be reduced.

本発明の一実施形態を示す油水分離装置の全体系統図である。1 is an overall system diagram of an oil / water separator according to an embodiment of the present invention. 図1に示した油水分離装置における気泡粉砕手段の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the bubble crushing means in the oil-water separator shown in FIG. 図2に示した気泡粉砕手段における仕切板の平面図である。It is a top view of the partition plate in the bubble crushing means shown in FIG. 図1に示した油水分離装置における処理槽の分離部における処理液の流れを説明する図である。It is a figure explaining the flow of the process liquid in the separation part of the processing tank in the oil-water separator shown in FIG. 図1に示した油水分離装置における他の形態になる気泡粉砕手段の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the bubble grinding | pulverization means which becomes another form in the oil-water separator shown in FIG. 図2に示した気泡粉砕手段における他の形態になる仕切板の平面図である。It is a top view of the partition plate which becomes another form in the bubble crushing means shown in FIG. 図2に示した気泡粉砕手段におけるさらに他の形態になる仕切板の平面図である。It is a top view of the partition plate which becomes further another form in the bubble crushing means shown in FIG. 図1に示す油水分離装置の運転方法とドレン流量と油分濃度の関係を示す図である。It is a figure which shows the operating method of the oil-water separator shown in FIG. 1, the relationship between a drain flow rate, and oil content concentration. 図1に示す油水分離装置を具体化する際の各部の配置構成を示す図である。It is a figure which shows the arrangement configuration of each part at the time of actualizing the oil-water separator shown in FIG.

符号の説明Explanation of symbols

10…油水分離装置
11…処理槽
12…遮蔽板
16…管路
17…開口
21…第1ポンプ
31…第2ポンプ
33…ノズル
37,39…配管
38…気泡粉砕手段(気泡粉砕器)
B…仕切板
P…開口
R1〜Rn…部屋
41…排出配管
81…分離部
83…浮上油受け部
10 ... Oil-water separator
11 ... Processing tank
12 ... Shield plate
16 ... pipeline
17 ... Opening
21 ... First pump
31 ... Second pump
33 ... Nozzle
37, 39 ... Piping
38 ... Bubble crushing means (bubble crusher)
B ... Partition plate
P ... Opening
R1-Rn ... Room
41 ... discharge piping
81. Separation part
83. Floating oil receiving part

Claims (4)

処理槽に送る処理液に空気を混合し、空気を溶解した処理液を処理槽内の処理液中に放出し、処理液に溶解した空気を微細気泡として処理槽内の処理液に供給することによって処理液中の油分を浮上させ油水の分離を行なう油水分離装置において、
処理槽に処理液を送る配管に、複数の部屋を各部屋間における仕切板の開口を通して多段に連通してなる気泡粉砕手段を有し、前記気泡粉砕手段における各仕切板の開口の断面積は処理槽に処理液を送る配管の断面積と等しくされていることを特徴とする油水分離装置。
Air is mixed with the processing liquid sent to the processing tank, the processing liquid dissolved in the air is discharged into the processing liquid in the processing tank, and the air dissolved in the processing liquid is supplied to the processing liquid in the processing tank as fine bubbles. In the oil-water separator that separates the oil and water by floating the oil in the treatment liquid,
The piping for sending the processing solution in the processing tank, have a bubble breaking means comprising communicating a plurality of chambers in multiple stages through the opening in the partition plate between each room, the cross-sectional area of the openings of the partition plates in said bubble breaking means is An oil / water separator characterized by having a cross-sectional area equal to that of a pipe for sending a treatment liquid to a treatment tank .
処理槽に送る処理液に空気を混合し、空気を溶解した処理液を処理槽内の処理液中に放出し、処理液に溶解した空気を微細気泡として処理槽内の処理液に供給することによって処理液中の油分を浮上させ油水の分離を行なう油水分離装置において、
処理槽に処理液を送る配管に、複数の部屋を各部屋間における仕切板の開口を通して多段に連通してなる気泡粉砕手段を有し、前記気泡粉砕手段における各仕切板の開口で連通した処理液の流路は気泡粉砕手段の函体の下方にある入口から上方にある出口に向けて上昇していることを特徴とする油水分離装置。
Air is mixed with the processing liquid sent to the processing tank, the processing liquid dissolved in the air is discharged into the processing liquid in the processing tank, and the air dissolved in the processing liquid is supplied to the processing liquid in the processing tank as fine bubbles. In the oil-water separator that separates the oil and water by floating the oil in the treatment liquid,
The piping for sending the processing solution in the processing tank, have a bubble breaking means comprising communicating a plurality of chambers in multiple stages through the opening in the partition plate between the room and communicating with the opening of the partition plate of said bubble breaking means processing An oil-water separator according to claim 1, wherein the liquid flow path rises from the lower inlet of the bubble crushing means toward the upper outlet .
上記請求項に記載の油水分離装置において、各仕切板の開口は各部屋毎に互い違いな位置にあり、各仕切板の開口で連通した処理液の流路は蛇行していることを特徴とする油水分離装置。 In the oil / water separator according to claim 2 , the openings of the partition plates are in alternate positions for each room, and the flow path of the processing liquid communicating with the openings of the partition plates is meandering. Oil-water separator. 上記請求項に記載の油水分離装置において、複数の開口を設けた仕切板にあっては、各開口の断面積の和が配管の断面積の和と等しくされていることを特徴とする油水分離装
置。
The oil-water separator according to claim 1 , wherein the sum of the cross-sectional areas of the openings is equal to the sum of the cross-sectional areas of the pipes in the partition plate provided with a plurality of openings. Separation device.
JP2004058344A 2004-03-03 2004-03-03 Oil / water separator Expired - Lifetime JP4072507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058344A JP4072507B2 (en) 2004-03-03 2004-03-03 Oil / water separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058344A JP4072507B2 (en) 2004-03-03 2004-03-03 Oil / water separator

Publications (3)

Publication Number Publication Date
JP2005246183A JP2005246183A (en) 2005-09-15
JP2005246183A5 JP2005246183A5 (en) 2005-11-10
JP4072507B2 true JP4072507B2 (en) 2008-04-09

Family

ID=35027184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058344A Expired - Lifetime JP4072507B2 (en) 2004-03-03 2004-03-03 Oil / water separator

Country Status (1)

Country Link
JP (1) JP4072507B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI440607B (en) * 2011-12-13 2014-06-11 Vacuum Elimination Device and Method
CN113244662B (en) * 2021-04-10 2023-09-05 滨州市新科奥德科技有限公司 Liquid layering separation device

Also Published As

Publication number Publication date
JP2005246183A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP2011020025A (en) Oil-water separator
JP2005007212A (en) Cyclone type foreign matter separator
JP5687189B2 (en) Fluid processing apparatus and fluid processing method
JP5326377B2 (en) Nitrogen displacement deoxygenator
JP4072507B2 (en) Oil / water separator
JP4215548B2 (en) Oil / water separator
JP4072334B2 (en) Oil / water separator
CN111905412B (en) Liquid treatment apparatus and liquid treatment method
JP4072356B2 (en) Oil / water separator and oil / water separator
JP5147200B2 (en) Oil / water separator
JP4194469B2 (en) Oil / water separator
JP2011240339A (en) Oil-water separation method and oil-water separator
JP6912550B2 (en) Liquid treatment equipment and liquid treatment method
JP4126203B2 (en) Oil-water separation method and apparatus
JP4759306B2 (en) Oil-water separation method and oil-water separation device
JP2007144353A (en) Oil/water separator
JP4088609B2 (en) Oil-water separation method and apparatus
JP2010264449A (en) Flotation separation apparatus
KR100854563B1 (en) Condensation water tank and oil-water separator where condensation water tank is combined with aii
JP2006167560A (en) Oil/water separator
KR101597311B1 (en) Dissolved air circulation water generator for dissolved air injection type flotation tank
JP2006159142A (en) Oil-water separation method and oil-water separator
JP2007000715A (en) Method and apparatus for oil-water separation
JP2017100136A (en) Floating-type separation device
JP5548412B2 (en) Oil / water separator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060823

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080121

R150 Certificate of patent or registration of utility model

Ref document number: 4072507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

EXPY Cancellation because of completion of term