JP2010264449A - Flotation separation apparatus - Google Patents

Flotation separation apparatus Download PDF

Info

Publication number
JP2010264449A
JP2010264449A JP2010166668A JP2010166668A JP2010264449A JP 2010264449 A JP2010264449 A JP 2010264449A JP 2010166668 A JP2010166668 A JP 2010166668A JP 2010166668 A JP2010166668 A JP 2010166668A JP 2010264449 A JP2010264449 A JP 2010264449A
Authority
JP
Japan
Prior art keywords
water
treated
treated water
flotation separation
floating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010166668A
Other languages
Japanese (ja)
Inventor
Yoshitada Hamazaki
芳忠 浜崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2010166668A priority Critical patent/JP2010264449A/en
Publication of JP2010264449A publication Critical patent/JP2010264449A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flotation separation apparatus without bursting an air bubble floating on the surface, further repeatedly mixing treated water with a polluted matter and having the possibility of mixing the treated water with the floated polluted matter even if the floated polluted matter descends in the apparatus for obtaining stable treated water having water quality of a fixed value or lower even if the amount of the polluted matter included in water to be treated fluctuates. <P>SOLUTION: The flotation separation apparatus comprises a flotation separation tank 1 including an air bubble contact area 10 for carrying out flotation separation treatment of the water to be treated 17, a gas-liquid separation area 5 for separating a bubble layer and the treated water 11 subjected to the flotation separation treatment in the air bubble contact area 10, and a treated water transfer area 6 for transferring the treated water 11 outside the flotation separation tank 1. In the flotation separation apparatus, the pressure in a space 9 on the surface where the polluted matter 8 separated by the flotation separation treatment floats and temporarily remains is increased higher than atmospheric pressure, and also the treated water is repeatedly introduced into the air bubble contact area 10 through a circulation pass 21 by a circulation pump 20. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、水処理装置に関するものであり、更に詳しくは微細気泡を利用した浮上分離装置に関するものである。   The present invention relates to a water treatment apparatus, and more particularly to a flotation separation apparatus using fine bubbles.

泡沫分離装置などの浮上分離装置は、被処理水中に供給する微細気泡により、該被処理水中に溶存する有機物や浮遊する微細な浮遊物を分離除去する装置であり、該被処理水中に該微細気泡を供給して、該被処理水の水面上に、該被処理水中に溶存する有機物や微細な浮遊物などの汚濁物をスカム(泡沫)として浮上させ、該スカム(泡沫)を分離し系外へ排出することで処理が行われる。   A floating separation device such as a foam separation device is a device that separates and removes organic matter dissolved in the treated water and floating fine suspended matter using fine bubbles supplied into the treated water. Air bubbles are supplied, and contaminants such as organic matter and fine suspended matters dissolved in the water to be treated are floated as scum (foam) on the surface of the water to be treated, and the scum (foam) is separated and separated. Processing is performed by discharging to the outside.

従来、浮上分離装置における処理性能の向上に関しては、被処理水中に微細気泡を供給し、微細気泡により浮上してくる泡沫を、効率よく浮上分離槽から分離し排出するように構造の改良がなされていた(特許文献1参照)。この浮上分離方法における浮上分離装置は、図9に示すように、泡沫分離装置99内の内筒100の下方には、内筒100に原水107を導入する導入管101が接続されており、外部から空気113を取り込み、内筒100の内部に微細な泡111を発生させる散気管102が設置されている。内筒100の外側には外筒103が設置されており、内筒100で泡沫分離処理された処理水110が外筒103内を上から下に向かって流れていくように構成されている。なお、外筒103の下方には、オーバーフロー管104が接続されており、外筒103の上方には、泡沫と処理水110とを分離する堰105が設けられ、堰105に連通して、汚泡水108を排出する泡排出管106が設けられている。   Conventionally, with regard to the improvement of the processing performance in the levitation separator, the structure has been improved so that fine bubbles are supplied into the water to be treated, and the bubbles floating up by the fine bubbles are efficiently separated and discharged from the levitation separation tank. (See Patent Document 1). As shown in FIG. 9, the levitation separation apparatus in this levitation separation method is connected to an introduction pipe 101 for introducing raw water 107 into the inner cylinder 100 below the inner cylinder 100 in the foam separation apparatus 99. An air diffuser 102 that takes in air 113 from the inside and generates fine bubbles 111 inside the inner cylinder 100 is installed. An outer cylinder 103 is installed on the outer side of the inner cylinder 100, and the treated water 110 that has been subjected to foam separation processing in the inner cylinder 100 is configured to flow from the top to the bottom in the outer cylinder 103. An overflow pipe 104 is connected to the lower side of the outer cylinder 103, and a weir 105 that separates the foam and the treated water 110 is provided above the outer cylinder 103. A bubble discharge pipe 106 for discharging the bubble water 108 is provided.

以上のように構成することで、泡沫分離装置99内の水位112を一定に保つことができ、またオーバーフロー管104に接続されている水面高さ調節管114の高さを変更することで、水位112から堰105までの高さを任意に変更できるために、泡沫分離装置99で効率良い処理ができることとなる。   By configuring as described above, the water level 112 in the foam separating device 99 can be kept constant, and the water level can be kept constant by changing the height of the water surface height adjusting pipe 114 connected to the overflow pipe 104. Since the height from 112 to the weir 105 can be arbitrarily changed, the foam separation device 99 can perform efficient processing.

特開2001−170617号公報JP 2001-170617 A

しかしながら、泡沫分離装置99などの浮上分離装置で処理しようとする原水107は、溶存する有機物や浮遊する微細な懸濁物質などの汚濁物の量が一定にならないことが多い。そのため、従来の泡沫分離装置99で原水107を処理しようとする場合、原水107の汚濁物濃度に泡沫分離装置99の性能が左右されるために、内筒100の内部に内筒100の内部で泡沫分離処理できる汚濁物濃度以上の原水107が導入された場合は、泡沫分離処理後の処理水110に汚濁物が残存し、処理水の水質を一定の値以下に保持できないという問題点があった。また、泡沫分離装置99の欠点である水面上に浮上した気泡が圧力開放を受けて破裂し、水面上に気泡と共に浮上した汚濁物の一部が再度処理水中に混入するという問題点についてはなんら解決されていなかった。   However, the raw water 107 to be treated by the floating separation device such as the foam separation device 99 often does not have a constant amount of contaminants such as dissolved organic matter and fine suspended solids. Therefore, when processing the raw water 107 with the conventional foam separation device 99, the performance of the foam separation device 99 depends on the contaminant concentration of the raw water 107. When the raw water 107 having a concentration higher than the concentration of the contaminants that can be subjected to the foam separation process is introduced, the contaminants remain in the treated water 110 after the foam separation process, and the quality of the treated water cannot be maintained below a certain value. It was. Further, there is no problem with the problem that the bubbles floating on the water surface, which is a drawback of the foam separation device 99, are ruptured due to pressure release, and some of the contaminants floating along with the bubbles on the water surface are mixed into the treated water again. It was not solved.

本発明は、以上のような問題点に鑑みなされたものであり、被処理水に含まれる汚濁物の量が増減しても水質が一定の値以下の安定した処理水が得られる装置であって、水面上に浮上した気泡が破裂することなく、また、汚濁物が再度処理水に混入することがなく、浮上した汚濁物が下降したとしても処理水に混入する恐れのない浮上分離装置を提供することを目的とする。   The present invention has been made in view of the above problems, and is an apparatus that can obtain stable treated water having a water quality of a certain value or less even when the amount of contaminants contained in the treated water is increased or decreased. In order to prevent the bubbles floating on the water surface from rupturing, the contaminants will not be mixed into the treated water again, and even if the floated contaminants descend, there is no possibility of mixing in the floating separator. The purpose is to provide.

本発明の浮上分離装置は、被処理水中に微細気泡を供給し、該被処理水中の汚濁物を浮上させることにより、該被処理水から汚濁物を分離除去する浮上分離装置において、
前記浮上分離槽内の前記被処理水の水面上が天板で覆われて水面上空間が形成されており、前記水面上空間に設けられた連通口に外部配管が接続され、前記外部配管の出口端部が、前記浮上分離槽の外部に用意された水槽内に水没させられて設置されていることにより、前記水面上空間が、大気圧よりも高い圧力で保持され、
浮上分離処理された処理水を再度浮上分離槽内へ循環させることにより浮上分離処理が行われることを特徴とする。
The levitation separator of the present invention is a levitation separator that separates and removes contaminants from the water to be treated by supplying fine bubbles into the water to be treated and floating the contaminants in the water to be treated.
The surface of the water to be treated in the levitation separation tank is covered with a top plate to form a space above the water surface, and an external pipe is connected to a communication port provided in the space above the water surface. The outlet end portion is submerged in a water tank prepared outside the floating separation tank, so that the space above the water surface is maintained at a pressure higher than atmospheric pressure,
The floating separation treatment is performed by circulating the treated water subjected to the floating separation treatment again into the floating separation tank.

本発明は以上のような構造をしており、以下の優れた効果が得られる。   The present invention has the structure as described above, and the following excellent effects can be obtained.

(1)水面上空間を加圧することで、被処理水中に含まれる汚濁物の濃度が増減しても処理水の汚濁物の濃度を一定の値以下に保つことができ、また処理水を循環させることにより、一度通過させて微細気泡に接触せず処理できなかった被処理水も再度接触することにより処理性能を向上することができる。   (1) By pressurizing the space above the surface of the water, the concentration of contaminants in the treated water can be kept below a certain value even if the concentration of contaminants contained in the treated water increases or decreases, and the treated water is circulated. By making it pass, the treatment performance can be improved by bringing the water to be treated that has not been treated without being brought into contact with fine bubbles once again into contact.

(2)(1)に加えて、処理水を再循環させることにより、一度通過させて微細気泡に接触せず処理できなかった被処理水も再度接触することにより処理性能を向上させ、さらに水面上空間を加圧することで、水面上に浮上した微細気泡が破壊されにくくなり、被処理水中に含まれる汚濁物の濃度が増減しても処理水の汚濁物の濃度を一定の値以下に保つことにより、濁度の除去率が高い処理水を得ることができる。   (2) In addition to (1), the treated water is recirculated to improve the treatment performance by re-contacting the water to be treated which has not been treated without passing through the fine bubbles once again. By pressurizing the upper space, the fine bubbles that float on the surface of the water are less likely to be destroyed, and the concentration of the contaminants in the treated water is kept below a certain value even if the concentration of the contaminants in the treated water increases or decreases. Thus, treated water having a high turbidity removal rate can be obtained.

(3)気泡接触エリアと気液分離エリアを上下に配置することで、処理水に含まれる非常に細かい気泡を除去する為のエリアを別に設けなくてすむことから、浮上分離槽の設置面積を小さくでき、浮上分離槽がコンパクトにできる。   (3) Since the bubble contact area and the gas-liquid separation area are arranged one above the other, it is not necessary to provide a separate area for removing very fine bubbles contained in the treated water. It can be made small and the floating separation tank can be made compact.

本発明の浮上分離装置の第1の実施形態の模式図である。It is a mimetic diagram of a 1st embodiment of a floating separation device of the present invention. 本発明の浮上分離装置の第2の参考実施形態の模式図である。It is a schematic diagram of 2nd reference embodiment of the floating separation apparatus of this invention. 本発明の浮上分離装置の第3の実施形態の模式図である。It is a schematic diagram of 3rd Embodiment of the floating separation apparatus of this invention. 本発明の比較例の浮上分離装置の模式図である。It is a schematic diagram of the floating separation apparatus of the comparative example of this invention. 実施例1におけるCODの変化を測定した結果を示すグラフである。4 is a graph showing the results of measuring changes in COD in Example 1. 参考実施例2におけるCODの変化を測定した結果を示すグラフである。It is a graph which shows the result of having measured change of COD in reference example 2. FIG. 実施例3におけるCODの変化を測定した結果を示すグラフである。It is a graph which shows the result of having measured change of COD in Example 3. FIG. 比較例におけるCODの変化を測定した結果を示すグラフである。It is a graph which shows the result of having measured change of COD in a comparative example. 従来の浮上分離装置を示す模式図である。It is a schematic diagram which shows the conventional floating separator.

以下、本発明の好ましい実施の形態について図面を参照して説明するが、本発明が本実施形態に限定されないことは言うまでもない。図1は本発明の浮上分離装置の第1の実施形態の模式図である。図2は、本発明の浮上分離装置の第2の参考実施形態の模式図である。図3は、本発明の浮上分離装置の第3の実施形態の模式図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings, but it goes without saying that the present invention is not limited to these embodiments. FIG. 1 is a schematic view of a first embodiment of a flotation separation apparatus of the present invention. FIG. 2 is a schematic diagram of a second reference embodiment of the floating separation apparatus of the present invention. FIG. 3 is a schematic view of a third embodiment of the floating separation apparatus of the present invention.

〔実施形態1〕
図1において、1は浮上分離槽であり、気泡接触エリア10の下方に気液分離エリア5が設けられた縦型の浮上分離槽である。浮上分離槽1内は、被処理水17が浮上分離処理される気泡接触エリア10と、気泡接触エリア10で浮上分離処理された泡沫層と処理水11とを分離する気液分離エリア5と、処理水11を浮上分離槽1外へ移送する処理水移送エリア6とで構成されている。浮上分離槽1の中間付近には、被処理水17を外部から導入させる導入口4が設けられ、導入口4よりも下方に浮上分離槽1に微細気泡を供給する微細気泡発生装置2が架台(図示しない)により被処理水中に固定されている。微細気泡発生装置2には、浮上分離槽1の外部から空気を導入するために空気管3が接続されている。さらに微細気泡発生装置2よりも下方には、被処理水17から分離された汚濁物8と処理水11とを確実に分離するための気液分離エリア5が設けられている。なお、気液分離エリア5は、気液分離エリア5を通過する処理水11の流速に対して、気液分離エリア5に入り込んだ微細気泡の浮上速度が速くなるように構成してある。すなわち、気液分離エリア5の微細気泡の浮上速度が、浮上分離槽1内の水の循環流量と浮上分離槽1内に流入する被処理水17の流量の和を気液分離エリア5の断面積で割った値より、大きくなるように槽の断面積に対する被処理水17の流量を調整している。
[Embodiment 1]
In FIG. 1, reference numeral 1 denotes a floating separation tank, which is a vertical floating separation tank in which a gas-liquid separation area 5 is provided below the bubble contact area 10. In the levitation separation tank 1, a bubble contact area 10 where the water to be treated 17 is subjected to levitation separation processing, a gas-liquid separation area 5 which separates the foam layer and the treatment water 11 which are levitation separation processed in the bubble contact area 10, It is comprised with the treated water transfer area 6 which transfers the treated water 11 out of the floating separation tank 1. Near the middle of the levitation separation tank 1, an introduction port 4 for introducing the treated water 17 from the outside is provided, and a fine bubble generator 2 that supplies fine bubbles to the levitation separation tank 1 below the introduction port 4 is a gantry. (Not shown) is fixed in the water to be treated. An air pipe 3 is connected to the fine bubble generator 2 in order to introduce air from the outside of the floating separation tank 1. Further, a gas-liquid separation area 5 is provided below the fine bubble generating device 2 for reliably separating the contaminant 8 separated from the treated water 17 and the treated water 11. The gas-liquid separation area 5 is configured such that the rising speed of the fine bubbles that have entered the gas-liquid separation area 5 is faster than the flow rate of the treated water 11 passing through the gas-liquid separation area 5. That is, the ascending speed of the fine bubbles in the gas-liquid separation area 5 determines the sum of the circulation flow rate of the water in the levitation separation tank 1 and the flow rate of the treated water 17 flowing into the levitation separation tank 1. The flow rate of the water to be treated 17 with respect to the cross-sectional area of the tank is adjusted to be larger than the value divided by the area.

一方、気液分離エリア5に隣接した位置に、処理水11を外部に移送する処理水移送エリア6が設けられ、気液分離エリア5の下方と処理水移送エリア6の下方が連通する分離板16で仕切られている。さらに、処理水移送エリア6の上方には浮上分離槽1の水位を一定に保つための堰7が設けられ、処理水移送エリア6の下方には、循環ポンプ20が設けられており、循環経路21によって循環ポンプ20と気泡接触エリア10が連通されている。   On the other hand, a treatment water transfer area 6 for transferring the treated water 11 to the outside is provided at a position adjacent to the gas-liquid separation area 5, and a separation plate in which the lower part of the gas-liquid separation area 5 and the lower part of the treated water transfer area 6 communicate with each other. 16 is partitioned. Further, a weir 7 is provided above the treated water transfer area 6 to keep the water level of the levitation separation tank 1 constant, and a circulation pump 20 is provided below the treated water transfer area 6, The circulation pump 20 and the bubble contact area 10 are in communication with each other.

本実施形態では、微細気泡発生装置2は、モーターにより駆動され、空気管3により空気を吸引する自給式であるが、微細気泡を発生することができるものであれば多孔板などの散気装置でも良く、特に限定されるものではない。   In this embodiment, the fine bubble generating device 2 is a self-contained type that is driven by a motor and sucks air through the air pipe 3, but an air diffuser such as a perforated plate can be used as long as it can generate fine bubbles. However, it is not particularly limited.

一方、浮上分離槽1内の水面上には、浮上分離処理により分離された汚濁物8が浮上し一時滞留する水面上空間9が天板19で覆うことにより形成されており、水面上空間9の上方には、随時発生してくる分離された汚濁物8を外部に搬送するための連通口12が設けられている。さらに、連通口12には、外部配管13が接続され、分離された汚濁物8を浮上分離槽1の系外へ移送するよう構成されている。   On the other hand, on the water surface in the levitation separation tank 1, a water surface space 9 where the contaminants 8 separated by the levitation separation process float and temporarily stay is covered with a top plate 19. A communication port 12 for conveying the separated pollutant 8 generated at any time to the outside is provided above the. Furthermore, an external pipe 13 is connected to the communication port 12, and the separated contaminant 8 is configured to be transferred to the outside of the floating separation tank 1.

本実施形態では、連通口12は気液分離エリア5の上部に設けられているが、浮上分離槽1の水面上空間9内に位置し、浮上し分離された汚濁物8を水面上空間9から排出されるよう設けられていれば良く、特に限定されるものではない。   In the present embodiment, the communication port 12 is provided in the upper part of the gas-liquid separation area 5. However, the communication port 12 is located in the water surface space 9 of the floating separation tank 1, and the polluted matter 8 that has floated and separated is placed in the water surface space 9. There is no particular limitation as long as it is provided so as to be discharged.

外部配管13の出口端部は、別途用意された水槽14内に入っている汚濁濃縮水15に水没させられて設置されている。さらに、水槽14には、汚濁物移送口18が設けられている。   The outlet end portion of the external pipe 13 is set to be submerged in a polluted concentrated water 15 contained in a separately prepared water tank 14. Further, the water tank 14 is provided with a pollutant transfer port 18.

以下、図1を用いて本実施形態の作用について説明する。浮上分離処理される被処理水17は、浮上分離槽1に設けられた導入口4から浮上分離槽1内の気泡接触エリア10内に導入される。被処理水17中の汚濁物8は、微細気泡発生装置2により発生される微細気泡が付着することにより、気泡接触エリア10内を被処理水17をともなって上方へ移動していく。被処理水17と汚濁物8は、浮上分離槽内1の水面付近に達すると、被処理水17中の微細気泡が付着した汚濁物8は、水面上に浮上し被処理水17から分離される。汚濁物8が分離された被処理水17は処理水11として気泡接触エリア10内の外側を下降していく。処理水11は、微細気泡発生装置2の下方に設けられた気液分離エリア5に向かって下方に進み、気液分離エリア5を通過していく。なお、横型の浮上分離槽に較べると、気泡接触エリア10と気液分離エリアを上下に配置することで、非常に細かい気泡を除去する為のエリアを仕切り板を用いて別に隣接して設けたりする必要がないので、浮上分離槽1の設置面積を小さくできるという効果が生じる。気液分離エリア5を通過した処理水11は処理水移送エリア6を経て堰7を越えて流れ、浮上分離槽1の系外へ流出する。一方、処理水移送エリア6内の処理水11の一部は、循環ポンプ20によって循環経路21を通って再び気泡接触エリア10へ導入され、繰り返し浮上分離処理される。   Hereinafter, the operation of the present embodiment will be described with reference to FIG. The treated water 17 subjected to the floatation separation process is introduced into the bubble contact area 10 in the floatation separation tank 1 from the introduction port 4 provided in the floatation separation tank 1. The pollutant 8 in the water to be treated 17 moves upward along with the water to be treated 17 in the bubble contact area 10 when the fine bubbles generated by the fine bubble generator 2 are attached. When the water to be treated 17 and the pollutant 8 reach the vicinity of the water surface in the floating separation tank 1, the pollutant 8 to which fine bubbles in the water to be treated 17 adhere is floated on the water surface and separated from the water to be treated 17. The The treated water 17 from which the contaminants 8 have been separated descends as the treated water 11 outside the bubble contact area 10. The treated water 11 proceeds downward toward the gas-liquid separation area 5 provided below the fine bubble generator 2 and passes through the gas-liquid separation area 5. Compared to the horizontal levitation separation tank, the bubble contact area 10 and the gas-liquid separation area are arranged vertically so that an area for removing very fine bubbles can be provided separately by using a partition plate. Since there is no need to do this, there is an effect that the installation area of the floating separation tank 1 can be reduced. The treated water 11 that has passed through the gas-liquid separation area 5 flows over the weir 7 through the treated water transfer area 6, and flows out of the floating separation tank 1. On the other hand, a part of the treated water 11 in the treated water transfer area 6 is again introduced into the bubble contact area 10 through the circulation path 21 by the circulation pump 20 and repeatedly floated and separated.

循環ポンプ20にて処理水を循環経路21を経て再度気泡接触エリア10に導入する場合は、微細気泡により汚濁物を浮上させる為に、下向きに流れる槽内の水の流速が、微細気泡の浮上速度よりも遅くなるように設定されている。   When the treated water is introduced again into the bubble contact area 10 via the circulation path 21 by the circulation pump 20, the flow rate of the water in the tank flowing downward is increased to raise the fine bubbles in order to raise the contaminants by the fine bubbles. It is set to be slower than the speed.

気泡接触エリア10の水面上は、微細気泡の作用を受けて被処理水17から分離された汚濁物8が被処理水17の水面上に泡沫層を形成する。泡沫層は、浮上分離槽1内に被処理水17が導入され続ける限り分離された汚濁物8が浮上してくるために、泡沫層は水面上空間9の上方へと押し上げられていく。一方、水面上空間9の上方では、浮上分離槽1に斜めに配置された天板19によって、分離された汚濁物8が連通口12に向かって誘導される。このような天板19の配置によって、浮上した分離された汚濁物8はさらに下方から浮上してくる分離された汚濁物8に押し上げられるようにして連通口12付近に収集されることになる。なお、浮上した汚濁物8の性状が、盛り上がりにくく、水面上にとどまるようなスカム状のものであれば、水面上に排出トラフ(図示しない)を設け、掻き寄せ機等で掻き寄せ排出するようにしてもよい。   On the water surface of the bubble contact area 10, the contaminants 8 that are separated from the water to be treated 17 by the action of fine bubbles form a foam layer on the water surface of the water to be treated 17. As long as the treated water 17 continues to be introduced into the floating separation tank 1, the foamed layer is pushed up above the water surface space 9 because the separated contaminants 8 float up. On the other hand, above the water surface space 9, the separated contaminants 8 are guided toward the communication port 12 by the top plate 19 disposed obliquely in the floating separation tank 1. By such an arrangement of the top plate 19, the separated and separated contaminants 8 are collected in the vicinity of the communication port 12 so as to be pushed up by the separated and separated contaminants 8 that rise from below. In addition, if the nature of the floating contaminants 8 is a scum that is difficult to rise and stays on the surface of the water, a discharge trough (not shown) is provided on the surface of the water so that it is scraped and discharged by a scraper or the like. It may be.

このようにして連通口12付近に分離され収集された汚濁物8は、連通口12を通り、外部配管13へ押し出され、別に用意された水槽14へ移送され、浮上分離槽1より排出される。このとき外部配管13の出口側端部の、水没深さを変えることで被処理水17の水面上空間の圧力を簡単に増減でき、また、外部配管13内を移送される汚濁物8は、水面上空間9に保持されている圧力以上になった圧力により、外部配管13の出口を通り水槽14内にたまっている汚濁濃縮水15の中に押し出されることで、浮上分離槽1の系外に押し出されることとなる。   The pollutant 8 separated and collected in the vicinity of the communication port 12 in this way is pushed out to the external pipe 13 through the communication port 12, transferred to a separately prepared water tank 14, and discharged from the floating separation tank 1. . At this time, the pressure of the water surface space of the water to be treated 17 can be easily increased / decreased by changing the water immersion depth at the outlet side end of the external pipe 13, and the contaminant 8 transferred through the external pipe 13 is By being pushed into the polluted concentrated water 15 accumulated in the water tank 14 through the outlet of the external pipe 13 by the pressure that is equal to or higher than the pressure held in the water surface space 9, it is outside the system of the floating separation tank 1. Will be pushed out.

また、浮上分離槽1内の水面上空間9の圧力を上昇させると、浮上分離槽1内の気泡接触エリア10の水位が水面上空間9の圧力により押されて低下していくので、水面上空間9を加圧しすぎると、気泡接触エリア10の水位が、微細気泡発生装置2が露出する位置にまで押下げられ、微細気泡が発生しなくなり、浮上分離処理がなされなくなる。よって、水面上空間9に加える圧力は、気泡接触エリア10が形成される圧力以下、すなわち気泡発生作用が行える範囲の圧力以下としなければならない。さらに、水面上空間9に加える圧力は、水面上に浮上した微細気泡が急激な圧力開放にさらされないように1kPa以上とすることが望ましい。一方、回分式の浮上分離槽(図示しない)で浮上分離を行う場合は、微細気泡発生装置2で供給することができる空気圧力以上の圧力を水面上空間9にかけると、微細気泡発生装置2より微細気泡が供給されなくなるために、浮上分離自体が行われなくなるので、水面上空間9に保持する圧力は微細気泡発生装置2で加圧できる空気圧未満とすることが望ましい。   Moreover, when the pressure of the water surface space 9 in the levitation separation tank 1 is increased, the water level in the bubble contact area 10 in the levitation separation tank 1 is pushed down by the pressure of the water surface space 9, so If the space 9 is pressurized too much, the water level in the bubble contact area 10 is pushed down to a position where the fine bubble generating device 2 is exposed, so that no fine bubbles are generated and the floating separation process is not performed. Therefore, the pressure applied to the water surface space 9 must be equal to or lower than the pressure at which the bubble contact area 10 is formed, that is, equal to or lower than the pressure within a range where the bubble generating action can be performed. Furthermore, it is desirable that the pressure applied to the water surface space 9 is 1 kPa or more so that fine bubbles floating on the water surface are not exposed to rapid pressure release. On the other hand, when flotation separation is performed in a batch-type flotation separation tank (not shown), when a pressure higher than the air pressure that can be supplied by the fine bubble generating device 2 is applied to the water surface space 9, the fine bubble generating device 2 is used. Since the fine bubbles are not supplied, and the floating separation itself is not performed, the pressure held in the water surface space 9 is preferably less than the air pressure that can be pressurized by the fine bubble generator 2.

このようにして水面上空間9を大気圧よりも高い圧力にすることで、分離された汚濁物8は、水面上に浮上してきた際に、急激な圧力開放を受けないことから、浮上してきた分離された汚濁物8は、水面上に浮上固定している気泡を崩すことなく泡沫層を形成する。   By making the water surface space 9 higher than the atmospheric pressure in this way, the separated pollutant 8 has risen because it does not receive a sudden pressure release when it floats on the water surface. The separated contaminants 8 form a foam layer without breaking the bubbles that are levitated and fixed on the water surface.

更に処理水11を再度処理するように循環ポンプ20と循環経路21を設けることで、処理水11に含まれる非常に細かい気泡を浮上分離する機会が増すために、従来に比べて処理性能が極めて高くなり、被処理水17に含まれる汚濁物が増減しても汚濁物の濃度が一定の値以下の処理水が得られることとなる。   Further, by providing the circulation pump 20 and the circulation path 21 so as to treat the treated water 11 again, the opportunity to float and separate very fine bubbles contained in the treated water 11 is increased. Even if the amount of contaminants contained in the water to be treated 17 increases or decreases, treated water having a concentration of the contaminants below a certain value can be obtained.

〔参考実施形態2〕
次に本発明の浮上分離装置の第2の参考実施形態を示す。図2において、22は連通孔を有する上向きの略笠状の遮へい板であり、浮上分離槽1内の微細気泡発生装置2よりも上方の気泡接触エリア10に、二つ設けられ、浮上分離槽1内を上下に区画するように配置されている。本実施形態においては、連通孔を有する上向きの略笠状の遮へい板22は二つ配置しているが、少なくとも一つ以上であればよく、個数は特に限定されるものではない。
[Reference Embodiment 2]
Next, a second reference embodiment of the floating separation apparatus of the present invention will be shown. In FIG. 2, reference numeral 22 denotes an upward substantially shade-shaped shielding plate having a communication hole, and two are provided in the bubble contact area 10 above the fine bubble generating device 2 in the floating separation tank 1. It arrange | positions so that the inside of 1 may be divided up and down. In the present embodiment, two upward substantially shade-shaped shielding plates 22 having communication holes are disposed, but at least one is sufficient, and the number is not particularly limited.

浮上分離槽1内に、連通孔を有する上向きの略笠状の遮へい板22を設けたことと、循環ポンプ20及び循環経路21が設置されていないこと以外は、第1の実施形態と同じであるため説明を省略する。   The same as in the first embodiment except that an upward substantially shade-shaped shielding plate 22 having a communication hole is provided in the levitation separation tank 1 and that the circulation pump 20 and the circulation path 21 are not installed. Since there is, explanation is omitted.

以下、図2を用いて本実施形態の作用について説明する。浮上分離処理される被処理水17は、浮上分離槽1に設けられた導入口4から浮上分離槽1内の気泡接触エリア10内に導入される。被処理水17中の汚濁物8は、微細気泡発生装置2により発生される微細気泡が付着することにより、気泡接触エリア10内を被処理水17をともなって上方へ移動していく。一方、水面付近に達すると気泡が付着した汚濁物8は水面上に浮上し、被処理水17は気泡接触エリア10内の外側を下降することとなる。この際に、汚濁物8の中でも微細な汚濁物23は、浮上しきれずに被処理水17と共に下降していく。このような下降流に乗った微細な汚濁物23の下降を防ぐ為に、気泡接触エリア10には、連通孔を有する上向きの略笠状の遮へい板22が気泡接触エリア10を区画するように設けられている。この連通孔を有する上向きの略笠状の遮へい板22により、被処理水17と共に下降してきた微細な汚濁物23は気液分離エリア5まで下降することなく、再度上昇する被処理水17の流れに乗って上昇することとなるので処理水11に混入する恐れが無くなる。   Hereinafter, the operation of the present embodiment will be described with reference to FIG. The treated water 17 subjected to the floatation separation process is introduced into the bubble contact area 10 in the floatation separation tank 1 from the introduction port 4 provided in the floatation separation tank 1. The pollutant 8 in the water to be treated 17 moves upward along with the water to be treated 17 in the bubble contact area 10 when the fine bubbles generated by the fine bubble generator 2 are attached. On the other hand, when it reaches the vicinity of the water surface, the contaminant 8 to which bubbles are attached floats on the water surface, and the water to be treated 17 descends outside the bubble contact area 10. At this time, the fine pollutant 23 among the pollutants 8 is not lifted up and descends together with the water to be treated 17. In order to prevent the fine contaminants 23 riding on such a downward flow from descending, the bubble contact area 10 is defined so that an upward substantially shade-shaped shielding plate 22 having a communication hole defines the bubble contact area 10. Is provided. Due to the upward substantially shade-shaped shielding plate 22 having the communication hole, the fine contaminants 23 that have descended together with the treated water 17 do not descend to the gas-liquid separation area 5, and the flow of the treated water 17 that rises again. Therefore, there is no risk of being mixed into the treated water 11.

一方、汚濁物8が除去された処理水11は、微細気泡発生装置2の下方に設けられた気液分離エリア5を下方に向かって進み、気液分離エリア5を通過することで、該処理水11に含まれる微細気泡は確実に分離される。なお、気泡接触エリア10と気液分離エリア5を上下に配置することで、微細気泡の上昇速度が処理水11の下降流速よりも常に速くなり、さらに汚濁物8は微細気泡により常に上向きの浮力を受けるために、気液分離エリア5へ汚濁物8が下降することが殆どなくなる。そのため、気液分離エリア5の高さを低くでき、泡沫分離槽1がコンパクトにできるという効果が生じる。気液分離エリア5を通過した処理水11は処理水移送エリア6を経て堰7を越えて流れ、浮上分離槽1の系外へ流出する。   On the other hand, the treated water 11 from which the contaminants 8 have been removed proceeds downward in the gas-liquid separation area 5 provided below the fine bubble generating device 2 and passes through the gas-liquid separation area 5, whereby the treatment water 11 is removed. Fine bubbles contained in the water 11 are reliably separated. By arranging the bubble contact area 10 and the gas-liquid separation area 5 above and below, the rising speed of the fine bubbles is always faster than the descending flow rate of the treated water 11, and the pollutant 8 always has upward buoyancy due to the fine bubbles. As a result, the contaminant 8 hardly falls to the gas-liquid separation area 5. Therefore, the effect that the height of the gas-liquid separation area 5 can be made low and the foam separation tank 1 can be made compact is produced. The treated water 11 that has passed through the gas-liquid separation area 5 flows over the weir 7 through the treated water transfer area 6, and flows out of the floating separation tank 1.

以下、分離された汚濁物8の移送、水面上空間9の加圧方法については、第1の実施形態と同じであるため、説明を割愛する。   Hereinafter, the method for transferring the separated contaminants 8 and the method for pressurizing the water surface space 9 are the same as those in the first embodiment, and thus the description thereof is omitted.

このようにして水面上空間9を大気圧よりも高い圧力にすることで、分離された汚濁物8は、被処理水17の水面上に浮上してきた際に、急激な圧力開放を受けないことから、浮上してきた分離された汚濁物8は水面上で分離された汚濁物8を浮上固定している気泡を崩すことなく泡沫層を形成する。更に連通孔を有する上向きの略笠状の遮へい板22を気泡接触エリア10が区画されるように設けることで、微細な汚濁物23が処理水移送エリア6まで下降することを防ぐことができる。このように作用することで、分離された汚濁物8が処理水11に再度混合されることがなくなり、従来に比べて処理性能が極めて高くなり、被処理水17に含まれる汚濁物が増減しても汚濁物濃度が一定の値以下の処理水が得られることとなる。   By making the water surface space 9 higher than the atmospheric pressure in this way, the separated pollutant 8 is not subjected to a rapid pressure release when it floats on the surface of the water 17 to be treated. Therefore, the separated contaminant 8 that has floated up forms a foam layer without breaking the bubbles that float and fix the separated contaminant 8 on the water surface. Furthermore, by providing the upward substantially shade-shaped shielding plate 22 having communication holes so that the bubble contact area 10 is partitioned, it is possible to prevent the fine contaminants 23 from descending to the treated water transfer area 6. By acting in this way, the separated pollutant 8 is not mixed with the treated water 11 again, the treatment performance becomes extremely higher than before, and the pollutant contained in the treated water 17 increases or decreases. However, treated water with a contaminant concentration below a certain value can be obtained.

〔実施形態3〕
次に本発明の浮上分離装置の第3の実施形態を示す。図3において、22は連通孔を有する上向きの略笠状の遮へい板であり、浮上分離槽1内の微細気泡発生装置2よりも上方の気泡接触エリア10に、二つ設けられ、浮上分離槽1内を上下に区画するように配置されている。本実施形態においては、連通孔を有する上向きの略笠状の遮へい板22は二つ配置しているが、少なくとも一つ以上であればよく、個数は特に限定されるものではない。
[Embodiment 3]
Next, a third embodiment of the levitation separator of the present invention will be shown. In FIG. 3, reference numeral 22 denotes an upward substantially shade-shaped shielding plate having a communication hole, which is provided in two bubble contact areas 10 above the fine bubble generating device 2 in the floating separation tank 1. It arrange | positions so that the inside of 1 may be divided up and down. In the present embodiment, two upward substantially shade-shaped shielding plates 22 having communication holes are disposed, but at least one is sufficient, and the number is not particularly limited.

浮上分離槽1内に、連通孔を有する上向きの略笠状の遮へい板22を設けたこと以外は、第1の実施形態と同じであるため説明を省略する。   Since it is the same as 1st Embodiment except having provided the upward substantially shade-shaped shielding board 22 which has a communicating hole in the floating separation tank 1, description is abbreviate | omitted.

以下、図3を用いて本実施形態の作用について説明する。浮上分離処理される被処理水17は、浮上分離槽1に設けられた導入口4から浮上分離槽1内の気泡接触エリア10内に導入される。被処理水17中の汚濁物8は、微細気泡発生装置2により発生される微細気泡により、気泡接触エリア10内を上方へ移動していく。一方、浮上分離槽内1に導入された被処理水17は、気泡と共に上昇し、水面付近に達すると気泡を含んだ汚濁物8は水面上に浮上し、被処理水17は気泡接触エリア10内を下降することとなる。この際に、汚濁物8の中でも微細な汚濁物23や気泡がはじけて浮力を失った汚濁物24は、浮上しきれずに被処理水17と共に下降していく。このような下降流に乗った微細な汚濁物23や浮力を失った汚濁物24の下降を防ぐ為に、気泡接触エリア10には、連通孔を有する上向きの略笠状の遮へい板22が気泡接触エリア10を区画するように設けられている。この連通孔を有する上向きの略笠状の遮へい板22により、被処理水17と共に下降してきた微細な汚濁物23は気液分離エリア5まで下降することなく、再度上昇する被処理水17の流れに乗って上昇することとなるので処理水11に混入する恐れが無くなる。   Hereinafter, the operation of the present embodiment will be described with reference to FIG. The treated water 17 subjected to the floatation separation process is introduced into the bubble contact area 10 in the floatation separation tank 1 from the introduction port 4 provided in the floatation separation tank 1. The contaminant 8 in the water to be treated 17 moves upward in the bubble contact area 10 by the fine bubbles generated by the fine bubble generator 2. On the other hand, the water to be treated 17 introduced into the levitation separation tank 1 rises with the bubbles, and when reaching the water surface, the contaminants 8 containing the bubbles float on the water surface, and the water to be treated 17 is in the bubble contact area 10. It will descend inside. At this time, among the contaminants 8, the fine contaminants 23 and the contaminants 24 that have lost their buoyancy due to the bursting of bubbles are not lifted up and move down together with the water to be treated 17. In order to prevent the fine pollutant 23 riding on the descending flow or the pollutant 24 losing buoyancy from descending, the bubble contact area 10 is provided with an upward substantially shade-shaped shielding plate 22 having a communicating hole. It is provided so as to partition the contact area 10. Due to the upward substantially shade-shaped shielding plate 22 having the communication hole, the fine contaminants 23 that have descended together with the treated water 17 do not descend to the gas-liquid separation area 5, and the flow of the treated water 17 that rises again. Therefore, there is no risk of being mixed into the treated water 11.

更に処理水11を再度処理するように循環ポンプ20と循環経路21を設けることで、処理水11に含まれる非常に細かい気泡を浮上分離する機会が増すために、従来に比べて処理性能が極めて高くなり、被処理水17に含まれる汚濁物が増減しても汚濁物の濃度が一定の値以下の処理水が得られることとなる。   Further, by providing the circulation pump 20 and the circulation path 21 so as to treat the treated water 11 again, the opportunity to float and separate very fine bubbles contained in the treated water 11 is increased. Even if the amount of contaminants contained in the water to be treated 17 increases or decreases, treated water having a concentration of the contaminants below a certain value can be obtained.

以下、分離された汚濁物8の移送、水面上空間9の加圧方法については、第1の実施形態と同じであるため、説明を割愛する。   Hereinafter, the method for transferring the separated contaminants 8 and the method for pressurizing the water surface space 9 are the same as those in the first embodiment, and thus the description thereof is omitted.

このようにして中央に連通孔を有する上向きの略笠状の遮へい板22が気泡接触エリア10を区画するように設けられ、処理水11の一部を再度気泡接触エリア10へ循環させるように構成し、浮上分離槽1内の水面上空間9を大気圧よりも高い圧力で保持できるように構成することにより、分離された汚濁物8は、被処理水17の水面上に浮上してきた際に、被処理水17の下降流によって、浮上してきた分離された汚濁物8が下降し処理水11に混入する恐れがなくなり、更に処理水11の一部を循環ポンプ20を用いて再度気泡接触エリア10へ循環させることで、処理水11に混入または、残存している汚濁物8についても浮上分離処理される機会が増し、更に汚濁物8に付着した微細気泡が水面に達しても急激な圧力開放を受けないことから、浮力を失わず浮上分離槽1内の水面上にとどまることができる。このように作用することで、分離された汚濁物8が処理水11に再度混合されることが殆どなくなり、従来に比べて処理性能が極めて高くなり、被処理水17に含まれる汚濁物が増減しても汚濁物の濃度が一定の値以下の処理水が得られることとなる。   In this way, the upward substantially shade-shaped shielding plate 22 having a communication hole in the center is provided so as to partition the bubble contact area 10, and a part of the treated water 11 is circulated to the bubble contact area 10 again. When the separated contaminant 8 floats on the surface of the water 17 to be treated, the above-described space 9 in the floating separation tank 1 can be maintained at a pressure higher than atmospheric pressure. The separated pollutant 8 that has risen due to the descending flow of the water to be treated 17 is not lowered and mixed into the treated water 11, and a part of the treated water 11 is again brought into the bubble contact area using the circulation pump 20. By circulating to 10, there is an increased chance that the contaminant 8 mixed in or remaining in the treated water 11 is also levitated and separated, and even if fine bubbles adhering to the contaminant 8 reach the water surface, a sudden pressure is applied. Do not open Since, it is possible to stay on the water surface of the flotation tank 1 without losing buoyancy. By acting in this way, the separated pollutant 8 is hardly mixed with the treated water 11 again, the treatment performance becomes extremely higher than before, and the pollutant contained in the treated water 17 increases or decreases. Even so, treated water having a concentration of contaminants below a certain value can be obtained.

本発明の第1の実施形態(実施例1)、第2の参考実施形態(参考実施例2)、第3の実施形態(実施例3)の各装置を用いて評価実験を行った。その結果について以下に示す。試験装置はそれぞれの実施形態に対応する図に示す装置を用いて実施した。導入される被処理水17は、実際に魚市場から発生する荷捌き廃水を用いた。処理性能の確認は、化学的酸素消費量(COD)を実施例と参考実施例と比較例の処理水およびその被処理水について測定し比較を行った。試験条件としては、水面上空間9に掛かる圧力が大気圧よりも1.0kPaだけ加圧された状態とし、循環水量は被処理水17に対し同量の循環水量とした。なお、比較例としてまったく加圧せず、連通孔を有する遮へい板22を設置せず、更に処理水の循環も行わないものを用いて行った。比較例の浮上分離装置の模式図を図4に示す。   An evaluation experiment was performed using the devices of the first embodiment (Example 1), the second reference embodiment (Reference Example 2), and the third embodiment (Example 3) of the present invention. The results are shown below. The test apparatus was implemented using the apparatus shown in the figure corresponding to each embodiment. As the treated water 17 to be introduced, cargo wastewater actually generated from the fish market was used. The treatment performance was confirmed by measuring and comparing the chemical oxygen consumption (COD) for the treated water of the Examples, Reference Examples and Comparative Examples and the treated water. The test conditions were such that the pressure applied to the water surface space 9 was increased by 1.0 kPa from atmospheric pressure, and the amount of circulating water was the same as the amount of circulating water with respect to the water to be treated 17. In addition, it performed using the thing which does not pressurize at all as a comparative example, does not install the shielding board 22 which has a communicating hole, and also does not circulate a treated water. A schematic diagram of a flotation separation apparatus of a comparative example is shown in FIG.

図5は、実施例1のCOD濃度の変化を測定した結果を示すグラフである。図6は、参考実施例2のCOD濃度の変化を測定した結果を示すグラフである。図7は、実施例3のCOD濃度の変化を測定した結果を示すグラフである。図8は、比較例のCOD濃度の変化を測定した結果を示すグラフである。   FIG. 5 is a graph showing the results of measuring changes in COD concentration in Example 1. FIG. 6 is a graph showing the results of measuring the change in COD concentration in Reference Example 2. FIG. 7 is a graph showing the results of measuring changes in COD concentration in Example 3. FIG. 8 is a graph showing the results of measuring the change in the COD concentration of the comparative example.

被処理水17と処理水11のCOD濃度は、JIS K 0102 19に準拠し、アルカリ性過マンガン酸カリウムによる酸素消費量により測定した。   The COD concentration of the water to be treated 17 and the water to be treated 11 was measured based on the amount of oxygen consumed by alkaline potassium permanganate according to JIS K 010219.

試験装置の各条件は、以下のとおりである。
浮上分離槽1:有効容積15L、微細気泡発生装置0.04kw、槽内水深90cm
水槽14:有効容積45L、水槽内水深50cm、移送口付
圧力:1kPa
水面上空間9の圧力測定:マノメータを、天板19に接続して水頭差にて測定
連通孔を有する遮へい板22:浮上分離槽1底部より40cm、60cmの位置に設置
被処理水導入量:30L/hr
Each condition of the test apparatus is as follows.
Flotation separation tank 1: Effective volume 15L, fine bubble generator 0.04kw, water depth in the tank 90cm
Water tank 14: Effective volume 45L, water depth in water tank 50cm, pressure with transfer port: 1kPa
Pressure measurement in the space 9 above the water surface: a manometer connected to the top plate 19 and a shielding plate 22 having a measurement communication hole due to a water head difference: installed amount of treated water introduced at positions 40 cm and 60 cm from the bottom of the floating separation tank 1: 30L / hr

比較例として、外部配管を水没させず、循環を行わず、上向きの連通孔を有する遮へい板を用いずに同様の測定を行った。   As a comparative example, the same measurement was performed without submerging the external piping, without performing circulation, and without using a shielding plate having an upward communication hole.

実施例1、参考実施例2,実施例3において、被処理水のCOD濃度が概ね50〜70mg/Lの間で上下しているものの、処理水のCOD濃度は30mg/L付近で安定している。よって、被処理水17のCOD濃度の変動に関係なく処理水11のCOD濃度が安定していることがわかる。一方、比較例においては、被処理水のCOD濃度が50〜70mg/Lの間で変動すると、それにともなって処理水のCOD濃度も30〜45mg/L付近にまで上昇していることがわかる。   In Example 1, Reference Example 2 and Example 3, the COD concentration of the treated water fluctuates between about 50 to 70 mg / L, but the COD concentration of the treated water is stable at around 30 mg / L. Yes. Therefore, it can be seen that the COD concentration of the treated water 11 is stable regardless of the fluctuation of the COD concentration of the treated water 17. On the other hand, in the comparative example, when the COD concentration of the water to be treated fluctuates between 50 and 70 mg / L, it can be seen that the COD concentration of the treated water also increases to around 30 to 45 mg / L.

また、同様に実施例1、参考実施例2,実施例3及び比較例によって処理された処理水において、HACH社製の携帯用2100P型濁度計でネフェロメトリック法によって濁度を測定した。表1に示すとおり、実施例3の濁度除去率が高く、約75%であった。次いで実施例1、参考実施例2が同程度で、43%前後であった。尚、比較例においては、11%の除去率となり、濁度に関しては殆ど除去されない結果であった。   Similarly, in the treated water treated in Example 1, Reference Example 2, Example 3 and Comparative Example, turbidity was measured by a nephrometric method using a portable 2100P turbidimeter manufactured by HACH. As shown in Table 1, the turbidity removal rate of Example 3 was high, about 75%. Next, Example 1 and Reference Example 2 had the same degree, which was around 43%. In the comparative example, the removal rate was 11%, and the turbidity was hardly removed.

Figure 2010264449
Figure 2010264449

1 浮上分離槽
2 微細気泡発生装置
3 空気管
4 導入口
5 気液分離エリア
6 処理水移送エリア
7 堰
8 汚濁物
9 水面上空間
10 気泡接触エリア
11 処理水
12 連通口
13 外部配管
14 水槽
15 汚濁濃縮水
16 分離板
17 被処理水
18 汚濁物移送口
19 天板
20 循環ポンプ
21 循環経路
22 連通孔を有する上向きの略笠状の遮へい板
23 微細な汚濁物
24 浮力を失った汚濁物
99 泡沫分離装置
100 内筒
101 導入管
102 散気管
103 外筒
104 オーバーフロー管
105 堰
106 泡排出管
107 原水
108 汚泡水
109 架台
110 処理水
111 微細な気泡
112 水位
113 空気
114 調節管
DESCRIPTION OF SYMBOLS 1 Floating separation tank 2 Fine bubble generator 3 Air pipe 4 Inlet 5 Gas-liquid separation area 6 Processed water transfer area 7 Weir 8 Pollutant 9 Water surface space 10 Bubble contact area 11 Processed water 12 Communication port 13 External piping 14 Water tank 15 Contaminated water 16 Separator plate 17 Water to be treated 18 Contaminant transfer port 19 Top plate 20 Circulating pump 21 Circulating path 22 Upward substantially shade-shaped shielding plate having communication holes 23 Fine contaminant 24 Contaminated material 99 which has lost buoyancy 99 Foam Separator 100 Inner cylinder 101 Inlet pipe 102 Aeration pipe 103 Outer cylinder 104 Overflow pipe 105 Weir 106 Foam discharge pipe 107 Raw water 108 Sewage water 109 Mount 110 Treatment water 111 Fine bubbles 112 Water level 113 Air 114 Control pipe

Claims (1)

被処理水中に微細気泡を供給し、該被処理水中の汚濁物を浮上させることにより、該被処理水から汚濁物を分離除去する浮上分離装置において、
前記浮上分離槽内の前記被処理水の水面上が天板で覆われて水面上空間が形成されており、前記水面上空間に設けられた連通口に外部配管が接続され、前記外部配管の出口端部が、前記浮上分離槽の外部に用意された水槽内に水没させられて設置されていることにより、前記水面上空間が、大気圧よりも高い圧力で保持され、
浮上分離処理された処理水を再度浮上分離槽内へ循環させることにより浮上分離処理が行われることを特徴とする浮上分離装置。
In the floating separation device for separating and removing the contaminants from the treated water by supplying fine bubbles into the treated water and floating the contaminants in the treated water,
The surface of the water to be treated in the levitation separation tank is covered with a top plate to form a space above the water surface, and an external pipe is connected to a communication port provided in the space above the water surface. The outlet end portion is submerged in a water tank prepared outside the floating separation tank, so that the space above the water surface is maintained at a pressure higher than atmospheric pressure,
A flotation separation apparatus characterized in that a flotation separation process is performed by circulating treated water that has undergone flotation separation treatment again into a flotation separation tank.
JP2010166668A 2010-07-26 2010-07-26 Flotation separation apparatus Pending JP2010264449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010166668A JP2010264449A (en) 2010-07-26 2010-07-26 Flotation separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010166668A JP2010264449A (en) 2010-07-26 2010-07-26 Flotation separation apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005096816A Division JP4575824B2 (en) 2005-03-30 2005-03-30 Levitation separator

Publications (1)

Publication Number Publication Date
JP2010264449A true JP2010264449A (en) 2010-11-25

Family

ID=43361916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010166668A Pending JP2010264449A (en) 2010-07-26 2010-07-26 Flotation separation apparatus

Country Status (1)

Country Link
JP (1) JP2010264449A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101598010B1 (en) * 2015-04-16 2016-02-26 티티엔에스 주식회사 Apparatus for removing odor using micro-bubble
KR101598007B1 (en) * 2015-04-16 2016-02-26 티티엔에스 주식회사 Apparatus for separating solid and liquid using micro-bubble
CN107352613A (en) * 2017-07-12 2017-11-17 湖南美奕机电科技有限公司 A kind of sealed dissolved gas floatator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874193A (en) * 1981-10-27 1983-05-04 Ooshinotsu Shokuhin Kogyo Kk Method and device for treating waste of processed marine products
JPH08132019A (en) * 1994-11-09 1996-05-28 Hakodate Seimo Sengu Kk Bubble separation device
JP2003340202A (en) * 2002-05-22 2003-12-02 Kazunobu Sato Bubble flow accelerating device and form separation apparatus having the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874193A (en) * 1981-10-27 1983-05-04 Ooshinotsu Shokuhin Kogyo Kk Method and device for treating waste of processed marine products
JPH08132019A (en) * 1994-11-09 1996-05-28 Hakodate Seimo Sengu Kk Bubble separation device
JP2003340202A (en) * 2002-05-22 2003-12-02 Kazunobu Sato Bubble flow accelerating device and form separation apparatus having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101598010B1 (en) * 2015-04-16 2016-02-26 티티엔에스 주식회사 Apparatus for removing odor using micro-bubble
KR101598007B1 (en) * 2015-04-16 2016-02-26 티티엔에스 주식회사 Apparatus for separating solid and liquid using micro-bubble
CN107352613A (en) * 2017-07-12 2017-11-17 湖南美奕机电科技有限公司 A kind of sealed dissolved gas floatator

Similar Documents

Publication Publication Date Title
KR100816921B1 (en) Aeration method, aeration apparatus and aeration system
JP4910415B2 (en) Organic wastewater treatment method and apparatus
KR101852179B1 (en) Flotation device using high efficiency tank for dissolving a gases into liquids
KR101491001B1 (en) Multi stage floatation apparatus
JPS6139880B2 (en)
JP2011020025A (en) Oil-water separator
KR101679739B1 (en) Flotation device using high efficiency tank for dissolving a gases into liquids
JP2011000583A (en) Method and apparatus for treating waste liquid
JP5128417B2 (en) Oil-containing wastewater treatment method
JP6151578B2 (en) Wastewater treatment equipment
JP2010264449A (en) Flotation separation apparatus
JP2015009165A (en) Processing apparatus and processing method of oil-containing water
JP4930340B2 (en) Pressure levitation device
JP4575824B2 (en) Levitation separator
WO2010101152A1 (en) Device for membrane separation type activated-sludge treatment and method therefor
JP4369804B2 (en) Floating separation method for organic wastewater
KR20120016096A (en) Device for clarifying wastewater, preferably on ships
KR101270236B1 (en) Apparatus for separating waste oil using bubble
JP5270247B2 (en) Wastewater treatment facility at food processing plant
KR101756970B1 (en) Hybrid sewage treatment apparatus
KR101762181B1 (en) Filtering apparatus using micro bubbles for fish farm
JP2007000712A (en) Solid-liquid separating device
JP2006055814A (en) Method and apparatus for floatation separation
JP5825807B2 (en) Waste water treatment apparatus and waste water treatment method
KR101181800B1 (en) The method and apparatus to treat municipal and industrial wastewater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Effective date: 20120619

Free format text: JAPANESE INTERMEDIATE CODE: A131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015