JP4759306B2 - Oil-water separation method and oil-water separation device - Google Patents

Oil-water separation method and oil-water separation device Download PDF

Info

Publication number
JP4759306B2
JP4759306B2 JP2005115225A JP2005115225A JP4759306B2 JP 4759306 B2 JP4759306 B2 JP 4759306B2 JP 2005115225 A JP2005115225 A JP 2005115225A JP 2005115225 A JP2005115225 A JP 2005115225A JP 4759306 B2 JP4759306 B2 JP 4759306B2
Authority
JP
Japan
Prior art keywords
liquid
treated
oil
processed
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005115225A
Other languages
Japanese (ja)
Other versions
JP2006289290A (en
Inventor
公男 齋藤
聰 塚原
二郎 江原
亮 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2005115225A priority Critical patent/JP4759306B2/en
Publication of JP2006289290A publication Critical patent/JP2006289290A/en
Application granted granted Critical
Publication of JP4759306B2 publication Critical patent/JP4759306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Description

本発明は油水分離方法および油水分離装置に係わり、特に、処理槽に貯留した油分を含む被処理液中で微小な気泡を生ぜしめ、被処理液に含まれる油分を気泡とともに浮上させ該被処理液を水と油分とに分離させる浮上分離法による油水分離方法および油水分離装置に関するものである。   The present invention relates to an oil / water separation method and an oil / water separation device, and in particular, generates fine bubbles in a liquid to be treated containing oil contained in a treatment tank, and causes the oil contained in the liquid to be treated to float together with the bubbles. The present invention relates to an oil-water separation method and an oil-water separation device by a flotation separation method for separating a liquid into water and an oil component.

浮上分離法による分離装置として、下記の特許文献1に記載されるように、渦流ポンプの液体吸込口に気体吸込手段を設けておき、渦流ポンプでの加圧過程で空気を被処理液に溶解(気液混合溶解)させ、処理槽内にノズルから噴射減圧することによって、処理槽内の被処理液中に微小な気泡を発生させるものがある。また、電気分解で微小な気泡を発生させるものもある。   As described in Patent Document 1 below, as a separation apparatus based on the levitation separation method, gas suction means is provided in the liquid suction port of the vortex pump, and air is dissolved in the liquid to be processed in the pressurization process of the vortex pump. Some gas bubbles are mixed and dissolved, and fine bubbles are generated in the liquid to be treated in the treatment tank by depressurizing and discharging from the nozzle in the treatment tank. There are also those that generate microbubbles by electrolysis.

特開2003―236305号公報Japanese Patent Laid-Open No. 2003-236305

上記特許文献に記載された従来技術においては、渦流ポンプを使用して気液混合溶解を促進し、微小気泡を発生させているがポンプ動力が熱に変換して被処理液を加熱する。電気分解による場合、被処理液は通電される結果、被処理液自体にジュール熱が発生して温度が上昇する。   In the prior art described in the above-mentioned patent document, gas-liquid mixing and dissolution are promoted using a vortex pump to generate microbubbles, but the pump power is converted into heat to heat the liquid to be processed. In the case of electrolysis, the liquid to be treated is energized. As a result, Joule heat is generated in the liquid to be treated and the temperature rises.

被処理液の温度が上昇すると、被処理液中で微小気泡は膨張し、浮力が増加して、微小気泡は急速に上昇するようになる。そうすると、被処理液に含まれる油分が微小気泡と接触する機会は低下し、油水分離性能は低下する。また、浮上油によって作られた液面上の膜により水分の蒸発が抑制され、被処理液温度はさらに上昇する。   When the temperature of the liquid to be treated rises, the microbubbles expand in the liquid to be treated, the buoyancy increases, and the microbubbles rapidly rise. If it does so, the opportunity for the oil component contained in a to-be-processed liquid to contact with microbubbles will fall, and oil-water separation performance will fall. Moreover, evaporation of moisture is suppressed by the film on the liquid surface made of floating oil, and the temperature of the liquid to be processed further increases.

渦流ポンプを使用する場合、被処理液温度が高くなると、空気溶解量が減少し、微小気泡の発生量が減少し、油水分離性能が低下するという問題もある。   When the eddy current pump is used, when the temperature of the liquid to be treated increases, there is a problem that the amount of dissolved air decreases, the amount of microbubbles generated decreases, and the oil / water separation performance decreases.

図7は、上記特許文献に記載された従来技術により微小気泡を発生させる状況を示しており、11は被処理液を貯留した処理槽、81は処理槽11の一部で貯留した被処理液について油水分離を行う分離部、13はノズル33を内蔵した大気泡分離部、37はノズル33に図示していない渦流ポンプから空気を溶解させた被処理液を供給する配管、14はノズル33から噴射した被処理液から微小気泡bが発生する際に大気泡分離部13で生じる大気泡aを分離部81の被処理液面近傍に導くエルボ型排出管、61は被処理液の液面、62は油水分離で微小気泡とともに浮上した油分の油面である。   FIG. 7 shows a situation in which microbubbles are generated by the conventional technique described in the above-mentioned patent document. 11 is a processing tank in which the processing liquid is stored, and 81 is a processing liquid stored in a part of the processing tank 11. Separation unit for separating oil and water, 13 is a large bubble separation unit incorporating a nozzle 33, 37 is a pipe for supplying a liquid to be treated in which air is dissolved from a vortex pump (not shown), and 14 is a nozzle 33 An elbow discharge pipe that guides the large bubbles a generated in the large bubble separating unit 13 to the vicinity of the surface of the liquid to be processed of the separating unit 81 when the micro bubbles b are generated from the sprayed liquid to be processed, 61 is a liquid level of the liquid to be processed, 62 is the oil surface that floated along with the fine bubbles in the oil-water separation.

ノズル33から被処理液が噴射されると、被処理液に溶解している空気は減圧して微小気泡bとなり、噴射水流とともに横向きに流れて分離部81の被処理液に供給されるが、同時に発生する大気泡aは大気泡分離部13の天井部に集まり、エルボ型排出管14を通って分離部81の液面61に到る。   When the liquid to be treated is ejected from the nozzle 33, the air dissolved in the liquid to be treated is depressurized to become microbubbles b and flows laterally together with the jet water flow and supplied to the liquid to be treated in the separation unit 81. The large bubbles a generated at the same time gather at the ceiling of the large bubble separation unit 13 and reach the liquid level 61 of the separation unit 81 through the elbow discharge pipe 14.

この場合、エルボ型排出管14の水平部で大気泡aは集合一体化し、さらに大きな巨大気泡cとなって、エルボ型排出管14の開孔部から不定期に噴出し、被処理液面61を急速に押し上げる。被処理液面61の急激な上昇で、油面62は押し退けられ被処理液面61が露出する。   In this case, the large bubbles a are aggregated and integrated at the horizontal portion of the elbow-type discharge pipe 14 and become larger giant bubbles c, which are irregularly ejected from the opening of the elbow-type discharge pipe 14 to be treated. Is pushed up rapidly. The oil level 62 is pushed away by the sudden rise of the liquid level 61 to be processed, and the liquid level 61 to be processed is exposed.

すると、盛り上がった被処理液面61は池に投じた石により液面に生じる波紋のように低下して、一点鎖線で示すように、却って液面は低下し、周囲に押し退けた油面62は閉じるようになり、被処理液面61は巨大気泡cの不定期な噴出により、油面62により露出と遮蔽を繰り返し、被処理液の水分は蒸発したりしなかったりとなって、不安定となり、安定した油水分離が期待できなくなる。   Then, the liquid surface 61 that has risen is lowered like a ripple generated on the liquid surface by the stones thrown into the pond, and as shown by the alternate long and short dash line, the liquid surface is lowered, and the oil surface 62 pushed away to the periphery is The liquid surface 61 to be processed becomes unstable due to repeated ejection and shielding by the oil surface 62 due to the irregular ejection of the giant bubbles c, and the water in the liquid to be processed does not evaporate. Therefore, stable oil / water separation cannot be expected.

それゆえ本発明の目的は、処理槽における被処理液液温度の上昇を抑制し、所望の油水分離性能を得ることができる油水分離方法および油水分離装置を提供することにある。   Therefore, an object of the present invention is to provide an oil / water separation method and an oil / water separation device capable of suppressing an increase in the temperature of liquid to be treated in a treatment tank and obtaining a desired oil / water separation performance.

また、本発明の目的は、処理槽における被処理液液温度の上昇を抑制し、所望の油水分離性能を安定して得ることができる油水分離方法および油水分離装置を提供することにある。   Another object of the present invention is to provide an oil / water separation method and an oil / water separation device capable of suppressing the increase in the temperature of the liquid to be treated in the treatment tank and stably obtaining desired oil / water separation performance.

上記目的を達成する本発明油水分離方法の特徴とするところは、処理槽に貯留した油分を含む被処理液中で微小な気泡を生ぜしめ、被処理液に含まれる油分を気泡とともに浮上させ該被処理液を水と油分とに分離させる油水分離方法において、被処理液の液面に向けて被処理液の流れを継続的に設けて被処理液の液面を露出させ、露出した被処理液面での水分蒸発により被処理液温度の上昇を阻止するようにしたことにある。   A feature of the oil / water separation method of the present invention that achieves the above object is that fine bubbles are generated in the liquid to be treated containing the oil stored in the treatment tank, and the oil contained in the liquid to be treated is floated together with the bubbles. In the oil-water separation method for separating the liquid to be treated into water and oil, the flow of the liquid to be treated is continuously provided toward the liquid surface of the liquid to be treated to expose the liquid surface of the liquid to be treated, thereby exposing the liquid to be treated. This is to prevent the temperature of the liquid to be treated from rising due to water evaporation on the liquid surface.

上記目的を達成する本発明油水分離装置の特徴とするところは、処理槽に貯留した被処理液中に微小気泡を供給することによって被処理液に含まれる油分を浮上させ水と油分とを分離させる油水分離装置において、空気供給手段で空気を溶解させた被処理液を噴射するノズルを処理槽の下部に設け、該ノズルは噴射し被処理液から発生する大気泡を微小気泡と分離して該微小気泡を処理槽に貯留した被処理液中に供給する大気泡分離部を備え、該大気泡分離部に分離した大気泡を該処理槽に貯留した被処理液の液面近傍に誘導し被処理液の液面に継続した被処理液の流れを形成して前記液面を露出させる排出管を設けたことにある。
The oil / water separation device of the present invention that achieves the above object is characterized in that the oil contained in the liquid to be treated is floated by supplying microbubbles into the liquid to be treated stored in the treatment tank to separate the water and the oil. In the oil / water separator to be provided, a nozzle for injecting a liquid to be processed in which air is dissolved by an air supply means is provided at the lower part of the processing tank, and the nozzle injects large bubbles generated from the liquid to be processed into fine bubbles. A large bubble separation unit is provided for supplying the microbubbles into the liquid to be treated stored in the treatment tank, and the large bubbles separated in the large bubble separation part are guided near the liquid surface of the liquid to be treated stored in the treatment tank. A discharge pipe for exposing the liquid surface by forming a continuous flow of the liquid to be processed on the liquid surface of the liquid to be processed is provided.

本発明によれば、被処理液の液面に向かう被処理液の継続的な流れで被処理液の液面を常時露出させる。露出した被処理液の液面において、被処理液の水分が安定的に蒸発することにより、被処理液温度の低下に伴って、微小気泡の上昇速度は抑制され、所望の油水分離性能を得ることができる。   According to the present invention, the liquid surface of the liquid to be processed is always exposed by the continuous flow of the liquid to be processed toward the liquid surface of the liquid to be processed. As the moisture of the liquid to be treated evaporates stably on the exposed liquid surface of the liquid to be treated, the rising speed of the microbubbles is suppressed as the temperature of the liquid to be treated is lowered, and the desired oil / water separation performance is obtained. be able to.

また、被処理液の液面に恒常的に露出した領域が存在することで、被処理液の水分蒸発は安定し、所望の油水分離性能を安定して得ることができる。   In addition, the presence of a constantly exposed region on the liquid surface of the liquid to be processed allows the water evaporation of the liquid to be processed to be stable, and the desired oil / water separation performance can be stably obtained.

以下、本発明の実施形態になる油水分離装置について説明する。   Hereinafter, an oil-water separator according to an embodiment of the present invention will be described.

図1に示した油水分離装置10は、一例として空気圧縮機から排出されるドレンを処理するものとして使用する。   The oil-water separator 10 shown in FIG. 1 is used as an example for treating drain discharged from an air compressor.

図1において、処理槽11には、槽内に被処理液を貯留し油水分離を行う分離部(請求項では処理槽と記載)81とこの分離部81で浮上分離した油分を回収する浮上油受け部83とがあり、両部81、83を分離する遮蔽板12を設けてある。処理槽11の側壁下部において、分離部81に大気泡分離部13を連接してある。   In FIG. 1, a treatment tank 11 stores a liquid to be treated in the tank and separates oil and water into the separation tank (described as a treatment tank in the claims) 81 and a floating oil that collects oil separated and floated by the separation section 81. There is a receiving portion 83, and a shielding plate 12 that separates both the portions 81 and 83 is provided. In the lower part of the side wall of the processing tank 11, the large bubble separating unit 13 is connected to the separating unit 81.

処理槽11における分離部81の底に取り付けた配管30はバルブ36、配管32を介して循環ポンプ31と接続し、循環ポンプ31の出口側配管37は大気泡分離部13内に設置してあるノズル33に接続してある。配管30,32,37は分離部81における被処理液の外部循環系を構成しており、後述するように循環ポンプ31の作動でノズル33から空気を溶解させた被処理液を噴き出す。   The pipe 30 attached to the bottom of the separation part 81 in the treatment tank 11 is connected to the circulation pump 31 via the valve 36 and the pipe 32, and the outlet side pipe 37 of the circulation pump 31 is installed in the large bubble separation part 13. It is connected to the nozzle 33. The pipes 30, 32, and 37 constitute an external circulation system of the liquid to be processed in the separation unit 81, and the liquid to be processed in which air is dissolved is ejected from the nozzle 33 by the operation of the circulation pump 31 as described later.

循環ポンプ31で加圧することにより、空気を被処理液中に溶解させる。循環ポンプ31の一例としては渦流ポンプを使用しており、図示していないが、循環ポンプ31の出口には被処理液の圧力(水圧)を測定するゲージを設けてある。   By pressurizing with the circulation pump 31, air is dissolved in the liquid to be treated. As an example of the circulation pump 31, a vortex pump is used. Although not shown, a gauge for measuring the pressure (water pressure) of the liquid to be treated is provided at the outlet of the circulation pump 31.

大気泡分離部13には、ノズル33から噴き出した気泡径の大きな余剰空気を分離部81に廻さないようにし、配管中で気泡どうしが合体することを抑制したストレート形状の排出管14を設けてあり、排出管14の排出口は分離部81の上部で、被処理液面61より下の位置としてある。   The large bubble separation unit 13 is provided with a straight discharge pipe 14 which prevents excessive air having a large bubble diameter ejected from the nozzle 33 from passing to the separation unit 81 and prevents bubbles from being combined in the pipe. The discharge port of the discharge pipe 14 is located above the separation unit 81 and below the liquid surface 61 to be processed.

排出管14は、被処理液の液面61に向けて被処理液の流れを継続的に設ける手段であり、液面61に向けう被処理液の流れが継続的に形成される状況は、後述する。大気泡分離部13で分離した微小気泡は、分離部81の被処理液に供給する。   The discharge pipe 14 is a means for continuously providing the flow of the liquid to be processed toward the liquid surface 61 of the liquid to be processed, and the situation in which the flow of the liquid to be processed toward the liquid surface 61 is continuously formed is as follows. It will be described later. The micro bubbles separated by the large bubble separation unit 13 are supplied to the liquid to be treated in the separation unit 81.

配管32には、供給ポンプ21とバルブ22を有し未処理な被処理液の供給系統を構成する供給管23を接続してある。供給管23は分離部81の下部に接続して、未処理の被処理液を分離部81に供給してもよい。   A supply pipe 23 having a supply pump 21 and a valve 22 and constituting a supply system for an unprocessed liquid is connected to the pipe 32. The supply pipe 23 may be connected to the lower part of the separation unit 81 to supply untreated liquid to the separation unit 81.

分離部81の上部には処理済の被処理液を排出する排出管51を設けてあり、排出管51は分離部81との接続部(管座)から持上げ、その下流を分離部81との接続部よりも低い位置まで配管してあり、その途中にバルブ52を有している。排出管51の最高位は、処理槽11の遮蔽板12の最高位より低くして位置差D1を持たせてある。   A discharge pipe 51 for discharging the processed liquid to be processed is provided at the upper part of the separation unit 81, and the discharge pipe 51 is lifted from a connection part (tube seat) with the separation part 81, and its downstream is connected to the separation part 81. The pipe is piped to a position lower than the connecting portion, and has a valve 52 in the middle thereof. The highest position of the discharge pipe 51 is set lower than the highest position of the shielding plate 12 of the treatment tank 11 to have a positional difference D1.

従って、分離部81内に被処理液を供給し貯留させる場合、バルブ52を開放してあれば、被処理液は排出管51から流出して、分離部81における被処理液面61は排出管51の最高位で規制され、バルブ52を閉止し分離槽81内に被処理液を供給していけば、被処理液面61は排出管51の最高位よりも上昇していくので、排出管51はバルブ52の開閉で被処理液を排出し水位を調整する機能を備えていることになる。   Therefore, when supplying and storing the liquid to be processed in the separation unit 81, if the valve 52 is opened, the liquid to be processed flows out of the discharge pipe 51, and the liquid surface 61 to be processed in the separation part 81 is discharged from the discharge pipe. If the valve 52 is closed and the liquid to be treated is supplied into the separation tank 81, the liquid surface 61 to be treated rises above the highest level of the discharge pipe 51. 51 has a function of discharging the liquid to be treated and adjusting the water level by opening and closing the valve 52.

ここで、排出管51に設けた配管53は、サイホン効果で排出管51の最高位水平面以下まで排水されないように大気に開放している。なお、被処理液面61の上部には油水分離で上昇した浮上油の浮上油液面62が形成される。   Here, the pipe 53 provided in the discharge pipe 51 is open to the atmosphere so as not to be drained below the highest horizontal plane of the discharge pipe 51 by the siphon effect. In addition, a floating oil liquid level 62 of the floating oil that has been raised by the oil-water separation is formed on the top of the liquid surface 61 to be treated.

分離部81内を上昇中の微小気泡および油粒子が分離部81から排出管51を介して流出する処理済の被処理液に混入することを防止する仕切板15を設け、ポケット状吸入部82を形成してある。即ち、排出管51における被処理液の流出量と吸入部82の入口面積で決まる吸入部82での被処理液の下降速度が気泡の上昇速度より遅くなるようにしてあることにより、分離部81を上昇中の微小気泡および油粒子が吸入部82に流入して排出管51から流出することはない。   A partition plate 15 is provided to prevent microbubbles and oil particles rising in the separation unit 81 from entering the treated liquid that has flowed out of the separation unit 81 via the discharge pipe 51, and the pocket-shaped suction unit 82 is provided. Is formed. That is, the separation unit 81 is configured such that the lowering speed of the processing liquid in the suction part 82 determined by the outflow amount of the processing liquid in the discharge pipe 51 and the inlet area of the suction part 82 is slower than the rising speed of the bubbles. The microbubbles and oil particles that are rising are not flown into the suction portion 82 and out of the discharge pipe 51.

仕切板15の最高位は、排出管51の最高位、即ち、バルブ52を開放している時の被処理液面61より低くして、位置差D2を持たせている。また、仕切板15の最高位は排出管51の分離部81との接続部(管座)より高くして、位置差D3を持たせている。   The highest position of the partition plate 15 is lower than the highest position of the discharge pipe 51, that is, the liquid surface 61 to be processed when the valve 52 is opened, so as to have a positional difference D2. Further, the highest position of the partition plate 15 is set higher than the connection portion (tube seat) with the separation portion 81 of the discharge pipe 51 so as to have a positional difference D3.

浮上油受け部83の底部には、分離部81から遮蔽板12を乗り越えて流入(溢流)する廃油63を排出する油分排出管55を設けてある。また、図示しないが、処理槽11の底部から外部に配管を設け、その途中にバルブを設けてあり、分離部81内部の液体を排出する必要がある場合にこれらを用いる。   An oil discharge pipe 55 is provided at the bottom of the floating oil receiving portion 83 to discharge the waste oil 63 that flows over the shielding plate 12 from the separation portion 81 and flows in (overflows). Moreover, although not shown in figure, piping is provided outside from the bottom part of the processing tank 11, the valve | bulb is provided in the middle, and these are used when it is necessary to discharge | emit the liquid inside the separation part 81.

次に、図1に示す油水分離装置10の動作を説明する。
空気圧縮機から排出されるドレン(油分を含む被処理液)は、絶対湿度が高い時期(夏季)にはドレン流量が多く、ドレン中の油分濃度は低い。一方、絶対湿度が低い時期(冬期や春秋)にはドレン流量が少なく、ドレン中の油分濃度は高い。絶対湿度が高い時期(夏季)には連続運転処理、絶対湿度が低い時期(冬季や春秋)には間歇運転処理が好適である。
Next, the operation of the oil / water separator 10 shown in FIG. 1 will be described.
The drain (liquid to be treated containing oil) discharged from the air compressor has a large drain flow rate and a low oil concentration in the drain when the absolute humidity is high (summer season). On the other hand, when the absolute humidity is low (winter and spring / autumn), the drain flow rate is small and the oil concentration in the drain is high. A continuous operation process is preferable when the absolute humidity is high (summer), and an intermittent operation process is preferable when the absolute humidity is low (winter and spring / autumn).

先ず、絶対湿度が高い時期に行う連続処理運転について説明する。準備として、バルブ52は開放状態として処理槽11の分離部81に清水または処理済の被処理液を充填し、被処理液面61が排出管51の最高位に一致したら、循環ポンプ31を運転させる。この時、バルブ22は閉止し、供給ポンプ21は停止している。バルブ36、42は開放状態としてある。   First, the continuous processing operation performed when the absolute humidity is high will be described. As a preparation, the valve 52 is opened and the separation unit 81 of the treatment tank 11 is filled with fresh water or a treated liquid to be treated. When the treated liquid level 61 coincides with the highest level of the discharge pipe 51, the circulation pump 31 is operated. Let At this time, the valve 22 is closed and the supply pump 21 is stopped. The valves 36 and 42 are open.

次に、バルブ36の開度を調節して図示しない循環ポンプ31の入口圧力を大気圧よりも低くする。循環ポンプ31の運転で清水または処理済の被処理液が分離部81から吸引され、昇圧されて配管37からノズル33に流れることによって、空気供給配管41側がさらに負圧となり、溶解用空気が空気供給配管41から流入して配管32に到る。   Next, the opening of the valve 36 is adjusted so that the inlet pressure of the circulation pump 31 (not shown) is lower than the atmospheric pressure. In the operation of the circulation pump 31, fresh water or a treated liquid to be treated is sucked from the separation unit 81, is pressurized, and flows from the pipe 37 to the nozzle 33, whereby the air supply pipe 41 side further becomes negative pressure and the dissolving air is air It flows from the supply pipe 41 and reaches the pipe 32.

循環ポンプ31では空気を分断し清水または処理済の被処理液に溶解させているが、溶解しきれない空気は大きな気泡のままで配管37を通ってノズル33に流れる。循環ポンプ31で加圧された被処理液と溶解した空気は、ノズル33から分離部81の被処理液中に吐出することで減圧され、水に溶解していた空気は微小な気泡となる。   In the circulation pump 31, the air is divided and dissolved in fresh water or a processed liquid to be processed. However, the air that cannot be dissolved flows through the pipe 37 to the nozzle 33 as a large bubble. The to-be-processed liquid pressurized by the circulation pump 31 and the dissolved air are decompressed by being discharged from the nozzle 33 into the to-be-processed liquid of the separation unit 81, and the air dissolved in the water becomes minute bubbles.

循環ポンプ31による加圧で被処理液に溶解する空気量は加圧下ではヘンリー(Henry)の法則に従ったものとなり、配管37を流れる清水または処理済の被処理液にかかる圧力及び配管37を流れる流量に比例して、溶解する空気量は多くなる。また配管37を流れる清水または処理済の被処理液の温度が低い程、溶解する空気量は多くなる。実際の運転では圧力、流量を設定値一定となるように運転する。   The amount of air dissolved in the liquid to be treated by the pressurization by the circulation pump 31 follows the Henry's law under the pressure, and the pressure applied to the fresh water flowing through the pipe 37 or the treated liquid to be treated and the pipe 37 The amount of dissolved air increases in proportion to the flowing flow rate. Further, the lower the temperature of the fresh water flowing through the pipe 37 or the processed liquid to be processed, the more air is dissolved. In actual operation, the operation is performed so that the pressure and flow rate are constant.

ノズル33から分離部81の被処理液中に吐出することで減圧され、水に溶解していた空気は微小な気泡となるが、溶解できない空気は余剰気泡(大気泡)となって大気泡分離部13内に発生する。   Air that has been decompressed by being discharged from the nozzle 33 into the liquid to be treated in the separation unit 81 and dissolved in water becomes minute bubbles, but air that cannot be dissolved becomes excess bubbles (large bubbles) to separate large bubbles. It occurs in the part 13.

発生した余剰気泡(大気泡)はストレート形状の排出管14により液面61に向けて気泡同士で合体することなく連続的に上昇する。この排出管14上部と被処理液面61との上部高さの差は小さいほうが気体と液体の密度差によって生じる浮上流れが液体流量を増加し、大気泡の横方向での拡がりは小さくて、被処理液面上への盛り上がりを増加させ、油膜の無い水面を常に存在させることができる。蒸発によって気化熱が増加し、被処理液の温度上昇を抑制することができる。   The generated surplus bubbles (large bubbles) continuously rise toward the liquid surface 61 by the straight discharge pipe 14 without being combined with each other. The smaller the difference in the upper height between the upper portion of the discharge pipe 14 and the liquid surface 61 to be treated, the higher the flow rate of the floating flow caused by the difference in density between the gas and the liquid, the smaller the expansion of the large bubbles in the lateral direction, The swell on the liquid surface to be treated can be increased, and a water surface without an oil film can always exist. The heat of vaporization is increased by evaporation, and the temperature rise of the liquid to be treated can be suppressed.

排出管14の具体的な形状は重力が作用する反対の方向またはそれにほぼ近く、ほぼ真っ直ぐなものとすれば、気泡同士の合体は抑制することができる。また、被処理液面61と排出管14の開孔での高さの差は排出管14の内径以内であれば、即ち、該排出管の口径が該排出管における開孔の位置と被処理液の液面までの距離よりも大きいものであれば、被処理液面上への盛り上がりが大きく、油膜の無い被処理液面61が広くなり(被処理液面61の露出領域は広くなり)、冷却効果が大きい。この場合、排出管14の開孔に対する被処理液の液面の位置は、開孔から噴出して盛り上がっている部署での液面位置ではなく、水平になって上方に分離油が存在する部署での位置を云う。   If the specific shape of the discharge pipe 14 is approximately the opposite direction in which the gravity acts or is almost straight, the coalescence of the bubbles can be suppressed. Further, if the difference in height between the liquid surface 61 to be treated and the opening of the discharge pipe 14 is within the inner diameter of the discharge pipe 14, that is, the diameter of the discharge pipe and the position of the opening in the discharge pipe If the distance is larger than the distance to the liquid level, the rise on the surface of the liquid to be processed is large, and the liquid surface 61 to be processed without an oil film becomes wide (the exposed area of the liquid surface 61 to be processed becomes wide). The cooling effect is great. In this case, the position of the liquid level of the liquid to be treated with respect to the opening of the discharge pipe 14 is not the position of the liquid level in the section that is ejected from the opening and is rising, but the section where the separated oil is present above the level. Says the position at.

上記したように被処理液に溶解していた空気はノズル33から吐出することで減圧され気泡となって分離部81内を浮上するが、分離部81内をほぼ揃って順次浮上するような微小気泡がノズル33から吐出するように溶解する空気量をバルブ42で調節しておく。径の大きな気泡の大気泡は浮力が大きく働くから微小気泡よりも早く浮上する。   As described above, the air dissolved in the liquid to be treated is decompressed by being discharged from the nozzle 33 and becomes bubbles, and floats in the separation unit 81. The amount of air dissolved is adjusted by the valve 42 so that the bubbles are discharged from the nozzle 33. A large bubble having a large diameter floats faster than a microbubble because buoyancy works greatly.

気泡の早い浮上は油水分離に寄与しないし、分離部81内での流れを乱して微小気泡と油分の接触を阻害し、分離性能を低下させかねない。大気泡の発生原因は循環ポンプ31の加圧によっても被処理液に溶解しなかった空気が存在することにあるとみることができるので、空気供給配管41から取り込む溶解用空気量をバルブ42で調節して、余分な空気ができるだけ入らないようにして、連続して大気泡が浮上しないようにしておく。   The rapid rise of bubbles does not contribute to the oil-water separation, and the flow in the separation unit 81 is disturbed to impede contact between the microbubbles and the oil component, which may reduce the separation performance. Since it can be considered that large bubbles are generated due to the presence of air that has not been dissolved in the liquid to be treated even when the circulation pump 31 is pressurized, the amount of the dissolving air taken in from the air supply pipe 41 is controlled by the valve 42. Adjust so that excess air does not enter as much as possible, so that large bubbles do not rise continuously.

この運転状態を保ちながら、バルブ22を開放し供給ポンプ21を駆動して被処理液(ドレン)の供給系統を運転し、分離部81の外部循環系統を循環している清水または処理済の被処理液に未処理状態の被処理液(ドレン)を混合させる。すると、ノズル33から微小気泡と共にドレンが噴射され、ドレン中の油分は微小気泡に付着して浮上し、油分が被処理液(水)から分離する。分離部81における被処理液温度が低く抑えられる結果、微小気泡はゆっくり上昇し、分離性能は向上する。   While maintaining this operating state, the valve 22 is opened and the supply pump 21 is driven to operate the supply system of the liquid to be processed (drain), and the fresh water or the processed liquid being circulated in the external circulation system of the separation unit 81 is operated. An untreated liquid (drain) is mixed with the treatment liquid. Then, drain is ejected from the nozzle 33 together with the microbubbles, the oil in the drain adheres to the microbubbles and floats, and the oil is separated from the liquid to be treated (water). As a result of the temperature of the liquid to be treated in the separation part 81 being kept low, the microbubbles rise slowly and the separation performance is improved.

分離部81の上部にある吸入部82では、配管23から供給された未処理状態の被処理液に相当する処理済の被処理液を微小気泡の上昇速度よりも遅い速度で吸込んで排出管51から排出する。   In the suction part 82 at the upper part of the separation part 81, the processed liquid to be processed corresponding to the unprocessed liquid to be processed supplied from the pipe 23 is sucked at a speed slower than the rising speed of the microbubbles, and the discharge pipe 51. To discharge from.

循環ポンプ31出口での圧力は、所要動力を少なくすることと微小気泡の直径を小さくすることを考慮すると0.3〜0.8MPa程度が好ましい。溶解空気量が圧力に比例することを考慮すると、循環水流量は被処理液供給系統から供給された未処理状態の被処理液量の30〜100倍で、未処理状態の被処理液は循環水によって30〜100倍に希釈されるので、分離部81に供給される被処理液の油分は低濃度である。   The pressure at the outlet of the circulation pump 31 is preferably about 0.3 to 0.8 MPa in consideration of reducing the required power and reducing the diameter of the microbubbles. Considering that the amount of dissolved air is proportional to the pressure, the circulating water flow rate is 30 to 100 times the amount of untreated liquid to be treated supplied from the untreated liquid supply system, and the untreated liquid is circulated. Since it is diluted 30 to 100 times with water, the oil content of the liquid to be treated supplied to the separation unit 81 has a low concentration.

微小気泡で油水分離処理する油水分離処理では、被処理液中の大きな径の油粒子が小さな径の油粒子よりも先に浮上分離するので、連続処理においては、径の小さな油粒子径が処理液中に残っていても処理液の濃度が目標値(例えば油分濃度5mg/L)となった状態で、連続的に排出することができ、処理能力が高い。   In the oil / water separation process, in which the oil / water separation process is performed with microbubbles, the oil particles with a large diameter in the liquid to be treated float and separate before the oil particles with a small diameter. Even if it remains in the liquid, it can be continuously discharged in a state where the concentration of the processing liquid reaches a target value (for example, oil concentration 5 mg / L), and the processing capacity is high.

分離部81上部に、浮上油が溜まる。連続処理運転中に排出管51の途中に設けたバルブ52を一時的に閉じると、分離部81内部の被処理液面61および浮上油液面62が上昇し、浮上油液面62が遮蔽板12の高さを超えると浮上油がオーバフロー(溢流)し、浮上油受け部83へ流下する。分離部81での浮上油が減ったら、バルブ52をゆっくり開けて、排出管51から被処理液を排出して被処理液面61を下げて、連続処理を継続する。   The floating oil accumulates on the upper part of the separation unit 81. When the valve 52 provided in the middle of the discharge pipe 51 is temporarily closed during the continuous processing operation, the liquid surface 61 to be treated and the floating oil liquid level 62 in the separation unit 81 rise, and the floating oil liquid level 62 becomes the shielding plate. When the height exceeds 12, the floating oil overflows (overflows) and flows down to the floating oil receiving portion 83. When the floating oil in the separation unit 81 decreases, the valve 52 is opened slowly, the liquid to be processed is discharged from the discharge pipe 51, the liquid surface 61 to be processed is lowered, and the continuous processing is continued.

次に、間歇処理運転について説明する。
先ず、準備としてバルブ52は閉じた状態にして、分離部81に清水または処理済の被処理液を充満させた状態で循環ポンプ31を運転する。バルブ22は閉じてあるが、バルブ36、42は開放してあり、溶解用空気が空気供給配管41から流入する。循環ポンプ31の動力が熱となり被処理液に伝わり、分離部81における被処理液の温度を上昇させるため、被処理液の密度は小さくなる。尚、被処理液の密度を小さくするためには分離部81において被処理液の温度を上昇させるための加熱手段を配置してもよい。
Next, the intermittent processing operation will be described.
First, as a preparation, the valve 52 is closed, and the circulating pump 31 is operated in a state where the separation unit 81 is filled with fresh water or a processed liquid to be processed. Although the valve 22 is closed, the valves 36 and 42 are open, and the dissolving air flows from the air supply pipe 41. The power of the circulation pump 31 becomes heat and is transmitted to the liquid to be processed, and the temperature of the liquid to be processed in the separation unit 81 is increased. In order to reduce the density of the liquid to be processed, a heating unit for increasing the temperature of the liquid to be processed may be provided in the separation unit 81.

被処理液が予定した温度まで上昇したら、循環系統における循環ポンプ31の運転を停止し、バルブ42を閉じ、被処理液供給系統のバルブ22を開放状態にして供給ポンプ21を運転して、未処理状態の被処理液を供給する。被処理液は、配管30の経路及び配管32、37を経由しノズル33から分離部81に流入する。   When the liquid to be processed rises to a predetermined temperature, the operation of the circulation pump 31 in the circulation system is stopped, the valve 42 is closed, the valve 22 of the liquid supply system to be processed is opened, and the supply pump 21 is operated. A liquid to be processed in a processing state is supplied. The liquid to be processed flows from the nozzle 33 to the separation unit 81 via the path of the pipe 30 and the pipes 32 and 37.

被処理液は分離部81内の清水または処理済の被処理液よりも温度が低く密度が大きいために分離部81の底部に溜って行き、密度が小さい処理済の油分濃度の低い被処理液は分離部81の上部に押し上げられた形となって、吸入部82から排出管51とバルブ52を経由して排出される。例えば、仕切板15上端から分離部81の底部までにおける容積が40L,清水または処理済の被処理液温度が320K,未処理状態の被処理液温度が283K,未処理状態の被処理液の供給を20L/hで行うと、処理済の被処理液のみを30L以上排出可能である。   Since the liquid to be processed has a lower temperature and a higher density than the fresh water or the processed liquid to be processed in the separation unit 81, the liquid to be processed accumulates at the bottom of the separation unit 81, and the processed liquid with a low processed and low oil concentration. Is pushed up to the top of the separation part 81 and discharged from the suction part 82 via the discharge pipe 51 and the valve 52. For example, the volume from the upper end of the partition plate 15 to the bottom of the separation unit 81 is 40 L, the temperature of fresh water or treated liquid to be treated is 320 K, the temperature of untreated liquid to be treated is 283 K, and the untreated liquid to be treated is supplied. Is performed at 20 L / h, only 30 L or more of the processed liquid can be discharged.

処理済の被処理液のみの排出が済んだら、バルブ22とバルブ52を閉状態にして未処理状態の被処理液の供給を止めて、循環ポンプ31による槽外循環を実施する。   When only the processed liquid to be processed is discharged, the valve 22 and the valve 52 are closed to stop the supply of the unprocessed liquid to be processed, and the circulation pump 31 performs circulation outside the tank.

循環ポンプ31による加圧で、被処理液に溶解する空気量は加圧下ではヘンリー(Henry)の法則に従ったものとなり、配管37を流れる清水または処理済の被処理液にかかる圧力及び配管37を流れる流量に比例して、溶解する空気量は多くなる。また配管37を流れる清水または処理済の被処理液の温度が低い程、溶解する空気量は多くなる。実際の運転では圧力、流量を設定値一定となるように運転する。   The amount of air dissolved in the liquid to be processed by the pressurization by the circulation pump 31 follows the Henry's law under the pressure, and the pressure applied to the fresh water or the processed liquid to be processed flowing through the pipe 37 and the pipe 37. The amount of dissolved air increases in proportion to the flow rate flowing through the. Further, the lower the temperature of the fresh water flowing through the pipe 37 or the processed liquid to be processed, the more air is dissolved. In actual operation, the operation is performed so that the pressure and flow rate are constant.

バルブ52は閉止してあり、分離部81の被処理液中に微小気泡が存在することになり、被処理液面61は排出管51の最高位置よりも高くなる。この状態で分離部81内部の被処理液面61上側に浮上油が溜まるが、浮上油液面62よりも遮蔽板12の上端位置を高くしてあり、被処理液の循環中に浮上油が浮上油受け部83へ遮蔽板12からオーバフローすることはない。   The valve 52 is closed, and micro bubbles are present in the liquid to be processed in the separation unit 81, so that the liquid surface 61 to be processed is higher than the highest position of the discharge pipe 51. In this state, the floating oil accumulates above the liquid surface 61 to be treated in the separation unit 81, but the upper end position of the shielding plate 12 is set higher than the floating oil liquid surface 62, and the floating oil is collected during circulation of the liquid to be treated. There is no overflow from the shielding plate 12 to the floating oil receiving portion 83.

槽外循環中に分離部81下方の油分は微小気泡によって上昇し、油水分離する。浮上油分離法では油分が高濃度であるほど分離性能は良いので、中間濃度以下までは高速に分離できる。   During the circulation outside the tank, the oil content below the separation unit 81 rises due to the microbubbles and is separated into oil and water. In the floating oil separation method, the higher the oil content, the better the separation performance.

低濃度域は連続処理に近い分離性能を有する。本発明者らの観察によれば、槽外循環の前半50%の時間で未処理状態の被処理液の油分濃度は中間濃度以下の1/5程度に低下し、後半50%の時間で中間濃度以下の油分濃度からさらにその1/5程度の低濃度(連続処理での目標濃度)に低下することを確認している。前後半で低減する比率は同程度であるが、絶対値でみれば前半に大半の油分が分離されていることになる。   The low concentration region has separation performance close to continuous processing. According to the observation by the present inventors, the oil concentration of the liquid to be treated in the untreated state decreases to about 1/5 of the intermediate concentration or less in the first half 50% of the circulation outside the tank, and intermediate in the second half 50% of the time. It has been confirmed that the oil concentration is lower than the concentration, and further reduced to a low concentration of about 1/5 (the target concentration in the continuous treatment). The ratio of reduction in the first half is about the same, but in terms of absolute value, most of the oil is separated in the first half.

分離部81における被処理液が目標とする濃度に低下したら、循環ポンプ31を停止し、バルブ42を閉じて、バルブ22とバルブ52を開放させ、供給ポンプ21を運転して未処理状態の被処理液を分離部81の底部から供給する。この期間中に分離部81上部の処理済の被処理液は、新たに供給した未処理状態の被処理液と同量だけ排出管51から流出する。   When the liquid to be processed in the separation unit 81 decreases to the target concentration, the circulation pump 31 is stopped, the valve 42 is closed, the valves 22 and 52 are opened, and the supply pump 21 is operated to operate the untreated state. The processing liquid is supplied from the bottom of the separation unit 81. During this period, the processed liquid to be processed in the upper part of the separation unit 81 flows out from the discharge pipe 51 by the same amount as the newly supplied unprocessed liquid to be processed.

以上説明した被処理液の供給と循環のために供給ポンプ21、循環ポンプ31の運転と停止を交互に繰り返し、浮上油液面62と被処理液面61との差が大きくなったら、即ち、分離部81上部に浮上油が溜まったら、供給ポンプ21の運転中に排出管51のバルブ52を閉止状態にし、被処理液面61が遮蔽板12と同一高さになることによって浮上油を遮蔽板12の上端からオーバフローさせ、浮上油受け部83へ排出させる。   When the supply pump 21 and the circulation pump 31 are alternately operated and stopped for supplying and circulating the liquid to be treated as described above, and the difference between the floating oil liquid level 62 and the liquid surface 61 to be treated increases, When the floating oil collects on the upper part of the separation unit 81, the valve 52 of the discharge pipe 51 is closed during the operation of the supply pump 21, and the liquid surface 61 to be treated is flush with the shielding plate 12 to shield the floating oil. It overflows from the upper end of the plate 12 and is discharged to the floating oil receiving portion 83.

通常のスクリュー型空気圧縮機では一週間の連続運転により浮上油が約1mm溜まるので、浮上油の排出は一週間に1回程度の頻度で行えば良い。この排出時期は運転時間で決定するだけでなく、浮上油量、浮上油厚さを測定することによっても決定できる。   In a normal screw-type air compressor, about 1 mm of floating oil is accumulated by continuous operation for one week, and therefore, the floating oil may be discharged about once a week. This discharge time can be determined not only by the operation time but also by measuring the amount of floating oil and the thickness of the floating oil.

この間歇処理では、分離部81内に清水または処理済の被処理液液と約50%の未処理状態にある被処理液を混合して油水分離処理し、油分は高濃度から低濃度まで短時間で下げることになる。   In this intermittent treatment, clean water or a treated liquid to be treated and a liquid to be treated of about 50% in an untreated state are mixed in the separation unit 81 to perform an oil / water separation treatment, and the oil content is reduced from a high concentration to a low concentration. It will be lowered in time.

前述したように、夏季に相当する大気中の水分量が多い時期にはドレン流量が多く、油分濃度は低い。冬季に相当する大気中の水分量が少ない時にはドレン流量が少なく、油分濃度は高い。そこで前記2つの運転方法の特徴を生かして、ドレン流量が多く油分濃度が低い場合には連続処理を行い、ドレン流量が少なく油分濃度が高い場合には間歇運転を行うことにより、小型で高速処理可能な油水分離装置を構成できる。   As described above, the drain flow rate is high and the oil concentration is low when the amount of moisture in the atmosphere corresponding to summer is high. When the amount of water in the atmosphere corresponding to winter is small, the drain flow rate is small and the oil concentration is high. Therefore, taking advantage of the features of the above two operation methods, it is possible to perform continuous processing when the drain flow rate is high and the oil concentration is low, and by performing intermittent operation when the drain flow rate is low and the oil concentration is high, small and high speed processing is possible. A possible oil / water separator can be constructed.

間歇処理運転は、槽外循環期間と被処理液供給期間の長さを異ならせた複数のパターンを用意して、中間濃度域の余裕を広くすることが可能である。また、間歇処理運転のみで装置を構成することもできる。   In the intermittent treatment operation, it is possible to prepare a plurality of patterns with different lengths of the circulation period outside the tank and the liquid supply period to be treated to widen the margin of the intermediate concentration range. In addition, the apparatus can be configured only by the intermittent processing operation.

これらの運転パターン選択にはドレン流量または油分濃度の情報が必要である。油分濃度は短時間で計測する方法が無いので、運転パターン選択にはドレン流量の情報を用いる。ドレン流量は、大気中の水分量,空気圧縮機の吐出空気圧力,空気冷却器の出口温度,凝縮水補集効率などから計算できる。従って、大気温度と大気湿度を計測すれば良い。一方、通常は空気圧縮機からのドレンを溜めるタンクを設けてあり、この中に液面計を取付け、液面の変化からドレン流量を算出しても良い。また、大気温度のみを測定して、大気湿度100%としたドレン最大流量を計算し、この値を制御に用いることも可能である。実際にはこれらの手法を単独もしくは組み合わせて、制御に用いる。これらのパターンや運転モードの切り替えは図示していない制御装置にシーケンスプログラムとして用意しておき、油分濃度を確認するための大気中における湿度などの上述した各項目の計測結果やカレンダーなどに基づいて適宜に切り替えるようにしておくこともできる。   Information on the drain flow rate or oil concentration is necessary for selecting these operation patterns. Since there is no method for measuring the oil concentration in a short time, information on the drain flow rate is used for selecting an operation pattern. The drain flow rate can be calculated from the amount of moisture in the atmosphere, the discharge air pressure of the air compressor, the outlet temperature of the air cooler, and the condensate collection efficiency. Accordingly, the atmospheric temperature and atmospheric humidity may be measured. On the other hand, a tank for storing drainage from the air compressor is usually provided, and a liquid level gauge may be attached therein, and the drain flow rate may be calculated from the change in the liquid level. It is also possible to measure only the atmospheric temperature, calculate the maximum drain flow rate with an atmospheric humidity of 100%, and use this value for control. Actually, these methods are used alone or in combination for the control. These patterns and operation mode switching are prepared as a sequence program in a control device (not shown), and based on the measurement results of each item described above, such as humidity in the atmosphere for checking the oil concentration, a calendar, etc. It can also be switched appropriately.

次に、図2により大気泡が処理槽内を上昇する状態について説明する。   Next, a state where large bubbles rise in the processing tank will be described with reference to FIG.

ノズル33から噴射された被処理液,大気泡(余剰空気)a.微小気泡bは、大気泡分離部13に送られる。大気泡分離部13では上昇速度の速い気泡径の大きな余剰空気(大気泡)aが被処理液の一部を伴って排出管14を通り被処理液面61に送られ、また微小気泡bと残りの被処理液は分離部81に送られる。排出管14は余剰空気(大気泡)aの上昇方向と同一の方向に排出管14の開口部を設けてあり、配管中で気泡同士が合体することを抑制した構造となっている。   Liquid to be treated and large bubbles (excess air) ejected from the nozzle 33 a. The micro bubbles b are sent to the large bubble separator 13. In the large bubble separation unit 13, surplus air (large bubbles) a having a large bubble diameter with a high rising speed is sent to the liquid surface 61 to be processed through the discharge pipe 14 together with a part of the liquid to be processed. The remaining liquid to be processed is sent to the separation unit 81. The discharge pipe 14 is provided with an opening of the discharge pipe 14 in the same direction as the rising direction of the surplus air (large bubbles) a, and has a structure in which bubbles are prevented from coalescing in the pipe.

このような構造であるために、大気泡aと被処理液の密度差によって大気泡aが連続的に被処理液面61に送られ、これに伴って排出管14内を被処理液が継続的に浮上して、被処理液面61での盛り上がりができる。このことにより浮上油液面62の無い被処理液面61を常に露出した形で存在させることができるため、被処理液の蒸発は持続され、被処理液温度が高くなれば蒸発量が増加し、気化熱が増す効果を用いることができ、温度上昇を抑制することができる。   Due to such a structure, the large bubbles a are continuously sent to the liquid surface 61 due to the density difference between the large bubbles a and the liquid to be treated, and the liquid to be treated continues in the discharge pipe 14 accordingly. As a result, the liquid surface 61 can be lifted up. As a result, the liquid surface 61 without the floating oil liquid surface 62 can always be present in an exposed form. Therefore, the evaporation of the liquid to be processed is continued, and the amount of evaporation increases as the liquid temperature to be processed increases. The effect of increasing the heat of vaporization can be used, and the temperature rise can be suppressed.

図3に、本発明の被処理液温度の上昇抑制結果の一例を示す。   In FIG. 3, an example of the rise suppression result of the to-be-processed liquid temperature of this invention is shown.

図3において、縦軸の液温度は分離部81における被処理液の温度、横軸は処理運転時間で、排出管14を配管中で気泡同士が合体することを抑制した直管の場合(ストレート形状)と、排出管14を従来通り余剰空気(大気泡)の上昇方向と垂直方向の配管形状を有する配管抵抗の多い場合(エルボ形状)について示したものである。   In FIG. 3, the liquid temperature on the vertical axis is the temperature of the liquid to be treated in the separation unit 81, the horizontal axis is the processing operation time, and in the case of a straight pipe that suppresses the coalescence of bubbles in the discharge pipe 14 (straight) Shape) and the case where there is a large pipe resistance (elbow shape) in which the discharge pipe 14 has a pipe shape perpendicular to the rising direction of excess air (large bubbles) as usual.

いずれも液温度は高くなるほど蒸発量が多くなり、気化熱によって放熱されるので、液温度の上昇は徐々に少なくなり、一定温度で安定しているが、直管(ストレート形状)の排出管14のほうが油膜の無い被処理液面61を常に存在させることができるため、水蒸発量が多く、液温度を低く抑えることができる。   In any case, as the liquid temperature increases, the amount of evaporation increases and the heat is dissipated by the heat of vaporization. Therefore, the increase in the liquid temperature gradually decreases and is stable at a constant temperature, but the straight pipe (straight shape) discharge pipe 14 Since the liquid surface 61 to be treated without oil film can always be present, the amount of water evaporation is large and the liquid temperature can be kept low.

図4は、本発明の他の実施形態になる油水分離装置10の要部を示している。   FIG. 4 shows a main part of an oil / water separator 10 according to another embodiment of the present invention.

この実施形態では、ノズル33から噴出される被処理液で、被処理液面61に向う被処理液が多くなるように、大気泡分離部13内にガイド板16を設けて、被処理液の流れを部分的に規制し、合わせて大気泡aが排出管14に誘導されるようにしている。   In this embodiment, the guide plate 16 is provided in the large bubble separation unit 13 so that the liquid to be processed ejected from the nozzle 33 increases toward the liquid surface 61 to be processed. The flow is partially restricted, and the large bubbles a are guided to the discharge pipe 14 together.

図2に示した大気泡aの上昇により形成される被処理液面61に向う被処理液の流れがガイド板16により強制される被処理液の流れで被処理液面61に向う流れが恒常的に形成され、被処理液面61の露出範囲は拡がる。   The flow of the liquid to be processed toward the liquid surface to be processed 61 formed by the rise of the large bubble a shown in FIG. 2 is forced by the guide plate 16, and the flow toward the liquid surface to be processed 61 is constant. Thus, the exposed range of the liquid surface 61 to be processed is expanded.

図5は、本発明のさらに他の実施形態になる油水分離装置10の要部を示している。   FIG. 5 shows a main part of an oil / water separator 10 according to still another embodiment of the present invention.

この実施形態は、図1の実施形態で空気供給配管41から取り込む溶解用空気量をバルブ42で調節して余分な空気が殆ど入らないようにすることができる場合に、被処理液面61に向う被処理液が連続(継続)して形成されるようにするものである。   In this embodiment, the amount of dissolving air taken in from the air supply pipe 41 in the embodiment shown in FIG. The liquid to be treated is continuously (continuously) formed.

図1に示した排出管14の代わりに、分離部81内に槽底部から被処理液面61近くまで直管(配管)17を設け、途中にポンプ18を設けてある。ポンプ18は送液手段であり、モータ19で駆動するが、ポンプ18は流れを作れば良いものであるから、低速で回転するもので十分であり、モータ19の所要動力が小さいのでモータ19の作動による被処理液の加熱はごくわずかである。   Instead of the discharge pipe 14 shown in FIG. 1, a straight pipe (pipe) 17 is provided in the separation part 81 from the bottom of the tank to the vicinity of the liquid surface 61 to be treated, and a pump 18 is provided in the middle. The pump 18 is a liquid feeding means and is driven by the motor 19. However, since the pump 18 only needs to generate a flow, it is sufficient to rotate at a low speed, and the required power of the motor 19 is small. Heating of the liquid to be treated by operation is negligible.

この実施形態において、大気泡分離部13と直管17を連通させ、大気泡分離部13の大気泡aを直管17に誘導しても良い。直管17での流れが連通部から大気泡aを吸い込むため、集合化して巨大な気泡に成長するする時間的な余裕はなく、また、ポンプ18で攪拌され微小化するので、連通させても問題はない。   In this embodiment, the large bubble separating unit 13 and the straight pipe 17 may be communicated, and the large bubble a in the large bubble separating unit 13 may be guided to the straight pipe 17. Since the flow in the straight pipe 17 sucks the large bubbles a from the communicating portion, there is no time to gather and grow into huge bubbles, and since it is agitated by the pump 18 and miniaturized, it can be communicated No problem.

図6は、本発明の更に他の実施形態になる油水分離装置10を示している。   FIG. 6 shows an oil / water separator 10 according to still another embodiment of the present invention.

この実施形態は、連続処理運転を行う図1の実施形態で、空気供給配管41から取り込む溶解用空気量をバルブ42で調節して余分な空気が殆ど入らないようにすることができる場合に、配管23から供給される未処理状態の被処理液の一部を配管23から分岐させた配管24からバルブ25を経て配管26により被処理液面61に向けて誘導し噴出させるようにしてある。   This embodiment is the embodiment of FIG. 1 in which continuous processing operation is performed, and when the amount of dissolving air taken in from the air supply pipe 41 can be adjusted by the valve 42 so that excess air hardly enters, A part of the untreated liquid to be treated supplied from the pipe 23 is guided from the pipe 24 branched from the pipe 23 to the liquid surface 61 to be treated by the pipe 26 through the valve 25 and ejected.

供給ポンプ21の連続運転に伴い、被処理液面61に向けて継続して配管26を流れる未処理状態の被処理液の流量はバルブ25の開度調整で決め、未処理状態の被処理液は供給ポンプ21の加圧力で被処理液面61に噴出する。   Along with the continuous operation of the supply pump 21, the flow rate of the unprocessed liquid that flows through the pipe 26 continuously toward the liquid surface 61 to be processed is determined by adjusting the opening of the valve 25, and the unprocessed liquid to be processed. Is ejected to the liquid surface 61 to be treated by the pressure of the supply pump 21.

配管26の先端開孔から継続(連続)して噴出する未処理状態の被処理液は浮上油を押し除けて被処理液面61を露出させ、分離槽11内の被処理液蒸発を促進させて、高温化を防ぐ。   The untreated liquid to be treated that is continuously (continuously) ejected from the opening of the pipe 26 exudes floating oil to expose the liquid surface 61 to be treated, and promotes evaporation of the liquid to be treated in the separation tank 11. To prevent high temperatures.

配管26の先端開孔から噴出する未処理状態の被処理液は分離槽11内の被処理液よりも低温であるために、分離槽11内の被処理液を冷却し、また、分離槽11内での対流に乗って槽底部に下降し、油水分離に供される。   Since the untreated liquid to be treated ejected from the opening at the tip of the pipe 26 is at a lower temperature than the liquid to be treated in the separation tank 11, the liquid to be treated in the separation tank 11 is cooled and the separation tank 11 is also cooled. It descends to the bottom of the tank by convection inside and is used for oil-water separation.

配管26の先端開孔から噴出する未処理状態の被処理液は浮上油を押し除ければ良いので、多量の被処理液を噴出させる必要はない。   Since the untreated liquid to be treated ejected from the opening at the tip of the pipe 26 only needs to push out the floating oil, it is not necessary to eject a large amount of the liquid to be treated.

この実施形態においても大気泡分離部13と配管26を連通させ、大気泡分離部13の大気泡aを配管17に誘導しても良い。直管17での流れが連通部から大気泡aを吸い込むため、集合化して巨大な気泡に成長するする時間的な余裕はなく、連通させても問題はない。   Also in this embodiment, the large bubble separating unit 13 and the pipe 26 may be communicated to guide the large bubble a of the large bubble separating unit 13 to the pipe 17. Since the flow in the straight pipe 17 sucks in the large bubbles a from the communicating portion, there is no time for aggregation and growth into huge bubbles, and there is no problem even if they are communicated.

なお、図示は省略するが、図5や図6の配管17,26などを用いる実施形態は、被処理液を貯留した処理槽に設けた電極で被処理液を電気分解することにより気泡を発生させる油水分離装置においても適用できる。   In addition, although illustration is abbreviate | omitted, embodiment which uses the piping 17 and 26 of FIG.5, FIG.6 etc. generate | occur | produces a bubble by electrolyzing a to-be-processed liquid with the electrode provided in the processing tank which stored the to-be-processed liquid. The present invention can also be applied to an oil / water separation apparatus.

本発明の一実施形態になる油水分離装置を示す図である。It is a figure which shows the oil-water separator which becomes one Embodiment of this invention. 図1に示した油水分離装置で大気泡が処理槽内を上昇する状態を示した図である。It is the figure which showed the state in which a large bubble raises the inside of a processing tank with the oil-water separator shown in FIG. 油水分離での被処理液の温度上昇を示す一例図である。It is an example figure which shows the temperature rise of the to-be-processed liquid in oil-water separation. 本発明の他の実施形態になる油水分離装置の要部を示す図である。It is a figure which shows the principal part of the oil-water separator which becomes other embodiment of this invention. 本発明の更に他の実施形態になる油水分離装置の要部を示す図である。It is a figure which shows the principal part of the oil-water separator which becomes further another embodiment of this invention. 本発明の更に他の実施形態になる油水分離装置を示す図である。It is a figure which shows the oil-water separator which becomes further another embodiment of this invention. 従来技術になる油水分離装置で大気泡が処理槽内を上昇する状態を示した図である。It is the figure which showed the state in which a large bubble raises the inside of a processing tank with the oil-water separator which becomes a prior art.

符号の説明Explanation of symbols

10…油水分離装置
11…処理槽
12…遮蔽板
13…大気泡分離部
14…排出管
21…供給ポンプ
22、36、42、52…バルブ
23、30、32、37、41、51…配管
31…循環ポンプ
33…ノズル
61…被処理液面
62…浮上油液面
81…分離部
10 ... oil-water separator 11 ... treatment tank
12 ... Shield plate
13 ... Large bubble separation part
14 ... discharge pipe
21 ... Supply pump
22, 36, 42, 52 ... valve
23, 30, 32, 37, 41, 51 ... piping
31 ... circulation pump
33 ... Nozzle
61 ... Liquid surface to be treated
62 ... Floating oil level
81. Separation part

Claims (8)

処理槽に貯留した油分を含む被処理液中に微小気泡を供給することによって被処理液に含まれる油分を気泡とともに浮上させ該被処理液を水と油分とに分離させる油水分離方法において、
被処理液の液面に向けて被処理液の流れを継続的に設けて被処理液の液面を常時露出させ、露出した被処理液面での水分蒸発により処理槽における被処理液の温度上昇を阻止するようにしたことを特徴とする油水分離方法。
In the oil-water separation method of floating the oil contained in the liquid to be treated together with the bubbles by supplying microbubbles into the liquid to be treated containing the oil stored in the treatment tank, and separating the liquid to be treated into water and oil.
The flow of the liquid to be treated is continuously provided toward the liquid surface of the liquid to be treated so that the liquid surface of the liquid to be treated is always exposed, and the temperature of the liquid to be treated in the treatment tank is caused by water evaporation on the exposed liquid surface to be treated. An oil-water separation method characterized by preventing the rise.
処理槽に貯留した被処理液中に微小気泡を供給することによって被処理液に含まれる油分を浮上させ水と油分とを分離させる油水分離装置において、
空気供給手段で空気を溶解させた被処理液を噴射するノズルを処理槽の下部に設け、該ノズルは噴射し被処理液から発生する大気泡を微小気泡と分離して該微小気泡を処理槽に貯留した被処理液中に供給する大気泡分離部を備え、該大気泡分離部に分離した大気泡を該処理槽に貯留した被処理液の液面近傍に誘導し被処理液の液面に向けて継続した被処理液の流れを形成して前記液面を常時露出させるストレート形状の排出管を設けたことを特徴とする油水分離装置。
In the oil / water separator for separating the water and the oil component by floating the oil contained in the liquid to be treated by supplying microbubbles into the liquid to be treated stored in the treatment tank,
A nozzle for injecting a liquid to be processed in which air is dissolved by an air supply means is provided in the lower part of the processing tank, and the nozzle injects large bubbles generated from the liquid to be processed from the microbubbles to remove the microbubbles from the processing tank. A large bubble separation unit that supplies the liquid to be treated stored in the liquid tank, and guides the large bubbles separated by the large bubble separation unit to the vicinity of the liquid surface of the liquid to be treated stored in the treatment tank. An oil-water separator having a straight discharge pipe that continuously forms the flow of the liquid to be treated and exposes the liquid surface at all times .
上記請求項2において、該排出管は該大気泡分離部から該処理槽に貯留した被処理液の液面近傍に向かう直管であることを特徴とする油水分離装置。   3. The oil-water separator according to claim 2, wherein the discharge pipe is a straight pipe that extends from the large bubble separating portion toward the liquid surface of the liquid to be treated stored in the treatment tank. 上記請求項3において、該排出管の口径は該排出管における開孔の位置と被処理液の液面までの距離よりも大きいものであることを特徴とする油水分離装置。   4. The oil / water separator according to claim 3, wherein the diameter of the discharge pipe is larger than the distance between the position of the opening in the discharge pipe and the surface of the liquid to be treated. 処理槽に貯留した被処理液中に微小気泡を供給することによって被処理液に含まれる油分を浮上させ水と油分とを分離させる油水分離装置において、
該処理槽に貯留した被処理液を槽底部から液面近傍に誘導する直管を設け、該直管に送液手段を設けて被処理液の液面に向けて継続した被処理液の流れを形成して前記液面を常時露出させることを特徴とする油水分離装置。
In the oil / water separator for separating the water and the oil component by floating the oil contained in the liquid to be treated by supplying microbubbles into the liquid to be treated stored in the treatment tank,
A straight tube to induce the liquid to be treated which is stored in the processing tank to the liquid surface near the Sosoko portion provided, the flow of the liquid to be treated was continued toward the liquid surface of the liquid to be treated by providing a liquid feed means to said straight pipe And the liquid level is always exposed to form an oil-water separator.
処理槽に貯留した被処理液中に微小気泡を供給することによって被処理液に含まれる油分を浮上させ水と油分とを分離させる油水分離装置において、
空気供給手段で空気を溶解させた被処理液を噴射するノズルを処理槽の下部に設け、
処理槽に被処理液を連続して供給するポンプを設け、該供給ポンプで処理槽に供給する被処理液の一部を該処理槽に貯留した被処理液の液面近傍に誘導する配管を設け、該被処理液の液面に向けて継続した被処理液の流れを形成して前記液面を常時露出させることを特徴とする油水分離装置。
In the oil / water separator for separating the water and the oil component by floating the oil contained in the liquid to be treated by supplying microbubbles into the liquid to be treated stored in the treatment tank,
A nozzle for injecting a liquid to be treated in which air is dissolved by an air supply means is provided at the bottom of the treatment tank,
A pump for continuously supplying the liquid to be processed to the processing tank is provided, and a pipe for guiding a part of the liquid to be processed to be supplied to the processing tank by the supply pump to the vicinity of the liquid surface of the liquid to be processed stored in the processing tank. An oil / water separator, characterized in that the liquid surface is always exposed by forming a continuous flow of the liquid to be treated toward the liquid surface of the liquid to be treated.
上記の請求項5において、処理槽に貯留した被処理液中に微小気泡を供給する手段は、空気供給手段で空気を溶解させた被処理液を噴射する処理槽の下部に設けたノズルもしくは処理槽に貯留した被処理液を電気分解する電極であることを特徴とする油水分離装置。 Oite to claim 5 above, means for supplying microbubbles during the treatment liquid stored in a treating tank, a nozzle which is provided in the lower portion of the processing tank for injecting the liquid to be treated is dissolved air in air supply means Or it is an electrode which electrolyzes the to-be-processed liquid stored in the processing tank, The oil-water separator characterized by the above-mentioned. 処理槽に貯留した被処理液中に微小気泡を供給することによって被処理液に含まれる油分を浮上させ水と油分とを分離させる油水分離装置において、
処理槽に貯留した被処理液を電気分解する電極を設け、
処理槽に被処理液を連続して供給するポンプを設け、該供給ポンプで処理槽に供給する被処理液の一部を該処理槽に貯留した被処理液の液面近傍に誘導する配管を設け、該被処理液の液面に向けて継続した被処理液の流れを形成して前記液面を常時露出させることを特徴とする油水分離装置。
In the oil / water separator for separating the water and the oil component by floating the oil contained in the liquid to be treated by supplying microbubbles into the liquid to be treated stored in the treatment tank,
An electrode for electrolyzing the liquid to be treated stored in the treatment tank is provided,
A pump for continuously supplying the liquid to be processed to the processing tank is provided, and a pipe for guiding a part of the liquid to be processed to be supplied to the processing tank by the supply pump to the vicinity of the liquid surface of the liquid to be processed stored in the processing tank. An oil / water separator, characterized in that the liquid surface is always exposed by forming a continuous flow of the liquid to be treated toward the liquid surface of the liquid to be treated.
JP2005115225A 2005-04-13 2005-04-13 Oil-water separation method and oil-water separation device Active JP4759306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005115225A JP4759306B2 (en) 2005-04-13 2005-04-13 Oil-water separation method and oil-water separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005115225A JP4759306B2 (en) 2005-04-13 2005-04-13 Oil-water separation method and oil-water separation device

Publications (2)

Publication Number Publication Date
JP2006289290A JP2006289290A (en) 2006-10-26
JP4759306B2 true JP4759306B2 (en) 2011-08-31

Family

ID=37410467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005115225A Active JP4759306B2 (en) 2005-04-13 2005-04-13 Oil-water separation method and oil-water separation device

Country Status (1)

Country Link
JP (1) JP4759306B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4882659A (en) * 1972-01-20 1973-11-05
JPS4883659A (en) * 1972-02-09 1973-11-07
US4483774A (en) * 1984-03-16 1984-11-20 Brill Eugene L Oil concentrating method and apparatus
JPH0321304A (en) * 1989-06-16 1991-01-30 Sanyo Electric Co Ltd Dehydration of for refrigerator oil
JP4038365B2 (en) * 2001-11-20 2008-01-23 株式会社日立産機システム Oil / water separator
JP4072334B2 (en) * 2001-11-20 2008-04-09 株式会社日立産機システム Oil / water separator
JP4072356B2 (en) * 2002-02-20 2008-04-09 株式会社日立産機システム Oil / water separator and oil / water separator
JP4215548B2 (en) * 2003-04-02 2009-01-28 株式会社日立産機システム Oil / water separator

Also Published As

Publication number Publication date
JP2006289290A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP3929472B2 (en) Gas dissolution amount adjusting device and system
JP5242193B2 (en) Method for producing hydrogen reduced water
JP4215548B2 (en) Oil / water separator
JP4072334B2 (en) Oil / water separator
CN107152250B (en) Method for removing hydrogen sulfide in drilling fluid for drilling operation of sulfur-containing stratum
JP4759306B2 (en) Oil-water separation method and oil-water separation device
RU87159U1 (en) WASTE WATER TREATMENT PRESSURE FLOTATION
JP4018099B2 (en) Device for removing dissolved oxygen in liquid and method for removing dissolved oxygen
JP4072356B2 (en) Oil / water separator and oil / water separator
JP2007038173A (en) Oil and water separating method and oil and water separating apparatus
JP2011240339A (en) Oil-water separation method and oil-water separator
KR100730054B1 (en) Apparatus and method for separating oil from water
JP4038365B2 (en) Oil / water separator
JP4194469B2 (en) Oil / water separator
JP4072507B2 (en) Oil / water separator
JP2007144353A (en) Oil/water separator
JP4815158B2 (en) Oil-water separation method
JP4126203B2 (en) Oil-water separation method and apparatus
JP2006159142A (en) Oil-water separation method and oil-water separator
JP5509407B1 (en) Pressurized floating scum separation treatment device
JPH08108005A (en) Deaeration device
JP4088609B2 (en) Oil-water separation method and apparatus
JP2010264449A (en) Flotation separation apparatus
JP3710631B2 (en) Liquid separator for machine tool and control method thereof
JP2006167560A (en) Oil/water separator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060823

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4759306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3