JP4815158B2 - Oil-water separation method - Google Patents

Oil-water separation method Download PDF

Info

Publication number
JP4815158B2
JP4815158B2 JP2005181427A JP2005181427A JP4815158B2 JP 4815158 B2 JP4815158 B2 JP 4815158B2 JP 2005181427 A JP2005181427 A JP 2005181427A JP 2005181427 A JP2005181427 A JP 2005181427A JP 4815158 B2 JP4815158 B2 JP 4815158B2
Authority
JP
Japan
Prior art keywords
oil
liquid
treated
processed
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005181427A
Other languages
Japanese (ja)
Other versions
JP2007000715A (en
Inventor
聰 塚原
公男 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2005181427A priority Critical patent/JP4815158B2/en
Publication of JP2007000715A publication Critical patent/JP2007000715A/en
Application granted granted Critical
Publication of JP4815158B2 publication Critical patent/JP4815158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)

Description

本発明は油水分離方法および油水分離装置に係わり、特に、被処理液に空気を供給しポンプで加圧して被処理液に空気を溶解させ、処理槽の下部から溶解させた空気を気泡として被処理液とともに吹き出させることによって、処理槽において被処理液に含まれる油分を気泡とともに浮上させ被処理液を水と油分とを分離させる浮上分離法による油水分離方法および油水分離装置に関するものである。   The present invention relates to an oil-water separation method and an oil-water separator, and in particular, supplies air to a liquid to be treated and pressurizes it with a pump to dissolve the air in the liquid to be treated, and the air dissolved from the lower part of the treatment tank is covered as bubbles. The present invention relates to an oil-water separation method and an oil-water separation device by a levitation separation method in which an oil component contained in a liquid to be treated is floated together with bubbles in a treatment tank by blowing it together with the treatment liquid, thereby separating the liquid to be treated from water and oil.

浮上分離法による分離装置として、下記の特許文献1に記載されるように、渦流ポンプの液体吸込口に気体吸込手段を設けておき、渦流ポンプでの加圧過程で空気を被処理液に溶解(気液混合溶解)させ、処理槽内にノズルから噴射減圧することによって、処理槽内の被処理液中に気泡を発生させるものがある。   As described in Patent Document 1 below, as a separation apparatus based on the levitation separation method, gas suction means is provided in the liquid suction port of the vortex pump, and air is dissolved in the liquid to be processed in the pressurization process of the vortex pump. Some gas bubbles are generated in the liquid to be processed in the processing tank by performing (gas-liquid mixing and dissolution) and jetting and decompressing from the nozzle in the processing tank.

特開2003―236305号公報Japanese Patent Laid-Open No. 2003-236305

上記従来技術においては、油自体の疎水性が高い場合には処理槽内に発生する微小気泡と油分が結合して、油分は気泡とともに浮上し、油水分離できる。しかし、油自体の疎水性が低い場合には微小気泡と油分の結合が十分に進まず、油水分離することができない。   In the above prior art, when the hydrophobicity of the oil itself is high, the fine bubbles generated in the treatment tank and the oil component are combined, and the oil component floats together with the bubbles and can be separated into oil and water. However, when the hydrophobicity of the oil itself is low, the bonding between the microbubbles and the oil does not proceed sufficiently, and the oil-water separation cannot be performed.

この結果、レシプロ圧縮機潤滑油や特殊なスクリュー圧縮機潤滑油等の鉱物油を含む水(ドレン)では鉱物油の排水基準である5mg/Lにまで油を分離できないことがあった。   As a result, water (drain) containing mineral oil such as reciprocating compressor lubricating oil or special screw compressor lubricating oil may not be able to be separated to 5 mg / L, which is the drainage standard for mineral oil.

それゆえ本発明の目的は、疎水性の低い油を含む水を排水基準にまで高速に油水分離ができる油水分離方法および油水分離装置を提供することにある。   Therefore, an object of the present invention is to provide an oil / water separation method and an oil / water separation device capable of performing oil-water separation at high speed up to a drainage standard for water containing oil having low hydrophobicity.

上記目的を達成する本発明油水分離方法の特徴とするところは、被処理液に空気を供給し、ポンプで加圧して被処理液に空気を溶解させ、処理槽の下部から溶解させた空気を気泡として被処理液とともに吹き出させることによって、該処理槽において被処理液に含まれる油分を気泡とともに浮上させ該被処理液を水と油分とに分離させる油水分離方法において、塩化カルシウムおよび塩化マグネシウムの少なくとも一方と水酸化ナトリウムを混合した被処理液に気泡を供給することにあり、特に、塩化カルシウムおよび塩化マグネシウムの少なくとも一方よりも後に水酸化ナトリウムを混合することである
The oil-water separation method of the present invention that achieves the above object is characterized by supplying air to the liquid to be treated, pressurizing with a pump to dissolve the air in the liquid to be treated, and dissolving the air dissolved from the lower part of the treatment tank. In the oil-water separation method in which the oil contained in the liquid to be treated is floated together with the bubbles in the treatment tank by blowing out the bubbles together with the liquid to be treated, and the liquid to be treated is separated into water and oil. Ri near supplying bubbles into the liquid to be treated by mixing at least one of sodium hydroxide, in particular, is to mix the sodium hydroxide later than at least one of calcium chloride and magnesium chloride.

また、上記目的を達成する本発明油水分離方法の特徴とするところは、疎水性が低い油分を含む被処理液に塩化カルシウムおよび塩化マグネシウムの少なくとも一方と水酸化ナトリウムを別々に混合することにある。   In addition, the oil-water separation method of the present invention that achieves the above object is characterized by separately mixing at least one of calcium chloride and magnesium chloride and sodium hydroxide into a liquid to be treated containing an oil component having low hydrophobicity. .

本発明によれば、被処理液中の油分が塩化カルシウム(CaCl2)や塩化マグネシウム(MgCl2)によって凝集し、この凝集を水酸化ナトリウム(NaOH)が促進させ、分散している微小な油分が結合体となって直径が大きくなる結果、浮上しやすくなるだけでなくポンプで加圧溶解された空気で製造される微細気泡と吸着しやすくなって、一層浮上しやすくなり、油水分離が高速に進む。   According to the present invention, the oil in the liquid to be treated is agglomerated by calcium chloride (CaCl2) or magnesium chloride (MgCl2), and this aggregation is promoted by sodium hydroxide (NaOH), and the dispersed fine oil is bonded. As a result of the body becoming larger in diameter, not only will it rise easily, but it will also become easier to adsorb with fine bubbles produced with air that has been pressure-dissolved with a pump, making it easier to float, and oil-water separation proceeds at high speed. .

塩化カルシウムや塩化マグネシウムは豆腐を製造するときに用いるにがりの主成分で、食品に使用されているものであり、それらの水溶液は被処理液で希釈した形で水酸化ナトリウムとともに排水するので、環境を汚染することはない。即ち、疎水性の低い油を含む水であっても、排水基準にまで高速に油水分離をして、油分は回収し、水はそのまま廃棄することができる。   Calcium chloride and magnesium chloride are the main components of bittern used in the production of tofu, and are used in foods, and their aqueous solutions are drained with sodium hydroxide in a form diluted with the liquid to be treated. Will not pollute. That is, even water containing oil with low hydrophobicity can be separated at high speed to the drainage standard, the oil can be recovered, and the water can be discarded as it is.

また、本発明によれば、金属に対し腐食性を有する塩化カルシウムや塩化マグネシウムの添加量を少なくして水酸化ナトリウム水溶液の濃度を高くし、全体として油分凝集効果を維持するとともに処理済液のpH値を高めることにより、塩化カルシウムや塩化マグネシウムの腐食性を低減せしめて、処理槽や配管などの諸金属部材が腐食しにくくなるようにするとともに、被処理液をアルカリ性状態にすることによって油水分離を促進させることができる。   Further, according to the present invention, the concentration of sodium hydroxide aqueous solution is increased by reducing the addition amount of calcium chloride and magnesium chloride which are corrosive to metals, maintaining the oil aggregation effect as a whole, By increasing the pH value, the corrosiveness of calcium chloride and magnesium chloride is reduced, making it difficult for various metal members such as treatment tanks and pipes to corrode, and by making the liquid to be treated alkaline, Separation can be promoted.

本実施形態に係る油水分離装置の特徴とするところは、被処理液に空気を供給しポンプで加圧して被処理液に空気を溶解させ、処理槽の下部から溶解させた空気を気泡として被処理液とともに吹き出させることによって、該処理槽において被処理液に含まれる油分を気泡とともに浮上させ該被処理液の水と油分とを分離させる油水分離装置において、該ポンプの吸込み側に塩化カルシウム水溶液および塩化マグネシウム水溶液の少なくとも一方を供給する配管と水酸化ナトリウム水溶液を供給する配管を設け、さらに該ポンプの吸込み側に圧力調整弁を設けて、該圧力調整弁の開度調整により該ポンプのポンプ吸込圧力を大気圧よりも低くして大気圧と該ポンプ吸込圧力の差圧を駆動力として塩化カルシウム水溶液および塩化マグネシウム水溶液の少なくとも一方と水酸化ナトリウム水溶液を別々に該被処理液に混合させることにある。
また、特徴とするところは、被処理液に空気を供給しポンプで加圧して被処理液に空気を溶解させ、処理槽の下部から溶解させた空気を気泡として被処理液とともに吹き出させることによって、該処理槽において被処理液に含まれる油分を気泡とともに浮上させ該被処理液の水と油分とを分離させる油水分離装置において、該処理槽の被処理液に塩化カルシウム水溶液および塩化マグネシウム水溶液の少なくとも一方と水酸化ナトリウム水溶液を別々に定量供給するポンプを設けたことにある。
さらに、特徴とするところは、被処理液に空気を供給しポンプで加圧して被処理液に空気を溶解させ、処理槽の下部から溶解させた空気を気泡として被処理液とともに吹き出させることによって、該処理槽において被処理液に含まれる油分を気泡とともに浮上させ該被処理液の水と油分とを分離させる油水分離装置において、塩化カルシウム水溶液および塩化マグネシウム水溶液の少なくとも一方と水酸化ナトリウム水溶液を貯蔵するタンクを該処理槽における被処理液面よりも高い場所にそれぞれ設け、該各タンクから各水溶液を該処理槽に導く配管にバルブを設け、各バルブを開放して重力で各水溶液を被処理液に混合させることにある。
以下、本発明の実施形態になる油水分離装置について説明する。
The oil-water separator according to this embodiment is characterized in that air is supplied to the liquid to be processed and pressurized with a pump to dissolve the air in the liquid to be processed, and the air dissolved from the lower part of the processing tank is covered as bubbles. In an oil / water separator that blows off the oil contained in the liquid to be treated in the treatment tank together with bubbles by blowing it together with the treatment liquid, and separates the water and the oil of the liquid to be treated in the aqueous solution of calcium chloride on the suction side of the pump A pipe for supplying at least one of an aqueous solution of magnesium chloride and a pipe for supplying an aqueous solution of sodium hydroxide, and further providing a pressure regulating valve on the suction side of the pump, and adjusting the opening of the pressure regulating valve Calcium chloride aqueous solution and magnesium chloride water with the suction pressure lower than the atmospheric pressure and the differential pressure between the atmospheric pressure and the pump suction pressure as the driving force It is to be mixed to said processing solution separately at least one of sodium hydroxide solution of a liquid.
In addition, the feature is that by supplying air to the liquid to be processed and pressurizing with a pump to dissolve the air in the liquid to be processed, the air dissolved from the lower part of the processing tank is blown out together with the liquid to be processed as bubbles. In the oil-water separator that floats the oil contained in the liquid to be treated together with bubbles in the treatment tank and separates the water and the oil in the liquid to be treated, an aqueous calcium chloride solution and an aqueous magnesium chloride solution are used as the liquid to be treated in the treatment tank. This is because a pump for separately metering at least one and an aqueous sodium hydroxide solution is provided.
Furthermore, the feature is that air is supplied to the liquid to be processed and pressurized with a pump to dissolve the air in the liquid to be processed, and the air dissolved from the lower part of the processing tank is blown out together with the liquid to be processed as bubbles. In the oil-water separator that floats the oil contained in the liquid to be treated together with bubbles in the treatment tank and separates the water and the oil in the liquid to be treated, at least one of an aqueous calcium chloride solution and an aqueous magnesium chloride solution and an aqueous sodium hydroxide solution Tanks to be stored are provided at locations higher than the surface of the liquid to be treated in the treatment tank, valves are provided in pipes that lead each aqueous solution from the tanks to the treatment tank, and each valve is opened to cover each aqueous solution by gravity. It is to be mixed with the treatment liquid.
Hereinafter, an oil-water separator according to an embodiment of the present invention will be described.

図1に示した油水分離装置10は、一例として空気圧縮機から排出されるドレンを処理するものとして使用する。   The oil-water separator 10 shown in FIG. 1 is used as an example for treating drain discharged from an air compressor.

図1において、処理槽11には、槽内に被処理液を貯留し油水分離を行う分離部(請求項では処理槽と記載)81とこの分離部81で浮上分離した油分を回収する浮上油受け部83とがあり、両部81,83を分離する遮蔽板12を設けてある。処理槽11の側壁下部において、分離部81に大気泡分離部13を連接してある。   In FIG. 1, a treatment tank 11 stores a liquid to be treated in the tank and separates oil and water into the separation tank (described as a treatment tank in the claims) 81 and a floating oil that collects oil separated and floated by the separation section 81. There is a receiving portion 83, and a shielding plate 12 that separates both portions 81 and 83 is provided. In the lower part of the side wall of the processing tank 11, the large bubble separating unit 13 is connected to the separating unit 81.

処理槽11における分離部81の底に取り付けた配管30はバルブ36,配管32を介して循環ポンプ31と接続し、循環ポンプ31の出口側配管37は大気泡分離部13内に設置してあるノズル33に接続してある。配管32には、バルブ42を有する空気供給配管41の一端を接続してあり、空気供給配管41の他端は大気に開放してある。   The pipe 30 attached to the bottom of the separation part 81 in the treatment tank 11 is connected to the circulation pump 31 via the valve 36 and the pipe 32, and the outlet side pipe 37 of the circulation pump 31 is installed in the large bubble separation part 13. It is connected to the nozzle 33. One end of an air supply pipe 41 having a valve 42 is connected to the pipe 32, and the other end of the air supply pipe 41 is open to the atmosphere.

配管30,32,37は分離部81における被処理液の外部循環系を構成しており、後述するように、循環ポンプ31の作動で空気供給配管41から空気を吸引するとともに加圧し被処理液中に溶解させ、空気を溶解させた被処理液をノズル33から噴き出す。   The pipes 30, 32, and 37 constitute an external circulation system of the liquid to be processed in the separation unit 81. As will be described later, air is sucked and pressurized from the air supply pipe 41 by the operation of the circulation pump 31. The liquid to be treated which is dissolved therein and in which air is dissolved is ejected from the nozzle 33.

循環ポンプ31の一例としては渦流ポンプを使用しており、図示していないが、循環ポンプ31の出口には被処理液の圧力(水圧)を測定するゲージを設けてある。   As an example of the circulation pump 31, a vortex pump is used. Although not shown, a gauge for measuring the pressure (water pressure) of the liquid to be treated is provided at the outlet of the circulation pump 31.

ノズル33は大気泡分離部13とともに処理槽11における分離部81の下部の側壁に設けてあり、大気泡分離部13にはノズル33から噴き出すかもしれない大気泡を分離部81に廻さないようにする排出管14を設けてあり、排出管14の排出口は分離部81の上部に位置せしめてある。   The nozzle 33 is provided on the side wall of the lower part of the separation unit 81 in the processing tank 11 together with the large bubble separation unit 13, so that the large bubble that may be ejected from the nozzle 33 is not sent to the separation unit 81 in the large bubble separation unit 13. The discharge pipe 14 is provided, and the discharge port of the discharge pipe 14 is positioned above the separation portion 81.

配管32には、供給ポンプ21とバルブ22を有し未処理な被処理液の供給系統を構成する供給管23を接続してある。供給管23は分離部81の下部に接続して、未処理の被処理液を分離部81に供給してもよい。   A supply pipe 23 having a supply pump 21 and a valve 22 and constituting a supply system for an unprocessed liquid is connected to the pipe 32. The supply pipe 23 may be connected to the lower part of the separation unit 81 to supply untreated liquid to the separation unit 81.

配管32には水酸化ナトリウム(NaOH)水溶液タンク71からの配管72がバルブ77を介して接続している。また、配管32には塩化カルシウム(CaCl2)水溶液タンク91からの配管92がバルブ97を介して接続している。   A pipe 72 from a sodium hydroxide (NaOH) aqueous solution tank 71 is connected to the pipe 32 via a valve 77. A pipe 92 from a calcium chloride (CaCl 2) aqueous solution tank 91 is connected to the pipe 32 via a valve 97.

分離部81の上部には処理済の被処理液を排出する排出管51を設けてあり、排出管51は分離部81との接続部(管座)から持上げ、その下流を分離部81との接続部よりも低い位置まで配管してあり、その途中にバルブ52を有している。排出管51の最高位は、処理槽11の遮蔽板12の最高位より低くして位置差D1を持たせてある。   A discharge pipe 51 for discharging the processed liquid to be processed is provided at the upper part of the separation unit 81, and the discharge pipe 51 is lifted from a connection part (tube seat) with the separation part 81, and its downstream is connected to the separation part 81. The pipe is piped to a position lower than the connecting portion, and has a valve 52 in the middle thereof. The highest position of the discharge pipe 51 is set lower than the highest position of the shielding plate 12 of the treatment tank 11 to have a positional difference D1.

従って、分離部81内に被処理液を供給し貯留させる場合、バルブ52を開放してあれば、被処理液は排出管51から流出して、分離部81における被処理液面61は排出管51の最高位で規制される。バルブ52を閉止し分離槽81内に被処理液を供給していけば、被処理液面61は排出管51の最高位よりも上昇していくので、排出管51はバルブ52の開閉で被処理液を排出し水位を調整する機能を備えていることになる。   Therefore, when supplying and storing the liquid to be processed in the separation unit 81, if the valve 52 is opened, the liquid to be processed flows out of the discharge pipe 51, and the liquid surface 61 to be processed in the separation part 81 is discharged from the discharge pipe. Regulated at the highest of 51. When the valve 52 is closed and the liquid to be treated is supplied into the separation tank 81, the liquid surface 61 to be treated rises from the highest level of the discharge pipe 51, so that the discharge pipe 51 is covered by opening and closing the valve 52. It has the function of discharging the processing liquid and adjusting the water level.

排出管51に設けた配管53は、サイホン効果で排出管51の最高位水平面以下まで排水されないように大気に開放している。なお、被処理液面61の上部には油水分離で上昇した浮上油の浮上油液面62が形成される。   The pipe 53 provided in the discharge pipe 51 is open to the atmosphere so that it is not drained below the highest horizontal plane of the discharge pipe 51 by the siphon effect. In addition, a floating oil liquid level 62 of the floating oil that has been raised by the oil-water separation is formed on the top of the liquid surface 61 to be treated.

分離部81内を上昇中の微細気泡および油粒子が分離部81から排出管51を介して流出する処理済の被処理液に混入することを防止する仕切板15を設け、ポケット状吸入部82を形成してある。即ち、排出管51における被処理液の流出量と吸入部82の入口面積で決まる吸入部82での被処理液の下降速度が気泡の上昇速度より遅くなるようにしてあることにより、分離部81を上昇中の微細気泡および油粒子が吸入部82に流入して排出管51から流出することはない。   A partition plate 15 is provided to prevent fine bubbles and oil particles rising in the separation unit 81 from entering the treated liquid that has flowed out of the separation unit 81 through the discharge pipe 51, and the pocket-like suction unit 82 is provided. Is formed. That is, the separation unit 81 is configured such that the lowering speed of the processing liquid in the suction part 82 determined by the outflow amount of the processing liquid in the discharge pipe 51 and the inlet area of the suction part 82 is slower than the rising speed of the bubbles. The fine bubbles and the oil particles that are moving up the flow do not flow into the suction portion 82 and flow out of the discharge pipe 51.

仕切板15の最高位は、排出管51の最高位、即ち、バルブ52を開放している時の被処理液面61より低くして、位置差D2を持たせている。また、仕切板15の最高位は排出管51の分離部81との接続部(管座)より高くして、位置差D3を持たせている。   The highest position of the partition plate 15 is lower than the highest position of the discharge pipe 51, that is, the liquid surface 61 to be processed when the valve 52 is opened, so as to have a positional difference D2. Further, the highest position of the partition plate 15 is set higher than the connection portion (tube seat) with the separation portion 81 of the discharge pipe 51 so as to have a positional difference D3.

浮上油受け部83の底部には、分離部81から遮蔽板12を乗り越えて流入(溢流)する廃油63を排出する油分排出管55を設けてある。また、図示しないが、処理槽11の底部から外部に配管を設け、その途中にバルブを設けてあり、分離部81内部の液体を排出する必要がある場合にこれらを用いる。   An oil discharge pipe 55 is provided at the bottom of the floating oil receiving portion 83 to discharge the waste oil 63 that flows over the shielding plate 12 from the separation portion 81 and flows in (overflows). Moreover, although not shown in figure, piping is provided outside from the bottom part of the processing tank 11, the valve | bulb is provided in the middle, and these are used when it is necessary to discharge | emit the liquid inside the separation part 81.

分離部81には温度測定器84を設けてあり、分離部81における被処理液の温度を測定できるようにしている。温度測定器84に代えて、配管30から循環ポンプ31を経由しノズル33までの配管37中に温度測定器を設置して、被処理液の温度を測定してもよい。   The separation unit 81 is provided with a temperature measuring device 84 so that the temperature of the liquid to be processed in the separation unit 81 can be measured. Instead of the temperature measuring device 84, a temperature measuring device may be installed in the piping 37 from the piping 30 to the nozzle 33 via the circulation pump 31, and the temperature of the liquid to be processed may be measured.

次に、図1に示す油水分離装置の動作を説明する。
空気圧縮機から排出されるドレンは、絶対湿度が高い時期(夏季)にはドレン流量が多く、ドレン中の油分濃度は低い。一方、絶対湿度が低い時期(冬期や春秋)にはドレン流量が少なく、ドレン中の油分濃度は高い。絶対湿度が高い時期(夏季)には連続運転処理、絶対湿度が低い時期(冬季や春秋)には間歇運転処理が好適である。
Next, the operation of the oil / water separator shown in FIG. 1 will be described.
The drain discharged from the air compressor has a large drain flow rate and a low oil concentration in the drain when the absolute humidity is high (summer season). On the other hand, when the absolute humidity is low (winter and spring / autumn), the drain flow rate is small and the oil concentration in the drain is high. A continuous operation process is preferable when the absolute humidity is high (summer), and an intermittent operation process is preferable when the absolute humidity is low (winter and spring / autumn).

先ず、絶対湿度が高い時期に行う連続処理運転について説明する。
準備として、バルブ52は開放状態として処理槽11の分離部81に清水または処理済の被処理液を充填し、被処理液面61が排出管51の最高位に一致したら、循環ポンプ31を運転させる。この時、バルブ22は閉止し、供給ポンプ21は停止している。バルブ36,42は開放状態としてある。
First, the continuous processing operation performed when the absolute humidity is high will be described.
As a preparation, the valve 52 is opened and the separation unit 81 of the treatment tank 11 is filled with fresh water or a treated liquid to be treated. When the treated liquid level 61 coincides with the highest level of the discharge pipe 51, the circulation pump 31 is operated. Let At this time, the valve 22 is closed and the supply pump 21 is stopped. The valves 36 and 42 are open.

次にバルブ36の開度を調節して図示しない循環ポンプ31の入口圧力を大気圧よりも低くする。循環ポンプ31の運転で分離部81の清水または処理済の被処理液が配管30,32を通して吸引され、昇圧されて配管37からノズル33に流れることによって、空気供給配管41側がさらに負圧となり、溶解用空気が空気供給配管41から流入して配管32に到る。   Next, the opening of the valve 36 is adjusted so that the inlet pressure of the circulation pump 31 (not shown) is lower than the atmospheric pressure. In the operation of the circulation pump 31, the fresh water or the treated liquid in the separation unit 81 is sucked through the pipes 30 and 32, and is pressurized and flows from the pipe 37 to the nozzle 33, so that the air supply pipe 41 side further becomes negative pressure, Dissolving air flows from the air supply pipe 41 and reaches the pipe 32.

循環ポンプ31では空気を分断し加圧して清水または処理済の被処理液に溶解させているが、溶解しきれない空気は大きな気泡のままで配管37を通ってノズル33に流れる。循環ポンプ31で加圧された被処理液と溶解した空気はノズル33から分離部81の被処理液中に吐出することで減圧され、水に溶解していた空気は微細な気泡となる。循環ポンプ31による加圧で被処理液に溶解する空気量は加圧下ではヘンリー(Henry)の法則に従ったものとなり、配管37を流れる清水または処理済の被処理液にかかる圧力及び配管37を流れる流量に比例して、溶解する空気量は多くなる。また、配管37を流れる清水または処理済の被処理液の温度が低い程、溶解する空気量は多くなる。実際の運転では圧力、流量を設定値一定となるように運転する。   In the circulation pump 31, the air is divided and pressurized to be dissolved in fresh water or a processed liquid to be processed, but the air that cannot be completely dissolved flows as a large bubble to the nozzle 33 through the pipe 37. The to-be-treated liquid pressurized by the circulation pump 31 and the dissolved air are decompressed by being discharged from the nozzle 33 into the to-be-treated liquid of the separation unit 81, and the air dissolved in the water becomes fine bubbles. The amount of air dissolved in the liquid to be treated by the pressurization by the circulation pump 31 follows the Henry's law under the pressure, and the pressure applied to the fresh water flowing through the pipe 37 or the treated liquid to be treated and the pipe 37 The amount of dissolved air increases in proportion to the flowing flow rate. Moreover, the amount of dissolved air increases as the temperature of the fresh water flowing through the pipe 37 or the processed liquid to be processed is lower. In actual operation, the operation is performed so that the pressure and flow rate are constant.

このように運転すると循環ポンプ31の動力が熱となり被処理液に伝わり、液温が上昇し、溶解する空気量は減少する。このため、予め配管37における被処理液の流量,被処理液の液温度,循環ポンプ31による加圧量と溶解空気量の関係を求めておき、温度測定器84で求めた液温度により空気供給配管41から流入させる溶解用空気量が処理槽11内を気泡がほぼ揃って浮上する量になるようにバルブ42で調節し、運転する。   When operated in this way, the power of the circulation pump 31 becomes heat and is transmitted to the liquid to be treated, the liquid temperature rises, and the amount of dissolved air decreases. For this reason, the relationship between the flow rate of the liquid to be treated in the pipe 37, the liquid temperature of the liquid to be treated, the amount of pressure applied by the circulation pump 31 and the amount of dissolved air is obtained in advance, and air is supplied at the liquid temperature obtained by the temperature measuring device 84. The operation is performed by adjusting the valve 42 so that the amount of the air for dissolving flowing in from the pipe 41 becomes an amount in which the bubbles almost rise in the processing tank 11.

上記したように被処理液に溶解していた空気はノズル33から吐出することで減圧され気泡となって分離部81内を浮上するが、分離部81内をほぼ揃って順次浮上するような微細気泡がノズル33から吐出するように溶解する空気量をバルブ42で調節しておく。径の大きな気泡の大気泡は浮力が大きく働くから微細気泡よりも早く浮上する。早い浮上は、油水分離に寄与しないし、分離部81内での流れを乱して微細気泡と油分の接触を阻害し、分離性能を低下させかねない。   As described above, the air dissolved in the liquid to be treated is decompressed by being discharged from the nozzle 33 and becomes bubbles, and floats in the separation unit 81. The amount of air dissolved is adjusted by the valve 42 so that the bubbles are discharged from the nozzle 33. A large bubble having a large diameter rises faster than a fine bubble because buoyancy works greatly. Fast ascent does not contribute to oil-water separation, disturbs the flow in the separation part 81, obstructs the contact of fine bubbles and oil, and may degrade the separation performance.

大気泡の発生原因は循環ポンプ31の加圧によっても被処理液に溶解しなかった空気が存在することにあるとみることができるので、空気供給配管41から取り込む溶解用空気量をバルブ42で調節して、余分な空気が入らないようにして、連続して大気泡が浮上しないようにしておく。発生した大気泡は、大気泡分離部13の排出管14に抜き出し、ノズル33から噴き出すかもしれない大気泡を分離部81に廻さないようにしている。   Since it can be considered that large bubbles are generated due to the presence of air that has not been dissolved in the liquid to be treated even when the circulation pump 31 is pressurized, the amount of the dissolving air taken in from the air supply pipe 41 is controlled by the valve 42. Adjust so that excess air does not get in and keep large bubbles from rising continuously. The generated large bubbles are extracted to the discharge pipe 14 of the large bubble separating unit 13 so that the large bubbles that may be ejected from the nozzle 33 are not sent to the separating unit 81.

この運転状態を保ちながら、バルブ22を開放し供給ポンプ21を駆動して被処理液(ドレン)の供給系統を運転し、分離部11の外部循環系統を循環している清水または処理済の被処理液に未処理状態の被処理液(ドレン)を混合させる。   While maintaining this operating state, the valve 22 is opened and the supply pump 21 is driven to operate the supply system of the liquid to be treated (drain), and the fresh water or the treated liquid being circulated in the external circulation system of the separation unit 11 is operated. An untreated liquid (drain) is mixed with the treatment liquid.

次にバルブ97を開いて、先に塩化カルシウム水溶液をタンク91から配管92を通して所望量を連続供給する。同様に続けてバルブ77を開いて、水酸化ナトリウム水溶液をタンク71から配管72を通して連続供給する。   Next, the valve 97 is opened, and a desired amount of calcium chloride aqueous solution is continuously supplied from the tank 91 through the pipe 92. Similarly, the valve 77 is opened, and a sodium hydroxide aqueous solution is continuously supplied from the tank 71 through the pipe 72.

すると、ノズル33から微細気泡と共にドレンが噴射され、ドレン中の塩化カルシウム水溶液によって凝集した油分は微細気泡に付着して浮上し、油分が被処理液(水)から分離する。   Then, the drain is ejected from the nozzle 33 together with the fine bubbles, and the oil component aggregated by the calcium chloride aqueous solution in the drain adheres to the fine bubbles and floats, and the oil component is separated from the liquid to be treated (water).

この際に供給ポンプ21の動力が熱となり、混合された被処理液に伝わり温度が上がり、溶解可能な空気の量は減少する。減少することで溶解できない余剰気泡(大気泡)が発生しようとする。前述したように、余剰気泡は気泡径が大きく上昇速度は早く、槽内に流れの乱れを起こし、油に付着した微細気泡を引き離したりして、油水分離を妨げる。   At this time, the power of the supply pump 21 becomes heat, which is transferred to the mixed liquid to be treated, the temperature rises, and the amount of soluble air decreases. An excess bubble (large bubble) that cannot be dissolved by reducing is generated. As described above, surplus bubbles have a large bubble diameter and a high ascending speed, and flow turbulence occurs in the tank, and fine bubbles adhering to oil are separated to prevent oil-water separation.

そこで、前述したように、予め液温度と溶解空気量の関係を求めておき、温度測定器84で求めた液温度により空気供給配管41から流入させる溶解用空気量を処理槽11内を気泡がほぼ揃って浮上する量になるようにバルブ42で再調節し余剰空気が発生しないようにして、油水分離性能が低下しないようにする。   Therefore, as described above, the relationship between the liquid temperature and the amount of dissolved air is obtained in advance, and the amount of dissolving air to be introduced from the air supply pipe 41 at the liquid temperature obtained by the temperature measuring device 84 is generated in the processing tank 11 by bubbles. The valve 42 is readjusted so that the amount rises almost uniformly so as not to generate excess air so that the oil / water separation performance does not deteriorate.

また、未処理状態の被処理液を混合することによる液温度の下降を予測して、予め溶解用空気量を下降分だけ減少させた温度での流量に固定して運転するようにしてもよいし、循環流量を少なくしてもよい。   In addition, a decrease in the liquid temperature due to mixing of the untreated liquid to be processed may be predicted, and the operation may be performed by fixing the flow rate at a temperature in which the amount of dissolution air is reduced in advance by the amount of decrease. However, the circulating flow rate may be reduced.

循環ポンプ31出口での圧力は、所要動力を少なくすることと微細気泡の直径を小さくすることを考慮すると0.3〜0.8MPa程度が好ましい。溶解空気量が圧力に比例することを考慮すると、循環水流量は被処理液供給系統から供給された未処理状態の被処理液量の30〜100倍で、未処理状態の被処理液は循環水によって30〜100倍に希釈されるので、分離部81に供給される被処理液の油分は低濃度である。   The pressure at the outlet of the circulation pump 31 is preferably about 0.3 to 0.8 MPa in consideration of reducing the required power and reducing the diameter of the fine bubbles. Considering that the amount of dissolved air is proportional to the pressure, the circulating water flow rate is 30 to 100 times the amount of untreated liquid to be treated supplied from the untreated liquid supply system, and the untreated liquid is circulated. Since it is diluted 30 to 100 times with water, the oil content of the liquid to be treated supplied to the separation unit 81 has a low concentration.

分離部81の上部にある吸入部82では、配管23から供給された未処理状態の被処理液に相当する処理済の被処理液を微細気泡の上昇速度よりも遅い速度で吸込んで排出管51から排出する。微細気泡で油水分離処理する油水分離処理では、被処理液中の大きな径の油粒子が小さな径の油粒子よりも先に浮上分離するので、連続処理においては、径の小さな油粒子径が処理液中に残っていても処理済の被処理液における油分濃度が目標値(例えば、鉱物油の排水基準である油分濃度5mg/L)となった状態で、連続的に排出することができ、処理能力が高い。   In the suction part 82 at the upper part of the separation part 81, the processed liquid corresponding to the unprocessed liquid to be processed supplied from the pipe 23 is sucked at a speed slower than the rising speed of the fine bubbles, and the discharge pipe 51. To discharge from. In the oil-water separation process, in which the oil-water separation process is performed with fine bubbles, the large-diameter oil particles in the liquid to be treated float and separate before the small-diameter oil particles. Even if it remains in the liquid, it can be continuously discharged in a state where the oil concentration in the treated liquid that has been treated has reached a target value (for example, oil concentration 5 mg / L, which is a drainage standard for mineral oil), High processing capacity.

また、処理中の被処理液や処理済の被処理液は、後述するように水酸化ナトリウム水溶液によりpH値が中性から弱アルカリ性に維持されるので、金属部材の腐食性が低減し、そのまま廃棄しても、問題はない。   Moreover, since the pH value is maintained from neutral to weakly alkaline by a sodium hydroxide aqueous solution as described later, the liquid to be processed during processing and the liquid to be processed are reduced in the corrosiveness of the metal member. There is no problem even if it is discarded.

分離部81上部に、浮上油が溜まってくる。そこで、連続運転中に排出管51の途中に設けたバルブ52を一時的に閉じると、分離部81内部の被処理液面61および浮上油液面62が上昇し、浮上油液面62が遮蔽板12の高さを超えると浮上油がオーバフロー(溢流)し、浮上油受け部83へ流下する。分離部81での浮上油が減ったら、バルブ52をゆっくり開けて、排出管51から被処理液を排出して被処理液面61を下げて、連続処理を継続する。   The floating oil accumulates on the upper part of the separation unit 81. Therefore, when the valve 52 provided in the middle of the discharge pipe 51 is temporarily closed during continuous operation, the liquid surface 61 to be treated and the floating oil liquid level 62 in the separation unit 81 rise, and the floating oil liquid level 62 is shielded. When the height of the plate 12 is exceeded, the floating oil overflows (overflows) and flows down to the floating oil receiving portion 83. When the floating oil in the separation unit 81 decreases, the valve 52 is opened slowly, the liquid to be processed is discharged from the discharge pipe 51, the liquid surface 61 to be processed is lowered, and the continuous processing is continued.

次に、間歇処理運転について説明する。
準備として、バルブ52は閉じた状態にして、分離部81に清水または処理済の被処理液を充満させた状態で循環ポンプ31を運転する。バルブ22は閉じてあるが、バルブ36,42は開放してあり、溶解用空気が空気供給配管41から流入する。循環ポンプ31の動力が熱となり被処理液に伝わり、分離部81における被処理液の温度を上昇させるため、被処理液の密度は小さくなる。尚、被処理液の密度を小さくするためには分離部81において被処理液の温度を上昇させるための加熱手段を配置してもよい。
Next, the intermittent processing operation will be described.
As a preparation, the circulation pump 31 is operated in a state in which the valve 52 is closed and the separation unit 81 is filled with fresh water or a processed liquid to be processed. Although the valve 22 is closed, the valves 36 and 42 are open, and the dissolving air flows from the air supply pipe 41. The power of the circulation pump 31 becomes heat and is transmitted to the liquid to be processed, and the temperature of the liquid to be processed in the separation unit 81 is increased. In order to reduce the density of the liquid to be processed, a heating unit for increasing the temperature of the liquid to be processed may be provided in the separation unit 81.

被処理液が予定した温度まで上昇したら、循環系統における循環ポンプ31の運転を停止し、バルブ42を閉じ、被処理液供給系統のバルブ22を開放状態にして供給ポンプ21を運転して、未処理状態の被処理液を供給する。被処理液は、配管30の経路及び配管32,37を経由しノズル33から分離部81に流入する。   When the liquid to be processed rises to a predetermined temperature, the operation of the circulation pump 31 in the circulation system is stopped, the valve 42 is closed, the valve 22 of the liquid supply system to be processed is opened, and the supply pump 21 is operated. A liquid to be processed in a processing state is supplied. The liquid to be processed flows from the nozzle 33 to the separation unit 81 via the path of the pipe 30 and the pipes 32 and 37.

被処理液は分離部81内の清水または処理済の被処理液よりも温度が低く密度が大きいために分離部81の底部に溜って行き、密度が小さい処理済の油分濃度の低い被処理液は分離部81の上部に押し上げられた形となって、吸入部82から排出管51とバルブ52を経由して排出される。例えば、仕切板15上端から分離部81の底部までにおける容積が40L,清水または処理済の被処理液温度が320K,未処理状態の被処理液温度が283K,未処理状態の被処理液の供給を20L/hで行うと、処理済の被処理液のみを30L以上排出可能である。   Since the liquid to be processed has a lower temperature and a higher density than the fresh water or the processed liquid to be processed in the separation unit 81, the liquid to be processed accumulates at the bottom of the separation unit 81, and the processed liquid with a low processed and low oil concentration. Is pushed up to the top of the separation part 81 and discharged from the suction part 82 via the discharge pipe 51 and the valve 52. For example, the volume from the upper end of the partition plate 15 to the bottom of the separation unit 81 is 40 L, the temperature of fresh water or treated liquid to be treated is 320 K, the temperature of untreated liquid to be treated is 283 K, and the untreated liquid to be treated is supplied. Is performed at 20 L / h, only 30 L or more of the processed liquid can be discharged.

処理済の被処理液のみの排出が済んだら、バルブ22とバルブ52を閉状態にして未処理状態の被処理液の供給を止めて、循環ポンプ31による槽外循環を実施する。つぎにバルブ36を調節して図示しない圧力計で循環ポンプ入口圧力が大気圧よりも低いことを確認して、バルブ97を開放してこの圧力と塩化カルシウム水溶液91の圧力との差を駆動力としてタンク91から所望量の塩化カルシウム水溶液を供給し、バルブ97を閉止する。同様にバルブ77を開放してタンク71から所望量の水酸化ナトリウム水溶液を供給し、その後、バルブ77を閉止する。   When only the processed liquid to be processed is discharged, the valve 22 and the valve 52 are closed to stop the supply of the unprocessed liquid to be processed, and the circulation pump 31 performs circulation outside the tank. Next, the valve 36 is adjusted to confirm that the pressure at the inlet of the circulation pump is lower than the atmospheric pressure using a pressure gauge (not shown), the valve 97 is opened, and the difference between this pressure and the pressure of the calcium chloride aqueous solution 91 is determined as the driving force. Then, a desired amount of calcium chloride aqueous solution is supplied from the tank 91 and the valve 97 is closed. Similarly, the valve 77 is opened, a desired amount of aqueous sodium hydroxide solution is supplied from the tank 71, and then the valve 77 is closed.

つぎにバルブ42を開放状態とすると、溶解用空気が空気供給配管41から流入する。   Next, when the valve 42 is opened, dissolution air flows from the air supply pipe 41.

循環ポンプ31による加圧で被処理液に溶解する空気量は加圧下ではヘンリー(Henry)の法則に従ったものとなり、配管37を流れる清水または処理済の被処理液にかかる圧力及び配管37を流れる流量に比例して、溶解する空気量は多くなる。また配管37を流れる清水または処理済の被処理液の温度が低い程、溶解する空気量は多くなる。実際の運転では圧力、流量を設定値一定となるように運転する。   The amount of air dissolved in the liquid to be treated by the pressurization by the circulation pump 31 follows the Henry's law under the pressure, and the pressure applied to the fresh water flowing through the pipe 37 or the treated liquid to be treated and the pipe 37 The amount of dissolved air increases in proportion to the flowing flow rate. Further, the lower the temperature of the fresh water flowing through the pipe 37 or the processed liquid to be processed, the more air is dissolved. In actual operation, the operation is performed so that the pressure and flow rate are constant.

この場合も循環ポンプ31の動力が熱となり被処理液に伝わり、液温が上昇し、溶解する空気量は減少する。そこで、予め液温度と溶解空気量の関係を求めておき、温度測定器84で求めた液温度により空気供給管41から流入させる溶解用空気量は処理槽11内を気泡がほぼ揃って浮上する量になるようにバルブ42で調節する。このため、余剰空気による大気泡は連続して発生せず、油水分離性能を低下させることはない。   Also in this case, the power of the circulation pump 31 becomes heat and is transmitted to the liquid to be treated, the liquid temperature rises, and the amount of dissolved air decreases. Therefore, the relationship between the liquid temperature and the amount of dissolved air is obtained in advance, and the amount of dissolving air introduced from the air supply pipe 41 by the liquid temperature obtained by the temperature measuring device 84 rises almost uniformly in the processing tank 11. The amount is adjusted by the valve 42 so that the amount is adjusted. For this reason, large bubbles due to excess air are not continuously generated, and the oil / water separation performance is not deteriorated.

バルブ52は閉止してあり、分離部81の被処理液中に微細気泡が存在することになり、被処理液面61は排出管51の最高位置よりも高くなる。この状態で分離部81内部の被処理液面61上側に浮上油が溜まるが、浮上油液面62よりも遮蔽板12の上端位置を高くしてあり、被処理液の循環中に浮上油が浮上油受け部83へ遮蔽板12からオーバフローすることはない。   The valve 52 is closed, and fine bubbles are present in the liquid to be processed in the separation unit 81, and the liquid surface 61 to be processed is higher than the highest position of the discharge pipe 51. In this state, the floating oil accumulates above the liquid surface 61 to be treated in the separation unit 81, but the upper end position of the shielding plate 12 is set higher than the floating oil liquid surface 62, and the floating oil is collected during circulation of the liquid to be treated. There is no overflow from the shielding plate 12 to the floating oil receiving portion 83.

槽外循環中に分離部81下方の油分は微細気泡によって上昇し、油水分離する。浮上油分離法では油分が高濃度であるほど分離性能は良いので、中間濃度以下までは高速に分離できる。低濃度域は連続処理に近い分離性能を有する。   During the circulation outside the tank, the oil content below the separation unit 81 rises by the fine bubbles and separates the oil and water. In the floating oil separation method, the higher the oil content, the better the separation performance. The low concentration region has separation performance close to continuous processing.

本発明者らの観察によれば、槽外循環の前半50%の時間で未処理状態の被処理液の油分濃度は中間濃度以下の1/5程度に低下し、後半50%の時間で中間濃度以下の油分濃度からさらにその1/5程度の低濃度(連続処理での目標濃度)に低下することを確認している。前後半で低減する比率は同程度であるが、絶対値でみれば前半に大半の油分が分離されていることになる。   According to the observation by the present inventors, the oil concentration of the liquid to be treated in the untreated state decreases to about 1/5 of the intermediate concentration or less in the first half 50% of the circulation outside the tank, and intermediate in the second half 50% of the time. It has been confirmed that the oil concentration is lower than the concentration, and further reduced to a low concentration of about 1/5 (the target concentration in the continuous treatment). The ratio of reduction in the first half is about the same, but in terms of absolute value, most of the oil is separated in the first half.

分離部81における被処理液が目標とする油分濃度に低下したら、循環ポンプ31を停止し、バルブ42を閉じて、バルブ22とバルブ52を開放させ、供給ポンプ21を運転して未処理状態の被処理液を分離部81の底部から供給する。この期間中に分離部81上部の処理済の被処理液は、新たに供給した未処理状態の被処理液と同量だけ排出管51から流出する。   When the liquid to be treated in the separation unit 81 decreases to the target oil concentration, the circulation pump 31 is stopped, the valve 42 is closed, the valves 22 and 52 are opened, the supply pump 21 is operated, and the untreated state is reached. The liquid to be processed is supplied from the bottom of the separation unit 81. During this period, the processed liquid to be processed in the upper part of the separation unit 81 flows out from the discharge pipe 51 by the same amount as the newly supplied unprocessed liquid to be processed.

以上説明した被処理液の供給と循環のために供給ポンプ21,循環ポンプ31の運転と停止を交互に繰り返し、浮上油液面62と被処理液面61との差が大きくなったら、即ち、分離部81上部に浮上油が溜まったら、供給ポンプ21の運転中に排出管51のバルブ52を閉止状態にし、被処理液面61が遮蔽板12と同一高さになることによって浮上油を遮蔽板12の上端からオーバフローさせ、浮上油受け部83へ排出する。   When the supply pump 21 and the circulation pump 31 are alternately operated and stopped for supplying and circulating the liquid to be treated as described above, and the difference between the floating oil liquid level 62 and the liquid surface 61 to be treated becomes large, that is, When the floating oil collects on the upper part of the separation unit 81, the valve 52 of the discharge pipe 51 is closed during the operation of the supply pump 21, and the liquid surface 61 to be treated is flush with the shielding plate 12 to shield the floating oil. It overflows from the upper end of the plate 12 and is discharged to the floating oil receiving portion 83.

通常のスクリュー型空気圧縮機では一週間の連続運転により浮上油が約1mm溜まるので、浮上油の排出は一週間に1回程度の頻度で行えば良い。この排出時期は運転時間で決定するだけでなく、浮上油量,浮上油厚さを測定することによっても決定できる。   In a normal screw-type air compressor, about 1 mm of floating oil is accumulated by continuous operation for one week, and therefore, the floating oil may be discharged about once a week. This discharge time can be determined not only by the operation time but also by measuring the floating oil amount and the floating oil thickness.

この間歇処理では、分離部81内に清水または処理済の被処理液液と約50%の未処理状態にある被処理液を混合して油水分離処理し、油分は高濃度から低濃度まで短時間で下げることになる。   In this intermittent treatment, clean water or a treated liquid to be treated and a liquid to be treated of about 50% in an untreated state are mixed in the separation unit 81 to perform an oil / water separation treatment, and the oil content is reduced from a high concentration to a low concentration. It will be lowered in time.

前述したように、夏季に相当する大気中の水分量が多い時期にはドレン流量が多く、油分濃度は低い。冬季に相当する大気中の水分量が少ない時にはドレン流量が少なく、油分濃度は高い。そこで前記2つの運転方法の特徴を生かして、ドレン流量が多く油分濃度が低い場合には連続処理を行い、ドレン流量が少なく油分濃度が高い場合には間歇運転を行うことにより、小型で高速処理可能な油水分離装置を構成できる。   As described above, the drain flow rate is high and the oil concentration is low when the amount of moisture in the atmosphere corresponding to summer is high. When the amount of water in the atmosphere corresponding to winter is small, the drain flow rate is small and the oil concentration is high. Therefore, taking advantage of the features of the above two operation methods, it is possible to perform continuous processing when the drain flow rate is high and the oil concentration is low, and by performing intermittent operation when the drain flow rate is low and the oil concentration is high, small and high speed processing is possible. A possible oil / water separator can be constructed.

間歇処理運転は、槽外循環期間と被処理液供給期間の長さを異ならせた複数のパターンを用意して、中間濃度域の余裕を広くすることが可能である。また、間歇処理運転のみで装置を構成することもできる。   In the intermittent treatment operation, it is possible to prepare a plurality of patterns with different lengths of the circulation period outside the tank and the liquid supply period to be treated to widen the margin of the intermediate concentration range. In addition, the apparatus can be configured only by the intermittent processing operation.

本発明によれば疎水性の低い油を含むために、約半年放置しておいても油水が分離することがない被処理液を高速に分離できる。
塩化カルシウムあるいは塩化マグネシウムと水酸化ナトリウムとを添加して油水分離を促進する方法では、塩化カルシウムあるいは塩化マグネシウムと被処理液が十分混合した後に水酸化ナトリウムを添加すると油水分離効果が大きくなるので、連続処理運転に較べて間歇処理運転のほうが油水分離性能は高くなる。
According to the present invention, since the low-hydrophobic oil is contained, the liquid to be treated which does not separate the oil and water can be separated at high speed even after being left for about half a year.
In the method of promoting oil-water separation by adding calcium chloride or magnesium chloride and sodium hydroxide, the addition of sodium hydroxide after sufficiently mixing calcium chloride or magnesium chloride and the liquid to be treated increases the oil-water separation effect. Oil-water separation performance is higher in the intermittent treatment operation than in the continuous treatment operation.

これらの運転パターン選択にはドレン流量または油分濃度の情報が必要である。油分濃度は短時間で計測する方法が無いので、運転パターン選択にはドレン流量の情報を用いる。ドレン流量は大気中の水分量,空気圧縮機の吐出空気圧力,空気冷却器の出口温度,凝縮水補集効率などから計算できる。従って、大気温度と大気湿度を計測すれば良い。一方、通常は空気圧縮機からのドレンを溜めるタンクを設けてあり、この中に液面計を取付け、液面の変化からドレン流量を算出しても良い。また、大気温度のみを測定して、大気湿度100%としたドレン最大流量を計算し、この値を制御に用いることも可能である。   Information on the drain flow rate or oil concentration is necessary for selecting these operation patterns. Since there is no method for measuring the oil concentration in a short time, information on the drain flow rate is used for selecting an operation pattern. The drain flow rate can be calculated from the amount of moisture in the atmosphere, the air compressor discharge air pressure, the air cooler outlet temperature, and the condensate collection efficiency. Accordingly, the atmospheric temperature and atmospheric humidity may be measured. On the other hand, a tank for storing drainage from the air compressor is usually provided, and a liquid level gauge may be attached therein, and the drain flow rate may be calculated from the change in the liquid level. It is also possible to measure only the atmospheric temperature, calculate the maximum drain flow rate with an atmospheric humidity of 100%, and use this value for control.

実際にはこれらの手法を単独もしくは組み合わせて、制御に用いる。これらのパターンや運転モードの切り替えは図示していない制御装置にシーケンスプログラムとして用意しておき、油分濃度を確認するための大気中における湿度などの上述した各項目の計測結果やカレンダーなどに基づいて適宜に切り替えるようにしておくこともできる。   Actually, these methods are used alone or in combination for the control. These patterns and operation mode switching are prepared as a sequence program in a control device (not shown), and based on the measurement results of each item described above, such as humidity in the atmosphere for checking the oil concentration, a calendar, etc. It can also be switched appropriately.

次に、図2に示した本発明の他の実施形態について説明する。   Next, another embodiment of the present invention shown in FIG. 2 will be described.

図1に示した実施形態では、水酸化ナトリウム水溶液と塩化カルシウム水溶液の供給は、循環ポンプ31の入口圧力と大気圧との差圧を駆動力としていたが、図2の実施形態は注射器のような往復運動をする空気作動式のシリンジ73,93によって水酸化ナトリウム水溶液と塩化カルシウム水溶液を所望量供給するものであり、空気配管74,94と空気供給制御バルブ75,95が付属している。循環ポンプ31などを含む外部循環系の運転条件に左右されることなく、処理槽11の分離部81内へ水酸化ナトリウム水溶液と塩化カルシウム水溶液を供給することができ、供給量を任意に調節できる。   In the embodiment shown in FIG. 1, the supply of the sodium hydroxide aqueous solution and the calcium chloride aqueous solution uses the differential pressure between the inlet pressure of the circulation pump 31 and the atmospheric pressure as the driving force. However, the embodiment of FIG. A desired amount of aqueous sodium hydroxide solution and aqueous calcium chloride solution are supplied by air-operated syringes 73 and 93 that perform reciprocating motion, and air pipes 74 and 94 and air supply control valves 75 and 95 are attached. The sodium hydroxide aqueous solution and the calcium chloride aqueous solution can be supplied into the separation part 81 of the treatment tank 11 without depending on the operating condition of the external circulation system including the circulation pump 31 and the supply amount can be arbitrarily adjusted. .

この実施形態は、水酸化ナトリウム水溶液や塩化カルシウム水溶液を連続供給できないので、間歇処理運転に好適である。   This embodiment is suitable for the intermittent treatment operation because the sodium hydroxide aqueous solution and the calcium chloride aqueous solution cannot be continuously supplied.

次に、図3に示した本発明の他の実施形態について説明する。   Next, another embodiment of the present invention shown in FIG. 3 will be described.

図3に示す実施形態では、水酸化ナトリウム水溶液や塩化カルシウム水溶液の各タンク71,91にそれぞれに専用の定量供給ポンプ76、96を設け、循環ポンプ31などを含む外部循環系の運転条件に左右されることなく、水酸化ナトリウム水溶液や塩化カルシウム水溶液を処理槽11の分離部81内へ供給し、またその供給量を任意に調節できるので連続処理運転および間歇処理運転に対応できる。なお、配管72,92の出口を配管30または32に接続して運転することもできる。   In the embodiment shown in FIG. 3, dedicated tanks 71 and 91 for sodium hydroxide aqueous solution and calcium chloride aqueous solution are provided with dedicated fixed supply pumps 76 and 96, respectively, and the operation conditions of the external circulation system including the circulation pump 31 and the like are affected. Accordingly, an aqueous solution of sodium hydroxide or an aqueous solution of calcium chloride is supplied into the separation part 81 of the treatment tank 11 and the supply amount can be arbitrarily adjusted, so that it is possible to cope with a continuous treatment operation and an intermittent treatment operation. It is also possible to operate by connecting the outlets of the pipes 72 and 92 to the pipe 30 or 32.

次に、図4に示した本発明の他の実施形態について説明する。   Next, another embodiment of the present invention shown in FIG. 4 will be described.

この実施形態も図3の実施形態と同様、それぞれに専用の供給ポンプ76,96を設けているが、水酸化ナトリウム水溶液と塩化カルシウム水溶液を配管72、92を通して添加液上部タンク78a,98aに供給し、これらの内部にある添加液一時タンク78b,98bを満たしたのちの余剰液は配管80,100を通してタンク71,91に回収する。   In this embodiment, as in the embodiment of FIG. 3, dedicated supply pumps 76 and 96 are provided respectively, but an aqueous solution of sodium hydroxide and an aqueous solution of calcium chloride are supplied to the addition liquid upper tanks 78a and 98a through the pipes 72 and 92, respectively. Then, the excess liquid after filling the additive liquid temporary tanks 78b, 98b inside these is recovered into the tanks 71, 91 through the pipes 80, 100.

水酸化ナトリウム水溶液と塩化カルシウム水溶液は、添加液一時タンク78b,98bからバルブ77,97を開放して配管79,99を通して分離部81の被処理液に定量混合する。   The sodium hydroxide aqueous solution and the calcium chloride aqueous solution are quantitatively mixed into the liquid to be treated in the separation unit 81 through the pipes 79 and 99 by opening the valves 77 and 97 from the additive solution temporary tanks 78b and 98b.

この実施形態は、図2の実施形態と同様に水酸化ナトリウム水溶液と塩化カルシウム水溶液の連続供給ができないので、間歇処理運転に好適である。   This embodiment is suitable for the intermittent treatment operation because the sodium hydroxide aqueous solution and the calcium chloride aqueous solution cannot be continuously supplied as in the embodiment of FIG.

図示しないが、このほかに図2乃至図4の各実施形態で水酸化ナトリウム水溶液を図示しない被処理タンクを介して処理槽11の分離部81へ供給し、塩化カルシウム水溶液を図1乃至図4の方法で処理槽11の分離部81へ供給するようにしても良い。   Although not shown in the drawings, in each of the embodiments shown in FIGS. 2 to 4, a sodium hydroxide aqueous solution is supplied to the separation unit 81 of the processing tank 11 via a tank not shown, and the calcium chloride aqueous solution is supplied as shown in FIGS. You may make it supply to the separation part 81 of the processing tank 11 by the method of this.

図5に、本発明による油分離効果の一例を示す。   FIG. 5 shows an example of the oil separation effect according to the present invention.

スクリュー圧縮機潤滑油の特殊油であるスーパールブ(コベルコ・コンプレッサ株式会社の商品名)は圧縮機からのドレンを6ヶ月以上静置しておいても、油分はコロイド状を保持し、油分が浮上分離することはない。この油と純水を混合して模擬ドレンを製造した場合も、長期間静置しても油分が浮上分離することはない。   Superlub (trade name of Kobelco Compressor Co., Ltd.), a special oil for screw compressor lubricants, retains its colloidal shape even if the drain from the compressor is allowed to stand for more than 6 months. There is no floating separation. Even when this oil and pure water are mixed to produce a simulated drain, the oil does not float and separate even if left for a long period of time.

この模擬ドレンの油分濃度を通常のスクリュー圧縮機ドレンと同等の300mg/Lにした場合、ドレン1Lに対して塩化カルシウムだけを1g以上添加して図1の処理装置を運転すると排水基準の5mg/Lまで油分離可能である。油分濃度を変化させても同様の結果であり、その特性を図5のOBCで囲まれた領域で示す。   When the oil concentration of this simulated drain is set to 300 mg / L equivalent to that of a normal screw compressor drain, when 1 g or more of calcium chloride is added to 1 L of drain and the treatment device of FIG. Oil separation up to L is possible. The same result is obtained even when the oil concentration is changed, and the characteristic is shown by the region surrounded by OBC in FIG.

塩化カルシウムは食品凝固剤として使用されており、正の2価金属イオンであるカルシウムは負に帯電した油粒子を電気的に中和して凝集する効果を有する。しかし、塩化カルシウムは融雪剤としても使用されており、高濃度の場合には金属を腐食させることが知られている。したがって、油分離に塩化カルシウムを使用する場合には塩化カルシウムの添加量を少なくする必要がある。圧縮機ドレンの水分は大気中の水分が凝縮したものであり、潤滑油が混合した状態でもpH値が4から6の酸性である。このドレンに無機塩の塩化カルシウムを添加してもpH値は変化せず、4から6の酸性である。   Calcium chloride is used as a food coagulant, and calcium, which is a positive divalent metal ion, has an effect of electrically neutralizing and aggregating negatively charged oil particles. However, calcium chloride is also used as a snow melting agent, and is known to corrode metals at high concentrations. Therefore, when calcium chloride is used for oil separation, it is necessary to reduce the amount of calcium chloride added. The moisture of the compressor drain is condensed from the moisture in the atmosphere and is acidic with a pH value of 4 to 6 even when the lubricating oil is mixed. Even if calcium chloride as an inorganic salt is added to this drain, the pH value does not change, and the acidity is 4 to 6.

この塩化カルシウムの添加量を低減しても油分離が可能な方法を種々検討した結果、塩化カルシウムを予め添加し、水酸化ナトリウム添加後のpH値を7以上のアルカリ性にすると油分離しやすくなり、pH値を8以上にして図1の処理装置を運転すると、塩化カルシウム単独添加の50%でも排水基準の5mg/L以下まで油分離が可能であることが判った。その特性を図5のOCDで囲まれた領域で示す。この領域で運転すると、排水は弱アルカリ性であり、金属材料は酸化腐食されにくい。   As a result of various investigations on methods that enable oil separation even when the amount of calcium chloride added is reduced, it becomes easier to separate oil if calcium chloride is added in advance and the pH value after addition of sodium hydroxide is made alkaline to 7 or more. When the treatment apparatus of FIG. 1 was operated with a pH value of 8 or more, it was found that oil separation was possible up to 5 mg / L or less of the drainage standard even with 50% of calcium chloride alone added. The characteristic is shown by the area surrounded by OCD in FIG. When operating in this region, the drainage is weakly alkaline and the metal material is less susceptible to oxidative corrosion.

塩化カルシウム添加量をさらに減少すると、水酸化ナトリウムを添加しても排水基準の5mg/Lまで油水分離できない。その特性を図5のOADで囲まれた領域で示す。従って、線分OC,ODは、それぞれドレンの油分濃度に対する塩化カルシウムや水酸化ナトリウム添加による油水分離効果の下限を示している。   If the amount of calcium chloride added is further reduced, oil-water separation cannot be achieved up to 5 mg / L of the drainage standard even if sodium hydroxide is added. The characteristic is shown by the area surrounded by OAD in FIG. Therefore, the line segments OC and OD indicate the lower limit of the oil / water separation effect by adding calcium chloride or sodium hydroxide to the oil concentration of the drain, respectively.

上記特性は、以下のように説明することもできる。即ち、塩化カルシウム(CaCl2)添加量をB1としてドレン中油分濃度が増加すると、油分濃度がA1以上では排水基準の5mg/Lまで油を分離できない。そこで、塩化カルシウム(CaCl2)をB1の分量で添加した後に水酸化ナトリウム(NaOH)を添加してドレンをアルカリ性にする方法を用いると、油分濃度A2までは排水基準の5mg/Lまで油を分離できるようになる。油分濃度がA2以上になると塩化カルシウム(CaCl2)の添加量がB1では油水分離できない。   The above characteristics can also be explained as follows. That is, if the concentration of oil in the drain is increased with the addition amount of calcium chloride (CaCl2) as B1, the oil cannot be separated up to 5 mg / L of the drainage standard if the oil concentration is A1 or more. Therefore, when calcium chloride (CaCl2) is added in an amount of B1, and sodium hydroxide (NaOH) is added to make the drain alkaline, the oil is separated up to 5 mg / L of the drainage standard up to the oil concentration A2. become able to. When the oil concentration is A2 or more, oil-water separation cannot be performed when the amount of calcium chloride (CaCl2) added is B1.

油の凝集を促進する他の物質として、食品凝固剤としての使用が認められている塩化マグネシウム(MgCl2)があり、塩化カルシウムと同様に水酸化ナトリウムと組合せて使用すると、図5と同様の効果が得られる。塩化カルシウムと塩化マグネシウムは、水酸化ナトリウムとの組合わせにおいて併用しても良い。   Another substance that promotes the aggregation of oil is magnesium chloride (MgCl2), which is approved for use as a food coagulant. When used in combination with sodium hydroxide in the same manner as calcium chloride, the same effect as in FIG. Is obtained. Calcium chloride and magnesium chloride may be used in combination with sodium hydroxide.

油の凝集を促進する他の物質として、正の3価金属であるアルミニウムの化合物である塩化アルミニウムを用いると、塩化カルシウムよりも凝集効果が高い。しかし、アルミニウムは金属腐食性が特に強いために金属を使用できないので装置構成が困難になる。また、人体への影響が懸念され、水処理での使用が制限される方向にある。   When aluminum chloride, which is a compound of aluminum, which is a positive trivalent metal, is used as another substance for promoting oil aggregation, the aggregation effect is higher than that of calcium chloride. However, since aluminum has a particularly strong metal corrosiveness, it is difficult to use a metal because the metal cannot be used. In addition, there is concern about the impact on the human body, and there is a tendency to restrict use in water treatment.

以上の説明では鉱物油の油水分離について説明したが、食用油の分離に適用しても良い。植物油は排水基準が30mg/Lとやや緩やかであるので、その分塩化カルシウム,塩化マグネシウム,水酸化ナトリウムなどの添加量を少なくすることができる。   In the above description, oil-water separation of mineral oil has been described. However, the present invention may be applied to separation of edible oil. Since vegetable oil has a slightly effluent standard of 30 mg / L, the amount of calcium chloride, magnesium chloride, sodium hydroxide and the like can be reduced accordingly.

本発明の一実施形態になる油水分離装置を示す図である。It is a figure which shows the oil-water separator which becomes one Embodiment of this invention. 本発明の他の実施形態になる油水分離装置を示す図である。It is a figure which shows the oil-water separator which becomes other embodiment of this invention. 本発明のもう1つの実施形態になる油水分離装置を示す図である。It is a figure which shows the oil-water separator which becomes another embodiment of this invention. 本発明の別の実施形態になる油水分離装置を示す図である。It is a figure which shows the oil-water separator which becomes another embodiment of this invention. 本発明の油水分離効果の一例を示す図である。It is a figure which shows an example of the oil-water separation effect of this invention.

符号の説明Explanation of symbols

11…処理槽
12…遮蔽板
15…仕切板
21…供給ポンプ
22,36,42,52…バルブ
23,30,32,37,41,51…配管
31…循環ポンプ
33…ノズル
61…被処理液面
62…浮上油液面
71…水酸化ナトリウム液タンク
81…分離部
82…ポケット状吸入部
83…浮上油受け部
91…塩化カルシウム水溶液タンク
11 ... Processing tank
12 ... Shield plate
15 ... Partition plate
21 ... Supply pump
22, 36, 42, 52 ... valve
23, 30, 32, 37, 41, 51 ... piping
31 ... circulation pump
33 ... Nozzle
61 ... Liquid surface to be treated
62 ... Floating oil level
71 ... Sodium hydroxide tank 81 ... Separation part
82 ... Pocket-shaped inhalation part
83 ... Floating oil receiving part 91 ... Calcium chloride aqueous solution tank

Claims (2)

被処理液に空気を供給しポンプで加圧して被処理液に空気を溶解させ、処理槽の下部から溶解させた空気を気泡として被処理液とともに吹き出させることによって、該処理槽において被処理液に含まれる油分を気泡とともに浮上させ該被処理液を水と油分とを分離させる油水分離方法において、
塩化カルシウムおよび塩化マグネシウムの少なくとも一方よりも後に水酸化ナトリウムを混合することで塩化カルシウムおよび塩化マグネシウムの少なくとも一方と水酸化ナトリウムとが混合された被処理液に気泡を供給することを特徴とする油水分離方法。
By supplying air to the liquid to be processed and pressurizing it with a pump to dissolve the air in the liquid to be processed, and blowing the air dissolved from the lower part of the processing tank as bubbles together with the liquid to be processed, the liquid to be processed in the processing tank In the oil-water separation method in which the oil contained in is floated with bubbles and the liquid to be treated is separated from water and oil.
Oil water and supplying bubbles into the liquid to be treated and at least one of sodium hydroxide calcium chloride and magnesium chloride are mixed by mixing sodium hydroxide later than at least one of calcium chloride and magnesium chloride Separation method.
請求項1に記載の油水分離方法において、疎水性が低い油分を含む被処理液に塩化カルシウムおよび塩化マグネシウムの少なくとも一方と水酸化ナトリウムを別々に混合し、被処理液をアルカリ性状態にすることによって油水分離を促進することを特徴とする油水分離方法。 The oil-water separation method according to claim 1, wherein at least one of calcium chloride and magnesium chloride and sodium hydroxide are separately mixed in a liquid to be treated containing an oil component having low hydrophobicity, thereby bringing the liquid to be treated into an alkaline state. An oil-water separation method characterized by promoting oil-water separation.
JP2005181427A 2005-06-22 2005-06-22 Oil-water separation method Active JP4815158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181427A JP4815158B2 (en) 2005-06-22 2005-06-22 Oil-water separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181427A JP4815158B2 (en) 2005-06-22 2005-06-22 Oil-water separation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011146945A Division JP2011240339A (en) 2011-07-01 2011-07-01 Oil-water separation method and oil-water separator

Publications (2)

Publication Number Publication Date
JP2007000715A JP2007000715A (en) 2007-01-11
JP4815158B2 true JP4815158B2 (en) 2011-11-16

Family

ID=37686798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181427A Active JP4815158B2 (en) 2005-06-22 2005-06-22 Oil-water separation method

Country Status (1)

Country Link
JP (1) JP4815158B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6104581B2 (en) * 2012-12-03 2017-03-29 三菱重工業株式会社 Apparatus and method for dehydrating water-containing oil
JP6580338B2 (en) * 2015-02-16 2019-09-25 水ing株式会社 Film processing apparatus and film processing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111649A (en) * 1977-03-11 1978-09-29 Nikko Eng Method of treating waste water
JPH0235798B2 (en) * 1981-01-22 1990-08-13 Sankyo Juki Kk HAIKIBUTSUKARANOABURANOKAISHUHOHO
JPS63133967A (en) * 1986-11-26 1988-06-06 Masashi Ishikawa Production of fish meal having process for recovering protein of broth
JPH0632834B2 (en) * 1987-12-29 1994-05-02 荏原インフイルコ株式会社 Organic wastewater treatment method

Also Published As

Publication number Publication date
JP2007000715A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP2011240339A (en) Oil-water separation method and oil-water separator
JP6653237B2 (en) Wastewater treatment device and wastewater treatment method
JP2007038173A (en) Oil and water separating method and oil and water separating apparatus
JP4815158B2 (en) Oil-water separation method
KR100730054B1 (en) Apparatus and method for separating oil from water
KR20190104162A (en) Oil / water separator by compressed air filling
CN104671321A (en) Efficient dissolved air flotation machine
JP4072356B2 (en) Oil / water separator and oil / water separator
JP2008155104A (en) Oil-water separator
JP4194469B2 (en) Oil / water separator
JP4072334B2 (en) Oil / water separator
CN216005591U (en) Equipment for preparing fine gypsum from wet desulfurization sludge
JP4072507B2 (en) Oil / water separator
KR101761246B1 (en) Dissolved air flotation apparatus having level control type floating tank
JP4126203B2 (en) Oil-water separation method and apparatus
CN205328658U (en) Impurity removal function's air supporting machine has been improved
JP3185318U (en) Cooling tower system
JP2009275977A (en) Cooling tower system
JP2009148731A (en) Oil-water separation method and oil-water separation apparatus
JP4088609B2 (en) Oil-water separation method and apparatus
JP5375842B2 (en) Ion exchanger
JP6960385B2 (en) Coolant supply device
CN204490556U (en) High-efficiency dissolued-air air floatation machine
JP2006167560A (en) Oil/water separator
KR200359700Y1 (en) Scum Skimmer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

R150 Certificate of patent or registration of utility model

Ref document number: 4815158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3