WO2005032005A1 - Cdmaシステム及びそのハンドオーバ方法 - Google Patents

Cdmaシステム及びそのハンドオーバ方法 Download PDF

Info

Publication number
WO2005032005A1
WO2005032005A1 PCT/JP2003/012380 JP0312380W WO2005032005A1 WO 2005032005 A1 WO2005032005 A1 WO 2005032005A1 JP 0312380 W JP0312380 W JP 0312380W WO 2005032005 A1 WO2005032005 A1 WO 2005032005A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
frame
mobile station
communication frequency
phase
Prior art date
Application number
PCT/JP2003/012380
Other languages
English (en)
French (fr)
Inventor
Hirokazu Matsuura
Takao Murakami
Kazuya Uno
Ryo Nonomura
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/012380 priority Critical patent/WO2005032005A1/ja
Publication of WO2005032005A1 publication Critical patent/WO2005032005A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present invention relates to a CDMA system and a handover method therefor, and more particularly to a CDMA system that switches from a communication frequency of a source base station to a communication frequency of a destination base station and continues communication, and a handover method thereof.
  • each base station can use the same frequency, and as long as the mobile station moves using the same frequency, the base station uses the DHO (Dipersity Handover) method. Switching between base stations, that is, handover, is possible with a short interruption.
  • the CDMA DHO method one receiver receives signals from multiple base stations at the same time, despreads them with a scramble code corresponding to the base station, and separates the signals from each base station. This method measures the strength and performs handover without interruption based on the measurement result (soft handover).
  • the number of subscribers that can be accommodated in one frequency is limited, and it is necessary to use another frequency.
  • different frequencies need to be assigned to the base station, or multiple frequencies need to be assigned to the base station.
  • the frequency is fixed, there is no problem if the frequency used is determined for each base station, but since it moves, it is necessary to switch to another frequency.
  • switching is performed by hand handover, similar to the conventional PDC (Personal Digital Cellular) system, and an instantaneous interruption (about several hundred ms) occurs, and the switching sound is generated. There is a problem that it may cause discomfort.
  • PDC Personal Digital Cellular
  • the phase difference required for synchronization (frame synchronization, slot synchronization) with the destination base station is measured and stored in advance, and synchronization is established using this phase difference.
  • Handover without momentary interruption Conventionally, there has been no such handover method without instantaneous interruption.
  • this conventional technique does not relate to handover, and in particular, creates an empty slot prior to handover, and acquires the phase difference and spreading code necessary for switching the base station frequency during the empty slot. It does not save.
  • an object of the present invention is to prevent instantaneous interruption and no switching noise even when handover is performed by switching frequencies.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-016-168071 Disclosure of the Invention
  • the present invention relates to a CDMA system that switches from a communication frequency of a source base station to a communication frequency of a destination base station and continues communication, and a handover method thereof.
  • a CDMA system if the communication frequency of the source base station is different from the communication frequency of the destination base station during handover, the source base station raises the symbol and generates an empty slot in the frame, and the mobile station Receives the signal transmitted from the destination base station in the empty slot, performs phase measurement (for example, frame phase, slot phase) necessary for synchronization control, and saves it.
  • phase measurement for example, frame phase, slot phase
  • the source base station obtains the communication frequency of the destination base station from the base station control device and adds the communication frequency to the mobile station before updating the symbol rate.
  • the source base station prior to raising the symbol,
  • the mobile station notifies the mobile station of the frame number at which the symbol rate starts to be increased. The mobile station receives the signal transmitted from the destination base station in the empty slot in the notified frame, and receives the frame phase and the slot number. Measure the phase.
  • the destination base station raises the symbol rate and generates an empty slot in the frame when establishing a communication channel with the mobile station, and the mobile station communicates in this empty slot.
  • the frequency change control and the synchronization control using the stored phase data are performed, the target base station lowers the symbol rate from the next frame, and the mobile station receives the frame. : ::
  • the source base station In order to generate the empty slot, the source base station increases the symbol rate by combining n (n is an integer of 2 or more) adjacent frames, and releases the empty slot in the second half of the first frame. And an empty slot in the middle frame if necessary, and an empty slot in the first half of the last frame, so that one or more empty slots are continuously formed in total. I do. Also, when constructing a communication channel with the mobile station, the target base station sets up n (n is an integer equal to or greater than 2) adjacent frames and sets up a symbolic rate, and the An empty slot is formed in the second half of the frame, an empty slot is formed in the middle frame as necessary, and an empty slot is formed in the first half of the last frame. In this idle slot period, the mobile station executes communication frequency change control and synchronous control using the stored phase data. The symbol is lowered from the frame, and the mobile station receives the frame.
  • n is an integer of 2 or more
  • FIG. 1 is a configuration diagram of a mobile communication system.
  • FIG. 2 is a diagram illustrating a situation in which a mobile station moves while communicating with a base station at a communication frequency f i and approaches a base station at a communication frequency f 2.
  • FIG. 3 is an explanatory diagram of a frame phase difference and a slot phase difference.
  • Fig. 4 is an explanatory diagram of phase difference measurement control in which an empty slot is created by increasing the transmission transmission rate (simple rate) and the phase difference is measured during the empty slot period.
  • FIG. 5 is an explanatory diagram of handover switching timing.
  • FIG. 6 is a configuration diagram of a mobile station.
  • FIG. 7 is a configuration diagram of a control circuit of the mobile station.
  • FIG. 8 is an explanatory diagram of a handover sequence according to the present invention.
  • the transmission rate of the symbol between the mobile station and the base station is dynamically changed (the transmission rate is doubled or tripled), and the resulting empty slot is inserted at the beginning of the frame.
  • Inserted after the frame to give the mobile station a guaranteed time to measure the phase required for frequency switching and to extract the spreading code.
  • the source base station provides an empty slot so that (1) the mobile station can determine the position between the destination base station transmitting on a different frequency and the source base station currently communicating. The time to measure the phase difference, (2) the time for the mobile station to extract the used spreading code, etc. of the destination base station, and (3) the time until the mobile station locks the PLL when switching the frequency are guaranteed.
  • the mobile station uses the guaranteed time to observe the frame phase difference and the slot phase difference, and extracts and stores the used spreading code of the destination base station.
  • the target base station inserts an empty slot into the beginning of the frame or inserts it into the back of the frame during the actual switching, so that (1) the mobile station can adjust to the target base station frequency. (2) The time until the mobile station completes the phase synchronization control using the phase data is guaranteed. During this -guaranteed time, the mobile station uses the stored data to switch to a different frequency of the destination base station without any interruption. For example, if the transmission rate is increased by a factor of three, if only one-third of the frame is received, the remaining 2Z3 free time will be secured. By placing this free time (empty slot) at the beginning of the frame or at the back of the frame, the observation time of the mobile station 6 can be secured.
  • FIG. 1 is a configuration diagram of a mobile communication system.
  • the fixed network 1 is composed of local telephone exchanges 1a and 1b, transit exchanges 1c, gateway exchanges Id, and the like.
  • the mobile network 2 includes a mobile gateway exchange 2a, a home location register (HLR) 2b for managing subscriber classes and location registration information for providing services to mobile devices, and a home location register. (HLR), and is configured with a mobile switching center 2c for determining base station controllers (RNCs) 3a and 3b that perform radio control.
  • RNCs base station controllers
  • the base station controllers (RNCs) 3a and 3b are connected to the higher-level mobile switchboard 2c and multimedia signal processor (MPE) 4 to input and output commands, and to perform processing according to commands.
  • MPE multimedia signal processor
  • Each base station 5a, 5b,... Communicates wirelessly with a number of subscriber terminals (mobile stations) 6a, 6b,.
  • a PHS base station 9 is connected to the fixed network 1 via a fixed telephone 7 and a PHS adapter 8.
  • Figure 2 is a situation where the mobile station 6 is close to the communication frequency base station of f (the source base station) 5 a and moves while communicating communication frequency f 2 of the base station (target base station) 5 b Is shown.
  • the mobile station '6 reaches the boundary between the cells 10a and 10b of the source base station 5a and the destination base station 5b, and the reception strength from the source base station 5a decreases, and the mobile station moves instead.
  • the reception strength from the destination base station 5b increases, the mobile station 6 hands over from the source base station 5a to the destination base station 5b.
  • FIG. 3 is a diagram for explaining the reception timing of the mobile station for explaining the frame phase difference and the slot phase difference.
  • FIG. 3 (A) shows the reception timing of the downlink dedicated physical channel (DPCH) from the base station 5a, and FIG. ) Is the reception timing of the downlink dedicated physical channel (DPCH) from the base station 5b.
  • DPCH downlink dedicated physical channel
  • one frame is 10 ms, is composed of 15 slots (slot 1 to slot 15), and the number of chips per slot is 2560.
  • user data and predetermined control data corresponding to the transmission speed are mapped to each slot, and the higher the transmission speed, the smaller the number of chips per symbol and the lower the gain. 3, between the reception timing of the base station 5 a, 5 b with exist frame phase difference theta F, 0 slot phase difference s is present.
  • the mobile station In order for the mobile station to perform handover, it is necessary to acquire the frame phase difference 0F and the slot phase difference ⁇ s, and perform synchronization control (shift of despreading timing). In addition, in order to perform handover, it is necessary to obtain a spreading code (scramble code, etc.) of the destination base station.
  • a spreading code scrmble code, etc.
  • (B) to handover the free slot in the creation hitless for phase difference acquiring and spreading code acquisition retrieves and stores in advance a phase difference theta F, 0 s and spreading codes described above the hand-over In advance (pre-processing), at the time of actual handover, handover without instantaneous interruption is executed in a short time and at high speed using the data acquired in these pre-processing.
  • the transmission rate (symbol rate) from the source base station 5a is increased, an empty slot is created, and phase difference measurement and spreading are performed during the empty slot period. Get the code.
  • FIG 4 shows an example in which the transmission rate (symbol rate) is doubled.
  • the source base station 5a raises the symbol rate by pairing two adjacent frames 51 and 52 (see (A)), and as shown in (B), vacates in the second half of the first frame 51. Slots 8 to 15 are formed, and empty slots 1 to 7 are formed in the first half of the subsequent frame 52. To form one or more empty slots 53 continuously. Note that the symbol rates of the first half slots 1 to 7 of the frame 51 and the second half frames 8 to 15 of the frame 52 are doubled.
  • an empty slot 53 of one frame is formed, but an empty slot of one frame or more can be formed by doubling the transmission rate to be increased.
  • the number of adjacent frames (n is an integer of 2 or more) is grouped to increase the symbol rate, and an empty slot is formed in the latter half of the first frame, and an empty slot is formed in the middle frame.
  • an empty slot is formed in the first half of the last frame, and a total of (n-1) or more empty slots can be continuously formed.
  • the mobile station 6 receives the frequency signal transmitted from the destination base station 5b, obtains a spreading code, and generates a phase difference necessary for synchronization control. Perform measurement and save. That is, during the period of the vacant slot 53, the mobile station 6 must perform the phase difference measurement necessary for receiving the communication frequency of the destination base station, acquiring the spread code, and controlling the synchronization.
  • both the source base station 5a and the destination base station 5b double the transmission transmission rate (simple rate) as shown in FIGS. 5 (A) and 5 (B). Then, an empty slot is created and the frequency is switched during this empty slot period to establish synchronization and continue communication.
  • the source base station 5a doubles the symbol rate by combining two adjacent frames 51 and 52 (see (A)), and provides an empty slot in the latter half of the first frame 51. 8 to 15 and empty slots 1 to 7 are formed in the first half of the subsequent frame 52, and one or more empty slots 53 are continuously formed in total.
  • the destination base station 5b doubles the symbol rate by combining two adjacent frames 6 1 and 6 2 (see (B)), and vacates the second half of the first frame 61.
  • Slot 8 ⁇ 15 Are formed, and empty slots 1 to 7 are formed in the first half of the subsequent frame 62, and one or more empty slots 63 are continuously formed in total as a whole.
  • the mobile station 6 (1) receives the frame 51 from the source base station 5a and demodulates and captures the data whose transmission rate has been doubled from the slots 1 to 7 thereof.
  • a marked, mobile station 6, (2) frame 6 1 from the target base station 5 b is switched by controlling the synthesizer at the start timing of the empty slot of the reception frequency to the frequency f 1 Kakara f 2, 6 2 is received, and (3) synchronization is established using the phase data already measured and stored in the idle slot period 63.
  • the mobile station 6 demodulates and takes in the data whose transmission rate has been doubled from the slots 8 to 15 of the frame 62.
  • the destination base station 5b returns to the transmission rate from the next frame, and the mobile station 6 controls transmission and reception of the symbol at the normal transmission rate.
  • FIG. 6 is a configuration diagram of the mobile station 6, and FIG. 7 is a configuration diagram of a control circuit of the mobile station.
  • a received signal received by the antenna 21 is input to the radio reception unit 23 via the duplex 22 and is amplified at a high frequency.
  • the synthesizer 24 generates a signal of the frequency f i according to the base station during communication, and the down converter 25 down-compacts the received high-frequency signal into a base span signal.
  • the IF filter 26 passes and amplifies the desired intermediate frequency signal, the quadrature detector 27 performs QPSK quadrature detection, and the AD converter 28 converts the detection output signal mapped to the I and Q axes to digital.
  • the control circuit 29 performs phase measurement, synchronization establishment control, despreading, synchronous detection, error correction, and decoding, and also performs reception frequency switching control for handover, spreading code change control, power control, and the like. .
  • the control unit 29 inputs the transmission data mapped to the I and Q axes to the quadrature modulator 31 via the DA converter 30.
  • the quadrature modulator 31 performs QPSK quadrature detection on the input signal and inputs it to the up-converter 33 via the IF filter 32.
  • the gap converter 33 mixes the base span signal with the signal of the frequency fi according to the base station during communication, converts it to a high-frequency signal, and transmits it from the antenna 21 via the radio transmitter 34 and duplex 22. .
  • the despreading unit 71 operates as a despreading code (scramble code.
  • the received signal is despread using a channel code
  • the synchronous detection unit 72 compensates for phase rotation due to channel characteristics by synchronous detection
  • the error correction unit 73 performs error correction processing
  • the decoding unit 74 performs decoding processing based on the error-corrected data
  • the control unit 75 outputs the decoded user data and performs handover control (receiving frequency switching control, spreading code change control) and the like.
  • the spreading code generator 76 generates a spreading code (synchronizing code for phase difference measurement, a code corresponding to the base station / mobile station), and the phase measuring Z spreading code identifying unit 77 frame phase theta F by calculating the correlation between synchronization code of the received signal and the phase measurement from the target base station, stored in the phase storage unit 78 measures the slot phase S s. Also, the phase measurement spread code identification unit 77 identifies the scramble code of the destination base station and inputs it to the spread code generation unit 76.
  • the timing control unit 79 controls the timing of the occurrence of a spreading code according to the base station / mobile station based on the frame phase and slot phase stored in the phase storage unit 78 to despread. Enter 71.
  • FIG. 8 is an explanatory diagram of a handover sequence according to the present invention.
  • the mobile station 6 is moving and communicating with a terminal device (not shown) via the source base station (old BTS) 5 a and the base station controller (RNC) 3, and the destination base station (new BTS) ) Assume that it is moving in the direction of 5 b.
  • the mobile station 6 Prior to the start of the handover, the mobile station 6 performs a process of acquiring the frame phase, slot phase, and spreading code (scramble code) of the peripheral base station while performing the above communication (step S1: abnormal). Frequency measurement). That, RNC 3 informs the neighboring base stations (e.g. the target base station) of 5 b using frequency f 2 for the source base station 5 a, the source base station 5 a frequency used in the target base station the frame number to be up f 2 and Shinporureto informs the mobile station 6. As described with reference to FIG. 4, the source base station 5a increases the symbol rate of the adjacent frames 51 and 52 having the frame number notified to the mobile station 6, and sets an empty slot 5 between the adjacent frames. Create 3.
  • RNC 3 informs the neighboring base stations (e.g. the target base station) of 5 b using frequency f 2 for the source base station 5 a
  • the empty slot position is set in advance, but may be notified.
  • the control circuit 29 of the mobile station 6 (FIG. 6) controls the synthesizer 24 in the idle slot period. And controls the radio receiving unit 23 to increase the received power with changing the receiving frequency fi ⁇ f 2 Te.
  • the phase measurement / spreading code identification unit 77 (FIG. 7) calculates the frame of the received signal and the known synchronization code, measures the frame phase and the slot phase, and stores them in the phase storage unit 78. Then, the scramble code of the movement-destination base station included in the received signal is identified, input to the spreading code generator 76, and stored.
  • control circuit 2 9 changes the reception frequency by controlling the synthesizer 2 4 f 2 ⁇ fi, receives a signal up the transmission rate from the source base station 5 a. Thereafter, the mobile station 6 and the source base station 5a repeat the above operation.
  • the RNC 3 refers to the neighboring cell information to determine whether the frequency currently used by the mobile station 6 exists in the destination base station 5b. Check, and if not present, use as a trigger for activating hard handover, and report the report confirmation signal to the mobile station (step S2).
  • the RNC 3 sends and receives a message for setting a new channel to and from the destination base station 5b to set a new channel (step S3: radio line setting request response, control line setting request). Z response, voice line setting request / response).
  • the movement-destination base station 5b increases the symbol rates 61 and 62 of the adjacent frames as described in FIG. Slot 63 is created (step S4).
  • the RNC 3 instructs the mobile station 6 to rebuild the physical channel via the source base station 5a (step S5).
  • the control circuit 29 of the mobile station 6 receives (1) the frame 51 from the source base station 5a, as described in FIG. Demodulate and capture the data whose transmission rate has been doubled from steps 1 to 7. Then, (2) control the synthesizer 2 from slot 8 and switch the reception frequency from frequency fi to f2; receive frames 6 1 and 6 2 from the destination base station 5 b, and (3) timing
  • the control unit 79 shifts the phase of the spread code generated from the spread code generation unit 76 using the phase data already measured and stored in the empty slot period 63 to establish synchronization. By the end of the slot period 63, the mobile station 6 has completed the frequency change and the synchronization control, and notifies the NC 3 of the completion of the physical channel reconfiguration (step S7).
  • mobile station 6 receives the signal after slot 8 of frame 62 (see FIG. 5 (A)) transmitted from destination base station 5b, and inverse adding section 71 reverses the received signal with a spreading code. Spread out and output. That is, the mobile station 6 demodulates and takes in data whose transmission rate has been doubled from the slots 8 to 15 of the frame 62. Thereafter, the movement-destination base station 5b returns the transmission rate from the next frame based on the transmission rate, and the mobile station 6 controls transmission and reception of the symbol at the normal transmission rate (step 8: during communication).
  • the RNC 3 instructs the mobile station 6 to perform the next measurement (step S9), and finally sends and receives a message for disconnecting the old channel with the source base station 5a, and disconnects the old channel.
  • release processing step S10: radio line release request / response, control line release request / response, voice line release request / response).
  • the different frequency measurement processing was performed before the generation of the eight-over-trigger signal (Step S2).
  • the processing is performed in parallel with the new channel setting processing (Step 3). It can also be configured as follows.
  • it may be configured to execute the handover sequence according to the following.
  • the DRNC 3 When the DRNC 3 receives the measurement report from the mobile station 6, it checks whether or not the currently used frequency is present at the destination base station 5b of the mobile station 6 from the neighboring cell information. A handover start trigger is generated.
  • the source base station 5a acquires the scramble code, the channelization code, and the frequency code from the destination base station 5b via the RNC 3, and notifies the mobile station 6 as well. ... Prepared
  • the source base station 5a raises the symbol rate and gives the mobile station 6 an observation time at a different frequency. At this time, the source base station 5a notifies the mobile station 6 in advance from which frame the rate should be increased (frame number notification).
  • the mobile station 6 starts observation of a different frequency.
  • the observation end signal is notified from the mobile station 6 to the source base station 5a.
  • the source base station 5a transmits the switching frame via the mobile station 6 and the RNC 3. Notify the destination base station 5b.
  • the destination base station 5b Upon receiving the switching frame, the destination base station 5b increases the symbol rate and prepares for the mobile station 6 to switch the frequency.
  • the mobile station 6 After the completion of the switching, the mobile station 6 notifies a switching completion signal to the target base station 5.
  • the destination base station 5b also notifies the source base station 5a via the RNC 3.
  • the destination base station 5b notifies the mobile station 6 of a notification (frame number) for returning the symbol rate to the original state.
  • a service equivalent to that of a fixed-line telephone can be provided despite the fact that the mobile telephone is moving without a call interruption time caused by frequency switching.
  • the present invention since it can be realized not by a method of mounting two wireless devices but by remodeling software / firmware, the number of parts does not change and the cost does not increase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 ハンドオーバに際して、移動元基地局の通信周波数と移動先基地局の通信周波数が異なる場合、移動元基地局はシンボルレートをアップしてフレーム内に空きスロットを生成し、移動局は該空きスロットにおいて移動先基地局から送信される信号を受信して同期制御に必要な位相測定を行なって保存し、しかる後、移動局は通信周波数の切替が指示された時、移動先基地局の通信周波数に切り替えると共に、保存してある位相データを用いて位相同期制御を行なう。

Description

明 細 書
CDMAシステム及びそのハンドオーバ方法 技術分野
本発明は、 CDMA システム及びそのハンドオーバ方法に係わり、特に、移動元基 地局の通信周波数から移動先基地局の通信周波数に切り替えて通信を継続する CDMAシステム及びそのハンドオーバ方法に関する。
背景技術
移動体通信においては、 加入者の移動に応じて基地局を切り替えて通信を継続 する追跡接続技術が重要である。 CDMA ( Code Divisional Multiple Access) 方 式においては各基地局が同一の周波数を使用できるようになり、 この同一周波数 を利用して移動している限り、 DHO (ダイパーシチハンドォ一バ)方式により無瞬 断で基地局の切り替え、 すなわち、 ハンドオーバが可能になった。 なお、 CDMA における DHO 方式とは、 1 つの受信機で同時に複数の基地局からの信号を受信 し、 基地局に応じたスクランブルコ一ドで逆拡散して各基地局からの信号を分離 してその強度を測定し、測定結果に基づいて無瞬断でハンドオーバする方式であ る(ソフ トハンドオーバ)。
ところで、 1周波数で収容できる加入者の数に限りがあり、 他の周波数を使用 する必要が生じる。例えば、基地局に異なる周波数を割り当てたり、あるいは、基地 局に複数の周波数を割り当てる必要が生じる。かかる場合であっても、固定であれ ば、 基地局単位で使用周波数をきめておけば問題は生じないが、 移動するという ことから、 どう しても他の周波数に切り替える必要が生じる。 かかる場合、現在の CDMA方式においては、 従来の PDC ( Personal Digital Cellular) 方式と同様に ハ一ドハンドオーバにより切り替えを実施しており、 瞬断 (数 100ms程度) が生 じ、 しかも、切替音が発生して違和感が生じる問題がある。 これは、 受信機が 1つ しかないため、同時に 2 以上の異なる周波数信号を受信できないためである。 す なわち、 周波数を切り替えるハンドオーバに.おいて、 無線機を 1台しか積んでな い移動機 (通常の移動機) では、 周波数を切り替えて他の基地局との同期 (フレ ーム同期、 スロッ ト同期) をとるために、 1 フレーム以上の連続受信をしなけれ ば、 フレームおよびスロッ ト同期ができず、 このため 1 フレーム以上の時間、 接 続断時間が発生し、 無瞬断切り替えが実施できなかった。
そこで、本発明では、予め移動先基地局との同期(フレーム同期、 スロッ ト同期) を取るに必要な位相差を測定して保存しておき、 この位相差を用いて同期確立す ることにより無瞬断でハンドオーバする。 従来はかかる無瞬断のハンドオーバ方 式はなかった。なお、 スロッテッ ドモード(シンポルレ一トアップ)で空き時間を作 り、 この時間で下り送信電力(現在通信中の基地局の送信電力)の劣化を抑圧させ る技術がある(たとえば特許文献 1 参照)。 しかし、 この従来技術はハンドオーバ に関するものではなく、特に、ハン ドオーバに先立って空きスロッ トを作成し、そ の空きスロッ ト期間において基地局周波数の切替に必要な位相差や拡散コードを 取得して保存するものではない。
以上から本発明の目的は、周波数を切り替えてハンドオーバする場合であって も、瞬断が発生せず、 しかも、切替音が発生しないようにすることである。
本発明の別の目的は、複数の受信機を使用せず、 1つの受信機で無瞬断のハンド オーバを可能にすることである。
特許文献 1 : 特開 2 0 0 1— 1 6 8 7 9 1号公報 発明の開示
本発明は、移動元基地局の通信周波数から移動先基地局の通信周波数に切り替 えて通信を継続する CDMAシステムおよびそのハンドォ一パ方法である。 CDMA システムにおいて、 ハンドオーバに際して、 移動元基地局の通信周波数と移動先 基地局の通信周波数が異なる場合、 移動元基地局はシンポルレ一トをアップして フレーム内に空きスロッ トを生成し、移動局は該空きスロッ トにおいて移動先基 地局から送信される信号を受信して同期制御に必要な位相測定(例えば、 フレーム 位相、スロッ ト位相)を行なって保存し、 しかる後、移動局は通信周波数の切替が指 示された時、移動先基地局の通信周波数に切り替えると共に、前記保存してある位 相データを用いて位相同期制御を行なう。
この場合、 移動元基地局は、 前記シンポルレ一トをアツプする前に、基地局制御 装置よ り前記移動先基地局の通信周波数を取得すると共に、該通信周波数を前記 移動局に通知する。 また、 移動元基地局は、 前記シンポルレー卜をアップする前 に、 シンポルレートのアップを開始するフレーム番号を移動局に通知し、移動局は 通知されたフレームにおいて、 前記空きスロッ トにおいて移動先基地局から送信 される信号を受信してフレーム位相、スロッ ト位相を測定する。
また、 ハンドオーバに際して、 移動先基地局は、 移動局との間に通信チャネル を構築する際、シンポルレ一トをアップしてフレーム内に空きスロッ トを生成し、 移動局はこの空きスロッ トにおいて通信周波数の変更制御及び前記保存してある 位相データを用いた同期制御を実行し、移動先基地局は次のフレームからシンポ ルレー トを下げ、 移動局は該フレームを受信する。 :::
前記空きスロッ トを生成するために、移動元基地局は、 n個 (nは 2 以上の整 数) の隣接フレームを組にしてシンポルレートをアップし、 最初のフレームの後 半に空きスロッ トを形成すると共に、必要に応じて中間のフレームに空きスロッ トを形成し、かつ、 最後のフレームの前半に空きスロッ トを形成し、 トータルして 連続的に 1 フレーム以上の空きスロッ トを形成する。 また、 移動先基地局は、 移 動局との間に通信チャネルを構築する際、 n個 (nは 2 以上の整数) の隣接フレ ームを組にしてシンポルレ一トをアップし、 最初のフレームの後半に空きスロッ トを形成すると共に、必要に応じて中間のフレームに空きスロッ トを形成し、かつ、 最後のフレームの前半に空きスロッ トを形成し、 トータルして連続的に 1 フレー ム以上の空きスロッ トを形成し、 移動局はこの空きスロッ ト期間において通信周 波数の変更制御及び前記保存してある位相データを用いた同期制御を実行し、移 動先基地局は次のフレームからシンポルレ一トを下げ、 移動局は該フレームを受 信する。
本発明の CDMAシステムおよびそのハンドォ一パ方法によれば、周波数を切り 替えてハン ドオーバする場合であっても、予め空きスロッ トを生成してこの空き スロッ ト期間に移動先基埤局の位相測定をしておき、 しかも、 切替の際、空きスロ ッ トを生成してこの期間に周波数変更制御、測定位相を用いた同期確立制御を行 なえるため、 切り替え時に瞬断が発生せず, しかも、切替音が発生しないようにで きる, また、 本発明の CDMAシステムおよびそのハンドオーバ方法によれば、 複 数の受信機を使用せず、 1つの受信機で無瞬断のハンドオーバができる。 図面の簡単な説明
図 1は移動体通信システムの構成図ある。
図 2は移動局が通信周波数 f iの基地局と通信しながら移動して通信周波数 f 2 の基地局に接近している状況説明図である。
図 3はフレーム位相差、スロッ ト位相差の説明図である。
図 4は送信伝送レート (シンポルレ一ト) をアップして空きスロッ トを作成し、 その空きスロッ ト期間において位相差を測定する位相差測定制御説明図である。 図 5はハンドォ一バ切替タイミング説明図である。
図 6は移動局の構成図である。
図 7は移動局の制御回路の構成図である。
図 8は本発明のハンドォ一パシーケンス説明図である。 発明を実施するための最良の形態
( A ) 本発明の概略
本発明は、 移動局一基地局間でのシンポルの伝送レ一トをダイナミックに変化 させ (伝送レートを 2倍、 3倍)、 これにより発生する空きスロッ トをフレームの 先頭側に挿入したり、 フレームの後方側に挿入し、 移動局に周波数の切り替えに 必要な位相の測定、拡散コードの抽出のための保証時間を与える。すなわち、'移動 元基地局は、 空きスロッ トを設けることにより、 (1)移動局が、異なる周波数で送 信している移動先基地局と現在通信中の移動元基地局との間の位相差を測定する 時間、 (2) 移動局が、移動先基地局の使用拡散コード等を抽出する時間、 (3) 移動 局が、周波数切り替え時に PLL ロックするまでの時間、 を保証する。 移動局は、 この保証時間を利用して、 フレーム位相差、 スロッ ト位相差を観測し、 また、 移 動先基地局の使用拡散コードを抽出して記憶する。
また、 移動先基地局は実際の切替に際して、 空きスロッ トをフレームの先頭側 に揷入したり、 フレームの後方側に挿入することにより、(1) 移動局が、移動先基 地局周波数に PLLロックするまでの時間、(2) 移動局が、位相データを用いて位相 同期制御を完了するまでの時間、 を保証する。 移動局はこの-保証時間において、 記憶データを用いて移動先基地局の異周波数へ無瞬断で切り替える。 例えば、 伝送レートを 3倍にアップさせると、 フレームの 1 / 3の時間だけ受 信すれば、 残りの 2 Z 3の自由な時間が確保される。 この自由な時間 (空きスロ ッ ト) をフレームの先頭側に配置したり、 後方側に配置することにより、 移動局 6 による観測時間の確保をはかる。具体的には、空きスロッ トの前方配置と後方配 置を組み合わせ、 1 フレーム以上(10ms以上)の観測時間を確保し、 1 回の観測で、 スロッ ト位相差、 フレーム位相差の測定を実施する。 注意事項としては、 シンポ ルレ一トを 3倍にしたときは、 エラ一レー トを確保するため、 受信電力(Power) を 3倍にする。
( B) 実施例
( a ) システム構成
図 1 は移動体通信システムの構成図であり、固定網 1 は市内電話交換機 1 a , 1 b、 中継交換機 1 c、 関門交換機 Id等で構成されている。 移動網 2 は、 移動 体用関門交換機 2a、移動機に対してサービスをを提供するための加入者クラスや 位置登録情報を管理するホームロケ一ショ ンレジスタ(HLR) 2 b、 ホームロケ一 シヨ ンレジスタ(HLR)を参照して無線制御を行う基地局制御装置(RNC)3a, 3b,を 決定する移動体交-換機 2 c等で構成されている。
基地局制御装置(RNC) 3a,3bは、 上位装置である移動体交換機 2 cやマルチメ ディァ信号処理装置(MPE) 4 と接続してコマンドを入出力する機能、 コマンドに 従った処理を行う機能、 基地局 5 a , 5 b , . . . との間でデータの送受信を行う機 能を備えている。各基地局 5a, 5b, . . . は管理下のセル内に存在する多数の加入者 端末装置(移動局) 6 a, 6 b , . . . と無線で通信する。 固定網 1には固定電話機 7 や PHS用アダプタ 8 を介して PHS基地局 9が接続されている。
図 2 は移動局 6が通信周波数 f の基地局(移動元基地局) 5 aと通信しながら 移動して通信周波数 f 2 の基地局(移動先基地局) 5 bに接近している状況を示し ている。 移動局 ' 6が移動元基地局 5 aと移動先基地局 5 bのセル 1 0 a , 1 0 b の境界に到達し、移動元基地局 5 aからの受信強度が小さくなり、替わって移動先 基地局 5 bからの受信強度が大きくなると、移動局 6 は移動元基地局 5 aから移 動先基地局 5 bにハンドオーバする。 ―
(b)位相差 ハンドオーバするためには、移動先基地局 5 bで使用している拡散コードゃ移 動先基地局 5 と移動元基地局 5 aとの間のフレーム位相差、スロッ ト位相差(あ るいは基準からの絶対位相)を測定する必要がある。図 3 はフレーム位相差、スロ ッ ト位相差を説明するための移動局の受信タイミング説明図であり、 (A) は基地 局 5 aからの下り個別物理チャネル (DPCH) の受信タイミング、 (B) は基地局 5 bからの下り個別物理チャネル (DPCH) の受信タイミングである。 下り個別 物理チャネル (DPCH) において、 1フレームは 10msであり、 1 5個のスロッ ト (スロッ ト 1〜スロッ ト 1 5 )で構成され、 1スロッ ト当りのチップ数は 2560 であ る。 各スロッ トには、 図示しないが、伝送速度に応じた数のユーザデータと所定の 制御データがマツビングされ、 伝送速度が早くなるほど、 1 シンポル当りのチップ 数が少なくなってゲインが低下する。図 3 において,基地局 5 a, 5 bの受信タイ ミング間には Θ Fのフレーム位相差が存在すると共に、 0 s のスロッ ト位相差が存 在する。
移動局がハンドォ一パするためには、 フレーム位相差 0 F、スロッ ト位相差 Θ s を取得して同期制御 (逆拡散するタイミングのシフ ト) する必要がある。また、 ハ ンドォ一パするためには、 移動先基地局の拡散コード (スクランブルコード等) を取得する必要がある。
( b ) 位相差取得および拡散コード取得のための空きスロッ トの作成 無瞬断でハンドオーバするために、前述の位相差 Θ F、 0 sや拡散コードをハンド オーバに先立って取得して保存しておき(前処理)、実際のハン ドオーバに際して これら前処理で取得してあるデータを用いて短時間で高速に無瞬断のハンドォ一 バを実行する。
そこで、 前処理を実行する為に、移動元基地局 5 aからの送信伝送レ一ト (シン ポルレート) をアップさせ、空きスロッ トを作成し、 この空きスロッ ト期間におい て位相差測定や拡散コードを取得するようにする。
図 4 は送信伝送レー卜 (シンポルレート) を 2 倍にアップした例である。移動 元基地局 5a は、 2 つの隣接フレーム 5 1, 5 2 ((A)参照)を組にしてシンポルレ ートをアップし、 (B) に示すように、初めのフレーム 5 1 の後半に空きスロッ ト 8 ~ 15 を形成し、後のフレーム 5 2の前半に空きスロッ ト 1 ~ 7 を形成し、 ト一夕 ルして連続的に 1 フレーム以上の空きスロッ ト 53を形成する。 尚、フレーム 5 1 の前半スロッ ト 1 〜 7、 及ぴフレーム 5 2の後半フレーム 8 〜 1 5のシンポルレ —トは 2倍になっている。
図 4では 1 フレームの空きスロッ ト 5 3が形成されているが、ァップする伝送 レートを 2倍以上にすることにより 1フレーム以上の空きスロッ 卜を形成するこ とができる。また、 n個(nは 2以上の整数)の隣接フレームを組にしてシンポルレ —トをアップし、最初のフレームの後半に空きスロッ トを形成すると共に、中間の フレームに空きスロッ トを形成し、かつ、最後のフレームの前半に空きスロッ トを 形成し、 ト一タルして連続的に ( n - 1 ) フレーム以上の空きスロッ トを形成する ことができる。
この 1 フレーム以上の空きスロッ ト 53 の開始タイミングにおいて、 移動局 6 は、移動先基地局 5 bから送信される周波数信号を受信し、 拡散コ一ドの取得、同 期制御に必要な位相差測定を行なって保存する。 すなわち、 空きスロッ ト 53 の 期間において、移動局 6 は移動先基地局の通信周波数の受信、拡散コードの取得、 同期制御に必要な位相差測定を行なわなくてはならない。
( c ) 周波数切替および位相同期制御のための空きスロッ トの作成
測定済みの前記位相差 0 F、 0 s や拡散コ一ドを用いて無瞬断で移動元基地局 5 aの通信周波数 ί i から移動先基地局 5 b の通信周波数 f 2 に切り替え、同期を確 立して通信を継続する必要がある (無瞬断のハンドオーバ)。
このために、 ハンドオーバに際して、図 5 (A) ,(B)に示すように、移動元基地局 5 a及び移動先基地局 5 b は共に、 送信伝送レート (シンポルレ一ト) を 2倍に アツレートプして空きスロッ トを作成し、 この空きスロッ ト期間において周波数 切り替え、同期を確立して通信を継続するようにする。
すなわち、 移動元基地局 5 aは、 2つの隣接フレーム 5 1 , 5 2 ((A )参照)を組 にしてシンポルレ一トを 2倍にアップし、 初めのフレーム 5 1 の後半に空きスロ ッ ト 8 ~15 を形成し、 後のフレーム 5 2の前半に空きスロッ ト 1 ~ 7 を形成し、 トータルして連続的に 1 フレーム以上の空きスロッ ト 5 3 を形成する。 同様に、 移動先基地局 5 bは、 2つの隣接フレーム 6 1 , 6 2 (( B )参照)を組にしてシンポ ルレ一トを 2倍にアップし、 初めのフレーム 6 1 の後半に空きスロッ ト 8 ~ 1 5 を形成し、後のフレーム 6 2の前半に空きスロッ ト 1 ~ 7 を形成し、 トータルして 連続的に 1 フレーム以上の空きスロッ ト 6 3 を形成する。
一方、移動局 6は、(1)移動元基地局 5 aからフレーム 5 1 を受信し、そのスロッ ト 1〜 7から伝送レートが 2 倍にアップされたデ一夕を復調して取り込む。つい で、 移動局 6 は、(2)空きスロッ トの開始タイミングでシンセサイザを制御して受 信周波数を周波数 f 1 カゝら f 2 に切り替えて移動先基地局 5 bからフレーム 6 1 , 6 2 を受信し、(3)空きスロッ ト期間 6 3 において既に測定されて記憶されている 位相データを用いて同期確立する。 (4)しかる後、移動局 6 はフレーム 6 2のスロ ッ ト 8〜 1 5から伝送レートが 2 倍にアップされたデ一夕を復調して取り込む。 以後、(5)移動先基地局 5 bは次フレームから伝送レー 卜を基に戻し、移動局 6 は 通常の伝送レートのシンポルの送受信制御を行なう。
( d ) 移動局の構成
図 6 は移動局 6の構成図、図 7 は移動局の制御回路の構成図である。 図 6 にお いて、アンテナ 2 1 に受信された受信信号はデュープレックス 22を介して無線受 信部 23に入力し、 高周波増幅される。 シンセサイザ 24は通信中基地局に応じた 周波数 f iの信号を発生し、ダウンコンバータ 2 5は受信した高周波信号をべ一 スパンド信号にダウンコンパ一トする。 IFフィルタ 2 6は、 所望の中間周波信号 を通過、増幅し、直交検波部 2 7は QPSK直交検波し、 AD変換部 2 8は I, Q軸 にマッピングされた検波出力信号をディジタルに変換して制御回路 2 9に入力す る。制御回路 2 9は、 位相測定、同期確立制御、 逆拡散、 同期検波、誤り訂正、復号 処理をすると共に、ハンドオーバのための受信周波数切り替え制御、拡散コ一ド変 更制御、電力制御等を行なう。
以上は受信処理であるが、送信に際して、制御部 2 9は I, Q軸にマツピングさ れた送信データを、 DA変換器 3 0 を介して直交変調器 3 1 に入力する。直交変調 器 3 1 は入力信号を QPSK直交検波し、 IFフィルタ 3 2 を介してアツプコンバ一 夕 3 3 に入力する。 ァップコンバー夕 3 3はべ一スパンド信号を通信中基地局に 応じた周波数 f iの信号と混合して高周波信号に変換し、無線送信部 3 4、 デュー プレックス 22 を介してアンテナ 2 1 より送信する。
図 7の制御回路において、逆拡散部 71は逆拡散コ一ド(スクランブルコード. +チ ャネライゼ一シヨ ンコ一ド)を用いて受信信号を逆拡散し、同期検波部 7 2は同期 検波によりチャネル特性による位相回転を補償し、誤り訂正部 7 3は誤り訂正処 理し、復号部 74は誤り訂正後のデータに基づいて復号化処理し、 制御部 7 5は復 号されたユーザデ一夕を出力すると共にハンドオーバ制御(受信周波数切替制御、 拡散コ一ド変更制御)等を行なう。拡散コ一 ド発生部 7 6は拡散コ一ド(位相差測 定用の同期コード、 基地局/移動局に応じたコ一ド)を発生し、位相測定 Z拡散コ一 ド識別部 77 は移動先基地局からの受信信号と位相測定用の同期コードとの相関 を演算してフレーム位相 Θ F、スロッ ト位相 S sを測定して位相保存部 78に記憶す る。また、 位相測定ノ拡散コ一ド識別部 77は移動先基地局のスクランブルコ一ド を識別して拡散コード発生部 76 に入力する。タイミング制御部 7 9は、 基地局/ 移動局に応じた拡散コ一ドの発生夕イミングを位相保存部 7 8 に保存してあるフ レーム位相、スロッ ト位相に基づいて制御して逆拡散部 71 に入力する。なお、 以 上は制御回路 29の受信系の構成であるが、図示しない送信系の構成も存在する。
( e ) ハンドオーバシーケンス
図 8は本発明のハンドオーバシーケンス説明図である。
現在、移動局 6は移動元基地局(旧 BTS) 5 a , 基地局制御装置(RNC)3を介して 図示しない端末装置と移動しながら通信しているものとし、 移動先基地局(新 BTS) 5 bの方向に移動しているものとする。なお、 通信周波数は移動元基地局 5 aでは f i、 移動先基地局 5 bでは f 2である。
ハンドオーバが開始する前に、 移動局 6は上記の通信をしながら周辺基地局の フレーム位相、スロッ ト位相、拡散コ一ド(スクランブルコ一 ド)を取得する処理を 行なう(ステップ S 1 : 異周波数測定)。 すなわち、 RNC 3は移動元基地局 5 aに 対して周辺基地局(たとえば移動先基地局) 5 bの使用周波数 f 2 を通知し、移動元 基地局 5 aは該移動先基地局の使用周波数 f 2 及びシンポルレートをアップする フレーム番号を移動局 6 に通知する。移動元基地局 5 aは、 図 4 で説明したよう に、移動局 6に通知した前記フレーム番号を有する隣接フレーム 5 1 , 5 2のシン ポルレートをアップし、該隣接フレーム間に空きスロッ ト 5 3 を作成する。なお、 空きスロッ ト位置は予め設定されているものとするが通知しても良い。移動局 6 の制御回路 2 9 (図 6 )は、 空きスロッ ト期間になるとシンセサイザ 2 4を制御し て受信周波数を f i→ f 2 に変更すると共に無線受信部 23 を制御して受信電力を アップする。 また、 位相測定/拡散コード識別部 77(図 7)は受信信号と既知の同 期コ一ドの相閧を演算してフレーム位相、スロッ 卜位相を測定して位相保存部 78 に記憶するとともに、 受信信号に含まれている移動先基地局のスクランブルコー ドを識別して拡散コード発生部 76に入力して保存する。スロッ ト期間が終了すれ ば、制御回路 2 9はシンセサイザ 2 4を制御して受信周波数を f 2→ f iに変更し、 移動元基地局 5 aから伝送レートをアップした信号を受信する。 以後、移動局 6、 移動元基地局 5 aは上記動作を繰返す。
かかる状態において、 RNC 3は移動局 6からの測定報告により、 ハンドオーバ が必要になれば、周辺セル情報を参照して移動局 6が現在使用中の周波数が移動 先基地局 5 bに存在するかチェックし、存在しなければハードハンドオーバの起 動トリガとすると共に、報告確認信号を移動局に通知する(ステツプ S 2 )。
以後、 RNC 3は移動先基地局 5 b との間で新チャネル設定のためのメッセ一 ジ送受を行なって、新チャネルの設定を行なう(ステップ S 3 : 無線回線設定要求 応答、制御回線設定要求 Z応答、音声回線設定要求/応答)。
上記新チャネルの設定が完了すれば、移動先基地局 5 bは、 図 5 (B) で説明し たように、隣接フレームのシンボルレート 6 1, 6 2 をアップし、 該隣接フレーム 間に空きスロッ ト 6 3 を作成する(ステップ S 4 )。
また、 上記新チャネルの設定が完了すれば、 RNC 3は移動元基地局 5 aを介し て移動局 6 に物理チャネル再構築を指示する(ステツプ S 5 )。
移動局 6の制御回路 2 9は物理チャネル再構築が指示されると、図 5 ( B) で説 明したように、 (1)移動元基地局 5 aからフレーム 5 1 を受信し、そのスロッ ト 1 ~ 7から伝送レートが 2 倍にアップされたデータを復調して取り込む。ついで、 (2)スロッ ト 8からはシンセサイザ 2 を制御して受信周波数を周波数 f i から ; f 2 に切り替えて移動先基地局 5 bからフレーム 6 1 , 6 2 を受信し、(3) タイミン グ制御部 79は空きスロッ ト期間 6 3 において、既に測定されて記憶されている位 相データを用いて拡散コード発生部 76 から発生する拡散コードの位相をシフ ト して同期確立する。 スロッ ト期間 6 3が終了するまでに、移動局 6は周波数変更、 同期制御が完了し、: NC 3に物理チャネル再構築完了を通知する(ステップ S 7 )。 以後、移動局 6は移動先基地局 5 bから送信されたフレーム 62(図 5 (A) 参照) のスロッ ト 8以降の信号を受信し、逆加算部 7 1 は拡散コードで受信信号を逆拡 散して出力する。 すなわち、 移動局 6はフレーム 6 2のスロッ ト 8〜 1 5から伝 送レートが 2倍にアップされたデータを復調して取り込む。以後、移動先基地局 5 bは次フレームから伝送レートを基に戻し、移動局 6 は通常の伝送レートのシン ポルの送受信制御を行なう(ステップ 8 : 通信中)。
ついで、 RNC 3は移動局 6 に次の測定を指示し(ステップ S 9 )、 最後に、移動元 基地局 5 aとの間で旧チャネル切断のためのメッセージ送受を行ない、 旧チヤネ ルの切断、解放処理を行なう(ステツプ S 10 :無線回線解放要求/応答、制御回線解 放要求/応答、音声回線解放要求/応答)。
• 変形例
以上では、八ンドオーバト リガ信号の発生(ステップ S 2)前に異周波数測定処理 (ステップ 1 )を行なったが、 ハンドオーバトリガ信号発生後に、新チャネル設定処 理(ステツプ 3)と並行して実行するように構成することもできる。
•変形例
又、以下に従ってハンドオーバシーケンスを実行するように構成することもで さる。
(DRNC 3は、移動局 6より測定報告を受信すると、周辺セル情報より移動局 6 の移動先基地局 5 bに現在使用中の周波数が存在しないかチェックし、存在しな い場合はハ一 ドハンドオーバの起動トリガが発生する。
(2)移動元基地局 5 aは、 RNC 3 を経由し、 移動先基地局 5 bからスクランプ ルコード、 チヤネライゼ一シヨ ンコード、 周波数コードを取得するとともに、 移 動局 6 にも通知する。 …八一ド八ンドォ一パ準備
(3) 移動元基地局 5 aは、 シンポルレ一トを上げ、 移動局 6 に異周波数の観測 時間を与える。 このとき、 事前に何番目のフレームからレートを上げるかを移動 元基地局 5 aから移動局 6 に通知する (フレーム番号通知)。
(4)移動局 6で異周波数の観測を開始する。
(5)移動局 6から観測終了信号を移動元基地局 5 aに通知する。
(6)移動元基地局 5 aは、 切り替えフレームを移動局 6及び RNC 3を経由して 移動先基地局 5 bに通知する。
(7)移動先基地局 5 bは、 切り替えフレームを受信するとシンポルレートを上げ、 移動局 6が周波数を切り替えるための準備を行う。
(8)移動局 6は切り替え完了後、 切り替え完了信号を移動先基地局 5 に通知す る。 移動先基地局 5 bは、 RNC 3を経由して移動元基地局 5 aにも通知する。
(9)移動先基地局 5 bは、 シンポルレートを元に戻す通知 (フレーム番号) を移 動局 6に通知する。
(10)移動元基地局 5 a及び RNC 3は旧チャネルを解放する。
(11)移動先基地局 5 b、 移動局 6は、 通常シンポルレー卜に戻り、 ハンドォー バが完了する。
以上本発明によれば、周波数切り替え時に生じる通話断時間がなくなり、移動し ているのにもかかわらず、 固定電話と同等のサービスが可能となる。
また、 本発明によれば、無線機を 2台搭載する方法ではなく、 ソフ トウエア/フ アームウェアの改造により実現できるため、 部品点数も変わらず、 コス トアップ にならない。

Claims

請求の範囲
1 . 移動元基地局の通信周波数から移動先基地局の通信周波数に切り替えて通 信を継続する CDMAシステムにおけるハンドオーバ方法において、
移動元基地局の通信周波数と移動先基地局の通信周波数が異なる場合、 移動元 基地局はシンポルレートをアップしてフレーム内に空きスロッ トを生成し、 移動局は該空きスロッ トにおいて移動先基地局から送信される信号を受信して 同期制御に必要な位相測定を行なって保存し、
前記移動局は通信周波数の切替が指示された時、移動先基地局の通信周波数に 切り替えると共に、前記保存してある位相データを用いて位相同期制御を行なう、 ことを特徴とする CDMAシステムにおけるハンドオーバ方法。
2 . 前記移動局は、 前記位相測定においてフレーム位相、スロッ ト位相を測定し て保存する、
ことを特徴とする請求項 1記載の CDMAシステムにおけるハンドオーバ方法。
3 . 前記移動元基地局は、 前記シンポルレ一トをアツプする前に、基地局制御装 置より前記移動先基地局の通信周波数を取得すると共に、該通信周波数を前記移 動局に通知する、
ことを特徴とする請求項 1記載の CDMAシステムにおけるハンドォ一パ方法。
4 . 前記移動元基地局は、 前記シンポルレ一トをアップする前に、シンポルレ一 トのアップを開始するフレーム番号を移動局に通知し、
移動局は通知されたフレームにおいて、 前記空きスロッ トにおいて移動先基地 局から送信される信号を受信してフレーム位相、スロッ ト位相を測定する、
ことを特徴とする請求項 3記載の CDMAシステムにおけるハンドオーバ方法。
5 . 移動元基地局は、 n個 (nは 2以上の整数) の隣接フレームを組にしてシ ンボルレー トをアップし、 最初のフレームの後半に空きスロッ トを形成すると共 に、必要に応じて中間のフレームに空きスロッ トを形成し、かつ、 最後のフレーム の前半に空きスロッ トを形成し、 トータルして連続的に 1 フレーム以上の空きス 口ッ トを形成する、
' ことを特徴とする請求項 1記載の CDMAシステムにおけるハンドオーバ方法。
6 . 移動先基地局は、 移動局との間に通信チャネルを構築する際、シンポルレ一 卜をアップしてフレーム内に空きスロッ 卜を生成し、
移動局はこの空きスロッ ト期間において通信周波数の変更制御及び前記保存し てある位相データを用いた同期制御を実行し、
移動先基地局は次のフレームからシンポルレートを下げ、 移動局は該フレーム を受信する、
ことを特徴とする請求項 1記載の CDMAシステムにおけるハンドオーバ方法。
7 . 移動先基地局は、 移動局との間に通信チャネルを構築する際、 n個 (nは 2 以上の整数) の隣接フレームを組にしてシンポルレートをアップし、 最初のフレ —ムの後半に空きスロッ トを形成すると共に、必要に応じて中間のフレームに空 きスロッ トを形成し、かつ、 最後のフレームの前半に空きスロッ トを形成し、 トー タルして連続的に 1フレーム以上の空きスロッ トを形成し、
移動局はこの空きスロッ ト期間において通信周波数の変更制御及び前記保存し てある位相デ一夕を用いた同期制御を実行し、
移動先基地局は次のフレームからシンポルレ一トを下げ、 移動局は該フレーム を受信する、
ことを特徴とする請求項 1記載の CDMAシステムにおけるハンドオーバ方法。
8 . 移動元基地局の通信周波数から移動先基地局の通信周波数に切り替えて通 信を継続する CDMAシステムにおいて、
移動元基地局の通信周波数と移動先基地局の通信周波数が異なる場合、 移動元 基地局はシンボルレートをアップしてフレーム内に空きスロッ ト'を生成する手段 を備え、移動局は、
前記空きスロッ トにおいて移動先基地局から送信される信号を受信する手段、 前記移動先基地局から信号を受信して同期制御に必要な位相測定を行なって保 存する手段、
通信周波数の切替が指示された時、移動先基地局の通信周波数に切り替えると 共に、前記保存してある位相データを用いて位相同期制御を行なう手段、
を備えた、
ことを特徴とする CDMAシステム。
9 -前記移動局は、 前記位相測定においてフレーム位相、スロッ ト位相を測定し て保存する、
ことを特徴とする請求項 8記載の CDMAシステム。
1 0 . 前記移動元基地局は、 前記シンポルレー トをアツプする前に、基地局制御 装置より前記移動先基地局の通信周波数を取得すると共に、該通信周波数を前記 移動局に通知する手段を備えた、
ことを特徵とする請求項 8記載の CDMAシステム。
1 1 . 前記移動元基地局は、 前記シンボルレー トをアップする前に, シンポルレ ートのアップを開始するフレーム番号を移動局に通知する手段を備え、
前記移動局の測定手段は、 該通知されたフレームにおいて、 前記空きスロッ ト において移動先基地局から送信される信号を受信して前記フレーム位相、スロッ ト位相を測定する、
ことを特徴とする請求項 9記載の CDMAシステム。
1 2 . 移動先基地局は、 移動局との間に通信チャネルを構築する際、シンポルレ —卜をアップしてフレーム内に空きスロッ トを生成すると共に次のフレームから シンポルレ一 卜を下げる手段、
を備え、移動局は、
該空きスロッ トにおいて通信周波数の変更制御及び前記保存してある位相デ一 夕を用いた同期制御を実行し、移動局は移動先基地局より次のフレームから受信 する、
ことを特徴とする請求項 1 1記載の CDMAシステム。
1 3 . 移動元基地局の通信周波数から移動先基地局の通信周波数に切り替えて 通信を継続する CDMAシステムの移動局において、
移動元基地局より空きスロッ トを有するフレーム受信した時、該空きスロッ ト において移動先基地局から送信される信号を受信する手段、
移動先基地局のフレーム位相、スロッ ト位相を測定して保存する手段、 通信周波数の切替が指示された時、移動先基地局の通信周波数に切り替えると 共に、前記保存してある位相データを用いて位相同期制御を行なう手段、
を備えた、
ことを特徴とする CDMAシステムの移動局。
PCT/JP2003/012380 2003-09-29 2003-09-29 Cdmaシステム及びそのハンドオーバ方法 WO2005032005A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/012380 WO2005032005A1 (ja) 2003-09-29 2003-09-29 Cdmaシステム及びそのハンドオーバ方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/012380 WO2005032005A1 (ja) 2003-09-29 2003-09-29 Cdmaシステム及びそのハンドオーバ方法

Publications (1)

Publication Number Publication Date
WO2005032005A1 true WO2005032005A1 (ja) 2005-04-07

Family

ID=34385874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012380 WO2005032005A1 (ja) 2003-09-29 2003-09-29 Cdmaシステム及びそのハンドオーバ方法

Country Status (1)

Country Link
WO (1) WO2005032005A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500475A (ja) * 1993-06-14 1996-01-16 テレフオンアクチーボラゲツト エル エム エリクソン Ds−cdmaシステムにおけるシームレス・ハンドオーバーのための不連続送信
JP2002124933A (ja) * 1998-03-26 2002-04-26 Mitsubishi Electric Corp スペクトル拡散通信装置およびスペクトル拡散通信方法
JP2003516066A (ja) * 1999-12-01 2003-05-07 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Wcdmaにおける圧縮モード送信の制御

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500475A (ja) * 1993-06-14 1996-01-16 テレフオンアクチーボラゲツト エル エム エリクソン Ds−cdmaシステムにおけるシームレス・ハンドオーバーのための不連続送信
JP2002124933A (ja) * 1998-03-26 2002-04-26 Mitsubishi Electric Corp スペクトル拡散通信装置およびスペクトル拡散通信方法
JP2003516066A (ja) * 1999-12-01 2003-05-07 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Wcdmaにおける圧縮モード送信の制御

Similar Documents

Publication Publication Date Title
EP1967033B1 (en) A method of synchronizing with an uplink channel by determining a propagation delay in a wireless communications system
JP4559658B2 (ja) Cdma移動通信間のハンドオフ方法並びにこのためのシステム
JP4354646B2 (ja) 高速の制御トラフィックを用いた通信システム
EP1247417B2 (en) Method for preparing an interfrequency handover, a network element and a mobile station
KR100666882B1 (ko) 개인 기지국 통신들을 제공하는 방법 및 시스템
CN101978734B (zh) Hs-dsch服务小区变更改进的配置
EP2569972B1 (en) Method to control configuration change times in a wireless device
US7047011B1 (en) Synchronization in diversity handover
US7643837B2 (en) Controlling reconfiguration in a cellular communication system
EP1303158B1 (en) Handover with fall-back to initial communication channel on handover failure
KR20020060390A (ko) 압축 모드 및 인접 기지국 간 공통 주파수를 이용한핸드오버 방법
JP3392630B2 (ja) スペクトル拡散通信装置
EP1865734A1 (en) Handover system
JP2007135188A (ja) Wcdma網からcdma網へのハンドオーバー方法及びハンドオーバーを行う移動通信端末機
JP2003516056A (ja) ワイヤレスcdmaシステムにおける中間周波数ハンドオーバ
WO2005032005A1 (ja) Cdmaシステム及びそのハンドオーバ方法
KR20050076886A (ko) 비동기 시스템에서 주파수간 하드 핸드오버를 지원하기위한 공통채널 비콘 신호 송신 방법 및 장치.
KR100619359B1 (ko) 비동기 이동통신 시스템에서의 핸드오프 방법
KR20050102370A (ko) 비동기망과 동기망간의 패킷 핸드오버를 가능하게 하기위한 이동통신 시스템 및 패킷 핸드오버 방법과 이를 위한이동통신 단말
KR20050106639A (ko) 비동기망과 동기망간의 서비스 전환을 위한 이동통신시스템 및 방법
KR101038982B1 (ko) Rfid를 이용한 비동기망에서 동기망으로의 핸드오버방법과 이를 위한 이동통신 단말 및 rfid 탐지장치
KR20050049450A (ko) 시디엠에이 원엑스 아이피 망에서 아이피비에스 시스템
JPH11346388A (ja) ディジタル無線システム及び無瞬断ハンドオーバ方法
JP2007067669A (ja) 無線基地局装置
JP2004289617A (ja) 内線付加装置及び内線付加装置を用いたネットワークシステム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP