WO2005031123A1 - Obtenir de la puissance d'une source thermique a faible temperature - Google Patents

Obtenir de la puissance d'une source thermique a faible temperature Download PDF

Info

Publication number
WO2005031123A1
WO2005031123A1 PCT/GB2004/004089 GB2004004089W WO2005031123A1 WO 2005031123 A1 WO2005031123 A1 WO 2005031123A1 GB 2004004089 W GB2004004089 W GB 2004004089W WO 2005031123 A1 WO2005031123 A1 WO 2005031123A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapour
liquid
closed
expander
fluid
Prior art date
Application number
PCT/GB2004/004089
Other languages
English (en)
Inventor
Ian Kenneth Smith
Original Assignee
City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by City University filed Critical City University
Publication of WO2005031123A1 publication Critical patent/WO2005031123A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/005Steam engine plants not otherwise provided for using mixtures of liquid and steam or evaporation of a liquid by expansion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • This invention relates to power production from low temperature heat sources, where the available temperature is too low for a steam cycle, for example, from a flow of a single phase fluid, such as pressurised hot water. Examples of this are found occasionally in industrial processes, and are more widely available from geothermal brines obtained from natural aquifers or possibly, from artificially created aquifers obtained from the deep drilling and fracturing of rock formations in what is known as Hot Dry Rock (HDR) .
  • HDR Hot Dry Rock
  • the hot liquid is then expanded in a two-phase expander and then condensed in an air or water cooled condenser. It is then repressurised in a feed pump and returned to the heater to complete the cycle.
  • ORC Organic Rankine
  • Kalina Kalina type cycles.
  • ORC Organic Rankine
  • apparatus for deriving power from a low temperature heat source comprising a heat exchanger for heating a liquefied volatile fluid under pressure with heat from the source, a primary two-phase expander connected to receive heated liquid from the heat exchanger and thereby generate power, a liquid/vapour separator connected to receive the fluid from the primary expander, means to direct the separated vapour stream to a further power generating expander and thence to a condenser, and feed pump means to return both the separated liquid phase stream and the condensed vapour phase stream to the heat exchanger under the said pressure
  • a closed cycle method of generating power from a low temperature source of heat including the steps of heating a liquefied volatile fluid under pressure in a heater with heat from the source, expanding the liquid to flash a portion thereof into vapour and thereby generate power, separating remaining liquid from the vapour and further expanding the vapour, condensing the vapour into liquid and pumping the condensed fluid back into the heater.
  • the separated dry vapour may then be expanded at very high efficiency in a conventional vapour turbine of the axial or radial flow type while the liquid may be further expanded in a parallel screw or turboexpander.
  • the separation liquid may be reinjected into the heat exchanger at an intermediate entry point with the aid of an additional feed pump.
  • This has two potential advantages, namely: i) It reduces the total feed pump work, since the flow through the main feed pump is reduced while the additional feed pump does not have to operate over such a high pressure difference. ii) Returning the unexpanded liquid at the intermediate temperature has the effect of improving the cycle efficiency by raising the average temperature at which the heat is supplied in the cycle.
  • Fig. 1 shows an installation for generating power from a source of relatively low temperature heat, for example, a geothermal installation in which brine is injected from a line 11 into a rock formation and thereby heated. Heated brine is pumped along a line 12 to a heat exchanger 13 before being returned to the line 11.
  • a source of relatively low temperature heat for example, a geothermal installation in which brine is injected from a line 11 into a rock formation and thereby heated. Heated brine is pumped along a line 12 to a heat exchanger 13 before being returned to the line 11.
  • a pump 14 delivers a volatile fluid under pressure in • liquid form along a line 15 to the heat exchanger 13 where the liquid is heated in counter-flow to the brine.
  • the volatile liquid enters the heat exchanger 13 at point 1 and leaves at point 2 by way of a line 16, the pressure being sufficient to maintain the fluid in its liquid phase.
  • the heated volatile liquid is supplied by the line 16 to a two-phase expander 17 of the twin screw or radial inflow turbine type (e.g., a Francis turbine) where some of the liquid during expansion flashes into vapour. It is not practical to make a single expander capable of expanding all liquid into vapour so that the fluid leaving the primary expander 17 (at point 3) is a homogenous mixture of liquid and vapour phases .
  • a two-phase expander 17 of the twin screw or radial inflow turbine type e.g., a Francis turbine
  • This homogenous mixture of liquid and vapour is conveyed by a line 19 to a separator 20 of the gravitational or centrifugal type, in which the liquid and vapour phases are substantially separated and delivered respectively to lines 21 and 22.
  • the liquid phase (at point 3') is delivered to a further expander of the twin screw or radial inflow turbine type where some of the liquid flashes into vapour while generating power delivered to a shaft 24.
  • the separated vapour from line 22 (at point 3") is fed to the inlet of a high efficiency turbine 25 of the radial or axial flow type, where it generates further power which may be delivered to the shaft 24 to drive a further generator or other mode G.
  • the exhaust vapour from the expander 23 and turbine 25 is delivered (at point 4' and 4") by lines 26 and 27 to a condenser 28 where the vapour is condensed by heat exchange with a cooling system 29 and the resulting liquid is delivered by a line 30 (at point 5) to the inlet of the pump 14.
  • the cycles shown in the graphs in Figs . 2 , 4, 6, 8 and 10 result from using a working fluid having a high number of atoms per molecule, such as n-pentane.
  • a working fluid having a high number of atoms per molecule, such as n-pentane.
  • the temperature-entropy diagram for the vapour phase has a positive slope as opposed to water / steam where the corresponding slope for the vapour phase is negative.
  • the length of the line 3" -3 (which represents the portion of the mixture still in liquid form) is much less than the length of the line 3-3' (which represents the portion now in vapour phase) . Accordingly, the dryness of the homogenous mixture leaving the expander 17 is at least 70%. In contrast in the case of water, the mixture would only comprise about 10-20% vapour.
  • Fig. 3 shows a modification of the installation shown in Fig. 1, for use where the contribution of the liquid expansion in the expander 23 to the total power generated by the system is not large, either because the relative mass of separated liquid is small or the volume ratio of expansion is too high or both.
  • the relatively small liquid phase leaving the separator 20 is fed by a line 31 through a further feed pump 32, which delivers the liquid to an intermediate point of the heat exchanger 13.
  • This has three potential advantages: i) It reduces the total feed pump work, since the flow through the main feed pump is reduced while the additional feed pump does not have to operate over such a high pressure difference. This effectively recovers some 12% of the power lost by omitting the second two-phase expander .
  • FIG. 5 An alternative arrangement to that shown in Fig. 3 is shown in Fig. 5.
  • a two-stage feed pump is normally required formed by first and second pump stages 41 and 42 connected in series (or by two pumps by a line 43) .
  • the fluid is admitted into the second feed pump stage by way of the line 43. This then raises the liquid admission temperature to the heater and hence results in less recovery of heat from the brine but with no other performance penalty and it still results in a correspondingly reduced size condenser.
  • the liquid phase from the separator is delivered by a line 121 to a throttle valve 34 from which the liquid phase is returned to the condenser 28 with a drop in pressure to that of the vapour leaving the expander 25.
  • a throttle valve 34 from which the liquid phase is returned to the condenser 28 with a drop in pressure to that of the vapour leaving the expander 25.
  • the estimated values of recoverable power outputs from each expander are based on expansion efficiencies of 80% for the first stage two-phase expander, 40%-60%, depending on the entry conditions, for the second stage two- phase expander and 85% for the dry vapour expander and are given in the following table. These component efficiencies represent experimentally verified values for the first stage liquid and dry vapour expanders and estimates for the second stage liquid expander. The lower values assumed for this latter component are due to the fact that very high volume ratios are incurred in this case and hence only partial recovery of the power is possible within it.
  • the first stage two-phase expansion has a volume ratio of approximately 9:1, when separating at 125°C increasing to approximately 25:1 at a separation temperature of 90C.
  • the second stage two-phase expansion is of the order of 100:1 and varies far less with the separation temperature.
  • the dry vapour expander requires a volume ratio of 14:1 at 125°C admission temperature falling to only 6:1 at 90°C admission.
  • the very high volume ratio of the second stage two-phase expansion implies that its efficiency is low, but since the available energy from this is relatively small, the penalty for this in terms of overall expansion efficiency is not so significant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Un fluide présentant une pente positive pour une partie vaporeuse de son diagramme température-entropie, tel n-pentane, est chauffé en tant que liquide sous pression dans un échangeur thermique (13) au moyen de la chaleur issue de la source (12) et réparti de manière à générer de la puissance dans un extenseur à deux phases (17) afin de former un mélange homogène de liquide et de vapeur qui est distribué à un séparateur (20). La vapeur séparée est répandue dans une turbine (25) afin de générer davantage de puissance avant d'être condensée dans un condensateur (28), le condensat étant fourni à une première pompe d'alimentation (41). La sortie de la pompe (41) et la quantité relativement faible de liquide provenant du séparateur (20) sont renvoyées au moyen d'une deuxième pompe d'alimentation (42) à l'échangeur thermique (13). Dans un arrangement modifié, le liquide issu du séparateur est renvoyé au moyen d'une autre pompe d'alimentation à un point intermédiaire de l'échangeur thermique.
PCT/GB2004/004089 2003-09-25 2004-09-24 Obtenir de la puissance d'une source thermique a faible temperature WO2005031123A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0322507.5 2003-09-25
GB0322507A GB0322507D0 (en) 2003-09-25 2003-09-25 Deriving power from low temperature heat source

Publications (1)

Publication Number Publication Date
WO2005031123A1 true WO2005031123A1 (fr) 2005-04-07

Family

ID=29286846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2004/004089 WO2005031123A1 (fr) 2003-09-25 2004-09-24 Obtenir de la puissance d'une source thermique a faible temperature

Country Status (2)

Country Link
GB (1) GB0322507D0 (fr)
WO (1) WO2005031123A1 (fr)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1627994A1 (fr) * 2004-08-20 2006-02-22 Ralf Richard Hildebrandt Méthode et appareil pour la récupération de chaleur perdue
EP1691039A1 (fr) * 2005-02-11 2006-08-16 Blue Sky Energy N.V. Procédé et appareil destinés à générer du travail
EP1752615A2 (fr) * 2005-03-31 2007-02-14 Air Products and Chemicals, Inc. Procédé une source thermique de faible intensité à l'aide d'une machine à expansion de fluide dense
WO2007104970A2 (fr) * 2006-03-13 2007-09-20 City University Regulation du fluide de travail dans des systemes d'energie a vapeur non aqueuse
WO2008130915A2 (fr) * 2007-04-16 2008-10-30 Turbogenix, Inc. Flux du fluide dans un système d'expansion de fluide
DE102007041457A1 (de) 2007-08-31 2009-03-05 Siemens Ag Verfahren und Vorrichtung zur Umwandlung der Wärmeenergie einer Niedertemperatur-Wärmequelle in mechanische Energie
WO2009059562A1 (fr) * 2007-11-05 2009-05-14 Zhirong Luo Procédé de cyclage de type à détente pneumatique-thermique et son appareil
EP2131105A1 (fr) * 2008-06-05 2009-12-09 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé pour convertir une source de chaleur secondaire en puissance à l'aide d'une machine à expansion de fluide à deux phases
EP2444595A1 (fr) * 2010-10-19 2012-04-25 Kabushiki Kaisha Toshiba Centrale à turbine à vapeur
CN102454439A (zh) * 2010-10-19 2012-05-16 株式会社东芝 汽轮机装置
CN102454438A (zh) * 2010-10-19 2012-05-16 株式会社东芝 汽轮机装置
US20130118169A1 (en) * 2011-11-15 2013-05-16 Shell Oil Company System and process for generation of electrical power
US20130118171A1 (en) * 2011-11-15 2013-05-16 Shell Oil Company System and process for generation of electrical power
WO2013119998A1 (fr) * 2012-02-08 2013-08-15 Nayar Ramesh C Utilisation innovante d'énergie thermique de faible qualité
CN103306764A (zh) * 2013-07-05 2013-09-18 重庆大学 一种带两相膨胀机的Kalina循环系统
CN103527268A (zh) * 2013-10-24 2014-01-22 天津大学 双级全流螺杆膨胀机有机朗肯循环系统
GB2505157A (en) * 2012-06-25 2014-02-26 Univ City Generating power from a medium temperature heat source
CN104295327A (zh) * 2014-08-13 2015-01-21 赵桂松 锅炉发电装置及工艺
CN105003309A (zh) * 2015-08-26 2015-10-28 江曼 一种发电系统
EP2990726A4 (fr) * 2013-04-22 2016-04-20 Panasonic Ip Man Co Ltd Système de cogénération
US9399929B2 (en) 2010-10-19 2016-07-26 Kabushiki Kaisha Toshiba Steam turbine plant
CN105986840A (zh) * 2015-03-23 2016-10-05 株式会社神户制钢所 热回收型发电系统
DE112010003230B4 (de) * 2009-07-23 2016-11-10 Cummins Intellectual Properties, Inc. Energierückgewinnungssystem, das einen organischen Rankine-Kreisprozess verwendet
CN107218094A (zh) * 2017-04-21 2017-09-29 昆明理工大学 一种多压闪蒸有机朗肯循环余热发电的装置
CN108425713A (zh) * 2018-05-18 2018-08-21 江苏大学 一种基于气液分离与双级蒸发的有机朗肯循环发电系统
CN109469524A (zh) * 2018-11-07 2019-03-15 哈尔滨工程大学 一种优化升级的余热利用卡琳娜循环发电系统
PL424234A1 (pl) * 2018-01-09 2019-07-15 Dobriański Jurij Maszyna parowa
WO2019168404A1 (fr) * 2018-02-28 2019-09-06 Entromission As Mobile perpétuel du deuxième genre
CN112412560A (zh) * 2020-10-28 2021-02-26 北京工业大学 一种基于单螺杆膨胀机的卡琳娜循环系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE513598C (de) * 1927-12-04 1930-12-01 Ernst Braeuer Dr Verfahen und Einrichtung zur Sicherung des Betriebes von Turbinenanlagen, welche mit einem aus hocherhitzter Druckfluessigkeit durch Entspannung gebildeten innigen Gemisch aus Dampf- und Fluessigkeitsteilchen betrieben werden (Nebelturbinen)
US3401277A (en) * 1962-12-31 1968-09-10 United Aircraft Corp Two-phase fluid power generator with no moving parts
EP0485596A1 (fr) * 1989-01-31 1992-05-20 Tselevoi Nauchno-Tekhnichesky Kooperativ "Stimer" Procede de conversion de l'energie thermique d'un milieu de travail en energie mecanique dans une installation a vapeur
EP0787891A2 (fr) * 1996-01-31 1997-08-06 Carrier Corporation Production d'énergie mécanique par l'expansion d'un liquide en vapeur
US6122915A (en) * 1992-05-05 2000-09-26 Biphase Energy Company Multistage two-phase turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE513598C (de) * 1927-12-04 1930-12-01 Ernst Braeuer Dr Verfahen und Einrichtung zur Sicherung des Betriebes von Turbinenanlagen, welche mit einem aus hocherhitzter Druckfluessigkeit durch Entspannung gebildeten innigen Gemisch aus Dampf- und Fluessigkeitsteilchen betrieben werden (Nebelturbinen)
US3401277A (en) * 1962-12-31 1968-09-10 United Aircraft Corp Two-phase fluid power generator with no moving parts
EP0485596A1 (fr) * 1989-01-31 1992-05-20 Tselevoi Nauchno-Tekhnichesky Kooperativ "Stimer" Procede de conversion de l'energie thermique d'un milieu de travail en energie mecanique dans une installation a vapeur
US6122915A (en) * 1992-05-05 2000-09-26 Biphase Energy Company Multistage two-phase turbine
EP0787891A2 (fr) * 1996-01-31 1997-08-06 Carrier Corporation Production d'énergie mécanique par l'expansion d'un liquide en vapeur

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7523613B2 (en) 2004-08-20 2009-04-28 Ralf Richard Hildebrandt Process and device for utilizing waste heat
EP1627994A1 (fr) * 2004-08-20 2006-02-22 Ralf Richard Hildebrandt Méthode et appareil pour la récupération de chaleur perdue
EP1691039A1 (fr) * 2005-02-11 2006-08-16 Blue Sky Energy N.V. Procédé et appareil destinés à générer du travail
WO2006085770A2 (fr) * 2005-02-11 2006-08-17 Blue Sky Energy N.V. Procede et appareil generant de l'energie
WO2006085770A3 (fr) * 2005-02-11 2007-01-04 Blue Sky Energy N V Procede et appareil generant de l'energie
EP1752615A2 (fr) * 2005-03-31 2007-02-14 Air Products and Chemicals, Inc. Procédé une source thermique de faible intensité à l'aide d'une machine à expansion de fluide dense
EP1752615A3 (fr) * 2005-03-31 2011-03-16 Air Products and Chemicals, Inc. Procédé une source thermique de faible intensité à l'aide d'une machine à expansion de fluide dense
WO2007104970A2 (fr) * 2006-03-13 2007-09-20 City University Regulation du fluide de travail dans des systemes d'energie a vapeur non aqueuse
WO2007104970A3 (fr) * 2006-03-13 2008-10-30 Univ City Regulation du fluide de travail dans des systemes d'energie a vapeur non aqueuse
WO2008130915A2 (fr) * 2007-04-16 2008-10-30 Turbogenix, Inc. Flux du fluide dans un système d'expansion de fluide
WO2008130915A3 (fr) * 2007-04-16 2010-10-14 Turbogenix, Inc. Flux du fluide dans un système d'expansion de fluide
RU2485331C2 (ru) * 2007-08-31 2013-06-20 Сименс Акциенгезелльшафт Способ и устройство для преобразования тепловой энергии низкотемпературного источника тепла в механическую энергию
WO2009030283A2 (fr) * 2007-08-31 2009-03-12 Siemens Aktiengesellschaft Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique
DE102007041457A1 (de) 2007-08-31 2009-03-05 Siemens Ag Verfahren und Vorrichtung zur Umwandlung der Wärmeenergie einer Niedertemperatur-Wärmequelle in mechanische Energie
DE102007041457B4 (de) * 2007-08-31 2009-09-10 Siemens Ag Verfahren und Vorrichtung zur Umwandlung der Wärmeenergie einer Niedertemperatur-Wärmequelle in mechanische Energie
KR101398312B1 (ko) 2007-08-31 2014-05-27 지멘스 악티엔게젤샤프트 저온 열 소스의 열 에너지를 기계 에너지로 변환하기 위한 방법 및 장치
WO2009030283A3 (fr) * 2007-08-31 2010-03-18 Siemens Aktiengesellschaft Procédé et dispositif permettant de transformer l'énergie thermique d'une source de chaleur basse température en énergie mécanique
WO2009059562A1 (fr) * 2007-11-05 2009-05-14 Zhirong Luo Procédé de cyclage de type à détente pneumatique-thermique et son appareil
CN101784847B (zh) * 2007-11-05 2011-06-15 罗志荣 气压-热力膨胀式循环方法及其装置
EP2131105A1 (fr) * 2008-06-05 2009-12-09 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Procédé pour convertir une source de chaleur secondaire en puissance à l'aide d'une machine à expansion de fluide à deux phases
DE112010003230B4 (de) * 2009-07-23 2016-11-10 Cummins Intellectual Properties, Inc. Energierückgewinnungssystem, das einen organischen Rankine-Kreisprozess verwendet
US9458739B2 (en) 2010-10-19 2016-10-04 Kabushiki Kaisha Toshiba Steam turbine plant
US9399929B2 (en) 2010-10-19 2016-07-26 Kabushiki Kaisha Toshiba Steam turbine plant
EP2444595A1 (fr) * 2010-10-19 2012-04-25 Kabushiki Kaisha Toshiba Centrale à turbine à vapeur
CN102454438A (zh) * 2010-10-19 2012-05-16 株式会社东芝 汽轮机装置
CN102454439A (zh) * 2010-10-19 2012-05-16 株式会社东芝 汽轮机装置
US20130118169A1 (en) * 2011-11-15 2013-05-16 Shell Oil Company System and process for generation of electrical power
US20130118171A1 (en) * 2011-11-15 2013-05-16 Shell Oil Company System and process for generation of electrical power
WO2013119998A1 (fr) * 2012-02-08 2013-08-15 Nayar Ramesh C Utilisation innovante d'énergie thermique de faible qualité
GB2505157A (en) * 2012-06-25 2014-02-26 Univ City Generating power from a medium temperature heat source
EP2990726A4 (fr) * 2013-04-22 2016-04-20 Panasonic Ip Man Co Ltd Système de cogénération
EP2990726B1 (fr) 2013-04-22 2017-06-07 Panasonic Intellectual Property Management Co., Ltd. Système de cogénération
US9863280B2 (en) 2013-04-22 2018-01-09 Panasonic Intellectual Property Management Co., Ltd. Combined heat and power system
CN103306764A (zh) * 2013-07-05 2013-09-18 重庆大学 一种带两相膨胀机的Kalina循环系统
CN103527268A (zh) * 2013-10-24 2014-01-22 天津大学 双级全流螺杆膨胀机有机朗肯循环系统
CN104295327A (zh) * 2014-08-13 2015-01-21 赵桂松 锅炉发电装置及工艺
CN105986840A (zh) * 2015-03-23 2016-10-05 株式会社神户制钢所 热回收型发电系统
EP3073065A3 (fr) * 2015-03-23 2016-12-07 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Système de génération de puissance de type collecteur de chaleur
US9945267B2 (en) 2015-03-23 2018-04-17 Kobe Steel, Ltd. Heat-collecting-type power generation system
CN105986840B (zh) * 2015-03-23 2019-02-15 株式会社神户制钢所 热回收型发电系统
CN105003309A (zh) * 2015-08-26 2015-10-28 江曼 一种发电系统
CN107218094A (zh) * 2017-04-21 2017-09-29 昆明理工大学 一种多压闪蒸有机朗肯循环余热发电的装置
PL424234A1 (pl) * 2018-01-09 2019-07-15 Dobriański Jurij Maszyna parowa
WO2019168404A1 (fr) * 2018-02-28 2019-09-06 Entromission As Mobile perpétuel du deuxième genre
CN108425713A (zh) * 2018-05-18 2018-08-21 江苏大学 一种基于气液分离与双级蒸发的有机朗肯循环发电系统
CN109469524A (zh) * 2018-11-07 2019-03-15 哈尔滨工程大学 一种优化升级的余热利用卡琳娜循环发电系统
CN112412560A (zh) * 2020-10-28 2021-02-26 北京工业大学 一种基于单螺杆膨胀机的卡琳娜循环系统

Also Published As

Publication number Publication date
GB0322507D0 (en) 2003-10-29

Similar Documents

Publication Publication Date Title
WO2005031123A1 (fr) Obtenir de la puissance d'une source thermique a faible temperature
US7775045B2 (en) Method and system for producing power from a source of steam
DK2262979T3 (en) Generating energy from medium temperature heat sources
EP0082671B1 (fr) Conversion d'énergie thermique
JP3391515B2 (ja) 高圧地熱流体から電力を取得する装置及び方法
WO2008125827A2 (fr) Appareil et procédé à cycle de rankine organique
US4712380A (en) Utilization of thermal energy
EP3242994B1 (fr) Cycle de rankine organique à pression multiple
US9388797B2 (en) Method and apparatus for producing power from geothermal fluid
WO2007131281A1 (fr) Procédé et système de génération d'énergie à partir d'une source de chaleur
CN114127392A (zh) 用于将热能转变成机械能的系统
US20180258799A1 (en) A multistage evaporation organic rankine cycle
WO2013003055A1 (fr) Centrale électrique géothermique utilisant un fluide géothermique chaud dans un appareil de récupération de chaleur à cascade
KR20210104067A (ko) 열 펌프 장치 및 열 펌프 장치를 포함하는 지역 난방 네트워크
Smith et al. An improved system for power recovery from higher enthalpy liquid dominated fields
EP1943410B1 (fr) Procede et systemes destines a produire de l'energie a partir d'une source de vapeur
Kaypakoglu et al. An evaluation of single flash power plants with ORC bottoming units at high NCG content
Clos et al. Wet expansion steam cycles for offshore industry
GB2505157A (en) Generating power from a medium temperature heat source
Zamfirescu et al. Thermodynamic analysis of a novel ammonia-water rankine cycle
Elliott Comparison of geothermal power conversion cycles
MXPA98006482A (en) Apparatus and method for producing energy using a geoterm fluid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase