EP0485596A1 - Procede de conversion de l'energie thermique d'un milieu de travail en energie mecanique dans une installation a vapeur - Google Patents

Procede de conversion de l'energie thermique d'un milieu de travail en energie mecanique dans une installation a vapeur Download PDF

Info

Publication number
EP0485596A1
EP0485596A1 EP19900900413 EP90900413A EP0485596A1 EP 0485596 A1 EP0485596 A1 EP 0485596A1 EP 19900900413 EP19900900413 EP 19900900413 EP 90900413 A EP90900413 A EP 90900413A EP 0485596 A1 EP0485596 A1 EP 0485596A1
Authority
EP
European Patent Office
Prior art keywords
fluid
engine
critical
working medium
expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19900900413
Other languages
German (de)
English (en)
Inventor
Leonid Petrovich Proglyada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSELEVOI NAUCHNO-TEKHNICHESKY KOOPERATIV "STIMER"
Original Assignee
TSELEVOI NAUCHNO-TEKHNICHESKY KOOPERATIV "STIMER"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSELEVOI NAUCHNO-TEKHNICHESKY KOOPERATIV "STIMER" filed Critical TSELEVOI NAUCHNO-TEKHNICHESKY KOOPERATIV "STIMER"
Publication of EP0485596A1 publication Critical patent/EP0485596A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/005Steam engine plants not otherwise provided for using mixtures of liquid and steam or evaporation of a liquid by expansion

Definitions

  • the invention relates to thermal engineering, and in particular, it deals with a method for transforming thermal energy of fluid into mechanical energy in a steam power plant having an expansion engine.
  • the invention may be most advantageously used in steam power plants of vehicles.
  • the invention may be used in power plants for generating electric energy.
  • a Rankine's cycle which is a closed-loop cycle consisting of heating a fluid, evaporating and overheating steam, adiabatic steam expansion in an engine and condensation of the steam. Heat removal from wet steam in the condenser in this cycle continues until all steam is condensed. It is a liquid having compressibility which is incomparably low in comparison with wet steam compressibility that is compressed rather than wet steam of a low density. Pumps are used to move liquid simultaneously with a pressure increase, the pumps consuming much less energy.
  • thermodynamic efficiency of the Rankine's cycle is lower than that of the Carnot's cycle as the degree of admission and average heat supply rate are lower.
  • the critical state of fluid is such a state in which fluid in the liquid state has its own properties materially different from properties of both liquid and vapour. This area is limited on the one hand by the critical point of transition from liquid to vapour and, on the other hand, by a material change in a number of its physical properties. a part of energy in these cycles is consumed for boiling (vapour formation) of fluid and only the rest of internal energy is consumed for performing useful work thus resulting in a lower efficiency. In addition, density of internal energy in these cycles is low which negatively affects specific performance of power plants using such cycles. These disadvantages make such power plants inacceptable for use as power plants of vehicles.
  • the invention is based on the problem of providing a method for transforming thermal energy of fluid into mechanical energy and a steam power plant, wherein, owing to an increase in density and more complety utilization of internal energy of fluid efficiency of the process is so enhanced as to make it effective enough for the implementation in vehicle power plants.
  • the invention resides in that in a method for transforming thermal energy of fluid into mechanical energy in a steam power plant having an expansion engine, wherein fluid is heated under the isobaric conditions to a preset temperature and supplied to a working chamber of an engine to carry out the adiabatic expansion of the fluid during which useful work of the engine is performed, with subsequent condensing of the exhaust fluid and its adiabatic compression, according to the invention, the fluid is brought to a critical state during heating and is supplied in this state to the working chamber of the engine, the adiabatic expansion of the fluid being carried out immediately from its critical state, the adiabatic compression of the fluid being carried out to a critical pressure.
  • fluid be in the form of a substance having the difference between enthalpies at points of critical and atmospheric pressures under the adiabatic expansion which is at least equal to the vaporization heat.
  • the abovedescribed method for transforming thermal energy of fluid into mechanical energy is carried out in a steam power plant having an expansion engine, comprising a fluid heater communicating with an engine for supplying the heated fluid thereto and for expanding it under the adiabatic conditions, and an exhaust fluid condenser, wherein the heater comprises a heater of a liquid fluid for heating it to a critical state, the heater communicating with the engine via a heat insulated line.
  • Heating and carrying out the adiabatic compression of fluid before supplying it to the engine to parameters corresponding to the area of its critical state and carrying out the adiabatic expansion of fluid from the area of its critical state using fluid in the form of a substance having the difference between enthalpies at po - ints of critical and atmospheric pressues under the adiabatic expansion at least equal to the vaporization heat, make it possible to achieve a material increase in the isobaric heat capacity of fluid. It should be noted that fluid allows energy to be concentrated to a higher density in the critical state area, the density of energy being out of proportion to a change in fluid temperature. This effect cannot be achieved in areas corresponding to subcritical and supercritical states of the same liquid.
  • the method according to the invention allows the ability of liquid to absorb and store thermal energy in the critical state area without a proportional temperature increase and pressure change to be implemented, whereby efficiency of the process is substantially improved.
  • Figure 1 shows a diagrammatic view of a steam power plant for carrying out a method for transforming thermal energy of fluid into mechanical energy according to the invention.
  • a steam power plant comprises a pump 1, a fluid heater in the form of a straight-flow heat exchanger 2 having a thermal accumulator 3, an expansion engine 4, a separator 5, and a condenser 6.
  • the fluid heater is in the form of a heater for heating a liquid fluid to its critical state.
  • the heater comprises the heat exchanger 2 which is connected to the engine by means of heat insulated line.
  • Fluid is heated under the isobaric conditions to a preset temperature by bringing it to a critical state.
  • fluid in the area of the critical state is still in the liquid state but has properties which are materially different from those of both liquid and vapour.
  • the area of the critical state is limited on the one hand by a critical point of liquid transition to vapour, and on the other hand, by a material change in a number of physical properties.
  • a high-density energy is concentrated in the unit of liquid volume in the area corresponding to its critical state, i.e. to a small volume of liquid there is imparted energy the value of which is out of proportion to a change in its temperature. This effect does not take place in areas corresponding to supercritical and s subcritical states of the same liquid.
  • Good result can be achieved using fluids in the form of substances, preferably liquids for which the difference between enthalpies at points of critical and atmospheric pressures under the adiabatic expansion is at least equal to the vaporization heat.
  • Substances with a low latent vaporization heat under atmospheric pressure generally have a positive or zero heat capacity at the upper limit saturation in the T v. S curve so that a point of the atmospheric isobar will be in the superheated vapour area or on the upper limit curve. Accordingly, the amount of heat removed during the cycle with such properties of the substance will be substantially equal to the latent vaporization heat of the substance.
  • Values of enthalpies at the critical point determine the property of a given substance and maximum amount of heat supplied to the liquid, and the difference between enthalpies at points of the critical state of the substance and point of the atmospheric isobar determine the amount of heat that can be transformed to work.
  • the ratio of difference between the enthalpies to the latent vaporization heat determines properties of substances which are vital for efficiency of the cycle.
  • Fluid was in the form of water.
  • An axial piston pump 1 (Figure 1) was used to compress fluid to a pressure of 225.6 kg/cm2 (point A in Figure 2) which corresponded to the critical water pressure, whereafter the fluid was heated in a straight-flow heat exchanger 2 having a thermal accumulator 3 to 374°C which corresponded to a temperature of the critical state area (point B in Figure 2). Fluid was injected in this state into a working chamber of a rotary expansion engine 4 which is disclosed in details in a copending application filed by the same applicant.
  • Fluid was adiabatically expanded in the working chamber of the engine 4 owing to internal energy of fluid to atmospheric pressure at 100°C (from point B to point C in Figure 2).
  • the liquid was thus converted to vapour with a dryness of 0.5 at the end of the expansion.
  • the vapour dryness was determined by means of the separator 5 ( Figure 1).
  • the heat removed in the condenser 6 was determined by measuring the amount of fluid circulating in the system during crystallization of the energy storage subs - tance of the thermal accumulator 5 taking into account dryness of vapour and the amount of condensed liquid.
  • Fluid was in the form of carbon tetrachloride (CCL4).
  • CCL4 carbon tetrachloride
  • the sequence of steps, methods of measurements and calculation as well as equipment were the same as those used in Example 1. The difference resided in the fact that the fluid was compressed to a pressure of 45 kg/cm2 (point A in Figure 3) which corresponded to the critical pressure for carbon tetrachloride and heated to 283°C which corresponded to a temperature in area of the critical state of this liquid (point B in Figure 3).
  • heating and adiabatically compressing fluid before supplying to the engine to parameters corresponding to the area of its critical state make it possible to achieve a more complete utilization of internal energy of liquid, hence, to improve efficiency of the cycle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

On a mis au point un procédé de conversion de l'énergie thermique d'un milieu de travail, en énergie mécanique dans une installation à vapeur à l'aide d'un moteur à expansion de volume, dans lequel on utilise l'énergie thermique dudit milieu de travail changeant, pendant le cycle de travail, son état d'agrégation. Ledit procédé consiste à chauffer de manière isobare le milieu de travail jusqu'à une température donnée, à l'acheminer jusqu'au moteur, à procéder à l'expansion adiabatique dudit milieu de travail et à le condenser après décharge du moteur, ce qui a comme effet une compression adiabatique. On procède au chauffage adiabatique du milieu de travail avant de l'acheminer jusqu'au moteur, jusqu'à atteindre des paramètres correspondant à son état critique, tandis que l'on procède à l'expansion adiabatique dudit milieu de travail dans le moteur à partir de sa zone d'état critique. Le milieu de travail utilisé peut être des liquides dont la différence d'enthalpies entre les pointes de pressions critique et atmosphérique pendant l'expansion adiabatique est égale ou supérieure à la chaleur de vaporisation.
EP19900900413 1989-01-31 1989-05-24 Procede de conversion de l'energie thermique d'un milieu de travail en energie mecanique dans une installation a vapeur Withdrawn EP0485596A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SU4638642 1989-01-31
SU4638642 1989-01-31

Publications (1)

Publication Number Publication Date
EP0485596A1 true EP0485596A1 (fr) 1992-05-20

Family

ID=21423343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900900413 Withdrawn EP0485596A1 (fr) 1989-01-31 1989-05-24 Procede de conversion de l'energie thermique d'un milieu de travail en energie mecanique dans une installation a vapeur

Country Status (3)

Country Link
EP (1) EP0485596A1 (fr)
AU (1) AU4650689A (fr)
WO (1) WO1990008882A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031123A1 (fr) * 2003-09-25 2005-04-07 City University Obtenir de la puissance d'une source thermique a faible temperature
EP1691039A1 (fr) * 2005-02-11 2006-08-16 Blue Sky Energy N.V. Procédé et appareil destinés à générer du travail
EP1752615A2 (fr) * 2005-03-31 2007-02-14 Air Products and Chemicals, Inc. Procédé une source thermique de faible intensité à l'aide d'une machine à expansion de fluide dense
DE102007041457A1 (de) 2007-08-31 2009-03-05 Siemens Ag Verfahren und Vorrichtung zur Umwandlung der Wärmeenergie einer Niedertemperatur-Wärmequelle in mechanische Energie
WO2009098471A2 (fr) * 2008-02-07 2009-08-13 City University Génération d’électricité à partir de sources thermiques à température moyenne
CN101842558A (zh) * 2007-08-31 2010-09-22 西门子公司 用于将热能转化成机械能的方法和装置
ITCO20090057A1 (it) * 2009-11-30 2011-06-01 Nuovo Pignone Spa Sistema evaporatore diretto e metodo per sistemi a ciclo rankine organico
DE102013107251A1 (de) * 2013-07-09 2015-01-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Dampfkraftvorrichtung und Verfahren zum Betreiben einer Dampfkraftvorrichtung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8401908D0 (en) * 1984-01-25 1984-02-29 Solmecs Corp Nv Utilisation of thermal energy
DE3505532A1 (de) * 1985-02-18 1986-08-28 Vadim Netanya Spolanski Verfahren zum kraftantrieb fuer beliebige maschinen und einrichtungen und vorrichtung zur durchfuehrung des verfahrens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9008882A1 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031123A1 (fr) * 2003-09-25 2005-04-07 City University Obtenir de la puissance d'une source thermique a faible temperature
EP1691039A1 (fr) * 2005-02-11 2006-08-16 Blue Sky Energy N.V. Procédé et appareil destinés à générer du travail
WO2006085770A2 (fr) * 2005-02-11 2006-08-17 Blue Sky Energy N.V. Procede et appareil generant de l'energie
WO2006085770A3 (fr) * 2005-02-11 2007-01-04 Blue Sky Energy N V Procede et appareil generant de l'energie
EP1752615A2 (fr) * 2005-03-31 2007-02-14 Air Products and Chemicals, Inc. Procédé une source thermique de faible intensité à l'aide d'une machine à expansion de fluide dense
EP1752615A3 (fr) * 2005-03-31 2011-03-16 Air Products and Chemicals, Inc. Procédé une source thermique de faible intensité à l'aide d'une machine à expansion de fluide dense
CN101842558A (zh) * 2007-08-31 2010-09-22 西门子公司 用于将热能转化成机械能的方法和装置
DE102007041457A1 (de) 2007-08-31 2009-03-05 Siemens Ag Verfahren und Vorrichtung zur Umwandlung der Wärmeenergie einer Niedertemperatur-Wärmequelle in mechanische Energie
DE102007041457B4 (de) * 2007-08-31 2009-09-10 Siemens Ag Verfahren und Vorrichtung zur Umwandlung der Wärmeenergie einer Niedertemperatur-Wärmequelle in mechanische Energie
WO2009098471A3 (fr) * 2008-02-07 2010-06-24 City University Génération d’électricité à partir de sources thermiques à température moyenne
CN101978139A (zh) * 2008-02-07 2011-02-16 城市大学 从中温热源生成功率
WO2009098471A2 (fr) * 2008-02-07 2009-08-13 City University Génération d’électricité à partir de sources thermiques à température moyenne
US9097143B2 (en) 2008-02-07 2015-08-04 City University Generating power from medium temperature heat sources
ITCO20090057A1 (it) * 2009-11-30 2011-06-01 Nuovo Pignone Spa Sistema evaporatore diretto e metodo per sistemi a ciclo rankine organico
WO2011066089A1 (fr) * 2009-11-30 2011-06-03 Nuovo Pignone S.P.A. Système d'évaporateur direct et procédé pour des systèmes à cycle de rankine organique
CN102713168A (zh) * 2009-11-30 2012-10-03 诺沃皮尼奥内有限公司 用于有机兰金循环系统的直接蒸发器系统和方法
AU2010325072B2 (en) * 2009-11-30 2016-05-26 Nuovo Pignone S.P.A Direct evaporator system and method for Organic Rankine Cycle systems
DE102013107251A1 (de) * 2013-07-09 2015-01-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Dampfkraftvorrichtung und Verfahren zum Betreiben einer Dampfkraftvorrichtung
DE102013107251B4 (de) 2013-07-09 2019-12-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Dampfkraftvorrichtung und Verfahren zum Betreiben einer Dampfkraftvorrichtung

Also Published As

Publication number Publication date
WO1990008882A1 (fr) 1990-08-09
AU4650689A (en) 1990-08-24

Similar Documents

Publication Publication Date Title
KR101403798B1 (ko) 열원으로부터 전력을 생산하는 방법 및 시스템
RU2114999C1 (ru) Способ преобразования тепловой энергии в механическую и устройство для его осуществления, способ увеличения энтальпии и коэффициента сжимаемости водяного пара
EP0485596A1 (fr) Procede de conversion de l'energie thermique d'un milieu de travail en energie mecanique dans une installation a vapeur
US4196594A (en) Process for the recovery of mechanical work in a heat engine and engine for carrying out the process
US4224796A (en) Method for converting heat energy to mechanical energy with 1,2-dichloro-1,1-difluoroethane
CN109630309A (zh) Lng冷能斯特林发电系统
US4608829A (en) Waste heat recovering device
US3858395A (en) External combustion power producing method and apparatus
EP0066439B2 (fr) Cycle de Rankine avec fluide organique
Demuth et al. Analyses of mixed-hydrocarbon binary thermodynamic cycles for moderate-temperature geothermal resources using regeneration techniques
US20070193271A1 (en) Methods of generating exergy
CN113217133A (zh) 提高蒸汽机循环做功热效率的方法
JPS6157446B2 (fr)
CN113217110A (zh) 活塞式蒸汽机
US2202298A (en) Power generating, transmitting, and delivering apparatus
JPS56101012A (en) Power device utilizing heat released from internal- combustion engine
Van Den Einde Complete power cycle exhaust heat regeneration and the second law of thermodynamics
JP2742935B2 (ja) 蒸気の圧縮・膨張方法
SU591667A1 (ru) Способ охлаждени рабочего тела
CN105257353B (zh) 吸收式循环系统及循环方法
Lee et al. Derived thermodynamic design data for rankine power cycle systems operating on PP1
JPH05272304A (ja) 等温蒸気圧縮等圧加熱再生熱サイクル
WO2022114996A1 (fr) Cycle énergétique fermé
Lee et al. Derived thermodynamic design data for rankine power cycle systems operating on PP3
Welsby et al. Derived thermodynamic design data for Rankine power cycle systems operating on n-octane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910828

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT NL SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19930205