WO2005028993A1 - 舵角センサ - Google Patents

舵角センサ Download PDF

Info

Publication number
WO2005028993A1
WO2005028993A1 PCT/JP2004/013709 JP2004013709W WO2005028993A1 WO 2005028993 A1 WO2005028993 A1 WO 2005028993A1 JP 2004013709 W JP2004013709 W JP 2004013709W WO 2005028993 A1 WO2005028993 A1 WO 2005028993A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
steering angle
sensor
angle
wheel
Prior art date
Application number
PCT/JP2004/013709
Other languages
English (en)
French (fr)
Inventor
Takeshi Hara
Takeshi Ishikawa
Toshiyuki Onizuka
Shuji Endo
Original Assignee
Nsk Ltd.
Nsk Steering Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsk Ltd., Nsk Steering Systems Co., Ltd. filed Critical Nsk Ltd.
Priority to US10/572,504 priority Critical patent/US7472004B2/en
Priority to EP04773328A priority patent/EP1666837A1/en
Publication of WO2005028993A1 publication Critical patent/WO2005028993A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0215Determination of steering angle by measuring on the steering column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes

Definitions

  • the present invention relates to an improvement in a steering angle sensor for detecting a steering angle of a bright steering wheel in a steering device.
  • FIG. 1 shows a steering system diagram of a vehicle.
  • the steering angle sensor 101 is linked to the steering handle 102 at a 1: 1 rotation ratio, and the output signal of the steering angle sensor 101 detects the wheel speed. From the wheel speed sensor 103 to detect the speed, the signal from the rate sensor 104 to detect the speed, the signal from the turning ratio sensor 105 to detect the turning ratio, and ignition (IG.) Connected to control unit 107 together with the signal from switch 106.
  • IG. ignition
  • the range of the steering angle covered by the output signal of the steering angle sensor 101 is a neutral zone within a predetermined range including at least the neutral position, and the steering angle sensors 101 of the right zone and the left zone respectively adjacent to the neutral zone.
  • the output signal is divided into three zones that show the same value, and the current steering angle is located in any one of these zones. The difference between the left and right wheel speeds, the rate, The determination is made based on the vehicle speed.
  • the control unit 107 sets the steering angle based on the signal from each sensor and controls the operation of the variable turning ratio mechanism 109 that controls the turning ratio of the wheel 108.
  • the rear wheel steering mechanism 112 which is linked to the front wheel steering mechanism 111 via the transmission shaft 110, controls the rear wheel steering angle.
  • an object of the present invention is to improve the rotation cycle of a sensor wheel including a GMR element (Giant Magnetic Resistance) and a magnetized portion disposed around the GMR element,
  • a steering angle sensor that can detect the absolute steering angle quickly and at low cost by reducing the steering angle estimation accuracy using vehicle information by expanding the steering angle detection range by the element. It is in. Disclosure of the invention
  • An object of the present invention is to provide a steering angle sensor that calculates a steering angle of a steering wheel by detecting a rotation angle of a steering system in which steering assist is performed through a speed reduction mechanism by driving an electric motor.
  • a sensor wheel that operates in conjunction with the rotation of the steering shaft; and absolute angle calculation means that calculates an absolute steering angle based on a steering angle signal from the sensor wheel.
  • the above object is achieved by the fact that the GMR elements constitute two GMR bridge circuits, and the output signals from the respective GMR bridge circuits are arranged so as to be out of phase by 90 ° with each other. Is achieved.
  • the above object is to provide a turning direction determining means for determining a turning direction of the steering shaft; storing a position of a middle point of the steering shaft; detecting a predetermined value near the middle; This is effectively achieved by providing a middle point specific value detecting means for calculating the absolute steering angle in the entire steering angle based on the calculated steering angle.
  • the turning direction determining means can determine the steering angle with an accuracy of at least 720 °.
  • the steering angle sensor when the steering angle of the steering shaft is detected, the steering angle sensor is disposed in the steering angle sensor.
  • Two GMR bridge circuits each composed of a GMR element for detecting an angle are arranged so as to be out of phase with each other by 90 °, and calculation is performed based on an output signal of the GMR bridge circuit.
  • this sensor can detect the absolute angle as two rotations of the steering shaft as one cycle.
  • the estimated wheel speed and self-lining torque (SAT) The rudder angle estimation accuracy using wheel information such as is good enough to discriminate the turning direction.
  • the conventional steering angle sensor having one rotation cycle cannot calculate the absolute steering angle without estimating the steering angle based on the vehicle information or continuing the operation when not in use.
  • the absolute steering angle can be calculated immediately without the need for the steering angle estimation.
  • the output timing of the absolute steering angle can be made earlier than in the case of only the steering angle estimation, and both the steering angle accuracy and the output timing of the absolute steering angle can be achieved at low cost. Wear. Brief Description of Drawings
  • FIG. 1 is a steering system diagram of a vehicle provided with a conventional steering angle sensor.
  • FIG. 2 is a sectional view of a main part of the electric power steering device according to the present invention.
  • FIG. 3 is a sectional view of a main part of the speed reduction mechanism.
  • FIG. 4 is a sectional view of a main part of the steering angle sensor.
  • FIG. 5 is a graph showing signal changes of two GMR bridge circuits.
  • FIG. 6 is a graph showing a change in arctan0 obtained from the signal of FIG.
  • FIG. 7 is a diagram showing a schematic configuration of a steering angle calculation system.
  • FIG. 8 is a flowchart showing an algorithm of the steering angle calculation.
  • 'FIG. 9 is a diagram showing the assignment rules of signal data.
  • FIG. 10 is a graph showing the relationship between the sensor output value and the rotation angle of the steering shaft.
  • Fig. 11 shows the sensor output e. It is a graph which shows the relationship between ut and the actual steering angle.
  • Fig. 12 shows the sensor output 0 in the lock-to-lock range. This is a graph showing the relationship between ut and the actual steering angle. Explanation of reference numerals
  • FIG. 2 shows a schematic configuration of a general steering system, which is supported by a bearing 2 and is rotatable based on operation of a steering wheel.
  • An input shaft 4 and a substantially cylindrical output shaft 5 are connected to a base end side (left side in FIG. 2) of the steering shaft 1 through a torsion par 3 at the base end.
  • the torsion par 3 is inserted into the output shaft 5, one end thereof is press-fitted and fixed to the input shaft 4, and the other end is fixed to the output shaft 5 by a force S pin 6.
  • a reduction mechanism 7 is supported on the outer periphery of the output shaft 5 by a pair of bearings 8 and 9, and a torque sensor 10 is disposed on a tip side (the right side in FIG. 2) of the reduction mechanism 7.
  • the torque sensor 10 includes a torsion bar 3 and an outer periphery of a spline groove 11 formed at the end of the output shaft 5.
  • an electromagnetic yoke 13 accommodating the coil windings 12,
  • a magnetic change is detected by the coil winding 12 in the electromagnetic yoke 13 by generating a simulation of the torsion par 3 according to the steering torque generated at the time.
  • the speed reduction mechanism 7 includes a worm wheel 14 fixedly mounted on the outer periphery of the output shaft 5 by press fitting, a worm 15 mating with the worm wheel 14, and the worm 15 connected to the drive shaft 1. 6, the rotation of the motor is reduced through the worm 15 and the worm wheel 14, and the auxiliary torque is transmitted to the output shaft 5.
  • a substantially annular groove 17 is formed on the side surface of the worm wheel 14, and a gear 18 is formed on the inner periphery of the groove 17 as shown in FIG.
  • the sensor rod 20 of the steering angle sensor 19 is combined with the sensor pinion 21 at the leading end.
  • a sensor wheel 23 is provided in the steering angle sensor 19 so as to engage with a sensor worm 22 formed on the base end side (the left side in FIG. 4) of the sensor rod 20.
  • the rotation of the steering shaft 1 is transmitted from the worm wheel 14 to the sensor wheel 23 via the sensor pinion 21 and the sensor rod 20.
  • the sensor wheel 23 is provided with a magnetized part 26 composed of an N-pole magnet 24 and an S-pole magnet 25, and the magnets 24, 25 synchronize with the rotation of the steering shaft 1. While rotating at a constant cycle. In this case, the gear ratio is set such that the sensor coil 23 makes a half turn with respect to one rotation of the worm wheel 14.
  • a magnetic resistance element portion (hereinafter, GMR bridge circuit portion) 27 for detecting a magnetic field change from the magnetized portion 26 is arranged. Is fixed to a part of the case of the steering angle sensor 19.
  • the GMR bridge circuit section 27 includes a pair of first and second magnetoresistive elements (hereinafter, GMR bridge circuits) 27 a and 27 b. However, the phase is shifted by 90 ° according to the angle of the sensor wheel 23. That is, assuming that the waveform output from the first GMR bridge circuit 27a is sin0 and the waveform output from the second GMR bridge circuit 27b is cos0, the waveforms of sin0 and cos0 with respect to the steering angle of the steering shaft 1 Is as shown in FIG. 5, and the calculation of FIG. 8 where ⁇ is performed later gives a change in arct an 0 as shown in FIG.
  • the first and second GMR bridge circuits 27a and 27b are connected in series, respectively, and are arranged in a direct manner to operate as a three-terminal circuit element.
  • the resistance value of the element changes according to a change in magnetic field strength.
  • the rotation angle of the rotating body that is, the rotation of the sensor wheel 23 is detected by using this. That is, since the first and second GMR bridge circuits 27a and 27b are arranged orthogonally to each other, the output signals of the first and second GMR bridge circuits 27a and 27b are as shown in FIG. The phases are shifted from each other by 90 °.
  • FIG. 7 shows a schematic configuration diagram of a steering angle calculation system.
  • the integrated circuit (AS IC) 28 executes the calculation of arct an 0, and As shown in FIG. 9, the signal is converted into an output signal according to a predetermined assignment rule, and is serially output to a controller 29 of the steering assist device.
  • the controller 29 includes an absolute angle calculating means 30, a turning direction discriminating means 31 for discriminating a turning direction of the steering wheel based on vehicle information such as a wheel speed and an estimated SAT value, and a rotation of the steering shaft 1.
  • a midpoint specific value detecting means 32 for storing a position having an angle of 0 °, that is, a midpoint position, and detecting a characteristic value near the midpoint is provided.
  • the assignment rule in FIG. 9 shows the correspondence between the output value of the sensor and the rotation angle of the steering shaft 1.
  • the output signal is a start-stop synchronous type in the form of a serial connection, and the output value of the sensor and the rotation angle of the steering shaft 1 are displayed in three words.
  • the output signal Is used by combining multiple words consisting of a header (1 bit) and data (7 bits).
  • the output signal is composed of 3 words, the output value of the sensor is displayed in 2 bits, and 16834 kinds of data are output in 14 pits. One word is used for horizontal parity check, and the same data is output for all three words during failure.
  • step S1 the magnitudes of fs (sine wave detected by the first GMR bridge circuit 27a with respect to the steering angle) and ⁇ c (cosine wave detected by the second GMR bridge circuit 27b with respect to the steering angle) are determined. Are compared in absolute value, and if the absolute value of fc is larger than the absolute value of fs, the process proceeds to step S2.
  • step S2 an arct an value (k) with respect to the fs / fc value is obtained.
  • the relationship between the output value of the sensor and the rotation angle of the steering shaft 1 is obtained. Therefore, when the steering angle is detected by the change in the magnetic field of the magnetized part 26 and the change in the resistance value of the first and second GMR bridge circuits 27a and 27b, the absolute steering angle can be obtained.
  • the turning direction discriminating means 31 and the midpoint specific value detecting means 32 harm the absolute steering angle.
  • the turning direction of the steering wheel is determined based on the SAT estimated value derived from signals such as the rotational angular velocity of the motor and the assist force, using the inertia and static friction of the motor as constants.
  • the position of the midpoint (rotation angle 0 °) of the steering shaft 1 is stored, and a characteristic value near the midpoint is detected to determine the absolute steering angle. It does not become constant when assembling the steering shaft 1, etc. Therefore, at a position where the steering wheel rotational angle force is SO °, the output value from the sensor 0 is detected and this value is set to the midpoint. Set Te.
  • the sensor output value is 0. If ut , the absolute steering angle 0 is 0. ut — 0. In addition, if the number n of switching from the maximum value to the minimum value of the sensor output can be counted, it can be calculated by Expression 1.
  • This n is determined by estimating a certain steering angle from the wheel speed or SAT estimated value for the first time after starting, and then counting the switching from the maximum value to the minimum value of the sensor output. Therefore, the absolute steering angle can be calculated based on Equation 1 above.
  • the actual steering wheel rotation angle is lock-to-lock, which is smaller than ⁇ 720 °. Therefore, the output of the steering angle sensor in the vehicle is less than two cycles, and as shown in Fig. 11, the same value is output in only two places at most, and it is separated by 720 °. It is a place where Therefore, the estimation of the steering angle based on the wheel speed or the SAT estimation value only needs to be performed with an accuracy of 720 °. That is, it is sufficient to be able to determine the turning direction.
  • the lock to lock range in actual steering of the steering wheel is smaller than ⁇ 720 °, and is usually about 1.5 rotations (540 °). Therefore, as shown in FIG. 12, when the range of the lock t0 lock is, for example, ⁇ 600 °, the specific value is represented by the range indicated by L in FIG. It becomes a characteristic value near the point. Therefore, the characteristic value near the middle point can specify n in the above equation 1 without detecting the vehicle information and estimating the turning direction. Therefore, the absolute steering angle of the steering shaft 1 can be quickly detected without the necessity of counting. Thereafter, the absolute IS angle can be repeatedly calculated by the calculation shown in FIG. Industrial applicability
  • the steering angle sensor according to the present invention is suitable for use as a means for detecting a steering angle in a steering device, and is particularly useful when it is desired to quickly detect an absolute steering angle at low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

電動モータの駆動によって減速機構を介して操舵補助が行われるステアリング系の回転角を検出することによって、ステアリングホイールの舵角を演算するようにした舵角センサであって、ステアリングシャフトの回転に連動して作動するセンサホイールと、該センサホイールからの舵角信号に基づいて絶対舵角を演算する絶対角演算手段とを備えるとともに、センサホイールに、GMR素子と、該GMR素子の回りに配された着磁部とを備え、着磁部の回転に伴って磁場方向を変化させることによって得られるGMR素子の抵抗値の変化に基づいて、ステアリングシャフト2回転を1周期として回転角を検出するようにした。

Description

舵角センサ 技術分野
本発明は、 ステアリング装置におけ明るステァリングホイールの操舵角を検出するための 舵角センサの改良に関する。 田 背景技術
この種の舵角センサとして、 例えば日本国特開平 8— 2 9 1 5 8号公報に開示され、 第 1図に車両の操舵システム図を示す。 同図において、 舵角センサ 1 0 1は、 ステアリングハ ンドル 1 0 2と 1対 1の回転比率で連動するようになっていて、 舵角センサ 1 0 1の出力信 号は、 車輪速を検出する車輪速センサ 1 0 3からの信号、 ョーレートを検出するョ一レート センサ 1 0 4からの信号、 転舵比を検出する転舵比センサ 1 0 5からの信号、 ィグニッショ ン ( I G. ) スィッチ 1 0 6からの信号などとともにコントロールユニット 1 0 7に接続さ れる。 舵角センサ 1 0 1の出力信号がカバーする舵角の範囲は、 少なくとも中立位置を含む 所定範囲内の中立ゾーン、 該中立ゾーンにそれぞれ隣接した右ゾーンおよび左ゾーンの舵角 センサ 1 0 1の出力信号がそれぞれ同一値を示す 3つのゾーンに分けられ、 現在の舵角がこ れらのゾーンのうち、 いずれのゾーンに位置しているかを、 左右の車輪速差と、 ョ一レート と、 車速とに基づいて判定するようになっている。
なお、 コントロールュニット 1 0 7は、 各センサからの信号に基づいてハンドル舵角を 設定するとともに、 車輪 1 0 8の転舵比を制御する転舵比可変機構 1 0 9の作動を制御する ことにより、 伝達シャフト 1 10を介して前輪転舵機構 1 1 1に連動連結されている後輪転 舵機構 112が、 後輪舵角を制御するようになっている。
しかし、 上記日本国特開平 8— 29158号公報に開示される操舵システムでは、 ステ ァリングホイ一ル回転角度を検出するのに、 舵角以外の'清報、 すなわち車輪速差、 ョーレー ト、 車速の情報が必要であるため、 これらの情報に誤差や異常があると、 上記ゾーンの判定 を正確に行うことができず、 また、 これらの情報の初期化終了後でなければ、 ゾーンを判定 することができないという問題があつた。
そこで、 本発明の目的は、 GMR素子 (G i an t Magne t i c Re s i s t an c e) と、 GMR素子の回りに配された着磁部とを備えたセンサホイールの回転周期を 改良して、 GMR素子による舵角の検出範囲を拡大することにより、 車両情報を用いた舵角 推定精度が低精度で済み、 低コストで、 かつ速やかに絶対舵角を検出することができる舵角 センサを提供することにある。 発明の開示
本発明の上記目的は、 電動モータの駆動によつて減速機構を介して操舵補助が行われる ステアリング系の回転角を検出することによって、 ステアリングホイールの舵角を演算する ようにした舵角センサであって、 ステアリングシャフトの回転に連動して作動するセンサホ ィールと、 該センサホイ一ルからの舵角信号に基づいて絶対舵角を演算する絶対角演算手段 とを備えるとともに、 前記センサホイールに、 GMR素子と、 該 GMR素子の回りに配され た着磁部とを備え、 前記着磁部の回転に伴って磁場方向を変化させることによって得られる 前記 GMR素子の抵抗値の変化に基づいて、 前記ステアリングシャフト 2回転を 1周期とし て回転角を検出するようにしたことにより、 達成される。 また、 上記目的は、 前記 GM R素子が、 2つの GM Rブリッジ回路を構成し、 該各 GM Rブリッジ回路からの出力信号が互いに 9 0 ° 位相をずらすように配されたことにより、 効 果的に達成される。
また、 上記目的は、 前記ステアリングシャフトの旋回方向を判別する旋回方向判別手段 と、 前記ステアリングシャフトの中点の位置を記憶し、 該中^;付近の所定値を検出した後、 該所定値に基づいて舵角全域での絶対舵角を演算するようにした中点特有値検出手段とを備 えることにより、 効果的に達成される。
さらに、 上記目的は、 前記旋回方向判別手段は、 前記舵角を少なくとも 7 2 0 ° の精度 で判別することができることにより、 効果的に達成される。
以上のように、 本発明に係る舵角センサによると、 ステアリングシャフトの舵角を検出 する場合、 舵角センサ内に配され、 センサホイールの着磁部?^ら角度を検知するための GM R素子からなる 2つの GMRブリッジ回路を、 互いに位相が 9 0 ° ずれるように配し、 該 G MRブリッジ回路の出力信号に基づいて演算するようにした。 このセンサにおいて、 センサ ホイ一ルとステアリングシャフト間の減速比を調整することにより、 ステアリングシャフト 2回転を 1周期として絶対角を検出でき、 その結果、 車輪速やセルファライニングトルク ( S AT) 推定値などの車輪情報を利用した舵角推定精度は、 旋回方向を判別できる程度で良 い。
また、 従来の 1回転周期の舵角センサでは、 車両情報に基づく舵角推定、 あるいは未使 用時の動作継続なしでは絶対舵角を演算することはできなかつたが、 本発明の舵角センサで は、 舵角が中点付近の特有値を検出すれば、 舵角推定を必要とせずに即時に絶対舵角を演算 することができる。 その結果、 舵角推定のみの場合に比べ、 絶対舵角の出力タイミングを早 くすることができ、 低コス卜で舵角精度と絶対舵角の出力タイミングを両立させることがで きる。 図面の簡単な説明
第 1図は、 従来の舵角センサを備えた車両の操舵システム図である。
第 2図は、 本発明に係る電動パワーステアリング装置の要部断面図である。
第 3図は、 減速機構の要部断面図である。
第 4図は、 舵角センサの要部断面図である。
第 5図は、 2つの GMRプリッジ回路の信号変化を示すグラフである。
第 6図は、 第 5図の信号から得られる a r c t a n 0の変化を示すグラフである。 第 7図は、 舵角演算システムの概略構成を示す図である。
第 8図は、 舵角演算のアルゴリズムを示すフローチャートである。 ' 第 9図は、 信号データの割付規則を示す図である。
第 1 0図は、 センサ出力値とステアリングシャフトの回転角との関係を示すグラフであ る。
第 1 1図は、 センサ出力 e。u tと実舵角との関係を示すグラフである。
第 1 2図は、 ロック t oロック範囲でのセンサ出力 0。u tと実舵角との関係を示すグラ フである。 符号の説明
7 減速機構
1 9 舵角センサ 2 3 センサホイ一ル
2 4 痛磁石
2 5 S極磁石
2 6 着磁部
2 7 GMRブリッジ
2 7 a 第 1磁気抵抗素子 (第 1 G M Rブリツジ回路)
2 7 b 第 2磁気抵抗素子 (第 2 GMRプリッジ回路)
3 0 絶対角演算手段
3 1 旋回方向判別手段
3 2 中点特有値検出手段 発明を実施するための最良の形態
以下、 本発明の実施形態を図面に基づいて詳細に説明する <
第 2図は、 一般的なステアリング系の概略構成を示し、 は、 軸 受 2によって支持されており、 ステアリングホイールの操作に基づいて回転自在になってい る。 このステアリングシャフト 1の基端側 (第 2図左側) に tま、 ト一シヨンパー 3を介して 入力軸 4と略円筒状の出力軸 5が連結されている。 このト一シヨンパー 3は、 出力軸 5内に 挿通されていて、 その一端が入力軸 4に圧入固定され、 他端力 Sピン 6によって出力軸 5に固 定されている。
また、 出力軸 5の外周には、 減速機構 7がー対の軸受 8, 9で支持されるとともに、 該 減速機構 7の先端側 (第 2図右側) には、 トルクセンサ 1 0が配設されている。 このトルク センサ 1 0は、 トーションバー 3と、 出力軸 5の先端に形成されたスプライン溝 1 1の外周 に配設され、 コイル卷線 1 2を収納した電磁ヨーク 1 3とを備え、
に生じる操舵トルクに応じて、 トーシヨンパー 3の摸れを発生させることによって、 磁気的 な変化を電磁ヨーク 1 3内のコイル卷線 1 2で検出するようになっている。
さらに、 減速機構 7は、 出力軸 5の外周に、 圧入によって固定的に取り付けられたゥォ ームホイール 1 4と、 該ウォームホイール 1 4に嚙合するウォーム 1 5と、 該ウォーム 1 5 を駆動軸 1 6に取り付けたモータとからなり、 モータの回転をウォーム 1 5およびウォーム ホイール 1 4を介して減速して、 出力軸 5に補助トルクを伝達するようになっている。 この ウォームホイール 1 4の側面には、 略円環状の凹溝部 1 7が形成されていて、 該凹溝部 1 7 の内周には、 第 3図に示すように、 ギア 1 8が形成され、 舵角センサ 1 9のセンサ棒 2 0先 端のセンサピニオン 2 1と嚙合するようになつている。
そして、 舵角センサ 1 9内には、 第 4図に示すように、 センサ棒 2 0の基端側 (第 4図 左側) に形成されたセンサウォーム 2 2に嚙合するセンサホイール 2 3を備え、 ウォームホ ィール 1 4からセンサピニオン 2 1およびセンサ棒 2 0を介して、 ステアリングシャフト 1 の回転をセンサホイール 2 3に伝達するようになっている。 また、 センサホイール 2 3には 、 N極磁石 2 4と S極磁石 2 5とからなる着磁部 2 6が設けられ、 各磁石 2 4, 2 5がステ ァリングシャフト 1の回転と同期しつつ一定の周期で回転するようになっている。 この場合 、 ウォームホイール 1 4の 1回転に対して、 センサおィ一ル 2 3は、 半回転するようにギア 比が設定されている。
また、 センサホイール 2 3内には、 着磁部 2 6からの磁界変化を検出するための磁気抵 抗素子部 (以下、 GMRブリッジ回路部) 2 7が配され、 該 GMRブリッジ回路部 2 7は、 舵角センサ 1 9のケースの一部に固定されている。 この GMRブリッジ回路部 2 7には、一 対の第 1, 第 2磁気抵抗素子 (以下、 GMRブリッジ回路) 2 7 a , 2 7 bが配されていて 、 センサホイール 23の角度に応じて 90° 位相がずれるようになつている。 すなわち、 第 1 GMRブリッジ回路 27 aが出力する波形を s i n0とし、 第 2 GMRブリッジ回路 27 bが出力する波形を c o s 0とすると、 ステアリングシャフト 1の舵角に対する s i n 0お よび c o s 0の波形は、 第 5図に示すようになり、 後 ¾βする第 8図の演算で、 第 6図に示す ような a r c t an 0の変化が得られる。
また、 第 1, 第 2 GMRブリッジ回路 27 a, 27 bは、 それぞれ直列に接続され、 直 交に配されて 3端子回路素子として動作し、 磁界強度の変化に応じて素子の抵抗値が変わる のを利用して、 回転体、 すなわちセンサホイール 23の回転角度を検出するようになってい る。 すなわち、 第 1, 第 2GMRブリッジ回路 27 a, 27 bは、 互いに直交に配されてい るため、 各第 1, 第 2GMRブリッジ回路 27 a, 27 bの出力信号は、 第 5図に示すよう に、 互いに 90° 位相がずれるようになつている。
また、 第 7図は、 舵角演算システムの概略構成図を示す。 同図において、 舵角センサ 1 9内では、 GMRブリッジ 27からの s ΐ η θ, c o s Θ信号に基づいて、 集積回路 (AS I C) 28で a r c t an 0の演算を実行し、 その結果を第 9図に示すように所定の割付規 則に従って出力信号に変換し、 操舵補助装置の制御器 2 9にシリアル出力するようになって いる。 この制御器 29内には、 絶対角演算手段 30と、 車輪速や SAT推定値等の車両情報 に基づいてステアリングホイールの旋回方向を判別する旋回方向判別手段 3 1と、 ステアリ ングシャフト 1の回転角が 0° である位置、 すなわち中点位置を記憶し、 この中点付近の特 有値を検出する中点特有値検出手段 32が配されている。
ここで、 第 9図の割付規則には、 センサの出力値とステアリングシャフト 1の回転角度 との対応関係が示される。 また、 出力信号は、 シリアノレ形態の調歩同期式で、 3ワードによ つて、 センサの出力値、 ステアリングシャフト 1の回転角度が表示される。 また、 出力信号 には、 ヘッダー (1ビット) とデータ (7ビッ ト) からなるワードを複数組み合せて使用さ れる。 この場合、 出力信号は、 3ワードからなり、 センサの出力値は 2ヮ一ドで表示され、 14ピットで 16834通りのデータを出力するようになっている。 なお、 1ワードは水平 パリティチェック用として用いられ、 フエ一レ時には、 3ワードとも同じデータが出力され る。
次に、 絶対角演算手段 30における舵角演算アルゴリズムを、 第 8図に基づいて説明す る。
まず、 ステップ S 1において、 f s (舵角に対する第 1 GMRプリッジ回路 27 aで検 出された正弦波) と ί c (舵角に対する第 2 GMRプリッジ回路 27 bで検出された余弦波 ) の大小が絶対値で比較され、 f cの絶対値が f sの絶対値より大きい YESの場合、 ステ ップ S 2に進む。 ステップ S 2では、 f s/f c値に対する a r c t an値 (k) を求め、 ステップ S 3で f cが 0以上であるか否かが半 IJ定され、 f cが 0以上であれば、 ステップ S 4で kには、 そのままの値 (k = k) が設定され、 f cが 0より小さければ、 ステップ S 5 で kの値に 180°加算された値 (k = k+l 80) が設定される。
また、 ステップ S 1において、 f sの絶対値が f cの絶対値以上である NOの場合、 ス テツプ S 6で、 f cZf s値に対する a r c t an値 (k) を求め、 ステップ S 7で f sが 0以上であるか否かが判定され、 f sが 0以上であるか否かが判定され、 f sが 0以上であ れば、 ステップ S 8で kには、 90° から kを減じた値 (k = 90— k) が設定され、 f s が 0より小さければ、 ステップ S 9で kには、 270° から kを減じた値 (k = 270— k ) が設定される。
また、 ステップ S 10で、 ステップ S 4, S 5, S 8, S 9で設定された値 kが 0以上 であるか否かが判定され、 kが 0以上であれば'、 ステップ S 1 1で kには、 そのままの値 ( k = k) が設定され、 kが◦より小さければ、 ステップ S I 2で kには、 360° を加算し た値 (k = 360 + k) が設定される。
その結果、 第 10図に示すように、 センサの出力値とステアリングシャフト 1の回転角 との関係が得られる。 よって、 着磁部 26の磁界の変化によって、 第 1, 第 2GMRブリツ ジ回路 27 a, 27 bの抵抗値の変化によって舵角が検出されると、 その絶対舵角を得るこ とができる。
そして、 絶対角演算手段 30の結果に基づいて、 旋回方向判別手段 31と中点特有値検 出手段 32とで絶対舵角を害 (Jり出す。 この旋回方向判別手段 31は、 車輪速あるいはモータ の慣性ゃ静摩擦を定数としてモータの回転角速度やアシストカなどの信号から導かれる S A T推定値に基づいて、 ステアリングホイールの旋回方向を判別するようになっている。 また 、 中点特有値検出手段 32ま、 ステアリングシャフト 1の中点 (回転角 0° ) の位置を記憶 し、 その中点付近の特有値を検出して絶対舵角を割り出すようになつている。 すなわち、 中 点の位置は、 ステアリングシャフト 1などの組み付け時に一定にならない。 そのため、 ステ ァリングホイールの回転角力 SO ° にある位置で、 センサからの出力値 0。を検出して、 この 値を中点として設定する。
すなわち、 センサ出力値を 0。u tとすると、 絶対舵角 0は、 0。u t— 0。に、 センサ出力 の最大値から最小値の切り替わり回数 nをカウントできれば、 数式 1で算出することができ る。
(数 1)
0=n* 72 O +eou t-0o
この nは、 始動後初回は車輪速或いは S AT推定値からある程度の舵角を推定すること により割り出し、 その後はセンサ出力の最大値から最小値の切り替わりをカウントすること で割り出せるので、 上記数式 1に基づいて絶対舵角を算出することができる。 実際のステアリングホイールの回転角度はロック t oロックであり、 ± 7 2 0 ° よりも 狭い。 そのため、 車兩における舵角センサの出力は、 2周期分未満であり、 第 1 1図に示す ように、 同じ値を出力するのは、 多くて 2箇所のみで、 かつそれは 7 2 0 ° 離れた地点であ る。 よって、 車輪速或いは S AT推定値による舵角推定は、 7 2 0 ° の精度で判別できれば よい。 すなわち、 旋回方向を判別できれば十分である。
また、 実際のステアリングホイールの操舵におけるロック t oロック範囲は、 ± 7 2 0 ° よりは小さく、 通常、 1 . 5回転 (5 4 0 ° ) 程度である。 そのため、 第 1 2図に示すよ うに、 ロック t 0ロックの範囲が、 例えば、 ± 6 0 0 ° の場合には、 特有の値は、 同図にお いて、 Lで示される範囲が、 中点付近の特有値になる。 よって、 この中点付近の特有値は、 車両情報を検出して旋回方向を推定することなく、 上記数式 1の nを特定することができる そのため、 中点付近の特有値の範囲では、 切り替わり回数をカウントする必要がなく、 迅速にステアリングシャフト 1の絶対舵角を検出することができる。 そして、 以後は、 第 1 1図の演算で絶対 IS角を繰り返し算出することができる。 産業上の利用可能性
以上のように、 本発明に係る舵角センサは、 ステアリング装置における操舵角を検出す る手段として用いるのに適しており、 特に低コストで速やかに絶対舵角を検出したい場合に 有用である。

Claims

求 の 範 囲 電動モータの駆動によつて減速機構を介して操舵補助が行われるステアリング 系の回転角を検出することによって、 ステアリングホイールの舵角を演算す ¾よう にした舵角センサであって、
ステアリングシャフトの回転に連動して作動するセンサホイールと、 該センサホイールからの舵角信号に基づいて絶対舵角を演算する絶対角演算手 段と
を備えるとともに、
前記センサホイールに、
G M R素子と、
該 GM R素子の回りに配された着磁部と
を備え、
前記着磁部の回転に伴って磁場方向を変化させることによって得られる前記 G M R素子の抵抗値の変化に基づいて、 前記ステアリングシャフト 2回転を 1周期と して回転角を検出するようにしたことを特徴とする舵角センサ。 前記 G M R素子は、 2つの GM Rブリッジ回路を構成し、 該各 G M Rブリッジ 回路からの出力信号が互いに 9 0 ° 位相をずらすように配された請求項 1記載の舵 角センサ。 前記ステアリングシャフトの旋回方向を判別する旋回方向判別手段と、 前記ステアリングシャフトの中点の位置を記憶し、 該中点付近の所定値を検出 した後、 該所定値に基づいて舵角全域での絶対舵角を演算するようにした中点 特有値検出手段と
を備える請求項 1記載の舵角センサ。 - 前記旋回方向判別手段は、 前記舵角を少なくとも 7 2 0 ° の精度で判別するこ とができる請求項 3記載の舵角センサ。
PCT/JP2004/013709 2003-09-17 2004-09-14 舵角センサ WO2005028993A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/572,504 US7472004B2 (en) 2003-09-17 2004-09-14 Steering angle sensor
EP04773328A EP1666837A1 (en) 2003-09-17 2004-09-14 Steering angle sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003324479A JP2005091137A (ja) 2003-09-17 2003-09-17 舵角センサ
JP2003-324479 2003-09-17

Publications (1)

Publication Number Publication Date
WO2005028993A1 true WO2005028993A1 (ja) 2005-03-31

Family

ID=34372743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013709 WO2005028993A1 (ja) 2003-09-17 2004-09-14 舵角センサ

Country Status (5)

Country Link
US (1) US7472004B2 (ja)
EP (1) EP1666837A1 (ja)
JP (1) JP2005091137A (ja)
KR (1) KR20060073960A (ja)
WO (1) WO2005028993A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9529060B2 (en) 2014-01-09 2016-12-27 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US9812637B2 (en) 2015-06-05 2017-11-07 Allegro Microsystems, Llc Spin valve magnetoresistance element with improved response to magnetic fields
US10620279B2 (en) 2017-05-19 2020-04-14 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11022661B2 (en) 2017-05-19 2021-06-01 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11719771B1 (en) 2022-06-02 2023-08-08 Allegro Microsystems, Llc Magnetoresistive sensor having seed layer hysteresis suppression

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091137A (ja) * 2003-09-17 2005-04-07 Nsk Ltd 舵角センサ
FR2896070B1 (fr) * 2006-01-11 2008-02-15 Commissariat Energie Atomique Systeme magnetique de controle de trafic
JP4957071B2 (ja) * 2006-05-08 2012-06-20 日本精工株式会社 電動パワーステアリング装置の制御装置
KR20090073057A (ko) * 2006-05-24 2009-07-02 티티 일렉트로닉스 테크놀러지 리미티드 다수턴 회전 센서
EP1923299B1 (en) 2006-11-20 2010-09-01 NSK Ltd. Absolute steering angle detecting device
JP5092510B2 (ja) * 2006-11-20 2012-12-05 日本精工株式会社 絶対舵角検出装置
US8938334B2 (en) 2007-08-10 2015-01-20 Nsk Ltd. Vehicular steering angle estimating apparatus and electric power steering apparatus mounted therewith
US8024956B2 (en) * 2008-09-02 2011-09-27 Infineon Technologies Ag Angle measurement system
JP5171487B2 (ja) * 2008-09-02 2013-03-27 本田技研工業株式会社 ステアリング装置
US8058866B2 (en) 2008-09-08 2011-11-15 Infineon Technologies Ag Off-center angle measurement system
US9606194B2 (en) 2008-09-08 2017-03-28 Infineon Technologies Ag Off-center angle measurement system
US20100181943A1 (en) * 2009-01-22 2010-07-22 Phan Charlie D Sensor-model synchronized action system
DE102010029332A1 (de) * 2010-05-27 2011-12-01 Robert Bosch Gmbh Elektromotor, Lenkvorrichtung und Verfahren
US8825295B2 (en) * 2010-08-16 2014-09-02 Honda Motor Co., Ltd. System and method for determining a steering angle for a vehicle and system and method for controlling a vehicle based on same
CN102506908A (zh) * 2011-11-10 2012-06-20 南京英狮澳车业有限公司 电动自行车助力传感器
US20150158525A1 (en) * 2013-12-11 2015-06-11 GM Global Technology Operations LLC Methods and systems for aligning a steering system of a vehicle
JP6477933B2 (ja) * 2017-04-25 2019-03-06 日本精工株式会社 回転角度検出装置及び回転角度検出方法
US11614341B2 (en) 2018-06-14 2023-03-28 Analog Devices International Unlimited Company Methods and devices for using multi-turn magnetic sensors with extended magnetic windows
KR20200046792A (ko) * 2018-10-25 2020-05-07 현대자동차주식회사 Mdps 제어 방법
CN110254504B (zh) * 2019-05-17 2022-05-27 株洲易力达机电有限公司 电动助力转向系统及eps角度传感器扩量程方法
CN110053663A (zh) * 2019-05-27 2019-07-26 徐工集团工程机械股份有限公司科技分公司 一种转向助力系统及转向助力方法
JP7259574B2 (ja) * 2019-06-17 2023-04-18 株式会社ジェイテクト 制御装置、および転舵装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130216A (ja) * 1990-09-21 1992-05-01 Murata Mfg Co Ltd 2相磁気式角度センサ
JP2001004313A (ja) * 1999-06-16 2001-01-12 Calsonic Kansei Corp 操舵角検出装置
JP2001133211A (ja) * 1999-11-04 2001-05-18 Koyo Seiko Co Ltd 回転角度検出装置、トルクセンサ及び舵取装置
JP2002303536A (ja) * 2001-04-03 2002-10-18 Alps Electric Co Ltd 回転角検出センサ
JP2002365043A (ja) * 2001-06-06 2002-12-18 Koyo Seiko Co Ltd 回転角度検出装置、トルク検出装置及び舵取装置
JP2003240598A (ja) * 2002-02-13 2003-08-27 Asahi Kasei Corp デジタル角度測定システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3470402B2 (ja) 1994-07-15 2003-11-25 マツダ株式会社 車両の転舵角検出装置
US6191579B1 (en) * 1998-12-01 2001-02-20 Visteon Global Technologies, Inc. Rotary position sensor with redundant sensing
US6326780B1 (en) * 1998-12-01 2001-12-04 Visteon Global Technologies, Inc. Magnetic field concentrator array for rotary position sensors
DE10128135A1 (de) * 2001-06-09 2002-12-19 Bosch Gmbh Robert Magnetoresistive Schichtanordnung und Gradiometer mit einer derartigen Schichtanordnung
DE10223358A1 (de) * 2002-05-25 2003-12-04 Bosch Gmbh Robert Verfahren und Anordnung zur Erfassung der Bewegung eines Elements
JP2004239670A (ja) * 2003-02-04 2004-08-26 Tokai Rika Co Ltd 回転角度検出装置
JP2005091137A (ja) * 2003-09-17 2005-04-07 Nsk Ltd 舵角センサ
DE102004029815A1 (de) * 2004-06-19 2006-01-05 Robert Bosch Gmbh Verfahren und Anordnung zur Korrektur eines winkel- und/oder abstandsmessenden Sensorsystems
DE102005024879B4 (de) * 2005-05-31 2018-12-06 Infineon Technologies Ag Verfahren zum Bestimmen von Restfehler-Kompensationsparametern für einen magnetoresistiven Winkelsensor und Verfahren zum Verringern eines Restwinkelfehlers bei einem magnetoresistiven Winkelsensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130216A (ja) * 1990-09-21 1992-05-01 Murata Mfg Co Ltd 2相磁気式角度センサ
JP2001004313A (ja) * 1999-06-16 2001-01-12 Calsonic Kansei Corp 操舵角検出装置
JP2001133211A (ja) * 1999-11-04 2001-05-18 Koyo Seiko Co Ltd 回転角度検出装置、トルクセンサ及び舵取装置
JP2002303536A (ja) * 2001-04-03 2002-10-18 Alps Electric Co Ltd 回転角検出センサ
JP2002365043A (ja) * 2001-06-06 2002-12-18 Koyo Seiko Co Ltd 回転角度検出装置、トルク検出装置及び舵取装置
JP2003240598A (ja) * 2002-02-13 2003-08-27 Asahi Kasei Corp デジタル角度測定システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9529060B2 (en) 2014-01-09 2016-12-27 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US9804234B2 (en) 2014-01-09 2017-10-31 Allegro Microsystems, Llc Magnetoresistance element with an improved seed layer to promote an improved response to magnetic fields
US9922673B2 (en) 2014-01-09 2018-03-20 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US10347277B2 (en) 2014-01-09 2019-07-09 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US9812637B2 (en) 2015-06-05 2017-11-07 Allegro Microsystems, Llc Spin valve magnetoresistance element with improved response to magnetic fields
US10620279B2 (en) 2017-05-19 2020-04-14 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11002807B2 (en) 2017-05-19 2021-05-11 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11022661B2 (en) 2017-05-19 2021-06-01 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US11719771B1 (en) 2022-06-02 2023-08-08 Allegro Microsystems, Llc Magnetoresistive sensor having seed layer hysteresis suppression

Also Published As

Publication number Publication date
US7472004B2 (en) 2008-12-30
JP2005091137A (ja) 2005-04-07
EP1666837A1 (en) 2006-06-07
KR20060073960A (ko) 2006-06-29
US20070055426A1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
WO2005028993A1 (ja) 舵角センサ
US6901816B2 (en) Apparatus and method for detecting absolute position using difference between detection signals of two detectors
US6691820B2 (en) Torque detecting apparatus and electric power steering apparatus
EP3423333B1 (en) Ripple minimization by proper as/ts magnet arrangement in electric power assisted steering apparatus
US7325646B2 (en) Electric power steering apparatus
JP2013511710A (ja) 操向トルク及び操向角測定装置並びにこれを備えた車両用操向装置
EP2369317A1 (en) Torque detector and electric power steering system
EP1550839A1 (en) Absolute steering angle detection device and absolute steering angle detection method for electric power steering device
US7087889B2 (en) Rotational angle detecting apparatus and torque detecting apparatus
JP2613449B2 (ja) 相対変位検出装置
JP4281595B2 (ja) 角度検出装置
JP2005306154A (ja) 電動パワーステアリング装置
CN113167597A (zh) 用于车辆转向的能够测量扭矩和多圈绝对转向盘角度的检测系统
JP2007333657A (ja) 操舵角検出装置
JP2002340618A (ja) 回転角度検出装置
JP5950459B2 (ja) パワーステアリング装置
JP2008203199A (ja) 回転角検出装置
JP2008203200A (ja) 回転角検出装置
WO2022102350A1 (ja) 回転角度検出装置
JP2001201313A (ja) 回転角度検出装置、トルク検出装置及び舵取装置
JPH1137865A (ja) トルクセンサ
JP2002365043A (ja) 回転角度検出装置、トルク検出装置及び舵取装置
JP2001133211A (ja) 回転角度検出装置、トルクセンサ及び舵取装置
JP2000356559A (ja) トルク検出装置
JP2005049165A (ja) ステアリング装置のトルク検出装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004773328

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007055426

Country of ref document: US

Ref document number: 10572504

Country of ref document: US

Ref document number: 1020067005425

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004773328

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067005425

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10572504

Country of ref document: US