WO2005028143A1 - Continuous casting mold and method of continuous casting for copper alloy - Google Patents

Continuous casting mold and method of continuous casting for copper alloy Download PDF

Info

Publication number
WO2005028143A1
WO2005028143A1 PCT/JP2004/013756 JP2004013756W WO2005028143A1 WO 2005028143 A1 WO2005028143 A1 WO 2005028143A1 JP 2004013756 W JP2004013756 W JP 2004013756W WO 2005028143 A1 WO2005028143 A1 WO 2005028143A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
mold
metal
piece
self
Prior art date
Application number
PCT/JP2004/013756
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Maehara
Mitsuharu Yonemura
Keiji Nakajima
Naotsugu Yoshida
Masahiro Aoki
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to EP04787939A priority Critical patent/EP1688198A4/en
Priority to JP2005514086A priority patent/JP4333881B2/en
Publication of WO2005028143A1 publication Critical patent/WO2005028143A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/143Plants for continuous casting for horizontal casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/004Copper alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent

Definitions

  • the present invention relates to a continuous manufacturing method and a continuous manufacturing method for a Cu alloy.
  • the present invention relates to a ⁇ type used in a direct connection type continuous forming machine in which a holding furnace is directly connected to a ⁇ type, and a continuous manufacturing method of a Cu alloy using the ⁇ type.
  • the IT boom has been used in electrical and electronic components such as lead frames, terminals, connectors, springs, and contact elements in the movement of electrical equipment for mobile phones, personal computers, and automobiles.
  • the performance of Cu alloys is becoming increasingly important. Typical required characteristics are firstly high strength for light weight dangling, and secondly, high conductivity dangling for suppressing an increase in electric resistance due to a decrease in cross-sectional area due to light weight dangling. .
  • improvement of workability such as bending work accompanying downsizing of parts, improvement of heat resistance to withstand use even in relatively harsh environments, and improvement of fatigue resistance. Has become.
  • Such a high-strength and highly-conductive material is used in an environment such as an ammunition warehouse or a coal mine where excellent spark generation resistance is required in addition to the performance required for conventional tools such as wear resistance. It can also be applied to safety tool materials used below.
  • a material for example, there is an example of a Cu alloy in Patent Document 1.
  • the first method is a direct connection type continuous structure (a horizontal type, a vertical type, or the like) using a graphite mold directly connected to a holding furnace.
  • a graphite material having a self-lubricating property and a high thermal conductivity and a bulk density of 1.7 to 1.9 is generally used as a ⁇ -type material.
  • This method achieves a high V ⁇ cooling rate in the cooling process after solidification, and has a small thickness that reaches the final product without going through the subsequent solution treatment and hot working! Suitable for getting pieces! /
  • Cu is supplied through a nozzle immersed in a molten metal pool described in Patent Document 1. It is a non-direct connection type continuous structure (a vertical type, a curved type, a vertical curved type, etc.) that pours into a mold made of a metal material or an alloy material typified by a Cu alloy.
  • the nozzle thickness is limited to a relatively large one of about 100 mm or more because the nozzle is immersed in the molten metal pool in the mold. Since this method has a low cooling rate in the cooling process after solidification, a hot process such as solution treatment or hot working is indispensable until a final product is obtained.
  • an appropriate method is selected according to the required alloy composition, the piece cross-sectional shape, the cooling rate, and the like.
  • the former direct connection type
  • a large cross section size piece is used.
  • non-coupling type is often used when Cu alloy is required or when the Cu alloy contains an element that is highly reactive with C in the Dalaphite material.
  • Patent Document 1 JP-A-61-250134
  • a first object of the present invention is to provide a continuous forming mold suitable for a direct-coupled continuous forming of a Cu alloy containing an alloy element that easily reacts with C such as Zr, Ti, and Cr.
  • a second object of the present invention is to provide a continuous method for producing a Cu alloy using the mold. It should be noted that the continuous structure in the present invention has a great effect also on the continuous structure of a material other than the Cu alloy, particularly a non-ferrous metal material.
  • New aiming for higher strength and higher conductivity! / ⁇ Cu alloys contain elements that react easily with C, such as Zr, Ti, and Cr. In addition, a high cooling rate is required in the cooling process after solidification to achieve good properties. However, it was found that these alloys had the following problems caused by the reaction between C in the graphite material, which is a ⁇ -type material, and the above elements.
  • the present invention has been made to solve these problems and suppresses seizure of an initially formed solidified shell to a mold, and is sufficiently high in a cooling process after solidification!
  • the present invention relates to a continuous production mold capable of obtaining a cooling rate and a continuous production method using the same, and the invention of the following continuous production mold (1)-(5) and the continuous production method (6) — The invention of (14).
  • These inventions may be collectively referred to as the present invention.
  • a glassy carbon material, a metal-based self-lubricating composite material, or a graphite material having a bulk density of more than 1.92 is used for at least the ⁇ -shaped portion facing the solidification start position of the molten Cu alloy.
  • the continuous production type for Cu alloy is used for at least the ⁇ -shaped portion facing the solidification start position of the molten Cu alloy.
  • At least one of a graphite member a single member selected from a graphite material member, a ceramic material member, and a metal material member, or a combination of two or more members.
  • a continuous production mold for Cu alloys characterized in that the internal wall of the copper mold facing the solidification start position of the molten Cu alloy is coated with a self-lubricating material or a metal-based self-lubricating composite material.
  • a self-lubricating material member or a metal-based self-lubricating composite material member is used as an inner wall member of at least a shape corresponding to at least the solidification start position of the molten Cu alloy. , Continuous fabrication type for Cu alloy.
  • Continuous fabrication type for Cu alloy
  • a continuous manufacturing method for a Cu alloy comprising applying vibration having a component to a mold.
  • the cycle number is at least two orders of magnitude greater than the number of intermittent drawing cycles of the piece, and is perpendicular to the drawing direction.
  • a continuous production method of Cu alloy comprising: applying vibration having a component to a mold; and continuously supplying a lubricant or an anti-seizure agent between an inner wall of the mold and the piece.
  • the number of cycles is at least two orders of magnitude larger than the number of intermittent drawing cycles of the piece and is perpendicular to the drawing direction.
  • (6) The method for continuous production of a Cu alloy according to the above (6), wherein vibration having various components is applied to the mold.
  • Cu alloy force Further, in mass%, at least one of the following first group forces up to the third group: (12) The continuous production method for a Cu alloy according to the above (12), wherein one or more selected alloy components are contained in a total amount of 0.001 to 5% by mass.
  • Group 1 One or more selected from among P, B, Sb, Bi, Pb, Cd, S and As 0.001-1% by mass in total
  • Group 2 One, two or more selected from Sn, Ag, Zn, Ni, Au, Pd, Fe, W, In, and Ge 0.01-5% by mass in total
  • Group 3 One or two selected from Te, Se, Sr, Tl, Rb, Cs, Ba, Re, Os, Rh, Po, Ga, Tc, Ru, Pd, Ir, Pt and Ta Above total 0.01-3% by mass
  • the present invention it is possible to provide a continuous structure mold capable of continuously producing sound pieces efficiently and stably. Further, it is possible to provide a method for continuously producing a Cu alloy, which is excellent in properties of a final product after processing and heat treatment, for example, strength, conductivity, or fatigue strength. In particular, a great effect can be obtained when applied to the structure of a Cu alloy containing Zr, Ti, Cr, Ta, V, etc., which are elements that easily form carbides. In addition, the present invention has a great effect on materials other than Cu alloys, especially non-ferrous metal materials.
  • FIGS. 1 to 7 show an example of a direct connection type horizontal continuous structure according to the present invention.
  • the type III is directly connected to the refractory of the holding furnace wall 2 that contains the molten metal 1 of the Cu alloy.
  • a connection refractory such as a feed nozzle may be provided between the holding furnace wall and the mold.
  • a cooling chamber 1 having a structure for flowing cooling water etc. inside the mold is placed in close contact with the outside of the member 3 constituting the The heat is removed by primary cooling of the molten metal and solidification proceeds to form piece 4.
  • the piece 4 can be water jet, air jet or air-water mixed. Secondary cooling 6 is performed by joint injection and the like. The piece 4 is withdrawn in the withdrawal direction 7.
  • the mold according to the present invention includes a coating 8 on the inner wall of the mold corresponding to the solidification start position 10 of the Cu alloy melt and a mold of the mold corresponding to the Z or the Cu alloy melt upstream of the solidification start position. Some have an inner wall coating 9.
  • the ⁇ shape may include a plurality of members. That is, the ⁇ shape may be configured by the member 3 forming the ⁇ shape and the other member 3 ′ forming the ⁇ shape.
  • the inner wall surface of the mold may be deteriorated by oxidation.
  • an oxidation resistant coating such as metal plating to at least a portion corresponding to the solidification start position of the inner wall of the mold.
  • the coating material having oxidation resistance is not particularly limited, but is preferably a material which can be easily dissolved in a molten metal at the time of production and does not harm the properties of the final product.
  • the solidification start position in the present invention is defined as follows.
  • the Cu alloy that has flowed into the mold ⁇ is a molten metal upstream of the mold ⁇ , and an initial solidification shell is formed at a certain position in the mold ⁇ .
  • This solidified shell forming position is referred to as a solidification starting position.
  • the solidification start position slightly varies depending on the manufacturing conditions such as the temperature of the molten metal in the holding furnace, the mold cooling, and the drawing speed. Therefore, the solidification start position refers to the “region where solidification shell formation occurs” with a certain width in the drawing direction.
  • FIG. 1 to FIG. 7 show examples of direct connection type horizontal continuous structure type molds according to the present invention.
  • FIG. It is like rotating 90 degrees clockwise.
  • FIG. 1 shows an example of a continuous structure according to the present invention.
  • a member 3 constituting a mold including a mold portion corresponding to a solidification start position 10 of a molten Cu alloy is provided with a glassy carbon material.
  • FIG. 1 is a schematic view of a continuous structure for Cu alloy using a metal-based self-lubricating composite material or a graphite material.
  • a sound piece By using a vitreous carbon material, a metal-based self-lubricating composite material or a graphite material at least for the ⁇ -shaped portion opposite to the solidification start position of the molten Cu alloy, a sound piece can be continuously and efficiently improved. It can be manufactured stably. It is preferable to use a graphite material having a bulk density of more than 1.92.
  • the present inventors have found that, when a direct connection type continuous structure is performed by a conventional mold using a graphite material having a bulk density of 1.7 to 1.9, a large number of open pores existing on the surface of the graphite material are filled with Cu alloy. It was found that the molten metal penetrated, and the solidified shell that had initially formed was seized on the mold ⁇ , and as a result, mold ⁇ was worn due to mold eruption, and ⁇ pieces could not be pulled out. In addition, when an element that easily reacts with C such as Zr, Ti, and Cr is included, carbides are further generated at the interface between the molten metal and the mold, and the initially formed solidified shell is seized into the mold. As a result, it was found that the mold was worn due to mold shaping, and that one piece could not be pulled out.
  • the first means it is effective to use a glassy carbon material or a metal-based self-lubricating composite material from the viewpoint of the reactivity between the ⁇ -shaped material and the molten metal.
  • the glassy carbon material has a property that it is less susceptible to oxidation than the graphite material and is less likely to react with Zr, Ti, Cr and the like, and thus can sufficiently achieve the object.
  • Metal-based self-lubricating composite materials are MoS, WS, BN, and mica in a metal material matrix.
  • Such a cermet in which a self-lubricating material that hardly reacts with Cr and Zr is dispersed and mixed, and it has been found that this can sufficiently achieve the object.
  • the method for producing the composite material is not particularly limited.
  • a method in which a metal material powder and a self-lubricating material powder are mixed, compression-molded, and then sintered may be used!
  • the content of the self-lubricating material in the composite material is not particularly limited, but is preferably 10% by volume or more, more preferably 30% by volume or more, and further preferably 80% by volume or more.
  • the content of the self-lubricating material is increased, the reaction resistance and lubricity are improved, but the mechanical properties of the composite material, such as strength and thermal shock resistance, are reduced. Therefore, it is preferable to suppress the content to 85% by volume or less.
  • a metal material or an alloy material which is not particularly limited can be used. Since it is a ⁇ -shaped material in contact with the molten Cu alloy, it is preferable to use a metal material and / or an alloy material having a high melting point and high thermal conductivity. Specific examples include Cu alloys, stainless steels, Ni alloys, Co alloys, and W alloys.
  • the intermittent bow of the piece is at least two orders of magnitude larger than the number of punching cycles. Vibration having a cycle number and a component perpendicular to the drawing direction is applied to the mold, and (2) a lubricant or anti-seizing agent is continuously supplied between the inner wall and the piece of the mold. By using either one or both of them, a greater effect can be obtained. If one or both of the above measures (1) and (2) are taken, even if a graphite material having a bulk density of less than 1.92 is used as a material for forming the mold, it is possible to obtain a connection between the piece and the mold. Since seizure can be prevented, continuous production is possible.
  • the intermittent drawing method of the piece reduces the frictional resistance between the inner wall of the mold and the piece and improves the lubricity to produce a sufficiently healthy piece continuously and efficiently.
  • a vibration having a cycle number at least two orders of magnitude larger than the number of intermittent drawing cycles and a component perpendicular to the drawing direction is applied to the ⁇ type, the same effect can be obtained for a longer time.
  • the frequency is preferably 5000 cpm (83 Hz) or more, more preferably 60,000 cpm (lkHz) or more, which approaches the ultrasonic range.
  • the lubricant to be supplied between the inner wall of the ⁇ type and the ⁇ piece includes MoS, WS, BN, mica,
  • the for continuous feeding a large number of the above fine powders are lubricated with mineral oil, synthetic ester, or a mixture of them, or an anti-seizure agent is provided on the inner wall of the ⁇ type using a pressure pump. It is injected through a through hole of about 20 ⁇ m. A sufficient effect can be obtained with an injection amount of about 0.1 cc / cm 2 'min, which is about sweating. Such injection was difficult in the prior art, but was made possible by the advancement of nanotechnology, which made it easier to obtain ultrafine powders with diameters on the order of nanometers.
  • FIG. 2 is an example of a continuous structural mold according to the present invention, in which the member 3 constituting the mold is formed by one selected from a graphite material member, a ceramic material member, and a metal material member.
  • the member 3 constituting the mold is formed by one selected from a graphite material member, a ceramic material member, and a metal material member.
  • the ⁇ -shaped main body is constituted by one selected from a graphite material member, a ceramic material member, and a metal material member, and the ⁇ -shaped inner wall is coated with a self-lubricating material or a metal-based self-lubricating composite material.
  • a dense coating material composed of C, for example, a self-lubricating material such as glass is used. It is preferable to select a carbonaceous carbon material, a layered carbon material, or a diamond-like carbon material. Since the surface unevenness of the coating film substantially reflects the surface unevenness of the graphite material itself, it is desirable to select a graphite material having a bulk density as high as possible. Although not particularly limited, the bulk density is preferably 1.7 or more, more preferably 1.8 or more, and more preferably more than 1.92.
  • the ceramic material an inorganic material composed of one or more selected from oxides, nitrides, carbides, and borides is used. Although not particularly limited, from the viewpoints of mechanical strength and thermal conductivity to be provided as a ⁇ -type material, BN materials, sialon materials (Si N -A1N-A1 O-SiO phase diagram)
  • a material having low thermal conductivity it is preferable to take measures such as reducing the thickness of the mold, ie, decreasing the distance between the piece and the cooling chamber.
  • a ceramic material obtained by sintering BN and Sialon use a dense coating material composed of a nitride material, such as a self-lubricating material, in order to improve the adhesion between the mold material and the coating film. It is better to select a certain BN material.
  • the metal material a metal material or an alloy material that is not particularly limited can be used. Since it is a ⁇ -shaped material in contact with the molten Cu alloy, it is preferable to use a metal material or an alloy material having a high melting point and high thermal conductivity. Specifically, Cu alloy, stainless steel, Ni alloy, Co alloy, W alloy and the like can be mentioned. When selecting a metal material, it is better to select a metal-based dense coating material, for example, a metal-based self-lubricating composite material, in order to increase the adhesion between the mold material and the coating film.
  • a metal-based self-lubricating composite material refers to a metal material matrix containing MoS, WS, BN, and mica.
  • a cermet in which a self-lubricating material that does not easily react with Zr, Ti, Cr, etc., is dispersed and mixed. It has been found that this object can be sufficiently achieved by applying electroless plating, electroplating, or thermal spray coating to a metal material or alloy material as a ⁇ -type material. After the coating treatment, the surface of the coating film is preferably smoothed by polishing with about 1000 emery paper.
  • the content of the self-lubricating material in the composite material (cermet) to be plated or spray-coated is not particularly limited, but if the content of the self-lubricating material is increased, the reaction resistance and lubricity are improved. Approximately 10-30% by volume is preferable because the peeling resistance of the coating decreases.
  • the metal material in the composite material to be plated is not particularly limited, and a metal material or an alloy material can be used. It is preferable to use a metal material and / or an alloy material having a high melting point and a high thermal conductivity. Specific examples include Cu alloy, stainless steel, Ni alloy, Co alloy, W alloy and the like.
  • the intermittent bow I is at least two orders of magnitude larger than the number of punching cycles. Vibration having a cycle number and a component perpendicular to the drawing direction is applied to the mold, and (2) Continuous supply of lubricant or anti-seizing agent between the inner wall of the mold and the piece. ,of
  • a greater effect can be obtained by using one or both of V and shift.
  • the frictional resistance between the inner wall of the mold and the piece is reduced, and by improving the lubricity, a sufficiently sound piece can be continuously and efficiently stably obtained. Can be manufactured.
  • a vibration having a cycle number at least two orders of magnitude larger than the number of intermittent drawing cycles and a component perpendicular to the drawing direction is applied to the ⁇ type, the same effect can be obtained for a longer time.
  • the frequency is preferably 5000 cpm (83 Hz) or more, more preferably 60,000 cpm (lkHz) or more, which approaches the ultrasonic range.
  • the lubricant to be supplied between the inner wall of the ⁇ type and the ⁇ piece is as described above.
  • (C) A combination of two or more members selected from a self-lubricating material member, a metal-based self-lubricating composite material member, a graphite material member, a ceramic material member, and a metal material member ⁇ type, and at least the solidification starting position of the molten Cu alloy A continuous structure for a Cu alloy, wherein a self-lubricating material member or a metal-based self-lubricating composite material member is used for a negative inner wall member facing the device.
  • FIG. 3 is a schematic diagram of a continuous structure for Cu alloy, showing an example of the continuous structure according to the present invention.
  • the mold is composed of a plurality of member members.
  • the mold is composed of a member 3 forming the inner wall of the mold facing the solidification start position 10 of the molten Cu alloy and another member 3 ′ constituting the mold. It is configured.
  • the member 3 constituting the inner wall of the type III facing the solidification start position 10 of the molten Cu alloy is a self-lubricating material member or a metal-based self-lubricating composite material member.
  • 3 ′ one selected from a graphite material member, a ceramic material member, and a metal material member is used.
  • the type II thus constituted by a plurality of member members, that is, the type main body is made of one selected from a graphite material member, a ceramic material member and a metal material member, and
  • the inner wall member of the triangle shape is formed of a self-lubricating material member or a metal-based self-lubricating composite material member, a sound piece can be continuously and efficiently manufactured stably.
  • the graphite material member, the ceramic material member, and the metal material member used as the ⁇ -shaped main body are all as described above.
  • Any of a metal-based self-lubricating composite material in which a self-lubricating material that hardly reacts with the metal is dispersed and mixed may be selected.
  • (D) A type composed of a combination of two or more members selected from a metal-based self-lubricating composite material member, a graphite material member, a ceramic material member, and a metal material member. Characterized by being coated at least with a ⁇ -shaped inner wall 1S self-lubricating material or a metal-based self-lubricating composite material facing the solidification start position of the molten Cu alloy. , Continuous production type for Cu alloy.
  • FIG. 4 shows an example of a continuous structural mold according to the present invention, which is composed of a plurality of rectangular members, and has a self-lubricating material on the inner wall of the rectangular shape opposite to the solidification start position 10 of the molten Cu alloy.
  • FIG. 3 is a schematic view of a continuous production mold for a Cu alloy provided with a coating 8 of a metal-based self-lubricating composite material.
  • a force is selected from a metal-based self-lubricating composite material member, a graphite material member, a ceramic material member, and a metal material member. Two types of members are used.
  • the ⁇ -type upstream portion is constituted by one member selected from the group consisting of a graphite material member, a ceramic material member and a metal material member
  • the ⁇ -type downstream portion is a metal-based self-lubricating composite material member or
  • the graphite material member, the ceramic material member, the metal material member, and the metal-based self-lubricating composite material member used as the ⁇ -shaped member are all as described above.
  • the coating of the inner wall of the mold ⁇ in the matrix of self-lubricating materials such as glassy carbon material, layered carbon material, BN material, and metal material matrix contains MoS, WS, BN,
  • FIG. 5 shows another example of the continuous structure type according to the present invention.
  • the member 3 constituting the die including the die portion corresponding to the solidification start position 10 of the molten Cu alloy is formed of a metallic self-lubricating composite material.
  • Cu alloy The ceramic material is used for the purpose of suppressing the reaction with the molten metal on the inner wall of ⁇ type opposite to the molten metal Coating 9 is applied.
  • the coating method of the ceramic material may be any method such as thermal spraying or CVD.
  • FIG. 6 shows another example of the continuous structure type according to the present invention.
  • the member 3 constituting the die is formed of a metal material member, and the metal-based self-lubricating composite is formed on the inner wall of the die corresponding to the solidification start position 10 of the Cu alloy melt.
  • a coating 8 of the material is applied, and a coating 9 made of a ceramic material is applied to the inner wall of the ⁇ shape facing the molten Cu alloy in order to suppress a reaction with the molten metal.
  • the method of coating the ceramic material is the same as described above.
  • FIG. 7 shows another example of the continuous structure type according to the present invention.
  • the upstream part of the mold is constituted by the metal material member, and the downstream part of the mold is constituted by the graphite material member.
  • the inner wall of the mold is coated with a metal-based self-lubricating composite material 8 and the inner wall of the mold facing the molten copper alloy is coated with a ceramic material 9 to suppress the reaction with the molten metal. Have been.
  • the method of coating the ceramic material is the same as described above.
  • the reaction between the member and Zr, Ti, Cr, etc. in the molten metal In order to avoid this, it is more effective to coat the ceramic material on the inner wall of the ⁇ shape facing the molten Cu alloy.
  • a method of applying ceramics first coat a cushioning material with a thickness of about 50 / zm (for example, Ni plating, WC-27% by weight NiCr spraying, etc.), and cover it with a 200 m
  • a preferred method is to coat a ceramic spray with a thickness of the order of magnitude.
  • a ceramic material composed of an oxide which is more stable at a production temperature of 1250 ° C of the Cu alloy is preferred.
  • the most effective alloy system is a Cu-Ti-X system (X: Cr, Fe, Co, Ta, Nb, Mo, V, Mn, Be, Si, Ni, Sn, Ag, etc.) , Cu—Zr—X system (X: Cr, Fe, Co, Ta, Nb, Mo , V, Mn, Be, Si, Ni, Sn, Ag, etc.), Cu- ⁇ -Zr system, etc.
  • X Cr, Fe, Co, Ta, Nb, Mo , V, Mn, Be, Si, Ni, Sn, Ag, etc.
  • Cu- ⁇ -Zr system etc.
  • a great effect can be obtained when applied to other alloy systems.
  • there is a cooling process after solidification as shown by the binary phase diagram of Ti-Cr, Zr-Cr, and Ti-Zr shown in Figs. 8, 9, and 10.
  • a Ti-Cr alloy, a Zr-Cr alloy, or metal Ti, metal Zr, or metal Cr is formed.
  • These compounds and metals formed in the high-temperature region where the cooling process occurs after solidification can be solid-solved by subsequent solution treatment, as shown in the phase diagram, which tends to coarsen or agglomerate. It is almost impossible to do.
  • the piece obtained by the method of the present invention is not subjected to a hot process such as hot rolling or solution treatment as disclosed in Patent Document 1 described above, and is subjected to rolling at 600 ° C or less.
  • a hot process such as hot rolling or solution treatment as disclosed in Patent Document 1 described above
  • Combination of machining and aging between 150 ° C and 750 ° C can provide significant efficacy only after going through the process to the final product. That is, between Cu and alloying elements, such as Cu Ti and Zr Cu, or
  • the intermetallic compound between the gold elements or the fine precipitation of metal precipitates such as metal Ti, metal Zr, and metal Cr increases the strength, and thereby solidifies Ti, Zr, Cr, etc., which are harmful to electrical conductivity. It increases the conductivity by reducing the dissolved elements. If a coarse compound or a coarse precipitate exists before the aging treatment, sufficient precipitation hardening cannot be obtained. Also, the presence of these coarse particles reduces the fatigue properties ⁇ impact resistance of the final product.
  • the average cooling rate from the start of solidification to 600 ° C is preferably l ° C / s or more, more preferably 10 ° C / s or more.
  • Nb 0.01-5%
  • Ta 0.01-5%
  • Al 0.01-5%
  • Mo 0.01-5%
  • V 0.01-5%
  • Co 0.01-5%
  • Mn 0.01 Cu alloys containing one or more components selected from —5%, Si: 0.01—5%, Be: 0.01—5%, and Hf: 0.01—15%.
  • At least one group force of the following first to third groups in terms of% by mass may be used in total amount of one or more selected alloy components.
  • Group 1 Power of one, two or more selected from P, B, Sb, Bi, Pb, Cd, S and As 0.001-1% by mass
  • Group 2 One, two or more selected from Sn, Ag, Zn, Ni, Au, Pd, Fe, W, In, and Ge 0.01-5% by mass in total
  • Group 3 One or two selected from Te, Se, Sr, Tl, Rb, Cs, Ba, Re, Os, Rh, Po, Ga, Tc, Ru, Pd, Ir, Pt and Ta Above total 0.01-3% by mass
  • a Cu alloy containing, by mass%, one or more alloy components selected from among Li, Ca, Mg and rare earth elements in a total amount of 0.001-2 mass%.
  • the rare earth elements mean Sc, Y, and lanthanoids, and the raw material of each element may be added to the raw material, or may be added to misch metal.
  • a predetermined Cu alloy Prior to the continuous structure using the mold in the method of the present invention, a predetermined Cu alloy is melted.
  • a molten metal having a predetermined chemical composition is formed in a melting furnace lined with a graphite material or the like. It is desirable to perform the dissolving atmosphere in a non-oxidizing atmosphere. When it is necessary to dissolve in the atmosphere, it is effective to use a flux (eg cryolite, fluorite, etc.) or charcoal powder to block the atmosphere.
  • a flux eg cryolite, fluorite, etc.
  • any type such as a horizontal type and a vertical type may be used as long as it is a direct connection type continuous structure in which a holding furnace and a mold are directly connected.
  • the type III according to the present invention has low reactivity with molten metal and good lubricity, there are few operational problems when producing the Cu alloy of the present invention.
  • the inner wall of the mold near the solidification start position gradually decreases in thickness due to reaction with the molten metal and wear, so that the piece may be hardly pulled out by the pulling force of the piece. In such a case, it is effective to uniformly reduce the thickness by moving the solidification position by adjusting the cooling conditions of the mold, the drawing speed, and the like.
  • the piece is intermittently pulled out.
  • Either a pull-out stop-push-back pattern or (D) a pull-stop-push-back stop-out pattern can be used.
  • cooling during the cooling process after solidification A higher rejection speed is desirable.
  • water injection, air injection, or air-water mixture injection immediately after leaving the mold is effective, but of course, other methods may be used.
  • Cu alloy containing 2.0 ⁇ 0.1wt% Ti, 1.0 ⁇ 0.1wt% Cr, 0.4 ⁇ 0.02wt% Sn, 0.1 ⁇ 0.01wt% Zn is melted in a high-frequency vacuum melting furnace, and various productions shown in Tables 1 and 2 are performed. Continuous production tests were performed by the method (37 types). The melted Cu alloy melt was transferred to a holding furnace and kept at 1250 ° C., and a piece having a cross section of 20 mm ⁇ 200 mm was intermittently extracted under predetermined conditions. Refractories such as melting furnaces or holding furnaces were each made of graphite. The atmosphere during the pouring was air shut off by the Ar gas flow.
  • a water-cooled cooling chamber made of a Cu alloy was placed on the outside of the mold and the primary cooling was performed, and the piece leaving the mold was subjected to secondary cooling by air-water mixed injection.
  • the temperature was basically measured by using a thermocouple or a radiation thermometer after exiting the ⁇ type.
  • a through hole was drilled to a position 5 mm outside of the inner wall of the mold and the thermocouple was inserted to measure the mold temperature, and the heat transfer calculation was performed using the physical properties of each mold material.
  • the coagulation start position was estimated. From the above data, the average cooling rate from the start of solidification to 600 ° C was calculated. In the tests shown in Tables 1 and 2, the cooling rate was controlled within the range of 5 ⁇ 2 ° C.
  • Example A In exactly the same way as in Example A, a Cu alloy (34 types) having the composition shown in Table 3 was melted and subjected to continuous production tests under different manufacturing conditions, and evaluated in exactly the same manner as in Example A. did. Tables 4 and 5 show the results. In the method of the present invention, good results were obtained for any type, any manufacturing condition, and any chemical composition. On the other hand, in the comparative example in which the type ⁇ was changed, the quality was satisfactory and the result was not obtained.
  • the cooled pieces are cold rolled to 3 mm, then aged at 400 ° C for 2 hours in an inert gas atmosphere, cold rolled to 0.5 mm again, and finally aged at 350 ° C for 6 hours Processed.
  • the conductivity of the obtained test material and the tensile strength by a tensile test were evaluated by the following methods.
  • a test piece having a width of 10 mm and a length of 60 mm was sampled from the above test material, and a current was passed in the longitudinal direction of the test piece to measure a potential difference between both ends of the test piece, and an electric resistance was obtained by a four-terminal method. Subsequently, the electrical resistance (resistivity) per unit volume was calculated from the volume of the test piece measured with a micrometer, and the specific force with the resistivity of the standard sample annealed with polycrystalline pure copper, 1.72 ⁇ cm, was also determined by the conductivity [IACS ( %;)].
  • the cooling rate is lower than 0.5 ° C / s, which is the comparative method, cracks occur during cold rolling, and even if cold rolling is performed, the balance between strength and conductivity is poor.
  • the method of the present invention has a good balance between the two, and has a high tensile strength in relation to the electrical conductivity.
  • IACS means the percentage with respect to the electrical conductivity of the pure copper polycrystalline material.
  • Table 7 shows the results of the same evaluation of the properties of the alloys shown in Table 3 under the above manufacturing conditions, with the cooling rate from the start of solidification to 600 ° C being 5 ° C / s. As a result, all the alloys had a balance between strength and electrical conductivity satisfying the above equation (1), and good results were obtained by the present invention.
  • the present invention relates to a continuous structure used mainly for a direct connection type continuous structure in which a holding furnace is directly connected to a mold, and a method for continuously manufacturing a Cu alloy using the continuous structure. That is, the present invention provides a mold capable of continuously and efficiently producing a healthy piece, and furthermore, has properties, such as strength and conductivity, or impact resistance, of a final product after processing and heat treatment. It provides a continuous production method for Cu alloys with excellent fatigue strength, and is particularly susceptible to carbide formation./ For the production of Cu alloys containing the elements Zr, Ti, Cr, Ta, V, etc. Big effect when applied can get.
  • FIG. 1 is an example of a continuous fabrication type according to the present invention.
  • FIG. 2 is an example of a continuous molding type according to the present invention, in which a coating 8 of a self-lubricating material or a metal-based self-lubricating composite material is applied to an inner wall of the type III, which is opposed to a solidification start position of a molten Cu alloy. ing.
  • FIG. 3 is an example of a continuous forming machine for Cu alloy according to the present invention, which uses a die formed of a plurality of member members.
  • FIG. 4 is an example of a continuous molding die according to the present invention, which is constituted by a plurality of die members and has a self-lubricating material or metal on an inner wall of the die which is opposed to a solidification start position of a molten Cu alloy.
  • FIG. 1 is a schematic view of a continuous production mold for a Cu alloy provided with a coating 8 of a self-lubricating composite material.
  • FIG. 5 shows another example of the continuous fabrication type according to the present invention.
  • a coating 9 made of a ceramic material is applied to the inner wall of the rectangular shape opposite to the molten Cu alloy for the purpose of suppressing the reaction with the molten metal.
  • FIG. 6 shows another example of the continuous structure type according to the present invention.
  • a metal-based self-lubricating composite material coating 8 is applied to the inner wall of the ⁇ type opposite to the solidification start position of the molten Cu alloy, and the purpose is to suppress the reaction with the molten metal on the inner wall of the ⁇ ⁇ type facing the molten Cu alloy.
  • a coating 9 of a ceramic material is applied.
  • FIG. 7 shows another example of the continuous fabrication type according to the present invention.
  • the metal material member constitutes the upstream part of the mold, and the graphite material member constitutes the downstream part of the mold.
  • the metal-based self-lubrication is applied to the inner wall of the mold, which is opposite to the solidification start position of the molten Cu alloy.
  • a coating 8 of a conductive composite material is applied, and a coating 9 made of a ceramic material is applied to the inner wall of the ⁇ shape facing the molten Cu alloy for the purpose of suppressing the reaction with the molten metal.
  • FIG. 8 is a state diagram of a Ti—Cr alloy.
  • FIG. 9 is a state diagram of a Zr—Cr alloy.
  • FIG. 10 is a state diagram of a TVZr alloy.

Abstract

A continuous casting mold for Cu alloy characterized in that a glassy carbon material, a metallic self-lubricating composite material or a graphite material of over 1.92 bulk density is used at at least a mold portion facing a position of solidification initiation of a Cu alloy melt; or a continuous casting mold for Cu alloy characterized in that at least a mold inside wall facing a position of solidification initiation of a Cu alloy melt is coated with a self-lubricating material or a metallic self-lubricating composite material. There is further provided a method of continuous casting for copper alloy characterized in that in the continuous casting of Cu alloy conducted with the use of the above mold in accordance with the slab intermittent drawing-out technique, a vibration with a frequency being larger by at least two digits than that of slab intermittent drawing-out vibration, the vibration having a component perpendicular to the direction of drawing-out, is applied to the mold, or a lubricant or seizure preventive agent is continuously fed into the space between the mold and any solidified shell.

Description

明 細 書  Specification
連続铸造铸型及び銅合金の連続铸造方法  Continuous production mold and continuous production method of copper alloy
技術分野  Technical field
[0001] 本発明は、連続铸造铸型及び Cu合金の連続铸造法に係る。特に、保持炉と铸型 が直結した直結型連続铸造機に用いられる铸型と、この铸型を用いてなる Cu合金の 連続铸造法に係る。  The present invention relates to a continuous manufacturing method and a continuous manufacturing method for a Cu alloy. In particular, the present invention relates to a 铸 type used in a direct connection type continuous forming machine in which a holding furnace is directly connected to a 铸 type, and a continuous manufacturing method of a Cu alloy using the 铸 type.
背景技術  Background art
[0002] 近年の ITブーム、中でも、携帯電話や携帯パソコン、あるいは自動車の電装化の動 きの中にあって、リードフレーム、端子、コネクター、ばね、あるいは接点素子などの電 気電子部品に用いられる Cu合金の高性能化がますます重要になってきている。代 表的な要求特性は、第 1に軽量ィ匕のための高強度化であり、第 2に、軽量ィ匕に伴う断 面積減少による電気抵抗上昇を抑えるための高導電性ィ匕である。一方では部品のダ ゥンサイジングに伴う曲げ加工等の加工性の向上や、比較的過酷な環境でも使用に 耐えるための耐熱'性の向上、あるいは耐疲労強度の向上なども、併せて重要な課題 となっている。  [0002] In recent years, the IT boom has been used in electrical and electronic components such as lead frames, terminals, connectors, springs, and contact elements in the movement of electrical equipment for mobile phones, personal computers, and automobiles. The performance of Cu alloys is becoming increasingly important. Typical required characteristics are firstly high strength for light weight dangling, and secondly, high conductivity dangling for suppressing an increase in electric resistance due to a decrease in cross-sectional area due to light weight dangling. . On the other hand, there are also important issues such as improvement of workability such as bending work accompanying downsizing of parts, improvement of heat resistance to withstand use even in relatively harsh environments, and improvement of fatigue resistance. Has become.
[0003] このような高強度かつ高導電性材料は、耐摩耗性等の従来の工具に求められる性 能に加えて、優れた耐火花発生性も要求される弾薬庫や炭坑と言った環境下で用い られる安全工具材料にも適用することができる。このような材料としては、例えば、特 許文献 1に Cu合金の例がある。  [0003] Such a high-strength and highly-conductive material is used in an environment such as an ammunition warehouse or a coal mine where excellent spark generation resistance is required in addition to the performance required for conventional tools such as wear resistance. It can also be applied to safety tool materials used below. As such a material, for example, there is an example of a Cu alloy in Patent Document 1.
[0004] Cu合金の連続铸造は、大別して次の 2種の方法で実施される。  [0004] The continuous structure of a Cu alloy is roughly classified into the following two methods.
[0005] 第 1の方法は、保持炉に直結したグラフアイト材料製の铸型を用いた直結型連続铸 造 (水平型、垂直型などがある)である。直結型連続铸造では、潤滑剤の供給が極め て難しいため、通常、铸型材料として自己潤滑性と高熱伝導性を有する、嵩密度 1.7 一 1.9のグラフアイト材料が用いられる。この方法は、凝固後の冷却過程において高 Vヽ冷却速度が得られ、しかもその後の溶体化処理や熱間加工と!/ヽつた熱間プロセス を経な ヽで最終製品に至る、厚みの小さ ヽ铸片を得るために適して!/、る。  [0005] The first method is a direct connection type continuous structure (a horizontal type, a vertical type, or the like) using a graphite mold directly connected to a holding furnace. In the direct connection type continuous structure, it is extremely difficult to supply a lubricant. Therefore, a graphite material having a self-lubricating property and a high thermal conductivity and a bulk density of 1.7 to 1.9 is generally used as a 铸 -type material. This method achieves a high V ヽ cooling rate in the cooling process after solidification, and has a small thickness that reaches the final product without going through the subsequent solution treatment and hot working! Suitable for getting pieces! /
[0006] 第 2の方法は、特許文献 1に記載の溶湯プールに浸漬したノズルを介して、 Cuある いは Cu合金に代表される金属材料あるいは合金材料製の铸型に注湯する非直結型 連続铸造 (垂直型、湾曲型、垂直 湾曲型などがある)である。非直結型連続铸造で は、铸型内の溶湯プールにノズルを浸漬するため、铸造できる铸片厚みは約 100mm 以上の比較的大きなものに限定される。この方法は、凝固後の冷却過程において冷 却速度が低いため、最終製品に至るまでに溶体ィ匕処理や熱間加工といった熱間プ 口セスを必須とする。 [0006] In a second method, Cu is supplied through a nozzle immersed in a molten metal pool described in Patent Document 1. It is a non-direct connection type continuous structure (a vertical type, a curved type, a vertical curved type, etc.) that pours into a mold made of a metal material or an alloy material typified by a Cu alloy. In the non-direct connection type continuous production, the nozzle thickness is limited to a relatively large one of about 100 mm or more because the nozzle is immersed in the molten metal pool in the mold. Since this method has a low cooling rate in the cooling process after solidification, a hot process such as solution treatment or hot working is indispensable until a final product is obtained.
[0007] これら 2種の連続铸造方法の中から、必要とする合金組成、铸片断面形状、冷却速 度などに応じ適切な方法が選択されている。一般に、高い冷却速度を必要とする場 合や Cu合金がグラフアイト材料中の Cとの反応性が高い元素を含有しない場合には 、前者 (直結型)が採用され、大断面サイズの铸片を必要とする場合や Cu合金がダラ ファイト材料中の Cとの反応性が高い元素を含有する場合には後者 (非直結型)が採 用されることが多い。  [0007] From these two types of continuous manufacturing methods, an appropriate method is selected according to the required alloy composition, the piece cross-sectional shape, the cooling rate, and the like. In general, when a high cooling rate is required or when the Cu alloy does not contain an element having high reactivity with C in the graphite material, the former (direct connection type) is adopted, and a large cross section size piece is used. The latter (non-coupling type) is often used when Cu alloy is required or when the Cu alloy contains an element that is highly reactive with C in the Dalaphite material.
[0008] 特許文献 1:特開昭 61— 250134号公報  Patent Document 1: JP-A-61-250134
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明の第 1の目的は、 Zr、 Ti、 Cr等の Cと反応しやすい合金元素を含む Cu合金 の直結型連続铸造に適する連続铸造用铸型を提供することである。そして、本発明 の第 2の目的はその铸型を用いた Cu合金の連続铸造法を提供することにある。なお 本発明における連続铸造铸型は Cu合金以外の材料、特に非鉄金属材料の連続铸 造に対しても大きな効果が得られる。 [0009] A first object of the present invention is to provide a continuous forming mold suitable for a direct-coupled continuous forming of a Cu alloy containing an alloy element that easily reacts with C such as Zr, Ti, and Cr. A second object of the present invention is to provide a continuous method for producing a Cu alloy using the mold. It should be noted that the continuous structure in the present invention has a great effect also on the continuous structure of a material other than the Cu alloy, particularly a non-ferrous metal material.
課題を解決するための手段  Means for solving the problem
[0010] 高強度化と高導電性化を目指した新し!/ヽ Cu合金は、 Zr、 Ti、 Crなどの Cと反応しや すい元素を含有する。また、良好な特性発現のために凝固後の冷却過程において 高い冷却速度を要求される。し力しながら、これらの合金では铸型材料であるグラフ アイト材料中の Cと上記の元素との反応に起因する、次に示す問題があることが分か つた o [0010] New aiming for higher strength and higher conductivity! / ヽ Cu alloys contain elements that react easily with C, such as Zr, Ti, and Cr. In addition, a high cooling rate is required in the cooling process after solidification to achieve good properties. However, it was found that these alloys had the following problems caused by the reaction between C in the graphite material, which is a 铸 -type material, and the above elements.
[0011] すなわち、上記の Cu合金を直結型連続铸造に適用した場合、溶湯中の Zr、 Ti、 Cr などの Cと反応しやすい元素とグラフアイト材料中の Cとが反応する結果、初期形成し た凝固殻が铸型に焼き付き、引き抜き抵抗が著しく増大する。結果として型嚅りによ る铸型損耗、さらに铸片引き抜き不能などの問題を引き起こす。このように、直結型 連続铸造の適用が困難であり、それが合金開発そのものの制約にもなつていた。 [0011] That is, when the above-mentioned Cu alloy is applied to a direct-connection type continuous structure, an element that easily reacts with C such as Zr, Ti, and Cr in the molten metal and C in the graphite material react with each other, resulting in initial formation. And The solidified shell is seized to the shape 铸, and the pull-out resistance is significantly increased. As a result, problems such as 铸 mold wear due to mold stamping and 铸 inability to pull out the piece are caused. As described above, it was difficult to apply the direct connection type continuous structure, and this also restricted the development of the alloy itself.
[0012] 本発明は、これらの問題を解決するためになされたものであり、初期形成した凝固 殻の铸型への焼き付きを抑制し、かつ凝固後の冷却過程にお!、て十分高!、冷却速 度が得られる連続铸造铸型及びそれを用いた連続铸造方法に係るものであって、次 の連続铸造铸型 (1)一 (5)の発明と、連続铸造方法 (6)— (14)の発明力 なる。以下、そ れぞれ本発明 (1)一本発明 (14)という。なお、これらの発明を総称して本発明ということ がある。  [0012] The present invention has been made to solve these problems and suppresses seizure of an initially formed solidified shell to a mold, and is sufficiently high in a cooling process after solidification! The present invention relates to a continuous production mold capable of obtaining a cooling rate and a continuous production method using the same, and the invention of the following continuous production mold (1)-(5) and the continuous production method (6) — The invention of (14). Hereinafter, these are referred to as the present invention (1) and the present invention (14), respectively. These inventions may be collectively referred to as the present invention.
[0013] (1)少なくとも Cu合金溶湯の凝固開始位置に相対する铸型部分に、ガラス状カーボ ン材料、金属系自己潤滑性複合材料又は嵩密度 1.92を超えるグラフアイト材料を用 いることを特徴とする、 Cu合金用連続铸造铸型。  [0013] (1) A glassy carbon material, a metal-based self-lubricating composite material, or a graphite material having a bulk density of more than 1.92 is used for at least the 铸 -shaped portion facing the solidification start position of the molten Cu alloy. The continuous production type for Cu alloy.
[0014] (2)グラフアイト材料部材、セラミックス材料部材及び金属材料部材のうちから選ば れた 1種の部材で又は 2種以上の部材を組み合わせて構成される铸型であって、少 なくとも Cu合金溶湯の凝固開始位置に相対する铸型の内壁が、自己潤滑材料又は 金属系自己潤滑性複合材料で被覆されていることを特徴とする、 Cu合金用連続铸 造铸型。  [0014] (2) At least one of a graphite member, a single member selected from a graphite material member, a ceramic material member, and a metal material member, or a combination of two or more members. A continuous production mold for Cu alloys, characterized in that the internal wall of the copper mold facing the solidification start position of the molten Cu alloy is coated with a self-lubricating material or a metal-based self-lubricating composite material.
[0015] (3)自己潤滑性材料部材、金属系自己潤滑性複合材料部材、グラフアイト材料部 材、セラミックス材料部材及び金属材料部材のうちから選ばれた 2種又は 3種以上の 部材を組み合わせて構成される铸型であって、少なくとも Cu合金溶湯の凝固開始位 置に相対する铸型の内壁部材として、自己潤滑性材料部材又は金属系自己潤滑性 複合材料部材を用いることを特徴とする、 Cu合金用連続铸造铸型。  (3) A combination of two or more members selected from a self-lubricating material member, a metal-based self-lubricating composite material member, a graphite material member, a ceramic material member, and a metal material member A self-lubricating material member or a metal-based self-lubricating composite material member is used as an inner wall member of at least a shape corresponding to at least the solidification start position of the molten Cu alloy. , Continuous fabrication type for Cu alloy.
[0016] (4)自己潤滑性材料部材、金属系自己潤滑性複合材料部材、グラフアイト材料部 材、セラミックス材料部材及び金属材料部材のうちから選ばれた 2種又は 3種以上の 部材を組み合わせて構成される铸型であって、少なくとも Cu合金溶湯の凝固開始位 置に相対する铸型の内壁が、自己潤滑材料又は金属系自己潤滑性複合材料で被 覆されていることを特徴とする、 Cu合金用連続铸造铸型。  (4) A combination of two or more members selected from a self-lubricating material member, a metal-based self-lubricating composite material member, a graphite material member, a ceramic material member, and a metal material member铸, characterized in that at least the 铸 inner wall facing the solidification start position of the molten Cu alloy is covered with a self-lubricating material or a metal-based self-lubricating composite material. , Continuous fabrication type for Cu alloy.
[0017] (5) Cu合金溶湯に相対する铸型の内壁が、セラミックス材料で被覆されていることを 特徴とする、上記 (1)一 (4)の 、ずれかの Cu合金用連続铸造铸型。 (5) It is confirmed that the 铸 -shaped inner wall facing the molten Cu alloy is covered with a ceramic material. The continuous structure for a Cu alloy according to any one of (1) to (4) above, which is characterized in that:
[0018] (6)上記 (1)一 (5)のいずれかの铸型を用い、铸片の間欠引き抜き法によって、連続 的に铸造することを特徴とする、 Cu合金の連続铸造方法。 [0018] (6) A method for continuously producing a Cu alloy, wherein the method is one of the above (1) and (5), and is continuously produced by an intermittent drawing method of a piece.
(7)铸片の間欠引き抜き法によって、 Cu合金を連続的に铸造するに際し、铸片の間 欠引き抜きサイクル数よりも少なくとも 2桁以上大きいサイクル数を持ち、かつ引き抜 き方向に対し垂直な成分を持つ振動を、铸型に付与することを特徴とする、 Cu合金 の連続铸造方法。  (7) When continuously producing a Cu alloy by the intermittent drawing method of a piece, the number of cycles must be at least two orders of magnitude greater than the number of intermittent drawing cycles of the piece, and it is perpendicular to the drawing direction. A continuous manufacturing method for a Cu alloy, comprising applying vibration having a component to a mold.
(8)铸片の間欠引き抜き法によって、 Cu合金を連続的に铸造するに際し、铸型の内 壁と铸片間に潤滑剤あるいは焼き付き防止剤を連続的に供給することを特徴とする、 Cu合金の連続铸造方法。  (8) When continuously producing the Cu alloy by the intermittent drawing method of the piece, a lubricant or an anti-seizure agent is continuously supplied between the inner wall of the mold and the piece. Continuous manufacturing method of alloy.
(9)铸片の間欠引き抜き法によって、 Cu合金を連続的に铸造するに際し、铸片の間 欠引き抜きサイクル数よりも少なくとも 2桁以上大きいサイクル数を持ち、かつ引き抜 き方向に対し垂直な成分を持つ振動を、铸型に付与するとともに、铸型の内壁と铸 片間に潤滑剤あるいは焼き付き防止剤を連続的に供給することを特徴とする、 Cu合 金の連続铸造方法。  (9) When continuously producing a Cu alloy by the intermittent drawing method of a piece, the cycle number is at least two orders of magnitude greater than the number of intermittent drawing cycles of the piece, and is perpendicular to the drawing direction. A continuous production method of Cu alloy, comprising: applying vibration having a component to a mold; and continuously supplying a lubricant or an anti-seizure agent between an inner wall of the mold and the piece.
[0019] (10)铸片の間欠引き抜き法によって、 Cu合金を連続的に铸造するに際し、铸片の 間欠引き抜きサイクル数よりも少なくとも 2桁以上大きいサイクル数を持ち、かつ引き 抜き方向に対し垂直な成分を持つ振動を、铸型に付与することを特徴とする、上記 (6)の Cu合金の連続铸造方法。  [0019] (10) When the Cu alloy is continuously manufactured by the intermittent drawing method of the piece, the number of cycles is at least two orders of magnitude larger than the number of intermittent drawing cycles of the piece and is perpendicular to the drawing direction. (6) The method for continuous production of a Cu alloy according to the above (6), wherein vibration having various components is applied to the mold.
[0020] (11)铸片の間欠引き抜き法によって、 Cu合金を連続的に铸造するに際し、铸型の 内壁と铸片間に潤滑剤あるいは焼き付き防止剤を連続的に供給することを特徴とす る、上記 (6)又は (10)の Cu合金の連続铸造方法。  (11) When continuously producing a Cu alloy by the intermittent drawing method of the piece, a lubricant or an anti-seizure agent is continuously supplied between the inner wall of the mold and the piece. The continuous production method of the Cu alloy according to the above (6) or (10).
[0021] (12) Cu合金が、質量0 /0で、 Cr: 0.01— 5%、 Ti: 0.01— 5%、 Zr: 0.01— 5%、 Nb : 0.01 一 5%、 Ta: 0.01一 5%、 Al: 0.01一 5%、 Mo : 0.01— 5%, V: 0.01一 5%、 Co : 0.01一 5 %、 Mn: 0.01—5%、 Si : 0.01— 5%、 Be : 0.01— 5%及び Hf: 0.01— 5%のうち力 選ば れた 1種又は 2種以上の成分を含有することを特徴とする、上記 (6)から (11)のいずれ かの Cu合金の連続铸造方法。 [0021] (12) Cu alloy, the mass 0/0, Cr: 0.01- 5 %, Ti: 0.01- 5%, Zr: 0.01- 5%, Nb: 0.01 one 5%, Ta: 0.01 one 5% , Al: 0.01-15%, Mo: 0.01-5%, V: 0.01-15%, Co: 0.01-15%, Mn: 0.01-5%, Si: 0.01-5%, Be: 0.01-5% and Hf: A continuous method for producing a Cu alloy according to any one of the above (6) to (11), characterized by containing one or more components selected from among 0.01-5%.
[0022] (13) Cu合金力 さらに、質量%で、下記の第 1群力 第 3群までの群のうち少なくと も 1つの群力 選ばれた合金成分の 1種又は 2種以上を総量で 0.001— 5質量 %含有 することを特徴とする、上記 (12)の Cu合金の連続铸造方法。 (13) Cu alloy force Further, in mass%, at least one of the following first group forces up to the third group: (12) The continuous production method for a Cu alloy according to the above (12), wherein one or more selected alloy components are contained in a total amount of 0.001 to 5% by mass.
第 1群: P、 B、 Sb、 Bi、 Pb、 Cd、 S及び Asのうち力 選ばれた 1種又は 2種以上を合計 で 0.001-1質量%  Group 1: One or more selected from among P, B, Sb, Bi, Pb, Cd, S and As 0.001-1% by mass in total
第 2群: Sn、 Ag、 Zn、 Ni、 Au、 Pd、 Fe、 W、 In及び Geのうち力 選ばれた 1種又は 2種以 上を合計で 0.01-5質量%  Group 2: One, two or more selected from Sn, Ag, Zn, Ni, Au, Pd, Fe, W, In, and Ge 0.01-5% by mass in total
第 3群: Te、 Se、 Sr、 Tl、 Rb、 Cs、 Ba、 Re、 Os、 Rh、 Po、 Ga、 Tc、 Ru、 Pd、 Ir、 Pt及び Ta のうち力 選ばれた 1種又は 2種以上を合計で 0.01— 3質量%  Group 3: One or two selected from Te, Se, Sr, Tl, Rb, Cs, Ba, Re, Os, Rh, Po, Ga, Tc, Ru, Pd, Ir, Pt and Ta Above total 0.01-3% by mass
[0023] (14) Cu合金力 さらに、質量%で、 Li、 Ca、 Mg及び希土類元素のうち力も選ばれる 合金成分の 1種又は 2種以上を合計で 0.001— 2質量 %含有することを特徴とする、上 記 (12)又は (13)の Cu合金の連続铸造方法。 [0023] (14) Cu alloy strength Further, one or more alloy components, in which the power is also selected from among Li, Ca, Mg and rare earth elements, are contained in a mass% of 0.001-2% by mass in total. (12) or (13), a method for continuously producing a Cu alloy.
発明の効果  The invention's effect
[0024] 本発明によれば、健全な铸片を連続的に能率よく安定して製造することができる連 続铸造铸型を提供することができる。また加工'熱処理を経た後の最終製品の特性、 例えば強度、導電性、あるいは耐疲労強度に優れる、 Cu合金の連続铸造方法を提 供することができる。特に炭化物を生成しやすい元素である、 Zr、 Ti、 Cr、 Ta、 Vなど を含有する Cu合金の铸造に適用したときに大きな効果が得られる。なお、本発明は Cu合金以外の材料、特に非鉄金属材料に対しても大きな効果が得られる。  [0024] According to the present invention, it is possible to provide a continuous structure mold capable of continuously producing sound pieces efficiently and stably. Further, it is possible to provide a method for continuously producing a Cu alloy, which is excellent in properties of a final product after processing and heat treatment, for example, strength, conductivity, or fatigue strength. In particular, a great effect can be obtained when applied to the structure of a Cu alloy containing Zr, Ti, Cr, Ta, V, etc., which are elements that easily form carbides. In addition, the present invention has a great effect on materials other than Cu alloys, especially non-ferrous metal materials.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、本発明の実施の形態について説明する。  Hereinafter, embodiments of the present invention will be described.
[0026] <本発明の铸型 >  <Type 铸 of the present invention>
本発明に係わる直結型水平連続铸造の铸型の例を、第 1図一第 7図に示す。いず れの図においても、铸型は Cu合金の溶湯 1を収容する保持炉壁 2の耐火物に直結し ている。なお、保持炉壁接続部の保護のために、保持炉壁と铸型の間にフィード'ノ ズルなどの接続耐火物を設けてもよい。铸型内部に冷却水等を流す構造を有する冷 却チャンバ一 5を、铸型を構成する部材 3及び Z又は铸型を構成する他の部材 3'の 外側に密着させて配し、 Cu合金溶湯を一次冷却することによって抜熱し、凝固を進 めて铸片 4とする。铸型を出た後の铸片 4は、水噴射、空気噴射あるいは空気-水混 合噴射などによって、二次冷却 6がなされる。铸片 4は、引き抜き方向 7に引き抜かれ る。 FIGS. 1 to 7 show an example of a direct connection type horizontal continuous structure according to the present invention. In each of the figures, the type III is directly connected to the refractory of the holding furnace wall 2 that contains the molten metal 1 of the Cu alloy. In order to protect the connection part of the holding furnace wall, a connection refractory such as a feed nozzle may be provided between the holding furnace wall and the mold.铸 A cooling chamber 1 having a structure for flowing cooling water etc. inside the mold is placed in close contact with the outside of the member 3 constituting the The heat is removed by primary cooling of the molten metal and solidification proceeds to form piece 4. After leaving the mold, the piece 4 can be water jet, air jet or air-water mixed. Secondary cooling 6 is performed by joint injection and the like. The piece 4 is withdrawn in the withdrawal direction 7.
[0027] 本発明に係わる铸型には、 Cu合金溶湯の凝固開始位置 10に相対する铸型の内 壁の被覆 8及び Z又は凝固開始位置よりも上流の Cu合金溶湯に相対する铸型の内 壁の被覆 9を施されたものがある。  [0027] The mold according to the present invention includes a coating 8 on the inner wall of the mold corresponding to the solidification start position 10 of the Cu alloy melt and a mold of the mold corresponding to the Z or the Cu alloy melt upstream of the solidification start position. Some have an inner wall coating 9.
また、铸型は、複数の部材カも構成してもよい。すなわち、铸型は、铸型を構成する 部材 3と、铸型を構成する他の部材 3 'から構成されるものであってもよい。  In addition, the 铸 shape may include a plurality of members. That is, the 铸 shape may be configured by the member 3 forming the 铸 shape and the other member 3 ′ forming the 铸 shape.
[0028] なお、铸造前の予備加熱時に铸型内壁面が酸ィ匕によって劣化する場合がある。こ れを防止したいときは、これらの铸型内壁面の少なくとも凝固開始位置に相当する部 分に、金属めつき等の耐酸ィ匕性のコーティングを施すのが好ましい。耐酸ィ匕性のコー ティング材料としては、特に限定されないが、铸造時に溶湯に容易に溶けてかつ最 終製品の特性等に害を及ぼさないものが好ましい。例えば、 Cu合金を铸込む場合に は、 Cuをコーティング材料とするのが好ましぐその厚さは数/ z m程度で十分である。  [0028] In addition, during preheating before fabrication, the inner wall surface of the mold may be deteriorated by oxidation. In order to prevent this, it is preferable to apply an oxidation resistant coating such as metal plating to at least a portion corresponding to the solidification start position of the inner wall of the mold. The coating material having oxidation resistance is not particularly limited, but is preferably a material which can be easily dissolved in a molten metal at the time of production and does not harm the properties of the final product. For example, in the case of incorporating a Cu alloy, it is preferable to use Cu as a coating material, and its thickness of about several / zm is sufficient.
[0029] ここで、本発明における凝固開始位置は、次のように定義する。铸型内部に流入し た Cu合金は铸型上流において溶湯であり、铸型内のある位置で初期凝固殻が形成 される。この凝固殻形成位置を凝固開始位置と呼ぶことにする。この凝固開始位置 は、保持炉内の溶湯温度、铸型冷却、引き抜き速度などの铸造条件によって多少変 化する。したがって凝固開始位置とは、引き抜き方向にある程度の幅を持った「凝固 殻形成が起こる領域」を指す。  [0029] Here, the solidification start position in the present invention is defined as follows. The Cu alloy that has flowed into the mold 溶 is a molten metal upstream of the mold 铸, and an initial solidification shell is formed at a certain position in the mold 铸. This solidified shell forming position is referred to as a solidification starting position. The solidification start position slightly varies depending on the manufacturing conditions such as the temperature of the molten metal in the holding furnace, the mold cooling, and the drawing speed. Therefore, the solidification start position refers to the “region where solidification shell formation occurs” with a certain width in the drawing direction.
[0030] 第 1図一第 7図は、本発明に係わる直結型水平連続铸造の铸型の例を示したもの であるが、直結型垂直連続铸造の铸型の場合は、これらの図を時計回りに 90度回転 したようなものとなる。  FIG. 1 to FIG. 7 show examples of direct connection type horizontal continuous structure type molds according to the present invention. In the case of direct connection type vertical continuous structure type molds, FIG. It is like rotating 90 degrees clockwise.
[0031] 以下に、本発明に係わる Cu合金の連続铸造铸型について、(A)—(E)の類型に 分けて、それぞれ詳細に説明する。さら〖こ、これらの铸型を用いて、 Cu合金を連続铸 造する方法にっ 、ても説明する。  [0031] Hereinafter, the continuous sintering mold of the Cu alloy according to the present invention will be described in detail for each of the types (A) to (E). Further, a method of continuously forming a Cu alloy using these molds will also be described.
[0032] (A)少なくとも Cu合金溶湯の凝固開始位置に相対する铸型部分に、ガラス状カー ボン材料、金属系自己潤滑性複合材料又はグラフアイト材料を用いることを特徴とす る Cu合金用連続铸造铸型。 [0033] 図 1は、本発明に係わる連続铸造铸型の一例であり、 Cu合金溶湯の凝固開始位置 10に相対する铸型部分を含む、铸型を構成する部材 3に、ガラス状カーボン材料、 金属系自己潤滑性複合材料又はグラフアイト材料を用いてなる、 Cu合金用連続铸造 铸型の概略図である。 (A) A Cu alloy characterized by using a vitreous carbon material, a metal-based self-lubricating composite material or a graphite material in at least a 铸 -shaped portion corresponding to a solidification start position of a molten Cu alloy. Continuous production type. FIG. 1 shows an example of a continuous structure according to the present invention. A member 3 constituting a mold including a mold portion corresponding to a solidification start position 10 of a molten Cu alloy is provided with a glassy carbon material. FIG. 1 is a schematic view of a continuous structure for Cu alloy using a metal-based self-lubricating composite material or a graphite material.
[0034] 少なくとも Cu合金溶湯の凝固開始位置に相対する铸型部分に、ガラス状カーボン 材料、金属系自己潤滑性複合材料又はグラフアイト材料を用いることによって、健全 な铸片を連続的に能率よく安定して製造することができる。なお、グラフアイト材料とし ては、嵩密度が 1.92を超えるものを用いるのが好ましい。  [0034] By using a vitreous carbon material, a metal-based self-lubricating composite material or a graphite material at least for the 铸 -shaped portion opposite to the solidification start position of the molten Cu alloy, a sound piece can be continuously and efficiently improved. It can be manufactured stably. It is preferable to use a graphite material having a bulk density of more than 1.92.
また、加工'熱処理を経た後の最終製品の特性、例えば強度、導電性、あるいは耐 疲労強度に優れる、 Cu合金の連続铸造方法を提供することができる。特に炭化物を 生成しやすい元素である、 Zr、 Ti、 Cr、 Ta、 Vなどを含有する Cu合金の铸造に適用し たときに大きな効果が得られる。  In addition, it is possible to provide a method for continuously manufacturing a Cu alloy, which is excellent in characteristics of a final product after processing and heat treatment, for example, strength, conductivity, or fatigue strength. Particularly when applied to the structure of a Cu alloy containing Zr, Ti, Cr, Ta, V, etc., which are elements that easily form carbides, a great effect can be obtained.
[0035] 本発明者らは、従来の嵩密度 1.7— 1.9のグラフアイト材料を用いた铸型によって直 結型連続铸造を実施した場合、グラフアイト材料表面に存在する多数の開気孔に Cu 合金溶湯が侵入し、これによつて初期形成した凝固殻が铸型に焼き付き、その結果 として型嚅りによる铸型損耗、さらに铸片引き抜き不能に至ることを見い出した。また 、 Zr、 Ti、 Crなどの Cと反応しやすい元素を含む場合には、さらに溶湯と铸型との界面 に炭化物が生成し、これによつても初期形成した凝固殻が铸型に焼き付き、その結 果として型嚅りによる铸型損耗、さらに铸片引き抜き不能に至ることを見いだした。  [0035] The present inventors have found that, when a direct connection type continuous structure is performed by a conventional mold using a graphite material having a bulk density of 1.7 to 1.9, a large number of open pores existing on the surface of the graphite material are filled with Cu alloy. It was found that the molten metal penetrated, and the solidified shell that had initially formed was seized on the mold 铸, and as a result, mold 铸 was worn due to mold eruption, and 铸 pieces could not be pulled out. In addition, when an element that easily reacts with C such as Zr, Ti, and Cr is included, carbides are further generated at the interface between the molten metal and the mold, and the initially formed solidified shell is seized into the mold. As a result, it was found that the mold was worn due to mold shaping, and that one piece could not be pulled out.
[0036] そして、この問題を解決するためには、 (a)溶湯中の元素と反応しにくい铸型材料を 用いること、又は、 (b)表面における開気孔が小さぐその数が非常に少ない铸型材 料を用いることが有効であることが分力つた。  [0036] In order to solve this problem, (a) a 铸 -type material that does not easily react with the elements in the molten metal, or (b) the number of open pores on the surface is very small分 The use of a shaped material was effective.
[0037] すなわち、第 1の手段として、铸型材料と溶湯との反応性の観点カゝらガラス状カー ボン材料又は金属系自己潤滑性複合材料を用いるのが効果的である。  That is, as the first means, it is effective to use a glassy carbon material or a metal-based self-lubricating composite material from the viewpoint of the reactivity between the の -shaped material and the molten metal.
ガラス状カーボン材料はグラフアイト材料に比較して酸ィ匕しにくぐさらに Zr、 Ti、 Cr などと反応しにくい特性を持ち、よって当該目的を充分に達成することが出来ることを 知見した。  It has been found that the glassy carbon material has a property that it is less susceptible to oxidation than the graphite material and is less likely to react with Zr, Ti, Cr and the like, and thus can sufficiently achieve the object.
[0038] 金属系自己潤滑性複合材料とは、金属材料マトリックス中に MoS、 WS、 BN、雲母 などの 、 Cr、 Zrと反応しにくい自己潤滑性材料を分散、混合させたサーメットを指し 、これも当該目的を充分に達成することが出来ることを知見した。 [0038] Metal-based self-lubricating composite materials are MoS, WS, BN, and mica in a metal material matrix. Such a cermet in which a self-lubricating material that hardly reacts with Cr and Zr is dispersed and mixed, and it has been found that this can sufficiently achieve the object.
複合材料の製造方法は、特に限定されるものではないが、例えば金属材料粉末と 自己潤滑性材料粉末を混合して圧縮成型した後に焼結する方法を用いてもよ!ヽ。 複合材料中の自己潤滑性材料含有量は、特に限定するものではないが、好ましく は 10体積%以上、さらに好ましくは 30体積%以上、いっそう好ましくは 80体積%以上 である。自己潤滑性材料の含有量を多くすれば、耐反応性、潤滑性は向上するが、 複合材料の機械的性質、例えば強度、耐熱衝撃性が低下するので 85体積%以下に 抑えるのが好ましい。  The method for producing the composite material is not particularly limited. For example, a method in which a metal material powder and a self-lubricating material powder are mixed, compression-molded, and then sintered may be used! The content of the self-lubricating material in the composite material is not particularly limited, but is preferably 10% by volume or more, more preferably 30% by volume or more, and further preferably 80% by volume or more. When the content of the self-lubricating material is increased, the reaction resistance and lubricity are improved, but the mechanical properties of the composite material, such as strength and thermal shock resistance, are reduced. Therefore, it is preferable to suppress the content to 85% by volume or less.
また、自己潤滑性材料とともに複合材料を構成する金属材料としては、特に限定す るものではなぐ金属材料又は合金材料を用いることができる。 Cu合金溶湯と接する 铸型材料であるため、高い融点、高い熱伝導性を持つ金属材料及び又は合金材料 を用いるのが好ましい。具体的には、 Cu合金、ステンレス鋼、 Ni合金、 Co合金、 W合 金などを挙げることができる。  Further, as the metal material constituting the composite material together with the self-lubricating material, a metal material or an alloy material which is not particularly limited can be used. Since it is a 铸 -shaped material in contact with the molten Cu alloy, it is preferable to use a metal material and / or an alloy material having a high melting point and high thermal conductivity. Specific examples include Cu alloys, stainless steels, Ni alloys, Co alloys, and W alloys.
[0039] そして、第 2の手段として、開気孔のほとんどない高嵩密度グラフアイト材料を用い るのが効果的である。種々研究の結果、その嵩密度が 1.92を超えれば、かかる目的 を充分に達成することが出来ることを知見した。 As a second means, it is effective to use a high bulk density graphite material having almost no open pores. As a result of various studies, it has been found that if the bulk density exceeds 1.92, such an object can be sufficiently achieved.
[0040] この铸型を用い、铸片の間欠引き抜き法によって、 Cu合金を連続的に铸造するに 際し、(1)铸片の間欠弓 Iき抜きサイクル数よりも少なくとも 2桁以上大き ヽサイクル数を 持ち、かつ引き抜き方向に対し垂直な成分を持つ振動を、铸型に付与すること、及び 、(2)铸型の内壁と铸片間に潤滑剤あるいは焼き付き防止剤を連続的に供給すること 、のいずれか一方あるいは両方を用いることより、さらに大きな効果が得られる。 なお、上記 (1)及び (2)のいずれか一方あるいは両方の対策を講じれば、铸型を構成 する材料として嵩密度が 1.92未満のグラフアイト材料を用いても、铸片と铸型との焼き 付きを防止できるため、連続铸造が可能である。 [0040] When continuously forming a Cu alloy by the intermittent drawing method of the piece using this mold, (1) the intermittent bow of the piece is at least two orders of magnitude larger than the number of punching cycles. Vibration having a cycle number and a component perpendicular to the drawing direction is applied to the mold, and (2) a lubricant or anti-seizing agent is continuously supplied between the inner wall and the piece of the mold. By using either one or both of them, a greater effect can be obtained. If one or both of the above measures (1) and (2) are taken, even if a graphite material having a bulk density of less than 1.92 is used as a material for forming the mold, it is possible to obtain a connection between the piece and the mold. Since seizure can be prevented, continuous production is possible.
また、上記 (1)及び (2)のいずれか一方あるいは両方の対策を講じた上で、铸型を構 成する材料として嵩密度が 1.92を超えるグラフアイト材料を用いれば、铸片と铸型との 焼き付き防止性がさらに向上するため、容易に連続铸造を行うことができる。 [0041] 铸片の間欠引き抜き法は、铸型の内壁と铸片間の摩擦抵抗を軽減させ、潤滑性の 向上によって、充分に健全な铸片を連続的に能率よく安定して製造することができる In addition, after taking one or both of the above measures (1) and (2), if a graphite material having a bulk density of more than 1.92 is used as the material constituting the mold, the piece and the mold will be removed. Since the anti-seizure property is further improved, continuous fabrication can be easily performed. [0041] The intermittent drawing method of the piece reduces the frictional resistance between the inner wall of the mold and the piece and improves the lubricity to produce a sufficiently healthy piece continuously and efficiently. Can
[0042] 間欠引き抜きサイクル数よりも少なくとも 2桁以上大きいサイクル数を持ち、かつ引き 抜き方向に対し垂直な成分を持つ振動を铸型に付与すれば、同様の効果がより長 時間に亘つて得られる。振動数は大きい方が好ましぐ好ましくは 5000cpm(83Hz)以 上、さらに好ましくは超音波領域に近づく 60000cpm(lkHz)以上がよい。 [0042] If a vibration having a cycle number at least two orders of magnitude larger than the number of intermittent drawing cycles and a component perpendicular to the drawing direction is applied to the 铸 type, the same effect can be obtained for a longer time. Can be The frequency is preferably 5000 cpm (83 Hz) or more, more preferably 60,000 cpm (lkHz) or more, which approaches the ultrasonic range.
[0043] 铸型の内壁と铸片間へ供給する潤滑剤にっ 、ては MoS、 WS、 BN、雲母、カーボ  [0043] The lubricant to be supplied between the inner wall of the 铸 type and the 铸 piece includes MoS, WS, BN, mica,
2 2  twenty two
ンの微粉末、焼き付き防止剤については凝集しにくい CaCOの超微粉末が推奨され  Ultra-fine powder of CaCO, which is hard to aggregate, is recommended
3  Three
る。連続供給は上記の微粉末を例えば鉱油、合成エステル、あるいはそれらの混合 液中に潤滑剤ある 、は焼き付き防止剤を混濁させたものを、加圧ポンプを用いて、 铸型の内壁に多数設けた 20 μ m程度の貫通孔を介して注入する。 0.1cc/cm2'min程 度という発汗程度の注入量で充分な効果が得られる。このような注入は、従来技術で は困難であつたが、ナノテクノロジーの進歩によって、直径がナノメーター程度の超 微粉末が容易に得られるようになったため、可能になった。 The For continuous feeding, a large number of the above fine powders are lubricated with mineral oil, synthetic ester, or a mixture of them, or an anti-seizure agent is provided on the inner wall of the 铸 type using a pressure pump. It is injected through a through hole of about 20 μm. A sufficient effect can be obtained with an injection amount of about 0.1 cc / cm 2 'min, which is about sweating. Such injection was difficult in the prior art, but was made possible by the advancement of nanotechnology, which made it easier to obtain ultrafine powders with diameters on the order of nanometers.
[0044] (B)グラフアイト材料部材、セラミックス材料部材及び金属材料部材のうちから選ば れた 1種の部材で又は 2種以上の部材を組み合わせて構成される铸型であって、少 なくとも Cu合金溶湯の凝固開始位置に相対する铸型の内壁が、自己潤滑材料又は 金属系自己潤滑性複合材料で被覆されていることを特徴とする、 Cu合金用連続铸 造铸型。 [0044] (B) At least one type selected from a graphite material member, a ceramic material member, and a metal material member or a combination of two or more members, and A continuous production mold for Cu alloys, characterized in that the internal wall of the copper mold facing the solidification start position of the molten Cu alloy is coated with a self-lubricating material or a metal-based self-lubricating composite material.
[0045] 図 2は、本発明に係わる連続铸造铸型の一例であり、铸型を構成する部材 3が、グ ラフアイト材料部材、セラミックス材料部材及び金属材料部材のうちから選ばれた 1種 によって構成され、 Cu合金溶湯の凝固開始位置 10に相対する铸型の内壁に、自己 潤滑材料又は金属系自己潤滑性複合材料の被覆 8が施されている Cu合金用連続 铸造铸型の概略図である。  FIG. 2 is an example of a continuous structural mold according to the present invention, in which the member 3 constituting the mold is formed by one selected from a graphite material member, a ceramic material member, and a metal material member. In a schematic view of a continuous 铸 Cu 铸 铸 Cu さ れ Cu Cu Cu Cu 自己 自己 自己 自己 自己 、 、 、 、 、 、 、 、 構成 さ れ さ れ さ れ さ れ さ れ さ れis there.
[0046] グラフアイト材料部材、セラミックス材料部材及び金属材料部材のうちから選ばれた 1種によって铸型本体が構成され、铸型の内壁が自己潤滑材料又は金属系自己潤 滑性複合材料の被覆が施されている铸型を用いることによって、健全な铸片を連続 的に能率よく安定して製造することができる。また、加工'熱処理を経た後の最終製 品の特性、例えば強度、導電性、あるいは耐疲労強度に優れる、 Cu合金の連続铸 造方法を提供することができる。特に炭化物を生成しやすい元素である、 Zr、 Ti、 Cr、 Ta、 Vなどを含有する Cu合金の铸造に適用したときに大きな効果が得られる。 The 本体 -shaped main body is constituted by one selected from a graphite material member, a ceramic material member, and a metal material member, and the 内 -shaped inner wall is coated with a self-lubricating material or a metal-based self-lubricating composite material. By using a metal mold with a sound, continuous healthy pieces It can be efficiently and stably manufactured. Further, it is possible to provide a method for continuously manufacturing a Cu alloy, which is excellent in characteristics of a final product after processing and heat treatment, for example, strength, conductivity, or fatigue resistance. In particular, a great effect is obtained when applied to the structure of a Cu alloy containing Zr, Ti, Cr, Ta, V, etc., which are elements that easily form carbides.
[0047] 铸型材料として、グラフアイト材料を選択する場合、铸型材料と被覆膜との密着性を 上げるために、 Cから構成される緻密な被覆材料、例えば自己潤滑性材料であるガラ ス状カーボン材料、層状カーボン材料、あるいはダイヤモンド状カーボン材料を選択 するのがよい。この被覆膜の表面凹凸はグラフアイト材料自体の表面凹凸をほぼ反 映するため、出来るだけ嵩密度の高いグラフアイト材料を選択するのが望ましい。特 に限定するものではないが、嵩密度は、好ましくは 1.7以上、さらに好ましくは 1.8以上 、いっそう好ましくは 1.92超である。  When a graphite material is selected as the mold material, in order to increase the adhesion between the mold material and the coating film, a dense coating material composed of C, for example, a self-lubricating material such as glass is used. It is preferable to select a carbonaceous carbon material, a layered carbon material, or a diamond-like carbon material. Since the surface unevenness of the coating film substantially reflects the surface unevenness of the graphite material itself, it is desirable to select a graphite material having a bulk density as high as possible. Although not particularly limited, the bulk density is preferably 1.7 or more, more preferably 1.8 or more, and more preferably more than 1.92.
[0048] セラミックス材料は、酸化物、窒化物、炭化物及び硼化物のうちから選ばれた 1種又 は 2種以上によって構成される無機材料を用いる。特に限定するものではないが、铸 型材料として具備すべき機械的強度、熱伝導性の観点から、 BN材料、サイアロン材 料(Si、 Al、 0、 Nからなる化合物で Si N -A1N-A1 O -SiO状態図で示される)などが好  [0048] As the ceramic material, an inorganic material composed of one or more selected from oxides, nitrides, carbides, and borides is used. Although not particularly limited, from the viewpoints of mechanical strength and thermal conductivity to be provided as a 铸 -type material, BN materials, sialon materials (Si N -A1N-A1 O-SiO phase diagram)
3 4 2 3 2  3 4 2 3 2
ましい。  Good.
[0049] なお熱伝導性の低!、材料を用いる場合には、铸型厚み、すなわち铸片と冷却チヤ ンバ一間の距離を短くする等の方策が好ましい。 BNとサイアロンを焼結したセラミック ス材料を選択する場合、铸型材料と被覆膜との密着性を上げるために、窒化物系に よって構成される緻密な被覆材料、例えば自己潤滑性材料である BN材料を選択す るのがよい。  When using a material having low thermal conductivity, it is preferable to take measures such as reducing the thickness of the mold, ie, decreasing the distance between the piece and the cooling chamber. When selecting a ceramic material obtained by sintering BN and Sialon, use a dense coating material composed of a nitride material, such as a self-lubricating material, in order to improve the adhesion between the mold material and the coating film. It is better to select a certain BN material.
[0050] 金属材料は、特に限定するものではなぐ金属材料又は合金材料を用いることがで きる。 Cu合金溶湯と接する铸型材料であるため、高い融点、高い熱伝導性を持つ金 属材料又は合金材料を用いるのが好ましい。具体的には、 Cu合金、ステンレス鋼、 Ni 合金、 Co合金、 W合金などを挙げることができる。金属材料を選択する場合、铸型材 料と被覆膜との密着性を上げるために、金属系の緻密な被覆材料、例えば金属系自 己潤滑性複合材料を選択するのがよ ヽ。  [0050] As the metal material, a metal material or an alloy material that is not particularly limited can be used. Since it is a 铸 -shaped material in contact with the molten Cu alloy, it is preferable to use a metal material or an alloy material having a high melting point and high thermal conductivity. Specifically, Cu alloy, stainless steel, Ni alloy, Co alloy, W alloy and the like can be mentioned. When selecting a metal material, it is better to select a metal-based dense coating material, for example, a metal-based self-lubricating composite material, in order to increase the adhesion between the mold material and the coating film.
[0051] 金属系自己潤滑性複合材料とは、金属材料マトリックス中に MoS、 WS、 BN、雲母 などの Zr、 Ti、 Crなどと反応しにくい自己潤滑性材料を分散、混合させたサーメットを 指す。これを铸型材料である金属材料あるいは合金材料に無電解鍍金、電気鍍金、 あるいは溶射被覆することによって、当該目的を充分に達成することが出来ることを 知見した。なお、被膜処理を施した後は、 1000番程度のエメリー紙による研磨などに よって被覆膜表面を平滑ィ匕するのが好まし 、。 [0051] A metal-based self-lubricating composite material refers to a metal material matrix containing MoS, WS, BN, and mica. A cermet in which a self-lubricating material that does not easily react with Zr, Ti, Cr, etc., is dispersed and mixed. It has been found that this object can be sufficiently achieved by applying electroless plating, electroplating, or thermal spray coating to a metal material or alloy material as a 铸 -type material. After the coating treatment, the surface of the coating film is preferably smoothed by polishing with about 1000 emery paper.
[0052] 鍍金あるいは溶射被覆される複合材料 (サーメット)中の自己潤滑材料含有量は、 特に限定するものではないが、自己潤滑材料含有量を多くすれば耐反応性、潤滑 性は向上するが、被膜の耐剥離性が低下するので 10— 30体積%程度が好ましい [0052] The content of the self-lubricating material in the composite material (cermet) to be plated or spray-coated is not particularly limited, but if the content of the self-lubricating material is increased, the reaction resistance and lubricity are improved. Approximately 10-30% by volume is preferable because the peeling resistance of the coating decreases.
[0053] また、鍍金被覆される複合材料中の金属材料としては、特に限定するものではなく 、金属材料又は合金材料を用いることができる。高い融点、高い熱伝導性を持つ金 属材料及び又は合金材料を用いるのが好ましい。具体的には、 Cu合金、ステンレス 鋼、 Ni合金、 Co合金、 W合金などを挙げることができる。 [0053] The metal material in the composite material to be plated is not particularly limited, and a metal material or an alloy material can be used. It is preferable to use a metal material and / or an alloy material having a high melting point and a high thermal conductivity. Specific examples include Cu alloy, stainless steel, Ni alloy, Co alloy, W alloy and the like.
[0054] この铸型を用い、铸片の間欠引き抜き法によって、 Cu合金を連続的に铸造するに 際し、(1)铸片の間欠弓 Iき抜きサイクル数よりも少なくとも 2桁以上大き ヽサイクル数を 持ち、かつ引き抜き方向に対し垂直な成分を持つ振動を、铸型に付与すること、 (2) 铸型の内壁と铸片間に潤滑剤あるいは焼き付き防止剤を連続的に供給すること、の [0054] When the Cu alloy is continuously manufactured by the intermittent drawing method of the piece by using the mold of the type (1), (1) the intermittent bow I is at least two orders of magnitude larger than the number of punching cycles. Vibration having a cycle number and a component perpendicular to the drawing direction is applied to the mold, and (2) Continuous supply of lubricant or anti-seizing agent between the inner wall of the mold and the piece. ,of
V、ずれか一方あるいは両方を用いることより、さらに大きな効果が得られる。 A greater effect can be obtained by using one or both of V and shift.
[0055] 铸片の間欠引き抜き法によれば、铸型の内壁と铸片間の摩擦抵抗を軽減させ、潤 滑性の向上によって、充分に健全な铸片を連続的に能率よく安定して製造すること ができる。 [0055] According to the intermittent drawing method of the piece, the frictional resistance between the inner wall of the mold and the piece is reduced, and by improving the lubricity, a sufficiently sound piece can be continuously and efficiently stably obtained. Can be manufactured.
[0056] 間欠引き抜きサイクル数よりも少なくとも 2桁以上大きいサイクル数を持ち、かつ引き 抜き方向に対し垂直な成分を持つ振動を铸型に付与すれば、同様の効果がより長 時間に亘つて得られる。振動数は大きい方が好ましぐ好ましくは 5000cpm(83Hz)以 上、さらに好ましくは超音波領域に近づく 60000cpm(lkHz)以上がよい。  [0056] If a vibration having a cycle number at least two orders of magnitude larger than the number of intermittent drawing cycles and a component perpendicular to the drawing direction is applied to the 铸 type, the same effect can be obtained for a longer time. Can be The frequency is preferably 5000 cpm (83 Hz) or more, more preferably 60,000 cpm (lkHz) or more, which approaches the ultrasonic range.
[0057] 铸型の内壁と铸片間へ供給する潤滑剤については、前述のとおりである。 The lubricant to be supplied between the inner wall of the 铸 type and the 铸 piece is as described above.
[0058] (C)自己潤滑性材料部材、金属系自己潤滑性複合材料部材、グラフアイト材料部 材、セラミックス材料部材及び金属材料部材のうちから選ばれた 2種又は 3種以上の 部材を組み合わせて構成される铸型であって、少なくとも Cu合金溶湯の凝固開始位 置に相対する铸型の内壁部材に、自己潤滑性材料部材又は金属系自己潤滑性複 合材料部材を用いることを特徴とする、 Cu合金用連続铸造铸型。 (C) A combination of two or more members selected from a self-lubricating material member, a metal-based self-lubricating composite material member, a graphite material member, a ceramic material member, and a metal material member铸 type, and at least the solidification starting position of the molten Cu alloy A continuous structure for a Cu alloy, wherein a self-lubricating material member or a metal-based self-lubricating composite material member is used for a negative inner wall member facing the device.
[0059] 図 3は、本発明に係わる連続铸造铸型の一例を示す、 Cu合金用連続铸造铸型の 概略図である。铸型を複数の部材カゝら構成した例であり、 Cu合金溶湯の凝固開始位 置 10に相対する铸型の内壁を構成する部材 3と、铸型を構成する他の部材 3'とから 構成されている。ここでは、 Cu合金溶湯の凝固開始位置 10に相対する铸型の内壁 を構成する部材 3には自己潤滑性材料部材又は金属系自己潤滑性複合材料部材 力 そして、铸型を構成する他の部材 3'には、グラフアイト材料部材、セラミックス材 料部材及び金属材料部材のうちから選ばれた 1種が用いられて 、る。 FIG. 3 is a schematic diagram of a continuous structure for Cu alloy, showing an example of the continuous structure according to the present invention. This is an example in which the mold is composed of a plurality of member members. The mold is composed of a member 3 forming the inner wall of the mold facing the solidification start position 10 of the molten Cu alloy and another member 3 ′ constituting the mold. It is configured. Here, the member 3 constituting the inner wall of the type III facing the solidification start position 10 of the molten Cu alloy is a self-lubricating material member or a metal-based self-lubricating composite material member. For 3 ′, one selected from a graphite material member, a ceramic material member, and a metal material member is used.
[0060] このように複数の部材カゝら構成した铸型、すなわち、铸型本体がグラフアイト材料部 材、セラミックス材料部材及び金属材料部材のうちから選ばれた 1種によって構成さ れ、そして、铸型の内壁部材が自己潤滑材料部材又は金属系自己潤滑性複合材料 部材によって構成されていても、健全な铸片を連続的に能率よく安定して製造するこ とがでさる。 [0060] The type II thus constituted by a plurality of member members, that is, the type main body is made of one selected from a graphite material member, a ceramic material member and a metal material member, and Thus, even when the inner wall member of the triangle shape is formed of a self-lubricating material member or a metal-based self-lubricating composite material member, a sound piece can be continuously and efficiently manufactured stably.
[0061] また、加工'熱処理を経た後の最終製品の特性、例えば強度、導電性、ある!/、は耐 疲労強度に優れる、 Cu合金の連続铸造方法を提供することができる。特に炭化物を 生成しやすい元素である、 Zr、 Ti、 Cr、 Ta、 Vなどを含有する Cu合金の铸造に適用し たときに大きな効果が得られる。  [0061] In addition, it is possible to provide a method for continuously producing a Cu alloy, which has excellent fatigue resistance in terms of the properties of the final product after processing and heat treatment, for example, strength, conductivity, and a / !. Particularly when applied to the structure of a Cu alloy containing Zr, Ti, Cr, Ta, V, etc., which are elements that easily form carbides, a great effect can be obtained.
[0062] ここで铸型本体として用いるグラフアイト材料部材、セラミックス材料部材及び金属 材料部材は、いずれも前述のとおりである。また铸型の内壁部材については、自己 潤滑性材料であるガラス状カーボン材料部材、層状カーボン材料部材、 BN材料部 材(実施例 22)、金属材料マトリックス中に MoS、 WS、 BN、雲母などの Zr、 Ti、 Crなど  Here, the graphite material member, the ceramic material member, and the metal material member used as the 铸 -shaped main body are all as described above. For the inner wall member of type III, glass-like carbon material, layered carbon material, BN material (Example 22), which are self-lubricating materials, and MoS, WS, BN, mica, etc. Zr, Ti, Cr, etc.
2 2  twenty two
と反応しにくい自己潤滑性材料を分散、混合させた金属系自己潤滑性複合材料部 材、のいずれを選択してもよい。  Any of a metal-based self-lubricating composite material in which a self-lubricating material that hardly reacts with the metal is dispersed and mixed may be selected.
[0063] (D)金属系自己潤滑性複合材料部材、グラフアイト材料部材、セラミックス材料部 材及び金属材料部材のうちから選ばれた 2種又は 3種以上の部材を組み合わせて構 成する铸型であって、少なくとも Cu合金溶湯の凝固開始位置に相対する铸型の内壁 1S 自己潤滑材料又は金属系自己潤滑性複合材料で被覆されていることを特徴とす る、 Cu合金用連続铸造铸型。 [0063] (D) A type composed of a combination of two or more members selected from a metal-based self-lubricating composite material member, a graphite material member, a ceramic material member, and a metal material member. Characterized by being coated at least with a に -shaped inner wall 1S self-lubricating material or a metal-based self-lubricating composite material facing the solidification start position of the molten Cu alloy. , Continuous production type for Cu alloy.
[0064] 図 4は、本発明に係わる連続铸造铸型の一例であり、複数の铸型部材によって構 成され、 Cu合金溶湯の凝固開始位置 10に相対する铸型の内壁に、自己潤滑材料 又は金属系自己潤滑性複合材料の被覆 8が施されている Cu合金用連続铸造铸型 の概略図である。ここでは、铸型を構成する部材 3及び铸型を構成する他の部材 3' として、金属系自己潤滑性複合材料部材、グラフアイト材料部材、セラミックス材料部 材及び金属材料部材のうち力 選ばれた 2種の部材が用いられて 、る。  FIG. 4 shows an example of a continuous structural mold according to the present invention, which is composed of a plurality of rectangular members, and has a self-lubricating material on the inner wall of the rectangular shape opposite to the solidification start position 10 of the molten Cu alloy. FIG. 3 is a schematic view of a continuous production mold for a Cu alloy provided with a coating 8 of a metal-based self-lubricating composite material. Here, as the member 3 constituting the mold and the other member 3 'constituting the mold, a force is selected from a metal-based self-lubricating composite material member, a graphite material member, a ceramic material member, and a metal material member. Two types of members are used.
[0065] 铸型上流部がグラフアイト材料部材、セラミックス材料部材及び金属材料部材のうち 力 選ばれた 1種の部材によって構成され、かつ铸型下流部が金属系自己潤滑性複 合材料部材又はグラフアイト材料部材によって構成されるとともに、 Cu合金溶湯の凝 固開始位置に相対する铸型の内壁に、自己潤滑材料又は金属系自己潤滑性複合 材料被覆が施されている铸型を用いることによって、健全な铸片を連続的に能率よく 安定して製造することができる。また加工'熱処理を経た後の最終製品の特性、例え ば強度、導電性、あるいは耐疲労強度に優れる、 Cu合金の連続铸造方法を提供す ることができる。特に炭化物を生成しやすい元素である、 Zr、 Ti、 Cr、 Ta、 Vなどを含 有する Cu合金の铸造に適用したときに大きな効果が得られる。  [0065] The 铸 -type upstream portion is constituted by one member selected from the group consisting of a graphite material member, a ceramic material member and a metal material member, and the 铸 -type downstream portion is a metal-based self-lubricating composite material member or By using a mold composed of a graphite material and coated with a self-lubricating material or a metal-based self-lubricating composite material on the inner wall of the mold opposite to the solidification start position of the molten Cu alloy In this way, sound chips can be continuously and efficiently produced stably. In addition, it is possible to provide a method for continuously producing a Cu alloy, which is excellent in properties, for example, strength, conductivity, or fatigue strength of a final product after processing and heat treatment. In particular, a great effect can be obtained when applied to the structure of a Cu alloy containing Zr, Ti, Cr, Ta, V, etc., which are elements that easily form carbides.
[0066] ここで铸型部材として用いるグラフアイト材料部材、セラミックス材料部材、金属材料 部材及び金属系自己潤滑性複合材料部材は、いずれも前述のとおりである。また铸 型の内壁への被覆についても、前述のとおり、自己潤滑性材料であるガラス状カー ボン材料、層状カーボン材料、 BN材料、金属材料マトリックス中に MoS、 WS、 BN、  Here, the graphite material member, the ceramic material member, the metal material member, and the metal-based self-lubricating composite material member used as the 铸 -shaped member are all as described above. In addition, as described above, the coating of the inner wall of the mold 铸 in the matrix of self-lubricating materials such as glassy carbon material, layered carbon material, BN material, and metal material matrix contains MoS, WS, BN,
2 2 雲母などの Zr、 Ti、 Crなどと反応しにくい自己潤滑性材料を分散、混合させた金属系 自己潤滑性複合材料、のいずれを選択してもよい。  22 2 Any metal-based self-lubricating composite material in which a self-lubricating material that does not easily react with Zr, Ti, Cr, etc., such as mica, is dispersed and mixed.
[0067] (E) Cu合金溶湯に相対する铸型の内壁が、セラミックス材料で被覆されて ヽること を特徴とする、上記 (A)— (D)の 、ずれかの Cu合金用連続铸造铸型。  (E) The continuous structure for a Cu alloy according to any one of the above (A) to (D), characterized in that a rectangular inner wall facing the molten Cu alloy is coated with a ceramic material.铸 type.
[0068] 図 5に、本発明に係わる連続铸造铸型の他の一例を示す。この Cu合金用連続铸造 铸型においては、 Cu合金溶湯の凝固開始位置 10に相対する铸型部分を含んで铸 型を構成する部材 3が金属系自己潤滑性複合材料カゝら構成されるとともに、 Cu合金 溶湯に相対する铸型の内壁に溶湯との反応抑制を目的としてセラミックス材料による 被覆 9が施されている。セラミックス材料の被覆方法は溶射、 CVDなど、いずれでもよ い。 FIG. 5 shows another example of the continuous structure type according to the present invention. In the continuous forming die for a Cu alloy, the member 3 constituting the die including the die portion corresponding to the solidification start position 10 of the molten Cu alloy is formed of a metallic self-lubricating composite material. , Cu alloy The ceramic material is used for the purpose of suppressing the reaction with the molten metal on the inner wall of 铸 type opposite to the molten metal Coating 9 is applied. The coating method of the ceramic material may be any method such as thermal spraying or CVD.
[0069] 図 6に、本発明に係わる連続铸造铸型の他の一例でを示す。この Cu合金用連続铸 造铸型においては、铸型を構成する部材 3が金属材料部材によって構成され、 Cu合 金溶湯の凝固開始位置 10に相対する铸型の内壁に金属系自己潤滑性複合材料の 被覆 8が施され、さらに Cu合金溶湯に相対する铸型の内壁に、溶湯との反応抑制を 目的としてセラミックス材料による被覆 9が施されている。セラミックス材料の被覆方法 は、上記と同様である。  FIG. 6 shows another example of the continuous structure type according to the present invention. In this continuous forming die for Cu alloy, the member 3 constituting the die is formed of a metal material member, and the metal-based self-lubricating composite is formed on the inner wall of the die corresponding to the solidification start position 10 of the Cu alloy melt. A coating 8 of the material is applied, and a coating 9 made of a ceramic material is applied to the inner wall of the 铸 shape facing the molten Cu alloy in order to suppress a reaction with the molten metal. The method of coating the ceramic material is the same as described above.
[0070] 図 7に、本発明に係わる連続铸造铸型の他の一例を示す。この Cu合金用連続铸造 铸型においては、金属材料部材によって铸型上流部が構成され、かつグラフアイト材 料部材によって铸型下流部が構成されるとともに、 Cu合金溶湯の凝固開始位置 10 に相対する铸型の内壁に金属系自己潤滑性複合材料の被覆 8が施され、さら〖こ Cu 合金溶湯に相対する铸型の内壁に、溶湯との反応抑制を目的としてセラミックス材料 による被覆 9が施されている。セラミックス材料の被覆方法は、上記と同様である。  FIG. 7 shows another example of the continuous structure type according to the present invention. In the continuous forming mold for Cu alloy, the upstream part of the mold is constituted by the metal material member, and the downstream part of the mold is constituted by the graphite material member. The inner wall of the mold is coated with a metal-based self-lubricating composite material 8 and the inner wall of the mold facing the molten copper alloy is coated with a ceramic material 9 to suppress the reaction with the molten metal. Have been. The method of coating the ceramic material is the same as described above.
[0071] 図 5— 7に記載の通り、铸型上流部が金属材料又は金属系自己潤滑性複合材料 によって構成される場合には、該部材と溶湯中の Zr、 Ti、 Crなどとの反応を避けるた めに、 Cu合金溶湯に相対する铸型の内壁へのセラミックス材料被覆が、より効果的 である。耐剥離性の観点から、セラミックスの施工方法として、まず 50 /z m程度の厚さ の緩衝材 (例えば、 Ni鍍金、 WC- 27重量 %NiCr溶射などがある)を被覆し、その上に 200 m程度の厚さのセラミックス溶射を被覆する方法が推奨される。耐反応性の観 点から、当該 Cu合金の铸造温度 1250°Cでより安定な酸ィ匕物より構成されるセラミック ス材料が好ましぐたとえば、 ZrO - 8重量 %Y 0、 ZrO - 25重量%MgO  As shown in FIG. 5-7, when the に は -shaped upstream portion is made of a metal material or a metal-based self-lubricating composite material, the reaction between the member and Zr, Ti, Cr, etc. in the molten metal In order to avoid this, it is more effective to coat the ceramic material on the inner wall of the 铸 shape facing the molten Cu alloy. From the standpoint of peeling resistance, as a method of applying ceramics, first coat a cushioning material with a thickness of about 50 / zm (for example, Ni plating, WC-27% by weight NiCr spraying, etc.), and cover it with a 200 m A preferred method is to coat a ceramic spray with a thickness of the order of magnitude. From the viewpoint of reaction resistance, a ceramic material composed of an oxide which is more stable at a production temperature of 1250 ° C of the Cu alloy is preferred.For example, ZrO-8% by weight Y0, ZrO-25% by weight % MgO
2 2 3 2  2 2 3 2
、 ZrO -5重量 %CaOなどが当該 Cu合金の付着が皆無であるため、推奨される。なお、 , ZrO-5% by weight CaO, etc. are recommended because there is no adhesion of the Cu alloy. In addition,
2 2
被覆施工される铸型上流部の内壁の一部を予め研削しておき、セラミックス被覆した 後で段差がつかな 、ようにした方がより好ま 、。  It is more preferable to grind a part of the inner wall of the upstream side of the mold to be coated in advance so that no step is formed after coating with ceramics.
[0072] <本発明を適用する Cu合金 > <Cu alloy to which the present invention is applied>
本発明法によって、最も効力を発揮する合金系は、 Cu- Ti- X系(X: Cr、 Fe、 Co、 Ta 、 Nb、 Mo、 V、 Mn、 Be、 Si、 Ni、 Sn、 Agなど)、 Cu— Zr— X系(X : Cr、 Fe、 Co、 Ta、 Nb、 Mo 、 V、 Mn、 Be、 Si、 Ni、 Sn、 Agなど)、 Cu- Ή- Zr系などである力 もちろん他の合金系に 適用しても大きな効果が得られる。上記の成分系の場合には、図 8、図 9、図 10に示 す Ti-Cr、 Zr-Cr, Ti-Zr2元系状態図からも分力るように、凝固後の冷却過程のある 高温域で、 Ti-Crィ匕合物、 Zr-Crィ匕合物、あるいは金属 Ti、金属 Zrや金属 Crが生成す る。凝固後の冷却過程のある高温域で生成したこれらの化合物や金属は、粗大化あ るいは凝集粗大化し易ぐ状態図からも分力るように、その後の溶体化処理によって も固溶ィ匕することは不可能に近い。 According to the present invention, the most effective alloy system is a Cu-Ti-X system (X: Cr, Fe, Co, Ta, Nb, Mo, V, Mn, Be, Si, Ni, Sn, Ag, etc.) , Cu—Zr—X system (X: Cr, Fe, Co, Ta, Nb, Mo , V, Mn, Be, Si, Ni, Sn, Ag, etc.), Cu-Ή-Zr system, etc. Of course, a great effect can be obtained when applied to other alloy systems. In the case of the above component system, there is a cooling process after solidification, as shown by the binary phase diagram of Ti-Cr, Zr-Cr, and Ti-Zr shown in Figs. 8, 9, and 10. In a high temperature range, a Ti-Cr alloy, a Zr-Cr alloy, or metal Ti, metal Zr, or metal Cr is formed. These compounds and metals formed in the high-temperature region where the cooling process occurs after solidification can be solid-solved by subsequent solution treatment, as shown in the phase diagram, which tends to coarsen or agglomerate. It is almost impossible to do.
[0073] 本発明法で得た铸片は、前述の特許文献 1にあるような、熱間圧延や溶体化処理 と言った熱間プロセスを経な 、で、 600°C以下での圧延等の加工と 150°C— 750°C間 での時効処理の組み合わせによって最終製品に至るプロセスを経たときに始めて大 きな効力が得られる。すなわち、 Cu Ti、 Zr Cuなどの、 Cuと合金元素間、あるいは合 [0073] The piece obtained by the method of the present invention is not subjected to a hot process such as hot rolling or solution treatment as disclosed in Patent Document 1 described above, and is subjected to rolling at 600 ° C or less. Combination of machining and aging between 150 ° C and 750 ° C can provide significant efficacy only after going through the process to the final product. That is, between Cu and alloying elements, such as Cu Ti and Zr Cu, or
4 9 2  4 9 2
金元素同士間の金属間化合物、あるいは金属 Ti、金属 Zrや金属 Cr等の金属析出物 の微細析出によって高強度化し、またそのことによって電気の伝導性に有害な Ti、 Zr 、 Cr等の固溶元素を減じて導電性を上げるのである。時効処理前に粗大化合物ある いは粗大析出物が存在していると、十分な析出硬化が得られない。またこれらの粗 大粒子の存在は、最終製品の疲労特性ゃ耐衝撃性を低下させる。  The intermetallic compound between the gold elements or the fine precipitation of metal precipitates such as metal Ti, metal Zr, and metal Cr increases the strength, and thereby solidifies Ti, Zr, Cr, etc., which are harmful to electrical conductivity. It increases the conductivity by reducing the dissolved elements. If a coarse compound or a coarse precipitate exists before the aging treatment, sufficient precipitation hardening cannot be obtained. Also, the presence of these coarse particles reduces the fatigue properties ゃ impact resistance of the final product.
[0074] 凝固後の冷却過程において生成した粗大化合物あるいは粗大析出物は、その固 溶ィ匕が不可能に近いので、冷却速度を速めて生成を防止せねばならない。凝固開 始から 600°Cまでの平均冷却速度は、好ましくは l°C/s以上であり、さらに好ましくは 10°C/s以上である。 [0074] Since the coarse compound or the coarse precipitate generated in the cooling process after solidification is almost impossible to dissolve, the cooling rate must be increased to prevent the generation. The average cooling rate from the start of solidification to 600 ° C is preferably l ° C / s or more, more preferably 10 ° C / s or more.
[0075] 本発明が適用される Cu合金として、質量%で、 Cr: 0.01— 5%、 Ti: 0.01— 5%、 Zr:  [0075] As a Cu alloy to which the present invention is applied, Cr: 0.01-5%, Ti: 0.01-5%, Zr:
0.01—5%, Nb : 0.01— 5%、 Ta: 0.01— 5%、 Al: 0.01— 5%、 Mo : 0.01— 5%, V: 0.01 一 5%、 Co : 0.01— 5%, Mn: 0.01—5%、 Si : 0.01— 5%、 Be : 0.01— 5%及び Hf: 0.01 一 5%のうちから選ばれた 1種又は 2種以上の成分を含有する Cu合金がある。  0.01-5%, Nb: 0.01-5%, Ta: 0.01-5%, Al: 0.01-5%, Mo: 0.01-5%, V: 0.01-5%, Co: 0.01-5%, Mn: 0.01 Cu alloys containing one or more components selected from —5%, Si: 0.01—5%, Be: 0.01—5%, and Hf: 0.01—15%.
[0076] あるいは、これらの成分に加えて、質量%で、下記の第 1群から第 3群までの群のう ち少なくとも 1つの群力 選ばれた合金成分の 1種又は 2種以上を総量で 0.001— 5質 量 %含有する Cu合金がある。 [0076] Alternatively, in addition to these components, at least one group force of the following first to third groups in terms of% by mass may be used in total amount of one or more selected alloy components. There is a Cu alloy containing 0.001-5% by mass.
第 1群: P、 B、 Sb、 Bi、 Pb、 Cd、 S及び Asのうち力 選ばれた 1種又は 2種以上を合計 で 0.001-1質量% Group 1: Power of one, two or more selected from P, B, Sb, Bi, Pb, Cd, S and As 0.001-1% by mass
第 2群: Sn、 Ag、 Zn、 Ni、 Au、 Pd、 Fe、 W、 In及び Geのうち力 選ばれた 1種又は 2種以 上を合計で 0.01-5質量%  Group 2: One, two or more selected from Sn, Ag, Zn, Ni, Au, Pd, Fe, W, In, and Ge 0.01-5% by mass in total
第 3群: Te、 Se、 Sr、 Tl、 Rb、 Cs、 Ba、 Re、 Os、 Rh、 Po、 Ga、 Tc、 Ru、 Pd、 Ir、 Pt及び Ta のうち力 選ばれた 1種又は 2種以上を合計で 0.01— 3質量%  Group 3: One or two selected from Te, Se, Sr, Tl, Rb, Cs, Ba, Re, Os, Rh, Po, Ga, Tc, Ru, Pd, Ir, Pt and Ta Above total 0.01-3% by mass
[0077] あるいは、さらに、質量%で、 Li、 Ca、 Mg及び希土類元素のうち力 選ばれる合金 成分の 1種又は 2種以上を合計で 0.001— 2質量 %含有する Cu合金がある。なお、希 土類元素は、 Sc、 Yおよびランタノイドを意味し、それぞれの元素の単体原料を添カロ してもよく、またミッシュメタルを添カ卩してもよい。  [0077] Alternatively, there is a Cu alloy containing, by mass%, one or more alloy components selected from among Li, Ca, Mg and rare earth elements in a total amount of 0.001-2 mass%. The rare earth elements mean Sc, Y, and lanthanoids, and the raw material of each element may be added to the raw material, or may be added to misch metal.
[0078] <本発明の Cu合金の製造方法 >  <Method for Producing Cu Alloy of the Present Invention>
本発明法での铸型を用いた連続铸造に先立ち、所定の Cu合金を溶製する。グラフ アイト材料などによって内張された溶解炉で所定の化学組成の溶湯とする。溶解雰 囲気は非酸化性雰囲気下で行うのが望ま ヽ。やむを得ず大気下で溶解する場合 には、フラックス (例えば氷晶石、蛍石など)、木炭粉を用いて大気を遮断するのが有 効である。この溶湯は取鍋によって、グラフアイト材料、アルミナ煉瓦などで内張され た保持炉に移される。  Prior to the continuous structure using the mold in the method of the present invention, a predetermined Cu alloy is melted. A molten metal having a predetermined chemical composition is formed in a melting furnace lined with a graphite material or the like. It is desirable to perform the dissolving atmosphere in a non-oxidizing atmosphere. When it is necessary to dissolve in the atmosphere, it is effective to use a flux (eg cryolite, fluorite, etc.) or charcoal powder to block the atmosphere. This molten metal is transferred by a ladle to a holding furnace lined with graphite material, alumina bricks and the like.
[0079] 本連続铸造にお!/ヽては、保持炉と铸型が直結した直結型連続铸造であれば、水平 型、垂直型など、いずれでも構わない。  [0079] In the present continuous structure, any type such as a horizontal type and a vertical type may be used as long as it is a direct connection type continuous structure in which a holding furnace and a mold are directly connected.
本発明に係る铸型は、溶湯との反応性が低ぐまた潤滑性も良好であるため、本発 明の Cu合金を製造する際に、操業上の問題は少ない。ただし、铸型内部の凝固開 始位置近傍の内壁は、溶湯との反応や摩耗により徐々に減肉するために、铸片が引 つ力かって引き出しにくい状態になることがあり得る。このような場合は、铸型の冷却 条件や引き出し速度等を調整して凝固位置を移動させることによって、均一に減肉さ せるのが有効な方法となる。  Since the type III according to the present invention has low reactivity with molten metal and good lubricity, there are few operational problems when producing the Cu alloy of the present invention. However, the inner wall of the mold near the solidification start position gradually decreases in thickness due to reaction with the molten metal and wear, so that the piece may be hardly pulled out by the pulling force of the piece. In such a case, it is effective to uniformly reduce the thickness by moving the solidification position by adjusting the cooling conditions of the mold, the drawing speed, and the like.
通常、铸片は間欠引き抜きがなされる。(A)引き抜き 亭止パターン、 (B)引き抜き— 押し戻しパターン、 (C)  Usually, the piece is intermittently pulled out. (A) Pull-out pattern, (B) Pull-back pattern, (C)
引き抜き 亭止-押し戻しパターン、 (D)引き抜き-停止-押し戻し 亭止パターンなど 、いずれでも構わない。ただし上述の理由によって、凝固後の冷却過程における冷 却速度は大きい方が望ましい。特に粗大粒子の生成温度域に対応する二次冷却帯 での冷却速度を上げる手だてを講じるのが望ましい。具体的には、铸型を出た直後 の水噴射、空気噴射、あるいは空気一水混合噴射が有効であるが、もちろん他の方 法でも構わない。 Either a pull-out stop-push-back pattern or (D) a pull-stop-push-back stop-out pattern can be used. However, for the reasons described above, cooling during the cooling process after solidification A higher rejection speed is desirable. In particular, it is desirable to take measures to increase the cooling rate in the secondary cooling zone corresponding to the temperature range where coarse particles are generated. Specifically, water injection, air injection, or air-water mixture injection immediately after leaving the mold is effective, but of course, other methods may be used.
[0080] その後は、 600°C以下での圧延等の加工と 150— 750°Cでの時効処理の組み合わ せで最終製品に至る。この加工は、勿論、連続铸造後の冷却過程で行ってもよい。  [0080] Thereafter, a combination of processing such as rolling at 600 ° C or lower and aging at 150 to 750 ° C leads to a final product. This processing may, of course, be performed in the cooling process after continuous manufacturing.
[0081] <実施例 A>  <Example A>
2.0±0.1重量%Ti、 1.0±0.1重量%Cr、 0.4±0.02重量%Sn、 0.1 ±0.01重量%Znを含む Cu合金を高周波真空溶解炉で溶解し、表 1及び表 2に示す種々の製造方法 (37種 類)で連続铸造試験を行った。溶解された Cu合金溶湯を、保持炉に移し 1250°Cに保 持しながら、所定の条件で 20mm X 200mm断面の铸片を間欠引き抜きした。溶解炉、 あるいは保持炉等の耐火物は、それぞれグラフアイト材料とした。注湯中の雰囲気は 、 Arガス気流による大気遮断とした。いずれの試験においても、铸型外側に Cu合金 より成る水冷式冷却チャンバ一を配して一次冷却し、铸型を出た铸片は空気 -水混 合噴射によって二次冷却した。測温は基本的には铸型を出て力 熱電対または放射 温度計によって行った。一部については、铸型内壁から 5mm外側の位置まで貫通孔 を開けて熱電対を挿入することによって铸型温度を測温し、各铸型材料の物性値を 用いて伝熱計算を行い、凝固開始位置を推定した。以上のデータから、凝固開始か ら 600°Cまでの平均冷却速度を算出した。表 1及び表 2に示す試験においては、 5±2 °Cの範囲に冷却速度を制御した。  Cu alloy containing 2.0 ± 0.1wt% Ti, 1.0 ± 0.1wt% Cr, 0.4 ± 0.02wt% Sn, 0.1 ± 0.01wt% Zn is melted in a high-frequency vacuum melting furnace, and various productions shown in Tables 1 and 2 are performed. Continuous production tests were performed by the method (37 types). The melted Cu alloy melt was transferred to a holding furnace and kept at 1250 ° C., and a piece having a cross section of 20 mm × 200 mm was intermittently extracted under predetermined conditions. Refractories such as melting furnaces or holding furnaces were each made of graphite. The atmosphere during the pouring was air shut off by the Ar gas flow. In each of the tests, a water-cooled cooling chamber made of a Cu alloy was placed on the outside of the mold and the primary cooling was performed, and the piece leaving the mold was subjected to secondary cooling by air-water mixed injection. The temperature was basically measured by using a thermocouple or a radiation thermometer after exiting the 铸 type. For some parts, a through hole was drilled to a position 5 mm outside of the inner wall of the mold and the thermocouple was inserted to measure the mold temperature, and the heat transfer calculation was performed using the physical properties of each mold material. The coagulation start position was estimated. From the above data, the average cooling rate from the start of solidification to 600 ° C was calculated. In the tests shown in Tables 1 and 2, the cooling rate was controlled within the range of 5 ± 2 ° C.
[0082] [表 1] [0082] [Table 1]
表 1 table 1
Figure imgf000020_0001
2] 表
Figure imgf000020_0001
2] table
Figure imgf000021_0001
Figure imgf000021_0001
なお铸込は完铸したときに約 60m長さとなることを目標にした力 一部については初 期凝固殻による铸型の型嚅りなどによって引き抜き抵抗が異常に上がったものもあり 、途中で引き抜きを断念したものもある。铸片表面品質については目視で疵の有無 を判断した。 表 1及び表 2から分力ゝるように、本発明法ではいずれも完铸に成功し、品質も良好 であるが、比較法では、いずれも完铸出来ず、品質的にも商用操業に耐えるレベル ではなかった。 In addition, the force that aimed to be about 60 m long when the insertion was completed Some of the forces were unusually increased due to the unwinding of the mold due to the initial solidification of the shell, etc. Some have abandoned withdrawal. (4) The quality of one surface was visually judged for flaws. As can be seen from Tables 1 and 2, all of the methods of the present invention were completely successful and the quality was good, but none of the comparative methods could be completed. It was not tolerable.
[0085] <実施例 B>  <Example B>
実施例 Aと全く同様に、表 3に示すィ匕学組成の Cu合金 (34種類)を溶製し、製造条 件を変えて連続铸造試験を行い、実施例 Aと全く同様の方法で評価した。表 4及び 表 5にその結果を示す。本発明法ではいずれの铸型、いずれの铸造条件、いずれの 化学組成にぉ ヽても良好な結果が得られた。これに対して铸型を変えた比較例では 、品質的に満足の 、く結果は得られな力つた。  In exactly the same way as in Example A, a Cu alloy (34 types) having the composition shown in Table 3 was melted and subjected to continuous production tests under different manufacturing conditions, and evaluated in exactly the same manner as in Example A. did. Tables 4 and 5 show the results. In the method of the present invention, good results were obtained for any type, any manufacturing condition, and any chemical composition. On the other hand, in the comparative example in which the type 铸 was changed, the quality was satisfactory and the result was not obtained.
[0086] [表 3]  [0086] [Table 3]
表 3  Table 3
Figure imgf000022_0001
Figure imgf000022_0001
[0087] [表 4] s [0087] [Table 4] s
s s
25  twenty five
s i a s i a
ΐ  ΐ
a a
Figure imgf000024_0001
<実施例 C>
Figure imgf000024_0001
<Example C>
表 6に示す合金(3種類)を対象とし、嵩密度 1.82のグラフアイト材料によって構成さ れる铸型であって、その内壁にガラス状カーボン材料を被覆した铸型を用いて、断面 が 20mm X 200mmの铸片を铸造し、一次冷却、二次冷却の水量を変えて、凝固開始 から 600°Cまでの冷却速度を種々変え、特性に及ぼす冷却速度の影響を調査した。 冷却した铸片は、そのままで、 3mmまで冷間圧延、その後 400°Cで 2hrの時効処理を 不活性ガス雰囲気下で行い、再び 0.5mmまで冷間圧延し、最後に 350°Cで 6hr時効 処理した。得られた試験材の導電率と引っ張り試験による引張強度を、次に示す方 法によって評価した。 It is a type II made of a graphite material with a bulk density of 1.82, which targets the alloys shown in Table 6 (three types), and has a cross section of 20 mm X A 200 mm piece was fabricated, the cooling rate from the start of solidification to 600 ° C was varied by changing the amount of water for primary and secondary cooling, and the effect of the cooling rate on the properties was investigated. The cooled pieces are cold rolled to 3 mm, then aged at 400 ° C for 2 hours in an inert gas atmosphere, cold rolled to 0.5 mm again, and finally aged at 350 ° C for 6 hours Processed. The conductivity of the obtained test material and the tensile strength by a tensile test were evaluated by the following methods.
[0090] [表 6]  [0090] [Table 6]
Figure imgf000025_0001
Figure imgf000025_0001
[0091] <引張り強度 > [0091] <Tensile strength>
上記の供試材から JIS Z 2201に規定される 13B号試験片を採取し、 JIS Z 2241に規定 される方法に従い、室温 (25°C)での引張り強さ [TS(MPa)]を求めた。 [0092] <導電率 > Sample No. 13B specified in JIS Z 2201 was sampled from the above test material, and the tensile strength [TS (MPa)] at room temperature (25 ° C) was determined according to the method specified in JIS Z 2241. Was. [0092] <Conductivity>
上記の供試材から幅 10mm X長さ 60mmの試験片を採取し、試験片の長手方向に電 流を流して試験片の両端の電位差を測定し、 4端子法により電気抵抗を求めた。続い てマイクロメータで計測した試験片の体積から、単位体積あたりの電気抵抗 (抵抗率) を算出し多結晶純銅を焼鈍した標準試料の抵抗率 1.72 μ Ω cmとの比力も導電率 [IACS(%;)]を求めた。  A test piece having a width of 10 mm and a length of 60 mm was sampled from the above test material, and a current was passed in the longitudinal direction of the test piece to measure a potential difference between both ends of the test piece, and an electric resistance was obtained by a four-terminal method. Subsequently, the electrical resistance (resistivity) per unit volume was calculated from the volume of the test piece measured with a micrometer, and the specific force with the resistivity of the standard sample annealed with polycrystalline pure copper, 1.72 μΩcm, was also determined by the conductivity [IACS ( %;)].
[0093] 比較法である 0.5°C/sを下回る冷却速度の場合には、冷延時に割れを生じ、冷延さ れたとしても強度と導電性とのバランスが悪い。一方、本発明法では両者のバランス が良好であり導電率との関係において高い引っ張り強度を有する。  [0093] If the cooling rate is lower than 0.5 ° C / s, which is the comparative method, cracks occur during cold rolling, and even if cold rolling is performed, the balance between strength and conductivity is poor. On the other hand, the method of the present invention has a good balance between the two, and has a high tensile strength in relation to the electrical conductivity.
[0094] なお、「導電率との関係において高い引っ張り強度を有する」とは、下記(1)式を満 足するような状態を意味する。(以下この状態を「引っ張り強度と導電率のバランスが よい状態」と呼ぶことにする。 )  [0094] Note that "having a high tensile strength in relation to conductivity" means a state that satisfies the following expression (1). (Hereinafter, this state is referred to as "a state in which the balance between tensile strength and conductivity is good.")
TS≥k +k 水 exp (— k 水 IACS) (1)  TS≥k + k water exp (-k water IACS) (1)
10 11 12  10 11 12
ここで、 TS:引張り強度(MPa)、 IACS:導電率(%)、  Where TS: tensile strength (MPa), IACS: conductivity (%),
k =648. 06、 k = 985. 48、 k =0. 0513  k = 648.06, k = 985.48, k = 0.0513
10 11 12  10 11 12
なお、 IACSは、純銅多結晶材料の導電率に対する百分率を意味する。  In addition, IACS means the percentage with respect to the electrical conductivity of the pure copper polycrystalline material.
[0095] さらに、上記铸造条件で、凝固開始から 600°Cまでの冷却速度を 5°C/sとし、表 3に 示す合金の特性を同様に評価した結果を表 7に示す。その結果、いずれの合金も上 記(1)式を満たす強度と導電率のバランスを有し、本発明により良好な結果が得られ た。 [0095] Further, Table 7 shows the results of the same evaluation of the properties of the alloys shown in Table 3 under the above manufacturing conditions, with the cooling rate from the start of solidification to 600 ° C being 5 ° C / s. As a result, all the alloys had a balance between strength and electrical conductivity satisfying the above equation (1), and good results were obtained by the present invention.
[0096] [表 7] [0096] [Table 7]
表 7 Table 7
Figure imgf000027_0001
産業上の利用可能性
Figure imgf000027_0001
Industrial applicability
本発明は、主として保持炉と铸型が直結した直結型連続铸造に用いられる連続铸 造铸型、およびそれを用いた Cu合金の連続铸造法に係る。すなわち、本発明は、健 全な铸片を連続的に能率よく製造できる铸型を提供し、しかも、加工 ·熱処理を経た 後の最終製品の特性、例えば強度や導電性、あるいは耐衝撃性や疲労強度に優れ る Cu合金の連続铸造法を提供するものであり、特に炭化物を生成しやす!/ヽ元素であ る、 Zr、 Ti、 Cr、 Ta、 Vなどを含有する Cu合金の製造に適用したときに大きな効果が 得られる。 The present invention relates to a continuous structure used mainly for a direct connection type continuous structure in which a holding furnace is directly connected to a mold, and a method for continuously manufacturing a Cu alloy using the continuous structure. That is, the present invention provides a mold capable of continuously and efficiently producing a healthy piece, and furthermore, has properties, such as strength and conductivity, or impact resistance, of a final product after processing and heat treatment. It provides a continuous production method for Cu alloys with excellent fatigue strength, and is particularly susceptible to carbide formation./ For the production of Cu alloys containing the elements Zr, Ti, Cr, Ta, V, etc. Big effect when applied can get.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明に係わる連続铸造铸型の一例である。 FIG. 1 is an example of a continuous fabrication type according to the present invention.
[図 2]本発明に係わる連続铸造铸型の一例であり、 Cu合金溶湯の凝固開始位置に 相対する铸型の内壁に、自己潤滑材料又は金属系自己潤滑性複合材料の被覆 8が 施されている。  FIG. 2 is an example of a continuous molding type according to the present invention, in which a coating 8 of a self-lubricating material or a metal-based self-lubricating composite material is applied to an inner wall of the type III, which is opposed to a solidification start position of a molten Cu alloy. ing.
[図 3]本発明に係わる Cu合金用連続铸造機の一例であり、複数の部材カゝら形成され る铸型を用いている。  FIG. 3 is an example of a continuous forming machine for Cu alloy according to the present invention, which uses a die formed of a plurality of member members.
[図 4]本発明に係わる連続铸造铸型の一例であり、複数の铸型部材によって構成さ れるとともに、 Cu合金溶湯の凝固開始位置に相対する铸型の内壁に、自己潤滑材 料又は金属系自己潤滑性複合材料の被覆 8が施されている Cu合金用連続铸造铸 型の概略図である。  FIG. 4 is an example of a continuous molding die according to the present invention, which is constituted by a plurality of die members and has a self-lubricating material or metal on an inner wall of the die which is opposed to a solidification start position of a molten Cu alloy. FIG. 1 is a schematic view of a continuous production mold for a Cu alloy provided with a coating 8 of a self-lubricating composite material.
[図 5]本発明に係わる連続铸造铸型の他の一例を示す。 Cu合金溶湯に相対する铸 型の内壁に溶湯との反応抑制を目的としてセラミックス材料による被覆 9が施されて いる。  FIG. 5 shows another example of the continuous fabrication type according to the present invention. A coating 9 made of a ceramic material is applied to the inner wall of the rectangular shape opposite to the molten Cu alloy for the purpose of suppressing the reaction with the molten metal.
[図 6]本発明に係わる連続铸造铸型の他の一例でを示す。 Cu合金溶湯の凝固開始 位置に相対する铸型の内壁に金属系自己潤滑性複合材料の被覆 8が施され、さら に Cu合金溶湯に相対する铸型の内壁に、溶湯との反応抑制を目的としてセラミックス 材料による被覆 9が施されて 、る。  FIG. 6 shows another example of the continuous structure type according to the present invention. A metal-based self-lubricating composite material coating 8 is applied to the inner wall of the 铸 type opposite to the solidification start position of the molten Cu alloy, and the purpose is to suppress the reaction with the molten metal on the inner wall of the 相 対 type facing the molten Cu alloy. A coating 9 of a ceramic material is applied.
[図 7]本発明に係わる連続铸造铸型の他の一例を示す。金属材料部材によって铸型 上流部が構成され、かつグラフアイト材料部材によって铸型下流部が構成されるとと もに、 Cu合金溶湯の凝固開始位置に相対する铸型の内壁に金属系自己潤滑性複 合材料の被覆 8が施され、さらに Cu合金溶湯に相対する铸型の内壁に、溶湯との反 応抑制を目的としてセラミックス材料による被覆 9が施されている。  FIG. 7 shows another example of the continuous fabrication type according to the present invention. The metal material member constitutes the upstream part of the mold, and the graphite material member constitutes the downstream part of the mold. The metal-based self-lubrication is applied to the inner wall of the mold, which is opposite to the solidification start position of the molten Cu alloy. A coating 8 of a conductive composite material is applied, and a coating 9 made of a ceramic material is applied to the inner wall of the 铸 shape facing the molten Cu alloy for the purpose of suppressing the reaction with the molten metal.
[図 8]Ti-Cr合金の状態図である。 FIG. 8 is a state diagram of a Ti—Cr alloy.
[図 9]Zr-Cr合金の状態図である。 FIG. 9 is a state diagram of a Zr—Cr alloy.
[図 10]TVZr合金の状態図である。 FIG. 10 is a state diagram of a TVZr alloy.
符号の説明 : Cu合金の溶湯 Explanation of reference numerals : Molten Cu alloy
: 保持炉壁  : Holding furnace wall
: 铸型を構成する部材 : The members that make up the mold
' : 铸型を構成する他の部材 ': Other members of the 铸 type
: 铸片  : 铸 片
: 冷却チャンバ一  : Cooling chamber
: 二次冷却  : Secondary cooling
: 引き抜き方向  : Pull direction
: Cu合金溶湯の凝固開始位置に相対する鎳型の内壁への被覆 : Cu合金溶湯に相対する铸型の内壁への被覆  : Coating on the inner wall of type 鎳 which corresponds to the solidification start position of the molten Cu alloy : Coating on the inner wall of type 相 対 which is opposite to the molten copper alloy
: Cu合金溶湯の凝固開始位置  : Solidification start position of molten Cu alloy

Claims

請求の範囲 The scope of the claims
[1] 少なくとも Cu合金溶湯の凝固開始位置に相対する铸型部分に、ガラス状カーボン 材料、金属系自己潤滑性複合材料又は嵩密度 1.92を超えるグラフアイト材料を用い ることを特徴とする、 Cu合金用連続铸造铸型。  [1] Cu is characterized by using a vitreous carbon material, a metal-based self-lubricating composite material, or a graphite material having a bulk density of more than 1.92, at least in the 铸 -shaped portion corresponding to the solidification starting position of the molten Cu alloy. Continuous production type for alloys.
[2] グラフアイト材料部材、セラミックス材料部材及び金属材料部材のうちから選ばれた 1種の部材で又は 2種以上の部材を組み合わせて構成される铸型であって、少なくと も Cu合金溶湯の凝固開始位置に相対する铸型の内壁が、自己潤滑材料又は金属 系自己潤滑性複合材料で被覆されていることを特徴とする、 Cu合金用連続铸造铸 型。  [2] A type III composed of one member selected from a graphite material member, a ceramic material member, and a metal material member or a combination of two or more members, and at least a molten Cu alloy. A continuous production mold for a Cu alloy, characterized in that a mold inner wall facing a solidification start position of the metal is coated with a self-lubricating material or a metal-based self-lubricating composite material.
[3] 自己潤滑性材料部材、金属系自己潤滑性複合材料部材、グラフアイト材料部材、 セラミックス材料部材及び金属材料部材のうちから選ばれた 2種又は 3種以上の部材 を組み合わせて構成される铸型であって、少なくとも Cu合金溶湯の凝固開始位置に 相対する铸型の内壁部材として、自己潤滑性材料部材又は金属系自己潤滑性複合 材料部材を用いることを特徴とする、 Cu合金用連続铸造铸型。  [3] Composed of two or more members selected from self-lubricating material members, metal-based self-lubricating composite material members, graphite material members, ceramic material members, and metal material members A continuous type for a Cu alloy, wherein a self-lubricating material member or a metal-based self-lubricating composite material member is used as an inner wall member of a 铸 shape at least facing a solidification start position of a molten Cu alloy. Manufacturing type.
[4] 自己潤滑性材料部材、金属系自己潤滑性複合材料部材、グラフアイト材料部材、 セラミックス材料部材及び金属材料部材のうちから選ばれた 2種又は 3種以上の部材 を組み合わせて構成される铸型であって、少なくとも Cu合金溶湯の凝固開始位置に 相対する铸型の内壁が、自己潤滑材料又は金属系自己潤滑性複合材料で被覆さ れていることを特徴とする、 Cu合金用連続铸造铸型。  [4] Composed of two or more members selected from self-lubricating material members, metal-based self-lubricating composite material members, graphite material members, ceramic material members, and metal material members A continuous type for a Cu alloy, wherein the inner wall of the 壁 type, which is at least the solidification start position of the molten Cu alloy, is coated with a self-lubricating material or a metal-based self-lubricating composite material. Manufacturing type.
[5] Cu合金溶湯に相対する铸型の内壁が、セラミックス材料で被覆されていることを特 徴とする、請求項 1から 4までのいずれか記載の Cu合金用連続铸造铸型。  [5] The continuous structure for a Cu alloy according to any one of claims 1 to 4, wherein the inner wall of the mold corresponding to the molten Cu alloy is coated with a ceramic material.
[6] 請求項 1から 5までのいずれか記載の铸型を用い、铸片の間欠引き抜き法によって 、連続的に铸造することを特徴とする、 Cu合金の連続铸造方法。  [6] A method for continuously producing a Cu alloy, comprising continuously producing the mold according to any one of claims 1 to 5 by an intermittent drawing method of a piece.
[7] 铸片の間欠引き抜き法によって、 Cu合金を連続的に铸造するに際し、铸片の間欠 弓 Iき抜きサイクル数よりも少なくとも 2桁以上大き 、サイクル数を持ち、かつ引き抜き 方向に対し垂直な成分を持つ振動を、铸型に付与することを特徴とする、 Cu合金の 連続铸造方法。  [7] In the case of continuous production of Cu alloy by the intermittent drawing method of the piece, the intermittent bow of the piece has at least two orders of magnitude greater than the number of cycles and the number of cycles, and is perpendicular to the drawing direction. A continuous production method for Cu alloys, characterized by imparting vibrations having various components to the mold.
[8] 铸片の間欠引き抜き法によって、 Cu合金を連続的に铸造するに際し、铸型の内壁 と铸片間に潤滑剤あるいは焼き付き防止剤を連続的に供給することを特徴とする、[8] When continuously forming a Cu alloy by the intermittent drawing method of a piece, the inner wall of Characterized by continuously supplying a lubricant or an anti-seizure agent between the pieces.
Cu合金の連続铸造方法。 Continuous production method of Cu alloy.
[9] 铸片の間欠引き抜き法によって、 Cu合金を連続的に铸造するに際し、铸片の間欠 弓 Iき抜きサイクル数よりも少なくとも 2桁以上大き 、サイクル数を持ち、かつ引き抜き 方向に対し垂直な成分を持つ振動を、铸型に付与するとともに、铸型の内壁と铸片 間に潤滑剤あるいは焼き付き防止剤を連続的に供給することを特徴とする、 Cu合金 の連続铸造方法。 [9] In the case of continuous production of Cu alloy by the intermittent drawing method of the piece, the intermittent bow of the piece has at least two orders of magnitude greater than the number of cycles of punching, and is perpendicular to the drawing direction. A method for continuously producing a Cu alloy, comprising: applying vibration having various components to a mold; and continuously supplying a lubricant or an anti-seizure agent between an inner wall of the mold and a piece.
[10] 铸片の間欠引き抜き法によって、 Cu合金を連続的に铸造するに際し、铸片の間欠 弓 Iき抜きサイクル数よりも少なくとも 2桁以上大き 、サイクル数を持ち、かつ引き抜き 方向に対し垂直な成分を持つ振動を、铸型に付与することを特徴とする、請求項 6記 載の Cu合金の連続铸造方法。  [10] In the continuous production of Cu alloy by the intermittent drawing method of the piece, the intermittent bow of the piece has at least two orders of magnitude greater than the number of cycles and the number of cycles, and is perpendicular to the drawing direction. 7. The method for continuously producing a Cu alloy according to claim 6, wherein a vibration having various components is applied to the mold.
[11] 铸片の間欠引き抜き法によって、 Cu合金を連続的に铸造するに際し、铸型の内壁 と铸片間に潤滑剤あるいは焼き付き防止剤を連続的に供給することを特徴とする、請 求項 6又は 10に記載の Cu合金の連続铸造方法。  [11] A claim characterized by continuously supplying a lubricant or an anti-seizure agent between the inner wall of the mold and the piece when the Cu alloy is continuously produced by the intermittent drawing method of the piece. Item 11. The method for continuously producing a Cu alloy according to item 6 or 10.
[12] Cu合金力 質量0 /0で、 Cr: 0.01—5%、 Ti: 0.01—5%、 Zr: 0.01—5%、 Nb : 0.01— 5 %、 Ta: 0.01一 5%、 Al: 0.01一 5%、 Mo : 0.01— 5%, V: 0.01一 5%、 Co : 0.01— 5%, Mn: 0.01— 5%、 Si: 0.01—5%、 Be : 0.01— 5%及び Hf: 0.01— 5%のうち力 選ばれた 1種又は 2種以上の成分を含有することを特徴とする、請求項 6から 11までのいずれ かに記載の Cu合金の連続铸造方法。 In [12] Cu alloy strength by weight 0/0, Cr: 0.01-5% , Ti: 0.01-5%, Zr: 0.01-5%, Nb: 0.01- 5%, Ta: 0.01 one 5%, Al: 0.01 5%, Mo: 0.01—5%, V: 0.01—5%, Co: 0.01—5%, Mn: 0.01—5%, Si: 0.01—5%, Be: 0.01—5%, and Hf: 0.01— The method for continuously producing a Cu alloy according to any one of claims 6 to 11, comprising one or more components selected from among 5%.
[13] Cu合金が、さらに、質量%で、下記の第 1群力も第 3群までの群のうち少なくとも 1つ の群力 選ばれた合金成分の 1種又は 2種以上を総量で 0.001— 5質量 %含有するこ とを特徴とする、請求項 12に記載の Cu合金の連続铸造方法。  [13] The Cu alloy further contains, in mass%, at least one of the following first group forces of the group up to the third group: one or more selected alloy components in a total amount of 0.001- 13. The method for continuously producing a Cu alloy according to claim 12, wherein the content is 5% by mass.
第 1群: P、 B、 Sb、 Bi、 Pb、 Cd、 S及び Asのうち力 選ばれた 1種又は 2種以上を合計 で 0.001-1質量%  Group 1: One or more selected from among P, B, Sb, Bi, Pb, Cd, S and As 0.001-1% by mass in total
第 2群: Sn、 Ag、 Zn、 Ni、 Au、 Pd、 Fe、 W、 In及び Geのうち力 選ばれた 1種又は 2種以 上を合計で 0.01-5質量%  Group 2: One, two or more selected from Sn, Ag, Zn, Ni, Au, Pd, Fe, W, In, and Ge 0.01-5% by mass in total
第 3群: Te、 Se、 Sr、 Tl、 Rb、 Cs、 Ba、 Re、 Os、 Rh、 Po、 Ga、 Tc、 Ru、 Pd、 Ir、 Pt及び Ta のうち力 選ばれた 1種又は 2種以上を合計で 0.01— 3質量% [14] Cu合金力 さらに、質量%で、 Li、 Ca、 Mg及び希土類元素のうちから選ばれる合金 成分の 1種又は 2種以上を合計で 0.001— 2質量 %含有することを特徴とする、請求項 12又は 13に記載の Cu合金の連続铸造方法。 Group 3: One or two selected from among Te, Se, Sr, Tl, Rb, Cs, Ba, Re, Os, Rh, Po, Ga, Tc, Ru, Pd, Ir, Pt and Ta Above total 0.01-3% by mass [14] Cu alloy strength Further, it is characterized in that it contains 0.001-2 mass% in total of one or more alloy components selected from Li, Ca, Mg and rare earth elements in mass%. 14. The method for continuously producing a Cu alloy according to claim 12 or 13.
PCT/JP2004/013756 2003-09-24 2004-09-21 Continuous casting mold and method of continuous casting for copper alloy WO2005028143A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04787939A EP1688198A4 (en) 2003-09-24 2004-09-21 Continuous casting mold and method of continuous casting for copper alloy
JP2005514086A JP4333881B2 (en) 2003-09-24 2004-09-21 Continuous casting mold and copper alloy continuous casting method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003331909 2003-09-24
JP2003-331909 2003-09-24
JP2004097223 2004-03-29
JP2004-097223 2004-03-29
JP2004234641 2004-08-11
JP2004-234641 2004-08-11

Publications (1)

Publication Number Publication Date
WO2005028143A1 true WO2005028143A1 (en) 2005-03-31

Family

ID=34381782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013756 WO2005028143A1 (en) 2003-09-24 2004-09-21 Continuous casting mold and method of continuous casting for copper alloy

Country Status (5)

Country Link
US (1) US20060180293A1 (en)
EP (1) EP1688198A4 (en)
JP (1) JP4333881B2 (en)
TW (1) TWI272145B (en)
WO (1) WO2005028143A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006015282A1 (en) * 2006-04-01 2007-10-04 Honeywell Technologies Sarl Ecc Bronze casting mold with thermal insulation lining and casting process for manufacture of drinking water valve housing and fittings
JP2009242882A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Titanium copper suitable for precise press working
JP2011036903A (en) * 2009-08-18 2011-02-24 Materials Solution Inc Method for manufacturing copper alloy
CN102476177A (en) * 2010-11-29 2012-05-30 株洲南方有色焊材有限公司 Upward drawing method for copper alloy wire blank
CN103695697A (en) * 2013-12-03 2014-04-02 江苏帕齐尼铜业有限公司 Copper-chromium alloy and preparation method thereof
JP2014095107A (en) * 2012-11-07 2014-05-22 Fujikura Ltd Cu-Mg ALLOY BODY, MANUFACTURING METHOD OF Cu-Mg ALLOY BODY AND DRAWN WIRE MATERIAL
CN104051076A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Method for preparing low-expansion copper alloy wire used for automotive cables and cords
CN104046842A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Preparation method of high-content nickel-copper alloy wire for electronic instrument of automobile
CN104046838A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Preparation method of high-strength high-toughness copper alloy wire for automatic cables
CN104046837A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Making method of leadless copper alloy wire for automobile industry
CN104152728A (en) * 2014-06-05 2014-11-19 锐展(铜陵)科技有限公司 Preparation method of high heat-conducting copper alloy wire for automobile wire harness
KR20180125449A (en) * 2016-03-30 2018-11-23 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic and electric equipment, Copper alloy plate for electronic and electric equipment, Parts for electronic and electric equipment, Terminal, bus bar, and movable part for relay
US11104977B2 (en) 2018-03-30 2021-08-31 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
US11203806B2 (en) 2016-03-30 2021-12-21 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
US11319615B2 (en) 2016-03-30 2022-05-03 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
US11655523B2 (en) 2018-03-30 2023-05-23 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056318B (en) * 2008-03-05 2017-06-09 南线有限责任公司 As the niobium of the protective wall in motlten metal
WO2011027858A1 (en) * 2009-09-07 2011-03-10 株式会社 白金 Copper alloy and method for producing same
US8652397B2 (en) 2010-04-09 2014-02-18 Southwire Company Ultrasonic device with integrated gas delivery system
DK2556176T3 (en) 2010-04-09 2020-05-04 Southwire Co Llc Ultrasonic degassing of molten metals
CN102634688B (en) * 2011-02-10 2014-05-07 湖南特力新材料有限公司 Leadless free-cutting copper alloy and preparation method
JP5802150B2 (en) * 2012-02-24 2015-10-28 株式会社神戸製鋼所 Copper alloy
CN103114218B (en) * 2013-03-11 2014-07-16 武汉大学 Preparation method of copper-chrome alloy
CN103114222B (en) * 2013-03-14 2014-10-22 上海天申铜业集团有限公司 Casting method of lead-free water meter case
BR112016011262B1 (en) 2013-11-18 2021-05-18 Southwire Company, Llc ultrasonic device and method for reducing an amount of a dissolved gas and/or an impurity in a molten metal bath
CN104046831A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Making method of copper alloy wire for automobiles
CN104046832A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Making method of highly conductive copper alloy wire or automobile generator
JP6488951B2 (en) * 2014-09-25 2019-03-27 三菱マテリアル株式会社 Mold material for casting and Cu-Cr-Zr alloy material
CN104588618B (en) * 2014-11-28 2017-01-18 太原科技大学 Continuous casting device of magnesium alloy composite board
CN104475468B (en) * 2014-12-09 2016-08-24 中色(天津)特种材料有限公司 N6 nickel alloy wire continuous casting even pulls out processing technique
JP6228941B2 (en) * 2015-01-09 2017-11-08 Jx金属株式会社 Titanium copper with plating layer
CN104630546A (en) * 2015-03-05 2015-05-20 苏州市凯业金属制品有限公司 High-strength heat-resistant copper alloy metal tube
CN104928528A (en) * 2015-07-06 2015-09-23 苏州科茂电子材料科技有限公司 Conductive copper alloy material and preparing method thereof
CN104928523A (en) * 2015-07-10 2015-09-23 苏州科茂电子材料科技有限公司 Copper alloy lead material for communication cable and preparing method thereof
US10233515B1 (en) 2015-08-14 2019-03-19 Southwire Company, Llc Metal treatment station for use with ultrasonic degassing system
CN105108079A (en) * 2015-09-24 2015-12-02 云南新铜人实业有限公司 Horizontal continuous casting copper belt production process
CN106111931B (en) * 2016-06-28 2018-06-05 北京科技大学 A kind of metal clad material solid-liquid continuous casting composite forming apparatus and process
CN106424613A (en) * 2016-11-29 2017-02-22 郑州中拓知识产权代理有限公司 Copper rod continuous casting machine
KR101830841B1 (en) 2016-11-29 2018-02-22 한국생산기술연구원 Copper alloys having high wear resistant for synchronizer ring and manufacturing method thereof
CN106735003B (en) * 2016-12-08 2018-09-28 北京科技大学 A kind of non-vacuum melting horizontal casting production technology of high-strength highly-conductive Cu-Cr-Zr alloy bar materials
CN106583672B (en) * 2016-12-09 2018-09-25 北京科技大学 A kind of copper chromium alloy horizontal continuous casting process
CN107511469A (en) * 2017-10-13 2017-12-26 安阳恒安电机有限公司 A kind of squirrel cage motor rotor low pressure cast copper equipment, cast copper and its cast copper method
CN110396621B (en) * 2019-08-27 2020-12-08 天长市华海电子科技有限公司 Intergranular corrosion resistant forging piece and preparation method thereof
CN113458352B (en) 2020-03-30 2023-11-24 日本碍子株式会社 Method for producing Cu-Ni-Sn alloy and cooler for use in same
CN111850345B (en) * 2020-07-23 2021-06-18 唐山中科量子激光科技有限公司 Wear-resistant high-temperature-erosion-resistant alloy material, crystallizer copper plate surface treatment method and crystallizer copper plate
CN112355263A (en) * 2020-10-14 2021-02-12 刘珍 Semi-solid forming device for aluminum alloy processing
JP7433263B2 (en) * 2021-03-03 2024-02-19 日本碍子株式会社 Manufacturing method of Cu-Ni-Sn alloy
JP2023012240A (en) * 2021-07-13 2023-01-25 昭和電工株式会社 Horizontal continuous casting apparatus, aluminum alloy cast rod manufacturing method
CN113680980B (en) * 2021-09-06 2022-12-09 西安斯瑞先进铜合金科技有限公司 Production process for horizontally continuously casting copper-manganese alloy
CN114012052B (en) * 2021-12-30 2022-05-03 东北大学 Horizontal continuous casting equipment for aluminum alloy cast ingot
CN115786752A (en) * 2022-11-24 2023-03-14 有研工程技术研究院有限公司 Method for improving corrosion resistance of cupronickel alloy pipe
CN115852201A (en) * 2022-12-28 2023-03-28 北冶功能材料(江苏)有限公司 Production method of copper-nickel-tin alloy ingot

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123862A (en) * 1982-01-20 1983-07-23 Nippon Mining Co Ltd Manufacture of copper alloy for lead material for semiconductor apparatus
JPS61169149A (en) * 1985-01-22 1986-07-30 Nippon Mining Co Ltd Continuous casting method
JPH03155436A (en) * 1989-11-10 1991-07-03 Sumitomo Light Metal Ind Ltd Horizontal continuous casting method
JPH03210942A (en) * 1990-01-11 1991-09-13 Sumitomo Metal Ind Ltd Method for continuously casting steel
JPH04266457A (en) * 1991-02-22 1992-09-22 Hitachi Cable Ltd Casting mold for continuous casting
JPH05318034A (en) * 1992-05-22 1993-12-03 Furukawa Electric Co Ltd:The Complex graphite mold for continuous casting
JPH06179930A (en) * 1992-08-25 1994-06-28 Tatsuta Electric Wire & Cable Co Ltd Graphite-made crucible or mold
JPH09141394A (en) * 1995-11-17 1997-06-03 Sumitomo Metal Ind Ltd Mold for continuous casting, its manufacture and using method thereof
JPH11147162A (en) * 1997-11-13 1999-06-02 Tokai Carbon Co Ltd Graphite mold for continuous casting

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3424228A (en) * 1966-04-08 1969-01-28 Ducommun Inc Anisotropic mold liner for continuous casting of metals
US3435881A (en) * 1967-01-03 1969-04-01 Carbone Corp Anisotropic continuous casting mold
DE2634633C2 (en) * 1976-07-31 1984-07-05 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover Continuous casting mold made of a copper material, especially for continuous casting of steel
DE2657207C2 (en) * 1976-12-17 1978-10-05 Kreidler Werke Gmbh, 7000 Stuttgart Process for the continuous casting of metal alloys, in particular brass alloys and continuous casting mold for carrying out the process
JPS5785652A (en) * 1980-11-19 1982-05-28 Kawasaki Steel Corp Continuous casting method for hollow blank material for pipe making
JPS59133942A (en) * 1983-01-21 1984-08-01 Kobe Steel Ltd Inside surface treatment of mold for horizontal continuous casting
US5171491A (en) * 1986-02-04 1992-12-15 The Carborundum Company Method of producing near net shape fused cast refractories
JPH026037A (en) * 1988-06-27 1990-01-10 Nkk Corp Method for continuously casting steel
CH695210A5 (en) * 2000-12-11 2006-01-31 Concast Ag Mold for the continuous casting of molten steel.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123862A (en) * 1982-01-20 1983-07-23 Nippon Mining Co Ltd Manufacture of copper alloy for lead material for semiconductor apparatus
JPS61169149A (en) * 1985-01-22 1986-07-30 Nippon Mining Co Ltd Continuous casting method
JPH03155436A (en) * 1989-11-10 1991-07-03 Sumitomo Light Metal Ind Ltd Horizontal continuous casting method
JPH03210942A (en) * 1990-01-11 1991-09-13 Sumitomo Metal Ind Ltd Method for continuously casting steel
JPH04266457A (en) * 1991-02-22 1992-09-22 Hitachi Cable Ltd Casting mold for continuous casting
JPH05318034A (en) * 1992-05-22 1993-12-03 Furukawa Electric Co Ltd:The Complex graphite mold for continuous casting
JPH06179930A (en) * 1992-08-25 1994-06-28 Tatsuta Electric Wire & Cable Co Ltd Graphite-made crucible or mold
JPH09141394A (en) * 1995-11-17 1997-06-03 Sumitomo Metal Ind Ltd Mold for continuous casting, its manufacture and using method thereof
JPH11147162A (en) * 1997-11-13 1999-06-02 Tokai Carbon Co Ltd Graphite mold for continuous casting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1688198A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006015282A1 (en) * 2006-04-01 2007-10-04 Honeywell Technologies Sarl Ecc Bronze casting mold with thermal insulation lining and casting process for manufacture of drinking water valve housing and fittings
JP2009242882A (en) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd Titanium copper suitable for precise press working
JP2011036903A (en) * 2009-08-18 2011-02-24 Materials Solution Inc Method for manufacturing copper alloy
CN102476177A (en) * 2010-11-29 2012-05-30 株洲南方有色焊材有限公司 Upward drawing method for copper alloy wire blank
CN102476177B (en) * 2010-11-29 2013-05-29 株洲南方有色焊材有限公司 Upward drawing method for copper alloy wire blank
JP2014095107A (en) * 2012-11-07 2014-05-22 Fujikura Ltd Cu-Mg ALLOY BODY, MANUFACTURING METHOD OF Cu-Mg ALLOY BODY AND DRAWN WIRE MATERIAL
CN103695697B (en) * 2013-12-03 2016-04-20 江苏帕齐尼铜业有限公司 A kind of chromiumcopper and preparation method thereof
CN103695697A (en) * 2013-12-03 2014-04-02 江苏帕齐尼铜业有限公司 Copper-chromium alloy and preparation method thereof
CN104051076A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Method for preparing low-expansion copper alloy wire used for automotive cables and cords
CN104046842A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Preparation method of high-content nickel-copper alloy wire for electronic instrument of automobile
CN104046838A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Preparation method of high-strength high-toughness copper alloy wire for automatic cables
CN104046837A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Making method of leadless copper alloy wire for automobile industry
CN104152728A (en) * 2014-06-05 2014-11-19 锐展(铜陵)科技有限公司 Preparation method of high heat-conducting copper alloy wire for automobile wire harness
KR20180125449A (en) * 2016-03-30 2018-11-23 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic and electric equipment, Copper alloy plate for electronic and electric equipment, Parts for electronic and electric equipment, Terminal, bus bar, and movable part for relay
KR102296652B1 (en) 2016-03-30 2021-08-31 미쓰비시 마테리알 가부시키가이샤 Copper alloy for electronic and electric equipment, copper alloy plate for electronic and electric equipment, electronic and electric equipment parts, terminal, bus bar, and movable piece for relay
US11203806B2 (en) 2016-03-30 2021-12-21 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
US11319615B2 (en) 2016-03-30 2022-05-03 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy plate strip for electronic and electrical equipment, component for electronic and electrical equipment, terminal, busbar, and movable piece for relay
US11104977B2 (en) 2018-03-30 2021-08-31 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
US11655523B2 (en) 2018-03-30 2023-05-23 Mitsubishi Materials Corporation Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar

Also Published As

Publication number Publication date
JPWO2005028143A1 (en) 2007-11-15
TW200528213A (en) 2005-09-01
EP1688198A4 (en) 2007-03-21
TWI272145B (en) 2007-02-01
JP4333881B2 (en) 2009-09-16
EP1688198A1 (en) 2006-08-09
US20060180293A1 (en) 2006-08-17

Similar Documents

Publication Publication Date Title
WO2005028143A1 (en) Continuous casting mold and method of continuous casting for copper alloy
JPWO2005072891A1 (en) Copper alloy continuous casting method
Rajabi et al. Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet–A review
TW457154B (en) Electrode for surface treatment by electric discharge, process for making the same, method and apparatus for surface treatment by electric discharge
JP2002503764A (en) Aluminide sheet manufacturing method by thermomechanical processing of aluminide powder
WO2006104152A1 (en) Copper alloy and process for producing the same
WO2004070070A1 (en) Cu ALLOY AND METHOD FOR PRODUCTION THEREOF
Li et al. Microstructure and mechanical properties of the Ni-B-Ti composite coating on TA2 prepared by pre-plating and laser remelting
WO2014008011A1 (en) Consumer electronics machined housing using coating that exhibit metamorphic transformation
JP2001271129A (en) Sintering material and composite sintered sliding part
CN109913719B (en) Magnesium alloy, method for producing same, and electronic device
EP1594644B1 (en) Formation of metallic thermal barrier alloys
JP2007016288A (en) Method for manufacturing sliding member coated with bearing material and sliding member coated with bearing material
Aramian et al. A review on the microstructure and properties of TiC and Ti (C, N) based cermets
CN102686337B (en) Process for producing copper alloy wire containing active element
Kumar et al. Coatings on reinforcements in aluminum metal matrix composites
CN101574761B (en) Powder-cored welding wire used for surface cladding of high-temperature thermocouple protection tube and preparation method thereof
TW576767B (en) Ingot-mold wall, especially a broad side wall of a continuous casting mold for steel
KR100292119B1 (en) Electrode material, method for manufacturing electrode material, and method for manufacturing electrode
KR100740899B1 (en) Mold wall, especially a broadside wall of a continuous casting mold for steel
WO2012164581A2 (en) A process for producing reinforced aluminum-metal matrix composites
JPS616242A (en) Fiber reinforced metallic composite material
US3764308A (en) Multi phase strip from particle and powder mixture
Cao et al. Mechanical properties of iron matrix composites reinforced by copper-coated hybrid ceramic particles
US3819311A (en) Apparatus for forming multi-phase strip from particle and powder mixture

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006103368

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2005514086

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004787939

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11386924

Country of ref document: US

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2004787939

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2004787939

Country of ref document: EP