WO2005026817A1 - Optical scanner device - Google Patents

Optical scanner device Download PDF

Info

Publication number
WO2005026817A1
WO2005026817A1 PCT/JP2004/013222 JP2004013222W WO2005026817A1 WO 2005026817 A1 WO2005026817 A1 WO 2005026817A1 JP 2004013222 W JP2004013222 W JP 2004013222W WO 2005026817 A1 WO2005026817 A1 WO 2005026817A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical scanner
scanner device
core
movable portion
electromagnet
Prior art date
Application number
PCT/JP2004/013222
Other languages
French (fr)
Japanese (ja)
Inventor
Norihiro Asada
Original Assignee
Mems Technology Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mems Technology Co., Ltd filed Critical Mems Technology Co., Ltd
Publication of WO2005026817A1 publication Critical patent/WO2005026817A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means

Definitions

  • the present invention relates to an optical scanner device for deflecting and scanning incident light, and more particularly to driving a movable portion thereof.
  • the polygon mirror As a conventional technique for deflecting and scanning light, there is a polygon mirror widely used in printers and the like.
  • the polygon mirror is a mirror whose polygonal side surface is rotated by a spindle motor.
  • the mirror is irradiated with a laser beam or the like, and the laser beam or the like irradiated by rotating the polygon mirror is sequentially deflected and scanned.
  • the polygon mirror requires relatively large power for the spindle motor, and the noise peculiar to the motor bearing is large.
  • a galvano mirror is often used for applications other than a printer, such as a laser marker, a laser processing machine, and a laser microscope.
  • This galvanometer mirror is also driven by a motor, and it is possible to keep the mirror stationary.
  • the mirrors are assembled with large mechanical parts, the size of the device becomes large, and a large amount of power is required to drive it.
  • the electromagnetic method can increase the scanning amplitude as compared with the electrostatic-piezoelectric method. ing.
  • Patent Literature 1 Examples of this are those described in Patent Literature 1, Patent Literature 2, and Patent Literature 3 below.
  • a structure 50 is formed of single-crystal silicon, and a coil 53 is formed on a movable portion 52 supported by a torsion beam (a beam capable of torsion operation) 51.
  • Mirror 54 is laid.
  • the principle of operation is that a current flows through the coil 53 in the magnetic field generated by the external permanent magnet 55 to generate Lorentz force and obtain driving force.
  • This drive system is an electromagnetic actuator Is called the moving coil system. As shown in FIG.
  • the structure described in Patent Document 2 has a structure 60 made of single-crystal silicon, a mirror 62 and a soft magnetic material 63 laid on a movable portion 61, and a soft magnetic material 63 on the outside.
  • the electromagnet 64 is fixed opposite to one side, and the movable portion 61 is driven by the attraction force caused by flowing a current through the electromagnetic stone 64.
  • This method is similar to the moving magnet method in the classification of electromagnetic actuators.
  • the one described in Patent Document 3 has a structure 70 formed of a semiconductor, a movable part 71 provided with a magnetic film 72 magnetized in a direction perpendicular to the film surface, and two externally wound winding directions opposite to each other.
  • the coils 73 and 74 are fixed, and the movable portion 71 is driven by a repulsive force and an attractive force generated by a magnetic force generated in each coil by flowing a current through the coils 73 and 74 and a magnetic force of the magnetic film 72.
  • This method is a modification of the moving magnet method.
  • Patent Document 1 JP-A-7-175005 (Patent No. 2722314)
  • Patent Document 2 JP-A-2002-311372
  • Patent Document 3 JP-A-2002-189187
  • Patent Document 2 can solve the above-mentioned problem in the moving coil method described in Patent Document 1, but when driven only by the suction force, a force is applied to the end of the movable portion. As a result, the movable part is twisted, but the whole movable part is pulled toward the electromagnet, and the mirror position is likely to shift, especially when a large force is applied due to large amplitude. Is a problem.
  • the method described in Patent Document 3 since the movable portion is driven by the repulsive force and the attractive force, the entire movable portion in the method described in Patent Document 2 is pulled toward the electromagnet, and the position of the mirror is shifted.
  • the problem can be solved, Since the coil is air-core, a large current is required for driving and two coils with different winding directions are required.
  • the present invention has been made under such circumstances, and it is an object of the present invention to provide an optical scanner device that can be easily miniaturized, is durable, and has a large amplitude. .
  • the optical scanner device is configured as described in the following (1) to (4).
  • An optical scanner device in which an integrated structure in which a flat movable portion is supported by a torsion beam inside a fixed portion is made of monocrystalline silicon, and the movable portion is provided with a mirror, A hard magnetic body magnetized in the thickness direction of the movable part, provided on the flat movable part, and a u-shaped core-equipped electromagnet disposed opposite to the hard magnetic body,
  • An optical scanner device comprising:
  • the electromagnet with a U-shaped core is divided into a total of three parts, one point at each end of the core and one point at the center of the core.
  • An optical scanner device comprising an electromagnet with a U-shaped core formed by insert molding in a vessel and joining a coil-wound portion, which is a central portion of the core, to both end portions of the core.
  • An optical scanner device wherein the hard magnetic body is formed on the movable portion by plating.
  • An optical scanner device wherein the hard magnetic material is formed on the movable portion by a thin film forming method such as sputtering or vacuum deposition.
  • the present invention it is not necessary to form a coil in the movable part, so that miniaturization is easy, and since there is no coil in the movable part, the lead wire of the coil is not twisted by the torsion beam part, and the durability is high. Yes, large amplitude is possible because it is excited by an electromagnet with a U-shaped core.
  • FIG. 1 is a diagram showing a configuration of a structure according to a first embodiment.
  • FIG. 2 is a diagram showing the operating principle of Embodiment 1.
  • FIG. 3 is a graph showing characteristics of Example 1.

Abstract

In an optical scanner device, a structure body with an integrated structure where a flat plate-like movable section (4) is supported inside a stationary section (2) by torsion beams (3) is formed of a monocrystal silicon and a mirror is provided on the movable section (4). A hard magnetic body (6) magnetized in the thickness direction of the movable section is provided on the movable section (4), and an electromagnet (20) with a letter U-shaped core is provided so as to face the hard magnetic body (6). The optical scanner device uses the structure above to deflect and scan incident light, and as a result, the device is easily reduced in size, has durability, and can perform large amplification.

Description

明 細 書  Specification
光スキャナ装置  Optical scanner device
技術分野  Technical field
[0001] 本発明は、入射した光を偏向,走査する光スキャナ装置に関し、特にその可動部の 駆動に関するものである。 背景技術  The present invention relates to an optical scanner device for deflecting and scanning incident light, and more particularly to driving a movable portion thereof. Background art
[0002] 光を偏向,走査するための従来技術としては、プリンタ等に広く使用されているポリ ゴンミラーがある。ポリゴンミラーはスピンドルモータで回転する多角形の側面をミラー とするものである。そのミラーにレーザビーム等を照射し、このポリゴンミラーが回転す ることで照射されたレーザビーム等は順次偏向,走査される。しかし,ポリゴンミラーは スピンドルモータに比較的大きな電力が必要であり、モータ軸受け特有の騒音が大 きい。  [0002] As a conventional technique for deflecting and scanning light, there is a polygon mirror widely used in printers and the like. The polygon mirror is a mirror whose polygonal side surface is rotated by a spindle motor. The mirror is irradiated with a laser beam or the like, and the laser beam or the like irradiated by rotating the polygon mirror is sequentially deflected and scanned. However, the polygon mirror requires relatively large power for the spindle motor, and the noise peculiar to the motor bearing is large.
[0003] プリンタ以外のレーザマーカやレーザ加工機,レーザ顕微鏡等の用途には、ガル ノ ノミラーが用いられることが多い。このガルバノミラーはやはりモータで駆動されて おり、ミラーを静止することも可能である。しかし、ミラーが大ききぐメカ-カル部品で 組み立てられているので、装置としては大きくなり、その駆動に大きな電力が必要とな る。  [0003] A galvano mirror is often used for applications other than a printer, such as a laser marker, a laser processing machine, and a laser microscope. This galvanometer mirror is also driven by a motor, and it is possible to keep the mirror stationary. However, since the mirrors are assembled with large mechanical parts, the size of the device becomes large, and a large amount of power is required to drive it.
[0004] このような実情から、小型で省電力となるマイクロマシユング技術を用いた光スキヤ ナが提案されている。  [0004] Under such circumstances, an optical scanner using a micromachining technology that is compact and consumes less power has been proposed.
[0005] マイクロマシユング技術を用いた光スキャナには、様々な駆動方式があるが、静電 式ゃ圧電式に比べて電磁式が走査振幅を大きくできることから、ポリゴンミラーの代 替として検討されている。  [0005] There are various driving methods for the optical scanner using the micromachining technology. However, the electromagnetic method can increase the scanning amplitude as compared with the electrostatic-piezoelectric method. ing.
[0006] この例としては、下記特許文献 1,特許文献 2,特許文献 3記載のもの等がある。特 許文献 1記載のものは、図 5に示すように、単結晶シリコンで構造体 50を形成し、ねじ り梁(ねじり動作可能な梁) 51で支持された可動部 52上にコイル 53とミラー 54を敷設 してある。動作原理は外部の永久磁石 55で発生した磁界内でコイル 53に電流を流 すことでローレンツ力を発生させ駆動力を得る。この駆動方式は電磁ァクチユエータ の分類ではムービングコイル方式と呼ばれる。特許文献 2記載のものは、図 6に示す ように、単結晶シリコンで構造体 60を形成し、可動部 61にミラー 62と軟磁性体 63を 敷設し、外部には、柔磁性体 63の片側に対向して電磁石 64を固定して、この電磁 石 64に電流を流すことによる吸引力により可動部 61を駆動するものである。この方 式は電磁ァクチユエータの分類ではムービングマグネット方式に近 、。特許文献 3記 載のものは、半導体で構造体 70を形成し,可動部 71には膜面の垂直方向に磁化し た磁性膜 72を設け、外部に巻き方向を互いに逆にした 2個のコイル 73, 74を固定し て、コイル 73, 74に電流を流すことによって各コイルに発生する磁力と磁性膜 72の 磁力とによる、反発力と吸引力により可動部 71を駆動するものである。この方式はム 一ビングマグネット方式の変形と 、える。 [0006] Examples of this are those described in Patent Literature 1, Patent Literature 2, and Patent Literature 3 below. In the structure described in Patent Document 1, as shown in FIG. 5, a structure 50 is formed of single-crystal silicon, and a coil 53 is formed on a movable portion 52 supported by a torsion beam (a beam capable of torsion operation) 51. Mirror 54 is laid. The principle of operation is that a current flows through the coil 53 in the magnetic field generated by the external permanent magnet 55 to generate Lorentz force and obtain driving force. This drive system is an electromagnetic actuator Is called the moving coil system. As shown in FIG. 6, the structure described in Patent Document 2 has a structure 60 made of single-crystal silicon, a mirror 62 and a soft magnetic material 63 laid on a movable portion 61, and a soft magnetic material 63 on the outside. The electromagnet 64 is fixed opposite to one side, and the movable portion 61 is driven by the attraction force caused by flowing a current through the electromagnetic stone 64. This method is similar to the moving magnet method in the classification of electromagnetic actuators. The one described in Patent Document 3 has a structure 70 formed of a semiconductor, a movable part 71 provided with a magnetic film 72 magnetized in a direction perpendicular to the film surface, and two externally wound winding directions opposite to each other. The coils 73 and 74 are fixed, and the movable portion 71 is driven by a repulsive force and an attractive force generated by a magnetic force generated in each coil by flowing a current through the coils 73 and 74 and a magnetic force of the magnetic film 72. This method is a modification of the moving magnet method.
特許文献 1 :特開平 7-175005号公報 (特許第 2722314号)  Patent Document 1: JP-A-7-175005 (Patent No. 2722314)
特許文献 2:特開 2002-311372号公報  Patent Document 2: JP-A-2002-311372
特許文献 3 :特開 2002 - 189187号公報  Patent Document 3: JP-A-2002-189187
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 特許文献 1記載の方式は、コイルへの導入線がねじり梁上に敷設されているため、 梁のねじれにしたがってねじれてしまい、耐久性に問題が生じる可能性がある。また 、薄膜で形成されたコイルでは抵抗を小さくすることは難しぐ電流を流した際の発熱 の影響も考 [0007] In the method described in Patent Document 1, since the lead wire to the coil is laid on the torsion beam, the wire is twisted according to the torsion of the beam, which may cause a problem in durability. In addition, it is difficult to reduce the resistance of a coil made of a thin film.
慮しなければならな 、。コイルの形成を前提とすると小型化が難 、と 、つた問題が ある。  I have to consider. Assuming that the coil is formed, there is a problem that miniaturization is difficult.
[0008] 特許文献 2に記載の方式は、特許文献 1記載のムービングコイル方式にある前述 の問題を解決することはできるが、吸引力だけで駆動すると可動部の端部に力を作 用させることで可動部がねじりの動きはするものの、可動部全体が電磁石の方に引つ 張られ、ミラーの位置がずれてしまう可能性が大きぐ特に大振幅のために大きな力 を作用させたときが問題となる。特許文献 3記載の方式は、反発力と吸引力により可 動部を駆動するものなので、特許文献 2記載の方式における、可動部全体が電磁石 の方に引っ張られ、ミラーの位置がずれてしまうという問題は解決できるものの、コィ ルが空心であるため駆動に大きな電流を必要とし、巻き方向の異なる 2個のコイルを 必要とする、という問題がある。 [0008] The method described in Patent Document 2 can solve the above-mentioned problem in the moving coil method described in Patent Document 1, but when driven only by the suction force, a force is applied to the end of the movable portion. As a result, the movable part is twisted, but the whole movable part is pulled toward the electromagnet, and the mirror position is likely to shift, especially when a large force is applied due to large amplitude. Is a problem. In the method described in Patent Document 3, since the movable portion is driven by the repulsive force and the attractive force, the entire movable portion in the method described in Patent Document 2 is pulled toward the electromagnet, and the position of the mirror is shifted. Although the problem can be solved, Since the coil is air-core, a large current is required for driving and two coils with different winding directions are required.
[0009] 本発明は、このような状況のもとでなされたもので、小型化が容易で、耐久性があり 、大振幅が可能な光スキャナ装置を提供することを課題とするものである。 [0009] The present invention has been made under such circumstances, and it is an object of the present invention to provide an optical scanner device that can be easily miniaturized, is durable, and has a large amplitude. .
課題を解決するための手段  Means for solving the problem
[0010] 前記課題を解決するため、本発明では、光スキャナ装置を次の(1)ないし (4)のと おりに構成する。 [0010] In order to solve the above-mentioned problems, in the present invention, the optical scanner device is configured as described in the following (1) to (4).
[0011] (1)固定部の内側に平板状の可動部をねじり梁で支持した一体構造の構造体を単 結晶シリコンで構成し、前記可動部にミラーを設けた光スキャナ装置であって、 前記平板状の可動部に設けた、可動部の厚さ方向に磁化した硬磁性体と、 前記硬磁性体に対向して配置した u字型コア付き電磁石と、  (1) An optical scanner device in which an integrated structure in which a flat movable portion is supported by a torsion beam inside a fixed portion is made of monocrystalline silicon, and the movable portion is provided with a mirror, A hard magnetic body magnetized in the thickness direction of the movable part, provided on the flat movable part, and a u-shaped core-equipped electromagnet disposed opposite to the hard magnetic body,
を備えた光スキャナ装置。  An optical scanner device comprising:
[0012] (2)前記(1)記載の光スキャナ装置にお!、て、  (2) The optical scanner according to the above (1),
前記構造体を収納する容器を備え、前記 U字型コア付き電磁石はコアの両端部分 各 1点とコアの中央部分 1点の計 3点の部品に分割し、該コアの両端部分を前記容 器にインサート成型しておき、該コアの中央部分である、コイルを巻いた部分を前記 コアの両端部分に接合して U字型コア付き電磁石を構成した光スキャナ装置。  The electromagnet with a U-shaped core is divided into a total of three parts, one point at each end of the core and one point at the center of the core. An optical scanner device comprising an electromagnet with a U-shaped core formed by insert molding in a vessel and joining a coil-wound portion, which is a central portion of the core, to both end portions of the core.
[0013] (3)前記(1)または(2)に記載の光スキャナ装置において、 (3) In the optical scanner device according to (1) or (2),
前記硬磁性体は、前記可動部にメツキにより形成した光スキャナ装置。  An optical scanner device wherein the hard magnetic body is formed on the movable portion by plating.
[0014] (4)前記(1)または(2)に記載の光スキャナ装置において、 (4) In the optical scanner device according to (1) or (2),
前記硬磁性体は、前記可動部にスパッタリング、真空蒸着などの薄膜形成方法に より形成した光スキャナ装置。  An optical scanner device wherein the hard magnetic material is formed on the movable portion by a thin film forming method such as sputtering or vacuum deposition.
発明の効果  The invention's effect
[0015] 本発明によれば、可動部にコイルを形成する必要がないので小型化が容易であり 、可動部にコイルがないのでコイルの導入線がねじり梁部でねじれることがなく耐久 性があり、 U字型コア付き電磁石で励振して ヽるので大振幅が可能である。  [0015] According to the present invention, it is not necessary to form a coil in the movable part, so that miniaturization is easy, and since there is no coil in the movable part, the lead wire of the coil is not twisted by the torsion beam part, and the durability is high. Yes, large amplitude is possible because it is excited by an electromagnet with a U-shaped core.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]実施例 1の構造体の構成を示す図 [図 2]実施例 1の動作原理を示す図 FIG. 1 is a diagram showing a configuration of a structure according to a first embodiment. FIG. 2 is a diagram showing the operating principle of Embodiment 1.
[図 3]実施例 1の特性を示す図  FIG. 3 is a graph showing characteristics of Example 1.
[図 4]実施例 1の組み立て方を示す図  FIG. 4 is a diagram showing how to assemble in Example 1
[図 5]特許文献 1記載の光スキャナ装置を示す図  FIG. 5 is a diagram showing an optical scanner device described in Patent Document 1
[図 6]特許文献 2記載の光スキャナ装置を示す図  FIG. 6 is a diagram showing an optical scanner device described in Patent Document 2
[図 7]特許文献 3記載の光スキャナ装置を示す図  FIG. 7 is a diagram showing an optical scanner device described in Patent Document 3
符号の説明  Explanation of symbols
[0017] 1 構造体 [0017] 1 Structure
2 固定部  2 Fixed part
3 ねじり梁  3 Torsion beam
4 可動部  4 Moving parts
5 ミラー  5 mirror
6 硬磁性体  6 Hard magnetic material
20 U字型コア付き電磁石  20 U-shaped cored electromagnet
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 以下本発明を実施するための最良の形態を光スキャナ装置の実施例により詳しく 説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to embodiments of an optical scanner device.
実施例 1  Example 1
[0019] 図 1は、実施例 1である"光スキャナ装置"の構造体 1の構成を示す図である。図示 のように、単結晶シリコンで平板状の固定部 2,可動部 4および固定部 2と可動部 4を 接続  FIG. 1 is a diagram illustrating a configuration of a structure 1 of the “optical scanner device” according to the first embodiment. As shown in the figure, fixed part 2, movable part 4 and fixed part 2 and movable part 4 are connected by a single-crystal silicon plate.
するねじり梁 3を半導体フォトリソ技術で精度良くパターユングする。なお、各図は、説 明の都合上、大きさを誇張して示しており、例えば、可動部 4は数ミリの大きさである。  The torsion beam 3 to be puttered with high precision using semiconductor photolithography technology. In addition, each figure is exaggerated in size for convenience of explanation, and, for example, the movable part 4 is several millimeters in size.
[0020] さらにパターユングされた領域のうち予め硬磁性体 6 (膜磁石,図 2参照)を設ける 部分に、メツキある 、はスパッタリングや蒸着と 、つた膜生成技術を用いて成膜しか つ形状を整える。 [0020] Further, in the portion where the hard magnetic material 6 (film magnet, see FIG. 2) is provided in advance in the puttered region, there is a difference in the shape. Arrange.
[0021] そして、図 2に示すように、可動部 4の成膜された一方の面に、硬磁性体 6の膜磁石 を形成する。 [0022] 膜磁石には、例えば、スパッタリングで形成される希土類のサマリウムコバルト系、 希土類— Fe— B、 Fe— Ptや磁気記憶装置に使用されて 、るコバルト系材料などの高 保磁力を有する材料を使用する。成膜方法は、膜特性とコストを勘案して化学的方 法か物理的方法を選択する。 Then, as shown in FIG. 2, a film magnet of the hard magnetic material 6 is formed on one surface of the movable portion 4 where the film is formed. [0022] The film magnet has a high coercive force such as a rare earth samarium cobalt-based material formed by sputtering, rare earth-Fe-B, Fe-Pt, or a cobalt-based material used in magnetic storage devices. Use material. For the film formation method, a chemical method or a physical method is selected in consideration of film characteristics and cost.
[0023] 構造体 1の外部に、図 2に示すように、硬磁性体 6と対向して U字型コア付き電磁石 20を配置する。この電磁石 20は、可動部 4の両端で逆極性なるように設計された U 字型コア 7付きの電磁石である。  As shown in FIG. 2, an electromagnet 20 with a U-shaped core is arranged outside the structure 1 so as to face the hard magnetic material 6. The electromagnet 20 is an electromagnet with a U-shaped core 7 designed to have opposite polarities at both ends of the movable section 4.
[0024] 電磁石 20は、コア 7を軟磁性材料で作成し、図 4に示すように、ノ ッケージ 40と共 に単結晶シリコン構造体 1と一体ィ匕される。硬磁性体 6の着磁は組み立て直前に行う ことが望ましいが、組み立て後の着磁も可能である。  In the electromagnet 20, the core 7 is made of a soft magnetic material, and is integrally formed with the single crystal silicon structure 1 together with the knockout 40 as shown in FIG. It is desirable that the magnetization of the hard magnetic material 6 be performed immediately before assembly, but it is also possible to perform magnetization after assembly.
[0025] U字型コア付き電磁石を使用すれば、電磁石に用いるコイルは 1個で済み、コスト, 工程共に削減できる。しかし、 U字型のコアにボビン巻きのコイルを装着することは難 しい。これを容易にするために U字型のコアを 3点に分割して、それぞれ棒状のコア を作成し組み立てる手法を用いてコスト,工程共に削減をする。  [0025] If an electromagnet with a U-shaped core is used, only one coil is required for the electromagnet, and both cost and process can be reduced. However, it is difficult to attach a bobbin coil to a U-shaped core. To make this easier, the U-shaped core is divided into three points, and rod-shaped cores are created and assembled, thereby reducing costs and processes.
[0026] 詳しくは、図 4に示すように、プラスチックのパッケージ 40にボビン巻きコイルを装着 しない 2点のコア 41を予めインサート成型しておき、後カもボビン巻きコイル装着のコ ァ 42をコア 41の端部に接合するように、当該プラスチックのパッケージ 40に組み込 む。  [0026] More specifically, as shown in Fig. 4, two cores 41 that do not have a bobbin-wound coil mounted on a plastic package 40 are insert-molded in advance, and a core 42 with a bobbin-wound coil mounted on the core is also used as a core. It is assembled into the plastic package 40 so as to be joined to the end of 41.
[0027] 単結晶シリコンを使用した光スキャナ装置の場合、少ない印加工ネルギで大きな振 幅を得るために、可動部とねじり梁を共振子として設計し、使用することが多い。共振 子として使用する場合には、単結晶シリコンの材料物性は極めて安定しているために 、共振周波数は形状のみで定まる。ねじりの 1次共振モードを利用するのであるが、 目的外の高次モードはシミュレーションなどで除外する設計が必要であるのは言うま でもない。  In the case of an optical scanner device using single crystal silicon, a movable portion and a torsion beam are often designed and used as a resonator in order to obtain a large amplitude with a small amount of marking energy. When used as a resonator, the material frequency of single crystal silicon is extremely stable, so the resonance frequency is determined only by the shape. Although the torsional first-order resonance mode is used, it goes without saying that a higher-order mode that is not the target must be designed to be excluded by simulation or the like.
[0028] このように組み立てられた光スキャナ装置の電磁石 20に電流を印加すると、図 2に 示すように、可動部 4の両端に吸引力と反発力が加わるためねじり梁 3を回動軸にし て可動部 4はバランスよく傾くことになる。電流の印加をやめれば、ねじり梁 3の復元 力で元の位置に戻る。 [0029] 印加する電流を、図 3に示すように交流にすれば、交流の周波数に応じた運動を繰 り返すことになる。印加する電流の値が一定の場合、可動部の振幅は、図 3 (b)に示 すように、共振周波数で最大となり、共振周波数から離れるに従い減少する。周波数 が一定の場合、振幅は、図 3 (c)に示すように、印加する電流の値に比例して増大す る。 When a current is applied to the electromagnet 20 of the optical scanner device thus assembled, as shown in FIG. 2, an attractive force and a repulsive force are applied to both ends of the movable portion 4, so that the torsion beam 3 is used as a rotation axis. Therefore, the movable part 4 is tilted in a well-balanced manner. When the application of the current is stopped, the torsion beam 3 returns to the original position by the restoring force. If the applied current is an alternating current as shown in FIG. 3, the motion according to the frequency of the alternating current will be repeated. When the value of the applied current is constant, the amplitude of the movable part becomes maximum at the resonance frequency and decreases as the distance from the resonance frequency increases, as shown in Fig. 3 (b). When the frequency is constant, the amplitude increases in proportion to the value of the applied current, as shown in Fig. 3 (c).
[0030] 本実施例の構成では、可動部に設けられた膜磁石 (永久磁石)の保磁力が少々小 さくて  In the configuration of the present embodiment, the coercive force of the film magnet (permanent magnet) provided in the movable portion is slightly smaller.
も、コア付電磁石で発生する磁力を大きくできるので (空心コイルに比べて磁束密度 を 1000— 10000倍)、大振幅を得ることは容易である。し力も、電磁石は単結晶シリ コン構造体の外に存在しているため、発生した熱が単結晶シリコン構造体に影響を 及ぼさない。特許文献 1記載の光スキャナ装置では、可動部のコイルでの発熱が可 動部材料の温度上昇をもたらし、材料自身が熱膨張することによってねじり梁にかか る応力が変化し、共振周波数が設計値からずれてくる。本実施例装置では、可動部 に発熱体がな 、ので、このような問題は発生しな 、。  However, since the magnetic force generated by the cored electromagnet can be increased (the magnetic flux density is 1000 to 10,000 times that of an air-core coil), it is easy to obtain a large amplitude. Also, since the electromagnet exists outside the single-crystal silicon structure, the generated heat does not affect the single-crystal silicon structure. In the optical scanner device described in Patent Document 1, the heat generated in the coil of the movable portion causes the temperature of the material of the movable portion to rise, and the material itself undergoes thermal expansion, so that the stress applied to the torsion beam changes, and the resonance frequency decreases. It deviates from the design value. In the device of the present embodiment, such a problem does not occur because there is no heating element in the movable part.
[0031] 以上説明したように、本実施例では、可動部にコイルを形成する必要がな 、ので小 型化が容易であり、可動部にコイルがないのでコイルの導入線がねじり梁部でねじれ ることがなく耐久性がある。また、 U字型コア付き電磁石で励振しているので、可動部 をバランスよく傾けることができ、磁力を大きくできて大振幅が可能である。 [0031] As described above, in the present embodiment, it is not necessary to form a coil in the movable part, so that it is easy to reduce the size, and since there is no coil in the movable part, the introduction line of the coil is a torsion beam part. Durable without twisting. Also, since the excitation is performed by an electromagnet with a U-shaped core, the movable part can be tilted in a well-balanced manner, the magnetic force can be increased, and a large amplitude is possible.
[0032] さらに、 U字型コア付き電磁石 1個で、可動部の両端で所要の逆極性の磁力を得て おり、電磁石製造のコスト,工程を削減することができる。また、電磁石のコアを 3点に 分割し、ノ ッケージで合体するようにしているので、 U字型のコアにボビン巻きのコィ ルを容易に装着でき、製造のコスト,工程を削減することができる。 I字型コアにボビン 巻きのコイルを装着した部品は、腕時計などに用いられているので、安価に入手でき る。  [0032] Furthermore, with one electromagnet with a U-shaped core, the magnetic force of the required reverse polarity is obtained at both ends of the movable portion, and the cost and process of manufacturing the electromagnet can be reduced. In addition, since the core of the electromagnet is divided into three points and combined by knocking, bobbin-wound coils can be easily mounted on the U-shaped core, reducing manufacturing costs and processes. it can. Parts with an I-shaped core and a bobbin-wound coil are used in wristwatches, etc., and can be obtained at low cost.
[0033] (変形)  [0033] (deformation)
前述の実施例では、平板状の可動体の全面にわたり硬磁性体を設けている力 可 動体の両端の、コア 41に対向する個所にのみ硬磁性体を設けるようにしてもよい。ま た、硬磁性体はミラー 5と同じ側に設けてもよい。  In the above-described embodiment, the hard magnetic body may be provided only at the positions opposed to the core 41 at both ends of the force movable body in which the hard magnetic body is provided over the entire surface of the flat movable body. Further, the hard magnetic material may be provided on the same side as the mirror 5.

Claims

請求の範囲 The scope of the claims
[1] 固定部の内側に平板状の可動部をねじり梁で支持した一体構造の構造体を単結 晶シリコンで構成し、前記可動部にミラーを設けた光スキャナ装置であって、 前記平板状の可動部に設けた、可動部の厚さ方向に磁化した硬磁性体と、 前記硬磁性体に対向して配置した u字型コア付き電磁石と、  [1] An optical scanner device in which an integrated structure in which a flat movable portion is supported by a torsion beam inside a fixed portion is made of single crystal silicon and a mirror is provided in the movable portion, A hard magnetic material magnetized in the thickness direction of the movable portion, provided on the movable portion, and an electromagnet with a u-shaped core disposed opposite to the hard magnetic material,
を備えたことを特徴とする光スキャナ装置。  An optical scanner device comprising:
[2] 請求項 1記載の光スキャナ装置において、  [2] The optical scanner device according to claim 1,
前記構造体を収納する容器を備え、前記 U字型コア付き電磁石はコアの両端部分 各 1点とコアの中央部分 1点の計 3点の部品に分割し、該コアの両端部分を前記容 器にインサート成型しておき、該コアの中央部分である、コイルを巻いた部分を前記 コアの両端部分に接合して U字型コア付き電磁石を構成したことを特徴とする光スキ ャナ装置。  The electromagnet with a U-shaped core is divided into a total of three parts, one at each end of the core and one at the center of the core. An optical scanner having a U-shaped core formed by insert-molding a core in a vessel, and joining a coil-wound portion, which is a central portion of the core, to both end portions of the core. .
[3] 請求項 1または 2に記載の光スキャナ装置において、  [3] The optical scanner device according to claim 1 or 2,
前記硬磁性体は、前記可動部にメツキにより形成したことを特徴とする光スキャナ装 置。  The optical scanner device, wherein the hard magnetic body is formed on the movable portion by plating.
[4] 請求項 1または 2に記載の光スキャナ装置において、  [4] The optical scanner device according to claim 1 or 2,
前記硬磁性体は、前記可動部にスパッタリング,真空蒸着などの薄膜形成方法に より形成したことを特徴とする光スキャナ装置。  The optical scanner device, wherein the hard magnetic material is formed on the movable part by a thin film forming method such as sputtering or vacuum deposition.
PCT/JP2004/013222 2003-09-11 2004-09-10 Optical scanner device WO2005026817A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003319289A JP2005084571A (en) 2003-09-11 2003-09-11 Optical scanner
JP2003-319289 2003-09-11

Publications (1)

Publication Number Publication Date
WO2005026817A1 true WO2005026817A1 (en) 2005-03-24

Family

ID=34308559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013222 WO2005026817A1 (en) 2003-09-11 2004-09-10 Optical scanner device

Country Status (2)

Country Link
JP (1) JP2005084571A (en)
WO (1) WO2005026817A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110301018A (en) * 2017-02-10 2019-10-01 微-埃普西龙测量技术有限两合公司 Magnetic resistance actuator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040353A (en) 2006-08-09 2008-02-21 Seiko Epson Corp Optical device, optical scanner and image forming apparatus
JP6884322B2 (en) * 2016-10-31 2021-06-09 国立大学法人福井大学 Manufacturing method of two-dimensional optical scanning mirror device
US20220390738A1 (en) * 2019-11-19 2022-12-08 Pioneer Corporation Data accumulation system and data accumulation method
JP2020115217A (en) * 2020-03-24 2020-07-30 国立大学法人福井大学 Two-dimensional optical scanning mirror device, two-dimensional optical scanning device and image projection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720702A (en) * 1980-07-14 1982-02-03 Nippon Telegr & Teleph Corp <Ntt> Optical switch
JPH0954264A (en) * 1995-08-10 1997-02-25 Omron Corp Optical scanner, distance measurng device and photosensor device
JP2003255259A (en) * 2001-12-28 2003-09-10 Canon Inc Oscillating body apparatus
JP2004191918A (en) * 2002-10-18 2004-07-08 Victor Co Of Japan Ltd Optical deflector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720702A (en) * 1980-07-14 1982-02-03 Nippon Telegr & Teleph Corp <Ntt> Optical switch
JPH0954264A (en) * 1995-08-10 1997-02-25 Omron Corp Optical scanner, distance measurng device and photosensor device
JP2003255259A (en) * 2001-12-28 2003-09-10 Canon Inc Oscillating body apparatus
JP2004191918A (en) * 2002-10-18 2004-07-08 Victor Co Of Japan Ltd Optical deflector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110301018A (en) * 2017-02-10 2019-10-01 微-埃普西龙测量技术有限两合公司 Magnetic resistance actuator
CN110301018B (en) * 2017-02-10 2021-10-29 微-埃普西龙测量技术有限两合公司 Reluctance actuator
US11614614B2 (en) 2017-02-10 2023-03-28 Micro-Epsilon Messtechnik Gmbh & Co. Kg Reluctance actuator

Also Published As

Publication number Publication date
JP2005084571A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JP6349229B2 (en) Biaxial optical deflector and manufacturing method thereof
US7872789B2 (en) Optical device, optical scanner, and image forming apparatus
JP4329831B2 (en) Actuator, optical scanner and image forming apparatus
JP7421140B2 (en) Rotary reciprocating actuator
JP5744917B2 (en) Vibration element, optical scanning device, and image forming apparatus and image projection apparatus using the same
US11258343B2 (en) Double helix actuator with magnetic sections having alternating polarities
JP3974068B2 (en) Planar type electromagnetic actuator
JP4144840B2 (en) Oscillator device, optical deflector, and optical apparatus using optical deflector
WO2005026817A1 (en) Optical scanner device
WO1995015610A1 (en) Micromotor
JP4533024B2 (en) Driving device and light amount adjusting device
JP4254220B2 (en) Electromagnetic actuator and mechanical quantity sensor
JP2012145650A (en) Vibration element and optical scanner, and image forming apparatus and image projection device using these
JP5434004B2 (en) Electromagnetic drive actuator and method for manufacturing electromagnetic drive actuator
CN114208006A (en) Force-balanced micromirror with electromagnetic actuation
JP5207656B2 (en) Planar type electromagnetic actuator
JP3215335B2 (en) Linear electromagnetic microactuator
WO2006098500A1 (en) Magnetic device
JP4376513B2 (en) Planar type electromagnetic actuator
JP2003029190A (en) Optical deflector, image display device and imaging device using the same, and method for manufacturing optical deflector
EP1864179A1 (en) Moving mirror optical scanner and associated methods
US20230006526A1 (en) Rotary reciprocating driving actuator
JP5126464B2 (en) Stepping motor and camera focus adjustment actuator
US7092135B2 (en) Moving mirror optical scanner and associated methods
Kirillina et al. Nanometer system of approximation using two types of engine in a vacuum

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase