JP5207656B2 - Planar type electromagnetic actuator - Google Patents

Planar type electromagnetic actuator Download PDF

Info

Publication number
JP5207656B2
JP5207656B2 JP2007111084A JP2007111084A JP5207656B2 JP 5207656 B2 JP5207656 B2 JP 5207656B2 JP 2007111084 A JP2007111084 A JP 2007111084A JP 2007111084 A JP2007111084 A JP 2007111084A JP 5207656 B2 JP5207656 B2 JP 5207656B2
Authority
JP
Japan
Prior art keywords
torsion bar
movable portion
movable
electromagnetic actuator
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007111084A
Other languages
Japanese (ja)
Other versions
JP2008271700A (en
Inventor
敦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2007111084A priority Critical patent/JP5207656B2/en
Publication of JP2008271700A publication Critical patent/JP2008271700A/en
Application granted granted Critical
Publication of JP5207656B2 publication Critical patent/JP5207656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Micromachines (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Description

本発明は、電磁力を利用して可動部を駆動する半導体製造技術を利用して製造したプレーナ型電磁アクチュエータに関し、特に、プレーナ型電磁アクチュエータの可動部の揺動安定性を向上させる技術に関する。   The present invention relates to a planar type electromagnetic actuator manufactured using a semiconductor manufacturing technology for driving a movable part using electromagnetic force, and more particularly to a technique for improving the swing stability of the movable part of the planar type electromagnetic actuator.

従来、この種のプレーナ型電磁アクチュエータとしては、例えば特許文献1に記載されているように、半導体基板を異方性エッチングして、枠状の固定部と、可動部と、前記固定部に可動部を揺動可能に軸支するトーションバーとを一体形成し、可動部に駆動コイルを設け、トーションバーの軸方向と平行な可動部両端縁部の駆動コイル部分に静磁界を作用させる静磁界発生手段として例えば永久磁石を設けて構成し、駆動回路から供給される電流により駆動コイルに発生する磁界と永久磁石による静磁界との相互作用によりトーションバーの軸方向と平行な可動部両対辺部に電磁力(ローレンツ力)を作用させて可動部を、トーションバーの軸回りに駆動する。
特許第2722314号公報
Conventionally, as this type of planar electromagnetic actuator, for example, as described in Patent Document 1, a semiconductor substrate is anisotropically etched to move to a frame-shaped fixed portion, a movable portion, and the fixed portion. The torsion bar that pivotally supports the part is integrally formed, the drive coil is provided on the movable part, and the static magnetic field acts on the drive coil part at both ends of the movable part parallel to the axial direction of the torsion bar For example, a permanent magnet is provided as the generating means, and the movable part opposite to the axial direction of the torsion bar is parallel to the axial direction of the torsion bar by the interaction between the magnetic field generated in the drive coil by the current supplied from the drive circuit and the static magnetic field by the permanent magnet. The movable part is driven around the axis of the torsion bar by applying an electromagnetic force (Lorentz force).
Japanese Patent No. 2722314

ところで、従来のこの種のプレーナ型電磁アクチュエータを気体中で揺動駆動した場合、可動部周辺の気体の乱れが可動部の揺動動作に対して大きな影響を及ぼし、可動部の揺動動作を乱す要因になっている。これについて図6(a)〜(d)を参照して具体的に説明すると、可動部が動作するとその動作方向と逆側の可動部端縁部近傍に大きな気体の渦が生じる(図(a))。この気体の渦は可動部の動きに伴って可動部の動く方向に移動する(図(b))。その後、可動部が反転動作すると、気体の渦が可動部端縁部と衝突し、可動部の動作方向と反対方向のモーメントMが生じて可動部端縁部に作用する(図(c))。このモーメントMにより、破線で示す可動部の本来の揺動位置(モーメントMがない場合の位置)に対して実線で示すように可動部の揺動位置にずれが生じる(図(d))。これにより、可動部の揺動動作の安定性が乱されるという問題が生じる虞れがあった。   By the way, when this type of conventional planar type electromagnetic actuator is driven to swing in a gas, the turbulence of the gas around the movable part has a great influence on the swinging operation of the movable part, and the swinging operation of the movable part is prevented. It is a disturbing factor. This will be specifically described with reference to FIGS. 6A to 6D. When the movable part operates, a large gas vortex is generated in the vicinity of the edge of the movable part opposite to the operation direction (see FIG. 6A). )). The vortex of the gas moves in the moving direction of the movable part with the movement of the movable part (FIG. (B)). Thereafter, when the movable part is reversed, the gas vortex collides with the edge of the movable part, and a moment M in the direction opposite to the operation direction of the movable part is generated and acts on the edge of the movable part (FIG. (C)). . This moment M causes a shift in the swing position of the movable portion as shown by the solid line with respect to the original swing position of the movable portion indicated by the broken line (position when there is no moment M) (FIG. 4D). This may cause a problem that the stability of the swinging motion of the movable part is disturbed.

本発明は上記問題点に着目してなされたもので、可動部の揺動動作に伴う渦の発生を抑制して可動部の揺動動作の安定化を図ることができるプレーナ型電磁アクチュエータを提供することを目的とする。   The present invention has been made paying attention to the above problems, and provides a planar electromagnetic actuator capable of stabilizing the swinging motion of the movable part by suppressing the generation of vortices accompanying the swinging motion of the movable part. The purpose is to do.

このため、請求項1の発明は、固定部にトーションバーを介して揺動可能に軸支した可動部を、電磁力により駆動するプレーナ型電磁アクチュエータにおいて、前記可動部の前記トーションバーの軸方向と略平行な端縁部を、前記軸方向に平行な当該可動部の断面において凹凸形状にし、前記端縁部における凸部の突出寸法及びピッチを、前記可動部の駆動周波数、振幅及び前記トーションバーの軸中心から前記端縁部までの長さに関係して定まる前記渦の直径から決定する構成としたことを特徴とする。 For this reason, the invention of claim 1 is a planar electromagnetic actuator for driving a movable part pivotally supported on a fixed part via a torsion bar by an electromagnetic force, in an axial direction of the torsion bar of the movable part. The edge portion substantially parallel to the axial direction is formed into a concavo-convex shape in the cross section of the movable portion parallel to the axial direction, and the projecting dimension and pitch of the convex portion at the edge portion are set to the drive frequency, amplitude, and the torsion It is characterized in that it is determined from the diameter of the vortex determined in relation to the length from the axial center of the bar to the end edge .

かかる構成では、可動部のトーションバーの軸方向と略平行な縁部を凹凸形状とすることで、可動部揺動動作時に可動部端縁部近傍における気体の渦の発生を抑制できると共に、発生した渦が凹凸部により細かく分散され、可動部に作用する可動部動作方向と反対方向のモーメントを小さくすることができるようになる。 In such a configuration, the axial direction substantially parallel end edges of the torsion bar of the movable portion by a shape of irregularities, the generation of vortices of the gas in the vicinity movable portion end edge portion during the swinging operation of the movable portion can be suppressed The generated vortex is finely dispersed by the concavo-convex portion, and the moment in the direction opposite to the moving portion operating direction acting on the moving portion can be reduced.

体的には、請求項のように、前記凸部の突出寸法及びピッチを、前記渦の直径の約1/5〜約5倍とするとよい。 In concrete terms, as in claim 2, the protrusion dimension and pitch of the convex portion, or equal to about 1/5 to about 5 times the diameter of the vortex.

請求項のように、前記可動部が、前記固定部に外側トーションバーを介して揺動可能に軸支される枠状の外側可動部と、該外側可動部に前記外側トーションバーと軸方向が直角な内側トーションバーを介して揺動可能に軸支される内側可動部とからなり、前記外側可動部の前記外側トーションバーの軸方向と略平行な端縁部及び前記内側可動部の前記内側トーションバーの軸方向と略平行な端縁部を前記凹凸形状とするとよい。 As in claim 3, the movable portion is a frame-shaped outer movable portion pivotally supported by the fixed portion via an outer torsion bar, and the outer movable portion and the outer torsion bar in the axial direction. An inner movable portion that is pivotally supported via a right-angled inner torsion bar, and an end edge portion of the outer movable portion that is substantially parallel to the axial direction of the outer torsion bar and the inner movable portion. An end edge portion substantially parallel to the axial direction of the inner torsion bar may be the uneven shape.

請求項の構成において、請求項のように、前記内側可動部の前記外側トーションバーの軸方向と略平行な側縁部を凹凸形状とするとよい。 In the configuration of claim 3 , as in claim 4 , the side edge portion of the inner movable portion that is substantially parallel to the axial direction of the outer torsion bar may have an uneven shape.

本発明のプレーナ型電磁アクチュエータによれば、可動部のトーションバーの軸方向と略平行な縁部を凹凸形状としたので、可動部の揺動動作によってその縁部近傍に生じる気体の渦を抑制することができると共に、発生した渦を細かく分散できる。従って、可動部の反転動作時に渦から縁部に作用する可動部動作方向と反対方向のモーメントを小さくでき、可動部の揺動動作の安定性を高めることができる。 According to the planar type electromagnetic actuator of the present invention, since the axial direction substantially parallel end edges of the torsion bar of the movable portion has an irregular shape, vortices of gas occurring near the edge portions by the swinging operation of the movable portion And the generated vortices can be finely dispersed. Thus, the opposite direction of the moment the movable parts operating direction acting on the edge portion of the vortex during reverse operation of the movable portion can be reduced, it is possible to increase the stability of the swing motion of the movable portion.

以下、本発明の実施形態を図面に基づいて説明する。
図1に本発明に係るプレーナ型電磁アクチュエータの第1実施形態の平面図を示す。
図1において、本実施形態のプレーナ型電磁アクチュエータ1は、枠状の固定部2に一対のトーションバー3,3を介して揺動可能に軸支される可動部4と、通電により磁界を発生する駆動コイル5と、駆動コイル5に静磁界を作用する静磁界発生手段である例えば永久磁石6とを備え、通電により駆動コイル5に発生する磁界と永久磁石6の静磁界との相互作用によりトーションバー3,3の軸方向と平行な可動部4の両端縁部に電磁力(ローレンツ力)を作用させて可動部4を回動させるものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a plan view of a first embodiment of a planar electromagnetic actuator according to the present invention.
In FIG. 1, a planar electromagnetic actuator 1 of this embodiment generates a magnetic field by energizing a movable part 4 pivotally supported by a frame-like fixed part 2 via a pair of torsion bars 3 and 3. Driving coil 5 and, for example, a permanent magnet 6 which is a static magnetic field generating means for applying a static magnetic field to the driving coil 5, and the interaction between the magnetic field generated in the driving coil 5 by energization and the static magnetic field of the permanent magnet 6 is provided. Electromagnetic force (Lorentz force) is applied to both edge portions of the movable portion 4 parallel to the axial direction of the torsion bars 3 and 3 to rotate the movable portion 4.

前記固定部2、トーションバー3,3及び可動部4は、例えばシリコン基板等の半導体基板を異方性エッチングして一体に形成する。そして、本発明の特徴である可動部4は、トーションバー3,3の軸方向と略平行な両端縁部4aを等間隔に形成した三角形による凹凸形状としている。前記駆動コイル5は、図1に示すように可動部4の周縁に沿って巻回し、固定部2に形成した一対の電極端子7,7にトーションバー3,3部分を通って電気的に接続する。尚、駆動コイル5の巻回数は、図1では図示を簡素化するため1回の巻回数としてあるが複数巻回されている。前記永久磁石6は、図示のように可動部4を挟んで互いに反対磁極が対向するようにして固定部2の外側に設けられている。   The fixed part 2, the torsion bars 3, 3 and the movable part 4 are integrally formed by anisotropically etching a semiconductor substrate such as a silicon substrate. And the movable part 4 which is the characteristic of this invention is made into the uneven | corrugated shape by the triangle which formed the both-ends edge part 4a substantially parallel to the axial direction of the torsion bars 3 and 3 at equal intervals. As shown in FIG. 1, the drive coil 5 is wound along the periphery of the movable part 4 and electrically connected to a pair of electrode terminals 7 and 7 formed on the fixed part 2 through the torsion bars 3 and 3. To do. The number of turns of the drive coil 5 is one in order to simplify the illustration in FIG. The permanent magnet 6 is provided on the outer side of the fixed portion 2 so that opposite magnetic poles face each other with the movable portion 4 interposed therebetween as shown in the figure.

次に、本実施形態のプレーナ型電磁アクチュエータの動作を説明する。
可動部4の駆動原理は従来と同様であり、可動部4上の駆動コイル5に電流を流すと磁界が発生し、この磁界と永久磁石6,6による静磁界との相互作用によりローレンツ力が発生し、トーションバー3,3の軸方向と平行な可動部4の両端縁部に互いに逆方向の電磁力が発生し、トーションバー3,3を軸中心として可動部4が回動する。この回動動作に伴ってトーションバー3,3が捩じられトーションバー3,3にばね力が発生し、このばね力と発生した電磁力とが釣合う位置まで可動部4は回動する。駆動コイル5に正弦波等の交流電流を流せば可動部4を揺動動作させることができる。これにより、可動部4に反射ミラーを設ければ光ビームを偏向走査することが可能となり、駆動コイル5に供給する交流電流の周波数を可動部4の揺動運動の共振周波数に設定すれば、一定周期で連続走査可能な光走査デバイスが実現できる。
Next, the operation of the planar electromagnetic actuator of this embodiment will be described.
The driving principle of the movable part 4 is the same as in the prior art. When a current is passed through the drive coil 5 on the movable part 4, a magnetic field is generated, and the Lorentz force is generated by the interaction between this magnetic field and the static magnetic field by the permanent magnets 6 and 6. Generated, electromagnetic forces in opposite directions are generated at both end edges of the movable part 4 parallel to the axial direction of the torsion bars 3, 3, and the movable part 4 rotates around the torsion bars 3, 3. With this turning operation, the torsion bars 3 and 3 are twisted to generate a spring force in the torsion bars 3 and 3, and the movable portion 4 is rotated to a position where the spring force and the generated electromagnetic force are balanced. If an alternating current such as a sine wave is passed through the drive coil 5, the movable part 4 can be swung. Thereby, if the movable part 4 is provided with a reflecting mirror, the light beam can be deflected and scanned. If the frequency of the alternating current supplied to the drive coil 5 is set to the resonance frequency of the oscillating motion of the movable part 4, An optical scanning device capable of continuous scanning at a constant period can be realized.

このプレーナ型電磁アクチュエータ1を気体中で揺動動作させた時に、可動部4周辺の気体の乱れにより可動部4の動作方向と反対側の可動部端縁部4a近傍に、図6に示すような渦が生じるが、本実施形態のプレーナ型電磁アクチュエータ1では、可動部4の端縁部4aの凹凸形状により渦の発生を抑制できると共に、発生した渦が細かく分散される。このため、可動部4が反転動作した時に、端縁部4aと渦の衝突により端縁部4aに作用する可動部動作方向と反対方向のモーメントM(図6参照)を従来に比べて小さくでき、可動部4の位置ずれが抑制され可動部4の揺動動作が安定する。   When the planar electromagnetic actuator 1 is swung in a gas, as shown in FIG. 6, near the movable part edge 4a on the opposite side of the movable part 4 due to the turbulence of the gas around the movable part 4 In the planar electromagnetic actuator 1 of the present embodiment, the generation of vortices can be suppressed by the uneven shape of the end edge portion 4a of the movable portion 4, and the generated vortices are finely dispersed. For this reason, when the movable part 4 is reversed, the moment M (see FIG. 6) in the direction opposite to the movable part operating direction acting on the edge part 4a due to the collision between the edge part 4a and the vortex can be reduced as compared with the prior art. The displacement of the movable part 4 is suppressed, and the swinging operation of the movable part 4 is stabilized.

端縁部4aの凹凸形状における凸部の突出長さaとピッチbは、大き過ぎても小さ過ぎてもその渦抑制及び分散効果は小さい。大き過ぎると分散された渦の1つ1つの大きさがまだ十分に大きく端縁部4aに作用するモーメントMがまだ大きいため十分な効果が得られない。小さ過ぎると従来の可動部とあまり変わらず渦の分散が十分になされないためやはり十分な効果が得られない。   The protrusion length a and the pitch b of the protrusions in the concavo-convex shape of the end edge 4a are small in the vortex suppression and dispersion effect even if they are too large or too small. If it is too large, the size of each of the dispersed vortices is still sufficiently large, and the moment M acting on the edge 4a is still large, so that a sufficient effect cannot be obtained. If it is too small, the vortices are not sufficiently dispersed, unlike the conventional movable part, so that a sufficient effect cannot be obtained.

凸部の突出長さaとピッチbの適切な寸法は、発生する渦の直径(以下、渦径とする)と関係し、渦径は可動部4の動作速度により異なり、可動部4の動作速度は、可動部4の駆動周波数、振幅及びトーションバー3,3の軸中心から端縁部4aまでの長さL(図1に示す)に依存する。従って、凸部の突出長さaとピッチbの適切な寸法を、可動部4の駆動周波数、振幅及びトーションバー3,3の軸中心から端縁部4aまでの長さLから決定するとよく、凸部の突出長さaとピッチbの好ましい寸法としては、可動部4の揺動動作に伴って発生する渦の直径の約1/5〜約5倍とする。例えば、突出長さaを渦径の約1/5倍としピッチbを渦径の約5倍としてもよく、逆に突出長さaを渦径の約5倍としピッチbを渦径の約1/5倍としてもよい。かかる凹凸形状とすることにより、可動部4の端縁部4a周囲における渦の発生を十分抑制できると共に、十分細かく分散できるようになり、端縁部4aに作用する可動部動作方向と反対方向のモーメントMを十分小さくして可動部4の揺動動作の安定性を高めることができるようになる。   Appropriate dimensions of the protrusion length a and pitch b of the convex portion are related to the diameter of the vortex generated (hereinafter referred to as the vortex diameter), and the vortex diameter varies depending on the operation speed of the movable portion 4 and the operation of the movable portion 4. The speed depends on the drive frequency and amplitude of the movable part 4 and the length L (shown in FIG. 1) from the axial center of the torsion bars 3 and 3 to the edge part 4a. Therefore, it is preferable to determine appropriate dimensions of the protrusion length a and pitch b of the convex portion from the driving frequency and amplitude of the movable portion 4 and the length L from the axial center of the torsion bars 3 and 3 to the edge portion 4a. A preferable dimension of the protrusion length a and the pitch b of the protrusion is about 1/5 to about 5 times the diameter of the vortex generated by the swinging motion of the movable portion 4. For example, the protrusion length a may be about 1/5 times the vortex diameter and the pitch b may be about 5 times the vortex diameter. Conversely, the protrusion length a is about 5 times the vortex diameter and the pitch b is about the vortex diameter. It is good also as 1/5 times. By making such a concavo-convex shape, the generation of vortices around the edge 4a of the movable part 4 can be sufficiently suppressed, and the vortex can be dispersed sufficiently finely, in the direction opposite to the direction of movement of the movable part acting on the edge 4a. The moment M can be made sufficiently small to improve the stability of the swinging motion of the movable part 4.

上記実施形態では、凹凸形状を三角形状としたが、図2に示すような形状でもよい。(a)は三角形の頂部を円くした形状の例である。(b)は、矩形形状とした例である。(c)は半円形状の波形とした例である。(d)は矩形のフラクタル形状の例である。フラクタル形状の場合は、小さい矩形部分も大きな矩形部分もそれぞれの凸部の突出長さaとピッチbの寸法は、渦径の約1/5〜約5倍とすることが好ましい。
尚、可動部4の端縁部4aの凹凸形状はこれらの形状に限定されるものではなく、渦を十分に細かく分散できモーメントMを小さくできるような形状であればよいことは言うまでもない。
In the above embodiment, the uneven shape is triangular, but it may be a shape as shown in FIG. (A) is an example of the shape which rounded the top of the triangle. (B) is an example of a rectangular shape. (C) is an example of a semicircular waveform. (D) is an example of a rectangular fractal shape. In the case of the fractal shape, it is preferable that the projection length a and the pitch b of the convex portions of the small rectangular portion and the large rectangular portion are about 1/5 to about 5 times the vortex diameter.
Needless to say, the uneven shape of the edge 4a of the movable portion 4 is not limited to these shapes, and any shape that can sufficiently disperse the vortex and reduce the moment M can be used.

また、図3に示すような可動部4が円形状のプレーナ型電磁アクチュエータ10の場合にも同様に、可動部4のトーションバー3,3の軸方向と略平行な可動部端縁部4Aを凹凸形状に形成すれば、第1実施形態と同様の作用効果を得ることができる。尚、図3に示す本発明の第2実施形態において、第1実施形態と同様な要素には同一符号を付してある。また、図3では駆動コイル5、電極端子7及び永久磁石6については図示を省略してある。   Similarly, when the movable part 4 is a circular planar electromagnetic actuator 10 as shown in FIG. 3, the movable part edge 4 </ b> A substantially parallel to the axial direction of the torsion bars 3, 3 of the movable part 4 is provided. If it is formed in a concavo-convex shape, the same effect as the first embodiment can be obtained. In addition, in 2nd Embodiment of this invention shown in FIG. 3, the same code | symbol is attached | subjected to the element similar to 1st Embodiment. In FIG. 3, the drive coil 5, the electrode terminal 7, and the permanent magnet 6 are not shown.

次に、2次元駆動型のプレーナ型電磁アクチュエータに適用した本発明の第3実施形態を図4に示す。尚、図1の第1実施形態と同一要素には同一符号を付して説明を省略する。
図4の2次元駆動型のプレーナ型電磁アクチュエータ20は、可動部4が、固定部2に外側トーションバー3A,3Aを介して揺動可能に軸支される枠状の外側可動部4Aと、外側可動部4Aに外側トーションバー3A,3Aと軸方向が直角な内側トーションバー3B,3Bを介して揺動可能に軸支される内側可動部4Bとからなる。そして、外側可動部4Aの外側トーションバー3A,3Aの軸方向と略平行な両端縁部4aを図1の第1実施形態と同様に凹凸形状としている。更に、内側可動部4Bの内側トーションバー3B,3Bの軸方向と略平行な両端縁部4bと外側トーションバー3A,3Aの軸方向と略平行な両側縁部4cを同じく凹凸形状としている。外側可動部4Aには外側駆動コイル5A(図の簡略化のため図中1本線で示す)を設け、内側可動部4Bには内側駆動コイル5Bを設ける。外側駆動コイル5Aは、外側可動部4Aの周縁に沿って巻回して設けられ一方の外側トーションバー3A部分を通って電極端子7A,7Aに電気的に接続される。内側駆動コイル5Bは、前述の駆動コイル5に相当するもので内側トーションバー3B,3B、外側可動部4Aの一部及び他方の外側トーションバー3A部分を通って電極端子7B,7Bに電気的に接続される。また、それぞれ対をなす永久磁石6A,6Aと永久磁石6B,6Bは、図示のように外側可動部4Aと内側可動部4Bを挟んで互いに反対磁極が対向するようにして固定部2の外側に設けられている。
Next, FIG. 4 shows a third embodiment of the present invention applied to a two-dimensional drive type planar electromagnetic actuator. In addition, the same code | symbol is attached | subjected to the same element as 1st Embodiment of FIG. 1, and description is abbreviate | omitted.
A planar electromagnetic actuator 20 of the two-dimensional drive type in FIG. 4 includes a frame-shaped outer movable portion 4A, in which the movable portion 4 is pivotally supported by the fixed portion 2 via the outer torsion bars 3A and 3A. The outer movable portion 4A includes the outer torsion bars 3A and 3A and the inner movable portion 4B that is pivotally supported via the inner torsion bars 3B and 3B whose axial directions are perpendicular to each other. And the both-ends edge part 4a substantially parallel to the axial direction of outer side torsion bar 3A, 3A of the outer side movable part 4A is made into uneven | corrugated shape similarly to 1st Embodiment of FIG. Further, both end edge portions 4b substantially parallel to the axial direction of the inner torsion bars 3B and 3B of the inner movable portion 4B and both side edge portions 4c substantially parallel to the axial direction of the outer torsion bars 3A and 3A have the same uneven shape. The outer movable portion 4A is provided with an outer drive coil 5A (indicated by a single line in the figure for simplification), and the inner movable portion 4B is provided with an inner drive coil 5B. The outer drive coil 5A is provided by being wound around the outer periphery of the outer movable portion 4A, and is electrically connected to the electrode terminals 7A and 7A through one outer torsion bar 3A portion. The inner drive coil 5B corresponds to the drive coil 5 described above and is electrically connected to the electrode terminals 7B and 7B through the inner torsion bars 3B and 3B, a part of the outer movable part 4A and the other outer torsion bar 3A. Connected. Further, the permanent magnets 6A and 6A and the permanent magnets 6B and 6B that make a pair are arranged on the outer side of the fixed portion 2 so that opposite magnetic poles face each other with the outer movable portion 4A and the inner movable portion 4B interposed therebetween as shown in the figure. Is provided.

かかる2次元型のプレーナ型電磁アクチュエータ20は、外側駆動コイル5Aと内側駆動コイル5Bにそれぞれ交流電流を供給すると、外側トーションバー3A,3Aの軸方向と平行な外側可動部4Aの端縁部4aの外側駆動コイル5A部分に発生する磁界と永久磁石6A,6Aの静磁界との相互作用により発生するローレンツ力により、外側可動部4Aと内側可動部4Bが一体的に外側トーションバー3A,3A回りに回動する。また、内側トーションバー3B,3Bの軸方向と平行な内側可動部4Bの端縁部4bの内側駆動コイル5B部分に発生する磁界と永久磁石6B,6Bの静磁界との相互作用により発生するローレンツ力により、内側可動部4Bが内側トーションバー3B,3B回りに回動する。これにより、内側可動部4Bが2次元駆動され、内側可動部4Bに反射ミラーを設ければ、ミラーの反射光を2次元方向に偏向させることができ、光ビームを2次元走査することができる。   When an alternating current is supplied to the outer drive coil 5A and the inner drive coil 5B, the two-dimensional planar electromagnetic actuator 20 has an edge 4a of the outer movable portion 4A parallel to the axial direction of the outer torsion bars 3A, 3A. The outer movable portion 4A and the inner movable portion 4B are integrally rotated around the outer torsion bars 3A and 3A by the Lorentz force generated by the interaction between the magnetic field generated in the outer drive coil 5A portion and the static magnetic field of the permanent magnets 6A and 6A. To turn. Further, Lorentz generated by the interaction between the magnetic field generated in the inner drive coil 5B portion of the end edge 4b of the inner movable portion 4B parallel to the axial direction of the inner torsion bars 3B, 3B and the static magnetic field of the permanent magnets 6B, 6B. The inner movable portion 4B is rotated around the inner torsion bars 3B and 3B by the force. Thus, if the inner movable portion 4B is driven two-dimensionally and a reflection mirror is provided on the inner movable portion 4B, the reflected light of the mirror can be deflected in a two-dimensional direction, and the light beam can be scanned two-dimensionally. .

このプレーナ型電磁アクチュエータ20の外側可動部4A,4Aを気体中で揺動動作させた時には、外側可動部4の両端縁部4aと内側可動部4Bの両側縁部4c近傍に渦が生じるが、それぞれの凹凸形状により渦の発生を抑制できると共に、発生した渦が細かく分散される。また、内側可動部4B,4Bを揺動動作させた時には、前述した第1実施形態と同様に内側可動部4Bの両端縁部4bの凹凸形状により渦の発生を抑制できると共に、発生した渦が細かく分散される。従って、2次元駆動型のプレーナ型電磁アクチュエータ20の揺動動作の安定性を高められる。   When the outer movable parts 4A and 4A of the planar electromagnetic actuator 20 are swung in gas, vortices are generated in the vicinity of both end edges 4a of the outer movable part 4 and both side edges 4c of the inner movable part 4B. Each uneven shape can suppress the generation of vortices and the generated vortices are finely dispersed. Further, when the inner movable portions 4B and 4B are swung, the vortex generation can be suppressed by the uneven shape of the both end edges 4b of the inner movable portion 4B as in the first embodiment, and the generated vortex Finely dispersed. Therefore, the stability of the swing operation of the two-dimensional drive type planar electromagnetic actuator 20 can be improved.

前記第3実施形態は、枠状の外側可動部4Aの両端縁部4aの外側だけを凹凸形状としたが、図5に示す第4実施形態のプレーナ型電磁アクチュエータ30のように、枠状の外側可動部4Aの両端縁部4aの内側も凹凸形状とするとよい。尚、第4実施形態のプレーナ型電磁アクチュエータ30のその他の構成は図4の第3実施形態と同様の構成であり、第3実施形態と同様な要素には同一符号を付してある。また、図5では内外駆動コイル5A,5B、電極端子7A,7B及び永久磁石6A,6Bは図示を省略してある。   In the third embodiment, only the outer sides of both end edges 4a of the frame-shaped outer movable portion 4A are uneven, however, like the planar electromagnetic actuator 30 of the fourth embodiment shown in FIG. It is preferable that the inner side of both end edges 4a of the outer movable portion 4A also has an uneven shape. In addition, the other structure of the planar type electromagnetic actuator 30 of 4th Embodiment is the structure similar to 3rd Embodiment of FIG. 4, and the same code | symbol is attached | subjected to the element similar to 3rd Embodiment. In FIG. 5, the inner and outer drive coils 5A and 5B, the electrode terminals 7A and 7B, and the permanent magnets 6A and 6B are not shown.

尚、第3及び第4実施形態についても、図2に示す凹凸形状を適用できることは言うまでもない。   Needless to say, the uneven shape shown in FIG. 2 can also be applied to the third and fourth embodiments.

本発明に係るプレーナ型電磁アクチュエータの第1実施形態を示す平面図The top view which shows 1st Embodiment of the planar type electromagnetic actuator which concerns on this invention 第1実施形態の凹凸形状と異なる別の凹凸形状の例を示す図The figure which shows the example of another uneven | corrugated shape different from the uneven | corrugated shape of 1st Embodiment. 本発明の第2実施形態を示す平面図The top view which shows 2nd Embodiment of this invention 本発明の第3実施形態を示す平面図The top view which shows 3rd Embodiment of this invention 本発明の第4実施形態を示す平面図The top view which shows 4th Embodiment of this invention 従来の問題点の説明図Illustration of conventional problems

符号の説明Explanation of symbols

1,10,20,30 プレーナ型電磁アクチュエータ
2 固定部
3 トーションバー
3A,3A 外側トーションバー
3B,3B 内側トーションバー
4 可動部
4A,4A 外側可動部
4B,4B 内側可動部
5 駆動コイル
5A,5A 外側駆動コイル
5B,5B 内側駆動コイル
6、6A,6A、6B,6B 永久磁石
4a,4b 端縁部(凹凸形状)
4c 側縁部(凹凸形状)
1, 10, 20, 30 Planar type electromagnetic actuator 2 Fixed part 3 Torsion bar 3A, 3A Outer torsion bar 3B, 3B Inner torsion bar 4 Movable part 4A, 4A Outer movable part 4B, 4B Inner movable part 5 Drive coils 5A, 5A Outer drive coils 5B, 5B Inner drive coils 6, 6A, 6A, 6B, 6B Permanent magnets 4a, 4b End edges (uneven shape)
4c Side edge (uneven shape)

Claims (4)

固定部にトーションバーを介して揺動可能に軸支した可動部を、電磁力により駆動するプレーナ型電磁アクチュエータにおいて、
前記可動部の前記トーションバーの軸方向と略平行な端縁部を、前記軸方向に平行な当該可動部の断面において凹凸形状にし
前記端縁部における凸部の突出寸法及びピッチを、前記可動部の駆動周波数、振幅及び前記トーションバーの軸中心から前記端縁部までの長さに関係して定まる前記渦の直径から決定する構成としたことを特徴とするプレーナ型電磁アクチュエータ。
In a planar type electromagnetic actuator that drives a movable part pivotally supported by a fixed part via a torsion bar by electromagnetic force,
An end edge portion substantially parallel to the axial direction of the torsion bar of the movable portion is formed into an uneven shape in a cross section of the movable portion parallel to the axial direction ,
The protrusion size and pitch of the convex portion at the end edge portion are determined from the diameter of the vortex determined in relation to the drive frequency and amplitude of the movable portion and the length from the axial center of the torsion bar to the end edge portion. A planar electromagnetic actuator characterized by having a configuration .
前記凸部の突出寸法及びピッチを、前記渦の直径の約1/5〜約5倍とする請求項に記載のプレーナ型電磁アクチュエータ。 Planar electromagnetic actuator according to claim 1, a protrusion dimension and pitch of the convex portions, and about 1/5 to about 5 times the diameter of the vortex. 前記可動部が、前記固定部に外側トーションバーを介して揺動可能に軸支される枠状の外側可動部と、該外側可動部に前記外側トーションバーと軸方向が直角な内側トーションバーを介して揺動可能に軸支される内側可動部とからなり、前記外側可動部の前記外側トーションバーの軸方向と略平行な端縁部及び前記内側可動部の前記内側トーションバーの軸方向と略平行な端縁部を前記凹凸形状とした請求項1又は2に記載のプレーナ型電磁アクチュエータ。 The movable part includes a frame-like outer movable part that is pivotally supported by the fixed part via an outer torsion bar, and an inner torsion bar that is perpendicular to the outer torsion bar in the axial direction. An inner movable portion that is pivotally supported via the inner movable portion, and an end edge portion substantially parallel to the axial direction of the outer torsion bar of the outer movable portion and the axial direction of the inner torsion bar of the inner movable portion. The planar electromagnetic actuator according to claim 1 or 2 , wherein substantially parallel end edges are formed into the uneven shape. 前記内側可動部の前記外側トーションバーの軸方向と略平行な側縁部を凹凸形状とした請求項に記載のプレーナ型電磁アクチュエータ。 The planar electromagnetic actuator according to claim 3 , wherein a side edge portion of the inner movable portion that is substantially parallel to the axial direction of the outer torsion bar has an uneven shape.
JP2007111084A 2007-04-20 2007-04-20 Planar type electromagnetic actuator Active JP5207656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007111084A JP5207656B2 (en) 2007-04-20 2007-04-20 Planar type electromagnetic actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111084A JP5207656B2 (en) 2007-04-20 2007-04-20 Planar type electromagnetic actuator

Publications (2)

Publication Number Publication Date
JP2008271700A JP2008271700A (en) 2008-11-06
JP5207656B2 true JP5207656B2 (en) 2013-06-12

Family

ID=40050499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111084A Active JP5207656B2 (en) 2007-04-20 2007-04-20 Planar type electromagnetic actuator

Country Status (1)

Country Link
JP (1) JP5207656B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6241736B2 (en) * 2014-01-08 2017-12-06 パイオニア株式会社 Actuator
JP6414516B2 (en) * 2015-06-24 2018-10-31 京セラドキュメントソリューションズ株式会社 Optical deflector and image forming apparatus provided with the optical deflector

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757233U (en) * 1980-09-22 1982-04-03
JPS611633U (en) * 1984-06-10 1986-01-08 マツダ株式会社 Diesel engine intake throttle valve
JP2722314B2 (en) * 1993-12-20 1998-03-04 日本信号株式会社 Planar type galvanometer mirror and method of manufacturing the same
KR100224612B1 (en) * 1996-12-27 1999-10-15 윤종용 Laser scanning unit
JPH10221629A (en) * 1997-02-10 1998-08-21 Fuji Xerox Co Ltd Deflection scanner
JP2003295095A (en) * 2002-03-29 2003-10-15 Fuji Photo Optical Co Ltd Rotating polygon mirror for optical scanner
JP2005287254A (en) * 2004-03-30 2005-10-13 Miyota Kk Planer electromagnetic actuator
JP2006130587A (en) * 2004-11-04 2006-05-25 Canon Inc Oscillating body device and its manufacturing method

Also Published As

Publication number Publication date
JP2008271700A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5146204B2 (en) Optical device, optical scanner, and image forming apparatus
JP5084121B2 (en) Actuator
JP2009104102A (en) Micro-electrical mechanical system (mems) scanner having actuator separated from mirror
JP2019091048A (en) Drive unit
JP5383065B2 (en) Planar electromagnetic actuator and manufacturing method thereof
JPWO2008149796A1 (en) Optical scanning actuator
JP2007152497A (en) Rocker device
JP2012123140A (en) Actuator, optical scanner and image forming device
JP2007206480A (en) Optical scan element
JP5207656B2 (en) Planar type electromagnetic actuator
JP6180074B2 (en) Planar type electromagnetic actuator
JP4144840B2 (en) Oscillator device, optical deflector, and optical apparatus using optical deflector
JP2005169553A (en) Micro-actuator
JP5650904B2 (en) Planar actuator
JP3848249B2 (en) Oscillator device
JP4286553B2 (en) Planar type actuator
JP2009198702A (en) Oscillating structure, and oscillator device using oscillating structure
JP2005177876A (en) Microstructure and its manufacturing method
US7414503B1 (en) Torsional hinged device with improved coupling between a magnet mounted to said device and an electrical coil
JP2007094109A (en) Optical scanner
JP2009089501A (en) Planar electromagnetic actuator
JP2006313216A (en) Oscillator device and optical deflector using the same
JP5681759B2 (en) Electromagnetic actuator
JP2008058434A (en) Rocking apparatus, light deflector using rocking apparatus, and image forming apparatus using light deflector
JP6148055B2 (en) Planar actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5207656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150