JP2005084571A - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
JP2005084571A
JP2005084571A JP2003319289A JP2003319289A JP2005084571A JP 2005084571 A JP2005084571 A JP 2005084571A JP 2003319289 A JP2003319289 A JP 2003319289A JP 2003319289 A JP2003319289 A JP 2003319289A JP 2005084571 A JP2005084571 A JP 2005084571A
Authority
JP
Japan
Prior art keywords
optical scanner
movable part
scanner device
electromagnet
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003319289A
Other languages
Japanese (ja)
Inventor
Norihiro Asada
規裕 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEMUSU TECHNOLOGY KK
Original Assignee
MEMUSU TECHNOLOGY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEMUSU TECHNOLOGY KK filed Critical MEMUSU TECHNOLOGY KK
Priority to JP2003319289A priority Critical patent/JP2005084571A/en
Priority to PCT/JP2004/013222 priority patent/WO2005026817A1/en
Publication of JP2005084571A publication Critical patent/JP2005084571A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Micromachines (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical scanner which is easily miniaturized, has durability and a large amplitude of oscillation. <P>SOLUTION: In the optical scanner in which an integrated structure body in which a tabular movable part 4 is supported by a torsion beam 3 in a fixing part 2 is composed of a single crystal silicon and a mirror is provided on the tabular movable part 4, a hard magnetic body 6 which is magnetized in the thickness direction of the movable part is provided on the tabular movable part 4, and an electromagnet 20 with a U-shaped core is arranged opposite to the hard magnetic material 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、入射した光を偏向,走査する光スキャナ装置に関し、特にその可動部の駆動に関するものである。   The present invention relates to an optical scanner device that deflects and scans incident light, and more particularly to driving a movable portion thereof.

光を偏向,走査するための従来技術としては、プリンタ等に広く使用されているポリゴンミラーがある。ポリゴンミラーはスピンドルモータで回転する多角形の側面をミラーとするものである。そのミラーにレーザビーム等を照射し、このポリゴンミラーが回転することで照射されたレーザビーム等は順次偏向,走査される。しかし,ポリゴンミラーはスピンドルモータに比較的大きな電力が必要であり、モータ軸受け特有の騒音が大きい。   As a conventional technique for deflecting and scanning light, there is a polygon mirror widely used in printers and the like. The polygon mirror uses a polygonal side surface rotated by a spindle motor as a mirror. The mirror is irradiated with a laser beam or the like, and the laser beam or the like irradiated by rotating the polygon mirror is sequentially deflected and scanned. However, the polygon mirror requires a relatively large electric power for the spindle motor, and the noise specific to the motor bearing is large.

プリンタ以外のレーザマーカやレーザ加工機,レーザ顕微鏡等の用途には、ガルバノミラーが用いられることが多い。このガルバノミラーはやはりモータで駆動されており、ミラーを静止することも可能である。しかし、ミラーが大ききく、メカニカル部品で組み立てられているので、装置としては大きくなり、その駆動に大きな電力が必要となる。   Galvo mirrors are often used for applications such as laser markers, laser processing machines, and laser microscopes other than printers. The galvano mirror is also driven by a motor, and the mirror can be stationary. However, since the mirror is large and assembled with mechanical parts, the apparatus becomes large and requires a large amount of power to drive it.

このような実情から、小型で省電力となるマイクロマシニング技術を用いた光スキャナが提案されている。   Under such circumstances, an optical scanner using a micromachining technology that is small and saves power has been proposed.

マイクロマシニング技術を用いた光スキャナには、様々な駆動方式があるが、静電式や圧電式に比べて電磁式が走査振幅を大きくできることから、ポリゴンミラーの代替として検討されている。   There are various driving methods for optical scanners using micromachining technology, but the electromagnetic type can increase the scanning amplitude compared to the electrostatic type and the piezoelectric type, and is being considered as an alternative to the polygon mirror.

この例としては、下記特許文献1,特許文献2,特許文献3記載のもの等がある。特許文献1記載のものは、図5に示すように、単結晶シリコンで構造体50を形成し、ねじり梁(ねじり動作可能な梁)51で支持された可動部52上にコイル53とミラー54を敷設してある。動作原理は外部の永久磁石55で発生した磁界内でコイル53に電流を流すことでローレンツ力を発生させ駆動力を得る。この駆動方式は電磁アクチュエータの分類ではムービングコイル方式と呼ばれる。特許文献2記載のものは、図6に示すように、単結晶シリコンで構造体60を形成し、可動部61にミラー62と軟磁性体63を敷設し、外部には、柔磁性体63の片側に対向して電磁石64を固定して、この電磁石64に電流を流すことによる吸引力により可動部61を駆動するものである。この方式は電磁アクチュエータの分類ではムービングマグネット方式に近い。特許文献3記載のものは、半導体で構造体70を形成し,可動部71には膜面の垂直方向に磁化した磁性膜72を設け、外部に巻き方向を互いに逆にした2個のコイル73,74を固定して、コイル73,74に電流を流すことによって各コイルに発生する磁力と磁性膜72の磁力とによる、反発力と吸引力により可動部71を駆動するものである。この方式はムービングマグネット方式の変形といえる。
特開平7−175005号公報(特許第2722314号) 特開2002−311372号公報 特開2002−189187号公報
Examples of this include those described in Patent Document 1, Patent Document 2, and Patent Document 3 below. As shown in FIG. 5, the structure described in Patent Document 1 includes a structure 53 formed of single crystal silicon, and a coil 53 and a mirror 54 on a movable portion 52 supported by a torsion beam (beam capable of torsional operation) 51. Is laid. The operating principle is that a Lorentz force is generated by passing a current through the coil 53 in a magnetic field generated by an external permanent magnet 55 to obtain a driving force. This drive system is called a moving coil system in the classification of electromagnetic actuators. As shown in FIG. 6, the structure described in Patent Document 2 includes a structure 60 formed of single crystal silicon, a mirror 62 and a soft magnetic body 63 laid on the movable portion 61, and a soft magnetic body 63 outside. The electromagnet 64 is fixed so as to face one side, and the movable portion 61 is driven by an attraction force generated by passing an electric current through the electromagnet 64. This method is close to the moving magnet method in the classification of electromagnetic actuators. In the device described in Patent Document 3, a structure 70 is formed of a semiconductor, and a movable portion 71 is provided with a magnetic film 72 magnetized in a direction perpendicular to the film surface. , 74 are fixed, and the movable portion 71 is driven by the repulsive force and the attractive force generated by the magnetic force generated in each coil and the magnetic force of the magnetic film 72 by causing a current to flow through the coils 73, 74. This method is a modification of the moving magnet method.
Japanese Patent Laid-Open No. 7-175005 (Japanese Patent No. 2722314) JP 2002-311372 A JP 2002-189187 A

特許文献1記載の方式は、コイルへの導入線がねじり梁上に敷設されているため、梁のねじれにしたがってねじれてしまい、耐久性に問題が生じる可能性がある。また、薄膜で形成されたコイルでは抵抗を小さくすることは難しく、電流を流した際の発熱の影響も考慮しなければならない。コイルの形成を前提とすると小型化が難しいといった問題がある。   In the method described in Patent Document 1, since the lead wire to the coil is laid on the torsion beam, the wire is twisted according to the twist of the beam, which may cause a problem in durability. Moreover, it is difficult to reduce the resistance of a coil formed of a thin film, and the influence of heat generation when a current is passed must be taken into consideration. There is a problem that miniaturization is difficult if the formation of the coil is assumed.

特許文献2に記載の方式は、特許文献1記載のムービングコイル方式にある前述の問題を解決することはできるが、吸引力だけで駆動すると可動部の端部に力を作用させることで可動部がねじりの動きはするものの、可動部全体が電磁石の方に引っ張られ、ミラーの位置がずれてしまう可能性が大きく、特に大振幅のために大きな力を作用させたときが問題となる。特許文献3記載の方式は、反発力と吸引力により可動部を駆動するものなので、特許文献2記載の方式における、可動部全体が電磁石の方に引っ張られ、ミラーの位置がずれてしまうという問題は解決できるものの、コイルが空心であるため駆動に大きな電流を必要とし、巻き方向の異なる2個のコイルを必要とする、という問題がある。   The method described in Patent Document 2 can solve the above-described problems in the moving coil method described in Patent Document 1, but when driven only by the suction force, the movable part is operated by applying a force to the end of the movable part. However, although the torsional movement occurs, there is a high possibility that the entire movable part is pulled toward the electromagnet and the position of the mirror is displaced, particularly when a large force is applied due to a large amplitude. Since the method described in Patent Document 3 drives the movable part by repulsive force and attractive force, the entire movable part in the method described in Patent Document 2 is pulled toward the electromagnet and the position of the mirror shifts. However, since the coil is air-centered, a large current is required for driving, and two coils having different winding directions are required.

本発明は、このような状況のもとでなされたもので、小型化が容易で、耐久性があり、大振幅が可能な光スキャナ装置を提供することを課題とするものである。   The present invention has been made under such circumstances, and it is an object of the present invention to provide an optical scanner device that is easy to downsize, has durability, and is capable of large amplitude.

前記課題を解決するため、本発明では、光スキャナ装置を次の(1)ないし(4)のとおりに構成する。   In order to solve the above problems, in the present invention, an optical scanner device is configured as described in the following (1) to (4).

(1)固定部の内側に平板状の可動部をねじり梁で支持した一体構造の構造体を単結晶シリコンで構成し、前記可動部にミラーを設けた光スキャナ装置であって、
前記平板状の可動部に設けた、可動部の厚さ方向に磁化した硬磁性体と、
前記硬磁性体に対向して配置したU字型コア付き電磁石と、
を備えた光スキャナ装置。
(1) An optical scanner device in which a monolithic silicon structure having a flat movable part supported by a torsion beam inside a fixed part is made of single crystal silicon, and a mirror is provided on the movable part,
A hard magnetic material magnetized in the thickness direction of the movable part, provided in the flat movable part;
An electromagnet with a U-shaped core disposed facing the hard magnetic material;
An optical scanner device comprising:

(2)前記(1)記載の光スキャナ装置において、
前記構造体を収納する容器を備え、前記U字型コア付き電磁石はコアの両端部分各1点とコアの中央部分1点の計3点の部品に分割し、該コアの両端部分を前記容器にインサート成型しておき、該コアの中央部分である、コイルを巻いた部分を前記コアの両端部分に接合してU字型コア付き電磁石を構成した光スキャナ装置。
(2) In the optical scanner device according to (1),
A container for housing the structure, wherein the electromagnet with a U-shaped core is divided into a total of three parts, one at each end of the core and one at the center of the core; An optical scanner device in which an electromagnet with a U-shaped core is formed by insert-molding the core and joining a coiled portion, which is a central portion of the core, to both end portions of the core.

(3)前記(1)または(2)に記載の光スキャナ装置において、
前記硬磁性体は、前記可動部にメッキにより形成した光スキャナ装置。
(3) In the optical scanner device according to (1) or (2),
The hard scanner is an optical scanner device in which the movable part is formed by plating.

(4)前記(1)または(2)に記載の光スキャナ装置において、
前記硬磁性体は、前記可動部にスパッタリング、真空蒸着などの薄膜形成方法により形成した光スキャナ装置。
(4) In the optical scanner device according to (1) or (2),
The hard scanner is an optical scanner device formed on the movable portion by a thin film forming method such as sputtering or vacuum deposition.

本発明によれば、可動部にコイルを形成する必要がないので小型化が容易であり、可動部にコイルがないのでコイルの導入線がねじり梁部でねじれることがなく耐久性があり、U字型コア付き電磁石で励振しているので大振幅が可能である。   According to the present invention, since it is not necessary to form a coil in the movable part, it is easy to reduce the size, and since there is no coil in the movable part, the lead wire of the coil is not twisted by the torsion beam part and is durable. Large amplitude is possible because it is excited by an electromagnet with a letter-shaped core.

以下本発明を実施するための最良の形態を光スキャナ装置の実施例により詳しく説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to an embodiment of an optical scanner device.

図1は、実施例1である“光スキャナ装置”の構造体1の構成を示す図である。図示のように、単結晶シリコンで平板状の固定部2,可動部4および固定部2と可動部4を接続するねじり梁3を半導体フォトリソ技術で精度良くパターニングする。なお、各図は、説明の都合上、大きさを誇張して示しており、例えば、可動部4は数ミリの大きさである。   FIG. 1 is a diagram illustrating a configuration of a structure 1 of an “optical scanner device” according to a first embodiment. As shown in the figure, the flat plate-like fixed portion 2, the movable portion 4, and the torsion beam 3 connecting the fixed portion 2 and the movable portion 4 are patterned with high precision by a semiconductor photolithography technique. In each drawing, the size is exaggerated for convenience of explanation. For example, the movable portion 4 has a size of several millimeters.

さらにパターニングされた領域のうち予め硬磁性体6(膜磁石,図2参照)を設ける部分に、メッキあるいはスパッタリングや蒸着といった膜生成技術を用いて成膜しかつ形状を整える。   Further, a portion of the patterned region where the hard magnetic body 6 (film magnet, see FIG. 2) is provided in advance is formed using a film generation technique such as plating, sputtering, or vapor deposition, and the shape is adjusted.

そして、図2に示すように、可動部4の成膜された一方の面に、硬磁性体6の膜磁石を形成する。   Then, as shown in FIG. 2, a film magnet of the hard magnetic body 6 is formed on one surface of the movable portion 4 on which the film is formed.

膜磁石には、例えば、スパッタリングで形成される希土類のサマリウムコバルト系、希土類―Fe−B、Fe−Ptや磁気記憶装置に使用されているコバルト系材料などの高保磁力を有する材料を使用する。成膜方法は、膜特性とコストを勘案して化学的方法か物理的方法を選択する。   For the film magnet, for example, a material having a high coercive force, such as rare earth samarium cobalt-based, rare-earth-Fe-B, Fe-Pt formed by sputtering, or a cobalt-based material used in a magnetic memory device is used. As the film formation method, a chemical method or a physical method is selected in consideration of the film characteristics and cost.

構造体1の外部に、図2に示すように、硬磁性体6と対向してU字型コア付き電磁石20を配置する。この電磁石20は、可動部4の両端で逆極性なるように設計されたU字型コア7付きの電磁石である。   As shown in FIG. 2, an electromagnet 20 with a U-shaped core is disposed outside the structure 1 so as to face the hard magnetic body 6. The electromagnet 20 is an electromagnet with a U-shaped core 7 that is designed to have opposite polarities at both ends of the movable portion 4.

電磁石20は、コア7を軟磁性材料で作成し、図4に示すように、パッケージ40と共に単結晶シリコン構造体1と一体化される。硬磁性体6の着磁は組み立て直前に行うことが望ましいが、組み立て後の着磁も可能である。   In the electromagnet 20, the core 7 is made of a soft magnetic material, and is integrated with the single crystal silicon structure 1 together with the package 40 as shown in FIG. It is desirable to magnetize the hard magnetic body 6 immediately before assembling, but it is also possible to magnetize after assembling.

U字型コア付き電磁石を使用すれば、電磁石に用いるコイルは1個で済み、コスト,工程共に削減できる。しかし、U字型のコアにボビン巻きのコイルを装着することは難しい。これを容易にするためにU字型のコアを3点に分割して、それぞれ棒状のコアを作成し組み立てる手法を用いてコスト,工程共に削減をする。   If an electromagnet with a U-shaped core is used, only one coil is required for the electromagnet, and both cost and process can be reduced. However, it is difficult to mount a bobbin-wound coil on a U-shaped core. In order to make this easier, the U-shaped core is divided into three points, and a rod-shaped core is created and assembled to reduce costs and processes.

詳しくは、図4に示すように、プラスチックのパッケージ40にボビン巻きコイルを装着しない2点のコア41を予めインサート成型しておき、後からボビン巻きコイル装着のコア42をコア41の端部に接合するように、当該プラスチックのパッケージ40に組み込む。   Specifically, as shown in FIG. 4, two cores 41 not to be fitted with bobbin winding coils are insert-molded in advance in a plastic package 40, and the core 42 with bobbin winding coils is later attached to the end of the core 41. It is incorporated into the plastic package 40 so as to be bonded.

単結晶シリコンを使用した光スキャナ装置の場合、少ない印加エネルギで大きな振幅を得るために、可動部とねじり梁を共振子として設計し、使用することが多い。共振子として使用する場合には、単結晶シリコンの材料物性は極めて安定しているために、共振周波数は形状のみで定まる。ねじりの1次共振モードを利用するのであるが、目的外の高次モードはシミュレーションなどで除外する設計が必要であるのは言うまでもない。   In the case of an optical scanner device using single crystal silicon, a movable part and a torsion beam are often designed and used as a resonator in order to obtain a large amplitude with a small applied energy. When used as a resonator, the material physical properties of single crystal silicon are extremely stable, so the resonance frequency is determined only by the shape. The first-order resonance mode of torsion is used, but it goes without saying that a design that excludes higher-order modes that are not the purpose by simulation or the like is necessary.

このように組み立てられた光スキャナ装置の電磁石20に電流を印加すると、図2に示すように、可動部4の両端に吸引力と反発力が加わるためねじり梁3を回動軸にして可動部4はバランスよく傾くことになる。電流の印加をやめれば、ねじり梁3の復元力で元の位置に戻る。   When an electric current is applied to the electromagnet 20 of the optical scanner device assembled in this way, as shown in FIG. 4 tilts in a well-balanced manner. When the application of current is stopped, the restoring force of the torsion beam 3 returns to the original position.

印加する電流を、図3に示すように交流にすれば、交流の周波数に応じた運動を繰り返すことになる。印加する電流の値が一定の場合、可動部の振幅は、図3(b)に示すように、共振周波数で最大となり、共振周波数から離れるに従い減少する。周波数が一定の場合、振幅は、図3(c)に示すように、印加する電流の値に比例して増大する。   If the current to be applied is an alternating current as shown in FIG. 3, the movement according to the frequency of the alternating current is repeated. When the value of the applied current is constant, the amplitude of the movable part becomes maximum at the resonance frequency as shown in FIG. 3B, and decreases as the distance from the resonance frequency increases. When the frequency is constant, the amplitude increases in proportion to the value of the applied current, as shown in FIG.

本実施例の構成では、可動部に設けられた膜磁石(永久磁石)の保磁力が少々小さくても、コア付電磁石で発生する磁力を大きくできるので(空心コイルに比べて磁束密度を1000〜10000倍)、大振幅を得ることは容易である。しかも、電磁石は単結晶シリコン構造体の外に存在しているため、発生した熱が単結晶シリコン構造体に影響を及ぼさない。特許文献1記載の光スキャナ装置では、可動部のコイルでの発熱が可動部材料の温度上昇をもたらし、材料自身が熱膨張することによってねじり梁にかかる応力が変化し、共振周波数が設計値からずれてくる。本実施例装置では、可動部に発熱体がないので、このような問題は発生しない。   In the configuration of the present embodiment, even if the coercive force of the film magnet (permanent magnet) provided in the movable part is slightly small, the magnetic force generated by the cored electromagnet can be increased (the magnetic flux density is 1000 to 1000 compared with the air-core coil). 10,000 times), it is easy to obtain a large amplitude. In addition, since the electromagnet exists outside the single crystal silicon structure, the generated heat does not affect the single crystal silicon structure. In the optical scanner device described in Patent Document 1, the heat generated by the coil of the movable part causes the temperature of the movable part material to increase, and the stress applied to the torsion beam changes due to the thermal expansion of the material itself, so that the resonance frequency is from the design value. It will shift. In the apparatus of this embodiment, such a problem does not occur because there is no heating element in the movable part.

以上説明したように、本実施例では、可動部にコイルを形成する必要がないので小型化が容易であり、可動部にコイルがないのでコイルの導入線がねじり梁部でねじれることがなく耐久性がある。また、U字型コア付き電磁石で励振しているので、可動部をバランスよく傾けることができ、磁力を大きくできて大振幅が可能である。   As described above, in this embodiment, since it is not necessary to form a coil in the movable part, it is easy to reduce the size, and since there is no coil in the movable part, the coil lead-in wire is not twisted by the torsion beam part and is durable. There is sex. Moreover, since it is excited by the electromagnet with the U-shaped core, the movable part can be tilted in a balanced manner, the magnetic force can be increased, and a large amplitude is possible.

さらに、U字型コア付き電磁石1個で、可動部の両端で所要の逆極性の磁力を得ており、電磁石製造のコスト,工程を削減することができる。また、電磁石のコアを3点に分割し、パッケージで合体するようにしているので、U字型のコアにボビン巻きのコイルを容易に装着でき、製造のコスト,工程を削減することができる。I字型コアにボビン巻きのコイルを装着した部品は、腕時計などに用いられているので、安価に入手できる。   Furthermore, with one U-shaped cored electromagnet, the required reverse polarity magnetic force is obtained at both ends of the movable part, and the cost and process of manufacturing the electromagnet can be reduced. Further, since the core of the electromagnet is divided into three points and united by a package, a bobbin-wound coil can be easily attached to the U-shaped core, and the manufacturing cost and process can be reduced. A part in which a bobbin-wound coil is mounted on an I-shaped core is used in a wristwatch or the like, and can be obtained at a low cost.

(変形)
前述の実施例では、平板状の可動体の全面にわたり硬磁性体を設けているが、可動体の両端の、コア41に対向する個所にのみ硬磁性体を設けるようにしてもよい。また、硬磁性体はミラー5と同じ側に設けてもよい。
(Deformation)
In the above-described embodiment, the hard magnetic body is provided over the entire surface of the flat movable body. However, the hard magnetic body may be provided only at the positions opposite to the core 41 at both ends of the movable body. The hard magnetic material may be provided on the same side as the mirror 5.

実施例1の構造体の構成を示す図The figure which shows the structure of the structure of Example 1. 実施例1の動作原理を示す図The figure which shows the operation principle of Example 1. 実施例1の特性を示す図The figure which shows the characteristic of Example 1 実施例1の組み立て方を示す図The figure which shows how to assemble Example 1 特許文献1記載の光スキャナ装置を示す図The figure which shows the optical scanner apparatus of patent document 1 特許文献2記載の光スキャナ装置を示す図The figure which shows the optical scanner apparatus of patent document 2 特許文献3記載の光スキャナ装置を示す図The figure which shows the optical scanner apparatus of patent document 3

符号の説明Explanation of symbols

1 構造体
2 固定部
3 ねじり梁
4 可動部
5 ミラー
6 硬磁性体
20 U字型コア付き電磁石
DESCRIPTION OF SYMBOLS 1 Structure 2 Fixed part 3 Torsion beam 4 Movable part 5 Mirror 6 Hard magnetic body 20 Electromagnet with U-shaped core

Claims (4)

固定部の内側に平板状の可動部をねじり梁で支持した一体構造の構造体を単結晶シリコンで構成し、前記可動部にミラーを設けた光スキャナ装置であって、
前記平板状の可動部に設けた、可動部の厚さ方向に磁化した硬磁性体と、
前記硬磁性体に対向して配置したU字型コア付き電磁石と、
を備えたことを特徴とする光スキャナ装置。
An optical scanner device comprising a monolithic silicon structure having an integral structure in which a flat movable part is supported by a torsion beam inside a fixed part, and a mirror is provided on the movable part,
A hard magnetic material magnetized in the thickness direction of the movable part, provided in the flat movable part;
An electromagnet with a U-shaped core disposed facing the hard magnetic material;
An optical scanner device comprising:
請求項1記載の光スキャナ装置において、
前記構造体を収納する容器を備え、前記U字型コア付き電磁石はコアの両端部分各1点とコアの中央部分1点の計3点の部品に分割し、該コアの両端部分を前記容器にインサート成型しておき、該コアの中央部分である、コイルを巻いた部分を前記コアの両端部分に接合してU字型コア付き電磁石を構成したことを特徴とする光スキャナ装置。
The optical scanner device according to claim 1,
A container for housing the structure, wherein the electromagnet with a U-shaped core is divided into a total of three parts, one at each end of the core and one at the center of the core; An optical scanner device characterized in that an electromagnet with a U-shaped core is formed by insert-molding and joining a coiled portion, which is a central portion of the core, to both end portions of the core.
請求項1または2に記載の光スキャナ装置において、
前記硬磁性体は、前記可動部にメッキにより形成したことを特徴とする光スキャナ装置。
The optical scanner device according to claim 1 or 2,
The optical scanner device, wherein the hard magnetic material is formed on the movable portion by plating.
請求項1または2に記載の光スキャナ装置において、
前記硬磁性体は、前記可動部にスパッタリング,真空蒸着などの薄膜形成方法により形成したことを特徴とする光スキャナ装置。
The optical scanner device according to claim 1 or 2,
The optical scanner device, wherein the hard magnetic material is formed on the movable part by a thin film forming method such as sputtering or vacuum deposition.
JP2003319289A 2003-09-11 2003-09-11 Optical scanner Pending JP2005084571A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003319289A JP2005084571A (en) 2003-09-11 2003-09-11 Optical scanner
PCT/JP2004/013222 WO2005026817A1 (en) 2003-09-11 2004-09-10 Optical scanner device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319289A JP2005084571A (en) 2003-09-11 2003-09-11 Optical scanner

Publications (1)

Publication Number Publication Date
JP2005084571A true JP2005084571A (en) 2005-03-31

Family

ID=34308559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319289A Pending JP2005084571A (en) 2003-09-11 2003-09-11 Optical scanner

Country Status (2)

Country Link
JP (1) JP2005084571A (en)
WO (1) WO2005026817A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7872789B2 (en) 2006-08-09 2011-01-18 Seiko Epson Corporation Optical device, optical scanner, and image forming apparatus
WO2018079669A1 (en) * 2016-10-31 2018-05-03 国立大学法人福井大学 Two-dimensional optical scanning mirror device, manufacturing method therefor, two-dimensional optical scanning device, and image projection device
JP2020115217A (en) * 2020-03-24 2020-07-30 国立大学法人福井大学 Two-dimensional optical scanning mirror device, two-dimensional optical scanning device and image projection device
JPWO2021100803A1 (en) * 2019-11-19 2021-05-27

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017202182A1 (en) 2017-02-10 2018-08-16 Micro-Epsilon Messtechnik Gmbh & Co. Kg Reluctance actuator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831563B2 (en) * 1980-07-14 1983-07-07 日本電信電話株式会社 light switch
JPH0954264A (en) * 1995-08-10 1997-02-25 Omron Corp Optical scanner, distance measurng device and photosensor device
JP3848249B2 (en) * 2001-12-28 2006-11-22 キヤノン株式会社 Oscillator device
JP4380233B2 (en) * 2002-10-18 2009-12-09 日本ビクター株式会社 Optical deflector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7872789B2 (en) 2006-08-09 2011-01-18 Seiko Epson Corporation Optical device, optical scanner, and image forming apparatus
WO2018079669A1 (en) * 2016-10-31 2018-05-03 国立大学法人福井大学 Two-dimensional optical scanning mirror device, manufacturing method therefor, two-dimensional optical scanning device, and image projection device
JP2018072591A (en) * 2016-10-31 2018-05-10 国立大学法人福井大学 Two-dimensional optical scanning mirror device, manufacturing method therefor, two-dimensional optical scanning device, and image projection device
US11067792B2 (en) 2016-10-31 2021-07-20 National University Corporation University Of Fukui Two-dimensional optical scanning mirror device, manufacturing method for same, two-dimensional optical scanner and image projector
US11307407B2 (en) 2016-10-31 2022-04-19 National University Corporation University Of Fukui Two-dimensional optical scanning mirror device, manufacturing method for same, two-dimensional optical scanner and image projector
JPWO2021100803A1 (en) * 2019-11-19 2021-05-27
WO2021100803A1 (en) * 2019-11-19 2021-05-27 パイオニア株式会社 Mirror scanner
JP2020115217A (en) * 2020-03-24 2020-07-30 国立大学法人福井大学 Two-dimensional optical scanning mirror device, two-dimensional optical scanning device and image projection device

Also Published As

Publication number Publication date
WO2005026817A1 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
JP6349229B2 (en) Biaxial optical deflector and manufacturing method thereof
JP7421140B2 (en) Rotary reciprocating actuator
US7773279B2 (en) Actuator, optical scanner, and image forming apparatus
JP4691704B2 (en) Optical scanning device
JP5744917B2 (en) Vibration element, optical scanning device, and image forming apparatus and image projection apparatus using the same
JP3974068B2 (en) Planar type electromagnetic actuator
CN114070001A (en) Rotary reciprocating drive actuator
JP5084121B2 (en) Actuator
JP4724436B2 (en) Driving device and light amount adjusting device
JP4144840B2 (en) Oscillator device, optical deflector, and optical apparatus using optical deflector
JP2005084571A (en) Optical scanner
JPH0682711A (en) Driving device of scanning mirror
JP2007094109A (en) Optical scanner
JP2010107666A (en) Optical scanner
JP2005177876A (en) Microstructure and its manufacturing method
JP5207656B2 (en) Planar type electromagnetic actuator
US20220269068A1 (en) Rotary reciprocating drive actuator
US20230006526A1 (en) Rotary reciprocating driving actuator
JP2003029190A (en) Optical deflector, image display device and imaging device using the same, and method for manufacturing optical deflector
US20230025894A1 (en) Rotary reciprocating drive actuator
JP2005148339A (en) Optical deflector
WO2006096156A1 (en) Moving mirror optical scanner and associated methods
JPH11194291A (en) Light deflector
JP2008046511A (en) Actuator, optical scanner, and image forming apparatus
JP2010262310A (en) Optical scanner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050712