WO2005025166A1 - Procede de modulation et de demodulation d'informations pour une utilisation elevee d'une bande de frequence - Google Patents

Procede de modulation et de demodulation d'informations pour une utilisation elevee d'une bande de frequence Download PDF

Info

Publication number
WO2005025166A1
WO2005025166A1 PCT/CN2004/000584 CN2004000584W WO2005025166A1 WO 2005025166 A1 WO2005025166 A1 WO 2005025166A1 CN 2004000584 W CN2004000584 W CN 2004000584W WO 2005025166 A1 WO2005025166 A1 WO 2005025166A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
wave
signal
information
modulated
Prior art date
Application number
PCT/CN2004/000584
Other languages
English (en)
Chinese (zh)
Inventor
Lenan Wu
Xiaoping Li
Hongwei Si
Shikai Zhang
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Publication of WO2005025166A1 publication Critical patent/WO2005025166A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/12Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4906Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes

Definitions

  • the invention is an information modulation method for digital communication, and belongs to the technical field of digital information transmission. Background technology
  • modulation In order to realize the long-distance transmission of digital information, binary data must be loaded on a high-frequency signal (carrier wave). This process is called modulation, and the opposite process is called demodulation. Since the modulated high-frequency signal (modulated wave) occupies a certain frequency bandwidth (signal bandwidth), in order to transmit the modulated wave more reliably, the corresponding frequency bandwidth (transmission bandwidth) must also be occupied. However, frequency is a valuable non-renewable resource. In order to achieve the highest possible utilization of the frequency band, it is necessary to improve the modulation efficiency when digital signals are converted to analog channels, so that transmission in the unit band (for example, 1 Hz) can be more efficient. High digital rate (bit / s).
  • the frequency band utilization rate is in the dimension of bit / s / Hz.
  • a 56kbits / s high-speed modem capable of dialing up through the existing public telephone network (PSTN) with a bandwidth of 300-3400HZ has a frequency band utilization rate of about 18bit / S / Hz.
  • This is usually achieved by increasing the number of constellation points in the signal space as much as possible, such as multi-level quadrature amplitude phase modulation (MQAM) and multi-phase shift keying (MPSK) modulation methods, but the processing is more complicated and has not yet been seen. It is reported that its modulation efficiency exceeds 20bil7s / H Z.
  • MQAM multi-level quadrature amplitude phase modulation
  • MPSK multi-phase shift keying
  • the purpose of the present invention is to provide an information modulation and demodulation method with a high frequency band utilization rate of up to 100 bit / s / Hz (or even higher). By improving the modulation efficiency, the bandwidth can be narrowed. Internal transmission high Speed data flow to save or reasonably utilize precious frequency resources and provide better solutions for occasions with limited communication bands.
  • the original modulation such as VMSK uses digital information to control the displacement of rectangular or triangular waves, and then outputs it through a special analog filter composed of several quartz crystals.
  • Communication engineers know that the narrowest bandwidth signal form should be a sine wave: a pure sine wave is a spectral line in the frequency domain. The energy is highly concentrated. Theoretically, the bandwidth is zero. Of course, it cannot pass any useful information. .
  • the present invention proposes an efficient modulation method which can be called "Very-minimum Wavefomi Difference Keying" (abbreviated as VWDK):
  • This method uses binary information symbols to directly change a waveform symmetry parameter of a sinusoidal carrier to minimize the waveform difference between the modulated signal and the sinusoidal signal, and its information transmission rate is equal to the carrier frequency. That is, the waveform difference between the modulated signal g (t, r) corresponding to logic "0" and g (t, r-) corresponding to logic "1" and the sine signal is minimized, and only one parameter is used to control the Waveform difference and signal bandwidth;
  • One of the VWDK modulation waveforms can be expressed by the following relationship ⁇
  • the modulation waveform itself has the following techniques Technical characteristics:
  • the waveform is defined in two sections, each of which is a half period of a sine wave, but the amplitudes are / r and ⁇ ⁇ , respectively, and the periods are 2r and 2 (T- ⁇ ), respectively;
  • the modulated wave is continuous at the waveform connection point defined by the segment, and the phase is also continuous at "0-1" or "1-0", which helps to suppress the broadening of the modulated wave spectrum and concentrate its energy on Frequency / place
  • the VWDK signal which is strictly limited by the ultra-narrowband filter (bandpass) at the transmitting end, is very close to a sine wave.
  • the difference between the waveforms representing "0" and "1" is negligible and it is difficult to reliably demodulate.
  • the present invention uses digital inverse filtering to match the signal waveform before the conventional coherent demodulation, which ensures the smooth progress of the demodulation.
  • VWDK is a carrier modulation method, which uses the "0" and "1" information symbols to directly change the waveform of a sinusoidal carrier.
  • the information rate can be equal to the carrier frequency. In theory, it can reach the frequency of a radio frequency (RF) carrier! Even if processing at the intermediate frequency (IF) is considered in consideration of technical implementation difficulties, it should be possible to obtain transmission code rates of hundreds of kb / s in the short-wave band and hundreds of Mb / s in the microwave band. Because the transmission code rate is high, and the waveform of the transmission signal is very close to the sine wave, the spectrum energy is concentrated ( Figure 1). The occupied bandwidth is very narrow, so the frequency band utilization rate of the present invention is extremely high, and ultra-narrow band high-speed data transmission can be realized.
  • Digital samples can be output through a digital-to-analog converter (DAC) ( Figure 2), which is convenient for the production of integrated circuits (ICs) and also uses digital filtering to precisely control the bandwidth and spectrum of the transmitted signal Shape; and the receiving end can greatly reduce the conversion rate of the analog-to-digital converter (ADC) according to the band-pass sampling theorem (because the signal occupies a very narrow frequency band), and use "software radio" technology to achieve the full digital processing of the receiver ( Figure 3) Therefore, it is beneficial to integrate the entire transceiver system on a single IC to form a so-called system on chip (SOC: System On Chip).
  • SOC System On Chip
  • the system control is flexible and adapts to the wide area. According to the aforementioned VWDK principle, as long as one waveform parameter is changed, the signal bandwidth can be controlled, and the modulation / demodulation method and transmission code rate can be unchanged. Then, the change of parameter A is used to control the transmission power or signal-to-noise ratio and introduce channels. Encoding to improve reliability can form a very flexible communication system that can be programmed in advance or dynamically reorganized online.
  • VWDK is a kind of efficient modulation method that directly changes the sine carrier waveform by using binary information symbols.
  • the signal bandwidth can be controlled. Its information transmission rate is equal to the carrier frequency, the transmitted signal waveform is very close to a sine wave, and the frequency band utilization rate is extremely high. It can achieve ultra-narrow-band high-speed data transmission.
  • Figure 1 is a logarithmic representation of the amplitude of the YWDK modulated signal power spectrum at 0.475.
  • FIG. 2 is a block diagram of a VWDK modulation system.
  • FIG. 3 is a block diagram of a VWDK demodulation system. V. Specific implementation
  • the present invention uses binary information symbols to directly change a waveform symmetry parameter ⁇ of a sinusoidal carrier to minimize the waveform difference between the modulated signal and the sinusoidal signal, and its information transmission rate is equal to the carrier frequency.
  • Logic "0" The modulated waveform is g (t, r), and the waveform modulated by logic "1" is ⁇ , ⁇ - ⁇ ):
  • the modulation waveform itself has the following technical characteristics:
  • the waveform is defined in two sections, each section is a half period of a sine wave, but the amplitudes are and ⁇ ⁇ ), and the periods are 1 ⁇ and 2 ( ⁇ - ⁇ ), respectively;
  • 0 or " ⁇ 1, g (t, T) and g (t, r- r) are both The sine wave has the largest difference, and the modulated spectrum has the widest spectrum
  • the modulated wave is continuous at the connection point of the waveform defined by the segment, and the phase is also continuous at "0-1" or "1-0", which helps to suppress the broadening of the modulated wave spectrum and concentrate its energy on Frequency / place
  • the average value of the modulated wave is zero, and therefore the spectrum does not contain a direct current component, which is different before and after the sine / negative amplitude two reasons.
  • FIG. 2 is a fully digital embodiment of the VWDK modulation system:
  • the transmitting end directly advances the discrete sampling values of the modulated waveforms g (t, ⁇ ) and g (t, ⁇ - ⁇ ) in a period expressed by the formula (1) in advance Stored in the memory, and then under the control of the information sequence to be transmitted, select the corresponding g (t,) waveform sample (if the information bit is "0") or g (t, r-r) waveform samples (if the information bit is "1"); the digital samples of the selected modulated waveform are filtered by a narrowband or ultra-narrowband digital filter with the required spectrum shape, and then directly converted by the DAC to an analog modulated wave output.
  • FIG 3 is a fully digital embodiment of the VWDK demodulation system: a VWDK received signal with distortion degradation due to channel transmission noise and distortion is converted into a digital signal by an ADC after necessary amplification, and after digital filtering by an inverse filter, it is sent A coherent demodulator composed of a digital multiplier, an integrator and a decider is input to complete the demodulation of the corresponding "0" and "1" sequences.
  • the principle of the coherent demodulator is classic and well known, and this example is directly used; the digital inverse filter is specially designed to cooperate with the reliable demodulation of the ultra-narrowband VWDK signal of the present invention.
  • the essence of its frequency response curve is The "0" "1” waveform blurring (that is, restoring or even amplifying the original difference between the two) caused by the ultra-narrowband digital filtering at the transmitting end is compensated (that is, "inverse” filtering) in the effective band of the signal. It is still necessary to effectively filter out unwanted noise and interference outside the effective frequency band of the signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

La présente invention se rapporte à un procédé de modulation et de démodulation d'informations pour une utilisation élevée d'une bande de fréquence. Ce procédé est utilisé pour la modulation et la démodulation des informations de communications numériques. Ce procédé utilise des symboles d'informations binaires pour changer directement un paramètre de symétrie d'onde d'une onde porteuse sinusoïdale pour minimiser la différence d'onde entre le signal modulé et le signal sinusoïdal, la vitesse de transmission des informations étant égale à la fréquence de l'onde porteuse. L'onde modulée par le '0' logique est g(t, τ), tandis que l'onde modulée par g(t, T-τ) est le '1' logique. Dans la formule (1), T est le cycle de l'onde du signal et représente également la largeur du signe et la largeur du symbole d'une information; cependant f=1/T est la fréquence de l'onde du signal et est égale à la vitesse de transmission du symbole sur une valeur numérique; cette vitesse des informations peut être égale à la fréquence d'onde de la porteuse, tandis que le signal de transmission est similaire à l'onde sinusoïdale. Ainsi, l'énergie du spectre des fréquences est fortement concentrée, et la largeur de bande utilisée est très étroite, ceci permettant une utilisation élevée de la bande de fréquences pour la mise en oeuvre d'une transmission de données à haute vitesse de bande ultra-étroite.
PCT/CN2004/000584 2003-09-08 2004-06-02 Procede de modulation et de demodulation d'informations pour une utilisation elevee d'une bande de frequence WO2005025166A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN03152978.X 2003-09-08
CNB03152978XA CN100421437C (zh) 2003-09-08 2003-09-08 高频带利用率的信息调制和解调方法

Publications (1)

Publication Number Publication Date
WO2005025166A1 true WO2005025166A1 (fr) 2005-03-17

Family

ID=34240745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000584 WO2005025166A1 (fr) 2003-09-08 2004-06-02 Procede de modulation et de demodulation d'informations pour une utilisation elevee d'une bande de frequence

Country Status (2)

Country Link
CN (1) CN100421437C (fr)
WO (1) WO2005025166A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684947B (zh) * 2013-12-12 2017-03-01 合肥工大高科信息科技股份有限公司 一种具备远程硬复位功能的fsk通信电路及其通信方法
WO2019084564A1 (fr) * 2017-10-27 2019-05-02 Terawave, Llc Système de communication de données à efficacité spectrale élevée
CN115208730A (zh) * 2022-06-30 2022-10-18 南京工程学院 一种对码元信号进行临频差分调制解调的方法
US11876659B2 (en) 2017-10-27 2024-01-16 Terawave, Llc Communication system using shape-shifted sinusoidal waveforms

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100372345C (zh) * 2004-09-20 2008-02-27 东南大学 等幅的高频带利用率的信息调制与解调方法
CN101729471B (zh) * 2008-10-24 2012-07-04 南京师范大学 广播通信系统的模拟信号和数字信号复合传输通信方法
CN101729195B (zh) * 2008-10-31 2013-04-03 南京师范大学 模拟信号和数字信息复合传输通信方法
CN101714959B (zh) * 2008-12-30 2012-07-04 南京师范大学 模拟/数字信号复合传输发射机和接收机
CN101714960B (zh) * 2008-12-31 2012-07-04 南京师范大学 基于等幅等周期调制载波的复合信号传输发射/接收机
CN101710888B (zh) * 2008-12-31 2012-08-15 南京师范大学 基于等幅等周期调制载波技术的复合信号传输通信方法
CN101714961B (zh) * 2009-01-05 2012-09-05 南京师范大学 基于等幅等周期调制载波的数字信号传输方法及设备
CN102123117B (zh) * 2010-01-07 2013-07-17 无锡爱睿芯电子有限公司 调制装置及方法
CN101795253B (zh) * 2010-01-27 2012-05-09 哈尔滨工程大学 频率驻留差分调频键控调制通信方法
CN101854319B (zh) * 2010-06-11 2013-03-20 哈尔滨工程大学 一种混沌多进制数字调制方法
CN109391384B (zh) 2017-08-02 2021-09-10 中兴通讯股份有限公司 一种基于调制信号的数据发射方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742532A (en) * 1986-05-08 1988-05-03 Walker Harold R High speed binary data communication system
CN1121658A (zh) * 1994-12-22 1996-05-01 王晓钟 数字信号的振荡键控调制osk方式
US20030016760A1 (en) * 2001-05-29 2003-01-23 Agere Systems Inc. Binary transmitter and method of transmitting data in binary format

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742532A (en) * 1986-05-08 1988-05-03 Walker Harold R High speed binary data communication system
CN1121658A (zh) * 1994-12-22 1996-05-01 王晓钟 数字信号的振荡键控调制osk方式
US20030016760A1 (en) * 2001-05-29 2003-01-23 Agere Systems Inc. Binary transmitter and method of transmitting data in binary format

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684947B (zh) * 2013-12-12 2017-03-01 合肥工大高科信息科技股份有限公司 一种具备远程硬复位功能的fsk通信电路及其通信方法
US10666481B2 (en) 2017-10-27 2020-05-26 Terawave, Llc High spectral efficiency data communications system using energy-balanced modulation
US10397030B2 (en) 2017-10-27 2019-08-27 Terawave, Llc Receiver for high spectral efficiency data communications system using encoded sinusoidal waveforms
US10469299B2 (en) 2017-10-27 2019-11-05 Terawave, Llc Multi-carrier data communications system having high spectral efficiency
US10530624B2 (en) 2017-10-27 2020-01-07 Terawave, Llc System for encoding multi-bit features into sinusoidal waveforms at selected phase angles
US10659269B2 (en) 2017-10-27 2020-05-19 Terawave, Llc High spectral efficiency data communications system using encoded sinusoidal waveforms
WO2019084564A1 (fr) * 2017-10-27 2019-05-02 Terawave, Llc Système de communication de données à efficacité spectrale élevée
US10749723B2 (en) 2017-10-27 2020-08-18 Terawave, Llc Narrowband sinewave modulation system
US10764101B2 (en) 2017-10-27 2020-09-01 Terawave, Llc High spectral efficiency data communications system using encoded sinusoidal waveforms
US10791014B2 (en) 2017-10-27 2020-09-29 Terawave, Llc Receiver for high spectral efficiency data communications system using encoded sinusoidal waveforms
US11228474B2 (en) 2017-10-27 2022-01-18 Terawave, Llc High spectral efficiency data communications system
US11876659B2 (en) 2017-10-27 2024-01-16 Terawave, Llc Communication system using shape-shifted sinusoidal waveforms
CN115208730A (zh) * 2022-06-30 2022-10-18 南京工程学院 一种对码元信号进行临频差分调制解调的方法
CN115208730B (zh) * 2022-06-30 2023-08-18 南京工程学院 一种对码元信号进行临频差分调制解调的方法

Also Published As

Publication number Publication date
CN100421437C (zh) 2008-09-24
CN1494284A (zh) 2004-05-05

Similar Documents

Publication Publication Date Title
WO2005025166A1 (fr) Procede de modulation et de demodulation d'informations pour une utilisation elevee d'une bande de frequence
CN102739590B (zh) 伪随机序列相位调制的cp-ebpsk通信系统及其通信方法
WO2019153591A1 (fr) Procédé de communication à modulation différentielle par déplacement de chaos à division de phase, basé sur un système hybride
JP2002543672A (ja) ナイキストフィルタ及び方法
EA031912B1 (ru) Комбинированная амплитудно-временная и фазовая модуляция
CN112350970B (zh) 一种多相位频移键控调制、解调方法及设备
US6683905B1 (en) Dual-mode receiver
CN111901269B (zh) 可变调制指数的高斯频移键控调制方法、装置及系统
CN106453171A (zh) 一种同频同时全双工系统的自干扰消除方法
CN111711590A (zh) 一种基于椭圆球面波信号的多支路连续相位调制解调方法
CN112653642A (zh) 基于ebpsk调制峰值能量猝发通信实现方法
US20070024477A1 (en) DPSK demodulator and method
CN1274122C (zh) 无线通信系统之信号接收及处理方法
CN100372345C (zh) 等幅的高频带利用率的信息调制与解调方法
EP1157455B1 (fr) Demodulateur fm utilisant un differentiateur
CN106059708B (zh) 一种多码率数据无线传输系统
CN112600781B (zh) 一种变包络频移键控调制、解调方法及设备
CN101753495A (zh) 一种甚小线性调频键控的超窄带广播通信调制方法
CN114826862A (zh) 一种适合于低功耗低性能mcu的通用窄带正交调制方法
CN111683028B (zh) 一种数字等报幅cw信号解调方法
Galvão et al. Bandwidth efficient gaussian minimum frequency-shift keying approach for software defined radio
CN113765545A (zh) 蓝牙接收机解调系统及方法
CN108199996B (zh) 基于fpga的独立边带调制信号解调方法
JPH1188452A (ja) 受信装置および受信信号の復調方法
US10498354B1 (en) Amplitude modulation system and apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase