WO2005024689A1 - 消費者の購買行動分析方法及び装置 - Google Patents

消費者の購買行動分析方法及び装置 Download PDF

Info

Publication number
WO2005024689A1
WO2005024689A1 PCT/JP2004/012818 JP2004012818W WO2005024689A1 WO 2005024689 A1 WO2005024689 A1 WO 2005024689A1 JP 2004012818 W JP2004012818 W JP 2004012818W WO 2005024689 A1 WO2005024689 A1 WO 2005024689A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
attribute
information
purchase
level
Prior art date
Application number
PCT/JP2004/012818
Other languages
English (en)
French (fr)
Inventor
Kenta Ikeuchi
Jiro Amatatsu
Akihisa Mino
Sei Hisatsune
Daiichi Homma
Original Assignee
Interscope Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interscope Inc. filed Critical Interscope Inc.
Priority to JP2005513672A priority Critical patent/JPWO2005024689A1/ja
Publication of WO2005024689A1 publication Critical patent/WO2005024689A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising

Definitions

  • the present invention relates to a method for acquiring information used for analyzing a consumer's purchasing behavior using a computer network, and a method for analyzing a consumer's purchasing behavior using the information.
  • the direct inquiry method is a method of directly answering the price, such as “The price you want to buy is ⁇ , ⁇ ⁇ ⁇ ⁇ ”.
  • PSM a representative survey method of direct inquiry, is ⁇ Prices that are too cheap and you are concerned about quality, '' ⁇ Prices that you start feeling cheap, '' ⁇ Prices that you start feeling expensive, '' and ⁇ Prices that you want And analyze the consumer's response to price.
  • conjoint analysis is a training method in which a product is regarded as a set of a plurality of elements, and a respondent is given a preference for a combination of those elements.
  • Conjoint analysis is an advantageous research method because it can analyze the price structure of products in a research environment close to the actual purchase situation.
  • Patent Document 1 JP-A-9-120395
  • Patent Document 2 JP-A-8-212191
  • Patent Document 3 JP-A-10-134027
  • a first technical means adopted by the present invention to solve the above-mentioned problem relates to an information acquiring means used for analyzing a consumer's purchasing behavior, and the information acquiring means includes an information acquiring method, It is provided as a server that acquires information, an information acquisition device, and a program that causes a computer to function to acquire information.
  • the method of acquiring information includes a step of displaying two or more competitor products together with a product attribute level on a display unit of the client terminal from the server via the computer network, and a step of displaying the client terminal power on the display unit.
  • a step of inputting the number of purchases of the goods and a step of acquiring the input purchase number information of each of the goods via a computer network and storing the information in the storage unit of the server together with the level of the goods attribute of each of the goods.
  • the information acquisition server is configured as follows.
  • a server connected to a client terminal via a computer network, and a storage unit of the server stores information for specifying a competitive product and a plurality of attribute levels related to a product attribute.
  • the information acquisition device includes means for storing information for specifying a plurality of products, means for storing a plurality of attribute levels related to product attributes, and randomly extracting attribute levels and dividing the product for each product.
  • An assigning means a display means for displaying a combination of the product and the attribute level to which the attribute level has been assigned to each of the plurality of products by the assigning means, a purchase quantity input section displayed on the display means, and a purchase quantity input section.
  • a consumer purchase behavior analysis characterized by allowing the user to input the purchase quantity of the product and storing the input purchase quantity information together with the combination in the purchase quantity storage means. Used.
  • the computer program according to the present invention is configured as follows.
  • a computer for acquiring information used for analyzing consumer purchasing behavior means for storing information specifying multiple products, means for storing multiple attribute levels related to product attributes, and randomly extracting attribute levels Means for allocating to each product, a display means for displaying a combination of a product and an attribute level to each of which a plurality of products are assigned an attribute level, a purchase quantity input section displayed on the display means, Means for inputting the number of purchases in the number input section, and means for storing the number of purchases input by the input means together with the combination of the product and the attribute level at that time; Is changed and the number of purchases of each product is input, and the input purchase number information is stored in the purchase number storage means together with the combination.
  • the computer program may be configured to cause a computer to execute the above-described information acquisition method.
  • the “attribute” is a category of characteristics of a product, that is, a factor that determines the value of the product.
  • the “level” is a candidate that the attribute can take, and is a content that specifically describes or expresses the condition of the attribute.
  • Product attributes include price, design, catch phrase, capacity, etc. And a plurality of levels are stored in the storage unit for each of these attributes.
  • the attribute is price
  • the data table of the storage device of the server includes a plurality of attribute levels (for example, 80 yen, 90 yen, 100 yen, 110 yen, 120 yen). Each level is extracted and assigned to each product.
  • attributes other than price When attributes other than price are used, a plurality of levels are prepared for each attribute and stored in a server data table. With regard to attributes that cannot be quantified, such as design and catch phrase, multiple types of different design candidates and catch phrase candidates are attribute levels.
  • the attribute level may be such that one data table is commonly used for all competitor products, or a data table having a different attribute level may be prepared for each product. For example, in the data table of FIG. 2, different price levels are prepared for competitors A, B, and C.
  • a survey using only price as an attribute will be described. While investigating, it is acceptable to conduct surveys using attributes other than price, or to combine multiple attributes (for example, price and capacity) and conduct surveys by changing these levels.
  • the purchase quantity includes 0. If 0 is selected, it means that the user has not selected to purchase the product.
  • the second technical means employed by the present invention uses a model formula that expresses the purchase amount of a product by a linear sum of an element that affects the purchase of the product and a coefficient that indicates the degree of influence of the element.
  • the present invention relates to a means of analyzing consumer's purchasing behavior, and is characterized in that factors that influence the purchase amount of a product include the product attributes of the product and a competitor product of the product.
  • the analysis of the consumer's purchasing behavior includes at least one of prediction of the purchase amount of the product, prediction of the sales amount of the product, prediction of the sales amount of the product, prediction of the profit in the sales of the product, and estimation of the optimal price.
  • the consumer purchase behavior analysis means is provided as a consumer purchase behavior analysis method, a consumer purchase behavior analysis device, and a program that causes a computer to function to analyze the consumer purchase behavior.
  • the analysis device of the consumer's purchasing behavior is configured as follows.
  • Consumer behavior An apparatus for analyzing consumer purchasing behavior using a model expression that expresses a purchase amount as a linear sum of an element that influences the purchase of the product and a coefficient indicating the degree of influence of the element, wherein the element includes the product And a product attribute of a competitor product of the product.
  • the element also includes a respondent attribute.
  • the apparatus includes means for storing information identifying a plurality of competing products, means for storing a plurality of attribute levels relating to product attributes, and means for storing each product of the respondent in any combination of the product and the attribute level.
  • Means for storing the number of purchases means for obtaining the model formula by estimating a coefficient indicating the degree of influence of a product attribute of the product and a competitor product of the product using the purchase number, and It has an input means for selecting and setting an element (product attribute) which is a variable, and a means for obtaining and outputting a purchase amount of a product as a predicted value by setting the selected variable.
  • the method of analyzing consumer purchasing behavior is characterized in that the model formula is estimated by estimating a coefficient indicating the degree of influence of a product and a product attribute of the competitor based on the information obtained by the method according to claims 1 to 8. And a step of selecting and setting an element (product attribute) which is a variable in the model formula, and calculating the purchase amount of the product as a predicted value by setting the selected variable.
  • the computer program is configured as follows.
  • a model formula expressing the purchase amount of a product as a linear sum of an element affecting the purchase of the product and a coefficient indicating the degree of influence of the element
  • the element includes the product of the product and the competitor product of the product.
  • Means for storing the level means for storing the number of purchases of each product of the respondent in any combination of the product and the attribute level, and the degree of influence of the product attribute of the product and the competitor product using the purchase number.
  • the computer program is also provided as a computer program for causing a computer to perform the method.
  • the invention's effect it is possible to acquire information that a change in an attribute level (for example, a price) among a plurality of competitive products gives to the number of purchases.
  • the analysis of the consumer's purchasing behavior mainly means the prediction of the product purchase amount.
  • the purchase behavior analysis broadly means the prediction of the product sales volume (contrary to the product purchase volume), the prediction of the product sales ( Multiply product sales volume by sales price), estimate profits in product sales (subtract costs from sales forecasts), estimate optimal prices (find sales or the price that maximizes profit as the objective variable) Includes sales share forecasts.
  • the present invention is different from prediction based on actual sales data as seen in the prior art in that the prediction is based on virtual storefront experiment data based on a Web questionnaire. Therefore, the present invention can satisfactorily perform a simulation when setting the price of a new product or when changing the price of an existing product.
  • the system of the present invention has a server and a client terminal, both of which are connected via the Internet exemplified as a computer network.
  • Both the client terminal and the server have the basic configuration as a computer (processing device, storage device, display device, input device, output device, control program for operating the computer, etc.).
  • the client terminal and the server are provided with a transmission / reception means that enables mutual exchange of information via a computer network.
  • the server will be described.
  • the server is composed of one or more computers, and has a processing device, a storage device, an input device, and an output device as shown in FIG.
  • the following are stored in the storage device of the server constituting the means for storing various information.
  • a data file for product information product name, product image, product description, etc.
  • a data table price level
  • the storage device further stores the attributes of the respondent. If the respondent is a member, the attribute of the respondent is stored in advance in the storage unit of the server.
  • Ant terminal capability You can input the attributes of the respondent and store the input information as a respondent database. Examples of the respondent attribute include age, gender, and the like.
  • the storage device further stores the response result received from the client terminal.
  • the server is provided with extraction means for randomly combining price levels for each product in a product group composed of a plurality of competing products.
  • extraction means for randomly combining price levels for each product in a product group composed of a plurality of competing products.
  • Fig. 2 when there are X types of products and Y price levels, there is a combination of price levels of X raised to the Yth power. For example, if there are five types of products and five price levels, there will be a combination of 5,125 price levels, which is 5,5.
  • the extracting means extracts any combination of the product and the price level from the product database and sends it to the client terminal.
  • a price level is assigned to each commodity such as A2 (120), Bl (90), C3 (90). Random selection of price levels can be achieved by using random numbers (pseudo-random numbers), for example.
  • Programs for generating pseudo-random numbers are well known.
  • the investigation can be performed efficiently by using an appropriate orthogonal table. For example, if there are five types of target products, each with five price levels, using an orthogonal table, there are 25 combinations of price levels to offer (see Figure 13).
  • a control program for executing the extracting means is stored in a storage device, and the processing device extracts a combination of a product and a price level from a data table in accordance with a command of the control program (for example, using a random number or an orthogonal table). ), And sends it to the client terminal via the computer network and displays it on the display unit of the client terminal.
  • the purchase quantity information input by the input means from the client terminal is transmitted as a response result to a server via a computer network, and the response result obtained by the server is stored in a storage device and used for later analysis.
  • the client terminal is a computer of the respondent.
  • the server is communicably connected to the client terminals of a large number of respondents via a computer network. If the computer network is the Internet, start the browser on the client terminal, specify the URL of the server's Web page, and request the page.
  • the Web page is acquired, the Web page is displayed on the screen of the client terminal, and the respondent can browse the Web page, and perform necessary information input work using an input unit such as a mouse. Can do it.
  • Information input from the client terminal is transmitted to the server via the computer network and stored in the storage device of the server.
  • Figures 3 and 4 show the display screen of the client terminal, which is displayed on the display of the respondent's terminal via the Internet.
  • the screen asks, "If the products are sold at the following prices, you want to buy each one, and you have more power."
  • information for specifying the product A, the product B, the product C, and the product D is displayed on the screen.
  • the product specifying information is typically a product name and / or a product image, and may include a product description.
  • the price level of each of the products A, B, C and D is displayed. Combinations of products and price levels are randomly generated on the server side, transmitted to the client terminal via a computer network, and displayed.
  • a purchase quantity input section is provided for each product.
  • 0-9 (the number is not limited to this) is selected by an input means such as a mouse. After the selection of the number is performed for all the commodities, the input purchase number information is transmitted to the server by clicking the transmission button.
  • Examples of the products include relatively low-priced products sold in supermarkets and convenience stores, and plastic bottles such as cups, tea, and health drinks.
  • the product name and the product image are displayed as the product specifying information.
  • the product name may be used alone, or if the product name is included in the product image, only the product image may be used.
  • the product information should be displayed to the extent that the respondent can recognize each product.
  • competitive products are usually displayed side by side in actual stores, and the package and design of the products are also one of the factors in selecting product purchases. The conditions close to the actual purchase scene can be displayed on the display of the client terminal and presented to the respondent.
  • At least one of the product specifying information is used as the product attribute, and the level of the attribute is prepared as a data file, and the attribute level is set. It can be displayed on the display of the client terminal while changing.
  • the combination of the product and the price level “the price of product A is 300 yen, the price of product B is 300 yen, the price of product C is 200 yen, and the price of product D is 400 yen”
  • the respondent purchases three products A, two products B, and sells product C.
  • an arbitrary price level is randomly extracted by the attribute level allocation means of the server and assigned to each product, a different combination of the product and the price level is generated, transmitted to the client terminal, and a new screen is displayed. It is displayed on the display unit of the client terminal.
  • Figure 4 shows this. If the price of product A is 100 yen, the price of product B is 400 yen, the price of product C is 300 yen, and the price of product D is 100 yen, the respondent In this example, eight A are purchased, one B is purchased, three C are purchased, and five D are purchased. 1 is entered in the purchase quantity input field of the product, 3 is entered in the purchase quantity input field of the product C, and 5 is entered in the purchase quantity input field of the product D.
  • the purchase quantity information After inputting the number in all the purchase quantity input fields by an input means such as a mouse or the like, when the transmission button is clicked by the input means, the purchase quantity information is transmitted to the server.
  • the server stores the received purchase quantity information as a response result in the storage device.
  • the purchase quantity 0 pieces can be selected. If 0 items are selected, it means that the product is not purchased. For example, if the purchase quantity of product A is 1 and the purchase quantity of product B, product C, and product D is 0, it means that only product A is purchased and other products are not purchased.
  • a pull-down input unit that can be input using a mouse is shown in the figure, an arbitrary number may be input using a keyboard of the client terminal.
  • a combination of price levels is randomly displayed a plurality of times on the display unit of the same client terminal. Then, the same respondent is asked to input the number of purchases a plurality of times. In addition, the same is done for many client terminals.
  • Information obtained from each client terminal via the computer network is stored in the storage device of the server as a response result.
  • the response result received from the client terminal includes “combination of product and price level displayed on client terminal” and “the number of purchases entered from client terminal for each product in each combination”. And that information is associated with the respondents' attributes.
  • the attribute of the respondent may be information transmitted from the client terminal, or information stored in advance in the storage device of the server (such as when the member is the respondent).
  • Information acquired from a plurality of client terminals stored in the storage device of the server includes information on a change in the number of purchases associated with a change in price level among a plurality of products.
  • information on a change in the number of purchases associated with a change in price level among a plurality of products By processing and analyzing the power and information, it is possible to estimate the effect of the price level of each product on the number of purchases (or purchase probability). For example, if a graph is created with the price of product A on the horizontal axis and the purchase quantity of product A on the vertical axis, a downward-sloping curve is drawn such that the purchase quantity increases as the price decreases. From this curve, it is possible to predict the increase or decrease in the number of purchases due to the change in own price.
  • a second embodiment of the present invention will be described with reference to FIGS.
  • the second embodiment differs from the first embodiment in that the number of pieces is set.
  • the number of sets x the number of sets will be treated as the number of purchases.
  • the storage unit of the server stores product information of product A—product E.
  • product A-E has three types with different capacities, which are large, medium and small.
  • Product specific information includes image information for each product volume Is also included.
  • the product identification information on 15 competitor products is stored in the server. Therefore, even if products of the same type have different capacities, they are treated as different competitors.
  • FIG. 10 is a data table stored in the storage unit of the server, and stores a plurality of attribute levels (price levels) for large, medium, and small capacities. Specifically, eight price levels of “large” are stored: 148 yen, 158 yen, 168 yen, 178 yen, 188 yen, 198 yen, 208 yen, and 218 yen. . Similarly, the price level of “medium” is within the eight price levels of 118 yen, 128 yen, 138 yen, 148 yen, 158 yen, 168 yen, 178 yen, and 188 yen.
  • FIG. 11 is a data table showing the setting level of the number of pieces. "Large” stores two levels, “1” and “2". “Middle” stores two levels, “1” and “2”. “Small” stores four levels: “1”, “2”, “3”, and “4”.
  • One price setting level and one entry number setting level are extracted from the price level data table and the entry number data table, respectively, and assigned to each product.
  • the resulting combination of each product, price level, and quantity is transmitted to the client terminal together with the product image and displayed on the display unit of the client terminal.
  • the present invention will be described based on the display screen of the client terminal.
  • FIG. 5 shows a display screen of the client terminal.
  • the price shown is a set of the above quantities, select the number of sets you want to buy for each and press the "Next" button.
  • product A and product E product image, display of large, medium, and small, number of pieces, price
  • Product C is large: 1 piece ⁇ 148 yen, medium: 2 pieces ⁇ 296 yen, small: 1 piece ⁇ 88 yen
  • Product D is large: 2 pieces ⁇ 436 yen, Medium: 1 piece ⁇ 118 yen, small: 4 pieces ⁇ 512 yen
  • the product ⁇ is large: 1 piece ⁇ 188 yen, Medium: 1 piece ⁇ 178 yen, small: 1 piece ⁇ 552 yen
  • product ⁇ large: 2 pieces ⁇ 336 yen, medium : 2 pieces ⁇ 256 yen, small: 3 pieces ⁇ 354 yen.
  • Each product of each of the large, medium, and small is provided with a "quantity input section" and a “selection section for selecting not to buy".
  • the number input section has 110 pull-down menus, and the number to be purchased is selected and input by input means such as a mouse. If there is no purchase intention, the user selects and clicks on "Do not buy.” Instead of, or in addition to, selecting not to buy, a number 0 may be provided in the pull-down menu of the number input section as in the first embodiment.
  • FIG. 6 is a display screen showing a state in which the input from the client terminal has been completed.
  • Product C is large: 1 piece ⁇ 148 yen ⁇ 3 sets, medium: 2 pieces ⁇ 296 yen ⁇ 8 sets, small: 1 piece ⁇ 88 yen ⁇ 2 sets : 2 pcs ⁇ 436 yen 'Do not buy, medium: 1 pcs ⁇ 118 yen' Do not buy, small: 4 pcs ⁇ 512 yen ⁇ 4 sets, but the product ⁇ is large: 1 pcs ⁇ 188 yen ⁇ 4 sets, medium: 1 set ⁇ 178 yen ⁇ 1 set, small: 1 set ⁇ 552 yen ⁇ 4 sets are products ⁇ , large: 1 set ⁇ 168 yen 'Do not buy, medium: 2 sets ⁇ 356 yen 'Do not buy, small: 3 pieces ⁇ 264 yen ⁇ One set is a product ⁇ , large: 2
  • the purchase quantity information is transmitted to the server.
  • the purchase quantity information received by the server is stored in the storage unit of the server.
  • a new price level and quantity are assigned to each product by the server price extraction and allocation means, and a new combination of products and prices is generated.
  • the generated combination is transmitted to the client terminal and displayed on the display unit of the client terminal.
  • the purchase quantity information input from the client terminal may not be transmitted each time, but may be temporarily stored in the client terminal side and transmitted to the server as a whole.
  • FIG. 7 shows a display screen of the next client terminal, and FIG.
  • product A is large: 1 piece ⁇ 208 yen, medium: 1 piece ⁇ 118 yen, small: 3 pieces ⁇ 444 yen
  • product C is large: 2 pieces ⁇ 316 yen , Medium: 2 pieces ⁇ 376 yen, small: 4 pieces ⁇ 352 yen, but the product ⁇ is large: 1 piece ⁇ 148 yen, medium: 1 piece ⁇ 236 yen, small: 3 pieces ⁇ 444
  • the product D is large: 1 piece ⁇ 168 yen, medium: 2 pieces ⁇ 236 yen, small: 3 pieces ⁇ 216 yen, but the product ⁇ is large: 1 piece ⁇ 218 yen, Medium: 1 set ⁇ 118 yen, small: 2 sets ⁇ 176 yen.
  • the price and number of pieces have changed, as is apparent.
  • the input purchase number information is transmitted to the server.
  • the purchase quantity information received by the server is stored in the storage unit of the server.
  • the price of the product is assigned a new price level and the number of pieces by the price extraction and allocation means of the server by the "Next" button, and a new product 'price combination is generated.
  • the selected combination is transmitted to the client terminal and displayed on the display unit of the client terminal.
  • Figure 9 shows the display screen displayed next on the client terminal, which shows that the price level and the number of pieces are different. In the drawing, the display order 'layout of the product ⁇ —product ⁇ is changed for each display.
  • the purchase quantity information input from the client terminal is sent to the server via the network and stored in the storage unit of the server.
  • the storage unit of the server stores the combination of each product and each attribute level, and the number of purchases of each product in each combination. These acquired information
  • the sales forecast of each product can be made using the information.
  • the purchase quantity is estimated using the following model.
  • Purchase quantity. Aj + jk X price + x quantity + Si .
  • This model is a regression equation with the purchase quantity as the predicted value and the price and the quantity entered as independent variables. .
  • the number of products 15.
  • represents an error.
  • a method of analyzing consumer purchasing behavior will be described.
  • Consumer purchasing behavior analysis is performed by a consumer purchasing behavior analysis device.
  • the analyzer has a processing device, a display device, an input device, an output device, various data files, a control program, a storage device for storing analysis results, and the like, and the server may also serve as the analyzer, or
  • the analysis device may be constituted by a separate computer from the server.
  • the data file stores the product attributes and their levels, the response results obtained by the information acquisition method described above, and the attributes of the respondents.
  • the purchase amount (sales amount) of a product is a linear sum of an element that affects the purchase (sale) of the product and a coefficient that indicates the degree of influence of the element.
  • Factors that affect the purchase (sales) of a product include product attributes and respondent attributes.
  • the present invention has a feature in that information relating to “commodity attributes of competing products” is included in the product attributes as factors that influence the purchase of the product.
  • the coefficient of each element is estimated by a known estimation method such as the least square method / maximum likelihood estimation method based on the answer result obtained from the respondent.
  • a model formula for analyzing a consumer's purchasing behavior is more generally expressed as follows.
  • i is a respondent (in the case where a product is repeatedly presented to one respondent,
  • j represents a product.
  • a dummy variable is used.
  • information indicating the number of times that the product was presented for example, “In the first presentation, 1 for the second presentation, 2 for the second presentation, etc.).
  • Q represents the purchase amount of the product j of the respondent i. That is, in the model formula, the purchase amount is obtained by a linear sum of the product attributes and respondent attributes, which are independent variables, multiplied by a coefficient. Each coefficient is estimated using the obtained purchase amount information.
  • the gki hi ij may be a logarithmic or exponential transform of data representing product characteristics (such as price), respondent attributes (such as gender), and purchase volume.
  • the number of respondent attributes (s) is 1.
  • ⁇ and ⁇ are constant terms.
  • ⁇ and ⁇ are the product attributes (price) of product 1
  • the number of products (m) is 2
  • the number of respondent attributes (s) is 1.
  • the purchase amount of the product 1 and the product 2 of the respondent i is represented by the following models.
  • Adopt a model As a parameter estimation method, a least squares method or a maximum likelihood method is used. For example, in multiple regression analysis, it is common to find partial regression coefficients by the least squares method. Done in
  • the parameter indicating the degree of influence of the product attribute and the respondent attribute on the purchase amount of the answered product is estimated. Prediction is performed using the estimated parameters.
  • a product attribute that is an element that influences the purchase of the product
  • the setting items are input to the analyzer using an input device such as a keyboard / mouse.
  • an input device such as a keyboard / mouse.
  • a price level is selected from a plurality of price levels.
  • the following procedure can be repeated to make one purchase per respondent in each situation (in the survey, Is the product purchase).
  • the unit time for performing the prediction is one day.
  • the predicted purchase amount of the two types of consumer goods 1 and 2 is calculated by the following equation.
  • ⁇ and ⁇ each represent the price (unit price per unit).
  • the estimated sales per day per store for goods 1 and 2 are calculated as follows.
  • the estimated profit is calculated by denoting the cost per unit of sales amount of the product 1 and the product 2 as ⁇ and ⁇ ⁇ ⁇ ⁇ ,
  • 100'Q e + 200-Q e represents the predicted sales volume of the product 1, and Q e , Q e
  • the acquired information includes "product groups selected (refined) by each respondent", “(price) level presented for each respondent X experiment”, "purchase for each respondent X experiment X product” The desired number is obtained.
  • a method of “analysis” prediction will be described. For each respondent, set and analyze a regression model using the number of purchases and the selection probability of each product as the objective variable and the presented attributes such as the price as explanatory variables (in the previous method, set the model for each segment). As a result, a coefficient that indicates the change in the number of purchases when the attribute of each product such as price changes for each respondent is estimated (reaction coefficient i3®). Model estimated for each respondent (if the product attribute is price only)
  • a simulation method will be described. When the price and other attributes are at a certain level, the number of purchases and the selection probability of each product are calculated for each respondent based on the response coefficient. Aggregate the predicted number of purchases and selection probabilities of each product calculated for each respondent, and Assume a prediction result.
  • FIG. 1 is a diagram showing a configuration of a server.
  • FIG. 2 is a diagram showing a product / price data table of a server.
  • FIG. 3 shows an example of a screen displayed on a display unit of a client terminal.
  • FIG. 4 shows an example of a screen displayed on a display unit of a client terminal.
  • FIG. 5 shows an example of a screen displayed on a display unit of a client terminal.
  • FIG. 6 shows an example of a screen displayed on a display unit of a client terminal.
  • FIG. 7 shows an example of a screen displayed on a display unit of a client terminal.
  • FIG. 8 shows an example of a screen displayed on a display unit of a client terminal.
  • FIG. 9 shows an example of a screen displayed on a display unit of a client terminal.
  • FIG. 10 is a data table showing price levels.
  • FIG. 11 is a data table showing levels of the number of pieces.
  • FIG 12] c [13] showing an example of a screen displayed on the display unit of the client terminal according to another embodiment the orthogonal table.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Strategic Management (AREA)
  • Finance (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

複数の競合商品間における属性水準の変化が購入個数に与える影響を分析するための情報を取得する。コンピュータネットワークを介してサーバからクライアント端末の表示部に2以上の競合商品をそれぞれ商品属性の水準と共に表示するステップと、クライアント端末から該表示部に表示された各商品の購入個数を入力させるステップと、入力された各商品の購入個数情報をコンピュータネットワークを介して取得して各商品の商品属性の水準と共にサーバの記憶部に格納するステップを有し、該サーバは、商品属性の複数の水準を格納すると共に、商品属性の複数の水準から属性水準を抽出して各商品に割り当てる手段を有し、前記一連のステップを、同一のクライアント端末に対して、該割り当て手段を用いて商品と属性水準の組み合わせを変化させながら複数回行うことで各商品の購入個数情報を取得する。

Description

明 細 書 消費者の購買行動分析方法及び装置
技術分野
[0001] 本発明は、コンピュータネットワークを用いた消費者の購買行動分析に用いる情報を 取得するための方法及び該情報を用いた消費者の購買行動分析方法に関するもの である。
背景技術
[0002] 従来、商品の価格等の属性が消費者行動に与える影響を分析する調査手法として は、 PSMを含む直接質問法ゃコンジョイント分析が行なわれている。直接質問法は 、「あなたが買いたいと思う価格はレ、くらです力、」のように、価格を直接回答させる方 法である。直接質問法の代表的な調査手法である PSMは、「安すぎて品質に不安が ある価格」、「安いと感じ始める価格」、「高いと感じ始める価格」、「高すぎて買いたく なくなる価格」という 4つの価格について質問し、消費者の価格に対する反応を分析 するものである。
[0003] 一方、コンジョイント分析は複数の要素の集合として商品を捉え、それらの要素の組 み合わせに対する選好を回答者に回答させる調查方法である。コンジョイント分析は 実際の購買状況に近い調査環境で商品の価格構造を分析できる点で有利な調査 手法である。
[0004] 従来の調査方法は、いずれも、回答者に商品を提示して購入の有無を聞くものであ つた。しかしながら、実際の消費者の購入行動を見ると、複数の同種の商品から単に いずれかの商品を選択するだけでなぐ対象となる複数の商品間の属性の水準 (例 えば、価格)次第で、同じ商品を複数個購入する場合も多い。特に、競合商品間の 価格等の属性水準の変化は、商品の購入の有無のみならず、商品の購入個数にも 影響を与えるものと考えられる。従来の調査手法や分析において、この点に着目した ものはない。
特許文献 1:特開平 9 - 120395号 特許文献 2 :特開平 8— 212191号
特許文献 3:特開平 10 - 134027号
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、力かる消費者の購入行動に鑑みて、実際の商品購入場面に即した消費 者の購買行動分析に用いる情報を取得することを目的とするものである。本発明の 他の目的は、実際の商品購入場面に近い条件で取得した情報を用いて、消費者の 購買行動分析を行うことにある。
課題を解決するための手段
[0006] 上記課題を解決するために本発明が採用した第 1の技術手段は、消費者の購買行 動分析に用いる情報の取得手段に関するものであり、情報取得手段は、情報の取得 方法、情報を取得するサーバ、情報の取得装置、情報を取得するためにコンピュー タを機能させるプログラムとして提供される。
[0007] 情報の取得方法は、コンピュータネットワークを介してサーバからクライアント端末の 表示部に 2以上の競合商品をそれぞれ商品属性の水準と共に表示するステップと、 クライアント端末力 該表示部に表示された各商品の購入個数を入力させるステップ と、入力された各商品の購入個数情報をコンピュータネットワークを介して取得して各 商品の商品属性の水準と共にサーバの記憶部に格納するステップを有し、該サーバ は、商品属性の複数の水準を格納すると共に、商品属性の複数の水準力 属性水 準を抽出して各商品に割り当てる手段を有し、前記一連のステップを、同一のクライ アント端末に対して、該割り当て手段を用いて商品と属性水準の組み合わせを変化 させながら複数回行うことで各商品の購入個数情報を取得するものである。
[0008] 情報取得サーバは次のように構成される。クライアント端末とコンピュータネットワーク を介して接続されるサーバであって、該サーバの記憶部には、競合商品を特定する 情報、及び、商品属性に関する複数の属性水準が格納されており、該サーバは、属 性水準をランダムに抽出して各商品に割り当てる手段を有しており、該ランダム割り 当て手段によって複数の商品それぞれに属性水準を割り当てて、コンピュータネット ワークを介して該サーバからクライアント端末の表示部に複数の商品をそれぞれ属性 水準と共に表示し、該ランダム割り当て手段によって商品と属性水準の組み合わせ を変化させながら各商品の購入個数を複数回入力させ、入力された購入個数情報を コンピュータネットワークを介して取得して該記憶部に格納する。
[0009] 情報の取得装置は、複数の商品を特定する情報を記憶する手段と、商品属性に関 する複数の属性水準を記憶する手段と、属性水準をランダムに抽出して各商品に割 り当てる手段と、該割り当て手段によって複数の商品それぞれに属性水準を割り当て た商品と属性水準の組み合わせを表示する表示手段と、該表示手段に表示された 購入個数入力部と、該購入個数入力部に購入個数を入力する手段と、該入力手段 によって入力された購入個数をその時の商品と属性水準の組み合わせと共に記憶 する手段とを備え、該割り当て手段によって商品と属性水準の組み合わせを変化さ せながら各商品の購入個数を入力させ、入力された購入個数情報を該組み合わせ と共に該購入個数記憶手段に記憶することを特徴とする消費者の購買行動分析に 用いる。
[0010] 本発明に係るコンピュータプログラムは次のように構成される。消費者の購買行動分 析に用いる情報を取得するためにコンピュータを、複数の商品を特定する情報を記 憶する手段、商品属性に関する複数の属性水準を記憶する手段、属性水準をランダ ムに抽出して各商品に割り当てる手段、該割り当て手段によって複数の商品それぞ れに属性水準を割り当てた商品と属性水準の組み合わせを表示する表示手段、該 表示手段に表示された購入個数入力部、該購入個数入力部に購入個数を入力する 手段、該入力手段によって入力された購入個数をその時の商品と属性水準の組み 合わせと共に記憶する手段、として機能させ、該割り当て手段によって商品と属性水 準の組み合わせを変化させながら各商品の購入個数を入力させ、入力された購入 個数情報を該組み合わせと共に該購入個数記憶手段に記憶するように機能させる。 コンピュータプログラムは、また、前述の情報の取得方法をコンピュータに実行させる ものとして構成してもよい。
[0011] 「属性」とは、商品が持つ特性のカテゴリー、すなわち、商品の価値を決定する要因 である。 「水準」とは、属性が採り得る候補であり、属性の条件を具体的に記述あるい は表現した内容である。商品の属性には、価格、デザイン、キャッチコピー、容量等 が例示され、これらの各属性に対して複数の水準が記憶部に格納される。調査に用 レ、る属性を選択すると共に、選択された属性の属性水準を変化させながらクライアン ト端末の表示部に表示させ、入力手段から購入数量を入力させて情報を取得するこ とで、属性水準の変化が購買行動に与える効果を分析する。一つの好ましい態様で は、属性は価格であり、サーバの記憶装置のデータテーブルには、複数の属性水準 (例えば、 80円、 90円、 100円、 110円、 120円)力 S格糸内されており、複数の水準力ら 1つずつ水準を抽出して各商品に割り当てる。
[0012] 価格以外の属性を用いる場合においては、属性毎に複数の水準が用意され、サー バのデータテーブルに格納される。デザインやキャッチコピー等の数値化できなレヽ属 性にっレ、ては、複数種類の異なるデザイン候補やキャッチコピー候補が属性水準と なる。
[0013] 属性水準は 1つのデータテーブルを全ての競合商品に共通に対応させるものでも、 あるいは、商品毎に異なる属性水準のデータテーブルを用意してもよい。例えば、図 2のデータテーブルでは、競合商品 A, B, C毎に異なる価格水準が用意されている 。後述の実施例では、 1つの好適な例として、属性として価格のみを用いた調査につ いて説明する。し力しながら、価格以外の属性を用いて調査を行っても良ぐあるい は、複数の属性 (例えば、価格と容量)を組み合わせて、これらの水準を変化させて 調査してもよい。また、好ましくは、購入個数には 0が含まれている。 0が選択された場 合には、商品を購入しないことを選択したことを意味する。
[0014] 本発明が採用した第 2の技術手段は、商品の購入量をその商品の購入に影響を与 える要素とその要素の影響度を示す係数との線形和で表すモデル式を用いた消費 者の購買行動分析手段に関するものであり、商品購入量に影響を与える要素には、 該商品及び該商品の競合商品の商品属性が含まれている点に特徴を有する。消費 者の購買行動分析は、商品購入量の予測、商品販売量の予測、商品売上高の予測 、商品販売における利益の予測、最適価格の推定の少なくとも一つを含む。消費者 購買行動分析手段は、消費者購買行動分析方法、消費者購買行動分析装置、消費 者購買行動を分析するためにコンピュータを機能させるプログラムとして提供される。
[0015] 消費者の購買行動の分析装置は次のように構成される。消費者の購買行動商品の 購入量をその商品の購入に影響を与える要素とその要素の影響度を示す係数との 線形和で表すモデル式を用いた消費者の購買行動分析装置であって、該要素には 、該商品及び該商品の競合商品の商品属性が含まれる。一つの好ましい態様では、 要素に回答者属性も含まれる。該装置は、複数の互いに競合する商品を特定する情 報を記憶する手段と、商品属性に関する複数の属性水準を記憶する手段と、商品と 属性水準の任意の組み合わせにおける、回答者の各商品の購入個数を記憶する手 段と、該購入個数を用いて、該商品及び該商品の競合商品の商品属性の影響度を 示す係数を推定することで該モデル式を求める手段と、該モデル式における変数で ある要素 (商品属性)を選択して設定するための入力手段と、該選択した変数を設定 することで商品の購入量を予測値として求めて出力する手段とを有する。
[0016] 消費者購買行動分析方法は、商品及び該競合商品の商品属性の影響度を示す係 数を請求項 1乃至 8に記載の方法によって取得した情報に基づいて推定することで 該モデル式を求めるステップと、該モデル式における変数である要素(商品属性)を 選択して設定し、該選択した変数を設定することで商品の購入量を予測値として求 めるステップとを有する。
[0017] コンピュータプログラムは、次のように構成される。商品の購入量をその商品の購入 に影響を与える要素とその要素の影響度を示す係数との線形和で表すモデル式に おいて、該要素には、該商品及び該商品の競合商品の商品属性が含まれており、 該モデル式を用いて消費者の購買行動を分析するためにコンピュータを、複数の互 レ、に競合する商品を特定する情報を記憶する手段、商品属性に関する複数の属性 水準を記憶する手段、商品と属性水準の任意の組み合わせにおける、回答者の各 商品の購入個数を記憶する手段、該購入個数を用いて、該商品及び該商品の競合 商品の商品属性の影響度を示す係数を推定することで該モデル式を求める手段、 該モデル式における変数である要素(商品属性)を選択して設定するための入力手 段、該選択した変数を設定することで商品の購入量を予測値として求めて出力する 手段、として機能させる。コンピュータプログラムはまた、前記方法をコンピュータに実 行させるためのコンピュータプログラムとしても提供される。
発明の効果 [0018] 本発明によれば、複数の競合商品間における属性水準 (例えば、価格)の変化が購 入個数に与える情報を取得することができる。また、力かる情報を用いることで、実際 の商品購入場面に即した消費者の購買行動分析を行うことができる。消費者の購買 行動分析は、主として、商品購入量の予測を意味するが、本発明に購買行動分析は 広義には、商品販売量の予測(商品購入量と裏腹)、商品売上高の予測(商品販売 量に販売価格を乗算する)、商品販売における利益の予測 (売上予測から原価を減 算する)、最適価格の推定 (売上高、あるいは利益を最大にする価格を目的変数とし て求める)、売上シェア予測をも含む。また、本発明は、いわば Webアンケートによる 仮想店頭実験データに基づく予測である点において、従来技術に見られるような実 際の販売データに基づく予測とは異なるものである。したがって、本発明は、新商品 の価格を設定する場合、既存の商品の価格を変更した場合等のシミュレーションを 良好に行うことができる。
発明を実施するための最良の形態
[0019] 本発明のシステムは、サーバとクライアント端末とを有しており、両者はコンピュータネ ットワークとして例示されるインターネットを介して接続されてレ、る。クライアント端末及 びサーバは共にコンピュータとしての基本的構成 (処理装置、記憶装置、表示装置、 入力装置、出力装置、コンピュータを動作させる制御プログラム等)を備えている。ま た、クライアント端末及びサーバはコンピュータネットワークを介して相互に情報のや り取りを可能とする送受信手段を備えている。コンピュータが有するこれらの構成要 素は周知である。
[0020] サーバについて説明する。サーバは、一つあるいは複数のコンピュータ力 構成され ており、図 1に示すように、処理装置、記憶装置、入力装置、出力装置を有している。 各種情報を記憶する手段を構成するサーバの記憶装置には次のものが格納されて いる。先ず、比較対象となる複数の競合商品を特定する商品情報 (商品名、商品画 像、商品説明等)に関するデータファイル、商品の属性 (価格)の複数の属性水準( 価格水準)に関するデータテーブル(図 2)が格納されている。記憶装置には、さらに 、回答者の属性が記憶される。回答者の属性は、回答者が会員である場合にはサー バの記憶部に予め格納されており、回答者が会員でない場合には、回答時にクライ アント端末力 回答者の属性を入力させ、入力情報を回答者データベースとして格 納してもよレ、。回答者属性としては、年齢、性別等が例示される。記憶装置には、さら に、クライアント端末力 受信した回答結果が記憶される。
[0021] サーバには、複数の競合商品から構成される商品群の各商品に対して、価格水準を ランダムに組み合わせる抽出手段を備えている。図 2から明らかなように、 X種類の商 品と Y個の価格水準がある場合には、 Xの Y乗の価格水準の組み合わせが存在する 。例えば、 5種類の商品と 5個の価格水準の場合、 5の 5乗である 3,125の価格水準の 組み合わせとなる。抽出手段によって、商品データベースから商品と価格水準の任 意の組み合わせを抽出して、クライアント端末に送信する。例えば、 A2 (120) , Bl ( 90) , C3 (90) · · ·..のように各商品に価格水準を割り当てて行く。価格水準のランダム な選択割り当ては、例えば、乱数 (擬乱数)を用レ、ることで可能となる。擬似乱数を生 成させるプログラムは周知である。また、関係を分析する要素 '属性があらかじめ決ま つている場合は、適切な直交表を用いることにより効率的に調査を行うことができる。 例えば、対象商品が 5種類、それぞれ 5個の価格水準の場合、直交表を用いれば、 提示する価格水準の組み合わせは 25となる(図 13参照)。抽出手段を実行させる制 御プログラムは記憶装置に格納されており、該制御プログラムの指令によって処理装 置がデータテーブルから商品と価格水準の組み合わせを抽出して(例えば、乱数、 あるいは直交表を用いて)、コンピュータネットワークを介してクライアント端末に送信 してクライアント端末の表示部に表示させる。
[0022] クライアント端末から入力手段によって入力された購入個数情報は、回答結果として 、コンピュータネットワークを介してサーバに送信され、サーバで取得された回答結果 は記憶装置に格納され、後の分析に用いられる。
[0023] クライアント端末は、回答者側のコンピュータである。サーバは、多数の回答者のクラ イアント端末とコンピュータネットワークを介して相互通信可能に接続される。コンビュ ータネットワークがインターネットの場合には、クライアント端末においてブラウザを起 動して、サーバの Webページの URLを指定して該ページを要求する。 Webページ を取得すると、該 Webページはクライアント端末の画面に表示され、回答者が該 Web ページを閲覧することができ、マウス等の入力手段を用いて必要な情報入力作業を 行なうことができる。クライアント端末から入力された情報は、コンピュータネットワーク を介してサーバに送信され、サーバの記憶装置に記憶される。
実施例 1
[0024] 本発明を表示画面を用いて具体的に説明する。図 3、図 4はクライアント端末の表示 画面であり、インターネットを介して回答者の端末のディスプレイに表示される画面で ある。画面には、「以下のような価格で商品が売られているとしたら、あなたはそれぞ れ何個買いたいと思レ、ます力。」という質問が表示される。さらに、画面には、商品 A ,商品 B,商品 C,商品 Dを特定する情報(商品プロフィール)が表示される。商品特 定情報は、典型的には商品の名称あるいは/および商品画像であり、また、商品説 明を含んでいても良い。そして、商品 A,商品 B,商品 C,商品 Dの各商品の価格水 準が表示されている。商品と価格水準の組み合わせは、サーバ側でランダムに生成 され、コンピュータネットワークを介してクライアント端末に送信されて表示される。さら に、各商品に対応して、購入個数入力部が設けてあり、購入個数入力部では、 0— 9 個(個数はこれに限定されない)の個数をマウス等の入力手段によって選択するよう になっており、全ての商品について個数の選択が行なわれた後に、送信ボタンをタリ ックすることで、入力された購入個数情報がサーバに送信される。
[0025] 商品は、スーパーマーケットやコンビニエンスストアで販売される比較的低価格の商 品が例示され、カップ麵、お茶や健康飲料等のペットボトルが例示される。図示のも のでは、商品特定情報として商品名と商品画像が表示されている力 商品名のみで もよぐあるいは商品画像中に商品名が載っている場合には、商品画像のみでもよい 。要するに、回答者が各商品を認識できる程度に、商品情報が表示されていればよ レ、。もっとも、実際の店頭では、競業商品が並んで陳列されていることが一般的であ り、商品のパッケージやデザインも商品購入選択の一つの要因でもあるので、商品画 像を表示することで実際の購入場面に近い条件をクライアント端末の表示部に表示 し、回答者に提示することができる。また、商品特定情報と商品属性とは部分的に重 複していてもよぐ商品特定情報のいずれか 1つ以上を商品属性とし、該属性の水準 をデータファイルとして用意して、属性水準を変化させながらクライアント端末の表示 部に表示させることちできる。 [0026] 図 3では、商品と価格水準の組み合わせ「商品 Aの価格が 300円、商品 Bの価格が 3 00円、商品 Cの価格が 200円、商品 Dの価格が 400円」がサーバの属性水準割り当 て手段で生成されて、クライアント端末に送信されて表示部に表示された場合に、回 答者が、商品 Aを 3個購入し、商品 Bを 2個購入し、商品 Cを 3個購入し、商品 Dを 1個 購入する場合を示しており、商品 Aの購入個数入力欄に 3、商品 Bの購入個数入力 欄に 2、商品 Cの購入個数入力欄に 3、商品 Dの購入個数入力欄に 1がそれぞれ入 力されている。マウス等の入力手段によって全ての購入個数入力欄に個数を入力し た後に、入力手段によって送信ボタンをクリックすると、コンピュータネットワークを介し て入力された購入個数情報がサーバに送信される。サーバは、受信した購入個数情 報を回答結果として記憶装置に格納する。
[0027] 次いで、サーバの属性水準割り当て手段によって任意の価格水準がランダムに抽出 されて各商品に割り当てられ、商品と価格水準の異なる組み合わせが生成され、クラ イアント端末に送信されて、新しい画面がクライアント端末の表示部に表示される。図 4は、それを示しており、商品 Aの価格が 100円、商品 Bの価格が 400円、商品 Cの 価格が 300円、商品 Dの価格が 100円の場合に、回答者が、商品 Aを 8個購入し、商 品 Bを 1個購入し、商品 Cを 3個購入し、商品 Dを 5個購入する場合を示しており、商 品 Aの購入個数入力欄に 8、商品 Bの購入個数入力欄に 1、商品 Cの購入個数入力 欄に 3、商品 Dの購入個数入力欄に 5がそれぞれ入力されている。マウス等の入力手 段によって全ての購入個数入力欄に個数を入力した後に、入力手段によって送信ボ タンをクリックすると、購入個数情報がサーバに送信される。サーバは、受信した購入 個数情報を回答結果として記憶装置に格納する。
[0028] 購入個数としては、 0個を選択することができる。 0個が選択された場合には、当該商 品を購入しないということを意味する。例えば、商品 Aの購入個数を 1とし、商品 B、商 品 C、商品 Dの購入個数を 0とすれば、商品 Aのみを購入し、他の商品については購 入しないことを意味する。図示のものでは、マウスを用いて入力可能なプルダウン方 式の入力部が示してあるが、クライアント端末のキーボードを用いて、任意の数字を 入力するものであってもよい。
[0029] 同じクライアント端末の表示部に、価格水準の組み合わせをランダムに複数回表示さ せて、同じ回答者から購入個数を複数回入力させる。さらに、同様のことを多数のク ライアント端末に対して行う。各クライアント端末からコンピュータネットワークを介して 取得した情報は、回答結果として、サーバの記憶装置に格納される。クライアント端 末から受信した回答結果には、「クライアント端末に表示された商品と価格水準の組 み合わせ」、「各組み合わせにおいて、各商品に対してクライアント端末から入力され た購入個数」が含まれており、また、これらの情報は回答者の属性に関連付けられて いる。回答者の属性は、クライアント端末から送信された情報であっても、あるいは、 予めサーバの記憶装置に格納されている情報 (会員が回答者の場合等)であっても よい。
[0030] サーバの記憶装置に格納された複数のクライアント端末から取得した情報には、複 数の商品間における価格水準の変化に伴う購入個数の変化の情報が含まれている 。力、かる情報を加工 ·分析することで、各商品の価格水準が購入個数 (あるいは購入 確率)に与える効果を推定することができる。例えば、横軸に商品 Aの価格、縦軸に 商品 Aの購入個数をとつてグラフを作成すると、価格が下がれば購入個数が増えるよ うな右下がりの曲線が描かれる。この曲線から自己の価格の増減に伴う購入個数の 増減を予測することができる。同様に、商品 B,商品 C,商品 Dのそれぞれの価格の 増減に伴う、商品 Aの購入個数の変化を予測することができる。これらの予測を統合 することで、商品 Aの購入個数を全ての商品の価格水準から予測するモデルを構築 すること力 Sできる。また、回答者の属性を併せて分析することで、年齢別、性別等に基 づくさらに詳細な分析を行なうことができる。本発明について、価格という属性を用い た場合について説明した力 本発明で用いられる属性は価格に限定されるものでは ない。
実施例 2
[0031] 本発明の第 2の実施例について図 5乃至図 11を参照しながら説明する。第 2の実施 例では、入り数が設定されている点において第 1の実施例と異なる。後の分析におい ては、入り数 Xセット数を購入個数として扱う。サーバの記憶部には、商品 A—商品 E の商品情報が格納されている。各商品 A— Eはさらに容量の異なる 3つの種類を有し ており、これらを大、中、小とする。商品特定情報には、各商品の容量毎の画像情報 も含まれている。第 2の実施例では、 15個の競合商品についての商品特定情報がサ ーバに格納されていることになる。したがって、同種の商品であっても、容量が異なる 場合には、互いに異なる競合商品として扱う。
[0032] 図 10は、サーバの記憶部に格納されているデータテーブルであり、大中小の容量毎 に複数の属性水準 (価格水準)が格納されている。具体的には、「大」の価格水準とし ては、 148円、 158円、 168円、 178円、 188円、 198円、 208円、 218円の 8個の価 格水準が格納されている。同様に、「中」の価格水準としては、 118円、 128円、 138 円、 148円、 158円、 168円、 178円、 188円の 8個の価格水準力 S格糸内されており、「 /Jヽ」の価格水準としては、 78円、 88円、 98円、 108円、 118円、 128円、 138円、 14 8円の 8個の価格水準が格納されている。大中小に対してそれぞれ用意された 8個の 水準から一つの水準を選択してそれぞれ大中小に割り当てる。
[0033] 図 11は、入り数の設定水準を示すデータテーブルでる。 「大」には「1個入り」と「2個 入り」の 2つの水準が格納されている。「中」には「1個入り」と「2個入り」の 2つの水準 が格納されている。「小」には「1個入り」、「2個入り」、「3個入り」、「4個入り」の 4つの 水準が格納されている。
[0034] 価格水準のデータテーブル及び入り数のデータテーブルから、それぞれ、一つの価 格設定水準、一つの入り数設定水準を抽出して、各商品に対して割り当てる。そうし て得られた各商品と価格水準、入り数の組み合わせを商品画像と共にクライアント端 末へ送信して、クライアント端末の表示部に表示する。以下、クライアント端末の表示 画面に基づいて本発明を説明する。
[0035] 図 5は、クライアント端末の表示画面であって、画面の上方部位には「以下のような価 格と入り数で売られているとしたら、それぞれ幾つずつ買いたいと思レ、ます力。提示 されている値段は上の入り数をセットにした値段です。買いたいと思うセット数をそれ ぞれについて選択し、「次へ進む」ボタンを押してください。」という質問が表示される 。画面には、商品 A 商品 Eに関する情報(商品画像、大中小のいずれかの表示、 入り数、価格)が提示されている。画面の下方部位には、「記入もれ等がないかどうか ご確認の上「次に進む」ボタンを押してください」と記載されており、その下に「次に進 む」ボタンが設けてある。 [0036] 商品 Cとしては、大: 1個組 · 148円、中: 2個組 · 296円、小: 1個組 · 88円が、商品 D としては、大: 2個組 ·436円、中: 1個組 · 118円、小: 4個組 · 512円が、商品 Εとして は、大: 1個組 · 188円、中: 1個組 · 178円、小: 1個組 · 552円が、商品 Αとしては、大 : 1個組 · 168円、中: 2個組 · 356円、小: 3個組 · 264円が、商品 Βとしては、大: 2個 組 · 336円、中: 2個組 · 256円、小: 3個組 · 354円が表示されている。
[0037] 大中小毎の各商品には「個数入力部」と「買わないを選択する選択部」が対応して設 けてある。個数入力部は 1一 10のプノレダウンメニューを有しており、購入したい個数 をマウス等の入力手段によって選択して入力するようになってレ、る。購入意志が無レ、 場合には、「買わなレ、」を選択してクリックするようになっている。買わないを選択させ る代わりに、あるいはそれに加えて、第 1の実施例のように、個数入力部のプルダウン メニューに個数 0を設けてもよい。
[0038] 図 6は、クライアント端末からの入力が完了した状態を示す表示画面である。商品 Cと しては、大: 1個組 · 148円 · 3セット、中: 2個組 · 296円 · 8セット、小: 1個組 · 88円 · 2 セットが、商品 Dとしては、大: 2個組 ·436円 '買わない、中: 1個組 · 118円 '買わない 、小: 4個組 · 512円 ·4セットが、商品 Εとしては、大: 1個組 · 188円 ·4セット、中: 1個 組 · 178円 · 1セット、小: 1個組 · 552円 ·4セットが、商品 Αとしては、大: 1個組 · 168 円'買わない、中: 2個組 · 356円'買わない、小: 3個組 · 264円 · 1セットが、商品 Βと しては、大: 2個組 · 336円.買わない、中: 2個組 · 256円 · 2セット、小: 3個組 · 354円 •2セットが入力されている。
[0039] 全ての商品について購入個数の入力が行われた後で、マウス等の入力手段によつ て「次に進む」ボタンをクリックすると、入力された購入個数情報がサーバに送信され る。サーバで受信された購入個数情報はサーバの記憶部に格納される。同時に、「 次に進む」ボタンのクリックによって、サーバの価格抽出割り当て手段によって、各商 品に対して新たに価格水準及び入り数が割り当てられて、新しレ、商品 ·価格の組み 合わせが生成され、生成された組み合わせがクライアント端末に送信されて、クライア ント端末の表示部に表示される。尚、クライアント端末から入力された購入個数情報 の送信は、都度行わずに、一時的にクライアント端末側で記憶しておき、まとめてサ ーバに送信するようにしてもょレ、。 [0040] 図 7は、次のクライアント端末の表示画面を示しており、図 8は入力後の表示画面を 示している。上図において、商品 Aとしては、大: 1個組 · 208円、中: 1個組 · 118円、 小: 3個組 ·444円が、商品 Cとしては、大: 2個組 · 316円、中: 2個組 · 376円、小: 4 個組 · 352円が、商品 Βとしては、大: 1個組 · 148円、中: 1個組 · 236円、小: 3個組 · 444円が、商品 Dとしては、大: 1個組 · 168円、中: 2個組 · 236円、小: 3個組 · 216 円が、商品 Εとしては、大: 1個組 · 218円、中: 1個組 · 118円、小: 2個組 · 176円が 表示されている。図 の表示画面における商品 ·価格 ·入り数の組み合わせと比較す ると明ら力、なように、価格と入り数が変化している。
[0041] 図 8において、商品 Αとしては、大: 1個組 · 208円.買わなレ、、中: 1個組 · 118円.買 わない、小: 3個組 ·444円 ·買わないが、商品 Cとしては、大: 2個組 · 316円 · 1セット 、中: 2個組 · 376円 · 2セット、小: 4個組 · 352円 · 1セットが、商品 Βとしては、大: 1個 組 · 148円 ·買わない、中: 1個組 · 236円 · 2セット、小: 3個組 ·444円 ·買わないが、 商品 Dとしては、大: 1個組 · 168円 ·買わなレ、、中: 2個組 · 236円 ·買わなレ、、小: 3個 組 · 216円 · 1セットが、商品 Εとしては、大: 1個組 · 218円 · 5セット、中: 1個組 · 118 円 ·買わない、小: 2個組' 176円 '買わなレ、が入力されてレ、る。
[0042] 購入個数の入力が行われた後で、マウス等の入力手段によって「次に進む」ボタンを クリックすると、入力された購入個数情報がサーバに送信される。サーバで受信され た購入個数情報はサーバの記憶部に格納される。同時に、「次に進む」ボタンのタリ ックによって、サーバの価格抽出割り当て手段によって、各商品に対して新たに価格 水準及び入り数が割り当てられて、新しい商品'価格の組み合わせが生成され、生成 された組み合わせがクライアント端末に送信されて、クライアント端末の表示部に表示 される。図 9は次にクライアント端末に表示される表示画面であり、価格水準と入り数 が異なっていることがわかる。尚、図示のものでは、表示毎に、商品 Α—商品 Εの表 示順序'レイアウトを変化させている。
[0043] クライアント端末から入力された購入個数情報は、ネットワークを介してサーバに送ら れ、サーバの記憶部に格納される。上述のステップを、多数のクライアント端末から取 得することで、サーバの記憶部には、各商品と夫々の属性水準との組み合わせ、及 び、各組み合わせにおける各商品の購入個数が格納される。これらの取得された情 報を用いて各商品の販売予測を行うことができる。
[0044] ここで、以下のようなモデルを用いて購入数量を推定する。
[数 1]
商品数 商品数
購入数量. = aj + jk X価格 + x入り数お + Si.
(i = 1,2,...,回答者数, j = 1,2,…,商品数) かかるモデルは、購入数量を予測値、価格及び入り数を独立変数とした回帰式であ る。実施例 2では商品数 = 15である。 ε は誤差を表す。サーバの記憶部に格納され た購入個数情報を重回帰分析することで、各係数ひ、 /3 、 γ (k=l,2,…,商品数)
J Jk jk
がそれぞれ推定され、各商品に関する購入数量を求める式を得ることができる。これ らの式は、各商品毎に得られ、実施例 2では 15個の式が用意される。これらのパラメ ータを用いることで任意の価格と入り数の条件のもとでの購入個数の予測値が得ら れる。
実施例 3
[0045] 消費者の購買行動分析方法について説明する。消費者の購買行動分析は、消費者 購買行動分析装置によって行われる。分析装置は、処理装置、表示装置、入力装置 、出力装置、各種データファイル、制御プログラム、分析結果等を格納する記憶装置 を有しており、前記サーバが分析装置を兼ねても良ぐあるいは、前記サーバとは別 個のコンピュータから分析装置を構成してもよい。データファイルには、商品属性及 びその水準、前述の情報取得方法によって取得した回答結果、回答者の属性等が 格納されている。本発明に係る消費者の購買行動分析方法では、商品の購入量 (販 売量)を、その商品の購入 (販売)に影響を与える要素とその要素の影響度を示す係 数との線形和で表すモデル式を用いる。商品の購入 (販売)に影響を与える要素に は、商品属性及び回答者属性が含まれる。本発明では、商品の購入に影響を与える 要素としての商品属性の中に、「競合商品の商品属性」に関する情報を含む点に特 徴を有するものである。各要素の係数は、回答者から得た回答結果に基づいて、最 小二乗法ゃ最尤推定法等の公知の推定法によって推定される。
[0046] 消費者の購買行動分析を行うためのモデル式は、より一般的に以下のように表され る。
[数 2]
Figure imgf000017_0001
(i = 1,2,...,«, j = l,2,...,m)
[0047] モデル式において、 iは、回答者(1人の回答者に対して繰り返し商品を提示した場合
、繰り返し提示数分だけ 1人の回答者として数える)を表す。 jは商品を表す。
[0048] モデル式において、 P は、回答者 iに対して提示された商品 kの g番目の商品属性(
gkl
価格など)を表す (g=l,2, ' , Γ)。質的な変数を用いる場合はダミー変数を用いる。ま た、商品の並べ方による順序効果を取り除くため、回答者に提示された際の商品 kの 位置などの情報も含むことが可能である(例えば、「左上であれば 1」や「左から 1番目 であれば 1、 2番目であれば 2」など)。
[0049] モデル式において、 Xは、回答者 iの h番目の回答者属性を表す (h =1,2, · · ·, s)。性
hi
別など質的な変数を用いる場合はダミー変数を用いる。また、ここには 1人の回答者 に対して繰り返し商品を提示し、購入量を回答させた場合、提示された回数を示す 情報を含むことが可能である(例えば、「1回目の提示であれば 1、 2回目の提示であ れば 2」など)。
[0050] モデル式において、 Qは、回答者 iの商品 jの購入量を表す。すなわち、モデル式に おいて、購入量は、独立変数である商品属性及び回答者属性にそれぞれ係数を乗 じたものの線型和によって求められる。各係数は、得られた購入量情報を用いて推 定される。 P 、 X、 Q
gki hi ijはそれぞれ商品特性 (価格など)、回答者属性 (性別など)、購 入量をあらわすデータを対数変換、指数変換したものでも構わない。
[0051] 分析モデルについて簡単な例に基づいて具体的に説明する。
(1)基本モデル
商品数 (m)を 2、商品属性を「価格(Q 、Q の 1単位あたりの単価)」のみ(r = 1)とし、
il i2
回答者属性数 (s)を 1とする。
[0052] 回答者 iの商品 1、商品 2の購入量をそれぞれ以下のモデルで表す。 [数 3]
Qa i
Qa
Figure imgf000018_0001
+ ε
{i = \,2,... , n)
[0053] ここで、 ひ 、 a は定数項である。 β 、 β は商品 1の商品属性 (価格)が商品 1、 2の
1 2 11 21
購入量にそれぞれ与える影響度である。 β 、 β は商品 2の商品属性 (価格)が商
12 22
品 1、 2の購入量にそれぞれ与える影響度である。 γ 、 γ は回答者属性が商品 1、 2
1 2
の購入量にそれぞれ与える影響度である。 ε 、 ε は誤差項を表す。
il i2
[0054] (2)交差項を含む基本モデル
前記モデルと同様に、商品数 (m)を 2、商品特性を価格のみ (r=l)とし、回答者属性 数 (s)を 1とする。
[0055] 回答者 iの商品 1、商品 2の購入量をそれぞれ以下のモデルで表す。
[数 4]
Qn = «i + βχΛ +
Figure imgf000018_0002
+ " ('•= 1,2,..., η)
[0056] 、 は商品 1の商品属性 (価格)と回答者属性の交互作用(商品属性が購入量
12
に与える効果の回答者属性による違い)の影響度を表す。 71 、 77 は商品 1の商品
21 22
属性 (価格)と回答者属性の交互作用の影響度を表す。
[0057] 上記(1) (2)のモデルにおける α 、 ひ 、 β ヽ β ヽ β ヽ β ヽ γ 、 γ 、 η
21 12 22 12
77 、 π のパラメータを推定する。さらに、購入量 Q 、 Q 力 S (購入する、購入しな
21 22 il i2
いなど)離散的に変化する変数である場合、潜在変数の存在を仮定し、口 > クモデルやプロビットモデル、多項口ジットモデル、多項プロビットモデルなどを、また 、購入量 Q 、 Q に 0の多い場合はトービットモデルなどを検討し、あてはまりの良い
il i2
モデルを採用する。パラメータの推定方法としては、最小二乗法や最尤法を用いる。 例えば、重回帰分析において、最小二乗法によって偏回帰係数を求めることが一般 に行われる。
[0058] 前述のように、アンケートのデータとモデルを用いて商品属性、回答者属性がそれぞ れ回答された商品の購入量に与える影響度をあらわすパラメータを推定する。この推 定されたパラメータを用いて予測を行う。
[0059] 商品の購入量をその商品の購入に影響を与える要素とその要素の影響度を示す係 数との線形和で表すモデル式において、商品の購入に影響を与える要素である商 品属性、回答者属性に関する変数を設定項目として任意に設定することで、商品購 入量 (商品販売量)を予測する。設定項目(商品属性水準、回答者属性)は、キーボ ードゃマウス等の入力装置によって分析装置に入力される。例えば、商品属性として の価格を設定する場合には、複数の価格水準から価格水準を選択する。入力情報 をモデル式に代入することで、商品購入量 (商品販売量)の予測値が演算されて求 められる。予測値は出力装置 (表示装置における表示を含む)に出力される。予測方 法について以下に詳述する。
[0060] (1)回答者 1人あたりの購入量の予測
まず、回答者 1人あたりの 1回の買い物 (調査時においては商品提示)における商品 j 0=1 ,2, · · · , m)の予測購入量を算出する。ここで、異なる商品属性や回答者属性をも つ複数の状況についてシミュレーションを行う場合は、下記、手順を繰り返すことによ つてそれぞれの状況における回答者 1人あたりの 1回の買い物 (調査時においては 商品提示)における予測購入量が算出できる。
[0061] ここでは上記 (2)のモデル (2商品、 1商品特性 (価格)、 1回答者属性、交互作用を含 むモデノレ)に対応する α 、 a ヽ β ヽ β 、 β ヽ β ヽ γ 、 γ 、 η ヽ η ヽ η 、
1 2 11 21 12 22 1 2 11 12 21 η のパラメータを用いたシミュレーション結果の演算方法を説明する。
22
[0062] モデルの推定の結果、商品 1および商品 2の回答者 1人あたりの予測購入量は以下 の等式によって算出される。
[数 5]
Q{ = α + βηΡχ + βηΡ2 + χ1Χ + ηιιΡ1Χ + η12Ρ2Χ
Q = 2 + βΡχ + β22Ρ2 + χ2Χ + η^Χ + η22Ρ2Χ [0063] ここで、設定項目 P (商品属性)、 P (商品属性)、 X (回答者属性)に任意の数値を入
1 2
力することによって回答者 1人あたりの 1回の買い物(調査時においては商品提示)に おける商品 1および商品 2の予測購入量 Q e, Q eが得られる。
1 2
[0064] (2)実際の店舗における販売量の予測
さらに、実際の店舗においては回答者属性の異なる消費者が来店することから、上 記の予測購入量 Q Q eを用いて 1店舗あたりの単位時間あたりの販売予測をおこな
1 2
う。
[0065] ここでは、予測をおこなう単位時間を 1日とする。また、消費者は 2つのタイプに分けら れると仮定し、 1つのタイプは X = 0、もう 1つのタイプは X = 1で特徴付けられているも のとする(例えば、性別が男性なら X = 0、女性なら X = 1など)。
[0066] まず、 X = 0である消費者と X = 1である消費者の 1日(販売予測の対象期間)あたりの 来店人数をそれぞれ実際の店舗の実情に合わせて測定する。ここでは測定の結果、 X = 0 (男性)の消費者力 S100人、 X = 1 (女性)の消費者力 00人であったとする。
[0067] ここで、上記 (1)の手順に基づき、 X = 0、 X = 1の場合のそれぞれについて回答者 1人 あたりの 1回の買い物(調査時においては商品提示)における商品 1および商品 2の 予測購入量 Q e, Q eを算出する。 X = 0の消費者の商品 1の予測購入量を Q e 、商
1 2 1、x=0 品 2の予測購入量を Q e とおく。 X = 1の消費者についても商品 1、 2の予測購入
2、x = 0
、 Q 6 とおく。
[0068] 2タイプの消費者の商品 1および商品 2に対する予測購入量は以下の等式によって算 出される。
Figure imgf000020_0001
Q = 2 + y2 + (Al + 721 ) + (A2 + 22 )尸 2 [0069] 以上のことから、 1店舗あたりの 1日(単位時間)あたりの商品 1および商品 2の販売予 測結果はそれぞれ以下の等式によって算出される。
[数 7] 商品丄の予賺売量: 100·β--+200 ^- 商品 2の予測販売量: C) ' Q2 X=0丁 · β¾ χ
[0070] (3)売上高'利益の予測
次に、(2)で求めた予測販売量にもとづいて売上高、利益の予測をおこなう。
上記の例では、 Ρ ,Ρはそれぞれ価格(1単位あたりの単価)をあらわしていたため、商
1 2
品 1と商品 2の 1店舗あたり 1日あたりの予測売上高はそれぞれ以下のように算出され る。
園 商品 1の予測売上高:
■ (100■ QI χ__0 + 200 Q
商品 2の予測売上高:
(勤 ·β =0 +200.!2 =1)
[0071] また、予測利益は商品 1、商品 2の販売量 1単位あたりにかかる費用をそれぞれ Ζ ,Ζと
1 2 すると、以下のように算出される。 (ζ ,ζは消費者アンケートとは別途調査する必要が
1 2
ある)
[数 9] 商品 1から得られる予測利益:
(尸 ZJ dOO.G 。 +200·¾χ=1)
商品 2から得られる予測利益:
(尸 2 — Ζ2).ひ ΟΟ.β =0 +200-¾2 =1) [0072] (4)最適価格の算出
(3)において導かれた売上高や利益の予測を行う等式を用いて、それらを最大化する 価格を算出する。
ここでは、例として上記の予測例にしたがい商品 1の予測売上高や予測利益を最大 化する価格を求める。上記 (1)一 (3)のシミュレーションの演算手順にしたがって商品 1 に関する以下の予測結果が得られているものとする。
[数 10] 商品 1の予測売上高:
X=lノ
商品 1から得られる予測利益:
- ΗΙΟΟ.β =。+200.β
[0073] ここで、 100'Q e +200-Q e は商品 1の予測販売量をあらわし、 Q e 、Q e
1、x=0 1、x=l 1、x=0 1、 はそれぞれ消費者のタイプが X = 0、X = 1である消費者 1人当たりの商品 1の予 測購入量をあらわしており以下の等式によって算出されるものである。
[数 11]
[0074] Ρは商品 1の価格をあらわしていたから、商品 1の予測販売量 lOO'Q e +200-Q
1 1、x=0 e は Pの水準によって決定される。ここで、 Pにさまざまな値を設定し計算を繰り 返すことによってその商品 1の価格の各水準に対応する売上高と利益の予測値が得 られる。これら商品 1の価格の各水準に対応する売上高'利益の予測値の中で最も大 きいものに対応する商品 1の価格 Pの水準をそれぞれの最適価格として算出する。
1
実施例 4
[0075] さらに他の実施例について説明する。先ず、データの取得方法において、実施例 1, 2における最初の画面の前段階として、図 12に示す画面をクライアント端末の表示部 に表示して商品の絞り込みを行う。最初に、分析対象の商品を全て調査画面に提示 し、回答者に購入可能性のある商品を選択させる第 1ステップを設ける。次に、第 1ス テツプで選択した商品のみを直交表に基づいて価格水準とともに調查画面に提示す る第 2ステップを設ける。第 2ステップの画面を直交表の実験回数分(図 13参照)だけ 繰り返す。なお、この方法の場合、直交表を用いた水準の選択 '表示が望ましい。
[0076] 取得情報としては、「各回答者が選択 (絞込み)した商品群」、「各回答者 X実験ごと に提示された (価格)水準」、「各回答者 X実験 X商品ごとに購入希望個数」が得ら れる。
[0077] 分析'予測の方法について説明する。回答者ごとに各商品の購入個数や選択確率 を目的変数、価格など提示された属性を説明変数とする回帰モデルを設定し、分析 する(前回までの手法ではセグメントごとにモデルを設定)。その結果、回答者ごとに 価格などの各商品の属性が変化したときの購入個数の変化をあらわす係数が推定さ れる (反応係数 i3 ®)。回答者ごとに推定されるモデル (商品属性が価格のみの場合
hi
)は以下のとおりである。
[数 12]
Λ=1
= 1,2,…,実験回数 ゾ = 1,2,...,商品数 = 1,2,…,回答者数
<取得データ >
¾° :回答者 iが k回目の実験で商品 jを購入する個数
pi' - :回答者 iに対して k回目の実験で提示された商品 hの価格水準
<推定されるパラメータ (反応係数) >
β :定数項
:商品 hの価格が回答者 iの商品 jの購入個数に与える影響度 :誤差項
[0078] シミュレーションの方法について説明する。価格などの属性がある水準のときに回答 者ごとに各商品の購入個数や選択確率の予測値を反応係数に基づいて計算する。 回答者ごとに計算された各商品の購入個数や選択確率の予測値を集計し、全体の 予測結果とする。
図面の簡単な説明
[図 1]サーバの構成を示す図である。
[図 2]サーバの商品 ·価格データテーブルを示す図である。
[図 3]クライアント端末の表示部に表示される画面の例を示す。
[図 4]クライアント端末の表示部に表示される画面の例を示す。
[図 5]クライアント端末の表示部に表示される画面の例を示す。
[図 6]クライアント端末の表示部に表示される画面の例を示す。
[図 7]クライアント端末の表示部に表示される画面の例を示す。
[図 8]クライアント端末の表示部に表示される画面の例を示す。
[図 9]クライアント端末の表示部に表示される画面の例を示す。
[図 10]価格水準を示すデータテーブルである。
[図 11]入り数の水準を示すデータテーブルである。
[図 12]他の実施例に係るクライアント端末の表示部に表示される画面の例を示す c [図 13]直交表を用いた商品と価格水準の組み合わせを示す図である。

Claims

請求の範囲
[1] コンピュータネットワークを介してサーバからクライアント端末の表示部に 2以上の競 合商品をそれぞれ商品属性の水準と共に表示するステップと、
クライアント端末から該表示部に表示された各商品の購入個数を入力させるステツ プと、
入力された各商品の購入個数情報をコンピュータネットワークを介して取得して各 商品の商品属性の水準と共にサーバの記憶部に格納するステップを有し、
該サーバは、商品属性の複数の水準を格納すると共に、商品属性の複数の水準か ら属性水準を抽出して各商品に割り当てる手段を有し、
前記一連のステップを、同一のクライアント端末に対して、該割り当て手段を用いて 商品と属性水準の組み合わせを変化させながら複数回行うことで各商品の購入個数 情報を取得することを特徴とする消費者の購買行動分析に用いる情報の取得方法。
[2] 請求項 1において、前記商品属性には価格、入り数、容量の少なくとも 1つが含まれ ることを特徴とする情報の取得方法。
[3] 請求項 1 , 2いずれかにおいて、属性水準の組み合わせを変化させながらクライアン ト端末の表示部に表示させる属性は、 1つあるいは複数の属性であることを特徴とす る情報の取得方法。
[4] 請求項 1乃至 3いずれかにおいて、該割り当て手段は、属性水準をランダムに抽出し て各商品に割り当てる手段であることを特徴とする情報の取得方法。
[5] 請求項 4において、該属性水準をランダムに抽出して各商品に割り当てる手段は、乱 数を用いるものであることを特徴とする情報の取得方法。
[6] 請求項 1乃至 5いずれかに記載の方法を、複数のクライアント端末に対して行うことで
、複数のクライアント端末力 各商品の購入個数情報を取得することを特徴とする情 報の取得方法。
[7] 請求項 1乃至 6いずれかに記載の方法において、該サーバには、各商品を特定する 商品特定情報が格納されており、該商品特定情報をクライアント端末の表示部に表 示することを特徴とする情報の取得方法。
[8] 請求項 7において、該商品特定情報には、商品名、商品画像、商品説明の少なくとも 一つが含まれることを特徴とする情報の取得方法。
[9] 請求項 1乃至 8いずれかに記載した方法をコンピュータに実行させるためのコンビュ ータプログラム。
[10] クライアント端末とコンピュータネットワークを介して接続されるサーバであって、該 サーバの記憶部には、競合商品を特定する情報、及び、商品属性に関する複数の 属性水準が格納されており、該サーバは、属性水準をランダムに抽出して各商品に 割り当てる手段を有しており、
該ランダム割り当て手段によって複数の商品それぞれに属性水準を割り当てて、コ ンピュータネットワークを介して該サーバからクライアント端末の表示部に複数の商品 をそれぞれ属性水準と共に表示し、
該ランダム割り当て手段によって商品と属性水準の組み合わせを変化させながら各 商品の購入個数を複数回入力させ、入力された購入個数情報をコンピュータネットヮ ークを介して取得して該記憶部に格納するように構成されているサーバ。
[11] 複数の商品を特定する情報を記憶する手段と、
商品属性に関する複数の属性水準を記憶する手段と、
属性水準をランダムに抽出して各商品に割り当てる手段と、
該割り当て手段によって複数の商品それぞれに属性水準を割り当てた商品と属性 水準の組み合わせを表示する表示手段と、
該表示手段に表示された購入個数入力部と、
該購入個数入力部に購入個数を入力する手段と、
該入力手段によって入力された購入個数をその時の商品と属性水準の組み合わ せと共に記憶する手段とを備え、
該割り当て手段によって商品と属性水準の組み合わせを変化させながら各商品の 購入個数を入力させ、入力された購入個数情報を該組み合わせと共に該購入個数 記憶手段に記憶することを特徴とする消費者の購買行動分析に用いる情報の取得
[12] 消費者の購買行動分析に用いる情報を取得するためにコンピュータを、
複数の商品を特定する情報を記憶する手段、 商品属性に関する複数の属性水準を記憶する手段、
属性水準をランダムに抽出して各商品に割り当てる手段、
該割り当て手段によって複数の商品それぞれに属性水準を割り当てた商品と属性 水準の組み合わせを表示する表示手段、
該表示手段に表示された購入個数入力部、
該購入個数入力部に購入個数を入力する手段、
該入力手段によって入力された購入個数をその時の商品と属性水準の組み合わ せと共に記憶する手段、
として機能させ、
該割り当て手段によって商品と属性水準の組み合わせを変化させながら各商品の 購入個数を入力させ、入力された購入個数情報を該組み合わせと共に該購入個数 記憶手段に記憶するように機能させるためのコンピュータプログラム。
[13] 商品の購入量をその商品の購入に影響を与える要素とその要素の影響度を示す 係数との線形和で表すモデル式を用いた消費者の購買行動分析装置であって、該 要素には、該商品及び該商品の競合商品の商品属性が含まれ、
該装置は、
複数の互いに競合する商品を特定する情報を記憶する手段と、
商品属性に関する複数の属性水準を記憶する手段と、
商品と属性水準の任意の組み合わせにおける、回答者の各商品の購入個数を記 憶する手段と、
該購入個数を用いて、該商品及び該商品の競合商品の商品属性の影響度を示す 係数を推定することで該モデル式を求める手段と、
該モデル式における変数である商品の属性水準を選択して設定するための入力手 段と、
該商品の属性水準を設定して入力することで商品購入量を予測値として求めて出 力する手段と、
を有することを特徴とする消費者の購買行動分析装置。
[14] 請求項 13において、該購入個数は、請求項 1乃至 8に記載の方法によって取得され たものであることを特徴とする消費者の購買行動分析装置。
[15] 請求項 13, 14いずれかにおいて、該要素には回答者属性が含まれ、該装置はさら に回答者属性を記憶する手段、及び回答者属性の影響度を示す係数を記憶する手 段を有しており、該入力手段によって回答者属性を設定するように構成されているこ とを特徴とする消費者の購買行動分析装置。
[16] 商品の購入量をその商品の購入に影響を与える要素とその要素の影響度を示す 係数との線形和で表すモデル式において、該要素には、該商品及び該商品の競合 商品の商品属性が含まれており、該モデル式を用いて消費者の購買行動を分析す るためにコンピュータを、
複数の互いに競合する商品を特定する情報を記憶する手段、
商品属性に関する複数の属性水準を記憶する手段、
商品と属性水準の任意の組み合わせにおける、回答者の各商品の購入個数を記 憶する手段、
該購入個数を用いて、該商品及び該商品の競合商品の商品属性の影響度を示す 係数を推定することで該モデル式を求める手段、
該モデル式における変数である商品の属性水準を選択して設定するための入力手 段、
該属性水準を設定することで商品購入量を予測値として求めて出力する手段、 として機能させるためのコンピュータプログラム。
[17] 商品の購入量をその商品の購入に影響を与える要素とその要素の影響度を示す 係数との線形和で表すモデル式を用いた消費者の購買行動分析方法であって、 該要素には、該商品及び該商品の競合商品の商品属性が含まれており、 該商品及び該競合商品の商品属性の影響度を示す係数を請求項 1乃至 8に記載 の方法によって取得した情報に基づいて推定することで該モデル式を求めるステツ プと、
該モデル式における商品属性の水準を選択して設定し、該商品属性の水準を設 定することで商品の購入量を予測値として求めるステップとを有することを特徴とする 消費者の購買行動分析方法。
[18] 請求項 17において、前記要素には回答者属性が含まれることを特徴とする消費者の 購買行動分析方法。
[19] 請求項 17, 18いずれかに記載した方法をコンピュータに実行させるためのコンビュ ータプログラム。
PCT/JP2004/012818 2003-09-04 2004-09-03 消費者の購買行動分析方法及び装置 WO2005024689A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005513672A JPWO2005024689A1 (ja) 2003-09-04 2004-09-03 消費者の購買行動分析方法及び装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003312686 2003-09-04
JP2003-312686 2003-09-04
JP2004-038962 2004-02-16
JP2004038962 2004-02-16

Publications (1)

Publication Number Publication Date
WO2005024689A1 true WO2005024689A1 (ja) 2005-03-17

Family

ID=34277705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012818 WO2005024689A1 (ja) 2003-09-04 2004-09-03 消費者の購買行動分析方法及び装置

Country Status (2)

Country Link
JP (1) JPWO2005024689A1 (ja)
WO (1) WO2005024689A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240067A (ja) * 2006-03-09 2007-09-20 Hitachi Ltd 空調制御システム
JP2014508336A (ja) * 2011-03-18 2014-04-03 ザ ニールセン カンパニー (ユー エス) エルエルシー メディアインプレッションを特定する方法及び装置
US9215288B2 (en) 2012-06-11 2015-12-15 The Nielsen Company (Us), Llc Methods and apparatus to share online media impressions data
US9237138B2 (en) 2013-12-31 2016-01-12 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US9313294B2 (en) 2013-08-12 2016-04-12 The Nielsen Company (Us), Llc Methods and apparatus to de-duplicate impression information
US9519914B2 (en) 2013-04-30 2016-12-13 The Nielsen Company (Us), Llc Methods and apparatus to determine ratings information for online media presentations
JP2017021665A (ja) * 2015-07-13 2017-01-26 株式会社オプティム 販売情報提供サーバ、販売情報提供方法及び販売情報提供サーバ用プログラム。
US9596151B2 (en) 2010-09-22 2017-03-14 The Nielsen Company (Us), Llc. Methods and apparatus to determine impressions using distributed demographic information
US9838754B2 (en) 2015-09-01 2017-12-05 The Nielsen Company (Us), Llc On-site measurement of over the top media
US9852163B2 (en) 2013-12-30 2017-12-26 The Nielsen Company (Us), Llc Methods and apparatus to de-duplicate impression information
US9912482B2 (en) 2012-08-30 2018-03-06 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US9953330B2 (en) 2014-03-13 2018-04-24 The Nielsen Company (Us), Llc Methods, apparatus and computer readable media to generate electronic mobile measurement census data
US10045082B2 (en) 2015-07-02 2018-08-07 The Nielsen Company (Us), Llc Methods and apparatus to correct errors in audience measurements for media accessed using over-the-top devices
US10068246B2 (en) 2013-07-12 2018-09-04 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions
US10147114B2 (en) 2014-01-06 2018-12-04 The Nielsen Company (Us), Llc Methods and apparatus to correct audience measurement data
US10205994B2 (en) 2015-12-17 2019-02-12 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions
US10270673B1 (en) 2016-01-27 2019-04-23 The Nielsen Company (Us), Llc Methods and apparatus for estimating total unique audiences
US10311464B2 (en) 2014-07-17 2019-06-04 The Nielsen Company (Us), Llc Methods and apparatus to determine impressions corresponding to market segments
US10333882B2 (en) 2013-08-28 2019-06-25 The Nielsen Company (Us), Llc Methods and apparatus to estimate demographics of users employing social media
US10380633B2 (en) 2015-07-02 2019-08-13 The Nielsen Company (Us), Llc Methods and apparatus to generate corrected online audience measurement data
US10803475B2 (en) 2014-03-13 2020-10-13 The Nielsen Company (Us), Llc Methods and apparatus to compensate for server-generated errors in database proprietor impression data due to misattribution and/or non-coverage
US10956947B2 (en) 2013-12-23 2021-03-23 The Nielsen Company (Us), Llc Methods and apparatus to measure media using media object characteristics
US10963907B2 (en) 2014-01-06 2021-03-30 The Nielsen Company (Us), Llc Methods and apparatus to correct misattributions of media impressions
US11381860B2 (en) 2014-12-31 2022-07-05 The Nielsen Company (Us), Llc Methods and apparatus to correct for deterioration of a demographic model to associate demographic information with media impression information
US11562394B2 (en) 2014-08-29 2023-01-24 The Nielsen Company (Us), Llc Methods and apparatus to associate transactions with media impressions
US12015681B2 (en) 2010-12-20 2024-06-18 The Nielsen Company (Us), Llc Methods and apparatus to determine media impressions using distributed demographic information

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000020504A (ja) * 1998-06-30 2000-01-21 Toshiba Corp 目的変数の説明または予測方法、および目的変数を説明または予測するプログラムを記録した記録媒体
JP2001229272A (ja) * 2000-02-18 2001-08-24 Dentsu Tec Inc 購買データ分析支援システム、購買データ分析支援方法及び記録媒体
JP2002259672A (ja) * 2001-02-26 2002-09-13 Nippon Telegr & Teleph Corp <Ntt> ハイブリッド型需要および/または収益予測方法
JP2003099587A (ja) * 2001-09-20 2003-04-04 Ricoh Co Ltd 製品開発支援方法及び製品開発支援システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000020504A (ja) * 1998-06-30 2000-01-21 Toshiba Corp 目的変数の説明または予測方法、および目的変数を説明または予測するプログラムを記録した記録媒体
JP2001229272A (ja) * 2000-02-18 2001-08-24 Dentsu Tec Inc 購買データ分析支援システム、購買データ分析支援方法及び記録媒体
JP2002259672A (ja) * 2001-02-26 2002-09-13 Nippon Telegr & Teleph Corp <Ntt> ハイブリッド型需要および/または収益予測方法
JP2003099587A (ja) * 2001-09-20 2003-04-04 Ricoh Co Ltd 製品開発支援方法及び製品開発支援システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ONO T. ET AL.: "Online shopping system de shushu shita browsing data ni motozuku, kokyaku no seihin senkodo suitei no ichihoho", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN C, DENSHI.JOHO.SYSTEM BUMOSHI, vol. 120-C, no. 8/9, 1 August 2000 (2000-08-01), pages 1230 - 1235, XP002986204 *

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240067A (ja) * 2006-03-09 2007-09-20 Hitachi Ltd 空調制御システム
JP4661640B2 (ja) * 2006-03-09 2011-03-30 株式会社日立製作所 空調制御システム
US11682048B2 (en) 2010-09-22 2023-06-20 The Nielsen Company (Us), Llc Methods and apparatus to determine impressions using distributed demographic information
US10504157B2 (en) 2010-09-22 2019-12-10 The Nielsen Company (Us), Llc Methods and apparatus to determine impressions using distributed demographic information
US9596151B2 (en) 2010-09-22 2017-03-14 The Nielsen Company (Us), Llc. Methods and apparatus to determine impressions using distributed demographic information
US11144967B2 (en) 2010-09-22 2021-10-12 The Nielsen Company (Us), Llc Methods and apparatus to determine impressions using distributed demographic information
US12015681B2 (en) 2010-12-20 2024-06-18 The Nielsen Company (Us), Llc Methods and apparatus to determine media impressions using distributed demographic information
US9118542B2 (en) 2011-03-18 2015-08-25 The Nielsen Company (Us), Llc Methods and apparatus to determine an adjustment factor for media impressions
US9497090B2 (en) 2011-03-18 2016-11-15 The Nielsen Company (Us), Llc Methods and apparatus to determine an adjustment factor for media impressions
JP2014508336A (ja) * 2011-03-18 2014-04-03 ザ ニールセン カンパニー (ユー エス) エルエルシー メディアインプレッションを特定する方法及び装置
JP2017152006A (ja) * 2011-03-18 2017-08-31 ザ ニールセン カンパニー (ユー エス) エルエルシー メディアインプレッションを特定する方法及び装置
US12010191B2 (en) 2012-06-11 2024-06-11 The Nielsen Company (Us), Llc Methods and apparatus to share online media impressions data
US9215288B2 (en) 2012-06-11 2015-12-15 The Nielsen Company (Us), Llc Methods and apparatus to share online media impressions data
US11792016B2 (en) 2012-08-30 2023-10-17 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US11483160B2 (en) 2012-08-30 2022-10-25 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US9912482B2 (en) 2012-08-30 2018-03-06 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US11870912B2 (en) 2012-08-30 2024-01-09 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US10778440B2 (en) 2012-08-30 2020-09-15 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US10063378B2 (en) 2012-08-30 2018-08-28 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US11669849B2 (en) 2013-04-30 2023-06-06 The Nielsen Company (Us), Llc Methods and apparatus to determine ratings information for online media presentations
US9519914B2 (en) 2013-04-30 2016-12-13 The Nielsen Company (Us), Llc Methods and apparatus to determine ratings information for online media presentations
US11410189B2 (en) 2013-04-30 2022-08-09 The Nielsen Company (Us), Llc Methods and apparatus to determine ratings information for online media presentations
US10192228B2 (en) 2013-04-30 2019-01-29 The Nielsen Company (Us), Llc Methods and apparatus to determine ratings information for online media presentations
US12093973B2 (en) 2013-04-30 2024-09-17 The Nielsen Company (Us), Llc Methods and apparatus to determine ratings information for online media presentations
US10937044B2 (en) 2013-04-30 2021-03-02 The Nielsen Company (Us), Llc Methods and apparatus to determine ratings information for online media presentations
US10643229B2 (en) 2013-04-30 2020-05-05 The Nielsen Company (Us), Llc Methods and apparatus to determine ratings information for online media presentations
US10068246B2 (en) 2013-07-12 2018-09-04 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions
US11205191B2 (en) 2013-07-12 2021-12-21 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions
US11830028B2 (en) 2013-07-12 2023-11-28 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions
US11651391B2 (en) 2013-08-12 2023-05-16 The Nielsen Company (Us), Llc Methods and apparatus to de-duplicate impression information
US11222356B2 (en) 2013-08-12 2022-01-11 The Nielsen Company (Us), Llc Methods and apparatus to de-duplicate impression information
US9928521B2 (en) 2013-08-12 2018-03-27 The Nielsen Company (Us), Llc Methods and apparatus to de-duplicate impression information
US9313294B2 (en) 2013-08-12 2016-04-12 The Nielsen Company (Us), Llc Methods and apparatus to de-duplicate impression information
US10552864B2 (en) 2013-08-12 2020-02-04 The Nielsen Company (Us), Llc Methods and apparatus to de-duplicate impression information
US11496433B2 (en) 2013-08-28 2022-11-08 The Nielsen Company (Us), Llc Methods and apparatus to estimate demographics of users employing social media
US10333882B2 (en) 2013-08-28 2019-06-25 The Nielsen Company (Us), Llc Methods and apparatus to estimate demographics of users employing social media
US11854049B2 (en) 2013-12-23 2023-12-26 The Nielsen Company (Us), Llc Methods and apparatus to measure media using media object characteristics
US10956947B2 (en) 2013-12-23 2021-03-23 The Nielsen Company (Us), Llc Methods and apparatus to measure media using media object characteristics
US9852163B2 (en) 2013-12-30 2017-12-26 The Nielsen Company (Us), Llc Methods and apparatus to de-duplicate impression information
US9641336B2 (en) 2013-12-31 2017-05-02 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US12008142B2 (en) 2013-12-31 2024-06-11 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US10846430B2 (en) 2013-12-31 2020-11-24 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US9237138B2 (en) 2013-12-31 2016-01-12 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US9979544B2 (en) 2013-12-31 2018-05-22 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US11562098B2 (en) 2013-12-31 2023-01-24 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US10498534B2 (en) 2013-12-31 2019-12-03 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions and search terms
US10147114B2 (en) 2014-01-06 2018-12-04 The Nielsen Company (Us), Llc Methods and apparatus to correct audience measurement data
US11068927B2 (en) 2014-01-06 2021-07-20 The Nielsen Company (Us), Llc Methods and apparatus to correct audience measurement data
US10963907B2 (en) 2014-01-06 2021-03-30 The Nielsen Company (Us), Llc Methods and apparatus to correct misattributions of media impressions
US12073427B2 (en) 2014-01-06 2024-08-27 The Nielsen Company (Us), Llc Methods and apparatus to correct misattributions of media impressions
US11727432B2 (en) 2014-01-06 2023-08-15 The Nielsen Company (Us), Llc Methods and apparatus to correct audience measurement data
US11887133B2 (en) 2014-03-13 2024-01-30 The Nielsen Company (Us), Llc Methods and apparatus to generate electronic mobile measurement census data
US9953330B2 (en) 2014-03-13 2018-04-24 The Nielsen Company (Us), Llc Methods, apparatus and computer readable media to generate electronic mobile measurement census data
US12045845B2 (en) 2014-03-13 2024-07-23 The Nielsen Company (Us), Llc Methods and apparatus to compensate for server-generated errors in database proprietor impression data due to misattribution and/or non-coverage
US11037178B2 (en) 2014-03-13 2021-06-15 The Nielsen Company (Us), Llc Methods and apparatus to generate electronic mobile measurement census data
US10803475B2 (en) 2014-03-13 2020-10-13 The Nielsen Company (Us), Llc Methods and apparatus to compensate for server-generated errors in database proprietor impression data due to misattribution and/or non-coverage
US11568431B2 (en) 2014-03-13 2023-01-31 The Nielsen Company (Us), Llc Methods and apparatus to compensate for server-generated errors in database proprietor impression data due to misattribution and/or non-coverage
US10217122B2 (en) 2014-03-13 2019-02-26 The Nielsen Company (Us), Llc Method, medium, and apparatus to generate electronic mobile measurement census data
US10311464B2 (en) 2014-07-17 2019-06-04 The Nielsen Company (Us), Llc Methods and apparatus to determine impressions corresponding to market segments
US11854041B2 (en) 2014-07-17 2023-12-26 The Nielsen Company (Us), Llc Methods and apparatus to determine impressions corresponding to market segments
US11068928B2 (en) 2014-07-17 2021-07-20 The Nielsen Company (Us), Llc Methods and apparatus to determine impressions corresponding to market segments
US11562394B2 (en) 2014-08-29 2023-01-24 The Nielsen Company (Us), Llc Methods and apparatus to associate transactions with media impressions
US11983730B2 (en) 2014-12-31 2024-05-14 The Nielsen Company (Us), Llc Methods and apparatus to correct for deterioration of a demographic model to associate demographic information with media impression information
US11381860B2 (en) 2014-12-31 2022-07-05 The Nielsen Company (Us), Llc Methods and apparatus to correct for deterioration of a demographic model to associate demographic information with media impression information
US10045082B2 (en) 2015-07-02 2018-08-07 The Nielsen Company (Us), Llc Methods and apparatus to correct errors in audience measurements for media accessed using over-the-top devices
US11259086B2 (en) 2015-07-02 2022-02-22 The Nielsen Company (Us), Llc Methods and apparatus to correct errors in audience measurements for media accessed using over the top devices
US11706490B2 (en) 2015-07-02 2023-07-18 The Nielsen Company (Us), Llc Methods and apparatus to correct errors in audience measurements for media accessed using over-the-top devices
US11645673B2 (en) 2015-07-02 2023-05-09 The Nielsen Company (Us), Llc Methods and apparatus to generate corrected online audience measurement data
US10368130B2 (en) 2015-07-02 2019-07-30 The Nielsen Company (Us), Llc Methods and apparatus to correct errors in audience measurements for media accessed using over the top devices
US12015826B2 (en) 2015-07-02 2024-06-18 The Nielsen Company (Us), Llc Methods and apparatus to correct errors in audience measurements for media accessed using over-the-top devices
US10380633B2 (en) 2015-07-02 2019-08-13 The Nielsen Company (Us), Llc Methods and apparatus to generate corrected online audience measurement data
US10785537B2 (en) 2015-07-02 2020-09-22 The Nielsen Company (Us), Llc Methods and apparatus to correct errors in audience measurements for media accessed using over the top devices
JP2017021665A (ja) * 2015-07-13 2017-01-26 株式会社オプティム 販売情報提供サーバ、販売情報提供方法及び販売情報提供サーバ用プログラム。
US9838754B2 (en) 2015-09-01 2017-12-05 The Nielsen Company (Us), Llc On-site measurement of over the top media
US11272249B2 (en) 2015-12-17 2022-03-08 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions
US10827217B2 (en) 2015-12-17 2020-11-03 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions
US10205994B2 (en) 2015-12-17 2019-02-12 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions
US11785293B2 (en) 2015-12-17 2023-10-10 The Nielsen Company (Us), Llc Methods and apparatus to collect distributed user information for media impressions
US10979324B2 (en) 2016-01-27 2021-04-13 The Nielsen Company (Us), Llc Methods and apparatus for estimating total unique audiences
US11562015B2 (en) 2016-01-27 2023-01-24 The Nielsen Company (Us), Llc Methods and apparatus for estimating total unique audiences
US11971922B2 (en) 2016-01-27 2024-04-30 The Nielsen Company (Us), Llc Methods and apparatus for estimating total unique audiences
US10270673B1 (en) 2016-01-27 2019-04-23 The Nielsen Company (Us), Llc Methods and apparatus for estimating total unique audiences
US10536358B2 (en) 2016-01-27 2020-01-14 The Nielsen Company (Us), Llc Methods and apparatus for estimating total unique audiences
US11232148B2 (en) 2016-01-27 2022-01-25 The Nielsen Company (Us), Llc Methods and apparatus for estimating total unique audiences

Also Published As

Publication number Publication date
JPWO2005024689A1 (ja) 2007-11-08

Similar Documents

Publication Publication Date Title
WO2005024689A1 (ja) 消費者の購買行動分析方法及び装置
US9852477B2 (en) Method and system for social media sales
Shahin et al. Evaluating and ranking hotels offering e-service by integrated approach of Webqual and fuzzy AHP
JP6723182B2 (ja) 情報処理装置、情報処理方法、およびプログラム
CN107169806B (zh) 用于确定商品属性对于购买决策的影响度的方法及装置
Dolasinski et al. Measuring hotel channel mix: A Dea-BSC model
JP2009265747A (ja) マーケティング支援システム、マーケティング支援方法、マーケティング支援プログラム及びコンピュータ読み取り可能な媒体
Gangurde et al. Building prediction model using market basket analysis
Song et al. The effects of incorporating compensatory choice strategies in Web-based consumer decision support systems
CN116823303A (zh) 基于大数据的销售数据分析方法、装置、设备及存储介质
JP2016081199A (ja) 広告配信システム
de Almeida et al. Does demand forecasting matter to retailing?
JP2011113323A (ja) 顧客情報管理サーバ、及び顧客情報管理プログラム
CN115713384A (zh) 推荐物品的方法、装置、存储介质及电子设备
Lam et al. Key factors influencing customer satisfaction and intention to reuse food ordering apps
JP5230989B2 (ja) 投資シミュレーションシステムおよびその方法、並びにプログラム
Jolhe et al. A structured approach to prioritise critical-to-customer-satisfaction attributes of consumer durable products
Morsi The identification and prioritization of success factors for online Egyptian fashion retailers using the analytic hierarchy process
JP5119988B2 (ja) 特徴重要視度算出システム、特徴重要視度算出方法、およびコンピュータプログラム
JP7378271B2 (ja) 情報処理方法
Verheijden Predicting purchasing behavior throughout the clickstream
KR102653483B1 (ko) 인공지능에 기반하여 미술품의 가격을 예측하는 방법
CN111461792B (zh) 一种业务对象的展示方法、装置和电子设备
Chen et al. The impact of mobile shopping quality on customer satisfaction and purchase intentions: the IS success based model
Salim Purchasing Decision Models Through Customer Satisfaction: Analysis Of Service Quality And Prices In The City Of Padang

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513672

Country of ref document: JP

122 Ep: pct application non-entry in european phase