WO2005024001A2 - Activateur pour ferment a base de bacteries lactiques et procede de preparation d'un produit mettant en oeuvre ledit activateur - Google Patents

Activateur pour ferment a base de bacteries lactiques et procede de preparation d'un produit mettant en oeuvre ledit activateur Download PDF

Info

Publication number
WO2005024001A2
WO2005024001A2 PCT/FR2004/002254 FR2004002254W WO2005024001A2 WO 2005024001 A2 WO2005024001 A2 WO 2005024001A2 FR 2004002254 W FR2004002254 W FR 2004002254W WO 2005024001 A2 WO2005024001 A2 WO 2005024001A2
Authority
WO
WIPO (PCT)
Prior art keywords
activator
ferment
lactic acid
acid bacteria
activated
Prior art date
Application number
PCT/FR2004/002254
Other languages
English (en)
Other versions
WO2005024001A3 (fr
Inventor
Claudette Berger
Sonia Huppert
Annie Mornet
Original Assignee
Danisco France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danisco France filed Critical Danisco France
Priority to DE200460007147 priority Critical patent/DE602004007147T2/de
Priority to EP04787309A priority patent/EP1660640B1/fr
Priority to PL04787309T priority patent/PL1660640T3/pl
Priority to DK04787309T priority patent/DK1660640T3/da
Priority to US10/569,852 priority patent/US9138010B2/en
Priority to AU2004270911A priority patent/AU2004270911B2/en
Publication of WO2005024001A2 publication Critical patent/WO2005024001A2/fr
Publication of WO2005024001A3 publication Critical patent/WO2005024001A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • A23C9/1234Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt characterised by using a Lactobacillus sp. other than Lactobacillus Bulgaricus, including Bificlobacterium sp.
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/123Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt
    • A23C9/1238Fermented milk preparations; Treatment using microorganisms or enzymes using only microorganisms of the genus lactobacteriaceae; Yoghurt using specific L. bulgaricus or S. thermophilus microorganisms; using entrapped or encapsulated yoghurt bacteria; Physical or chemical treatment of L. bulgaricus or S. thermophilus cultures; Fermentation only with L. bulgaricus or only with S. thermophilus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound

Definitions

  • the present invention relates to an activator for a ferment based on lactic acid bacteria, to the use of this activator for the preparation of industrial or food products and to the process for the preparation of this product characterized by the implementation of this activator.
  • Lactic acid bacteria are used in many industries, especially in the food industry. They are used, among other things, to ferment, flavor, refine or texturize foods, such as dairy products or processed meats. They are also used to protect the media in which they are incorporated against contamination by other microorganisms and also used for their probiotic effect.
  • the lactic acid bacteria are marketed in the form of compositions comprising mixtures of lactic acid bacteria, which is called starch or starch.
  • the most used lactic acid bacteria which are present in the ferments are those belonging to the genera Lactococcus, Streptococcus, Lactobacillus, Leuconostoc, Pediococcus, Bifidobacterium, Brevibacterium, Carnobacterium, Enterococcus, Micrococcus, Vagococcus, Staphylococcus, Bacillus, Kocuria, Arthrobacter and Corynebacterium. . These lactic acid bacteria are used alone or in mixtures.
  • Lactic acid bacteria may also be mentioned, such as thermophilic bacteria such as Streptococcus thermophilus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus helveticus, Lactobacillus delbrueckii subsp. Bulgaricus, Lactobacillus bulgaricus and Lactobacillus acidophilus, this list is not exhaustive. These ferments are generally in the form of concentrates either in dry form, freeze-dried, frozen or in the form of suspension and are used most often in the form of suspension. In the case of lactic acid bacteria in dry, freeze-dried or frozen form, their uses require prior suspension.
  • thermophilic bacteria such as Streptococcus thermophilus
  • Lactobacillus casei Lactobacillus paracasei
  • Lactobacillus helveticus Lactobacillus delbrueckii subsp.
  • Bulgaricus Lactobacillus bulgaricus and Lactobacillus acidophilus
  • lactic acid bacteria whose properties make it possible to maintain the properties of lactic acid bacteria, especially at room temperature.
  • the inventors have demonstrated that contacting a ferment based on lactic acid bacteria and with an activator according to the invention, prior to its introduction into the medium to be treated or seeded, made it possible to preserve the stability of the activity of these bacteria.
  • maintaining the stability of the activity of these bacteria is meant that the bacteria retain their acidification properties of the medium to be treated or seeded while they are reactivated by the activator and are not yet seeded in said medium to be treated or to seed, without there being any cell multiplication or very little.
  • the medium to be treated or seeded is meant the medium into which the ferment is introduced, whether activated or not. It may be for example a milk-based medium, or fruit juice or a soy extract.
  • the present invention proposes for its first object an activator for a ferment based on lactic acid bacteria, characterized in that it comprises at least: a reducing disaccharide, a non-reducing disaccharide, an alkali metal salt and or an alkaline earth metal salt. Its second object is the use of this activator to activate a ferment based lactic acid bacteria, prior to or during direct seeding in a medium to be treated.
  • the fourth subject of the present invention is a process for the preparation of a product containing at least one ferment characterized by the use of this activator or of an activated ferment according to the invention.
  • the technique of direct seeding offers decisive advantages: immediate availability of the ferments under a reduced bulk, possibility of carrying out complex mixtures of species or different strains in fixed and constant proportions, increased regularity of performances compared to traditional ferments prepared on the premises of use, produced in specialized units where each stage of the process is optimized and controlled, quality of ferments rigorously defined.
  • the activator according to the invention is particularly interesting in terms of the stability of a ferment with direct seeding in liquid form.
  • the activator according to the invention makes it possible to reactivate a ferment in an aqueous liquid, and in particular in water. Consequently, the joint use of the activator with a ferment based on lactic acid bacteria advantageously makes it possible to preserve and standardize the metabolic activity of the activated bacteria over a prolonged period of time compared with that observed with the same ferment in a form not activated.
  • the use of the activator with a ferment makes it possible to delay cell multiplication or simply to limit cell multiplication, while allowing the ferments to resume their metabolic activity and by maintaining the effective ferment activated according to the invention.
  • the activator according to the invention is particularly suitable for ferments containing inter alia so-called thermophilic microorganisms having an optimum growth temperature between 35 and 45 ° C., but which can extend to temperatures of between 30 and 50 ° C. .
  • the activator according to the invention has the advantage of being able to be used in all industries, in particular the food industry, pharmaceuticals, cosmetics, food, agriculture, as well as in the fields of animal nutrition, animal feed and hygiene in the broad sense, especially personal hygiene (eg toothpaste) or industrial hygiene.
  • personal hygiene eg toothpaste
  • the invention firstly relates to an activator for a ferment based on lactic acid bacteria, characterized in that it comprises at least: a reducing disaccharide, a non-reducing disaccharide, an alkali metal salt and or an alkaline earth metal salt.
  • This activator is preferably suitable for ferments based on thermophilic lactic acid bacteria.
  • the activator according to the invention contains at least one reducing disaccharide.
  • lactose, lactulose, maltose, cellobiose or allolactose mention may be made of lactose, lactulose, maltose, cellobiose or allolactose.
  • the reducing disaccharide may be added to the activator in the form of a pure compound or in the form of an impure mixture, as for example milk powder or cheese or caseinerie whey, which contain at least one disaccharide reducer.
  • the activator according to the invention also contains at least one non-reducing disaccharide.
  • non-reducing disaccharides which are suitable according to the invention, mention may be made of sucrose, threalose or raffinose.
  • the activator according to the invention also contains at least one alkali metal salt and / or an alkaline earth metal salt.
  • an activated ferment with the activator according to the invention is advantageously effective over a period extending up to 72 hours, more particularly over a period extending up to 48 hours, preferentially over a period extending up to 24 hours.
  • a ferment based on activated bacteria according to the invention is effective over a period extending up to 72 hours while the same ferment rehydrated in water and not activated, shows a loss of significant activity beyond three hours.
  • the inventors have found that the presence of the activator was advantageous in terms of balance of the microbial populations of the activated system.
  • a particularly significant productivity gain can be obtained for ferments based on thermophilic bacteria.
  • a ferment based on activated lactic acid bacteria according to the invention prior to its introduction into the medium to be treated restores much more rapidly an acidifying power in the medium to be treated compared with the standard ferment. ie in non-activated form.
  • nutrients necessary for maintaining the metabolic activity of lactic acid bacteria usually include vitamins, yeast extracts, amino acids, peptides or proteins.
  • co-factors useful for activating glycolysis may be present in the activator according to the invention.
  • the activator according to the invention can be obtained by simple mixing of its components and is generally in a dry, generally powdery form. However, it is also conceivable to formulate it in freeze-dried or frozen form.
  • the activator according to the invention may also be in liquid form. According to a preferred variant of the invention, the activator according to the invention is in a sterilized form and is implemented respecting this sterile appearance.
  • the second subject of the present invention is the use of an activator according to the present invention for activating a ferment based on lactic acid bacteria prior to or during direct seeding in a medium to be treated or seeded.
  • the contacting of said activator with the ferment based on lactic acid bacteria is carried out in a liquid medium, in particular water.
  • the use of this activator to activate in a liquid medium a ferment based on lactic acid bacteria allows a continuous or discontinuous line seeding, automated, and aseptic.
  • the subject of the invention is also a ferment based on activated lactic acid bacteria, characterized in that it associates with lactic acid bacteria an activator according to the invention.
  • the activator according to the invention is used in an amount such that these components " are " present ⁇ in sufficient quantities to observe a significant activation of the ferment based lactic acid bacteria.
  • the ratio of mass of ferment to activator mass is between 0.1 and 0.7, preferably between 0.2 and 0.6.
  • the ferment based lactic acid bacteria activated according to the invention can be prepared so that the lactic acid bacteria and the activator are associated in a liquid medium, in particular water.
  • the activator may be mixed with the ferment either before or at the time of its use. However, according to a preferred embodiment, it proceeds prior to the use of the ferment, its rehydration in the presence of an activator according to the present invention. Generally, this combination is carried out in a liquid medium, preferably water.
  • the activator is rehydrated so that the amount of activator is between 5% and 20% by weight of aqueous suspension, preferably between 7% and 15%.
  • the rehydration and the subsequent activation of the ferment can be carried out at ambient temperature, in particular at a temperature of between 15 ° C. and 25 ° C., preferably between 18 ° C. and 23 ° C. and more particularly with stirring, so that to optimize activation and homogenization over time.
  • the activated ferment is then used as is for the seeding, preferably direct, of a medium to be treated.
  • the lactic acid bacteria that may be associated with an activator according to the invention include all the lactic acid bacteria usually used in the industry, in particular the food industry, the pharmaceutical industry, the cosmetic industry, the food industry, the agriculture industry and the the fields of animal nutrition, animal feed and hygiene in the broad sense, especially personal hygiene (eg toothpastes) or industrial hygiene.
  • the activator according to the invention is also suitable for thermophilic lactic acid bacteria.
  • lactic acid bacteria mention may be made of the bacteria belonging to the genera Streptococcus, Lactococcus, Lactobacillus, Leuconostoc, Bifidobacterium and Pediococcus and in particular Lactococcus lactis, Lactococcus lactis subsp.
  • Thermophilic lactic bacteria also include bacteria used in the dairy field belonging to the genera Propionibacterium, Brevibacterium and Bifidobacterium, for example Bifidobacterium lactis,
  • the present invention "on" to "fourth item process for preparing a product containing at least one ferment, comprising the following steps: (i) contacting a ferment comprising at least lactic acid bacteria with an activator according to the present invention, so as to obtain a ferment in an activated form, (ii) the seeding of the medium to be treated, with said ferment in an activated form.
  • the preliminary step (i) namely bringing the ferment into contact with the claimed activator, it is generally performed in a sufficient time to obtain the activated form and within a medium. liquid, in particular water.
  • the corresponding suspension can be obtained by adding a liquid, preferably an aqueous medium, to the mixture of the two components (activator and ferment) or by consecutive dispersion of the two components in said liquid.
  • the method according to the invention may further comprise a step (iii) of incubating said medium to be treated under conditions favorable to the metabolic activity of the lactic acid bacteria, so as to obtain a fermented product.
  • the implementation of the process according to the invention can be carried out by means of a seeding device.
  • the preferred seeding device for implementing the method according to the invention may be in the form of a sealed reservoir.
  • the seeding device to implement the method according to the invention, can also be in the form of a disposable reservoir and / or fixed on a mobile station
  • the sealed reservoir can be in the form of a pocket provided with an internal stirring system and input and output means.
  • One of the input means allows the arrival of the aqueous medium in the sealed reservoir to perform step (i).
  • the aqueous medium is previously sterilized, preferably it is filtered on a membrane of at most 0.45 microns, more particularly at most 0.22 microns. It should be noted that we can use tap water.
  • One of the other input means allows gas to enter the sealed tank. The arrival of gas will allow to implement the internal stirring system of the receptacle.
  • the internal stirring system may consist of a permeable internal pocket.
  • the sealed reservoir comprises a permeable internal pocket and a closed external pocket.
  • the stirring is carried out by successive injection of gas into the permeable internal bag, which allows the transfer of suspension from the internal permeable pocket to the closed external pocket.
  • the stirring system is constituted by the U-shape of the sealed reservoir. In this case the stirring is carried out by successive injection of gas into an arm of the U, which allows the transfer of the suspension from one side to the other of the U.
  • a gas which may be air or a gas which does not interfere with the respiration and / or oxidation of microorganisms, enzymes and bacteria, or a chemically and biologically inert gas, for example argon, nitrogen or carbon dioxide, carbon or their mixtures.
  • biologically inert gas is meant a gas that does not interfere with the multiplication and degradation of microorganisms.
  • the gas pressure in the sealed tank, during stirring, is less than 5 bar, preferably less than 1 bar.
  • Gas injection can also be done at regular intervals of time.
  • the pressurized gas is injected at a time interval of between 0.5 minutes and 60 minutes. The agitation allows the suspension of the ferments and the activator in the aqueous medium.
  • step (ii) Seeding of the medium to be treated with said ferment in an activated form (step (ii)) is carried out at a flow rate of between 10 ml / min and 1000 ml / min, preferably between 100 ml / min and 500 ml / min. .
  • step (ii) according to the invention is carried out at a temperature between 5 ° C and 45 ° C.
  • the implementation of step (ii) according to the invention is carried out over a period extending up to 72 hours, more particularly over a period extending up to 48 hours, preferentially over a period extending up to 24 hours.
  • Step (ii) can be carried out according to several variants.
  • a first variant of the process in step (ii) comprises seeding the medium to be treated at one time with said ferment in an activated form. This is accomplished by emptying the tank (s) at one time. This is a batch seeding (one tank) or multi-batch (several tanks).
  • a second variant of the process in step (ii) consists in seeding the medium to be treated continuously with said ferment in an activated form.
  • a third variant of the process in step (ii) comprises seeding the medium to be treated discontinuously with said ferment in an activated form.
  • Batch is understood to mean a seeding cycle carried out in the following manner: the medium to be treated is inoculated for a period of time, then the seeding is stopped, then the seeding is recommenced, this for several cycles.
  • the seeding of the medium to be treated with said ferment in an activated form is carried out at a flow rate of between 10 ml / min and 1000 ml / min, preferably between 100 ml / min and 500 ml / min, made at regular or irregular intervals between 1 minute and 600 minutes.
  • the sealed reservoir is advantageously fixed on a mobile station which can be moved on all parts of the industrial chain, before or after step (i) of the method according to the invention.
  • the preferred type of reservoir for the implementation of the process according to the invention is of the disposable and / or sterile type.
  • This reservoir is preferably made of a flexible material such as polypropylene, polyester, polyamide, cellulose or other flexible material compatible with food products, preferably it is polyethylene.
  • a flexible material such as polypropylene, polyester, polyamide, cellulose or other flexible material compatible with food products, preferably it is polyethylene.
  • the activator according to the invention in a package distinct from that of the ferment based lactic acid bacteria which it is intended to be associated or, conversely, consider a common packaging in which are present, of separately or not, the activator according to the invention and the ferment based on lactic acid bacteria.
  • This second variant of packaging can also be designed so that it is suitable for the premix of the ferment and the activator and thus to the preparation of the so-called activated ferment prior to the seeding of a medium to be treated.
  • Lactic acid bacteria alone or mixed, exhibit a wide variety of behaviors.
  • the acidifying activity has been retained as a criterion for characterizing the activity of the bacteria.
  • the acidification of a milk medium was carried out according to the following chronological order: - inoculation of a milk (pH close to 6.6), - increase of the population of lactic acid bacteria by hydrolysis of milk lactose , - production of lactic acid by lactic acid bacteria which results in a decrease in the pH of the milk medium, - stopping the growth of lactic acid bacteria which are progressively inhibited by the lactic acid formed, - continuing the production of acid up to a pH of 4.5.
  • CINAC is composed of: * Ingold-type glass combined electrodes (24 pH measurement channels placed in Erlenmeyer flasks containing the inoculated medium and 8 temperature measurement channels)
  • the curves represent the evolution of the pH and the speed of acidification (dpH / dt), as a function of time. They testify to the different stages of growth: rehabilitation phase, acceleration, exponential phase, slowdown, stationary phase.
  • the descriptors used in the examples to characterize the kinetics of acidification are:
  • Ta latency time in min (time after which the pH has varied by 0.08 upH below its initial value)
  • time 4.75 time to obtain a pH of 4.75 in minutes. From all these parameters it is possible to appreciate a gain or loss of productivity.
  • the lactic bacteria bacteria present in the rehydration medium were counted over time according to the following method:
  • the ferment was rehydrated and activated using the activator (composition A or B below), as indicated in FIG. 1-3.
  • the activated ferment thus obtained is stored for 24 hours. " During this storage, the bacterial population is measured at different storage times.This population is measured at different times ranging from 1 hour (T1 h) to 72 hours (T72h) storage.
  • Dilutions are made in tryptone-salt prepared according to the following protocol: 1g of tryptone, 8.5g NaCl are put in 1 liter of water. The solution obtained is distributed in 9 ml tube, which are then treated for 15 minutes at 120 ° C. Dilutions made from these tubes are: 10 E "6; 10 E"7; E 8 , 10 E 9 , 10 E 10 . 1 ml of these dilutions is then taken and deposited in the petri dishes. The boxes are then cast with different agar plates and then incubated according to the following protocol:
  • composition A Preparation of an activator (composition A)
  • the activator according to the invention is prepared in a sterile 1 liter flask containing a 45 mm double-ring magnetic bar.
  • the various components of this mixture are presented in Table I below:
  • composition B The activator according to the invention is prepared in a sterile 1L bottle containing a 45 mm double-ring magnetic bar.
  • the various components of this mixture are presented in Table I below:
  • a rehydrated concentrated ferment according to the invention
  • the activator described in 1-1 or 1-2 is then mixed with 50 g of freeze-dried ferment and 870 g of sterile water.
  • the dry mixture is poured into water with magnetic stirring and the dissolution is done in a few minutes. This gives 1 liter of a solution which contains 50 g of lyophilized ferment.
  • the rehydration temperature of the resulting mixture, namely ferment and activator is conducted according to a thermal cycle called "winter". This cycle restores the temperature rise of a set of 25 I that starts at 15 ° C and ends at a temperature of 20 ° C which is reached in about 20 hours.
  • the strain tested is a thermophilic strain. It is more specifically a strain of Streptococcus thermophilus which is a lactic ferment marketed by RHODIA FOOD SAS.
  • the strain of Streptococcus thermophilus is rehydrated and activated using the activator (composition A), as indicated in 1-3.
  • the activated strain thus obtained is stored for 24 hours at the temperature indicated in 1-3.
  • the activity of the bacterial concentrate is measured at different storage times using CINAC as indicated above. This activity is measured after 20 minutes (considered time T0), 1 hour (T1h), 3 hours (T3h), 6 hours (T6h), 12 hours (T12h), 16 hours (T16h) and 24 hours (T24h) storage.
  • the rehydrated and activated strain is taken at different storage times and is seeded in skim milk at 38 ° C. Due to the concentration of the bacteria, dilution is carried out in order to seed the acidification tests (1 g of activated strain is dissolved in 200 ml of milk which is used for the measurement of activity). The seeding must be done immediately so as not to penalize the activity of the bacterial concentrate.
  • a control activity is launched for each test carried out which implements 1 g of lyophilized strain in 200 ml of milk.
  • the controls are direct sowing in the manufacturing milk with the strain not activated by the activator.
  • the ferment tested comprises 2 strains of lactic acid bacteria, which are Streptococcus thermophilus and Lactobacillus delbrueckii bulgaricus.
  • This is a ferment marketed by RHODIA FOOD SAS
  • the ferment tested was rehydrated and activated using the activator of composition A, according to the method indicated in 1-3.
  • the activated ferment thus obtained is stored for 24 hours at the temperature indicated in 1-3.
  • the activity of the bacterial concentrate is measured at different storage times using CINAC as indicated above. This activity is measured after 1 hour (T1 h), 4 hours (T4h) and 24 hours (T24h) storage.
  • the rehydrated and activated strains are taken at different storage times and are inoculated in skimmed Vz milk at 43 ° C. Due to the concentration of the bacteria, dilution is carried out in order to seed the acidification tests (1 g of activated strain is dissolved in 200 ml of milk which is used for the measurement of activity). The seeding must be done immediately so as not to penalize the activity of the bacterial concentrate.
  • a control activity is launched for each test carried out which implements 1 g of lyophilized strain in 200 ml of milk. The controls are direct sowing in the manufacturing milk with the strain not activated by the activator.
  • results show an increase in activity of 40 minutes for the time 4.75 between the rehydrated control (290 minutes) and the activated ferment T1 h (250 minutes). A gain in activity is observed up to 24 hours of storage: the time 4.75 is shorter. The total population and the acidifying activity is stable for 24 hours at temperature as indicated in point 1-3.
  • the ferment tested comprises 4 strains of lactic acid bacteria, which are Streptococcus thermophilus, Lactobacillus delbrueckii bulgaricus, Lactobacillus acidophilus and Bifidobacterium lactis. It is a ferment marketed by RHODIA FOOD SAS.
  • the ferment was rehydrated and activated with the activator (Composition B) as indicated in 1-3.
  • the activated ferment thus obtained is stored for 24 hours at the temperature indicated in 1-3.
  • the activity of the bacterial concentrate is measured at different storage times using CINAC as indicated above. This activity is measured after 1 hour (T1 h), 2 hours (T2h), 4 hours (T4h), 8 hours (T8h), 12 hours (T12h) and 24 hours (T24h) storage.
  • the rehydrated and activated strains are taken at different storage times and are sown in skimmed milk at 43 ° C. Due to the concentration of the bacteria, dilution is carried out in order to seed the acidification tests (1 g of activated strain is dissolved in 200 ml of milk which is used for the measurement of activity). The seeding must be done immediately so as not to penalize the activity of the bacterial concentrate.
  • a control activity is launched for each test carried out which implements 1 g of lyophilized strain in 200 ml of milk. The controls are direct sowing in the manufacturing milk with the strain not activated by the activator.
  • results show an increase in activity of 25 minutes for the time 4.75 between the rehydrated control (300 minutes) and the activated ferment T1h (275 minutes).
  • a gain activity is observed up to 24 hours of storage: the 4.75 time is shorter.
  • the total population and the acidifying activity is stable for 24 hours at temperature as indicated in point 1-3.
  • the fermentation support is obtained by supplementing 100 ml of skimmed UHT (Petit Vendéen) UHT milk with 3% (weight / volume) of skimmed milk powder (Eurial).
  • the sterility of the solution is obtained by a pasteurization of 10 min at 90 ° C (heart).
  • the fermentation support thus obtained is inoculated with the test strain or ferment at a rate of 4 units per 100 liters, and then incubated at 43 ° C. (in a water bath) until a pH of 4 is obtained. 6.
  • the pH monitoring is carried out continuously thanks to the use of a CINAC (Isbaert).
  • the yogurts thus obtained are placed in a ventilated oven at 6 ° C, until their analysis.
  • Rheological analyzes on yogurt only the viscosity is measured.
  • the viscosity measurements are carried out on fermented milks after 1 and / or 7 and / or 14 days of storage, the temperature of which is maintained at 6 ° C.
  • the apparatus used is a Brookfield type VRF viscometer (Brookfield Engineering Laboratories Inc.) mounted on Helipath stand (Brookfield Engineering Laboratories Inc.). The viscometer is equipped with a C-type needle and the speed of oscillation applied to the needle is 10 rpm
  • the ferment tested is identical to that used in 2-2 and comprises 2 strains of lactic acid bacteria, which are Streptococcus thermophilus and Lactobacillus delbrueckii bulgaricus.
  • the ferment tested was rehydrated and activated using either the composition activator A or the composition activator B, according to the method indicated in 1-3.
  • the activated ferment thus obtained is stored for 24 hours at the indicated temperature in 1-3.
  • fermented milks are made at different storage times (1 hour and 24 hours), and the viscosity and the pH are measured as indicated previously in 3-1.
  • the ferment tested is identical to that used in point 2-3 and comprises 4 strains of lactic acid bacteria, which are Streptococcus thermophilus, Lactobacillus delbrueckii bulgaricus, Lactobacillus acidophilus and Bifidobacterium lactis.
  • the ferment tested was rehydrated and activated using the composition activator B, according to the method indicated in 1-3.
  • the activated ferment thus obtained is stored for 24 hours at the temperature indicated in 1-3.
  • fermented milks are made at different storage times (1 hour, 4 hours, 8 hours and 12 hours), and the viscosity and pH are measured as previously indicated in 3-1. Measurement of viscosity and pH over time according to the method described in 3-1:
  • Yogurts or fermented milks made from the rehydrated ferment have properties similar to that of the control after storage for 12 hours at temperature as indicated in 1-3.
  • the strains tested are probiotic strains. It is more specifically strains of Lactobacillus paracasei (LC) and Lactobacillus acidophillus (LA) which are lactic ferments marketed by RHODIA FOOD SAS strains LC and LA are rehydrated and activated with the aid of the activator (composition B ) at a rate of 4.8 E 10 9 cfu per ml of rehydration medium.
  • the solutions containing the rehydration medium and each of the strains are divided into 125 ml flasks. They are placed in a room whose temperature is regulated at 18 ° C, and stirred at 150 rpm for 72 hours. During this storage, the bacterial population is determined at different storage times. This count is made after 20 minutes (considered time T0), 1 hours (T1h), 5 hours (T5h), 24 hours (T24h), 48 hours (T48h), and 72 hours (T72h) storage.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Dairy Products (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

La présente invention a pour objet un activateur pour un ferment à base de bactéries lactiques, caractérisé en ce qu'il comprend au moins : un disaccharide réducteur, un disaccharide non réducteur, un sel de métal alcalin et/ou un sel de métal alcalino-terreux. L'invention a également pour objet le ferment activé par ledit activateur. La présente invention concerne également le procédé de préparation d'un produit industriel ou alimentaire caractérisé par la mise en oeuvre de cet activateur.

Description

ACTIVATEUR POUR FERMENT A BASE DE BACTERIES LACTIQUES ET PROCEDE DE PREPARATION D'UN PRODUIT METTANT EN ŒUVRE LEDIT ACTIVATEUR. La présente invention se rapporte à un activateur pour un ferment à base de bactéries lactiques, à l'utilisation de cet activateur pour la préparation de produits industriels ou alimentaires et au procédé de préparation de ce produit caractérisé par la mise en œuvre de cet activateur. Les bactéries lactiques sont utilisées dans de nombreuses industries, notamment dans l'industrie agro-alimentaire. Elles sont utilisées entres autres pour fermenter, aromatiser, affiner ou texturer les aliments, notamment les produits laitiers ou les produits de charcuterie. Elles sont également utilisées pour protéger les milieux dans lesquels elles sont incorporées contre les contaminations par d'autres micro-organismes et également utilisées pour leur effet probiotique. Selon les applications, les bactéries lactiques sont commercialisées sous forme de compositions comprenant des mélanges de bactéries lactiques, que l'on appelle ferment ou starter. Les bactéries lactiques les plus utilisées et qui sont présentes dans les ferments, sont ceux appartenant aux genres Lactococcus, Streptococcus, Lactobacillus, Leuconostoc, Pediococcus, Bifidobacterium, Brevibacterium, Carnobacterium, Enterococcus, Micrococcus, Vagococcus, Staphylococcus, Bacillus, Kocuria, Arthrobacter et Corynebacterium. Ces bactéries lactiques sont utilisées seules ou en mélanges. On peut également citer parmi les bactéries lactiques, les bactéries de type thermophile notamment les Streptococcus thermophilus, Lactobacillus casei, Lactobacillus paracasei, Lactobacillus helveticus, Lactobacillus delbrueckii subsp. Bulgaricus, Lactobacillus bulgaricus et Lactobacillus acidophilus, cette liste n'est pas exhaustive. Ces ferments se présentent généralement sous la forme de concentrés soit sous forme sèche, lyophilisée, congelée soit sous forme de suspension et sont utilisés le plus souvent sous forme de suspension. Dans le cas des bactéries lactiques sous forme sèche, lyophilisée ou congelée, leurs utilisations nécessitent une mise en suspension préalable. Ces types de formulation concentrées ont pour double avantage de préserver la viabilité des cultures sur une large période de temps et d'être tout particulièrement appropriés à l'ensemencement direct, selon lequel on introduit directement le ferment dans le milieu à traiter ou à ensemencer. Avantageusement dans ce dernier cas, aucune mise en culture préliminaire dans un milieu de culture ne s'avère nécessaire avant utilisation du ferment par opposition à l'ensemencement dit semi-direct. Bien que la présente invention puisse également être appliquée efficacement à l'ensemencement semi-direct, elle s'avère tout particulièrement intéressante pour l'ensemencement dit direct pour la raison suivante : lorsque les bactéries sont introduites dans le milieu à traiter ou à ensemencer, par exemple le lait de fabrication, lors d'un ensemencement direct, c'est-à-dire sous la forme d'un concentrât sec, liquide ou congelé, elles ne sont pas immédiatement efficaces et elles nécessitent un temps de remise en activité. La remise en activité de ce type de ferment nécessite un laps de temps d'adaptation correspondant d'une part au rétablissement de la bactérie conditionnée sous sa forme naturelle (phase de réhydratation de la bactérie) et d'autre part à la restitution de son activité métabolique. Les industriels ont donc mis au point des activateurs destinés à être mis en contact avec les ferments préalablement à l'ensemencement direct ou semi-direct de manière à remettre en activité les ferments. Or dans le cas de la remise en activité des bactéries lactiques, les activateurs disponibles actuellement ne conviennent pas car ils ne permettent pas de conserver l'activité des bactéries lactiques ainsi que leurs propriétés texturantes, notamment pendant des périodes d'au moins 24 heures d'activation et à température ambiante. Afin de répondre aux exigences des industriels il est devenu nécessaire de trouver un activateur pour bactéries lactiques dont les propriétés permettent de maintenir les propriétés des bactéries lactiques, notamment à température ambiante. De manière inattendue, les inventeurs ont mis en évidence que la mise en contact d'un ferment à base de bactéries lactiques et avec un activateur conforme à l'invention, préalablement à son introduction dans le milieu à traiter ou ensemencer, permettait de conserver la stabilité de l'activité de ces bactéries. Par l'expression « conserver la stabilité de l'activité de ces bactéries », on entend que les bactéries conservent leurs propriétés d'acidification du milieu à traiter ou à ensemencer alors qu'elles sont réactivées par l'activateur et ne sont pas encore ensemencées dans ledit milieu à traiter ou à ensemencer, sans qu'il y ait de multiplication cellulaire ou très peu. Par l'expression « milieu à traiter ou à ensemencer » on entend le milieu dans lequel est introduit le ferment, activé ou non. Il peut s'agir par exemple d'un milieu à base de lait, ou de jus de fruit ou d'un extrait de soja. Dans ce but la présente invention propose pour premier objet un activateur pour un ferment à base de bactéries lactiques, caractérisé en ce qu'il comprend au moins : - un disaccharide réducteur, - un disaccharide non réducteur, - un sel de métal alcalin et / ou un sel de métal alcalino-terreux. Elle a pour second objet l'utilisation de cet activateur pour activer un ferment à base de bactéries lactiques, préalablement à ou lors de l'ensemencement direct dans un milieu à traiter. Un autre aspect de la présente invention concerne un ferment à base de bactéries lactiques activées par l'activateur selon l'invention. Enfin, la présente invention a pour quatrième objet un procédé de préparation d'un produit contenant au moins un ferment caractérisé par la mise en œuvre de cet activateur ou d'un ferment activé selon l'invention. La technique de l'ensemencement direct offre des avantages déterminants : disponibilité immédiate des ferments sous un encombrement réduit, possibilité de réaliser des mélanges complexes d'espèces ou de souches différentes dans des proportions déterminées et constantes, régularité accrue des performances par rapport aux ferments traditionnels préparés sur les lieux d'utilisation, production réalisée dans des unités spécialisées où chaque étape du procédé est optimisée et contrôlée, qualité des ferments rigoureusement définie. L'activateur selon l'invention est particulièrement intéressant en terme de stabilité d'un ferment à ensemencement direct sous forme liquide. Avantageusement l'activateur selon l'invention permet de réactiver un ferment dans un liquide aqueux, et notamment dans de l'eau. En conséquence, l'utilisation conjointe de l'activateur avec un ferment à base de bactéries lactiques permet avantageusement de préserver et standardiser l'activité métabolique des bactéries activées, sur une période de temps prolongée comparativement à celle observée avec un même ferment sous une forme non activée. De plus, de manière tout à fait avantageuse, l'utilisation de l'activateur avec un ferment permet de retarder la multiplication cellulaire ou tout simplement de limiter la multiplication cellulaire, tout en permettant aux ferments de reprendre leur activité métabolique et en maintenant efficace le ferment activé selon l'invention. L'activateur selon l'invention convient tout particulièrement à des ferments contenant entre autres des micro-organismes dits thermophiles ayant une température de croissance optimale entre 35 et 45°C, mais pouvant s'étendre à des températures comprises entre 30 et 50°C. Enfin l'activateur selon l'invention a pour avantage de pouvoir être mis en œuvre dans toutes industries, notamment l'industrie agro-alimentaire, pharmaceutique, cosmétique, alimentaire, l'agriculture, ainsi que dans les domaines de la nutrition animale, des aliments pour animaux et de l'hygiène au sens large en particulier l'hygiène corporelle (par exemple les dentifrices) ou l'hygiène industrielle. D'autres avantages et caractéristiques de l'invention apparaîtront clairement à la lecture de la description et des exemples donnés à titre purement illustratifs et non limitatifs qui vont suivre. _ _ _ L'invention concerne tout d'abord un activateur pour un ferment à base de bactéries lactiques, caractérisé en ce qu'il comprend au moins : - un disaccharide réducteur, un disaccharide non réducteur, - un sel de métal alcalin et / ou un sel de métal alcalino-terreux. Cet activateur convient de préférence pour les ferments à base de bactéries lactiques thermophiles. L'activateur selon l'invention contient au moins un disaccharide réducteur. Parmi les disaccharides réducteurs qui conviennent selon l'invention, on peut citer le lactose, le lactulose, le maltose, le cellobiose ou l'allolactose. Le disaccharide réducteur peut être ajouté dans l'activateur sous forme de composé pur ou sous forme d'un mélange impur comme c'est le cas par exemple du lait en poudre ou du lactosérum de fromagerie ou de caséinerie, qui contiennent au moins un disaccharide réducteur. L'activateur selon l'invention contient également au moins un disaccharide non réducteur. Parmi les disaccharides non réducteurs qui conviennent selon l'invention, on peut citer le saccharose, le thréalose ou le raffinose. L'activateur selon l'invention contient aussi au moins un sel de métal alcalin et / ou un sel de métal alcalino-terreux. De préférence il s'agit d'un sel de sodium, de potassium, de calcium ou de magnésium comme par exemple le chlorure de sodium, de calcium, de magnésium ou de potassium, le phosphate de sodium ou de potassium, Porthophosphate de sodium ou de potassium, le citrate de sodium ou de potassium, ou le formiate de sodium ou de potassium. Les proportions relatives de chaque constituants compris dans l'activateur sont les suivantes : 30 à 50 % de disaccharides réducteurs, - 30 à 50 % de disaccharides non réducteurs, 10 à 30 % de sels de métal alcalin et / ou un sel de métal alcalino-terreux, les pourcentages étant exprimés en poids. Un ferment activé avec l'activateur selon l'invention est de manière avantageuse, efficace sur une période s'étendant jusqu'à 72 heures, plus particulièrement sur une période s'étendant jusqu'à 48 heures, préférentiellement sur une période s'étendant jusqu'à 24 heures. C'est ainsi qu'un ferment à base de bactéries activées selon l'invention est efficace sur une période s'étendant jusqu'à 72 heures alors qu'un même ferment réhydraté dans l'eau et non activé, manifeste une perte d'activité significative au-delà de trois heures. Par ailleurs, les inventeurs ont constaté que la présence de l'activateur était avantageuse en terme d'équilibre des populations microbiennes du système activé. Un gain de productivité particulièrement significatif peut être obtenu pour des ferments à base de bactéries thermophiles. Comme il ressort des exemples figurant ci-après, un ferment à base de bactéries lactiques activé selon l'invention préalablemant à son introduction dans le milieu à traiter restitue beaucoup plus rapidement un pouvoir acidifiant dans le milieu à traiter comparativement au ferment standart, c'est à dire sous forme non-activée. Selon une variante de l'invention, sont également associés à l'activateur selon l'invention, des éléments nutritifs nécessaires au maintien de l'activité métabolique des bactéries lactiques. Ces éléments nutritifs incluent généralement des vitamines, des extraits de levure, des acides aminés, des peptides ou des protéines. De même, peuvent être présents dans l'activateur selon l'invention des co- facteurs utiles pour activer la glycolyse. A titre représentatif de ces co-facteurs, on peut en particulier citer les sels minéraux Ca2+, K+, Mg2+, Mn2+, Cu2+ et Zn2+. Ils sont généralement utilisés à raison de 0,1 à 2% en poids. On peut également envisager d'incorporer dans l'activateur des agents de texture, comme par exemples des polysaccharides ou des hydrocolloïdes, en particulier des carraghénanes ou des gommes xanthane, de guar, de caroube, de tara. L'activateur selon l'invention peut être obtenu par simple mélange de ses composants et se présente généralement sous une forme sèche, généralement pulvérulente. Toutefois, on peut également envisager de le formuler sous une forme lyophilisée ou congelée. L'activateur selon l'invention peut aussi se présenter sous forme liquide. Selon une variante préférée de l'invention, l'activateur selon l'invention se présente sous une forme stérilisée et est mis en œuvre en respectant cet aspect stérile. La présente invention a pour second objet l'utilisation d'un activateur conforme à la présente invention pour activer un ferment à base de bactéries lactiques préalablement à ou lors de l'ensemencement direct dans un milieu à traiter ou à ensemencer. De préférence la mise en contact dudit activateur avec le ferment à base de bactéries lactiques est réalisée en milieu liquide, en particulier de l'eau. L'utilisation de cet activateur pour activer en milieu liquide un ferment à base de bactéries lactiques permet un ensemencement en ligne continu ou discontinu, automatisable, et aseptique. L'invention a également pour objet un ferment à base de bactéries lactiques activées, caractérisé en ce qu'il associe à des bactéries lactiques, un activateur conforme à l'invention. En l'espèce, l'activateur selon l'invention est utilisé en quantité telle que ces composants "sont "présents ~en quantités suffisantes pour que l'on observe une activation significative du ferment à base de bactéries lactiques. Le ratio, masse de ferment sur masse d'activateur est compris entre 0,1 et 0,7, de préférence entre 0,2 et 0,6. Le ferment à base de bactéries lactiques activées selon l'invention peut être préparés de manière à ce que les bactéries lactiques et l'activateur sont associés au sein d'un milieu liquide, en particulier de l'eau. L'activateur peut être mélangé au ferment soit préalablement ou au moment de son utilisation. Toutefois, selon un mode de réalisation privilégié, on procède préalablement à l'utilisation du ferment, à sa réhydratation en présence d'un activateur conforme à la présente invention. Généralement, cette association est réalisée dans un milieu liquide, de préférence l'eau. L'activateur est réhydraté de manière que la quantité d'activateur soit comprise entre 5 % et 20 % en poids de suspension aqueuse, de préférence comprise entre 7 % et 15 %. La réhydratation et l'activation consécutive du ferment peuvent être réalisées à une température ambiante, notamment à une température comprise entre 15°C et 25°C, de préférence comprise entre 18°C et 23°C et plus particulièrement sous agitation, de manière à optimiser l'activation et l'homogénéisation dans le temps. Le ferment activé est ensuite utilisé tel quel pour l'ensemencement, de préférence direct, d'un milieu à traiter. Les bactéries lactiques susceptibles d'être associées à un activateur conforme à l'invention incluent toutes les bactéries lactiques usuellement mises en œuvre dans l'industrie notamment l'industrie agro-alimentaire, pharmaceutique, cosmétique, alimentaire, l'agriculture, ainsi que dans les domaines de la nutrition animale, des aliments pour animaux et de l'hygiène au sens large en particulier l'hygiène corporelle (par exemple les dentifrices) ou l'hygiène industrielle. L'activateur selon l'invention convient également pour les bactéries lactiques thermophiles. A titre indicatif de bactéries lactiques, on peut citer les bactéries appartenant aux genres Streptococcus, Lactococcus, Lactobacillus, Leuconostoc, Bifidobacterium et Pediococcus et notamment Lactococcus lactis, Lactococcus lactis subsp. diacetylactis, Lactococcus cremoris, Leuconostoc mesenteroides. On considère également comme bactéries lactiques thermophiles, les bactéries utilisées dans le domaine laitier appartenant aux genres Propionibacterium, Brevibacterium et Bifidobacterium, comme par exemple Bifidobacterium lactis,
Bifidobacterium bifidum, Bifidobacterium longum, Bifidobacterium infantis ou
Bifidobacterium adolescentis. La présente invention "à ' pour "quatrième objet un procédé de préparation d'un produit contenant au moins un ferment comprenant les étapes suivantes : (i) la mise en contact d'un ferment comprenant au moins des bactéries lactiques avec un activateur conforme à la présente invention, de manière à obtenir un ferment sous une forme activée, (ii) l'ensemencement du milieu à traiter, avec ledit ferment sous une forme activée. Pour ce qui est de l'étape préliminaire (i), à savoir la mise en contact du ferment avec l'activateur revendiqué, elle est généralement effectuée dans un délai suffisant à l'obtention de la forme activée et au sein d'un milieu liquide, en particulier de l'eau. La suspension correspondante peut être obtenue par ajout d'un liquide, de préférence un milieu aqueux, au mélange des deux composants (activateur et ferment) ou par dispersion consécutive des deux composants dans ledit liquide. Le procédé selon l'invention peut comprendre en outre une étape (iii) d'incubation dudit milieu à traiter dans des conditions favorables à l'activité métabolique des bactéries lactiques, de manière à obtenir un produit fermenté. La mise en œuvre du procédé selon l'invention peut se faire grâce à un dispositif d'ensemencement. Le dispositif d'ensemencement préféré, pour mettre en œuvre le procédé selon l'invention, peut se présenter sous la forme d'un réservoir scellé. Le dispositif d'ensemencement, pour mettre en œuvre le procédé selon l'invention, peut aussi se présenter sous la forme d'un réservoir jetable et / ou fixé sur un poste mobile Le réservoir scellé peut se présenter sous la forme d'une poche munie d'un système d'agitation interne et de moyens d'entrée et de sortie. Un des moyens d'entrée permet l'arrivée du milieu aqueux dans le réservoir scellé afin de réaliser l'étape (i). Le milieu aqueux est préalablement stérilisé, de préférence il est filtré sur membrane d'au plus 0,45 μm, plus particulièrement au plus 0,22 μm. Il est à noter que l'on peut utiliser l'eau du robinet. Un des autres moyens d'entrée permet l'arrivée de gaz dans le réservoir scellé. L'arrivée de gaz va permettre de mettre en œuvre le système d'agitation interne du réceptacle. Dans un cas particulier de l'invention, le système d'agitation interne peut être constitué d'une poche interne perméable. Dans ce cas le réservoir scellé comprend une poche interne perméable et une poche externe fermée. L'agitation est réalisée par injection successive de gaz dans la poche interne perméable, qui permet le transfert de là suspension dé là poche interne perméable à la poche externe fermée. Selon un autre cas, le système d'agitation est constitué par la forme en U du réservoir scellé. Dans ce cas l'agitation est réalisée par injection successive de gaz dans un bras du U, qui permet le transfert de la suspension d'un coté à l'autre du U. On utilise avantageusement un gaz qui peut être de l'air ou un gaz qui n'intervient pas dans la respiration et / ou l'oxydation des micro-organismes, des ferments et des bactéries, ou un gaz chimiquement et biologiquement inerte, par exemple de l'argon, de l'azote ou du dioxyde de carbone ou leurs mélanges. Par gaz biologiquement inerte, on entend un gaz qui n'intervient pas dans la multiplication et la dégradation des micro-organismes. La pression de gaz dans le réservoir scellé, au cours de l'agitation, est inférieure à 5 bars, de préférence inférieure à 1 bar. L'injection de gaz peut également se faire par intervalle régulier de temps. De préférence on injecte le gaz sous pression par intervalle de temps compris entre 0,5 minutes et 60 minutes. L'agitation permet la mise en suspension des ferments et de l'activateur dans le milieu aqueux. Après agitation, la suspension de ferments et de l'activateur est maintenue en suspension par injection de gaz selon le même principe d'injection successive de gaz. La vidange du réservoir scellé se fait de manière aseptique par le moyen de sortie, ce qui permet de réaliser l'étape (ii) du procédé. Cette vidange est réalisée par injection de gaz à l'intérieur du réservoir scellé, ou par transfert de la suspension aqueuse de ferments et d'activateur à l'aide d'une pompe ou par gravité. L'ensemencement du milieu à traiter avec ledit ferment sous une forme activée (étape (ii)) est réalisé à un débit compris entre 10 ml/min et 1000 ml/min, de préférence compris entre 100 ml/min et 500 ml/min. La mise en œuvre de l'étape (ii) selon l'invention se fait à une température comprise entre 5°C et 45°C. La mise en œuvre de l'étape (ii) selon l'invention se fait sur une période s'étendant jusqu'à 72 heures, plus particulièrement sur une période s'étendant jusqu'à 48 heures, préférentiellement sur une période s'étendant jusqu'à 24 heures. L'étape (ii) peut se réaliser selon plusieurs variantes. Une première variante du procédé au niveau de l'étape (ii) consiste à ensemencer le milieu à traiter en une seule fois avec ledit ferment sous une forme activée. Ceci est réalisé par vidange du ou des réservoir(s) en une seule fois. Il s'agit d'un ensemencement en lot (un seul réservoir) ou multi-lots (plusieurs réservoirs). Une seconde variante du procédé au niveau de l'étape (ii) consiste à ensemencer le milieu à traiter de manière continue avec ledit ferment sous une forme activée. Une troisième variante du procédé au niveau de l'étape (ii) consiste à ensemencer le milieu à traiter de manière discontinue avec ledit ferment sous une forme activée. Par discontinue on entend un cycle d'ensemencement réalisé de la manière suivante : on ensemence le milieu à traiter pendant un laps de temps, puis on arrête l'ensemencement, puis on recommence l'ensemencement, ceci pendant plusieurs cycles. Dans le cadre de cette troisième variante, l'ensemencement du milieu à traiter avec ledit ferment sous une forme activée (étape (ii)) est réalisé à un débit compris entre 10 ml/min et 1000 ml/min, de préférence compris entre 100 ml/min et 500 ml/min, fait par intervalle régulier ou irrégulier de temps compris entre 1 minute et 600 minutes. Il est à noter que le réservoir scellé est de manière avantageuse fixé sur un poste mobile qui peut-être déplacé sur toutes les parties de la chaîne industrielle, avant ou après l'étape (i) du procédé selon l'invention. Le type de réservoir préféré pour la mise en œuvre du procédé selon l'invention est du type jetable et / ou stérile. Ce réservoir est constitué de préférence d'une matière flexible comme par exemple le polypropylène, le polyester, le polyamide, la cellulose ou de tout autre matériel flexible compatible avec les produits alimentaires, de préférence il est en polyéthylène. L'avantage de la mise en œuvre du procédé selon l'invention grâce au dispositif d'ensemencement tel que décrit ci-dessus, est de réaliser un ensemencement direct sous forme liquide maintenue à température ambiante, stérile, standardisé, adaptable à chaque type de production et qui garantit la qualité bactériologique. Un autre avantage de la mise en œuvre du procédé selon l'invention grâce au dispositif d'ensemencement tel que décrit ci-dessus est de simplifier et fiabiliser l'étape d'ensemencement du ferment lactique. La présente invention s'étend également aux différentes formes de conditionnement de l'activateur revendiqué. On peut en effet formuler l'activateur selon l'invention sous un conditionnement distinct de celui du ferment à base de bactéries lactiques auquel il est destiné à être associé ou, à l'inverse, envisager un conditionnement commun au sein duquel sont présents, de manière séparée ou non, l'activateur selon l'invention et le ferment à base de bactéries lactiques. Cette seconde Variante de conditionnement peut par ailleurs être conçue de manière à ce qu'elle soit adaptée au mélange préalable du ferment et de l'activateur et donc à la préparation du ferment dit activé préliminairement à l'ensemencement d'un milieu à traiter.
Les exemples figurant ci-après sont présentés à titre illustratif et non limitatif de la présente invention.
EXEMPLES
Méthodes : Les bactéries lactiques, seules ou en mélange, présentent une grande diversité de comportements. Dans le cas de la présente invention, l'activité acidifiante a été retenue à titre de critère de caractérisation de l'activité des bactéries. L'acidification d'un milieu lacté a été réalisée selon l'ordre chronologique suivant : - inoculation d'un lait (pH voisin de 6,6), - accroissement de la population de bactéries lactiques grâce à l'hydrolyse du lactose du lait, - production d'acide lactique par les bactéries lactiques qui se traduit par une diminution du pH du milieu lacté, - arrêt de la croissance des bactéries lactiques qui sont inhibées progressivement par l'acide lactique formé, - poursuite de la production d'acide jusqu'à un pH de 4,5. L'activité acidifiante a été appréciée dans les exemples ci-après à l'aide d'un système automatique de suivi et de caractérisation des ferments lactiques par acquisition de mesure de pH en temps réel, encore désigné ci-après sous l'appellation CINAC. Le CINAC est composé: * d'électrodes combinées en verre de type Ingold (24 voies de mesures de pH placées dans des erlenmeyers contenant le milieu ensemencé et 8 voies de mesures de température)
* d'un bain-marie régulé par un thermostat et dans lequel sont placés les erlenmeyers
* d'une carte électronique fournissant un signal analogique et une interface électronique convertissant ce dernier en numérique
*" d'un ' micro-ordihâféύr" PC "muni du" logiciël"~CINAC "assurant es fonctions suivantes : . configuration du système . acquisitions, traitements et stockages des données . étalonnage des sondes à pH7 et pH4 . calcul des descripteurs cinétiques . représentations graphiques des données traitées . conversions des données pour l'utilisation de ces dernières ' sur d'autres logiciels . programmation de cycles thermiques pour réguler la température du bain-marie . compensation des températures pour corriger les variations de ces dernières sur le pH (cette correction se fait grâce à un régulateur PID : proportionnel-intégral- dérivé) . exécution de procédures de test des données d'étalonnage afin de détecter les dysfonctionnements liés aux sondes. Le. CINAC traite les données en fournissant les courbes des cinétiques d'acidification et les descripteurs de ces dernières. Les courbes, décrivant les cinétiques, représentent les évolutions du pH et de la vitesse d'acidification (dpH/dt), en fonction du temps. Elles témoignent des différentes étapes de la croissance : phase de réadaptation, accélération, phase exponentielle, ralentissement, phase stationnaire. Les descripteurs retenus dans les exemples pour caractériser les cinétiques d'acidification sont :
* Ta = temps de latence en min (temps au bout duquel le pH a varié de 0.08 upH en dessous de sa valeur initiale) * Vm = vitesse maximale d'acidification en upH/min (vitesse prise au maximum de la valeur absolue de la dérivée dpH/dt=f(t))
* temps 5,20 = temps pour obtenir un pH de 5,20 en minutes
* temps 4,75 = temps pour obtenir un pH de 4,75 en minutes. A partir de l'ensemble de ces paramètres il est possible d'apprécier un gain ou une perte de productivité.
Les bactéries bactéries lactiques présentes dans le milieu de réhydratation on été dénombrées au cours du temps selon la méthode suivante : Le ferment a été réhydraté et activé à l'aide de l'activateur (composition A ou B ci-après), comme indiqué en 1-3. Le ferment activé ainsi obtenu est stocké pendant 24 heures. "Au cours de ce stockage, la population bactérienne esf mesurée à différents temps de stockage. Cette population est mesurée à différents temps pouvant aller de 1 heure (T1 h) à 72 heures (T72h) de stockage.
Les dilutions sont faites dans du tryptone-sel préparé selon le protocole suivant : 1g de tryptone, 8,5g NaCI sont mis dans 1 litre d'eau. La solution obtenue est répartie en tube de 9ml, qui sont alors traités pendant 15 minutes à 120°C. Les dilutions réalisées à partir de ces tubes sont les suivantes : 10E"6 ; 10E"7 ; 10E" 8 ; 10E'9 ; 10E"10. 1 ml de ces dilutions est ensuite prélevé et déposé dans les boites de pétri. Les boites sont alors coulées avec différentes géloses puis incubées selon le protocole suivant :
Figure imgf000013_0001
EXEMPLE 1 : Préparation d'activateurs selon l'invention
1-1/ Préparation d'un activateur (composition A) On prépare l'activateur selon l'invention dans un flacon stérile de 1 I contenant un barreau magnétique double anneaux de 45 mm. Les différents composants de ce mélange sont présentés dans le tableau I ci-après :
Figure imgf000014_0001
1-2/ Préparation d'un activateur (composition B) : On prépare l'activateur selon l'invention dans un flacon stérile de 1 I contenant un barreau magnétique double anneaux de 45 mm. Les différents composants de ce mélange sont présentés dans le tableau I ci-après :
Figure imgf000014_0002
1-3/ Préparation d'un ferment concentré réhydraté selon l'invention Dans les exemples ci-après, l'activateur décrit en 1-1 ou 1-2 est ensuite mélangé à 50g de ferment lyophilisé et 870g d'eau stérile. Le mélange sec est versé dans de l'eau sous agitation magnétique et la dissolution se fait en quelques minutes. On obtient ainsi 1 litre d'une solution qui contient 50g de ferment lyophilisé. La température de réhydratation du mélange résultant, à savoir ferment et activateur est conduite selon un cycle thermique dit « hiver ». Ce cycle restitue la remontée en température d'un ensemble de 25 I qui commence à 15°C et s'achève à une température de 20°C qui est atteinte en 20 heures environ.
EXEMPLE 2 : Mesure de l'activité acidifiante de différents ferments
2-1/ Souches Streptococcus thermophilus La souche testée est une souche thermophile. Il s'agit plus précisément d'une souches de Streptococcus thermophilus qui est un ferment lactique commercialisé par RHODIA FOOD SAS.
La souche de Streptococcus thermophilus est réhydratée et activée à l'aide de l'activateur (composition A), comme indiqué en 1-3. La souche activée ainsi obtenue est stockée pendant 24 heures à la température indiquée en 1-3. Au cours de ce stockage, l'activité du concentré bactérien est mesurée à différents temps de stockage à l'aide du CINAC comme indiqué précédemment. Cette activité est mesurée après 20 minutes (considéré comme le temps T0), 1 heures (T1h), 3 heures (T3h), 6 heures (T6h), 12 heures (T12h), 16 heures (T16h) et 24 heures (T24h) de stockage.
La souche réhydratée et activée est prélevée aux différents temps de stockage et est ensemencée dans du lait Vz écrémé à 38°C. En raison de la concentration des bactéries, on procède à une dilution pour pouvoir ensemencer les tests d'acidification (1 g de souche activée est dissoute dans 200 ml de lait qui est utilisé pour la mesure d'activité). L'ensemencement doit être réalisé immédiatement pour ne pas pénaliser l'activité du concentrât bactérien.
Une activité témoin est lancée pour chaque test réalisé qui met en œuvre 1 g de souche lyophilisée dans 200 ml de lait. Les témoins sont des ensemencements directs dans le lait de fabrication avec la souche non activée par l'activateur.
Mesure de l'activité acidifiante au cours du temps : Les résultats obtenus avec cette souche sont présentés en tableaux III ci-après.
Les données figurant dans ces tableaux rendent compte des gains obtenus en termes de stabilité avec les ferments activés selon l'invention comparativement à leur forme non activée respective. TABLEAU
Figure imgf000016_0001
Ces résultats indiquent que le temps de latence (Ta) varie très peu, quelques soit le temps de stockage de la souche activée. De plus au bout de 24 heures de stockage, on constate que la souche de Streptococcus thermophilus présente un temps 5,20 de 221 minutes, qui est quasiment identique au temps 5,20 du test T0 (210 minutes). Cela signifie que son activée acidifiante n'est pas altérée au bout de 24 heures de stockage. On note un gain d'activité acidifiante de 42 minutes entre le temps 5,20 du témoin réhydraté (252 minutes) et le test T0 (210 minutes). De ces résultats il ressort le comportement avantageux de l'activateur vis-à-vis de la population bactérienne présente dans le ferment, et notamment la stabilité de la population bactérienne au cours du stockage. 2-2/ Ferment composé de Streptococcus thermophilus et Lactobacillus delbrueckii bulgaricus Le ferment testé comprend 2 souches de bactéries lactiques, qui sont Streptococcus thermophilus et Lactobacillus delbrueckii bulgaricus. Il s'agit d'un ferment commercialisé par RHODIA FOOD S.A.S. Le ferment testé a été réhydraté et activé à l'aide de l'activateur de composition A, selon la méthode indiquée en 1-3. Le ferment activé ainsi obtenu est stocké pendant 24 heures à la température indiquée en 1-3. Au cours de ce stockage, l'activité du concentré bactérien est mesurée à différents temps de stockage à l'aide du CINAC comme indiqué précédemment. Cette activité est mesurée après 1 heures (T1 h), 4heures (T4h) et 24 heures (T24h) de stockage. Les souches réhydratées et activées sont prélevées aux différents temps de stockage et sont ensemencées dans du lait Vz écrémé à 43°C. En raison de la concentration des bactéries, on procède à une dilution pour pouvoir ensemencer les tests d'acidification (1 g de souche activée est dissoute dans 200 ml de lait qui est utilisé pour la mesure d'activité). L'ensemencement doit être réalisé immédiatement pour ne pas pénaliser l'activité du concentrât bactérien. Une activité témoin est lancée pour chaque test réalisé qui met en œuvre 1 g de souche lyophilisée dans 200 ml de lait. Les témoins sont des ensemencements directs dans le lait de fabrication avec la souche non activée par l'activateur.
Mesure de l'activité acidifiante au cours du temps: Les résultats obtenus avec chacune des souches sont présentés dans le tableau IV ci-après. Les données figurant dans ces tableaux rendent compte des gains obtenus en termes de stabilité et de productivité avec les ferments activés selon l'invention comparativement à leur forme non activée respective.
Figure imgf000017_0001
Les résultats montrent un gain d'activité de 40 minutes pour le temps 4,75 entre le témoin réhydraté (290 minutes) et le ferment activé T1 h (250 minutes). Un gain d'activité est observé jusqu'à 24 heures de stockage : le temps 4,75 est plus court. La population totale et l'activité acidifiante est stable durant 24 heures à température comme indiqué au point 1-3.
2-3/ Ferment composé de 4 souches Le ferment testé comprend 4 souches de bactéries lactiques, qui sont Streptococcus thermophilus, Lactobacillus delbrueckii bulgaricus, Lactobacillus acidophilus et bifidobacterium lactis. Il s'agit d'un ferment commercialisé par RHODIA FOOD SAS. Le ferment a été réhydraté et activé à l'aide de l'activateur (composition B), comme indiqué en 1-3. Le ferment activé ainsi obtenu est stocké pendant 24 heures à la température indiquée en 1-3. Au cours de ce stockage, l'activité du concentré bactérien est mesurée à différents temps de stockage à l'aide du CINAC comme indiqué précédemment. Cette activité est mesurée après 1 heures (T1 h), 2 heures (T2h), 4 heures (T4h), 8 heures (T8h), 12 heures (T12h) et 24 heures (T24h) de stockage.
Les souches réhydratées et activées sont prélevées aux différents temps de stockage et sont ensemencées dans du lait 3 écrémé à 43°C. En raison de la concentration des bactéries, on procède à une dilution pour pouvoir ensemencer les tests d'acidification (1 g de souche activée est dissoute dans 200 ml de lait qui est utilisé pour la mesure d'activité). L'ensemencement doit être réalisé immédiatement pour ne pas pénaliser l'activité du concentrât bactérien. Une activité témoin est lancée pour chaque test réalisé qui met en œuvre 1 g de souche lyophilisée dans 200 ml de lait. Les témoins sont des ensemencements directs dans le lait de fabrication avec la souche non activée par l'activateur.
Mesure de l'activité acidifiante au cours du temps : Les résultats obtenus avec chaque ferment sont présentés dans le tableau V ci- après. Les données figurant dans ce tableau rendent compte des gains obtenus en termes de stabilité et de productivité avec les ferments activés selon l'invention comparativement à leur forme non activée respective.
Figure imgf000018_0001
Les résultats montrent un gain d'activité de 25 minutes pour le temps 4,75 entre le témoin réhydraté (300 minutes) et le ferment activé T1h (275 minutes). Un gain d'activité est observé jusqu'à 24 heures de stockage : le temps 4,75 est plus court. La population totale et l'activité acidifiante est stable durant 24 heures à température comme indiqué au point 1-3.
EXEMPLE 3 :
3-1/ Préparation d'un lait fermenté (yaourts) . - - Des laits-fermentés (yaourts) sont préparés en utilisant" lès ferments activés préparés selon l'exemple 2-2. Puis la viscosité du lait fermenté ainsi obtenu est mesurée.
Préparation des laits fermentes (yaourts) : Le support de fermentation est obtenu en supplémentant 100 ml de lait UHT V-≥ écrémé (Petit Vendéen) par 3% (poids/volume) de poudre de lait écrémé (Eurial). La stérilité de la solution est obtenue par une pasteurisation de 10 min à 90°C (à cœur). Le support de fermentation ainsi obtenu est inoculé avec la souche ou le ferment à tester à raison de 4 unités au 100 litres, puis incubé à 43°C (au bain-marie) jusqu'à l'obtention d'un pH de 4,6. Le suivi du pH est réalisé en continu grâce à l'utilisation d'un CINAC (Isbaert). Les yaourts ainsi obtenus sont placés dans une étuve ventilée à 6°C, jusqu'à leur analyse.
Analyses rhéologiques sur les yaourts : seule la viscosité est mesurée. Les mesures de viscosité sont réalisées sur des laits fermentes, après 1 et/ou 7 et/ou 14 jours de stockage, dont la température est maintenue à 6°C. L'appareillage utilisé est un viscosimètre Brookfield de type RVF (Brookfield Engineering Laboratories Inc.) monté sur pied Helipath (Brookfield Engineering Laboratories Inc.). Le viscosimètre est équipé d'une aiguille de type C et la vitesse d'oscillation appliquée à l'aiguille est de 10 tours/min
3-2/ Résultats de pH et de viscosité sur les yaourts réalisés avec un ferment Streptococcus thermophilus et Lactobacillus delbruekii bulgaricus :
Le ferment testé est identique à celui utilisé au point 2-2 et comprend 2 souches de bactéries lactiques, qui sont Streptococcus thermophilus et Lactobacillus delbrueckii bulgaricus.
Le ferment testé a été réhydraté et activé à l'aide soit de l'activateur de composition A soit de l'activateur de composition B, selon la méthode indiquée en 1-3. Le ferment activé ainsi obtenu est stocké pendant 24 heures à la température indiquée en 1-3. Au cours de ce stockage, des laits fermentes sont réalisés à différents temps de stockage (1 heure et 24 heures), et la viscosité et le pH sont mesurée comme indiqué précédemment en 3-1.
Mesure de la viscosité et du pH au cours du temps selon la méthode décrite en 3-1 : Les résultats obtenus avec le ferment sont présentés dans le tableaux VI ci- après. Les données figurant dans ce tableau rendent compte de la stabilité et de la productivité des ferments activés selon l'invention comparativement à leur forme non activée respective.
TABLEAU VI :
Figure imgf000020_0001
Il n'y a pas de différences significatives entre les yaourts fabriqués avec le témoin et ceux fabriqués avec le ferment activé aussi bien pour le pH que pour la viscosité.
3-3/ Résultats de pH et de viscosité sur les yaourts réalisés avec un ferment composé de 4 souches :
Le ferment testé est identique à celui utilisé au point 2-3 et comprend 4 souches de bactéries lactiques, qui sont Streptococcus thermophilus, Lactobacillus delbrueckii bulgaricus, Lactobacillus acidophilus et bifidobacterium lactis.
Le ferment testé a été réhydraté et activé à l'aide de l'activateur de composition B, selon la méthode indiquée en 1-3. Le ferment activé ainsi obtenu est stocké pendant 24 heures à la température indiquée en 1-3. Au cours de ce stockage, des laits fermentes sont réalisés à différents temps de stockage (1 heure, 4 heures, 8 heures et 12 heures), et la viscosité et le pH sont mesurée comme indiqué précédemment en 3-1. Mesure de la viscosité et du pH au cours du temps selon la méthode décrite en 3-1 :
Les résultats obtenus avec le ferment sont présentés dans le tableaux Vil ci- après. Les données figurant dans ce tableaux rendent compte de la stabilité et de la productivité des ferments activés selon l'invention comparativement à leur forme non activée respective. - - — TABLEAU VII :
Figure imgf000021_0001
Les « yaourts » ou laits fermentes réalisés à partir du ferment réhydraté ont des propriétés similaires à celle du témoin après un stockage de 12h à température comme indiqué en 1-3.
EXEMPLE 4 : Dénombrement de 2 souches probiotiques
4-1/ Souches probiotiques . Les souches testées sont des souches probiotiques. Il s'agit plus précisément des souches de Lactobacillus paracasei (LC) et Lactobacillus acidophillus (LA) qui sont des ferments lactiques commercialisés par RHODIA FOOD S.A.S. Les souches LC et LA sont réhydratées et activées à l'aide de l'activateur (composition B), à un taux de 4,8 10E9 ufc par ml de milieu de réhydratation. Les solutions contenant le milieu de réhydratation et chacune des souches sont réparties en flacons de 125 ml. Ils sont placés dans une pièce dont la température est régulée à 18°C, et mis sous agitation à 150 tours/minutes pendant 72 heures. Au cours de ce stockage, la population en bactéries est déterminée à différents temps de stockage. Ce dénombrement est réalisé après 20 minutes (considéré comme le temps T0), 1 heures (T1h), 5 heures (T5h), 24 heures (T24h), 48 heures (T48h), et 72 heures (T72h) de stockage.
Les résultats obtenus avec chaque ferment sont présentés dans le tableau VIII ci- après.
Figure imgf000022_0001
Ces deux souches probiotiques, réhydratées et activées conformément à l'invention, présentent une très bonne stabilité pendant 72 heures de stockage à température comme indiqué au point 1-3.

Claims

REVENDICATIONS 1_. Activateur pour un ferment à base de bactéries lactiques, caractérisé en ce qu'il comprend au moins : - un disaccharide- réducteur, un disaccharide non réducteur, un sel de métal alcalin et / ou un sel de métal alcalino-terreux.
2. Activateur selon la revendication 1 , caractérisé en ce que les bactéries lactiques sont des bactéries lactiques thermophiles.
3. Activateur selon l'une des revendications précédentes, caractérisé en ce que le disaccharide réducteur est le lactose, le lactulose, le maltose, le cellobiose ou Pallolactose.
4. Activateur selon l'une des revendications précédentes caractérisé en ce que le disaccharide non réducteur est le saccharose, le thréalose ou le raffinose.
5. Activateur selon l'une des revendications précédentes, caractérisé en ce que le sel de métal alcalin et / ou le sel de métal alcalino-terreux est un sel de sodium, de potassium, de calcium ou de magnésium comme par exemple le chlorure de sodium, de calcium, de magnésium ou de potassium, le phosphate de sodium ou de potassium, l'orthophosphate de sodium ou de potassium, le citrate de sodium ou de potassium, ou le formiate de sodium ou de potassium.
6. Activateur selon l'une des revendications précédentes, caractérisé en ce qu'il comprend: - 30 à 50 % de disaccharides réducteurs, - 30 à 50 % de disaccharides non réducteurs, - 10 à 30 % de sels de métal alcalin et / ou un sel de métal alcalino-terreux, les pourcentages étant exprimés en poids.
7. Activateur selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre des éléments nutritifs nécessaires au maintien de l'activité métabolique des bactéries lactiques.
8. Utilisation d'un activateur tel que défini dans les revendications 1 à 7 pour activer un ferment à base de bactéries lactiques, préalablement à ou lors de l'ensemencement direct dans un milieu à traiter ou à ensemencer.
9. Utilisation selon la revendication 8, caractérisée en ce que la mise en contact dudit activateur avec le ferment à base de bactéries lactiques est réalisée en milieu liquide, en particulier de l'eau.
10. Ferment à base de bactéries lactiques activées, caractérisé en ce qu'il associe à des bactéries lactiques, un activateur selon l'une des revendications 1 à 7.
11. Procédé de préparation d'un produit contenant au moins un ferment comprenant les étapes suivantes : (i) la mise en contact d'un ferment comprenant au moins des bactéries lactiques avec un activateur selon l'une des revendications 1 à 7, de manière à obtenir le ferment sous une forme activée, (ii) l'ensemencement du milieu à traiter avec ledit ferment sous une forme activée.
12. Procédé selon la revendication 11 , caractérisé en ce que la mise en contact du ferment à base de bactéries lactiques avec ledit activateur est réalisée au sein d'un milieu liquide, en particulier de l'eau.
13. Procédé selon l'une des revendications 11 ou 12, caractérisé en ce que la mise en œuvre du procédé peut se faire grâce à un dispositif d'ensemencement, en particulier un réservoir scellé.
14. Procédé selon la revendication 13, caractérisé en ce que le réservoir scellé peut se présenter sous la forme d'un réservoir jetable et / ou fixé sur un poste mobile.
15. Procédé selon l'une des revendications 13 ou 14, caractérisé en ce que le réservoir scellé peut se présenter sous la forme d'une poche munie d'un système d'agitation interne et de moyens d'entrée et de sortie.
16. Procédé selon l'une des revendications 11 à 15, caractérisé en ce que la mise en œuvre de l'étape (ii) se fait à une température comprise entre 5°C et 45°C.
17. Procédé selon l'une des revendications 11 à 16, caractérisé en ce que la mise en œuvre de l'étape (ii) se fait sur une période s'étendant jusqu'à 72 heures, plus particulièrement sur une période s'étendant jusqu'à 48 heures, préférentiellement sur une période s'étendant jusqu'à 24 heures.
PCT/FR2004/002254 2003-09-03 2004-09-03 Activateur pour ferment a base de bacteries lactiques et procede de preparation d'un produit mettant en oeuvre ledit activateur WO2005024001A2 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE200460007147 DE602004007147T2 (de) 2003-09-03 2004-09-03 Auf milchsäurebakterien beruhender fermentaktivator und verfahren zur herstellung eines produkts unter verwendung des aktivators
EP04787309A EP1660640B1 (fr) 2003-09-03 2004-09-03 Activateur pour ferment a base de bacteries lactiques et procede de preparation d un produit mettant en oeuvre ledit activateur
PL04787309T PL1660640T3 (pl) 2003-09-03 2004-09-03 Aktywator fermentu opartego na bakteriach kwasu mlekowego i sposób wytwarzania produktu z zastosowaniem wymienionego aktywatora
DK04787309T DK1660640T3 (da) 2003-09-03 2004-09-03 Aktivator til et mælkesyrebakterie-baseret ferment og fremgangsmåde til fremstilling af et produkt ved anvendelse af aktivatoren
US10/569,852 US9138010B2 (en) 2003-09-03 2004-09-03 Ferment activator based on lactic acid bacteria, and method of preparing a product using said activator
AU2004270911A AU2004270911B2 (en) 2003-09-03 2004-09-03 Ferment activator based on lactic acid bacteria, and method of preparing a product using said activator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0310423A FR2859217B1 (fr) 2003-09-03 2003-09-03 Activateur pour ferment a base de bacteries lactiques et procede de preparation d'un produit mettant en oeuvre ledit activateur
FR0310423 2003-09-03

Publications (2)

Publication Number Publication Date
WO2005024001A2 true WO2005024001A2 (fr) 2005-03-17
WO2005024001A3 WO2005024001A3 (fr) 2005-06-02

Family

ID=34130734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/002254 WO2005024001A2 (fr) 2003-09-03 2004-09-03 Activateur pour ferment a base de bacteries lactiques et procede de preparation d'un produit mettant en oeuvre ledit activateur

Country Status (10)

Country Link
US (1) US9138010B2 (fr)
EP (1) EP1660640B1 (fr)
AT (1) ATE365204T1 (fr)
AU (1) AU2004270911B2 (fr)
DE (1) DE602004007147T2 (fr)
DK (1) DK1660640T3 (fr)
ES (1) ES2289564T3 (fr)
FR (1) FR2859217B1 (fr)
PL (1) PL1660640T3 (fr)
WO (1) WO2005024001A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012076665A1 (fr) * 2010-12-10 2012-06-14 Dsm Ip Assets B.V. Compositions de ferments
JP5929895B2 (ja) * 2011-02-21 2016-06-08 旭硝子株式会社 乳酸の製造方法及び発酵賦活剤
CA2972963C (fr) * 2015-01-14 2023-03-14 Infant Bacterial Therapeutics Ab Procede d'activation de bacteries d'acide lactique
CN114196567B (zh) * 2021-10-20 2023-01-10 君乐宝乳业集团有限公司 嗜热链球菌jmcc0031及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0059113A2 (fr) * 1981-02-25 1982-09-01 State Of Oregon By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Milieu de croissance pour bactéries et méthode de culture de bactéries
FR2814469A1 (fr) * 2000-09-25 2002-03-29 Rhodia Food Activateur pour ferment a base de bacteries lactiques
EP1201748A2 (fr) * 2000-10-30 2002-05-02 Roquette FrÀ¨res Procédé de production de ferments alimentaires

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1167255B (de) 1952-01-02 1964-04-02 Erich Jancke Kunststoffbeutel
JPS59227241A (ja) * 1983-06-09 1984-12-20 Taishi Shokuhin Kogyo Kk 乳酸発酵豆乳の製造法
EP1062873A1 (fr) * 1999-12-13 2000-12-27 N.V. Nutricia Aliment amélioré pour bébés, hydrolysat de protéines utilisables dans un tel aliment pour bébés, et procédé de préparation de cet hydrolysat
CA2414628A1 (fr) * 2000-07-05 2002-01-10 Danmarks Tekniske Universitet Procede permettant d'ameliorer le rendement de la biomasse a partir de cultures bacteriennes d'acide lactique
FR2814470B1 (fr) * 2000-09-25 2004-05-14 Rhodia Chimie Sa Activateur pour ferment a base de bacteries lactiques et procede de preparation d'un produit lacte mettant en oeuvre ledit activateur
US6953574B2 (en) * 2002-06-21 2005-10-11 Technology Commercialization, Inc. Method for producing a fermented hydrolyzed medium containing microorganisms

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0059113A2 (fr) * 1981-02-25 1982-09-01 State Of Oregon By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Milieu de croissance pour bactéries et méthode de culture de bactéries
FR2814469A1 (fr) * 2000-09-25 2002-03-29 Rhodia Food Activateur pour ferment a base de bacteries lactiques
EP1201748A2 (fr) * 2000-10-30 2002-05-02 Roquette FrÀ¨res Procédé de production de ferments alimentaires

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE BIOSIS [Online] BIOSCIENCES INFORMATION SERVICE, PHILADELPHIA, PA, US; 1999, GOUESBET G ET AL: "Lactobacillus delbrueckii subsp. bulgaricus and heat stress" XP002285581 Database accession no. PREV200000179640 & MEDEDELINGEN FACULTEIT LANDBOUWKUNDIGE EN TOEGEPASTE BIOLOGISCHE WETENSCHAPPEN UNIVERSITEIT GENT, vol. 64, no. 5a, 1999, pages 259-265, *
STERN N J ET AL: "LACTOBACILLUS ACIDOPHILUS UTILIZATION OF SUGARS AND PRODUCTION OF A FERMENTED SOYBEAN PRODUCT" CANADIAN INSTITUTE FOR FOOD SCIENCE AND TECHNOLOGY. JOURNAL, XX, XX, vol. 10, no. 3, 1977, pages 197-200, XP001015436 ISSN: 0315-5463 *

Also Published As

Publication number Publication date
FR2859217B1 (fr) 2005-11-11
DK1660640T3 (da) 2007-10-01
FR2859217A1 (fr) 2005-03-04
US20070010003A1 (en) 2007-01-11
DE602004007147T2 (de) 2008-03-20
AU2004270911A1 (en) 2005-03-17
EP1660640A2 (fr) 2006-05-31
ATE365204T1 (de) 2007-07-15
AU2004270911B2 (en) 2009-08-27
PL1660640T3 (pl) 2007-11-30
ES2289564T3 (es) 2008-02-01
WO2005024001A3 (fr) 2005-06-02
EP1660640B1 (fr) 2007-06-20
DE602004007147D1 (de) 2007-08-02
US9138010B2 (en) 2015-09-22

Similar Documents

Publication Publication Date Title
US9848615B2 (en) Storage stable frozen lactic acid bacteria culture
FR2895877A1 (fr) Poudre de lait fermente ou yaourt a haute densite en ferments lactiques
JPWO2008099543A1 (ja) 新規乳酸菌を用いた発酵乳の製造方法
CN101484573A (zh) 乳酸菌的增殖促进剂和存活性提高剂
CN1949982B (zh) 用微生物片剂接种培养基的方法
RU2009116469A (ru) Применение гуммиарабика для улучшения роста и выживания бифидобактерий
EP1320580B1 (fr) Activateur pour ferment à base de bactéries lactiques et procédé de préparation d'un produit lacté mettant en oeuvre ledit activateur.
EP1660640B1 (fr) Activateur pour ferment a base de bacteries lactiques et procede de preparation d un produit mettant en oeuvre ledit activateur
NZ521814A (en) Method for supply of starter cultures having a consistent quality
EP1201133B1 (fr) Additif carboné pour fermentations alimentaires et compositions alimentaires le contenant
FR2815972A1 (fr) Procede de production de ferments alimentaires
RU2260041C2 (ru) Способ получения пробиотика, штамм streptococcus salivarius subsp. thermophilus вкпм в-7984, штамм streptococcus salivarius subsp. thermophilus вкпм в-7985, используемые для получения пробиотика
JP6966275B2 (ja) 乳酸菌の生残性向上方法
RU2524432C1 (ru) Способ получения замороженного бактериального концентрата на основе симбиоза пробиотических бактерий
FR2814469A1 (fr) Activateur pour ferment a base de bacteries lactiques
WO2023247544A1 (fr) Procédé de préparation de cultures de bactéries d'acide lactique, produits et milieux de culture associés
US20080070288A1 (en) Activator for a ferment based on lactic acid bacteria

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004787309

Country of ref document: EP

Ref document number: 2004270911

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2007010003

Country of ref document: US

Ref document number: 10569852

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004270911

Country of ref document: AU

Date of ref document: 20040903

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004270911

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004787309

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10569852

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004787309

Country of ref document: EP