WO2005020302A1 - 気化器用分散器、この気化器用分散器を用いたmocvd用気化器、これら気化器用分散器若しくはmocvd用気化器に用いられるロッド、及びキャリアガスの分散方法並びにキャリアガスの気化方法 - Google Patents

気化器用分散器、この気化器用分散器を用いたmocvd用気化器、これら気化器用分散器若しくはmocvd用気化器に用いられるロッド、及びキャリアガスの分散方法並びにキャリアガスの気化方法 Download PDF

Info

Publication number
WO2005020302A1
WO2005020302A1 PCT/JP2004/012066 JP2004012066W WO2005020302A1 WO 2005020302 A1 WO2005020302 A1 WO 2005020302A1 JP 2004012066 W JP2004012066 W JP 2004012066W WO 2005020302 A1 WO2005020302 A1 WO 2005020302A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier gas
gas
vaporizer
film forming
rod
Prior art date
Application number
PCT/JP2004/012066
Other languages
English (en)
French (fr)
Inventor
Masayuki Toda
Masaki Kusuhara
Original Assignee
Kabushiki Kaisha Watanabe Shoko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Watanabe Shoko filed Critical Kabushiki Kaisha Watanabe Shoko
Publication of WO2005020302A1 publication Critical patent/WO2005020302A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material

Definitions

  • Vaporizer disperser MOCVD vaporizer using this vaporizer disperser, rod used for these vaporizer dispersers or MOCVD vaporizer, carrier gas dispersing method and carrier gas vaporizing method
  • the present invention relates to a vaporizer disperser for vaporizing a plurality of raw material solutions and the like using a carrier gas, a MOCVD vaporizer using the vaporizer disperser, a disperser for these vaporizers and a MOCVD disperser.
  • the present invention relates to a rod used in a vaporizer, a method for dispersing a carrier gas, and a method for vaporizing a carrier gas.
  • Patent Document 1 JP-A-2000-216150
  • a thin film such as a dielectric material used for an electronic component.
  • One method of forming such a material into a thin film is a CVD method.
  • the CVD method has a higher film forming rate than the PVD method, the sol-gel method, and other film forming methods.
  • the MOCVD method is a CVD method in which a compound containing an organic substance is used as a raw material for forming a thin film, and has advantages such as high safety and no incorporation of a halide in the film.
  • the raw materials used in the MOCVD method are generally solid powders or liquids. These raw materials are put in a container, and generally heated under reduced pressure to vaporize the raw materials with a vaporizer. The carrier gas is sent into the thin film forming apparatus.
  • FIG. 8 is a system block diagram of such a MOCVD vaporization system (see Patent Document 1).
  • reference numeral 10 denotes a supply unit for supplying a plurality of raw material solutions and the like to the vaporizer 1.
  • the supply unit 10 includes a gas cylinder 11 filled with a carrier gas (for example, N2 or Ar), an oxygen cylinder 12 filled with oxygen, a water storage tank 13 storing cooling water, and a ferroelectric tank.
  • Raw material for body thin film for example, a plurality of reservoir tanks storing THF (tetrahydrofuran) as a solvent and Sr (DPM) 2, Bi (C6H5) 3, Ta (OC2H5) 5 as three kinds of organometallic complexes) 17, a gas supply pipe 18 connected to the gas cylinder 11 and the carburetor 1, an oxygen supply pipe 19 connected to the oxygen cylinder 12 and the carburetor 1, and a connection to the water storage tank 13 and the carburetor 1.
  • a valve 18a and a mass flow controller 18b are provided in the path of the gas supply pipe 18, and a valve 19a, a mass flow controller 19b, and a valve 19c are provided in the path of the oxygen supply pipe 19.
  • a valve 20a is provided in the path
  • a valve 22a and a mass flow controller 22b are provided in the path of the liquid supply pipe 22 for the solvent
  • a valve 23a is provided in the path of the liquid supply pipe 23-25 for the complex.
  • — 25a and a mass flow controller 23a — 25b are provided, and valves 26a — 26d, an air purge 26e, and a valve 26f are provided in the path of the manifold 26.
  • the liquid supply pipes 23 to 25 are branched so as to be connected to the liquid supply pipe 22, and provided with valves 23c to 25c, respectively.
  • the carrier gas filled in the gas cylinder 11 is supplied to the vaporizer 1 with the flow rate controlled by the mass flow controller 18b.
  • the carrier gas filled in the gas cylinder 11 is supplied to the reserve tanks 14 and 17 by opening the valves 26f and 26a 26d of the manifold 26 and closing the discharge state of the air purge valve 26e. It is.
  • the inside of the reserve tanks 14 and 17 is pressurized by the carrier gas, and the stored raw material solution is pushed up in the liquid supply pipes 22 and 25 with their ends facing the solution, and the mass flow controller is opened. 22b—by 25b After the flow rate is controlled, it is transported to the connecting pipe 2-5 of the vaporizer 1.
  • oxygen (oxidizing agent) controlled at a constant flow rate from the oxygen cylinder 12 by the mask opening-controller 19b is transported to the vaporizer 1.
  • the evaporator 1 is cooled by circulating in the interior of the evaporator 1.
  • connection pipes 27 30 are arranged side by side along the axial direction of the vaporizer 1, but actually, the connection pipes connected to the water supply pipe 20 or the water distribution pipe 21 from the water storage tank 13.
  • the tubes 31 and 32 are provided alternately radially.
  • the raw material solution stored in the reserve tank 1517 is mixed with a solvent, THF, at room temperature in a liquid or solid state at a normal temperature, in the form of a liquid or solid organometallic complex (Sr (DPM) 2, Bi (C6H5) 3, Ta (OC2H5) 5. ) Is dissolved, and if left as it is, the organometallic complex is precipitated out by evaporation of the THF solvent, and finally becomes a solid. Therefore, in order to prevent the inside of the liquid supply pipes 23-25 contacting with the undiluted solution from being blocked by the liquid supply pipes, the inside of the liquid supply pipes 23-25 after the film forming operation and the inside of the vaporizer 1 are reserved in the reserve tank 14. Wash with THF inside. The washing at this time is a section from the outlet of the muff opening-controller 13b-25b to the vaporizer 1, and after the work is finished, the washing is carried out with THF stored in the reserve tank 14.
  • a solvent THF
  • FIG. 7 is a cross-sectional view illustrating a configuration of a main part of the vaporizer 1.
  • a vaporizer 1 includes a disperser 2 to which a gas supply pipe 18 is connected, a reaction tube 3 continuously connected to the downstream side of the disperser 2, and a heater covering the periphery of the reaction tube 3. 4 and have.
  • the disperser 2 has a gas supply pipe 18 and a gas passage 5 located coaxially.
  • the front end of each connection pipe 27-30 faces between the upstream end port 5a and the end injection port 5b of the gas passage 5 (only the connection pipes 28 and 29 that are opposed to each other are shown in the figure).
  • the raw material solution stored in the reserve tanks 15-17 can be supplied into the gas passage 5.
  • the disperser 2 is provided with a cooling path 6 for communicating with the connection pipes 31 and 32 and for circulating the cooling water in the water storage tank 13.
  • the disperser 2 supports a rod 7 having one end located upstream of the start end upstream port 5a of the gas supply pipe 18 and the other end located at the end injection port 5b, and supports the other end of the rod 7 Pin 8 is provided.
  • One end of the rod 7 is held by a pin 9 provided near the end of the gas supply pipe 18.
  • the outer diameter (4 mm) smaller than the inner diameter (4.5 mm) of the hole is penetrated into the interior of the disperser 2 so that the hole is coaxial with the axis of the hole.
  • the gas passage 5 is formed by the space formed between the disperser 2 and the rod 7.
  • the rod 7 is held in position by screws 9.
  • the cross-sectional width of the gas passage 5 is 0.02 mm. At this time, the cross-sectional width of the gas passage 5 is preferably 0.005-0.10 mm. This is because machining is difficult if it is less than 0.005 mm, and if it exceeds 0.10 mm, it becomes necessary to use a high-pressure carrier gas in order to speed up the carrier gas.
  • a carrier gas is introduced from the gas supply pipe 18 from the upstream of the gas passage 5.
  • the raw material solution is dripped into the carrier gas from the tip of each of the connection pipes 27-30 located in the middle of the gas passage 5, so that the raw material solution is dispersed into the carrier gas passing through the gas passage 5.
  • the carrier gas in which the raw material solution is dispersed is injected into the reaction tube 3 from the terminal injection port 5b downstream of the gas passage 5, and the carrier gas in which the raw material solution flowing in the reaction tube 3 is dispersed is heated by the heater 4. After being heated and vaporized, it is sent to a thin film forming apparatus (not shown).
  • the rod 7 is a cylindrical shaft having an end, if the pressure of the carrier gas is excessively applied, the rod 7 may jump out. In addition, it was necessary to control the maximum pressure of the carrier gas separately from the dispersion control of the raw material solution.
  • the rod in order to solve the above-mentioned problem, the rod can be prevented from popping out regardless of the pressure of the carrier gas without using a special fixing component, and a plurality of thin film forming materials can be distributed in an appropriate amount.
  • Vaporizer disperser that can be dispersed before reaching the vaporizer, MOCVD vaporizer using this vaporizer disperser, rod used for these vaporizer dispersers or MOCVD vaporizer, and carrier gas dispersion It is an object to provide a method and a method for vaporizing a carrier gas. Means for solving the problem
  • the vaporizer disperser according to claim 1 is inserted into a hole formed along a carrier gas carrying path, and cooperates with an inner wall of the hole to form a gas passage.
  • a dispersing unit which is located in the middle of the gas passage and disperses a plurality of thin film forming raw materials in a carrier gas introduced into the gas passage, wherein at least a carrier gas transport direction of the rod is provided.
  • the gist is that a part is provided.
  • a vaporizer for MOCVD according to claim 2 is provided with a vaporizer that is adjacent to the vaporizer distributor according to claim 1 and vaporizes a carrier gas in which a plurality of thin film forming materials are dispersed in the dispersion unit. It is assumed that it has been established.
  • the rod according to claim 3 is the rod used for the vaporizer disperser according to claim 1 or the MOCVD vaporizer according to claim 2, wherein a thin film is formed on the outer periphery of the rod. The point is that a plurality of grooves corresponding to the material are formed one-to-one.
  • the rod according to claim 4 is characterized in that the groove is a linear groove.
  • the rod according to claim 5 is characterized in that the groove is a spiral groove.
  • the rod of claim 6 is characterized in that a cooling path is formed in the rod.
  • a plurality of gas passages are formed by the through holes, and a dispersing portion for introducing a thin film forming material into the gas passages is provided at an intermediate portion of each of the plurality of gas passages.
  • a vaporizer for MOCVD according to claim 8 comprises a vaporizer adjacent to the vaporizer disperser according to claim 7 for vaporizing a carrier gas in which a plurality of thin film forming materials are dispersed in the dispersion unit. It is assumed that it has been established.
  • the gist of the vaporizer for dispersion or the vaporizer for MOCVD according to claim 9 is that a cooling passage is formed inside the gas passage.
  • the method for dispersing a carrier gas according to claim 10 is a method for dispersing a carrier gas from a plurality of portions in a gas passage.
  • the gist of the invention is to introduce a film forming material and disperse the thin film forming material in a carrier gas, and to merge the carrier gas at a merging portion guided to a downstream end of the gas passage in a direction approaching each other.
  • the thin film forming material is introduced from a plurality of intermediate portions of the gas passage to disperse the thin film forming material in the carrier gas, and the downstream end of the gas passage.
  • the gist is that the carrier gas is combined and then vaporized at the merging section guided in a direction approaching each other.
  • a rod that forms a gas passage in cooperation with an inner wall thereof is inserted into a hole formed along a carrier gas transport path, and is introduced into the gas passage.
  • a dispersing portion for dispersing a plurality of thin film forming materials in the carrier gas is disposed in the middle of the gas passage, and at least the tip of the rod at the downstream side in the carrier gas transport direction is tapered and the inner wall of the hole has the tip shape.
  • the carrier gas in which a plurality of thin film forming materials are dispersed, is joined to the downstream end of the gas passage at the merging portion at the merging portion, so that the tapered portion of the rod on the downstream side in the carrier gas conveying direction of the rod is formed. Since the position is determined by the gas passage, the rod can be prevented from popping out regardless of the pressure of the carrier gas without using special fixing parts.
  • the film-forming material can be merged at the merging part in dosing.
  • FIG. 1 is a cross-sectional view of a main part showing Embodiment 1 of a vaporizer for MOCVD of the present invention.
  • FIG. 2 (A) is an enlarged cross-sectional view of a rod showing Embodiment 1 of the MOCVD vaporizer of the present invention
  • FIG. 2 (B) is a cross-section of a conical rod showing Embodiment 1 of the MOCVD vaporizer of the present invention
  • FIG. 1C is a cross-sectional view of a pyramid-shaped rod showing a first embodiment of the vaporizer for MOCVD of the present invention.
  • FIG. 3 is a cross-sectional view of a main part showing Embodiment 2 of a vaporizer for MOCVD of the present invention.
  • FIG. 4 (A) is an enlarged cross-sectional view of a rod showing Embodiment 2 of the MOCVD vaporizer of the present invention
  • FIG. 4 (B) is a cross-sectional view of a conical rod showing Embodiment 2 of the MOCVD vaporizer of the present invention
  • FIG. 4C is a cross-sectional view of a pyramid-shaped rod showing a second embodiment of the vaporizer for MOCVD of the present invention.
  • FIG. 5 is a cross-sectional view of a main part showing Embodiment 3 of a vaporizer for MOCVD of the present invention.
  • FIG. 6 (A) is an enlarged cross-sectional view of an inlet showing a third embodiment of the vaporizer for MOCVD of the present invention.
  • FIG. 7 is a cross-sectional view of a main part showing a conventional MOCVD vaporizer.
  • FIG. 8 is a system block diagram of a vaporization system of the MOCVD method.
  • FIG. 1 and 2 show a first embodiment of a vaporizer for MOCVD according to the present invention.
  • Fig. 1 is a cross-sectional view of the main part of the vaporizer for MOCVD of the present invention
  • Fig. 2 (A) is an enlarged cross-sectional view of the rod
  • Fig. 2 (B) is a cross-sectional view of a conical rod
  • Fig. 2 (C) is It is sectional drawing of the rod of a pyramid shape.
  • a vaporizer 1 includes a disperser 2 to which a gas supply pipe 18 is connected, a reaction tube 3 continuously connected to a downstream side of the disperser 2, and a periphery of the reaction tube 3. And a heater 4 for covering. Note that the reaction tube 3 and the heater 4 constitute a vaporizing section.
  • the disperser 2 has a gas passage 35 located coaxially with the gas supply pipe 18.
  • the distal end (dispersion part) of each connection pipe 27-30 faces between the upstream end port 35a of the gas passage 35 and the terminal injection port 35b (in the figure, the connection pipes 28 and 29 which are opposed to each other). Only shown).
  • the raw material solution stored in the saab tanks 15-17 can be supplied into the gas passage 35.
  • the disperser 2 is provided with a cooling path 36 for communicating with the connecting pipes 31 and 32 and for circulating the cooling water in the water storage tank 13.
  • the disperser 2 is provided with a rod 37 whose one end is located at the start upstream port 35a and whose other end is located at the end injection port 35b.
  • the rod 37 has a tip portion 37a tapered so as to approach each other in the axial direction from the midway toward the terminal injection port 35b, and a gas passage 35.
  • a linear (or spiral) guide groove 37b along the axial direction so as to form a cooling path and a cooling path 37c for circulating cooling water (or liquid or gas from another tank) in the water storage tank 13 are formed. Have been.
  • the tip portion 37a has a conical (or truncated cone) shape as shown in FIG. 2 (B), and the gas is formed by forming the inner wall of the hole of the disperser 2 along this tip shape.
  • the passage 35 merges (merge portion) at the terminal injection port 35b.
  • the tip portion 37a may have a pyramid (or truncated pyramid) shape as shown in FIG. 2 (C).
  • the force S which is a quadrangular pyramid in FIG. 2C
  • the number of gas passages 35 that is, the number of surfaces corresponding to the number of raw material solutions (thin film forming materials) corresponding to the number of reserve tanks 14 to 17 Polygonal pyramid.
  • the guide groove 37b is formed on each surface.
  • the terminal injection port 35b is a junction, the junction may be provided upstream of the terminal injection port 35b in the carrier gas transport direction.
  • the width and depth of the guide groove 37b are set so that the carrier gas can be accelerated even if the force formed so that the cross-sectional width of the gas passage 35 is 0.005 0.10 mm or more is 0.10 mm or more. Even if a high-pressure carrier gas is used for this purpose, the rod 37 does not shift toward the reaction tube 3.
  • a carrier gas is introduced from the gas supply pipe 18. This call The raw material solution is dripped into the carrier gas at the tip end of each of the connection pipes 27-30 located in the middle of the gas passage 35, and this raw material solution is dispersed in the carrier gas passing through the gas passage 35.
  • the carrier gas in which the raw material solution flowing in the reaction tube 3 is dispersed is heated by the heater 4 to be vaporized, and then sent to a thin film forming apparatus (not shown).
  • FIG. 3 and 4 show Embodiment 2 of the vaporizer for MOCVD of the present invention.
  • Fig. 3 is a cross-sectional view of a main part of the vaporizer for MOCVD of the present invention
  • Fig. 4 (A) is an enlarged cross-sectional view of the rod
  • Fig. 4 (B) is a cross-sectional view of a conical rod
  • Fig. 4 (C) is It is sectional drawing of the rod of a pyramid shape.
  • a vaporizer 1 includes a disperser 2 to which a gas supply pipe 18 is connected, a reaction tube 3 continuously connected to a downstream side of the disperser 2, and a periphery of the reaction tube 3. With heater 4 to cover
  • the disperser 2 has a gas passage 35 located coaxially with the gas supply pipe 18.
  • the front end of each connection pipe 27-30 faces between the start upstream port 35a and the end injection port 35b of the gas passage 35 (only the connection pipes 28 and 29 which are opposed to each other are shown in the figure).
  • the raw material solution stored in the reservoirs 15-17 can be supplied into the gas passage 35.
  • the disperser 2 is provided with a cooling path 36 communicating with the connection pipes 31 and 32 for circulating the cooling water in the water storage tank 13.
  • the disperser 2 is provided with a rod 47 whose one end is located at the start upstream port 35a and whose other end is located at the end injection port 35b.
  • the rods 47 are tapered so as to approach each other in the axial direction toward the terminal injection port 35b, and extend along the axial direction so as to form the gas passage 35.
  • a linear (or spiral) guide groove 47b and a cooling path 47c for circulating the cooling water (or liquid or gas from another tank) in the water storage tank 13 are formed.
  • the rod 47 has a conical (or truncated cone) shape as shown in FIG. 4 (B), and the gas passage 35 is formed by forming the inner wall of the hole of the disperser 2 along this tip shape. Merge at the terminal injection port 35b.
  • the rod 47 has a pyramid (or truncated pyramid) shape as shown in FIG. You may. At this time, the number of polygonal pyramids corresponding to the number of force gas passages 35, which are quadrangular pyramids in FIG. can do. In this case, of course, the guide groove 47b is formed on each surface.
  • the width and depth of the guide groove 47b are set so that the carrier gas is accelerated even if the force formed so that the cross-sectional width of the gas passage 35 is 0.005 0.10 mm or more is 0.10 mm or more. Even if a high-pressure carrier gas is used for this purpose, the rod 47 does not shift toward the reaction tube 3.
  • a carrier gas is introduced from the gas supply pipe 18 from the upstream of the gas passage 35. Since the carrier solution is dripped into the carrier gas at the tip end of each of the connection pipes 27-30 located in the middle of the gas passage 35, the carrier solution is dispersed into the carrier gas passing through the gas passage 35.
  • the carrier gas in which the raw material solution having been joined at the terminal injection port 35b downstream of the gas passage 35 is dispersed is injected into the reaction tube 3.
  • the carrier gas in which the raw material solution flowing in the reaction tube 3 is dispersed is heated by the heater 4 to be vaporized, and then sent to a thin film forming apparatus (not shown).
  • FIG. 5 and 6 show a third embodiment of the vaporizer for MOCVD of the present invention.
  • FIG. 5 shows the present invention.
  • FIG. 5 is a cross-sectional view of a main part of the vaporizer for MOCVD, and FIG. 5 is an enlarged cross-sectional view of the main part.
  • a vaporizer 1 includes a disperser 2 to which a gas supply pipe 18 is connected, a reaction tube 3 continuously connected to a downstream side of the disperser 2, and a periphery of the reaction tube 3. With heater 4 to cover
  • the disperser 2 has a gas passage 35 located coaxially with the gas supply pipe 18.
  • the front end of each connection pipe 2730 is provided between the upstream end 35a of the gas passage 35 and the end injection port 35b. (Only the connection pipes 28 and 29 arranged opposite to each other are shown in the figure), so that the raw material solution stored in the reservoirs 15-17 can be supplied into the gas passage 35.
  • the disperser 2 is provided with a cooling path 36 communicating with the connection pipes 31 and 32 for circulating the cooling water in the water storage tank 13.
  • the gas passage 35 is formed by holes inclined so as to approach each other in the axial direction toward the terminal injection port 35b.
  • a cooling path for circulating the cooling water (or liquid or gas from another tank) in the water storage tank 13 may be formed inside each hole (not shown).
  • the gas passages 35 are formed in a number corresponding to the number of the raw material solutions (thin film forming raw materials) corresponding to the number of the reserve tanks 14 and 17.
  • a carrier gas is introduced from the gas supply pipe 18. Since the carrier solution is dripped into the carrier gas at the tip end of each of the connection pipes 27-30 located in the middle of the gas passage 35, the carrier solution is dispersed into the carrier gas passing through the gas passage 35.
  • the carrier gas in which the raw material solution having been joined at the terminal injection port 35b downstream of the gas passage 35 is dispersed is injected into the reaction tube 3.
  • the carrier gas in which the raw material solution flowing in the reaction tube 3 is dispersed is heated by the heater 4 to be vaporized, and then sent to a thin film forming apparatus (not shown).
  • a rod that forms a gas passage in cooperation with an inner wall thereof is inserted into a hole formed along a carrier gas transport path, and is inserted into the gas passage.
  • a dispersing unit for dispersing a plurality of thin film forming materials in the introduced carrier gas is arranged in the middle of the gas passage, and at least the tip of the rod at the downstream side in the carrier gas transport direction is tapered, and the inner wall of the hole is at the tip.
  • the carrier gas is formed according to the shape, and the carrier gas, in which a plurality of thin film forming materials are dispersed, is joined to the downstream end of the gas passage at the junction by the junction.
  • the tapered portion of the rod on the downstream side in the carrier gas transport direction is positioned by the gas passage, so that the rod can be prevented from popping out regardless of the pressure of the carrier gas without using any special fixing parts.
  • a plurality of thin film forming materials can be joined at the junction with an appropriate distribution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 特別な固定部品を用いることなくキャリアガスの圧力に拘わらずロッドの飛び出しを防止することができ、しかも、複数の薄膜形成材料を適量配分で合流部で合流させることができる気化器用分散器を提供する。  キャリアガスの搬送経路に沿って形成された穴にその内壁と協働してガス通路35を形成するロッド37が挿入され、ガス通路35内に導入されたキャリアガスに複数の薄膜形成原料を分散させる分散部がガス通路の中途部に配置され、ロッド37の少なくともキャリアガス搬送方向下流側の先端部分が先細りとされると共に穴の内壁がその先端形状に沿って形成され、その合流部によりガス通路35の下流端部に分散部で複数の薄膜形成材料を分散させたキャリアガスが合流される。

Description

明 細 書
気化器用分散器、この気化器用分散器を用いた MOCVD用気化器、こ れら気化器用分散器若しくは MOCVD用気化器に用いられるロッド、及びキヤリ ァガスの分散方法並びにキャリアガスの気化方法
技術分野
[0001] 本発明は、キャリアガスを用いて複数の原料溶液等を気化するための気化器用分 散器、この気化器用分散器を用いた MOCVD用気化器、これら気化器用分散器若 しくは MOCVD用気化器に用いられるロッド、及びキャリアガスの分散方法並びにキ ャリアガスの気化方法に関する。
背景技術
[0002] 特許文献 1 :特開 2000— 216150号公報
[0003] 近年、電子デバイスの分野においては、回路の高密度化と共に電子デバイスの一 層の小型化および高性能化が望まれており、例えば、トランジスタの組み合わせで情 報の記憶動作を行う SRAM (Static Random Access read write Memory) 、 EEPROM (Electrically Erasable and Programmable Read Only Me mory)、或いはトランジスタとキャパシタの組み合わせで情報の記憶動作を行う DRA M (Dynamic Random Access Memory)などのように、電子デバイスの機能を 単に回路構成のみで達成するば力りではなぐ機能性薄膜等の材料自体の特性を 利用してデバイスの機能を実現することが有利になりつつある。
[0004] そのため、電子部品に用いられる誘電体材料などの薄膜ィ匕が望まれている。このよ うな材料を薄膜ィ匕する一つの方法として、 CVD法がある。
[0005] この CVD法は、 PVD法、ゾルゲル法、その他の成膜法に比べて成膜速度が大きく
、多層薄膜の製造が容易であるなどの特徴を有している。また、 MOCVD法は、有 機物を含む化合物を薄膜形成用の原料として用いる CVD法であり、安全性が高ぐ 膜中のハロゲン化物の混入がないなどの利点を有する。
[0006] MOCVD法に用いられる原料は、一般的に固体粉末あるいは液体であり、これら の原料を容器に入れ、一般的に減圧中で加熱して原料を気化器で気化させた後、 キャリアガスによって薄膜成膜装置内に送り込んでいる。
[0007] 図 8は、このような MOCVD法の気化システムのシステムブロック図(特許文献 1参 照)である。
[0008] 図 8において、 10は複数の原料溶液等を気化器 1へと供給する供給部である。
[0009] 供給部 10は、キャリアガス(例えば、 N2又は Ar)が充填されたガスボンベ 11と、酸 素が充填された酸素ボンべ 12と、冷却水が貯留された貯水タンク 13と、強誘電体薄 膜用の原料 (例えば、 3種類の有機金属錯体として Sr (DPM) 2、 Bi (C6H5) 3、 Ta ( OC2H5) 5)並びに溶剤として THF (テトラヒドロフラン)を貯留した複数のリザーブタ ンク 14一 17と、ガスボンベ 11と気化器 1とに接続されたガス供給管 18と、酸素ボン ベ 12と気化器 1とに接続された酸素供給管 19と、貯水タンク 13と気化器 1とに接続さ れた給水管 20並びに配水管 21と、リザーブタンク 14一 17と気化器 1とに接続された 液体供給管 22— 25と、リザーブタンク 14一 17とガスボンベ 11とに接続された多岐 管 26とを備えている。
[0010] ガス供給管 18の経路中にはバルブ 18aとマスフローコントローラ 18bとが設けられ、 酸素供給管 19の経路中にはバルブ 19aとマスフローコントローラ 19bとバルブ 19cと が設けられ、給水管 20の経路中にはバルブ 20aが設けられ、溶剤用の液体供給管 2 2の経路中にはバルブ 22aとマスフローコントローラ 22bとが設けられ、錯体用の液体 供給管 23— 25の経路中にはバルブ 23a— 25aとマスフローコントローラ 23a— 25b とが設けられ、多岐管 26の経路中にはバルブ 26a— 26dとエアパージ 26eとバルブ 26fとが設けられている。尚、液体供給管 23— 25は、液体供給管 22と接続されるよう に分岐されており、それぞれバルブ 23c— 25cが設けられている。
[0011] ガスボンベ 11に充填されたキャリアガスは、ガス供給管 18のバルブ 18aを開くこと により、マスフローコントローラ 18bに流量制御されて気化器 1へと供給される。また、 ガスボンベ 11に充填されたキャリアガスは、多岐管 26のバルブ 26f並びにバルブ 26 a 26dを開くと共にエアパージ用のバルブ 26eの放出状態を閉とすることによりキヤ リアガスがリザーブタンク 14一 17に送り込まれる。これにより、リザーブタンク 14一 17 内はキャリアガスにより加圧され、貯留された原料溶液はその溶液内に先端が臨んで レ、る液体供給管 22— 25内を押し上げられてマスフローコント口—ラ 22b— 25bにより 流量制御された後、気化器 1の接続管 2— 5に輸送される。
[0012] また、同時に、酸素ボンべ 12からマスフ口-コント口-ラ 19bで-定流量に制御された 酸素 (酸化剤)が気化器 1へと輸送される。
[0013] さらに、給水管 20のバルブ 20aを開くことにより貯水タンク 13内の冷却水が気化器
1の内部を循環して気化器 1を冷却する。
[0014] 尚、接続管 27 30は、図示例では気化器 1の軸線方向に沿って並設されている が、実際には貯水タンク 13からの給水管 20又は配水管 21と接続される接続管 31, 32とで放射状に交互に設けられている。
[0015] リザーブタンク 15 17内に貯留された原料溶液は、溶剤である THFに常温で液 体又は固体状の有機金属錯体(Sr (DPM) 2、 Bi (C6H5) 3、 Ta (OC2H5) 5)を溶解 してレ、るため、そのまま放置しておくと THF溶剤の蒸発によつて有機金属錯体が析 出し、最終的に固形状になる。従って、原液と接触した液体供給管 23— 25の内部が これによつて閉塞されることを防止するため、成膜作業終了後の液体供給管 23— 25 内及び気化器 1内をリザーブタンク 14内の THFで洗浄すればょレ、。この際の洗浄は 、マスフ口-コントローラ 13b— 25bの出口側から気化器 1までの区間とし、作業終了 後にリザーブタンク 14内に貯留された THFで洗い流すものである。
[0016] 図 7は、気化器 1の要部の構成を示す断面図である。この図 7において、気化器 1は 、ガス供給管 18が接続される分散器 2と、分散器 2の下流側に連続して接続された反 応管 3と、反応管 3の周囲を覆うヒータ 4とを備えている。
[0017] 分散器 2は、ガス供給管 18と同軸上に位置するガス通路 5とを有する。このガス通 路 5の始端上流口 5aと終端噴射口 5bとの間には、各接続管 27— 30の先端が臨ん でおり(図では対向配置された接続管 28, 29のみ図示)、これによりリザーブタンク 1 5— 17内に貯留された原料溶液がこのガス通路 5内に供給可能となっている。また、 分散器 2には、接続管 31 , 32に連通して貯水タンク 13内の冷却水が循環するため の冷却経路 6が形成されている。さらに、分散器 2には、ガス供給管 18の始端上流口 5aよりも上流側に一端が位置すると共に終端噴射口 5bに他端が位置するロッド 7と、 このロッド 7の他端を支持するピン 8とを備えている。尚、ロッド 7の一端はガス供給管 18の端部付近に設けられたピン 9により保持されている。 [0018] このような構成においては、分散器 2の内部に穴を貫通し、その穴の軸線と同軸上 に位置するように、穴の内径(4· 50mm)のよりも小さな外径(4· 48mm)を有する口 ッド 7を埋め込む。分散器 2とロッド 7との間に形成された空間によりガス通路 5が形成 される。ロッド 7はビス 9により位置決め状態で保持されている。
[0019] 尚、ガス通路 5の断面幅は 0. 02mmとなる。この際、ガス通路 5の断面幅は、 0. 00 5—0. 10mmが好ましレヽ。これは、 0. 005mm未満では加工が困難であり、 0. 10m mを超えるとキャリアガスを高速化するために高圧のキャリアガスを用いる必要が生じ てしまうからである。
[0020] ガス通路 5の上流からは、ガス供給管 18からキャリアガスが導入される。このキャリア ガスには、ガス通路 5の中途部に位置する各接続管 27— 30の先端から原料溶液が 滴下されるため、この原料溶液がガス通路 5を通過するキャリアガスに分散される。
[0021] これにより、ガス通路 5の下流の終端噴射口 5bから反応管 3に原料溶液を分散した キャリアガスが噴射され、反応管 3内を流れる原料溶液を分散したキャリアガスをヒー タ 4で加熱し気化した後、図示を略する薄膜成膜装置へと送り込まれる。
発明の開示
発明が解決しょうとする課題
[0022] ところで、上記の如く構成された MOCVD用気化器にあっては、ロッド 7が端なる円 柱状のシャフトであるため、キャリアガスの圧力をかけすぎるとロッド 7が飛び出すおそ れがあるため、キャリアガスの最大圧力を原料溶液の分散制御とは別に制御する必 要があった。
[0023] また、複数の原料溶液を、その滴下量に応じた配分で反応管 3に至る前に分散す ることができないとレ、う問題も生じてレ、た。
[0024] 本発明は、上記問題を解決するため、特別な固定部品を用いることなくキャリアガス の圧力に拘わらずロッドの飛び出しを防止することができ、しかも、複数の薄膜形成 材料を適量配分で気化部に至る前に分散させることができる気化器用分散器、この 気化器用分散器を用いた MOCVD用気化器、これら気化器用分散器若しくは MO CVD用気化器に用いられるロッド、及びキャリアガスの分散方法並びにキャリアガス の気化方法を提供することを目的とする。 課題を解決するための手段
[0025] その目的を達成するため、請求項 1に記載の気化器用分散器は、キャリアガスの搬 送経路に沿って形成された穴に挿入されて該穴の内壁との協働によりガス通路を形 成するロッドと、前記ガス通路の中途部に位置して前記ガス通路内に導入されたキヤ リアガスに複数の薄膜形成原料を分散させる分散部とを備え、前記ロッドの少なくとも キャリアガス搬送方向下流側の先端部分を先細りとすると共に前記穴の内壁をその 先端形状に沿わせ、前記ガス通路の下流端部に前記分散部で複数の薄膜形成材 料を分散させたキャリアガスを合流させる合流部を設けたことを要旨とする。
[0026] 請求項 2に記載の MOCVD用気化器は、請求項 1に記載の気化器用分散器に隣 接して前記分散部で複数の薄膜形成材料を分散させたキャリアガスを気化する気化 部を設けたことを要旨とする。
[0027] 請求項 3に記載のロッドは、請求項 1に記載の気化器用分散器若しくは請求項 2に 記載の MOCVD用気化器に使用されるロッドであって、前記ロッドの外周には薄膜 形成材料と 1対 1で対応した複数の溝が形成されていることを要旨とする。
[0028] 請求項 4に記載のロッドは、前記溝は直線状の溝であることを要旨とする。
[0029] 請求項 5に記載のロッドは、前記溝は螺旋状の溝であることを要旨とする。
[0030] 請求項 6に記載のロッドは、前記ロッドに冷却路を形成したことを要旨とする。
[0031] 請求項 7に記載の気化器用分散器は、一面を導入側とし且つ他面を噴射側とする ブロック体に前記導入側から前記噴射側に向かって互いに接近する方向に傾斜した 複数の貫通穴により複数のガス通路が形成されると共に、該複数のガス通路のそれ ぞれの中途部に前記ガス通路内へと薄膜形成原料を導入する分散部が設けられて レ、ることを要旨とする。
[0032] 請求項 8に記載の MOCVD用気化器は、請求項 7に記載の気化器用分散器に隣 接して前記分散部で複数の薄膜形成材料を分散させたキャリアガスを気化する気化 部を設けたことを要旨とする。
[0033] 請求項 9に記載の気化起用分散器又は MOCVD用気化器は、前記ガス通路よりも 内側に冷却路を形成したことを要旨とする。
[0034] 請求項 10に記載のキャリアガスの分散方法は、ガス通路の中途部複数箇所から薄 膜形成材料を導入してキャリアガスに前記薄膜形成材料を分散させると共に、前記 ガス通路の下流端部に互いに接近する方向に案内される合流部にてキャリアガスを 合流させることを要旨とする。
[0035] 請求項 11に記載のキャリアガスの気化方法は、ガス通路の中途部複数箇所から薄 膜形成材料を導入してキャリアガスに前記薄膜形成材料を分散させると共に、前記 ガス通路の下流端部に互いに接近する方向に案内される合流部にてキャリアガスを 合流させた後に気化することを要旨とする。
発明の効果
[0036] 請求項 1に記載の気化器用分散器は、キャリアガスの搬送経路に沿って形成され た穴にその内壁と協働してガス通路を形成するロッドが挿入され、ガス通路内に導入 されたキャリアガスに複数の薄膜形成原料を分散させる分散部がガス通路の中途部 に配置され、ロッドの少なくともキャリアガス搬送方向下流側の先端部分が先細りとさ れると共に穴の内壁がその先端形状に沿って形成され、その合流部によりガス通路 の下流端部に分散部で複数の薄膜形成材料を分散させたキャリアガスが合流される ことにより、ロッドのキャリアガス搬送方向下流側の先細り部分がガス通路によって位 置決めされるため、部特別な固定部品を用いることなくキャリアガスの圧力に拘わら ずロッドの飛び出しを防止することができ、しかも、複数の薄膜形成材料を適量配分 で合流部で合流させることができる。
図面の簡単な説明
[0037] [図 1]本発明の MOCVD用気化器の実施例 1を示す要部の断面図である。
[図 2] (A)は本発明の MOCVD用気化器の実施例 1を示すロッドの拡大断面図、 (B )は本発明の MOCVD用気化器の実施例 1を示す円錐形状のロッドの断面図、(C) は本発明の MOCVD用気化器の実施例 1を示す角錐形状のロッドの断面図である。
[図 3]本発明の MOCVD用気化器の実施例 2を示す要部の断面図である。
[図 4] (A)は本発明の MOCVD用気化器の実施例 2を示すロッドの拡大断面図、 (B )は本発明の MOCVD用気化器の実施例 2を示す円錐形状のロッドの断面図、(C) は本発明の MOCVD用気化器の実施例 2を示す角錐形状のロッドの断面図である。
[図 5]本発明の MOCVD用気化器の実施例 3を示す要部の断面図である。 [図 6] (A)は本発明の MOCVD用気化器の実施例 3を示す導入部の拡大断面図で ある。
[図 7]従来の MOCVD用気化器を示す要部の断面図である。
[図 8]MOCVD法の気化システムのシステムブロック図である。
符号の説明
[0038] 1…気化器
2…分散器
3…反応管
4…ヒータ
35…ガス通路
35a…始端上流口
35b…終端噴射口(合流部)
36…冷却通路
37、 47…ロッド、
発明を実施するための最良の形態
[0039] 次に、本発明の MOCVD用気化器を図面に基づいて説明する。尚、以下の各実 施例において、原料供給システム等の見かけ上のシステム構成は図 8に示したものと 同一であるため、ここではシステム全体の詳細な説明は省略する。
[0040] (実施例 1)
図 1及び図 2は、本発明の MOCVD用気化器の実施例 1を示す。図 1は本発明の MOCVD用気化器の要部の断面図、図 2 (A)はロッドの拡大断面図、図 2 (B)は円 錐形状のロッドの断面図、図 2 (C)は角錐形状のロッドの断面図である。
[0041] 図 1において、気化器 1は、ガス供給管 18が接続される分散器 2と、分散器 2の下 流側に連続して接続された反応管 3と、反応管 3の周囲を覆うヒータ 4とを備えている 。なお、反応管 3とヒータ 4とで気化部を構成している。
[0042] 分散器 2は、ガス供給管 18と同軸上に位置するガス通路 35を有する。このガス通 路 35の始端上流口 35aと終端噴射口 35bとの間には、各接続管 27— 30の先端 (分 散部)が臨んでおり(図では対向配置された接続管 28, 29のみ図示)、これによりリ ザーブタンク 15— 17内に貯留された原料溶液がこのガス通路 35内に供給可能とな つている。また、分散器 2には、接続管 31 , 32に連通して貯水タンク 13内の冷却水 が循環するための冷却経路 36が形成されている。さらに、分散器 2には、始端上流 口 35aに一端が位置すると共に終端噴射口 35bに他端が位置するロッド 37を備えて いる。
[0043] ロッド 37は、図 2 (A)に示すように、中途部から終端噴射口 35b側に向かって互い に軸心方向に接近するように先細りとされた先端部 37aと、ガス通路 35を形成するよ うに軸線方向に沿う直線状 (又は螺旋状)のガイド溝 37bと、貯水タンク 13内の冷却 水 (若しくは別タンクからの液体又は気体)が循環するための冷却経路 37cが形成さ れている。
[0044] 先端部 37aは、図 2 (B)に示すように、円錐 (又は截頭円錐)形状とされており、この 先端形状に沿うように分散器 2の穴内壁を形成することによりガス通路 35が終端噴射 口 35bで合流(合流部)することとなる。尚、先端部 37aは、図 2 (C)に示すように角錐 (又は截頭角錐)形状としても良レ、。この際、図 2 (C)では四角錐としている力 S、ガス通 路 35の本数、即ち、リザーブタンク 14一 17の数に相当する原料溶液 (薄膜形成原 料)の数に対応した面数の多角錐とすることができる。尚、この場合にはその各面に ガイド溝 37bが形成されることは勿論である。また、終端噴射口 35bを合流部としてい るが、この合流部は終端噴射口 35bよりもキャリアガス搬送方向上流側に設けても良 レ、。
[0045] このような構成においては、分散器 2の内部に穴を貫通し、その穴に、穴の内径 (例 えば、 4· 50mm)と略同一外径のロッド 37を挿入すると、ロッド 37の先端形状により 穴に対してロッド 37が位置決めされると同時に分散器 2の穴内壁とガイド溝 37bとの 協働によりガス通路 35が形成される。
[0046] 尚、ガイド溝 37bの幅並びに深さは、ガス通路 35の断面幅が 0. 005 0. 10mmと なるように形成されている力 0. 10mm以上であってもキャリアガスを高速化するた めに高圧のキャリアガスを用いたとしても、ロッド 37が反応管 3に向かってずれること はない。
[0047] ガス通路 35の上流からは、ガス供給管 18からキャリアガスが導入される。このキヤリ ァガスには、ガス通路 35の中途部に位置する各接続管 27— 30の先端力 原料溶 液が滴下されるため、この原料溶液がガス通路 35を通過するキャリアガスに分散され る。
[0048] これにより、ガス通路 35の下流の終端噴射口 35bで合流した後の原料溶液を分散 したキャリアガスが反応管 3に噴射される。
[0049] さらに、その反応管 3内を流れる原料溶液を分散したキャリアガスは、ヒータ 4で加 熱して気化した後、図示を略する薄膜成膜装置へと送り込まれる。
[0050] (実施例 2)
図 3及び図 4は、本発明の MOCVD用気化器の実施例 2を示す。図 3は本発明の MOCVD用気化器の要部の断面図、図 4 (A)はロッドの拡大断面図、図 4 (B)は円 錐形状のロッドの断面図、図 4 (C)は角錐形状のロッドの断面図である。
[0051] 図 2において、気化器 1は、ガス供給管 18が接続される分散器 2と、分散器 2の下 流側に連続して接続された反応管 3と、反応管 3の周囲を覆うヒータ 4とを備えている
[0052] 分散器 2は、ガス供給管 18と同軸上に位置するガス通路 35を有する。このガス通 路 35の始端上流口 35aと終端噴射口 35bとの間には、各接続管 27— 30の先端が 臨んでおり(図では対向配置された接続管 28, 29のみ図示)、これによりリザーブタ ンク 15— 17内に貯留された原料溶液がこのガス通路 35内に供給可能となっている 。また、分散器 2には、接続管 31 , 32に連通して貯水タンク 13内の冷却水が循環す るための冷却経路 36が形成されている。さらに、分散器 2には、始端上流口 35aに一 端が位置すると共に終端噴射口 35bに他端が位置するロッド 47を備えている。
[0053] ロッド 47は、図 4 (A)に示すように、終端噴射口 35b側に向かって互いに軸心方向 に接近するように先細りとされ、ガス通路 35を形成するように軸線方向に沿う直線状( 又は螺旋状)のガイド溝 47bと、貯水タンク 13内の冷却水 (若しくは別タンクからの液 体又は気体)が循環するための冷却経路 47cが形成されている。また、ロッド 47は、 図 4 (B)に示すように、円錐 (又は截頭円錐)形状とされており、この先端形状に沿う ように分散器 2の穴内壁を形成することによりガス通路 35が終端噴射口 35bで合流 することとなる。なお、ロッド 47は、図 4 (C)に示すように角錐 (又は截頭角錐)形状と しても良い。この際、図 4 (C)では四角錐としている力 ガス通路 35の本数、即ち、リ ザーブタンク 14一 17の数に相当する原料溶液 (薄膜形成原料)の数に対応した面 数の多角錐とすることができる。尚、この場合にはその各面にガイド溝 47bが形成さ れることは勿論である。
[0054] このような構成においては、分散器 2の内部に穴を貫通し、その穴に、穴の内径 (例 えば、 4. 50mm)と略同一外径のロッド 47を揷入すると、ロッド 47の先端形状により 穴に対してロッド 47が位置決めされると同時に分散器 2の穴内壁とガイド溝 47bとの 協働によりガス通路 35が形成される。
[0055] 尚、ガイド溝 47bの幅並びに深さは、ガス通路 35の断面幅が 0. 005 0. 10mmと なるように形成されている力 0. 10mm以上であってもキャリアガスを高速化するた めに高圧のキャリアガスを用いたとしても、ロッド 47が反応管 3に向かってずれること はない。
[0056] ガス通路 35の上流からは、ガス供給管 18からキャリアガスが導入される。このキヤリ ァガスには、ガス通路 35の中途部に位置する各接続管 27— 30の先端力 原料溶 液が滴下されるため、この原料溶液がガス通路 35を通過するキャリアガスに分散され る。
[0057] これにより、ガス通路 35の下流の終端噴射口 35bで合流した後の原料溶液を分散 したキャリアガスが反応管 3に噴射される。
[0058] さらに、その反応管 3内を流れる原料溶液を分散したキャリアガスは、ヒータ 4で加 熱して気化した後、図示を略する薄膜成膜装置へと送り込まれる。
[0059] (実施例 3)
図 5及び図 6は、本発明の MOCVD用気化器の実施例 3を示す。図 5は本発明の
MOCVD用気化器の要部の断面図、図 5は要部の拡大断面図である。
[0060] 図 5において、気化器 1は、ガス供給管 18が接続される分散器 2と、分散器 2の下 流側に連続して接続された反応管 3と、反応管 3の周囲を覆うヒータ 4とを備えている
[0061] 分散器 2は、ガス供給管 18と同軸上に位置するガス通路 35を有する。このガス通 路 35の始端上流口 35aと終端噴射口 35bとの間には、各接続管 27 30の先端が 臨んでおり(図では対向配置された接続管 28, 29のみ図示)、これによりリザーブタ ンク 15— 17内に貯留された原料溶液がこのガス通路 35内に供給可能となっている 。また、分散器 2には、接続管 31 , 32に連通して貯水タンク 13内の冷却水が循環す るための冷却経路 36が形成されている。
[0062] ガス通路 35は、図 6に示すように、終端噴射口 35b側に向かって互いに軸心方向 に接近するように傾斜した穴により形成されている。尚、各穴よりも内側には、貯水タ ンク 13内の冷却水 (若しくは別タンクからの液体又は気体)が循環するための冷却経 路を形成することも可能である(図示せず)。なお、ガス通路 35は、リザーブタンク 14 一 17の数に相当する原料溶液 (薄膜形成原料)の数に対応した本数だけ形成され ている。
[0063] このような構成においては、分散器 2にガス通路 35となる穴を傾斜状態で貫通させ るだけで良い。尚、ガス通路 35の断面幅は 0. 005 0. 10mmとなるように形成され ている。
[0064] ガス通路 35の上流からは、ガス供給管 18からキャリアガスが導入される。このキヤリ ァガスには、ガス通路 35の中途部に位置する各接続管 27— 30の先端力 原料溶 液が滴下されるため、この原料溶液がガス通路 35を通過するキャリアガスに分散され る。
[0065] これにより、ガス通路 35の下流の終端噴射口 35bで合流した後の原料溶液を分散 したキャリアガスが反応管 3に噴射される。
[0066] さらに、その反応管 3内を流れる原料溶液を分散したキャリアガスは、ヒータ 4で加 熱して気化した後、図示を略する薄膜成膜装置へと送り込まれる。
産業上の利用可能性
[0067] 請求項 1に記載の気化器用分散器は、キャリアガスの搬送経路に沿って形成され た穴にその内壁と協働してガス通路を形成するロッドが揷入され、ガス通路内に導入 されたキャリアガスに複数の薄膜形成原料を分散させる分散部がガス通路の中途部 に配置され、ロッドの少なくともキャリアガス搬送方向下流側の先端部分が先細りとさ れると共に穴の内壁がその先端形状に沿って形成され、その合流部によりガス通路 の下流端部に分散部で複数の薄膜形成材料を分散させたキャリアガスが合流される ことにより、ロッドのキャリアガス搬送方向下流側の先細り部分がガス通路によって位 置決めされるため、部特別な固定部品を用いることなくキャリアガスの圧力に拘わら ずロッドの飛び出しを防止することができ、しかも、複数の薄膜形成材料を適量配分 で合流部で合流させることができる。

Claims

請求の範囲
[1] キャリアガスの搬送経路に沿って形成された穴に挿入されて該穴の内壁との協働 によりガス通路を形成するロッドと、前記ガス通路の中途部に位置して前記ガス通路 内に導入されたキャリアガスに複数の薄膜形成原料を分散させる分散部とを備え、 前記ロッドの少なくともキャリアガス搬送方向下流側の先端部分を先細りとすると共 に前記穴の内壁をその先端形状に沿わせ、前記ガス通路の下流端部に前記分散部 で複数の薄膜形成材料を分散させたキャリアガスを合流させる合流部を設けたことを 特徴とする気化器用分散器。
[2] 請求項 1に記載の気化器用分散器に隣接して前記分散部で複数の薄膜形成材料 を分散させたキャリアガスを気化する気化部を設けたことを特徴とする MOCVD用気 化器。
[3] 請求項 1に記載の気化器用分散器若しくは請求項 2に記載の MOCVD用気化器 に使用されるロッドであって、
前記ロッドの外周には薄膜形成材料と 1対 1で対応した複数の溝が形成されてレ、る ことを特徴とするロッド。
[4] 前記溝は直線状の溝であることを特徴とする請求項 3に記載のロッド。
[5] 前記溝は螺旋状の溝であることを特徴とする請求項 3に記載のロッド。
[6] 前記ロッドに冷却路を形成したことを特徴とする請求項 1乃至請求項 5の何れか一 つに記載のロッド。
[7] 一面を導入側とし且つ他面を噴射側とするブロック体に前記導入側から前記噴射 側に向かって互いに接近する方向に傾斜した複数の貫通穴により複数のガス通路が 形成されると共に、該複数のガス通路のそれぞれの中途部に前記ガス通路内へと薄 膜形成原料を導入する分散部が設けられていることを特徴とする気化器用分散器。
[8] 請求項 7に記載の気化器用分散器に隣接して前記分散部で複数の薄膜形成材料 を分散させたキャリアガスを気化する気化部を設けたことを特徴とする MOCVD用気 化器。
[9] 前記ガス通路よりも内側に冷却路を形成したことを特徴とする請求項 7に記載の気 化起用分散器又は請求項 8に記載の MOCVD用気化器。
[10] ガス通路の中途部複数箇所力 薄膜形成材料を導入してキャリアガスに前記薄膜 形成材料を分散させると共に、前記ガス通路の下流端部に互いに接近する方向に 案内される合流部にてキャリアガスを合流させることを特徴とするキャリアガスの分散 方法。
[11] ガス通路の中途部複数箇所力 薄膜形成材料を導入してキャリアガスに前記薄膜 形成材料を分散させると共に、前記ガス通路の下流端部に互いに接近する方向に 案内される合流部にてキャリアガスを合流させた後に気化することを特徴とするキヤリ ァガスの気化方法。
PCT/JP2004/012066 2003-08-22 2004-08-23 気化器用分散器、この気化器用分散器を用いたmocvd用気化器、これら気化器用分散器若しくはmocvd用気化器に用いられるロッド、及びキャリアガスの分散方法並びにキャリアガスの気化方法 WO2005020302A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-298828 2003-08-22
JP2003298828A JP2005072194A (ja) 2003-08-22 2003-08-22 気化器用分散器、この気化器用分散器を用いたmocvd用気化器、これら気化器用分散器若しくはmocvd用気化器に用いられるロッド、及びキャリアガスの分散方法並びにキャリアガスの気化方法

Publications (1)

Publication Number Publication Date
WO2005020302A1 true WO2005020302A1 (ja) 2005-03-03

Family

ID=34213730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012066 WO2005020302A1 (ja) 2003-08-22 2004-08-23 気化器用分散器、この気化器用分散器を用いたmocvd用気化器、これら気化器用分散器若しくはmocvd用気化器に用いられるロッド、及びキャリアガスの分散方法並びにキャリアガスの気化方法

Country Status (2)

Country Link
JP (1) JP2005072194A (ja)
WO (1) WO2005020302A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682980A1 (en) * 2011-02-28 2014-01-08 Kabushiki Kaisha Watanabe Shoko Vaporizer, center rod used therein, and method for vaporizing material carried by carrier gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5614935B2 (ja) 2009-02-03 2014-10-29 株式会社渡辺商行 気化器、この気化器を用いたmocvd用気化器、これら気化器若しくはmocvd用気化器に用いられるセンターロッド、及びキャリアガスの分

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002058141A1 (fr) * 2001-01-18 2002-07-25 Kabushiki Kaisha Watanabe Shoko Carburateur, dispositifs de divers types utilisant ce carburateur et procede de vaporisation
JP2003268552A (ja) * 2002-03-18 2003-09-25 Watanabe Shoko:Kk 気化器及びそれを用いた各種装置並びに気化方法
JP2004265938A (ja) * 2003-02-18 2004-09-24 Wakomu Denso:Kk 気化器及び原料溶液の気化方法並びに気化器の洗浄方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002058141A1 (fr) * 2001-01-18 2002-07-25 Kabushiki Kaisha Watanabe Shoko Carburateur, dispositifs de divers types utilisant ce carburateur et procede de vaporisation
JP2003268552A (ja) * 2002-03-18 2003-09-25 Watanabe Shoko:Kk 気化器及びそれを用いた各種装置並びに気化方法
JP2004265938A (ja) * 2003-02-18 2004-09-24 Wakomu Denso:Kk 気化器及び原料溶液の気化方法並びに気化器の洗浄方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2682980A1 (en) * 2011-02-28 2014-01-08 Kabushiki Kaisha Watanabe Shoko Vaporizer, center rod used therein, and method for vaporizing material carried by carrier gas
EP2682980A4 (en) * 2011-02-28 2014-11-26 Watanabe M & Co Ltd EVAPORATOR, CENTRAL ROD FOR THIS AND METHOD FOR EVAPORATING A MATERIAL CARRIED BY A CARRIER GAS
JP5993363B2 (ja) * 2011-02-28 2016-09-14 株式会社渡辺商行 気化器および気化方法
US9885113B2 (en) 2011-02-28 2018-02-06 Kabushiki Kaisha Watanabe Shoko Vaporizer, center rod used therein, and method for vaporizing material carried by carrier gas

Also Published As

Publication number Publication date
JP2005072194A (ja) 2005-03-17

Similar Documents

Publication Publication Date Title
US6269221B1 (en) Liquid feed vaporization system and gas injection device
JP7125424B2 (ja) 圧力上昇極低温流体供給システム
US20080193645A1 (en) Vaporizer and various devices using the same and an associated vaporizing method
WO2003079422A1 (fr) Vaporisateur, differents dispositifs dans lesquels il intervient, et procede de vaporisation
JP2005101454A (ja) 気化器
WO2005020302A1 (ja) 気化器用分散器、この気化器用分散器を用いたmocvd用気化器、これら気化器用分散器若しくはmocvd用気化器に用いられるロッド、及びキャリアガスの分散方法並びにキャリアガスの気化方法
KR20050113549A (ko) 기화기 및 이를 사용한 각종 장치 그리고 기화방법
US9020332B2 (en) Center rod for use in the carburetor or carburetor for MOCVD
WO2003079421A1 (fr) Procede de depot de couche mince cvd
KR20060121819A (ko) 박막 성막장치
KR100487556B1 (ko) 반도체 박막 증착장치
WO2005020303A1 (ja) 気化器用分散器、この気化器用分散器を用いたmocvd用気化器、及びキャリアガスの気化方法
KR102596950B1 (ko) 박막 증착용 기화 장치
KR100455224B1 (ko) 기화기
JP2010067995A (ja) 気化方法
TW202108810A (zh) 液體材料氣化裝置
WO2002058129A1 (fr) Film fin ferroélectrique, film fin de métal ou film fin d'oxyde, procédé et dispositif d'élaboration correspondant, et dispositif électrique ou électronique utilisant ledit film fin
JP2014159644A (ja) 気化器、この気化器を用いたmocvd用気化器、これら気化器若しくはmocvd用気化器に用いられるセンターロッド、及びキャリアガスの分散方法並びにキャリアガスの気化方法
JP2014159644A5 (ja)
KR100868847B1 (ko) 액화 천연가스 운반선의 하역용 액화 천연가스 기화장치
KR20060043720A (ko) 화학 기상 증착 장치용 기화기
KR100319882B1 (ko) 챔버에 소스가스를 공급시키기 위한 장치를 갖는 화학기상증착장비
JPH10280149A (ja) ガス噴射装置
JPH0794497A (ja) 気化装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase