WO2005015998A1 - Verwendung von alkoholalkoxylaten als adjuvans für fungizide benzamidoxim-derivate, entsprechende mittel und kits - Google Patents

Verwendung von alkoholalkoxylaten als adjuvans für fungizide benzamidoxim-derivate, entsprechende mittel und kits Download PDF

Info

Publication number
WO2005015998A1
WO2005015998A1 PCT/EP2004/009122 EP2004009122W WO2005015998A1 WO 2005015998 A1 WO2005015998 A1 WO 2005015998A1 EP 2004009122 W EP2004009122 W EP 2004009122W WO 2005015998 A1 WO2005015998 A1 WO 2005015998A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohol
composition according
alkyl
weight
formula
Prior art date
Application number
PCT/EP2004/009122
Other languages
English (en)
French (fr)
Inventor
Rainer Berghaus
Maria Scherer
Reinhard Stierl
Siegfried Strathmann
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to CA002535176A priority Critical patent/CA2535176A1/en
Priority to BRPI0413157-6A priority patent/BRPI0413157A/pt
Priority to US10/566,297 priority patent/US20080064756A1/en
Priority to NZ545020A priority patent/NZ545020A/en
Priority to JP2006523000A priority patent/JP2007502261A/ja
Priority to EA200600335A priority patent/EA200600335A1/ru
Priority to EP04764116A priority patent/EP1656019A1/de
Priority to AU2004264676A priority patent/AU2004264676A1/en
Priority to MXPA06001515A priority patent/MXPA06001515A/es
Publication of WO2005015998A1 publication Critical patent/WO2005015998A1/de
Priority to IL173188A priority patent/IL173188A0/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/06Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings
    • A01N43/10Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom five-membered rings with sulfur as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/52Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing groups, e.g. carboxylic acid amidines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles

Definitions

  • alcohol alkoxylates as adjuvant for fungicidal benzamidoxi derivatives, corresponding agents and kits.
  • the present invention relates to the use of alcohol alkoxylates as adjuvants for fungicidal benzamidoxime derivatives, corresponding agents which contain at least one fungicidal benzamidoxime derivative and at least one alcohol alkoxylate, and kits which contain benzamidoxime derivative and alcohol alkoxylate in separate containers include.
  • auxiliary substances are sometimes referred to as adjuvants. They are often surface-active or salt-like compounds.
  • modifiers influence wetting, liability and spreading of a formulation.
  • Actuators break up the waxy plant cuticle and improve the penetration of the active ingredient into the cuticle both short-term (in the minute range) and long-term (in the hour range).
  • Fertilizers such as ammonium sulfate, ammonium nitrate or urea improve the absorption and solubility of the active ingredient, and they can reduce the antagonistic behavior of active ingredients.
  • pH buffers are conventionally used to optimally adjust the pH of the formulation.
  • surface-active substances can act as modifiers and actuators. It is generally assumed that suitable surface-active substances can increase the effective contact area of liquids on leaves by reducing the surface tension.
  • certain surfactants can dissolve or break up the epicuticular waxes, which facilitates absorption of the active ingredient.
  • some surface-active substances can also improve the solubility of active substances in formulations and thus avoid crystal formation or at least delay it. Finally, in certain cases, they can also influence the absorption of active substances by retaining moisture.
  • Adjuvants of the surface-active type are used in a variety of ways for agrotechnical applications. These can be divided into anionic, cationic, non-ionic or amphoteric groups of substances.
  • Petroleum-based oils are traditionally used as activating adjuvants.
  • seed extracts, natural oils and their derivatives for example from soybeans, sunflowers and coconut, have also been used.
  • the synthetic surface-active substances that are usually used as actuators include polyoxyethylene condensates with alcohols, alkylphenols or alkylamines, which have HLB values in the range from 8 to 13.
  • WO 00/42847 mentions, for example, the use of certain linear alcohol alkoxylates in order to increase the effectiveness of agrotechnical biocide formulations.
  • WO 02/15697 also describes the use of alcohol alkoxylates as adjuvants in the formulation of triazole pyrimidines. The task was to improve the effectiveness of said benzamidoxime derivatives when used.
  • alkoxylated alcohols have a particularly good adjuvant effect when using the benzamide oxime derivatives.
  • the present invention therefore relates to the use of alkoxylated alcohols (alcohol alkoxylates) as adjuvants for improving the fungicidal activity of benzamide oxime derivatives of the formula (I)
  • R 1 difluoromethyl or trifluoromethyl
  • R 2 is hydrogen or fluorine
  • R 3 C ⁇ -C4 alkyl which may be substituted by cyano, C 4 haloalkyl, C ⁇ -C4-alkoxy-C ⁇ -C 4 alkyl, C 3 -C 6 -Alke- nyl, C 3 - C 6 haloalkenyl, C 3 -C 6 alkynyl or C 3 -C 8 cycloalkyl -CC-C 4 alkyl;
  • R 4 is phenyl-Ci-Cg-alkyl which may carry from 4 alkoxy and C ⁇ -C 4 haloalkoxy selected substituents on the phenyl ring one or more halo, C ⁇ -C 4 -alkyl, C 4 haloalkyl, C ⁇ -C , or
  • Thienyl-C 1 -C 4 -alkyl which can carry one or more substituents selected from halogen, C ⁇ -C 4- alkyl, C ⁇ -C 4 -haloalkyl, C ⁇ -C 4 -alkoxy and C ⁇ -C4-haloalkoxy on the thienyl ring, or
  • Pyrazolyl-C ⁇ -C 4 alkyl which alkyl 4 -Halogenal- pyrazolyl on one or more of halogen, C ⁇ -C 4 -alkyl, C wearing C ⁇ -C 4 alkoxy or C ⁇ -C 4 haloalkoxy substituents selected can.
  • alcohol alkoxylates to be used are known per se.
  • WO 01/77276 and US 6,057,284 and EP 0 906 150 describe suitable alcohol alkoxylates. Reference is hereby expressly made to the description of these alcohol alkoxylates in these publications, with which the alcohol alkoxylates disclosed therein and the preparation thereof are part of the present disclosure.
  • the alcohol portion of the alcohol alkoxylates to be used according to the invention is generally based on alcohols or alcohol mixtures known per se having 5 to 30, preferably 8 to 20 and in particular 9 to 15 carbon atoms. Fatty alcohols with about 8 to 20 carbon atoms are particularly worth mentioning here. Many of these fatty alcohols are known to be used for the production of nonionic and anionic surfactants, for which purpose the alcohols have a corresponding functionalization, e.g. by alkoxylation or glycosidation. 5
  • the alcohol part of the alkoxylates to be used can be straight-chain, branched or cyclic. If it is linear, alcohols with 14 to 20, for example 16-18, carbon atoms should be mentioned in particular. If it is branched, according to a particular embodiment, the main chain of the alcohol part generally has 1 to 4 branches, and alcohols with a higher or lower degree of branching can also be used in a mixture with further alcohol alkoxylates, as long as the average number of 5 branches of the mixture is in the specified range.
  • the alcohol part of the alkoxylates to be used can be saturated or unsaturated. According to a special embodiment, if it is unsaturated, it has a double bond. 0
  • the branches independently of one another have 1 to 10, preferably 1 to 6 and in particular 1 to 4 carbon atoms.
  • Particular branches are methyl, ethyl, n-propyl or iso-propyl groups. 5
  • Suitable alcohols and especially fatty alcohols are both from native sources, for example by extraction and if necessary or desired by hydrolysis, transesterification and / or hydrogenation of glycerides and fatty acids, as well as by synthetic means, for. B. available by construction from starting materials with a smaller number of carbon atoms. So you get z. B. according to the SHOP process (Shell Higher Olefine Process) starting from ethene olefin fractions with a suitable number of carbon for further processing into surfactants. The functionalization of the olefins to the corresponding alcohols takes place, for. B. by hydrofor mylation and hydrogenation.
  • SHOP process Shell Higher Olefine Process
  • Olefins with a carbon number suitable for further processing into suitable alcohols can also be obtained by oligomerization of 5 C 3 -C 6 -alkenes, such as in particular propene or butene or mixtures thereof.
  • lower olefins can be produced using heterogeneous acid catalysts, e.g. B. supported phosphoric acid, oligomerized and * "then functionalized to alcohols.
  • heterogeneous acid catalysts e.g. B. supported phosphoric acid, oligomerized and * "then functionalized to alcohols.
  • a general synthetic possibility for the production of branched alcohols is e.g. the implementation of aldehydes or ketones with Grignard reagents (Grignard synthesis). Instead of Grignard
  • 15 reagents can also be used aryl or alkyl lithium compounds, which are characterized by a higher reactivity.
  • the branched alcohols can be obtained by aldol condensation, the reaction conditions
  • alkoxylation results from the reaction with suitable alkylene oxides, which generally have 2 to 15 and preferably 2 to 6 carbon atoms. 25 ethylene oxide (EO), propylene oxide (PO), butylene oxide (BO), pentylene oxide (PeO) and hexylene oxide (HO) should be mentioned here.
  • suitable alkylene oxides which generally have 2 to 15 and preferably 2 to 6 carbon atoms. 25 ethylene oxide (EO), propylene oxide (PO), butylene oxide (BO), pentylene oxide (PeO) and hexylene oxide (HO) should be mentioned here.
  • One type of alcohol alkoxylate to be used is based on one type of alkylene oxide.
  • Another type of alcohol alkoxylates to be used is based on at least two different types of alkylene oxide. It is preferred to arrange several alkylene oxide units of one type as a block, so that at least two different alkylene
  • 35 oxide blocks result, which are each formed from several units of the same alkylene oxides. If block alkoxylates of this type are used, it is preferred that the alkylene oxide part is composed of 3 and in particular 2 blocks.
  • the alcohol alkoxylates to be used according to the invention are ethoxylated or have at least one ethylene oxide block.
  • ethylene oxide blocks are combined in particular with propylene oxide 5 or pentylene oxide blocks.
  • the respective degree of alkoxation results. This is usually a statistical mean, since the number of alkylene-5 oxide units of the alcohol alkoxylates resulting from the reaction varies.
  • the degree of alkoxylation i.e. the average chain length of the polyether chains of alcohol alkoxylates to be used according to the invention can be determined by the molar ratio of alcohol to alkylene oxide.
  • Alcohol alkoxylates with about 1 to 100, preferably about 2 to 15, in particular 3 to 12, especially 4 to 12 and especially 5 to 12 alkylene oxide units are preferred. 5
  • the alcohols or alcohol mixtures are reacted with the alkylene oxide (s) by customary processes known to the person skilled in the art and in equipment customary for this.
  • the alkoxylation can be catalyzed by strong bases, such as alkali hydroxides and alkaline earth hydroxides, Brönsted acids or Lewis acids, such as AlCl 3 , BF 3 etc.
  • strong bases such as alkali hydroxides and alkaline earth hydroxides, Brönsted acids or Lewis acids, such as AlCl 3 , BF 3 etc.
  • catalysts such as hydrotalcite or DMC can be used. 5
  • the alkoxylation is preferably carried out at temperatures in the range from approximately 80 to 250 ° C., preferably approximately 100 to 220 ° C.
  • the pressure is preferably between ambient pressure and 600 bar.
  • the alkylene oxide can be admixed with an inert gas, e.g. B. from about 5 to 60%.
  • alkoxylated alcohols to be used are selected in particular from alcohol alkoxylates of the formula (II) 5
  • R ⁇ is C 5 -C 30 alkyl or C 5 -C 30 alkenyl
  • n, p independently of one another represent an integer from 2 to 16, preferably 2, 3, 4 or 5;
  • x, y, z independently represent a number from 0 to 100; and x + y + z corresponds to a value from 1 to 100,
  • EO-PO block alkoxylates in which the ratio of EO to PO (x to y) is 1: 1 to 4: 1 and in particular 1.5: 1 to 3: 1 are preferred.
  • the degree of ethoxylation (value of x) is generally 1 to 20, preferably 2 to 15 and in particular 4 to 10
  • the degree of propoxylation (value of y) is generally 1 to 20, preferably 1 to 8 and in particular 2 to 5.
  • the total degree of alkoxylation, ie the sum of EO and PO units is generally 2 to 40, preferably 3 to 25 and in particular 6 to 15.
  • EO-PeO block alkoxylates in which the ratio of EO to PeO (x to y) is 2: 1 to 25: 1 and in particular 4: 1 to 15: 1 are further preferred.
  • the degree of ethoxylation (value of x) is generally 1 to 50, preferably 4 to 25 and in particular 6 to 15, the degree of pentoxylation (value of y) is generally 0.5 to 20, preferably 0.5 to 4 and in particular 0.5 to 2.
  • the total degree of alkoxylation, ie the sum of EO and PeO units is usually 1.5 to 70, preferably 4.5 to 29 and in particular 6.5 to 17.
  • PO-EO block alkoxylates in which the ratio of PO to EO (x to y) is 1:10 to 3: 1 and in particular 1.5: 1 to 1: 6 are preferred.
  • the degree of ethoxylation (value of y) is generally 1 to 20, preferably 2 to 15 and in particular 4 to 10
  • the degree of propoxylation (value of x) is generally 0.5 to 10, preferably 0.5 to 6 and in particular 1 to 4.
  • the total degree of alkoxylation, ie the sum of EO and PO units, is generally 1.5 to 30, preferably 2.5 to 21 and in particular 5 to 14.
  • PeO-EO block alkoxylates in which the ratio of PeO to EO (x to y) is 1:50 to 1: 3 and in particular 1:25 to 1: 5.
  • the degree of pentoxylation (value of x) is generally 0.5 to 20, preferably 0.5 to 4 and in particular 0.5 to 2
  • the degree of ethoxylation (value of y) is generally 3 to 50, preferably 4 to 25 and especially 5 to 15.
  • the total degree of alkoxylation, ie the sum of EO and PeO units is generally 3.5 to 70, preferably 4.5 to 45 and in particular 5.5 to 17.
  • the alcohol alkoxylates to be used according to the invention are based on primary, ⁇ -branched alcohols of the formula (III),
  • R 7 , R 8 are independently hydrogen or -CC 6 alkyl.
  • R 7 and R 8 are preferably independently of one another Cg-Cg-alkyl and in particular C 2 -C 4 -alkyl.
  • Alcohol alkoxylates based on 2-propylheptanol are very particularly preferred. These include in particular alcohol alkoxylates of the formula (II), in which R represents a 2-propylheptyl radical, ie R 7 and R 8 in formula (III) each represent n-propyl.
  • Such alcohols are also known as Guerbet alcohols. These can be obtained, for example, by dimerizing corresponding primary alcohols (for example R 7 ' 8 CH 2 CH 2 OH) at elevated temperature, for example 180 to 300 ° C., in the presence of an alkaline condensing agent, such as potassium hydroxide.
  • an alkaline condensing agent such as potassium hydroxide.
  • alkoxylates of the EO type in particular are used.
  • Particularly preferred are ethoxylates whose degree of ethoxylation is 1 to 50, preferably 2 to 20 and in particular approximately 3 to 10.
  • the correspondingly ethoxylated 2-propylheptanols should be mentioned above all.
  • the alcohol alkoxylates to be used are based on C 1 -oxo alcohols.
  • C 3 -oxoalcohol generally refers to an alcohol mixture, the main component of which is formed from at least one branched C ⁇ alcohol (isotridecanol).
  • Such C 1 -alcohols include in particular tetramethyl-nonanols, for example 2,4,6,8-tetramethyl-1-nonanol or 3,4,6,8-tetramethyl-1-nonanol as well as ethyldimethyl-nonanols such as 5-ethyl-4,7 -dimethyl-l-no-nanol.
  • Suitable C 3 alcohol mixtures are generally available by hydrogenation of hydroformylated trimerbutene. In particular you can
  • Advantageous C 3 alcohol mixture are essentially halogen-free, ie they contain less than 3 ppm by weight, in particular less than 1 ppm by weight, halogen, especially chlorine.
  • Butene trimerization can be carried out by means of homogeneous or heterogeneous catalysis.
  • butenes can be oligomerized in a manner known per se on a heterogeneous catalyst containing Nikkei (process step a).
  • process step a different relative amounts of butene dimers, trimers and higher oligomers are obtained.
  • the butene trimers, ie C 2 olefins are processed further.
  • the content of isobutene can be selected. Relatively low degrees of branching require a relatively low isobutene content and vice versa.
  • the C 2-0 01efin fraction should have an ISO index of about 1.9 to 2.3, it is advisable to choose the butenes used predominantly linearly, ie the hydrocarbon stream generally used should be less than 5% by weight, based on the butene fraction, contain isobutene.
  • the butenes can contain an admixture of saturated C 4 hydrocarbons, which act as diluents in the oligomerization.
  • the heterogeneous, nickel-containing catalysts that can be used can have different structures, with nickel oxide-containing catalysts being preferred.
  • Catalysts known per se can be used, as are described in C. T. O'Connor et al., Catalysis Today, Vol. 6 (1990), pp. 336-338.
  • the hydrocarbon stream (preferably C 4 ) generally contains 50 to 100% by weight, preferably 60 to 90% by weight, butenes and 0 to 50% by weight, preferably 10 to 40% by weight, butanes.
  • the butene fraction comprises less than 5% by weight, in particular less than 3% by weight, of isobutene, based on the butene fraction.
  • the butene fraction generally has the following composition (in each case based on the butene fraction):
  • raffinate II is used as a particularly preferred feedstock, which is an isobutene-depleted C 4 cut from an FCC system or a steam cracker.
  • a C 12 olefin fraction is isolated from the reaction discharge of the oligomerization reaction in one or more separation steps (process step b).
  • Suitable separation devices are the usual apparatuses known to the person skilled in the art. These include e.g. B. distillation columns, such as plate columns, which can optionally be equipped with bells, sieve plates, sieve plates, valves, side draws, etc., evaporators, such as thin-film evaporators, falling film evaporators, wiper blade evaporators, Sambay evaporators etc. and combinations thereof.
  • the C ⁇ -01efin fraction is preferably isolated by fractional distillation.
  • the ISO index of the C12 -01efinfrtress which indicates the mean number of branchings, is generally from 1 to 4, preferably 1.9 to 2.3, in particular 2.0 to 2.3.
  • the ISO index can e.g. B. be determined by hydrogenating a sample of the C ⁇ -01efinfr forcing to the dodecanes and in the 1 H-NMR spectrum based on the signal area to be assigned to the methyl groups and the signal area to be assigned to the total protons the average number of methyl groups is determined.
  • the ISO index is the average number of methyl groups minus two.
  • the isolated C ⁇ 2 -01efin fraction is hydroformylated to C ⁇ 3 -aldehydes (process step c) and then hydrogenated to C ⁇ 3 -alcohols (process step d).
  • the alcohol mixtures can be prepared in one step or in two separate reaction steps.
  • the hydroformylation is preferably carried out in the presence of a cobalt hydroformylation catalyst.
  • the amount of the hydroformylation catalyst is generally 0.001 to 0.5% by weight, calculated as cobalt metal, based on the amount of the olefins to be hydroformylated.
  • the reaction temperature is general
  • ll mean in the range of about 100 to 250 ° C, preferably 150 to 210 ° C.
  • the reaction can be carried out at an elevated pressure of about 10 to 650 bar. It is preferred that the hydroformylation is carried out in the presence of water; however, it can also be carried out in the absence of water.
  • Carbon monoxide and hydrogen are usually used in the form of a mixture, the so-called synthesis gas.
  • the composition of the synthesis gas used can vary within a wide range.
  • the molar ratio of carbon monoxide to hydrogen is usually about 2.5: 1 to 1: 2.5.
  • a preferred ratio is about 1: 1.5.
  • the cobalt catalyst homogeneously dissolved in the reaction medium can be suitably separated from the hydroformylation product by treating the reaction effluent from the hydroformylation with oxygen or air in the presence of an acidic aqueous solution.
  • the cobalt catalyst is oxidatively destroyed to form cobalt (II) salts.
  • the cobalt (II) salts are water-soluble and are extracted into the aqueous phase, which can be separated off and returned to the hydroformylation process.
  • the crude aldehydes or aldehyde / alcohol mixtures obtained in the hydroformylation can, if desired, be isolated and, if appropriate, purified by conventional methods known to those skilled in the art before the hydrogenation.
  • reaction mixtures obtained in the hydroformylation are reacted with hydrogen in the presence of a hydrogenation catalyst.
  • Suitable hydrogenation catalysts are generally transition metals, such as. B. Cr, Mo, W, Fe, Rh, Co, Ni, Pd, Pt, Ru etc. or mixtures thereof, which increase the activity and stability on supports such.
  • B. activated carbon, aluminum oxide, diatomaceous earth, etc. can be applied.
  • Fe, Co and preferably Ni also in the form of the Raney catalysts, can be used as a metal sponge with a very large surface area.
  • a Co / Mo catalyst is preferably used for the preparation of the surfactant alcohols according to the invention.
  • the hydrogenation of the oxo aldehydes is preferably carried out at elevated temperatures and elevated pressure.
  • the hydrogenation temperature is preferably about 80 to 250 ° C., and the pressure is preferably about 50 to 350 bar.
  • Other suitable C ⁇ 3 alcohol mixtures are available in that
  • Suitable catalysts are preferably molybdenum, tungsten or rhenium compounds. It is particularly expedient to carry out the reaction heterogeneously catalyzed, the catalytically active metals being used in particular in conjunction with supports composed of Al 2 O 3 or SiO 2 . Examples of such catalysts are Mo0 3 or W0 3 on Si0 2 , or Re0 7 on A1 2 0 3 .
  • the metathesis can be carried out in the presence of a rhenium catalyst, since in this case particularly mild reaction conditions are possible.
  • the metathesis can be carried out at a temperature of 0 to 50 ° C and at low pressures of approx. 0.1 to 0.2 MPa.
  • dimerization products are obtained which, with regard to the further processing on surfactant alcohols, have particularly favorable components and a particularly advantageous composition if a dimerization catalyst is used which contains at least one element of subgroup VIII periodic system, and the catalyst composition and the reaction conditions are selected so that a dimer mixture is obtained which contains less than 10% by weight of compounds which have a structural element of the formula in (vinylidene 5 group)
  • a 1 and A 2 are aliphatic hydrocarbon radicals. 5
  • the internal linear pentenes and hexenes contained in the metathesis product are preferably used for the dimerization.
  • the use of 3-hexene is particularly preferred.
  • the dimerization can be carried out homogeneously catalyzed or heterogeneously catalyzed.
  • the heterogeneous procedure is preferred, since on the one hand the catalyst separation is simplified and the process is therefore more economical, and on the other hand no environmentally harmful wastewater is generated, as is usually the case when separating dissolved catalysts, for example by hydrolysis.
  • Another advantage of the heterogeneous process is that the dimerization product contains no halogens, especially chlorine or fluorine.
  • Homogeneously soluble catalysts generally contain halide-containing ligands or they are used in combination with halogen-containing cocatalysts. Halogen from such catalyst systems can be incorporated into the dimerization products, which significantly affects both the product quality and the further processing, in particular the hydroformylation to surfactant alcohols. 5
  • Heterogeneous catalysis expediently combinations of oxides of metals of the VIII. Subgroup with aluminum oxide on support materials made of silicon and titanium oxides as examples Q game, from DE-A-43 39 713 are known, are used.
  • the heterogeneous catalyst can be used in a fixed bed - then preferably in coarse-grained form as 1 to 1.5 mm grit - or suspended (particle size 0.05 to 0.5 mm).
  • the dimerization is expediently closed at temperatures of from 80 to 200.degree. C., preferably from 100 to 180.degree. C., under the pressure prevailing at the reaction temperature, optionally also under a protective gas pressure System executed.
  • the reaction mixture is circulated several times, with a certain proportion of the circulating product being continuously discharged and replaced by starting material.
  • the dimerization catalysts and the reaction conditions are expediently chosen within the framework of the above information so that at least 80% of the components of the dimerization mixture branch out in the range from 1/4 to 3/4, preferably from 1/3 to 2/3, of the chain length of their main chain , or two branches on adjacent carbon atoms.
  • the main chain preferably carries methyl or ethyl groups at the branching points.
  • the proportions of mono-substitution products (single branching) in the olefin mixture produced according to the invention are typically in the range from 40 to 75% by weight, the proportions of double-branched components in the range from 5 to 25% by weight.
  • the dimerization mixtures can be derivatized particularly well if the position of the double bond meets certain requirements.
  • the olefin mixtures prepared in this way are first hydroformylated by reaction with carbon monoxide and hydrogen in the presence of suitable catalysts, preferably containing cobalt or rhodium, to form surfactant alcohols (oxo alcohols), branched primary alcohols.
  • suitable catalysts preferably containing cobalt or rhodium
  • the molar ratio of n- and iso-compounds in the reaction mixture is generally in the range from 1: 1 to 20: 1, depending on the process conditions chosen for the hydroformylation and the catalyst used.
  • the hydroformylation is normally carried out in the temperature range from 90 to 200 ° C. and at a CO / H pressure of 2.5 to 35 MPa (25 to 350 bar).
  • the mixing ratio of carbon monoxide to hydrogen depends on whether alkanals or alkanols should preferably be produced.
  • catalysts are metal compounds of the general formula HM (CO) 4 or M (CO) g, where M is a metal atom, 5 is preferably a cobalt, rhodium or ruthenium atom.
  • catalytically active species of the general formula H x M y (C0) z L g are formed from the catalysts or catalyst precursors used in each case, where M is a metal from subgroup VIII, L is a ligand, which can be a phosphine, phosphite, amine, pyridine or any other donor compound, also in polymer form, and q, x, y and z are integers, depending on the valence and type of the metal and the binding force of the ligand L. , where q5 can also be 0.
  • the metal M is preferably cobalt, ruthenium, rhodium, palladium, platinum, osmium or iridium and in particular cobalt, rhodium or ruthenium.
  • Suitable rhodium compounds or complexes are e.g. Rhodium (II) and rhodium (III) salts, such as rhodium (III) chloride, rhodium (III) nitrate, rhodium (III) sulfate, potassium rhodium sulfate, rhodium (II) and rhodium (III) caboxylate, rhodium (II) and rhodium (III) acetate, rhodium (III) oxide, salts of rhodium (III) acid, such as, for example Trisammonium hexachlororhodate (III).
  • Rhodium (II) and rhodium (III) salts such as rhodium (III) chloride, rhodium (III) nitrate, rhodium (III) sulfate, potassium rhodium sulfate, rh
  • Rhodium complexes such as rhodium biscarbonyl acetylacetonate, acetylacetonato bisethylene rhodium (I) are also suitable. Rhodium biscarbonyl acetylacetonate or rhodium acetate are preferably used.
  • Suitable cobalt compounds are, for example, cobalt (II) chloride, cobalt (II) sulfate, cobalt (II) carbonate, cobalt (II) nitrate, their amine or hydrate complexes, cobalt carbocylates such as cobalt acetate, cobalt ethyl hexanoate, cobalt naphthanoate and the cobalt caprolactamate complex.
  • the carbonyl complexes of cobalt such as dicobalt octocarbonyl, tetrakobalt dodecacarbonyl and hexacobalt hexadecacarbonyl can be used.
  • the hydroformylation can be carried out with the addition of inert solvents or diluents or without such an addition.
  • Suitable inert additives are, for example, acetone, methyl ethyl ketone, cyclohexanone, toluene, xylene, chlorobenzene, methylene chloride, hexane, petroleum ether, acetonitrile and the high-boiling fractions from the hydroformylation of the dimerization products.
  • the hydroformylation product obtained has an excessively high aldehyde content, this can easily be achieved by hydrogenation, for example using hydrogen in the presence of Raney nickel or using other known hydrogenation reactions, in particular copper, zinc, cobalt, nickel, molybdenum, zirconium or Titanium-containing catalysts can be eliminated.
  • the aldehyde components are largely hydrogenated to alkanols.
  • a practically complete removal of aldehyde components in the reaction mixture can, if desired, be carried out by post-hydrogenation, for example under particularly gentle and economical conditions. with an alkali borohydride.
  • the C ⁇ 3 -alcohol mixture according to the invention can be obtained in pure form from the reaction mixture obtained after the hydrogenation by customary purification processes known to the person skilled in the art, in particular by fractional distillation.
  • C ⁇ 3 alcohol mixtures according to the invention generally have an average degree of branching from 1 to 4, preferably from 2.1 to 1 ° 2.5, in particular 2.2 to 2.4.
  • the number of methyl groups in one molecule of the alcohol minus 1 is defined as the degree of branching.
  • the mean degree of branching is the statistical mean of the degree of branching of the molecules of a sample.
  • the average number of methyl groups in the molecules of a sample can be
  • the signal area corresponding to the methyl protons in the 1 H-NMR spectrum of a sample is divided by three and related to the signal area of the methylene protons in the CH 2 -OH group divided by two.
  • those alcohol alkoxylates which are either ethoxylated or block alkoxylates of the EO / PO type are particularly preferred.
  • the degree of ethoxylation of the present invention to be used ethosulfate xyl faced C ⁇ 3 oxoalcohols is generally from 1 to 50, preferably 3 to 20 and especially 3 to 10, especially 4 to 10 and particularly 5 to 10. 30
  • the degree of alkoxylation of the EO / PO block alkoxylates to be used according to the invention depends on the arrangement of the blocks. If the PO blocks are arranged terminally, the ratio of EO units to PO units is generally at least 1, preferably 1: 1 to 4: 1 and in particular 1.5: 1 to 3: 1
  • the degree of ethoxylation is generally 1 to 20, preferably 2 to 15 and in particular 4 to 10
  • the degree of propoxylation is generally 1 to 20, preferably 1 to 8 and in particular 2 to 5.
  • the ratio of PO blocks to EO blocks is less critical and is usually 1:10 to 3: 1, preferably 1: 1.5 to 1: 6.
  • the degree of ethoxylation is usually
  • the degree of propoxylation generally 0.5 to 10, preferably 0.5 to 6 and in particular 1 to 4.
  • the total degree of alkoxylation is usually 1.5 to 30, preferably 2.5 to 21 and in particular 5 to 14.
  • alcohol alkoxylates based on C 10 oxo alcohols are used.
  • C ⁇ o-oxo alcohol stands in analogy to the previously explained term “C ⁇ 3- oxo alcohol” for C ⁇ o-alcohol mixtures, the Q main component of which is formed from at least one branched C ⁇ o alcohol (isodecanol).
  • Suitable C ⁇ o alcohol mixtures are generally available by hydrogenation of hydroformylated trimer propene.
  • hydroformylated trimer propene one can
  • the degree of ethoxylation of the ethoxylated co-oxo alcohols to be used according to the invention is generally 1 to 50, preferably 2 to 20 and in particular 2 to 10, in particular 3 to 10 and particularly 3 to 10. 0
  • the degree of alkoxylation of the EO / PeO block alkoxylates to be used according to the invention depends on the arrangement of the blocks. If the PO blocks are arranged terminally, the ratio of EO units to PO units is generally at least 1, preferably 2: 1 to 25: 1 and in particular 4: 1 to 15: 1.
  • the degree of ethoxylation is generally 1 to 50, preferably 4 to 25 and in particular 6 to 15, the degree of pentoxylation in the gel 0.5 to 20, preferably 0.5 to 4 and in particular 0.5 to 2.
  • the total degree of alkoxylation, ie the sum of EO and PeO units, is generally 1.5 to 70, preferably 4.5 to 29 and in particular 6.5 to 17.
  • the ratio of PeO blocks to EO blocks is less critical and is usually 1:50 to 1: 3, preferably 1: 25 to 1: 5.
  • the degree of ethoxylation is generally 3 to 50, preferably 4 to 25 and in particular 5 to 15, the degree of pentoxylation is generally 0.5 to 20, preferably 0.5 to 4 and in particular 0.5 to 2.
  • the overall degree of alkoxylation is generally 3.5 to 70, preferably 4.5 to 45 and in particular 5.5 to 17.
  • C ⁇ 3-oxo alcohols or C ⁇ hole 0 -Oxoalko- are based on olefins which are already branched.
  • branches are not only due to the hydroformylation reaction as would be the case with straight chain olefins hydroformylation.
  • the degree of branching of alkoxylates to be used according to the invention is therefore generally greater than 1.
  • the alkoxylates to be used according to the invention generally have a relatively small contact angle.
  • Alkoxylates whose contact angle is less than 120 ° and preferably less than 100 ° are particularly preferred if this is determined in a manner known per se using an aqueous solution containing 2% by weight alkoxylate on a paraffin surface. 0
  • the surface-active properties of the alcohol alkoxylates depend on the type and distribution of the alcohol alkoxylate grouping.
  • the surface tension of alcohol alcohols to be used according to the invention which can be determined by the pendant drop method, is preferably in a range from 25 to 70 mN / m and in particular 28 to 50 mN / m for a solution containing 0.1% by weight alcohol alkoxylate from 25 to 70 mN / m and in particular 28 to 45 mN / m for a solution containing 0.5% by weight of alcohol alkoxylate.
  • Alcohol-0-alkoxylates which are preferably used according to the invention therefore qualify as amphiphilic substances.
  • R 1 is as defined above;
  • R 5 represents hydrogen, halogen, C ⁇ -C 4 -alkyl, C ⁇ -C 4 -haloalkyl, C ⁇ -C 4 -alkoxy or C ⁇ -C 4 -haloalkoxy;
  • n 1, 2 or 3.
  • benzamide oxime derivatives of the formula (I) or (Ia) are preferred, in which R 1 is difluoromethyl or tri luormethyl and R 5 is hydrogen, that is to say N-phenylacetyl-2-difluoromethoxy-5,6-di-fluorobenzamide (0 -cyclopropylmethyl] -oxime and N-phenylacetyl-2-trifluoromethoxy-5, 6-difluorobenzamide- (O-cyclopropylmethyl) -oxime.
  • the benzamide oxime derivatives can be used together with other active ingredients, e.g. with herbicides, insecticides, growth regulators, fungicides or also with fertilizers.
  • Aliphatic nitrogen fungicides e.g. Butylamine, cymoxanil, didicin, dodine, guazatine and iminoctadine;
  • Amide fungicides for example carpropamide, chloraniformethane, cyazofamide, cyflufenamid, diclocymet, ethaboxam, fenoxanil, flumetover, furametyr, prochloraz, quinazamide, silthiofam and triforine; in particular acylamino acid fungicides, for example benalaxyl, benalaxyl-M, furalaxyl, metalaxyl, metalaxyl-M, pefurazoate; Benzamide fungicide zide, for example benzohydroxamic acid, dioxymide, trichlamide, zarilamide and zoxamide; Furamide fungicides, for example cyclafuramide and furecyclox; Phenylsulfamide fungicides, for example dichlofluanide and tolylfluanide; Valina id fungicides, e.g.
  • Benthiavalicarb and Iprovalicarb and anilide fungicides, for example benalaxyl, benalaxyl-M, boscalid, carboxin, fenhexamide, metalaxyl, metalaxyl-M, metsulfovax, ofurac, oxadixyl, oxycarboxin, pyracarbolide, thifluzamide, tiadinil; in particular benzanilide fungicides, for example benodanil, flutolanil, meenil, mepronil, salicylanilide and tecloftalam; Furanilide fungicides, for example fenfuram, furalaxyl, furcarbanil and methfuroxam; and sulfonanilide fungicides, for example flusulfamide;
  • antibiotic fungicides e.g. Aureofungin, blasticidin-S, cycloheximide, griseofulvin, kasugamycin, natamycin, polyoxins, polyoxorim, streptomycin and validamycin; especially strobilurin fungicides, e.g. Azoxystrobin, dimoxystrobin, ffluoxastrobin, cresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin and trifloxystrobin;
  • strobilurin fungicides e.g. Azoxystrobin, dimoxystrobin, ffluoxastrobin, cresoxim-methyl, metominostrobin, orysastrobin, picoxystrobin, pyraclostrobin and trifloxystrobin;
  • aromatic fungicides e.g. Biphenyl, chlorodinitronaphthalene, chloroneb, chlorothalonil, cresol, diclorane, hexachlorobenzene, pentachlorophenol, quintozen, sodium pentachlorophenoxide and tecnazene;
  • Benzimidazole fungicides e.g. Benomyl, carbendazim, chlorfenazole, cypendazole, debacarb, fuberidazole, mecarbinzid, rabenzazole and thiabendazole;
  • Benzimidazole precursor fungicides e.g. Furophanate, thiophanate and thiophanate-methyl
  • Benzothiazole fungicides e.g. Bentaluron, Chlobenthiazone and TCMTB;
  • diphenyl fungicides e.g. Bithionol, dichlorophen and diphenylamine
  • Carbamate fungicides e.g. Benthiavalicarb, Furophanat, Iprovalicarb, Propamocarb, Thiophanat and Thiophanat-methyl; especially benzidazolyl carbamate fungicides, e.g. Benomyl, carbendazim, cypendazole, debacarb, mecarbinzid; and carbanilate fungicides, e.g. diethofencarb;
  • Conazole fungicides in particular imidazoles, for example climbazoles, clo-trimazoles, imazalil, oxpoconazoles, prochloraz and triflumizoles; and triazoles, for example azaconazole, bromuconazole, cyproconazole, diclobutrazole, difenoconazole, diniconazole, diniconazole-M, epoxy conazole, Etaconazole, Fenbuconazole, Fluquinconazole, Flusilazole, Flutriafol, Furconazole, Furconazole-cis, Hexaconazole, Imibenconazole, Ipconazole, Metconazole, Myclobutanil, Penconazazole, Propiconazole, Prothioconazole, Tothinoconazole, Quothinoconazole, Quothinoconazole, Triticona- zole, Uniconazole and Unicon
  • Copper fungicides e.g. Bordeaux mixture, Burgundy mixture, Cheshunt mixture, copper acetate, basic copper carbonate, copper hydroxide, copper naphthenate, copper oleate, copper oxychloride, copper sulfate, basic copper sulfate, zinc chromate, Cufraneb, Cuprobam, copper oxide, mancopper and oxine copper;
  • Dicarboximide fungicides e.g. Famoxadone and fluoroimide; especially dichlorophenyl dicarboximide fungicides, e.g. Chlozolinates, dichlozolin, iprodione, isovaledione, myclozolin, procymidone and vinclozolin; and phthalimide fungicides, e.g. Captafol, Captan, Datalimfos, Folpet and Thiochlorfenphi;
  • dichlorophenyl dicarboximide fungicides e.g. Chlozolinates, dichlozolin, iprodione, isovaledione, myclozolin, procymidone and vinclozolin
  • phthalimide fungicides e.g. Captafol, Captan, Datalimfos, Folpet and Thiochlorfenphi;
  • Dinitrophenol fungicides e.g. Binapacryl, Dinobuton, Dinocap, Dinocap-4, Dinocap-6, Dinocton, Dinopenton, Dinosulfon, Dinoterbon and DNOC;
  • Dithiocarbamate fungicides e.g. Azithiram, Carba orph, Cufraneb, Cuprobam, Disulfiram, Ferbam, Metam, Nabam, Tecoram, Thira and Ziram; especially cyclic
  • Dithiocarba at fungicides e.g. Dazomet, Etem and Milneb
  • polymeric dithiocarbamate fungicides e.g. Mancopper, Mancozeb, Maneb,
  • Imidazole fungicides e.g. Cyazofamid, fenamidone, fenapanil, glyodin, iprodione, isovaledione, pefurazoate and triazoxide;
  • inorganic fungicides e.g. Potassium azide, potassium thiocyanate, sodium azide and sulfur;
  • Mercury fungicides in particular inorganic mercury fungicides, for example mercury chlorides such as mercury (II) chloride and mercury (I) chloride, mercury (II) oxide; Organomercury fungicides, eg (3-ethoxypropyl) mercury bromide, ethyl mercury acetate, ethyl mercury bromide, ethyl mercury chloride, ethyl mercury 2, 3-dihydroxypropyl mercaptide, ethyl mercury phosphate, methylene chloride, methylene chloride, n- (methylene chloride), n- (ethyl chloride) Methyl mercury benzoate, methyl mercury dicyandiamide, methyl mercury pentachlorophenoxide, 8-phenylmercurioxyquinoline, phenylmercurea, phenyl- mercury acetate, phenyl mercury chloride, phenyl mercury derivative of pyrocatechol, phenyl mercury nitrate,
  • Morpholine fungicides e.g. Aldimorph, benzamorf, carbamorph, dimethomorph, dodemorph, fenpropimorph, flumorph, and tride orph;
  • Organophosphorus fungicides for example ampropylfos, ditalimfos, edifen- 1Q phos, fosetyl, hexylthiofos, iprobefos, phosdiphen, pyrazophos, tolclofos-methyl and triamiphos;
  • Organotin fungicides e.g. Decafentin, fentin, tributyltin oxide
  • Oxathiin fungicides e.g. Carboxin and oxycarboxin;
  • Oxazole fungicides e.g. Chlozolinates, dichlozolines, drazoxolone,
  • Polysulfide fungicides e.g. Barium polysulfide, calcium polysulfide, potassium polysulfide and sodium polysulfide;
  • pyridine fungicides e.g. Boscalid, buthiobate, dipyrithione, fluzzinam, pyridinitrile, pyrifenox, pyroxychlor and pyroxyfur;
  • Pyrimidine fungicides e.g. Bupirimate, Cyprodinil, Diflumetorim, Dimethirimol, Ethirimol, Fenarimol, Ferimzone, Mepanipyrim, Nuurimol, Pyrimethanil and Triarimol;
  • Pyrrole fungicides e.g. Fenpiclonil, fludioxonil and fluorimid;
  • quinoline fungicides e.g. Ethoxyquin, halacrinate, 8-hydroxyquinoline sulfate, quinacetol and quinoxyfen;
  • Quinone fungicides e.g. Benquinox, chloranil, dichlone and dithiaonon; 40
  • Quinoxaline fungicides for example quinomethionate, chlorquinox and thioquinox
  • 5 thiazole fungicides for example ethaboxam, etridiazole, metsulfovax, octhilinone, thiabendazole, thiadifluor and thifluzamide
  • Thiocarbamate fungicides for example methasulfocarb and prothiocarb;
  • Thiophene fungicides e.g. Ethaboxam and silthiofam;
  • Triazine fungicides e.g. anilazine
  • Triazole fungicides e.g. Bitertanol, Fluotrimazole and Triazbutil;
  • Urea fungicides e.g. Bentaluron, pencycuron and quinazamide
  • fungicides e.g. Acibenzolar, Acypetacs, Allyl Alcohol, Benzalkonium Chloride, Benzamacril, Bethoxazin, Carvone, Chloropicrine, DBCP, Dehydroacetic Acid, Diclomezine, Diethylpyrocarbonate, Fenaminosulf, Fenitropan, Fenpropidin, Formaldehyde, Hexachlorbututomidium, Methylphenolothidonidium, Isoprothothidone, Isoprothothidone, Isoprone, Isoprone, Isoprone, Isoprone Nitrothal-isopropyl, OCH, 2-phenylphenol, phthalide, piperalin, probenazole, proquinazide, pyroquilone, sodium orthophenylphenoxide, spiroxamine, sultropen, thicyofen, tricyclic azole and zinc naphthenate.
  • Fungicides with which the benzamidoxime derivatives can be used together include in particular:
  • Sulfur, dithiocarbamates and their derivatives such as ferridimethyldithiocarbamate, zinc dimethyldithiocarbate, zinc ethylene bisdithiocarbate, manganese ethylene bisdithiocarbamate, manganese-zinc-ethylene-diamine-bis-dithiocarbamate, tetramethylthiylene-ammonium- bis-dithiocarbamate), ammonia complex of zinc (N, N'-propylene-bis-dithiocarbamate), zinc (N, N'-propylene-bis-dithiocarbamate), N, N'-polypropylene-bis- (thio - carbamoyl) disulfide;
  • Nitroderivatives such as dinitro- (1-methylheptyl) phenylcrotonate, 2-sec. -Butyl-4, 6-dinitrophenyl-3, 3-dimethylacryla, 2-sec .- Butyl-4, 6-dinitrophenyl-iso-propyl carbonate, 5-nitro-iso-phthalic acid di-iso-propyl ester;
  • heterocyclic substances such as 2-heptadecyl-2-imidazoline acetate, 2,4-dichloro-6- (o-chloroanilino) -s-triazine, 0, O-diethyl-phthalimidophosphonothioate, 5-amino-1- [is - (dimethylamino) phosphinyl] - 3-phenyl-l, 2, 4-triazole, 2, 3-dicyano-l, 4-dithioanthraquinone, 2-thio-l, 3-dithiolo [4, 5-b] quinoxaline, Methyl 1- (butylcarbamoyl) -2-benzimidazole-carbamate, 2-methoxycarbonylamino-benzimidazole, 2- (furyl- (2)) -benzimidazole, 2- (thiazolyl- (4)) -benz- imidazole, N- (1, 1, 2, 2-tetrachloroethylthio
  • fungicides such as dodecylguanidine acetate, 3- [3- (3,5-dimethyl-2-oxycyclohexyl) -2-hydroxyethyl] glutarimide, hexachlorobenzene, DL-methyl-N- (2,6-dimethyl- ⁇ henyl) -N-furoyl (2) -alaninate, DL-N- (2, 6-dimethyl-phenyl) -N- (2'-methoxyacetyl) -alanine-methyl ester, N- (2, 6-dimethylphenyl) -N -chloroacetyl-D, L-2-aminobutyrene-acton, DL-N- (2, 6-dimethylphenyl) -N- (phenylacetyl) -alanine methyl ester, 5-methyl-5-vinyl-3- (3, 5- dichlorophenyl) -2, 4-dioxo-l, 3-oxazol
  • Strobilurins such as methyl-E-methoximino- [ ⁇ - ⁇ o-tolyloxy) - o-toly1] acetate, methyl-E-2- ⁇ 2- [6- (2-cyanophenoxy) pyridimin-4-yl-oxy] phenyl ⁇ -3-methoxyacrylate, methyl-E-methoximino- [ ⁇ - (2,5-dimethyloxy) -o-toly1] acetamide.
  • Anilino-pyrimidines such as N- (4,6-dimethylpyrimidin-2-yl) aniline, N- [4-methyl-6- (l-propynyl) pyrimidin-2-yl] aniline, N- (4-methyl-6- cyclopropyl-pyrimidin-2-yl) aniline.
  • Phenylpyrroles such as 4- (2,2-difluoro-1,3-benzodioxol-4-yl) pyrrole-3-carbonitrile.
  • Cinnamic acid amides such as 3- (4-chlorophenyl) -3- (3,4-dimethoxyphenyl) acrylic acid morpholide.
  • Preferred combination partners are a) azoles, which are preferably selected from: bromuconazole, cyproconazole, difenoconazole, diniconazole, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, hexaconazole, metconazole, prochloraz, propiconazole, tebuconazole, trifluorobazazole, trifluorobazazole, trifluorobazazole , Penconazole, simeconazole, ipconazole, triticonazole and prothioconazole; b) benzophenones of the formula IV,
  • R 9 represents chlorine, methyl, acetoxy, pivaloyloxy or hydroxy, preferably methoxy
  • R 10 represents chlorine or preferably methyl
  • R 11 represents hydrogen, halogen, preferably bromine, or methyl
  • R 12 is C ⁇ -C 6 alkyl, preferably methyl, or benzyl, where the phenyl part of the benzyl radical can carry a halogen or methyl substituent;
  • X 2 to X 5 independently of one another are hydrogen, halogen,
  • Y 2 is a phenyl radical or a 5- or 6-membered saturated or unsaturated heterocyclic radical having at least one heteroatom selected from N, 0 and S, the cyclic radicals being one to three under halogen, C ⁇ -C 4 -alkyl, C ⁇ -C 4 -Alkoxy, C ⁇ -C 4 -haloalkyl, C ⁇ -C-haloalkoxy, C ⁇ -C 4 -alkoxy-C 2 -C 4 -alkenyl and C ⁇ -C 4 -alkoxy- CC 4 -alkynyl may have selected substituents; and
  • Y 3 , Y 4 independently of one another are hydrogen, C ⁇ -C 4 -alkyl, C ⁇ -C 4 -alkoxy, C ⁇ -C 4 -alkylthio, N-C ⁇ -C 4 -alkylamino, C ⁇ -C 4 -haloalkyl or C ⁇ -C 4 haloalkoxy; and
  • pyraclostrobin Particularly noteworthy are combinations of benzamidoxime derivatives of the formula (I) and in particular the preferred representatives thereof with one, two or three of the following active compounds: metrafenone (a benzophenone of the formula (IV), where R 9 is methoxy, R 10 represent methyl, R 11 represents bromine and R 12 represents methyl), epoxiconazole and pyraclostrobin.
  • the alcohol alkoxylates to be used according to the invention have adjuvant, in particular activity-demanding properties.
  • benzamidoxime derivatives of the formula (I) when such alcohol alkoxylates are added to the benzamidoxime derivatives of the formula (I), a comparatively higher fungicidal action is observed when they are used.
  • the following aspects in particular, derive from the adjuvant effect when using one or more benzamide oxime derivatives of the formula (I), if appropriate in combination with one or more further active compounds:
  • the use according to the invention relates to a number of different possible uses, which are directed in particular to plant cultivation, agriculture and horticulture.
  • the benzamide oxime derivatives of the formula (I) can be used in particular as fungicides and thus serve to control a broad spectrum of phytopathogenic fungi, in particular from the class of the Ascomycetes, Basidiomycetes, Phycomycetes and Deuteromycetes. Some of them are systemically active and can therefore also be used as foliar and / or soil fungicides. This applies in a corresponding manner to combinations of the benzamide oxime derivatives and other active ingredients, in particular fungicides.
  • the present invention also relates to methods corresponding to the above uses for the treatment of organisms which are infected by one or more harmful fungi, or for the preventive treatment of organisms in which there is a risk of infection with harmful fungi and therefore would like to avoid them.
  • the procedure involves having an appropriate amount of active ingredient and adjuvant applied.
  • the organisms to be treated are primarily plants or parts of plants such as seeds.
  • the treatment is such that a - in particular fungicidal - effective amount (application rate) of the combination of active ingredient and adjuvant acts on the harmful fungi, their habitat or the organisms to be kept free of them, in particular plants and seeds, soils, surfaces, materials or spaces leaves.
  • Advantages are particularly in the control of a variety of mushrooms on various crops such as cotton, vegetables (e.g. cucumber, beans, tomatoes, potatoes and squashes), barley, grass, oats, bananas, coffee, corn, fruit plants, rice, rye, soy, Wine, wheat, ornamental plants, sugar cane and a variety of seeds.
  • vegetables e.g. cucumber, beans, tomatoes, potatoes and squashes
  • barley grass, oats, bananas, coffee, corn, fruit plants, rice, rye, soy
  • Wine wheat, ornamental plants, sugar cane and a variety of seeds.
  • the amount of active ingredient applied can be varied widely as a result of the high tolerance to plants.
  • the application rates according to the invention for the benzamide oxime derivatives of the formula (I) are typically from 0.001 to 2.5 kg / ha, preferably 0.005 to 2 kg / ha, in particular 0.01 to 1.0 kg / ha and for the Alcohol alkoxylates generally at 0.001 to 25 kg / ha, preferably 0.05 to 2 kg / ha, in particular 0.1 to 1 kg / ha.
  • application rates for the benzamide oxime derivatives of the formula (I) are in general from 0.001 to 250 g / kg of seed, preferably from 0.01 to 100 g / kg, in particular from 0.01 to 50 g / kg and for the alcohol alkoxylates generally 0.001 to 250 g / kg, preferably 0.01 to 100 g / kg, in particular 0.01 to 50 g / kg.
  • the application rate ratio of alcohol alkoxylates to benzamido xime derivatives is generally in the range from 0.5: 1 to 100: 1, preferably 1: 1 to 50: 1, in particular 1: 1 to 20: 1.
  • a special aspect According to the application rates of alcohol alkoxylates are greater than the application rates of benzamide oxime derivatives.
  • the active compounds are generally first formulated into an agent in accordance with agricultural practice and then applied as an agent.
  • the adjuvant can already be added to the agent-containing agent; However, it can also be present separately, if appropriate also formulated as a further agent in accordance with agricultural practice, and can only be applied with the agent-containing agent at the same time as it is actually used, or at an appropriate time interval, so that the agent and adjuvant can act together.
  • kits contains at least two containers.
  • a container comprises at least one benzamidoxime derivative of the formula (I), optionally formulated as an agent with suitable auxiliaries.
  • Another container comprises at least one alcohol alkoxylate.
  • the present invention also relates to compositions with an active ingredient component (a) comprising (al) at least one benzamido xime derivative of the formula (I) and with an adjuvant component (b) comprising (bl) at least one alkoxylated alcohol, where that Weight ratio of component (bl) to (al) is at least 0.5.
  • Q he makes proportion of component (a) in the total weight of the composition typically more than 1 wt .-%, preferably more than 2 wt .-% and especially more than 2.5 wt .-% of.
  • the proportion of component (a) in the total weight of the composition generally makes up less than 75% by weight, preferably less than 60% by weight and in particular less than 50% by weight.
  • the proportion of component (a1) in the total weight of the composition generally makes up more than 1% by weight, preferably more than 2% by weight and in particular more than 2.5% by weight.
  • the proportion of component (a1) in the total weight of the composition generally makes up less than 50% by weight, preferably less than 40% by weight and in particular less than 35% by weight.
  • the active ingredient component (a) consists essentially of (al), i.e.
  • the drug component (a) of agents according to the invention can have at least one further plant active ingredient.
  • agents according to the invention comprise as a further plant active ingredient
  • (a2) at least one or more of the combination partners described above, in particular one or more active substances which are selected from the azoles, benzophenones of the formula IV, oxime ether derivatives of the formula (V) and pyraclostrobin described above.
  • the relative proportions of active ingredient in such compositions containing an active ingredient combination are largely variable. According to one aspect, relatively larger proportions by weight of active ingredient (a2) than active ingredient (al) are used. This weight ratio of (a2) to (al) is typically in a range from 1.1: 1 to 20: 1, preferably from 1.5: 1 to 10: 1 and in particular from 2: 1 to 5: 1.
  • components of component (b) in the total weight of the composition of more than 1% by weight, preferably more than 2% by weight and in particular more than 2.5% by weight are advantageous.
  • components (b) in the total weight of the composition of less than 80% by weight, preferably less than 60% by weight and in particular less than 50% by weight are generally expedient.
  • components of component (b1) in the total weight of the composition are more than 5% by weight, preferably more than 8% by weight, in particular more than 10% by weight, especially more than 15% by weight and especially of more than 20% by weight are advantageous.
  • components (bl) in the total weight of the agent are of less than 50% by weight, preferably less than 45% by weight and in particular less than 40% by weight, as a rule expedient.
  • the active ingredient component (b) consists essentially of (bl), i.e. one or more alcohol alkoxylates.
  • the weight ratio of component (bl) to component (al) is preferably more than 0.5, in particular more than 1 and advantageously more than 2.
  • the agents according to the invention can be formulated and used, for example, in the form of directly sprayable solutions, powders and suspensions or in the form of high-proof aqueous, oily or other suspensions, dispersions, emulsions, oil dispersions, pastes, dusts, sprinkling agents or granules.
  • the form of application depends on the intended use; in any case, it should ensure as fine and uniform a distribution of the mixture according to the invention as possible.
  • Agents according to the invention preferably fall in the field of liquid formulations. These include in particular water-soluble concentrates (SL formulations), suspension concentrates (SC formulations), suspoemulsions (SE formulations) and microemulsions.
  • SL formulations water-soluble concentrates
  • SC formulations suspension concentrates
  • SE formulations suspoemulsions
  • microemulsions microemulsions.
  • the present invention relates to agents with high active ingredient proportions (concentrates).
  • the proportion of component (a) in the total weight of the composition generally amounts to more than 100 g / 1, preferably more than 200 g / 1 and in particular more than 250 g / 1.
  • the proportion of component (a) in the total weight of the composition is expediently generally less than 700 g / 1, preferably less than 650 g / 1 and in particular less than 600 g / 1. Ranges from 200 to 600 g / l are therefore preferred.
  • the benzamide oxime derivative content usually amounts to up to 300 g / l.
  • the agents comprise at least one auxiliary as component (c).
  • Component (c) can serve a variety of purposes. Suitable auxiliaries are selected according to the requirements. usually by a specialist.
  • auxiliaries are selected from
  • the proportion of component (c) in the total weight of the composition is, if present, generally 10 to 60% by weight, preferably 15 to 50% by weight and in particular 20 to 45% by weight. 0
  • surface-active auxiliary here denotes surface-active or surface-active agents, such as surfactants, dispersants, emulsifiers or wetting agents. 5
  • anionic, cationic, amphoteric and nonionic surfactants can be used.
  • the anionic surfactants include, for example, carboxylates, Q in particular alkali metal, alkaline earth metal and ammonium salts of fatty acids, for example potassium stearate, which are usually also referred to as soaps; glutamates; Sarcosinates, for example sodium lauroyl sarcosinate; taurates; Methylcelluloses; Alkyl phosphates, especially alkyl mono- and diphosphoric acid esters; Sulfate; Sulfonates, especially alkyl and alkylarylsulfonates, especially alkali, alkaline earth and ammonium salts of arylsulfonic acids and alkyl-substituted arylsulfonic acids, alkylbenzenesulfonic acids, such as lignin and phenolsulfonic acids, naphthalene and dibutylnaphthalenesulfonic acids, or dodecylbenzenesulfonates, nodecyl
  • the cationic surfactants include, for example, quaternized ammonium salts, in particular alkyltrimethylammonium and dialkyldimethylammonium halides and alkylsulfates, and pyridine and imidazoline derivatives, in particular alkylpyridinium halides.
  • the nonionic surfactants include in particular
  • Alkylaryl alkoxylates especially alkylphenol alkoxylates and especially their ethoxylates, such as, for example, ethoxylated iso-octyl, octyl or nonylphenol, tributylphenol polyoxyethylene ether; - Fatty alcohol polyoxyethylene alkyl esters, for example lauryl alcohol polyoxyethylene ether acetate; alkoxylated animal and / or vegetable fats and / or oils, for example corn oil ethoxylates, castor oil ethoxylates, tallow fat ethoxylates; Glycerol esters, such as glycerol monostearate,
  • Sugar surfactants in particular sorbitol esters, such as, for example, sorbitan fatty acid esters (sorbitan monooleate, sorbitan tristearate), and ethoxylated carboxylic acids and esters of mono- or polyfunctional alcohols such as polyoxyethylene sorbitan fatty acid esters, alkyl (poly) glycosides and N-alkylgluconamides;
  • amphoteric surfactants include, for example, sulfobetaines,
  • Carboxybetaines and alkyldimethylamine oxides e.g. Tetradecyldimethylamine oxide.
  • surfactants which can be mentioned here by way of example, are perfluorosurfactants, silicone surfactants, phospholipids, such as, for example, lecithin or chemically modified lecithins, amino acid surfactants, for example N-lauroylglutamate and surface-active homo- and copolymers, for example polyvinylpyrrolidone, polyacrylic acids in the form of their salts, polyvinyl alcohol , Polypropylene oxide, polyethylene oxide, Maleic anhydride-isobutene copolymers and vinylpyrrolidone-vinyl acetate copolymers.
  • perfluorosurfactants silicone surfactants
  • phospholipids such as, for example, lecithin or chemically modified lecithins
  • amino acid surfactants for example N-lauroylglutamate
  • surface-active homo- and copolymers for example polyvinylpyrrolidone, polyacrylic acids in the form of their salts, polyvinyl alcohol
  • the proportion of component (cl) in the total weight of the composition is - if present - generally up to 20% by weight, preferably up to 15% by weight, especially up to 10% by weight, and in particular up to 5% by weight .-%.
  • Q Anti-settling agents can be used in particular for suspension concentrates. These are primarily used for rheological stabilization. In this context, mineral products, such as bentonites, talcites and herctorites, should be mentioned in particular. 5
  • the anti-foaming agents include, in particular, those of the silicone type, for example the Silicon SL marketed by Wacker and the like.
  • the minerals and trace elements that can be used in plants include, in particular, inorganic ammonium salts, such as ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphate or other minerals or trace elements that can be used in plants, in particular ammonium nitrate fertilizer granules and / or urea. These can occur, for example, as aqueous and optionally mixed concentrates, such as. B. Ensol solutions, are introduced into the agents according to the invention.
  • inorganic ammonium salts such as ammonium sulfate, ammonium nitrate, ammonium chloride, ammonium phosphate or other minerals or trace elements that can be used in plants, in particular ammonium nitrate fertilizer granules and / or urea.
  • the proportion of component (c3) is the overall Q fels of the agent is usually 0.1 to 35 wt .-%, and preferably 0.2 to 20 wt .-%.
  • Preferred chelating agents are heavy metal and especially transition metal complexing compounds e.g. EDTA and its 5 derivatives.
  • the proportion of component (c4) in the total weight of the composition is generally 0.001 to 0.5% by weight, preferably 0.005 to 0.2% by weight and in particular 0.01 to 0.10% by weight. %.
  • the agents can contain solvents of soluble components or diluents of insoluble components of the agent. 5
  • mineral oils for example, mineral oils, synthetic oils as well as vegetable and animal oils, as well as low-molecular lare hydrophilic solvents such as alcohols, ethers, ketones and the like.
  • diluents such as mineral oil fractions of medium to high boiling point, for example kerosene and diesel oil, furthermore coal tar oils, hydrocarbons, paraffin oils, for example Cs to Co hydrocarbons of the n- or iso-alkane series or mixtures thereof, optionally hydrogenated or partially hydrogenated aromatics or Alkyl aromatics from the benzene or naphthalene series, for example aromatic or cycloaliphatic C 7 to C ⁇ hydrocarbon compounds, aliphatic or aromatic carboxylic acid or dicarboxylic acid esters, fats or oils of vegetable or animal origin, such as mono-, di- and triglycerides , in pure form or as a mixture, for example in the form of oily natural substance extracts, for example olive oil, soybean oil, sunflower oil, castor oil, sesame oil, corn oil, peanut oil, rapeseed oil, linseed oil, almond oil, castor oil
  • Cs to Co hydrocarbons of the n- or iso-alkane series are n- and iso-octane, -decane, -hexadecane, -octadecane, -eicosane, and preferably hydrocarbon mixtures, such as paraffin oil (that of technical quality can contain up to about 5% aromatics) and a C ⁇ 8 -C 4 mixture, which is commercially available from Texaco under the name Spraytex oil.
  • the aromatic or cycloaliphatic C 7 - to C ⁇ s hydrocarbon compounds include in particular aromatic or cycloaliphatic solvents from the alkyl aromatic series. These compounds can be unhydrogenated, partially hydrogenated or fully hydrogenated. Such solvents include, in particular, mono-, di- or trialkylbenzenes, mono-, di-, trialkyl-substituted tetralines and / or mono-, di-, tri- or tetraalkyl-substituted naphthalenes (alkyl is preferably C ⁇ - C 6 alkyl).
  • solvents examples include toluene, o-, m-, p-xylene, ethylbenzene, isopropylbenzene, tert-butylbenzene and mixtures, such as the Exxon products marketed under the name Shellsol and Solvesso, for example Solvesso 100, 150 and 200th
  • Suitable monocarboxylic acid esters are oleic acid esters, in particular methyl oleate and ethyl oleate, lauric acid esters, in particular 2-ethylhexyl laurate, octyl laurate and isopropyl laurate, isopropyl myristate, palmitic acid esters, in particular 2-ethylhexyl palmitate and isopropyl palmitate, especially stearic acid esters Stearic acid n-butyl ester and 2-ethylhexanoic acid 2-ethylhexyl ester.
  • dicarboxylic acid esters examples include adipic acid esters, in particular dimethyl adipate, di-n-butyl adipate, di-n-octyl adipate,
  • Di-iso-octyl adipate also known as bis (2-ethylhexyl) adipate
  • Succinic acid esters in particular di-n-octyl succinate and di-iso-octyl succinate, and di- (iso-nonyl) cyclohexane-1,2-dicarboxylate.
  • the proportion of the aprotic solvents or diluents described above in the total weight of the agent is generally less than 30% by weight, preferably less than 20% by weight and in particular less than 5% by weight.
  • protic or polar solvents or diluents may be mentioned, for example water, C 2 -Cs-monoalcohols such as ethanol, propanol, isopropanol, butanol, isobutanol, tert-butanol, cyclohexanol and 2-ethylhexanol, C 3 -Cs Ketones such as diethyl ketone, t-butyl methyl ketone and cyclohexanone, and aprotic amines such as N-methyl and N-octylpyrrolidone.
  • C 2 -Cs-monoalcohols such as ethanol, propanol, isopropanol, butanol, isobutanol, tert-butanol, cyclohexanol and 2-ethylhexanol
  • C 3 -Cs Ketones such as diethyl ketone, t
  • the proportion of the protic or polar solvents or diluents described above in the total weight of the agent is kept low according to the invention and is generally less than 20% by weight, preferably less than 15% by weight and in particular less than 10% by weight .-%.
  • the present invention relates to means comprising
  • Agents according to the invention can be produced in a manner known per se. For this, at least parts of the components are put together. It should be noted here that products, in particular commercial products, can be used, the components of which can contribute to different components. For example, a certain surfactant can be dissolved in an aprotic solvent so that this product can contribute to components (cl) and (c5) according to the invention. As a mixture, the combined products are then generally to be mixed intensively with one another and, if necessary, to be ground, for example in the case of suspensions.
  • Mixing can be carried out in a manner known per se, e.g. by homogenizing with suitable devices such as KPG or magnetic stirrers.
  • the present invention also relates to the use of agents according to the invention in the application possibilities described above.
  • the agents can be applied in a manner known per se, e.g. by spraying, atomizing, dusting, scattering or pouring. To do this, it may be necessary to first prepare a 5 spray liquor, which is then e.g. with a drivable
  • Spraying machine is applied by means of finely distributing nozzles.
  • the devices and working techniques used for this are known to the person skilled in the art.
  • 0 Sprayable broths normally contain 0.0001 to 10, preferably 0.001 to 5, and in particular 0.002 to 2.0% by weight of active ingredient (a).
  • active ingredient (a) preferably 0.001 to 5, and in particular 0.002 to 2.0% by weight of active ingredient (a).
  • a customary spray liquor for example 0.2 to 5.0, preferably 0.3 to 3.0 and in particular 0.35 to 2.0 1 of an active ingredient concentrate according to the invention containing component (a) 5 to 10 to 2000 1, preferably with water 50 to 1500 1 and in particular 100 to 1000 1 are diluted.
  • 0.1 to 5% by weight (based on the spray mixture) of further auxiliaries can optionally be added to the spray mixture.
  • auxiliary substances for such auxiliary substances are starch and starch derivatives, for example a starch containing carboxyl and sulfonic acid groups (Nu-Film from Union Carbide Corp.) and spreading agents and extenders such as Vapor Guard from Miller Chemical & Fertilizer Corp. 5
  • quantities are generally based on the total weight of the composition, unless stated otherwise.
  • the expression "essentially” means according to the invention generally draws a percentage ratio of at least 90%, preferably at least 95% and in particular at least 98%.
  • alkyl, alkoxy, etc. include straight-chain or branched hydrocarbon groups, preferably with - unless stated otherwise - 1 to 30 carbon atoms, the fatty residues generally 5 to 30, preferably 8 to 20 and in particular 9 to 16 carbon atoms, and the shorter residues, e.g. generally have 1 to 10, in particular 1 to 6 and particularly preferably 1 to 4, carbon atoms as substituents on aromatic groups.
  • alkenyl and alkynyl stand for straight-chain or branched, 1-, 2-, 3-, 4-, 5- or 6-fold unsaturated hydrocarbon groups, preferably with - unless stated otherwise - 2 to 30 Carbon atoms, the fatty residues usually 5 to 30, preferably 8 to 20 and in particular 9 to 16 carbon atoms, and the shorter residues, for example generally have 2 to 10, in particular 2 to 6 and particularly preferably 1 to 4, carbon atoms as substituents on aromatic groups. In particular, the residues of mono- or polyunsaturated fatty acids should be mentioned here.
  • halogen preferably stands for fluorine, chlorine, bromine and iodine, in particular for fluorine and especially for chlorine.
  • C ⁇ -C 4 alkyl for: methyl, ethyl, n-propyl, 1-methylethyl, n-butyl, 1-methylpropyl, 2-methylpropyl or 1, 1-dimethylethyl, especially for methyl or ethyl;
  • C ⁇ -C 4 haloalkyl for: a C ⁇ -C 4 alkyl radical as mentioned above, which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example trichloromethyl, trifluoromethyl, 2-fluoroethyl, 2-chloroethyl , 2-bromoethyl,
  • Cyano-C ⁇ -C 4 alkyl for: for example cyanomethyl, 1-cyanoeth-l-yl, 2-cyanoeth-l-yl, 1-cyanoprop-l-yl, 2-cyanoprop-l-yl, 3-cyano-prop -1-yl, l-cyanoprop-2-yl or 2-cyanoprop-2-yl, especially for cyanomethyl or 2-cyanoethyl; 5
  • C ⁇ -C 4 alkoxy for: methoxy, ethoxy, n-propoxy, 1-methylethoxy, n-butoxy, 1-methylpropoxy, 2-methylpropoxy or 1, 1-dimethylethoxy, especially for methoxy or ethoxy;
  • ° - C ⁇ -C 4 -alkoxy-C ⁇ -C 4 -alkyl for: C ⁇ -C 4 -alkoxy as mentioned above substituted C ⁇ -C 4 -alkyl, e.g.
  • C 2 -C 6 alkenyl for: e.g. ethenyl, prop-2-en-l-yl, n-buten-4-yl, l-methyl-prop-2-en-l-yl, 2-methyl-prop- 2-en-l-yl or 0 2-butene-l-yl, in particular for prop-2-en-l-yl;
  • C 3 -C 6 haloalkenyl for: C 3 -C 6 alkenyl as mentioned above, which is partially or completely substituted by fluorine, chlorine and / or bromine, for example 2-chloroallyl, 3-chloro-5-lyl, 2, 3 -Dichlorallyl or 3,3-dichlorallyl, especially for 2-chloroallyl;
  • C 2 -Cg alkynyl for: for example ethynyl, prop-1-in-1-yl, prop-2-in-1-yl, n-but-1-in-1-yl, n-but-1-yl -3-yl, n-0 but-l-in-4-yl or n-but-2-in-l-yl, especially for prop-2-in-l-yl;
  • C 3 -C 8 cycloalkyl-C ⁇ -C-alkyl for: e.g. cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, (cyclo-5 propyl) ethyl, l- (cyclobutyl) ethyl, l- (cyclopentyl) ethyl, l- (Cyclohexyl) ethyl, 1- (cycloheptyl) ethyl, 1- (cyclo-octyl) ethyl, 2- (cyclopropyl) ethyl or 2- (cyclobutyl) ethyl, especially for cyclopentylmethyl; 0
  • Phenyl-C ⁇ -C 6 -alkyl for: for example benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylprop-l-yl, 2-phenylprop-l-yl, 3-phenylprop-1-yl, in particular for benzyl or 2-phenylethyl; _ - Thienyl-C ⁇ -C 4 alkyl for: eg 2-thienylmethyl, 3-thienylmethyl or 2-thienylethyl; Pyrazolyl-C ⁇ -C 4 alkyl for: eg 1-pyrazolylmethyl, 2-pyrazolylmethyl, 3-pyrazolylmethyl or 2-pyrazolylylylethyl.
  • Table 1 % infestation of the leaves after application of the aqueous active substance formulation, which corresponded to an application rate of 7.5 g of active substance per ha
  • Active ingredient A N-phenylacetyl-2-difluoromethoxy-5, 6-difluorobenz-a id- (O-cyclopropylmethyl] -oxime alkoxylate 1: ClO-oxo alcohol x 3 EO Alkoxylate 2: C13-0xoalcohol x 6 EO x 3 PO

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von alkoxylierten Alkoholen (Alkoholalkoxylaten) als Adjuvans zur Verbesserung der fungiziden Wirkung von Benzamidoxim-Derivaten der Formel (I) (I) wie beispielsweise N-Phenylacetyl-2-difluormethoxy-5,6-difluorbenzamid-(O-cyclopropylmethyl]-oxim oder N-Phenylacetyl-2-trifluormethoxy-5,6-difluorbenzamid-(O-cyclopropylmethyl]-oxim. Die vorliegende Erfindung betrifft auch entsprechende Mittel und Kits.

Description

Verwendung von Alkoholalkoxylaten als Adjuvans für fungizide Ben- zamidoxi -Derivate, entsprechende Mittel und Kits.
5 Die vorliegende Erfindung betrifft die Verwendung von Alkoholalkoxylaten als Adjuvans für fungizide Benzamidoxim-Derivate, entsprechende Mittel, die wenigstens ein fungizides Benzamidoxim-De- rivat und wenigstens ein Alkoholalkoxylat enthalten, sowie Kits, die Benzamidoxim-Derivat und Alkoholalkoxylat in getrennten Be-® hältnissen umfassen.
Neben der Optimierung der Wirkstoffeigenschaften kommt mit Blick auf eine industrielle Produktion und Anwendung dieser Wirkstoffe5 der Entwicklung eines effizienten Mittels besondere Bedeutung zu. Durch eine sachgerechte Formulierung des oder der Wirkstoffe muß ein optimaler Ausgleich zwischen teils gegenläufigen Eigenschaften wie der biologischen Wirksamkeit, der Toxikologie, möglichen Einflüssen auf die Umwelt und den Kosten gefunden werden. Darüber0 hinaus bestimmt die Formulierung zu einem erheblichen Maß die Haltbarkeit und den Anwendungskomfort eines Mittels . Die gilt auch für die aus der EP-A-1017670 (WO 99/14187), EP-A 805 148 (WO 96/19442) und EP-A 1 077 028 (WO 99/56549) bekannten fungiziden Benzamidoxim-Derivate . 5
Allgemein bekannt und landwirtschaftliche Praxis ist es, zwecks verbesserter Wirksamkeit Formulierungen bestimmte Hilfsstoffe zuzusetzen. Vorteilhafterweise können dadurch die Wirkstoffmengen in der Formulierung bei gleichbleibender Aktivität verringert0 werden, wodurch Kosten minimiert und gegebenenfalls bestehende gesetzliche Regelungen eingehalten werden können. Auch gelingt es in Einzelfällen, das Wirkstoffspektrum zu vergrößern, indem Pflanzen, die ohne Zusatz nur in unzureichender Weise mit einem bestimmten Wirkstoff behandelt werden konnten, durch Zusatz be-5 stimmter Hilfsstoffe einer entsprechenden Behandlung zugänglich sind. Weiterhin kann die Leistungsfähigkeit unter ungünstigen Umweltbedingungen in Einzelfällen durch eine geeignete Formulierung erhöht werden. Mithin können auch Unverträglichkeiten verschiedener Wirkstoffe in einer Formulierung vermieden werden.
Derartige Hilfsstoffe werden gelegentlich auch als Adjuvantien bezeichnet. Es handelt sich oftmals um oberflächenaktive oder salzartige Verbindungen. Je nach Wirkungsweise können z.B. Modi- fikatoren, Aktuatoren, Dünger und pH-Puffer unterschieden werden. Modifikatoren beeinflussen Benetzung, Haftung und Spreitung einer Formulierung. Aktuatoren brechen die wachsartige Pflanzencuticula auf und verbessern die Penetration des Wirkstoffs in die Cuticula sowohl kurzfristig (im Minutenbereich) als auch langfristig (im Stundenbereich) . Dünger wie Ammoniumsulfat, Ammoniumnitrat oder Harnstoff verbessern die Absorption und Löslichkeit des Wirkstoffs, und sie können antagonistische Verhaltensweisen von Wirk- Stoffen verringern. pH-Puffer werden herkömmlicherweise zur optimalen Einstellung des pH-Werts der Formulierung verwendet.
Im Hinblick auf die Aufnahme des Wirkstoffs in das Blatt können oberflächenaktive Substanzen als Modifikatoren und Aktuatoren wirken. Allgemein wird angenommen, dass geeignete oberflächenaktive Substanzen die effektive Kontaktfläche von Flüssigkeiten auf Blättern durch eine Verminderung der Oberflächenspannung erhöhen können. Darüber hinaus können bestimmte oberflächenaktive Substanzen die epicuticulären Wachse auflösen oder aufbrechen, was die Absorption des Wirkstoffs erleichtert. Ferner können einige oberflächenaktive Substanzen auch die Löslichkeit von Wirkstoffen in Formulierungen verbessern und damit eine Kristallbildung vermeiden oder diese zumindest hinauszögern. Schließlich können sie in bestimmten Fällen auch die Absorption von Wirkstoffen beeinflussen, indem sie Feuchtigkeit zurückhalten.
Adjuvantien vom oberflächenaktiven Typ werden in vielfältiger Weise für agrotechnische Anwendungen genutzt. Man kann diese in anionische, kationische, nicht-ionische oder amphotere Stoffgrup- pen unterteilen.
Traditionell werden Öle auf Petroleum-Basis als aktivierende Adjuvantien verwendet. In jüngster Vergangenheit setzte man auch Samenextrakte, natürliche Öle und deren Derivate, beispielsweise aus Sojabohnen, Sonnenblumen und Kokosnuss, ein.
Bei synthetischen oberflächenaktiven Substanzen, die üblicherweise als Aktuatoren verwendet werden, handelt es sich unter anderem um Polyoxyethylen-Kondensate mit Alkoholen, Alkylphenolen oder Alkylaminen, welche HLB-Werte im Bereich von 8 bis 13 aufweisen. In diesem Sinne nennt die WO 00/42847 beispielsweise den Einsatz bestimmter linearer Alkoholalkoxylate, um die Wirksamkeit agrotechnischer Biozidformulierungen zu steigern. Die WO 02/15697 beschreibt ebenfalls die Verwendung von Alkoholalkoxylaten als Adjuvans bei der Formulierung von Triazolpyrimidinen. Aufgabe war es, die Wirksamkeit besagter Benzamidoxim-Derivate bei ihrer Anwendung zu verbessern.
Es wurde gefunden, dass alkoxylierte Alkohole eine besonders gute adjuvante Wirkung bei der Anwendung der Benzamidoxim-Derivate entfalten.
Gegenstand der vorliegenden Erfindung ist daher die Verwendung von alkoxylierten Alkoholen (Alkoholalkoxylaten) als Adjuvans zur Verbesserung der fungiziden Wirkung von Benzamidoxim-Derivaten der Formel (I)
Figure imgf000004_0001
wobei die Substituenten die folgenden Bedeutungen haben:
R1 Difluormethyl oder Trifluormethyl;
R2 Wasserstoff oder Fluor;
R3 Cι-C4-Alkyl, welches durch Cyano substituiert sein kann, Cι-C4-Halogenalkyl, Cι-C4-Alkoxy-Cι-C4-alkyl, C3-C6-Alke- nyl, C3-C6-Halogenalkenyl, C3-C6-Alkinyl oder C3-C8-Cyclo- alkyl-Cι-C4-Alkyl;
R4 Phenyl-Ci-Cg-alkyl, welches am Phenylring einen oder mehrere unter Halogen, Cι-C4-Alkyl, Cι-C4-Halogenalkyl, Cχ-C4-Alkoxy und Cι-C4-Halogenalkoxy ausgewählte Substituenten tragen kann, oder
Thienyl-C1-C4-alkyl, welches am Thienylring einen oder mehrere unter Halogen, Cχ-C4-Alkyl, Cι-C4-Halogenalkyl, Cι-C4-Alkoxy und Cχ-C4-Halogenalkoxy ausgewählte Substituenten tragen kann, oder
Pyrazolyl-Cι-C4-alkyl, welches am Pyrazolylring einen oder mehrere unter Halogen, Cι-C4-Alkyl, Cι-C4-Halogenal- kyl, Cι-C4-Alkoxy oder Cι-C4-Halogenalkoxy ausgewählte Substituenten tragen kann.
Zumindest ein Teil der zu verwendenden Alkoholalkoxylate ist an sich bekannt. Beispielsweise beschreiben die WO 01/77276 sowie die US 6,057,284 bzw. EP 0 906 150 geeignete Alkoholalkoxylate. Auf die Beschreibung dieser Alkoholalkoxylate in diesen Druckschriften wird hiermit ausdrücklich Bezug genommen, womit die darin offenbarten Alkoholalkoxylate selbst und auch deren Herstellung Teil der vorliegenden Offenbarung sind.
Der Alkoholteil der erfindungsgemäß zu verwendenden Alkoholalkoxylate basiert in der Regel auf an sich bekannten Alkoholen oder Alkoholgemischen mit 5 bis 30, vorzugsweise 8 bis 20 und insbesondere 9 bis 15 Kohlenstoffatomen. Hier sind insbesondere Fett¬0 alkohole mit etwa 8 bis 20 Kohlenstoffato en zu nennen. Viele dieser Fettalkohole werden bekanntermaßen zur Herstellung von nichtionischen und anionischen Tensiden eingesetzt, wozu die Alkohole einer entsprechenden Funktionalisierung, z.B. durch Alko- xylierung oder Glykosidierung, unterworfen werden. 5
Der Alkoholteil der zu verwendenden Alkoxylate kann geradkettig, verzweigt oder cyclisch sein. Ist er linear, so sind insbesondere Alkohole mit 14 bis 20, beispielsweise mit 16-18 Kohlenstoffato-o men zu nennen. Ist er verzweigt, so weist einer besonderen Ausführungsform zufolge die Hauptkette des Alkoholteils in der Regel 1 bis 4 Verzweigungen auf, wobei auch Alkohole mit höherem oder niedrigerem Verzweigungsgrad im Gemisch mit weiteren Alkoholalko- xylaten verwendet werden können, solange die mittlere Zahl der5 Verzweigungen des Gemisches im angegebenen Bereich liegt.
Der Alkoholteil der zu verwendenden Alkoxylate kann gesättigt oder ungesättigt sein. Ist er ungesättigt, so weist er einer besonderen Ausführungsform zufolge eine Doppelbindung auf. 0
Im Allgemeinen weisen die Verzweigungen unabhängig voneinander 1 bis 10, vorzugsweise 1 bis 6 und insbesondere 1 bis 4 Kohlenstoffatome auf. Besondere Verzweigungen sind Methyl-, Ethyl-, n- Propyl- oder iso-Propyl-Gruppen. 5
Geeignete Alkohole und insbesondere Fettalkohole sind sowohl aus nativen Quellen, z.B. durch Gewinnung und erforderlichen- bzw. gewünschtenfalls durch Hydrolyse, Umesterung und/oder Hydrierung0 von Glyceriden und Fettsäuren, als auch auf synthetischem Weg, z. B. durch Aufbau aus Edukten mit einer geringeren Zahl an Kohlenstoffatomen erhältlich. So erhält man z. B. nach dem SHOP-Pro- zess (Shell Higher Olefine Process) ausgehend von Ethen Olefin- fraktionen mit einer für die Weiterverarbeitung zu Tensiden geei-5 gneten Kohlenstoffanzahl. Die Funktionalisierung der Olefine zu den entsprechenden Alkoholen erfolgt dabei z. B. durch Hydrofor- mylierung und Hydrierung.
Olefine mit einer zur Weiterverarbeitung zu geeigneten Alkoholen geeigneten Kohlenstoffzahl können auch durch Oligomerisation von 5 C3-C6-Alkenen, wie insbesondere Propen oder Buten oder Gemischen davon, erhalten werden.
Weiterhin können niedere Olefine mittels heterogener saurer Katalysatoren, z. B. geträgerter Phosphorsäure, oligomerisiert und *" anschließend zu Alkoholen funktionalisiert werden.
Eine allgemeine Synthesemöglichkeit zur Herstellung verzweigter Alkohole ist z.B. die Umsetzung von Aldehyden oder Ketonen mit Grignard-Reagenzien (Grignard-Synthese) . Anstelle von Grignard-
15 Reagenzien können auch Aryl- oder Alkyl-Lithiumverbindungen eingesetzt werden, die sich durch ein höheres Reaktionsvermögen auszeichnen. Des weiteren können die verzweigten Alkohole durch Al- dolkondensation erhalten werden, wobei die Reaktionsbedingungen
Λ^ dem Fachmann bekannt sind. 20
Die Alkoxylierung ergibt sich aus der Umsetzung mit geeigneten Alkylenoxiden, die in der Regel 2 bis 15 und vorzugsweise 2 bis 6 Kohlenstoffatome aufweisen. Zu nennen sind hier insbesondere 25 Ethylenoxid (EO), Propylenoxid (PO), Butylenoxid (BO), Pentyleno- xid (PeO) und Hexylenoxid (HO).
Ein Typ zu verwendender Alkoholalkoxylate basiert auf einer Alky- lenoxid-Art.
30
Ein weiterer Typ zu verwendener Alkoholalkoxylate basiert auf wenigstens zwei verschiedenen Alkylenoxid-Arten. Dabei ist es bevorzugt, mehrere Alkylenoxid-Einheiten einer Art als Block anzuordnen, so dass sich wenigstens zwei unterschiedliche Alkylen-
35 oxid-Blöcke ergeben, die jeweils aus mehreren Einheiten gleicher Alkylenoxide gebildet werden. Sofern derartige Blockalkoxylate verwendet werden, ist es bevorzugt, dass sich der Alkylenoxid- Teil aus 3 und insbesondere aus 2 Blöcken zusammensetzt.
40
Einem Aspekt zufolge ist es bevorzugt, dass die erfindungsgemäß zu verwendenden Alkoholalkoxylate ethoxyliert sind bzw. wenigstens einen Ethylenoxid-Block aufweisen. Einem weiteren Aspekt zufolge werden Ethylenoxid-Blöcke insbesondere mit Propylenoxid- 5 oder Pentylenoxid-Blöcken kombiniert. In Abhängigkeit von den für die Umsetzung gewählten Einsatzmengen an Alkylenoxid(en) sowie den Reaktionsbedingungen ergibt sich der jeweilige Alkox lierungsgrad. Hierbei handelt es sich in der Regel um einen statistischen Mittelwert, da die Anzahl von Alkylen- 5 oxid-Einheiten der aus der Umsetzung resultierenden Alkoholalkoxylate variiert.
Der Alkoxylierungsgrad, d.h. die mittlere Kettenlänge der Poly- etherketten erfindungsgemäß zu verwendender Alkoholalkoxylate0 kann durch das Molmengenverhältnis von Alkohol zu Alkylenoxid be- stimmmt werden. Bevorzugt sind Alkoholalkoxylate mit etwa 1 bis 100, bevorzugt etwa 2 bis 15, insbesondere 3 bis 12, vor allem 4 bis 12 und besonders 5 bis 12 Alkylenoxid-einheiten. 5
Die Umsetzung der Alkohole bzw. Alkoholgemische mit dem/ en Alkylenoxid(en) erfolgt nach üblichen, dem Fachmann bekannten Verfahren und in dafür üblichen Apparaturen. Q Die Alkoxylierung kann durch starke Basen, wie Alkalihydroxide und Erdalkalihydroxide, Brönstedsäuren oder Lewissäuren, wie AlCl3, BF3 etc. katalysiert werden. Für eng verteilte Alkoholalkoxylate können Katalysatoren wie Hydrotalcit oder DMC verwendet werden. 5
Die Alkoxylierung erfolgt vorzugsweise bei Temperaturen im Bereich von etwa 80 bis 250 °C, bevorzugt etwa 100 bis 220 °C. Der Druck liegt vorzugsweise zwischen Umgebungsdruck und 600 bar. Ge- wünschtenfalls kann das Alkylenoxid eine Inertgasbeimischung,0 z. B. von etwa 5 bis 60 %, enthalten.
Demnach sind die zu verwendenden alkoxylierten Alkohole insbesondere ausgewählt unter Alkoholalkoxylaten der Formel (II) 5
R6_θ-(CmH2mO)x-(CnH2n0)y-(CpH2pO)z-H (II)
worin 0 Rβ für C5-C30-Alkyl oder C5-C30-Alkenyl steht;
m, n, p unabhängig voneinander für eine ganze Zahl von 2 bis 16, vorzugsweise für 2, 3, 4 oder 5 stehen;
x, y, z unabhängig voneinander für eine Zahl von 0 bis 100 stehen; und x+y+z einem Wert von 1 bis 100 entspricht,
sowie den unter Berücksichtigung obiger Ausführungen sich ergebenden Ausgestaltungen dieser Alkoholalkoxylate der Formel (II).
Gemäß einer besonderen Ausführungsform werden Alkoholalkoxylate der Formel (II) verwendet, worin m = 2 und der Wert von x größer als Null ist. Hierbei handelt es sich um Alkoholalkoxylate vom EO-Typ, zu denen vor allem Alkoholethoxylate (m = 2; x > Null; y, z = Null) und Alkoholalkoxylate mit einem an den Alkoholteil gebundenen EO-Block gehören (m = 2; x > Null; y und/oder z > Null). Von den Alkoholalkoxylaten mit einem an den Alkoholteil gebundenen EO-Block sind vor allem EO-PO-Blockalkoxylate (m = 2; x > Null; y > Null; n = 3; z = 0), EO-PeO-Blockalkoxylate (m = 2; x > Null; y > Null; n = 5; z = 0) und EO-PO-EO-Blockalkoxylate (m, p = 2; x, z > Null; y > Null; n = 3) zu nennen.
Bevorzugt sind EO-PO-Blockalkoxylate, bei denen das Verhältnis von EO zu PO (x zu y) 1:1 bis 4:1 und insbesondere 1,5:1 bis 3:1 beträgt. Dabei beträgt der Ethoxylierungsgrad (Wert von x) in der Regel 1 bis 20, vorzugsweise 2 bis 15 und insbesondere 4 bis 10, der Propoxylierungsgrad (Wert von y) in der Regel 1 bis 20, vorzugsweise 1 bis 8 und insbesondere 2 bis 5. Der Gesamtalkoxylie- rungsgrad, d.h. die Summe aus EO- und PO-Einheiten beträgt in der Regel 2 bis 40, vorzugsweise 3 bis 25 und insbesondere 6 bis 15.
Weiterhin bevorzugt sind EO-PeO-Blockalkoxylate, bei denen das Verhältnis von EO zu PeO (x zu y) 2 : 1 bis 25 : 1 und insbesondere 4 : 1 bis 15 : 1 beträgt. Dabei beträgt der Ethoxylierungsgrad (Wert von x) in der Regel 1 bis 50, vorzugsweise 4 bis 25 und insbesondere 6 bis 15, der Pentoxylierungsgrad (Wert von y) in der Regel 0,5 bis 20, vorzugsweise 0,5 bis 4 und insbesondere 0,5 bis 2. Der Gesamtalkoxylierungsgrad, d.h. die Summe aus EO- und PeO-Einheiten beträgt in der Regel 1,5 bis 70, vorzugsweise 4,5 bis 29 und insbesondere 6,5 bis 17.
Gemäß einer weiteren besonderen Ausführungsform werden Alkoholalkoxylate der Formel (II) verwendet, worin n = 2, die Werte von x und y beide größer als Null und z = 0 sind. Auch hierbei handelt es sich um Alkoholalkoxylate vom EO-Typ, bei denen der EO-Block allerdings terminal gebunden ist. Zu diesen gehören vor allem PO- EO-Blockalkoxylate (n = 2; x > Null; y > Null; m = 3; z = 0) und PeO-EO-Blockalkoxylate (n = 2; x > Null; y > Null; m = 5; z = 0) . Bevorzugt sind PO-EO-Blockalkoxylate, bei denen das Verhältnis von PO zu EO (x zu y) 1:10 bis 3:1 und insbesondere 1,5:1 bis 1:6 beträgt. Dabei beträgt der Ethoxylierungsgrad (Wert von y) in der Regel 1 bis 20, vorzugsweise 2 bis 15 und insbesondere 4 bis 10, der Propoxylierungsgrad (Wert von x) in der Regel 0,5 bis 10, vorzugsweise 0,5 bis 6 und insbesondere 1 bis 4. Der Gesamtalko- xylierungsgrad, d.h. die Summe aus EO- und PO-Einheiten beträgt in der Regel 1,5 bis 30, vorzugsweise 2,5 bis 21 und insbesondere 5 bis 14.
Weiterhin bevorzugt sind PeO-EO-Blockalkoxylate, bei denen das Verhältnis von PeO zu EO (x zu y) 1 : 50 bis 1 : 3 und insbesondere 1 : 25 bis 1 : 5 beträgt. Dabei beträgt der Pentoxylierungs- grad (Wert von x) in der Regel 0,5 bis 20, vorzugsweise 0,5 bis 4 und insbesondere 0,5 bis 2, der Ethoxylierungsgrad (Wert von y) in der Regel 3 bis 50, vorzugsweise 4 bis 25 und insbesondere 5 bis 15. Der Gesamtalkoxylierungsgrad, d.h. die Summe aus EO- und PeO-Einheiten beträgt in der Regel 3,5 bis 70, vorzugsweise 4,5 bis 45 und insbesondere 5,5 bis 17.
Gemäß einer weiteren besonderen Ausführungsform werden Alkoholalkoxylate der Formel (II) verwendet, worin die Werte von x, y und z allesamt größer als Null sind. Zu diesen gehören vor allem PeO- EO-PO-Blockalkoxylate (m = 5; x > Null; n = 2; y > Null; m = 3; z > Null) .
Gemäß einer bevorzugten Ausführungsform basieren die erfindungsgemäß zu verwendenden Alkoholalkoxylate auf primären, α-verzweig- ten Alkoholen der Formel (III),
Figure imgf000009_0001
worin
R7, R8 unabhängig voneinander für Wasserstoff oder Cι-C6-Alkyl stehen.
Vorzugsweise stehen R7 und R8 unabhängig voneinander für Cχ-Cg-Al- kyl und insbesondere für C2-C4-Alkyl.
Ganz besonders bevorzugt sind Alkoholalkoxylate auf Basis von 2-Propylheptanol. Hierzu gehören insbesondere Alkoholalkoxylate der Formel (II), worin R für einen 2-Propylheptyl-Rest steht, d.h. R7 und R8 in Formel (III) bedeuten jeweils n-Propyl.
Derartige Alkohole werden auch als Guerbet-Alkohole bezeichnet. Diese können beispielsweise durch Dimerisierung entsprechender primärer Alkohole (z.B. R7'8 CH2CH2OH) bei erhöhter Temperatur, beispielsweise 180 bis 300 °C, in Gegenwart eines alkalischen Kondensationsmittels, wie Kaliumhydroxid, erhalten werden.
Im Rahmen dieser bevorzugten Ausführungsform auf Basis von Gue- bert-Alkoholen kommen vor allem Alkoxylate vom EO-Typ zur Anwendung. Insbesondere bevorzugt sind Ethoxylate, deren Ethoxylierungsgrad 1 bis 50, vorzugsweise 2 bis 20 und insbesondere etwa 3 bis 10 beträgt. Hiervon sind vor allem die entsprechend ethoxy- lierten 2-Propylheptanole zu nennen.
Gemäß einer weiteren bevorzugten Ausführungsform basieren die zu verwendenden Alkoholalkoxylate auf Cι -Oxoalkoholen.
Der Begriff "Cι3-Oxoalkohol" bezeichnet in der Regel ein Alkoholgemisch, dessen Hauptkomponente aus wenigstens einem verzweigten Cχ -Alkohol (Isotridecanol) gebildet wird. Zu derartigen Cι -Alko- holen gehören insbesondere Tetramethylnonanole, beispielsweise 2,4,6,8-Tetramethyl-l-nonanol oder 3,4,6, 8-Tetramethyl-l-nonanol sowie ferner Ethyldimethylnonanole wie 5-Ethyl-4,7-dimethyl-l-no- nanol .
Geeignete Cι3-Alkoholgemische sind allgemein erhältlich durch Hydrierung von hydroformyliertem Trimerbuten. Insbesondere kann man
a) Butene zwecks Oligomerisierung mit einem geeigneten Katalysator in Kontakt bringen,
b) aus dem Reaktionsgemisch eine Cι2-Olefinfraktion isolieren,
c) die Cι2-01efinfraktion durch Umsetzung mit Kohlenmonoxid und Wasserstoff in Gegenwart eines geeigneten Katalysators hydro- formylieren und
d) hydrieren.
Vorteilhafte Cι3-Alkoholgemisch sind im Wesentlichen halogenfrei, d. h. sie enthalten weniger als 3 Gew.-ppm, insbesondere weniger als 1 Gew.-ppm, Halogen, insbesondere Chlor. Die Butentrimerisierung kann mittels homogener oder heterogener Katalyse erfolgen.
Beim DIMERSOL-Prozess (vergleiche Revue de 1' Institut Franςais du Petrole, Vol. 37, No. 5, Sept. /Okt. 1982, S. 639ff) werden Butene in homogener Phase in Gegenwart eines Katalysatorsystems aus einem Übergangsmetallderivat und einer metallorganischen Verbindung oligomerisiert. Typische Katalysatorsysteme sind Ni(0)-Komplexe in Verbindung mit Lewis-Säuren wie A1C13, BF3, Sb s usw. oder Ni( II)-Komplexe in Verbindung mit Alkylaluminiumhalogeniden.
Alternativ können Butene in an sich bekannter Weise an einem Nikkei enthaltenden heterogenen Katalysator oligomerisiert werden (Verfahrensschritt a) . In Abhängigkeit von den gewählten Verfah- rensbedingungen werden unterschiedliche relative Mengen an Buten- Dimeren, -Trimeren und höheren Oligomeren erhalten. Für die vorliegenden Zwecke werden die Buten-Trimere, d. h. Cι2-Olefine, weiter verarbeitet. Im Hinblick auf den gewünschten Verzweigungsgrad des nach Hydroformylierung/Hydrierung erhaltenen Cι3-Alkoholgemi- sches kann der Gehalt an iso-Butenen gewählt werden. Relativ niedrige Verzweigungsgrade erfordern einen relativ niedrigen iso-Bu- ten-Gehalt und umgekehrt. Soll die Cι2-01efinfraktion beispielsweise einen ISO-Index von etwa 1,9 bis 2,3 aufweisen, ist es zweckmäßig, die eingesetzten Butene überwiegend linear zu wählen, d. h. der in der Regel eingesetzte Kohlenwasserstoffström sollte weniger als 5 Gew.-%, bezogen auf die Butenfraktion, iso-Buten enthalten. Die Butene können eine Beimischung gesättigter C4-Koh- lenwasserstoffe enthalten, die als Verdünnungsmittel bei der Oli- gomerisierung wirken.
Die verwendbaren heterogenen, Nickel enthaltenden Katalysatoren können unterschiedliche Strukturen aufweisen, wobei Nickeloxid enthaltende Katalysatoren bevorzugt sind. Es kommen an sich bekannte Katalysatoren in Betracht, wie sie in C. T. O'Connor et al., Catalysis Today, Bd. 6 (1990), S. 336-338 beschrieben sind.
Der Kohlenwasserstoffström (vorzugsweise C4) enthält in der Regel 50 bis 100 Gew.-%, vorzugsweise 60 bis 90 Gew.-%, Butene und 0 bis 50 Gew.-%, vorzugsweise 10 bis 40 Gew.-%, Butane. Die Butenfraktion umfasst weniger als 5 Gew.-%, insbesondere weniger als 3 Gew.-% Isobuten, bezogen auf die Butenfraktion. Die Butenfraktion weist im Allgemeinen folgende Zusammensetzung auf (jeweils bezogen auf die Butenfraktion):
1-Buten 1 bis 50 Gew.-% cis-2-Buten 1 bis 50 Gew. -% trans-2-Buten 1 bis 99 Gew. -% iso-Buten 1 bis 5 Gew. -%
Als besonders bevorzugter Einsatzstoff wird das sogenannte Raffinat II verwendet, bei dem es sich um einen iso-Butenen-abgerei- cherten C4-Schnitt aus einer FCC-Anlage oder einem Steamcracker handelt.
Aus dem Reaktionsaustrag der Oligomerisierungsreaktion wird in einem oder mehreren Trennschritten eine C12-Olefinfraktion isoliert (Verfahrensschritt b). Geeignete Trennvorrichtungen sind die üblichen, dem Fachmann bekannten Apparaturen. Dazu zählen z. B. Destillationskolonnen, wie Bodenkolonnen, die gewünschten- falls mit Glocken, Siebplatten, Siebböden, Ventilen, Seitenabzügen usw. ausgerüstet sein können, Verdampfer, wie Dünnschichtverdampfer, Fallfilmverdampfer, Wischblattverdampfer, Sambay-Ver- dampfer usw. und Kombinationen davon. Bevorzugt erfolgt die Isolierung der Cχ -01efinfraktion durch fraktionierte Destillation.
Der ISO-Index der C12-01efinfraktion, der die mittlere Zahl der Verzweigungen angibt, beträgt in der Regel 1 bis 4, vorzugsweise 1,9 bis 2,3, insbesondere 2,0 bis 2,3. Der ISO-Index kann z. B. ermittelt werden, indem eine Probe der Cχ -01efinfraktion zu den Dodecanen hydriert wird und im 1H-NMR-Spektrum anhand der den Methylgruppen zuzuordnenden Signalfläche und der den Gesamtprotonen zuzuordnenden Signalfläche die mittlere Anzahl der Methylgruppen bestimmt wird. Der ISO-Index ergibt sich als mittlere Zahl der Methylgruppen abzüglich zwei.
Zur Herstellung eines erfindungsgemäßen Alkoholgemisches wird die isolierte Cχ2-01efinfraktion zu Cχ3-Aldehyden hydroformyliert (Verfahrensschritt c) und anschließend zu Cχ3-Alkoholen hydriert (Verfahrensschritt d) . Dabei kann die Herstellung der Alkoholgemische einstufig oder in zwei separaten Reaktionsschritten erfolgen.
Eine Übersicht über Hydroformylierungsverfahren und geeignete Katalysatoren findet sich in Beller et al., Journal of Molecular Catalysis A 104 (1995), S. 17-85.
Bevorzugt erfolgt die Hydroformylierung in Gegenwart eines Ko- balt-Hydroformylierungskatalysators. Die Menge des Hydroformylie- rungskatalysators beträgt im Allgemeinen 0,001 bis 0,5 Gew.-%, gerechnet als Kobaltmetall, bezogen auf die Menge der zu hydro- formylierenden Olefine. Die Reaktionstemperatur liegt im Allge¬
ll meinen im Bereich von etwa 100 bis 250 °C, bevorzugt 150 bis 210 °C. Die Reaktion kann bei einem erhöhten Druck von etwa 10 bis 650 bar durchgeführt werden. Es ist bevorzugt, dass die Hydrofor- mylierung in Gegenwart von Wasser erfolgt; sie kann allerdings auch in Abwesenheit von Wasser durchgeführt werden.
Kohlenmonoxid und Wasserstoff werden üblicherweise in Form eines Gemisches, dem sogenannten Synthesegas, eingesetzt. Die Zusammensetzung des eingesetzten Synthesegases kann in weiten Bereich va- riieren. Das molare Verhältnis von Kohlenmonoxid und Wasserstoff beträgt in der Regel etwa 2,5:1 bis 1:2,5. Ein bevorzugtes Verhältnis liegt bei etwa 1:1,5.
Der homogen im Reaktionsmedium gelöste Kobaltkatalysator kann vom Hydroformylierungsprodukt geeigneterweise abgetrennt werden, indem der Reaktionsaustrag der Hydroformylierung in Gegenwart einer sauren wässrigen Lösung mit Sauerstoff oder Luft behandelt wird. Dabei wird der Kobaltkatalysator unter Bildung von Kobalt(II) -salzen oxidativ zerstört. Die Kobalt(II) -salze sind wasserlöslich und werden in die wässrige Phase extrahiert, die abgetrennt und in das Hydroformylierungsverfahren zurückgeführt werden kann.
Die bei der Hydroformylierung erhaltenen rohen Aldehyde bzw. Aldehyd/Alkohol-Gemische können vor der Hydrierung gewünschtenfalls nach üblichen, dem Fachmann bekannten Verfahren isoliert und gegebenenfalls gereinigt werden.
Zur Hydrierung werden die bei der Hydroformylierung erhaltenen Reaktionsgemische mit Wasserstoff in Gegenwart eines Hydrierkatalysators umgesetzt.
Geeignete Hydrierkatalysatoren sind im Allgemeinen Übergangsmetalle, wie z. B. Cr, Mo, W, Fe, Rh, Co, Ni, Pd, Pt, Ru usw. oder deren Mischungen, die zur Erhöhung der Aktivität und Stabilität auf Trägern, wie z. B. Aktivkohle, Aluminiumoxid, Kieselgur usw. aufgebracht werden können. Zur Erhöhung der katalytischen Aktivität können Fe, Co und bevorzugt Ni, auch in Form der Raney-Kata- lysatoren als Metallschwamm mit einer sehr großen Oberfläche verwendet werden. Bevorzugt wird für die Herstellung der erfindungsgemäßen Tensidalkohole ein Co/Mo-Katalysator eingesetzt. Die Hydrierung der Oxo-Aldehyde erfolgt in Abhängigkeit von der Aktivität des Katalysators vorzugsweise bei erhöhten Temperaturen und erhöhtem Druck. Vorzugsweise liegt die Hydriertemperatur bei etwa 80 bis 250 °C, bevorzugt liegt der Druck bei etwa 50 bis 350 bar. Weitere geeignete Cχ3-Alkoholgemische sind dadurch erhältlich, dass man
a) ein C4-01efin-Gemisch der Metathese unterwirft, b) aus dem Metathesegemisch Olefine mit 6 C-Atomen abtrennt, c) die abgetrennten Olefine einzeln oder im Gemisch einer Dimerisierung zu Olefingemischen mit 12 C-Atomen unterzieht, und d) das erhaltene Olefingemisch, gegebenenfalls nach einer Fraktionierung, der Derivatisierung zu einem Gemisch von C13-Oxo- alkoholen unterwirft.
Die Grundzüge der im Verfahrensschritt a) eingesetzten Metathese sind beispielsweise in Ullmann's Ecyclopedia of Industrial Che- mistry, 5. Aufl., Band A18, S.235/236 beschrieben worden. Weitere Informationen zur Durchführung des Verfahrens können beispielsweise K.J. Ivin, "Olefin Metathesis, Academic Press, London, (1983); Houben-Weyl, E18, 1163-1223; R.L. Banks, Discovery and Development of Olefin Disproportionation, CHEMTECH (1986), Fe- bruary, 112-117, entnommen werden.
Bei der Anwendung der Metathese auf die in den C4-01efin-Strömen enthaltenen Hauptbestandteile Buten-1 und Buten-2 werden in Gegenwart von geeigneten Katalysatoren Olefine mit 5 bis 10 C-Ato- men, vorzugsweise mit 5 bis 8 C-Atomen, insbesondere aber Pen- ten-2 und Hexen-3 gebildet.
Geeignete Katalysatoren sind vorzugsweise Molybdän-, Wolfram- oder Rhenium-Verbindungen. Es ist besonders zweckmäßig, die Reak- tion heterogenkatalysiert auszuführen, wobei die katalytisch wirksamen Metalle insbesondere in Verbindung mit Trägern aus Al203 oder Si02 eingesetzt werden. Beispiele für derartige Katalysatoren sind Mo03 oder W03 auf Si02, oder Re07 auf A1203.
Besonders günstig ist es, die Metathese in Gegenwart eines Rheniumkatalysators auszuführen, da in diesem Fall besonders milde Reaktionsbedingungen möglich sind. So kann die Metathese in diesem Fall bei einer Temperatur von 0 bis 50 °C und bei niedrigen Druk- ken von ca. 0,1 bis 0,2 MPa ausgeführt werden.
Bei der Dimerisierung der im Metatheseschritt erhaltenen Olefine oder Olefingemische erhält man Dimerisierungsprodukte, die im Hinblick auf die weitere Verarbeitung auf Tensidalkohole beson- ders günstige Komponenten und eine besonders vorteilhafte Zusammensetzungen aufweisen, wenn man einen Dimerisierungskatalysator einsetzt, der wenigstens ein Element der VIII. Nebengruppe des periodischen Systems enthält, und man die Katalysatorzusammensetzung und die Reaktionsbedingungen so wählt, dass ein Dimerenge- misch erhalten wird, welches weniger als 10 Gew.-% von Verbindungen enthält, die ein Strukturelement der Formel in (Vinyliden- 5 gruppe)
Figure imgf000015_0001
worin A1 und A2 aliphatische Kohlenwasserstoffreste sind, aufweisen. 5 Vorzugsweise werden für die Dimerisierung die in dem Metathesie- rungsprodukt enthaltenen internen, linearen Pentene und Hexene eingesetzt. Besonders bevorzugt ist der Einsatz von 3-Hexen.
Die Dimerisierung kann homogenkatalysiert oder heterogenkataly-0 siert durchgeführt werden. Bevorzugt ist die heterogene Verfahrensweise, da hierbei einerseits die Katalysatorabtrennung vereinfacht und das Verfahren damit wirtschaftlicher ist, zum anderen werden keine umweltschädlichen Abwässer erzeugt, wie sie gewöhnlich bei der Abtrennung gelöster Katalysatoren, zum Beispiel durch Hydrolyse, anfallen. Ein weiterer Vorteil des heterogenen Verfahrens besteht darin, dass das Dimerisierungsprodukt keine Halogene, insbesondere Chlor oder Fluor, enthält. Homogen lösliche Katalysatoren enthalten im Allgemeinen halogenidhaltige Liganden oder sie werden in Kombination mit halogenhaltigen Cokata- lysatoren eingesetzt. Aus solchen Katalysatorsystemen kann Halogen in die Dimerisierungsprodukte eingebaut werden, was sowohl die Produktqualität als auch die Weiterverarbeitung, insbesondere die Hydroformylierung zu Tensidalkoholen erheblich beeinträchtigt. 5
Zur heterogenen Katalyse werden zweckmäßigerweise Kombinationen von Oxiden von Metallen der VIII. Nebengruppe mit Aluminiumoxid auf Trägermaterialien aus Silizium- und Titanoxiden wie sie bei-Q spielsweise aus der DE-A-43 39 713 bekannt sind, eingesetzt. Der heterogene Katalysator kann im Festbett - dann vorzugsweise in grobkörniger Form als 1 bis 1,5 mm-Splitt - oder suspendiert (Partikelgröße 0.05 bis 0,5 mm) eingesetzt werden. Die Dimerisierung wird bei heterogener Durchführung zweckmäßigerweise bei Te -5 peraturen von 80 bis 200 °C, vorzugsweise von 100 bis 180 °C, unter dem bei der Reaktionstemperatur herrschenden Druck, gegebenenfalls auch unter einem Schutzgasüberdruck, im geschlossenen System ausgeführt. Zur Erzielung optimaler Umsätze wird das Reaktionsgemisch mehrfach im Kreis geführt, wobei kontinuierlich ein bestimmter Anteil des zirkulierenden Produkts ausgeschleust und durch Ausgangsmaterial ersetzt wird.
Bei der Dimerisierung werden Mischungen einfach ungesättigter Kohlenwasserstoffe erhalten, deren Komponenten überwiegend die doppelte Kettenlänge haben wie die Ausgangs-Olefine.
Die Dimerisierungskatalysatoren und die Reaktionsbedingungen werden im Rahmen der obigen Angaben zweckmäßigerweise so gewählt, dass mindestens 80 % der Komponenten des Dimerisierungsgemisches im Bereich von 1/4 bis 3/4, vorzugsweise von 1/3 bis 2/3, der Kettenlänge ihrer Hauptkette eine Verzweigung, oder zwei Verzweigungen an benachbarten C-Atomen, aufweisen.
Sehr charakteristisch für die so hergestellten Ole ingemische ist ihr hoher Anteil - in der Regel über 75 %, insbesondere über 80 % - von Komponenten mit Verzweigungen und der geringe Anteil - in der Regel unter 25, insbesondere unter 20 % - unverzweigter Olefine. Ein weiteres Charakteristikum ist, dass an den Verzweigungsstellen der Hauptkette überwiegend Gruppen mit (y-4) und (y-5) C-Atomen gebunden sind, wobei y die Kohlenstoffatom-Anzahl des für die Dimerisierung eingesetzten Monomers ist. Der Wert (y-5) = 0 bedeutet, dass keine Seitenkette vorhanden ist.
Bei den so hergestellten Cχ -01efingemischen trägt die Hauptkette an den Verzweigungspunkten vorzugsweise Methyl- oder Ethylgrup- pen.
Die Stellung der Methyl- und Ethylgruppen an der Hauptkette ist ebenfalls charakteristisch: Bei Monosubstitution befinden sich die Methyl- oder Ethylgruppen in der Position P = (n/2)-m der Hauptkette, wobei n die Länge der Hauptkette und m die Kohlenstoffanzahl der Seitengruppen ist, bei Disubstitutionsprodukten befindet sich ein Substituent in der Position P, der andere am benachbarten C-Atom P+l . Die Anteile von Monosubstitutionsproduk- ten (Einfachverzweigung) am erfindungsgemäß hergestellten Olefin- gemisch liegen charakteristischerweise insgesamt im Bereich von 40 bis 75 Gew.-%, die Anteile an doppeltverzweigten Komponenten im Bereich von 5 bis 25 Gew.-%.
ES wurde ferner gefunden, dass die Dimerisierungsgemische dann besonders gut weiter zu derivatisieren sind, wenn die Lage der Doppelbindung bestimmte Anforderungen erfüllt. In diesen vorteil- haften Olefingemischen ist die Lage der Doppelbindungen relativ zu den Verzweigungen dadurch charakterisiert, dass das Verhältnis der "aliphatischen" Wasserstoffatome zu "olefinischen" Wasserstoffatomen im Bereich HaiiPh. : H0ιef n. = (2*n-0,5) : 0,5 bis (2*n-l,9) : 1,9 liegt, wobei n die Kohlenstoffatom-Anzahl des bei der Dimerisierung erhaltenen Olefins ist.
(Als "aliphatische" Wasserstoffato e werden solche bezeichnet, die an Kohlenstoffatome gebunden sind, die an keiner C=C-Doppel- bindung (Pi-Bindung) beteiligt sind, als "olefinische" Wasserstoffatome solche, die an ein Kohlenstoffatom gebunden sind, das eine Pi-Bindung betätigt.)
Besonders bevorzugt sind Dimerisierungsgemische, bei denen das Verhältnis
Haiiph. : Hoiβfin. = (2*n-l,0) : 1 bis (2*n-l,6) : 1,6 ist.
Die so hergestellten Olefingemische werden zunächst durch Umset- zung mit Kohlenmonoxid und Wasserstoff in Gegenwart von geeigneten, vorzugsweise kobalt- oder rhodiumhaltigen Katalysatoren zu Tensidalkoholen (Oxoalkoholen) , verzweigten primären Alkoholen, hydroformylier .
Eine gute Übersicht über das Verfahren der Hydroformylierung mit zahlreichen weiteren Literaturhinweisen findet sich beispielsweise in dem umfangreichen Aufsatz von Beller et al. in Journal of Molecular Catalysis, A104 (1995) 17-85 oder in Ullmanns Ency- clopedia of Industrial Chemistry, Bd.A5 (1986), Seite 217 ff., Seite 333, sowie die diesbezüglichen Literaturverweise.
Die dort gegebenen umfassenden Informationen ermöglichen es dem Fachmann, auch die erfindungsgemäßen verzweigten Olefine zu hy- droformylieren. Bei dieser Reaktion werden CO und Wasserstoff an olefinische Doppelbindungen angelagert, wobei gemäß dem folgenden ReaktionsSchema Mischungen aus Aldehyden und Alkanolen erhalten werden: A3-CH=CH2
CO/H2 + Katalysator
Figure imgf000018_0001
(n-Verbindunge ) ( iso-Verbindungen) 0 A3-CH2-CH2-CHO A3-CH(CHO)-CH3 (Alkanal)
A3-CH2-CH2-CH2OH A3-CH(CH2OH)-CH3 (Alkanol) 5
(A3 = Kohlenwasserstoffrest)
Das Molverhalnis von n- und iso-Verbindungen im Reaktionsgemisch« liegt je nach den gewählten Verfahrensbedingungen der Hydroformylierung und dem eingesetzten Katalysator in der Regel im Bereich von 1:1 bis 20:1. Die Hydroformylierung wird normalerweise im Temperaturbereich von 90 bis 200°C und bei einem C0/H-Druck von 2,5 bis 35 MPa (25 bis 350 bar) ausgeführt. Das Mischungsverhält-5 nis von Kohlenmonoxid zu Wasserstoff richtet sich danach, ob vorzugsweise Alkanale oder Alkanole erzeugt werden sollen. Man arbeitet zweckmäßigerweise im Bereich CO:H von 10:1 bis 1:10, vorzugsweise 3 : 1 bis 1:3, wobei man zur Herstellung von Alkanalen den Bereich der niedrigen Wasserstoffpartialdrucke, zur Herstel-0 lung von Alkanolen den Bereich der hohen Wasserstoffpartialdrucke, z.B. CO:H = 1:2, wähl .
Als Katalysatoren eignen sich vor allem Metallverbindungen der allgemeinen Formel HM(C0)4 oder M (CO)g, wobei M ein Metallatom,5 vorzugsweise ein Kobalt-, Rhodium- oder Rutheniumatom ist.
Im Allgemeinen werden unter Hydroformylierungsbedingungen aus den jeweils eingesetzten Katalysatoren oder Katalysatorvorstufen ka- talytisch aktive Spezies der allgemeinen Formel HxMy(C0)zLg gebil¬0 det, worin M für ein Metall der VIII. Nebengruppe, L für einen Liganden, der ein Phosphin, Phosphit, Amin, Pyridin oder jede andere Donorverbindung, auch in pσlymerer Form, sein kann, und q, x, y und z für ganze Zahlen, abhängig von der Wertigkeit und Art des Metalls sowie der Bindigkeit des Liganden L, stehen, wobei q5 auch 0 sein kann. Bei dem Metall M handelt es sich vorzugsweise um Kobalt, Ruthenium, Rhodium, Palladium, Platin, Osmium oder Iridium und insbesondere um Kobalt, Rhodium oder Ruthenium.
Geeignete Rhodiumverbindungen oder Komplexe sind z.B. Rho- dium(II)- und Rhodium( III) -salze, wie Rhodium(III)-chlorid, Rhodium(III) -nitrat, Rhodium( III) -sulfat, Kalium-Rhodium-sulfat, Rhodium(II) bzw. Rhodium( III) -caboxylat, Rhodium(II)- und Rho- dium(III)-acetat, Rhodium(III)-oxid, Salze der Rhodium(III)- säure, wie z.B. Trisammonium-hexachlororhodat-(III) . Weiterhin eignen sich Rhodiumkomplexe wie Rhodiumbiscarbonyl-acetylaceto- nat, Acetylacetonato-bisethylen-Rhodium-(I) . Vorzugsweise werden Rhodiumbiscarbonyl-acetylacetonat oder Rhodiumacetat eingesetzt.
Geeignete Kobaltverbindungen sind zum Beispiel Kobalt(II)-Chlorid, Kobalt(II) -sulfat, Kobalt( II) -carbonat, Kobalt(II) -nitrat, deren Amin- oder Hydratkomplexe, Kobaltcarbocylate wie Kobaltace- tat, Kobaltethylhexanoat, Kobaltnaphthanoat, sowie der Kobaltca- prolactamat-Komplex. Auch hier können die Carbonylkomplexe des Kobalts wie Dikobaltoctocarbonyl, Tetrakobaltdodecacarbonyl und Hexakobalthexadecacarbonyl eingesetzt werden.
Die genannten Verbindungen des Kobalts, Rhodiums und Rutheniums sind im Prinzip bekannt und in der Literatur hinreichend beschrieben, oder sie können vom Fachmann analog zu den bereits bekannten Verbindungen hergestellt werden.
Die Hydroformylierung kann unter Zusatz von inerten Lösungs- oder Verdünnungsmitteln oder ohne solchen Zusatz durchgeführt werden. Geeignete inerte Zusätze sind beispielsweise Aceton, Methyl- ethylketon, Cyclohexanon, Toluol, Xylol, Chlorbenzol, Methylenchlorid, Hexan, Petrolether, Acetonitril sowie die hochsiedenden Anteile aus der Hydroformylierung der Dimerisierungsprodukte.
Sofern das erhaltene Hydroformylierungsprodukt einen zu hohen Aldehydgehalt aufweist, kann dieser auf einfache Weise durch eine Hydrierung, zum Beispiel mit Wasserstoff in Gegenwart von Raney- Nickel oder unter Verwendung anderer für Hydrierungsreaktionen bekannter, insbesondere Kupfer, Zink, Kobalt, Nickel, Molybdän, Zirkon oder Titan enthaltender Katalysatoren, beseitigt werden. Dabei werden die Aldehydanteile weitgehend zu Alkanolen hydriert. Eine praktisch restlose Beseitigung von Aldehydanteilen im Reak- tionsgemisch läßt sich gewünschtenfalls durch Nachhydrierung, beispielsweise unter besonders schonenden und ökonomischen Bedin- gungen mit einem Alkaliborhydrid, erreichen.
Aus dem nach der Hydrierung erhaltenen Reaktionsgemisch kann nach üblichen, dem Fachmann bekannten Reinigungsverfahren, insbeson- 5 dere durch fraktionierte Destillation, das erfindungsgemäße Cχ3-Alkoholgemisch rein gewonnen werden.
Erfindungsgemäße Cχ3-Alkoholgemische weisen in der Regel einen mittleren Verzweigungsgrad von 1 bis 4, vorzugsweise von 2,1 bis 1° 2,5, insbesondere 2,2 bis 2,4 auf. Als Verzweigungsgrad ist die Zahl der Methylgruppen in einem Molekül des Alkohols abzüglich 1 definiert. Der mittlere Verzweigungsgrad ist der statistische Mittelwert der Verzweigungsgrade der Moleküle einer Probe. Die mittlere Zahl der Methylgruppen in den Molekülen einer Probe kann
15 leicht 1H-NMR-spektroskopisch ermittelt werden. Hierzu wird die den Methylprotonen entsprechende Signalfläche im 1H-NMR-Spektrum einer Probe durch drei dividiert und zu der durch zwei dividierten Signalfläche der Methylenprotonen in der CH2-OH-Gruppe ins Verhältnis gesetzt.
20
Im Rahmen dieser Ausführungsform auf Basis von Cχ3-Oxoalkoholen sind insbesondere diejenigen Alkoholalkoxylate bevorzugt, die entweder ethoxyliert oder Blockalkoxylate vom EO/PO-Typ sind.
25
Der Ethoxylierungsgrad der erfindungsgemäß zu verwendenden etho- xylierten Cχ3-Oxoalkohole beträgt in der Regel 1 bis 50, vorzugsweise 3 bis 20 und insbesondere 3 bis 10, vor allem 4 bis 10 und besonders 5 bis 10. 30
Die Alkoxylierungsgrade der erfindungsgemäß zu verwendenden EO/ PO-Blockalkoxylate hängt von der Anordnung der Blöcke ab. Sind die PO-Blöcke terminal angeordnet, so beträgt das Verhältnis von EO-Einheiten zu PO-Einheiten in der Regel wenigstens 1, vorzugs- " weise 1:1 bis 4:1 und insbesondere 1,5:1 bis 3:1. Dabei beträgt der Ethoxylierungsgrad in der Regel 1 bis 20, vorzugsweise 2 bis 15 und insbesondere 4 bis 10, der Propoxylierungsgrad in der Regel 1 bis 20, vorzugsweise 1 bis 8 und insbesondere 2 bis 5. Der Gesamtalkoxylierungsgrad, d.h. die Summe aus EO- und PO-Einheiten
40 beträgt in der Regel 2 bis 40, vorzugsweise 3 bis 25 und insbesondere 6 bis 15. Sind die EO-Blöcke hingegen terminal angeordnet, so ist das Verhältnis von PO-Blöcken zu EO-Blöcken weniger kritisch und beträgt in der Regel 1:10 bis 3:1, vorzugsweise 1:1,5 bis 1:6. Dabei beträgt der Ethoxylierungsgrad in der Regel
45 1 bis 20, vorzugsweise 2 bis 15 und insbesondere 4 bis 10, der Propoxylierungsgrad in der Regel 0,5 bis 10, vorzugsweise 0,5 bis 6 und insbesondere 1 bis 4. Der Gesamtalkoxylierungsgrad beträgt in der Regel 1,5 bis 30, vorzugsweise 2,5 bis 21 und insbesondere 5 bis 14.
Gemäß einer weiteren bevorzugten Ausführungsform werden Alkoholalkoxylate auf Basis von C10-Oxoalkoholen verwendet.
Der Begriff "Cχo-Oxoalkohol" steht in Analogie zu dem bereits erläuterten Begriff "Cχ3-Oxoalkohol" für Cχo-Alkoholgemische, dessenQ Hauptkomponente aus wenigstens einem verzweigten Cχo-Alkohol (Isodecanol) gebildet wird.
Geeignete Cχo-Alkoholgemische sind allgemein erhältlich durch Hydrierung von hydroformyliertem Trimerpropen. Insbesondere kann5 man
a) Propene zwecks Oligomerisierung mit einem geeigneten Katalysator in Kontakt bringen, 0 b) aus dem Reaktionsgemisch eine C9-01efinfraktion isolieren,
c) die Cg-Olefinfraktion durch Umsetzung mit Kohlenmonoxid und Wasserstoff in Gegenwart eines geeigneten Katalysators hydro- formylieren und 5 d) hydrieren.
Besondere Ausfuhrungsformen dieser Vorgehensweise ergeben sich in Analogie zu den oben für die Hydrierung von hydroformyliertem0 Trimerbuten beschriebenen Ausgestaltungen.
Im Rahmen dieser Ausfuhrungsform auf Basis von Cχo-Oxoalkoholen sind insbesondere diejenigen Alkoholalkoxylate bevorzugt, die entweder ethoxyliert oder Blockalkoxylate vom EO/PeO-Typ sind.5
Der Ethoxylierungsgrad der erfindungsgemäß zu verwendenden etho- xylierten Cχo-Oxoalkohole beträgt in der Regel 1 bis 50, vorzugsweise 2 bis 20 und insbesondere 2 bis 10, vor allem 3 bis 10 und besonders 3 bis 10. 0
Die Alkoxylierungsgrade der erfindungsgemäß zu verwendenden EO/ PeO-Blockalkoxylate hängt von der Anordnung der Blöcke ab. Sind die PO-Blöcke terminal angeordnet, so beträgt das Verhältnis von EO-Einheiten zu PO-Einheiten in der Regel wenigstens 1, vorzugs¬5 weise 2:1 bis 25:1 und insbesondere 4:1 bis 15:1. Dabei beträgt der Ethoxylierungsgrad in der Regel 1 bis 50, vorzugsweise 4 bis 25 und insbesondere 6 bis 15, der Pentoxylierungsgrad in der Re- gel 0,5 bis 20, vorzugsweise 0,5 bis 4 und insbesondere 0,5 bis 2. Der Gesamtalkoxylierungsgrad, d. h. die Summe aus EO- und PeO- Einheiten beträgt in der Regel 1,5 bis 70, vorzugsweise 4,5 bis 29 und insbesondere 6,5 bis 17. Sind die EO-Blöcke hingegen ter- 5 inal angeordnet, so ist das Verhältnis von PeO-Blöcken zu EO- Blöcken weniger kritisch und beträgt in der Regel 1:50 bis 1:3, vorzugsweise 1:25 bis 1:5. Dabei beträgt der Ethoxylierungsgrad in der Regel 3 bis 50, vorzugsweise 4 bis 25 und insbesondere 5 bis 15, der Pentoxylierungsgrad in der Regel 0,5 bis 20, vorzugs-0 weise 0,5 bis 4 und insbesondere 0,5 bis 2. Der Gesamtalkoxylierungsgrad beträgt in der Regel 3,5 bis 70, vorzugsweise 4,5 bis 45 und insbesondere 5,5 bis 17.
Aus den vorstehenden Ausführungen folgt, dass insbesondere die5 erfindungsgemäß zu verwendenden Cχ3-Oxoalkohole bzw. Cχ0-Oxoalko- hole auf Olefinen basieren, die bereits verzweigt sind. Mit anderen Worten, Verzweigungen sind nicht nur auf die Hydroformylie- rungsreaktion zurückzuführen, wie es bei der Hydroformylierung geradkettiger Olefine der Fall wäre. Deshalb ist der Verzwei¬0 gungsgrad erfindungsgemäß zu verwendender Alkoxylate in der Regel größer als 1.
Die erfindungsgemäß zu verwendenden Alkoxylate weisen in der Re-5 gel einen relativ geringen Kontaktwinkel auf. Besonders bevorzugt sind Alkoxylate, deren Kontaktwinkel weniger als 120° und vorzugsweise weniger als 100° beträgt, wenn dieser anhand einer 2 Gew.-% Alkoxylat enthaltenden, wässrigen Lösung auf einer Paraffinoberfläche in an sich bekannter Art und Weise bestimmt wird. 0
Die oberflächenaktiven Eigenschaften der Alkoholalkoxylate hängen einem Aspekt zufolge von Art und Verteilung der Alkoholalkoxylat- Gruppierung ab. Die nach der Pendant Drop Methode bestimmbare Oberflächenspannung erfindungsgemäß zu verwendender Alkoholalko- ' xylate liegt vorzugsweise in einem Bereich von 25 bis 70 mN/m und insbesondere 28 bis 50 mN/m für eine 0,1 Gew.% Alkoholalkoxylat enthaltende Lösung, in einem Bereich von 25 bis 70 mN/m und ins- besonden 28 bis 45 mN/m für eine 0,5 Gew.% Alkoholalkoxylat enthaltende Lösung. Erfindungsgemäß bevorzugt zu verwendende Alko-0 holalkoxylate quali izieren daher als amphiphile Substanzen.
Besonders gut eignen sich obige Alkoholalkoxylate bei der Anwendung der Benzamidoxim-Derivate der Formel Ia 5
Figure imgf000023_0001
wobei
R1 wie oben definiert ist;
R5 für Wasserstoff, Halogen, Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl, Cχ-C4-Alkoxy oder Cχ-C4-Halogenalkoxy steht; und
n 1, 2 oder 3 ist.
Hiervon sind Benzamidoxim-Derivate der Formel (I) oder (la) bevorzugt, worin R1 für Difluormethyl oder Tri luormethyl steht und R5 Wasserstoff ist, also N-Phenylacetyl-2-difluormethoxy-5,6-di- fluorbenzamid-(0-cyclopropylmethyl]-oxim und N-Phenylace- tyl-2-trifluormethoxy-5, 6-difluorbenzamid-(O-cyclopropylme- thyl]-oxim.
Die Benzamidoxim-Derivate können zusammen mit weiteren Wirkstoffen zum Einsatz kommen, z.B. mit Herbiziden, Insektiziden, Wachstumsregulatoren, Fungiziden oder auch mit Düngemitteln.
Beim Vermischen mit Fungiziden erhält man dabei in vielen Fällen eine Vergrößerung des fungiziden WirkungsSpektrums.
Die folgende Liste von Fungiziden, mit denen die Benzamidoxim-Derivate gemeinsam angewendet werden können, soll die Kombinationsmöglichkeiten erläutern, nicht aber einschränken:
Aliphatische Stickstoff-Fungizide, z.B. Butylamin, Cymoxanil, Do- dicin, Dodine, Guazatine und Iminoctadine;
Amid-Fungizide, z.B. Carpropamid, Chloraniformethan, Cyazofamid, Cyflufenamid, Diclocymet, Ethaboxam, Fenoxanil, Flumetover, Fura- metpyr, Prochloraz, Quinazamid, Silthiofam und Triforine; insbesondere Acylaminosäure-Fungizide, z.B. Benalaxyl, Benalaxyl-M, Furalaxyl, Metalaxyl, Metalaxyl-M, Pefurazoat; Benzamid-Fungi- zide, z.B. Benzohydroxaminsäure, Tioxymid, Trichlamid, Zarilamid und Zoxamid; Furamid-Fungizide, z.B. Cyclafuramid und Furmecy- clox; Phenylsulfamid-Fungizide, z.B. Dichlofluanid und Tolylflua- nid; Valina id-Fungizide, z. B. Benthiavalicarb und Iprovalicarb; und Anilid-Fungizide, z.B. Benalaxyl, Benalaxyl-M, Boscalid, Car- boxin, Fenhexamid, Metalaxyl, Metalaxyl-M, Metsulfovax, Ofurac, Oxadixyl, Oxycarboxin, Pyracarbolid, Thifluzamid, Tiadinil; insbesondere Benzanilid-Fungizide, z.B. Benodanil, Flutolanil, Mebe- nil, Mepronil, Salicylanilid und Tecloftalam; Furanilid-Fungi- zide, z.B. Fenfuram, Furalaxyl, Furcarbanil und Methfuroxam; und Sulfonanilid-Fungizide, z.B. Flusulfamid;
antibiotische Fungizide, z.B. Aureofungin, Blasticidin-S, Cyclo- heximid, Griseofulvin, Kasugamycin, Natamycin, Polyoxins, Poly- oxorim, Streptomycin und Validamycin; insbesondere Strobilurin- Fungizide, z.B. Azoxystrobin, Dimoxystrobin, Ffluoxastrobin, Kre- soxim-methyl, Metominostrobin, Orysastrobin, Picoxystrobin, Pyra- clostrobin und Trifloxystrobin;
aromatische Fungizide, z.B. Biphenyl, Chlorodinitronaphthalin, Chloroneb, Chlorothalonil, Cresol, Dicloran, Hexachlorbenzol, Pentachlorphenol, Quintozen, Natriumpentachlorphenoxid und Tecna- zen;
Benzimidazol-Fungizide, z.B. Benomyl, Carbendazim, Chlorfenazole, Cypendazole, Debacarb, Fuberidazole, Mecarbinzid, Rabenzazole und Thiabendazole;
Benzimidazolvorstufen-Fungizide, z.B. Furophanat, Thiophanat und Thiophanat-methyl; Benzothiazol-Fungizide, z.B. Bentaluron, Chlo- benthiazone und TCMTB;
verbrückte Diphenyl-Fungizide, z.B. Bithionol, Dichlorphen und Dipheny1amin;
Carbamat-Fungizide, z.B. Benthiavalicarb, Furophanat, Iprovalicarb, Propamocarb, Thiophanat und Thiophanat-methyl; insbesondere Benzi idazolylcarbamat-Fungizide, z.B. Benomyl, Carbendazim, Cypendazole, Debacarb, Mecarbinzid; und Carbanilat-Fungizide, z.B. Diethofencarb;
Conazol-Fungizide, insbesondere Imidazole, z.B. Climbazole, Clo- trimazole, Imazalil, Oxpoconazole, Prochloraz und Triflumizole; und Triazole, z.B. Azaconazole, Bromuconazole, Cyproconazole, Di- clobutrazol, Difenoconazole, Diniconazole, Diniconazole-M, Epoxi- conazole, Etaconazole, Fenbuconazole, Fluquinconazole, Flusila- zole, Flutriafol, Furconazole, Furconazole-cis, Hexaconazole, Imibenconazole, Ipconazole, Metconazole, Myclobutanil, Pencona- zole, Propiconazole, Prothioconazole, Quinconazole, Simeconazole, Tebuconazole, Tetraconazole, Triadimefon, Triadimenol, Triticona- zole, Uniconazole und Uniconazole-P;
Kupfer-Fungizide, z.B. Bordeaux-Gemisch, Burgunder-Gemisch, Ches- hunt-Gemisch, Kupferacetat, basisches Kupfercarbonat, Kupferhydroxid, Kupfernaphthenat, Kupferoleat, Kupferoxychlorid, Kupfersulfat, basisches Kupfersulfat, Zinkchromat, Cufraneb, Cuprobam, Kupferoxid, Mancopper und Oxin-Kupfer;
Dicarboximid-Fungizide, z.B. Famoxadone und Fluoroimid; insbesondere Dichlorphenyldicarboximid-Fungizide, z.B. Chlozolinate, Dichlozolin, Iprodione, Isovaledione, Myclozolin, Procymidone und Vinclozolin; und Phthalimid-Fungizide, z.B. Captafol, Captan, Di- talimfos, Folpet und Thiochlorfenphi ;
Dinitrophenol-Fungizide, z.B. Binapacryl, Dinobuton, Dinocap, Di- nocap-4, Dinocap-6, Dinocton, Dinopenton, Dinosulfon, Dinoterbon und DNOC; Dithiocarbamat-Fungizide, z.B. Azithiram, Carba orph, Cufraneb, Cuprobam, Disulfiram, Ferbam, Metam, Nabam, Tecoram, Thira und Ziram; insbesondere cyclische
Dithiocarba at-Fungizide, z.B. Dazomet, Etem und Milneb; und po- lymere Dithiocarbamat-Fungizide, z.B. Mancopper, Mancozeb, Maneb,
Metiram, Polycarbamat, Propineb und Zineb;
Imidazol-Fungizide, z.B. Cyazofamid, Fenamidone, Fenapanil, Glyo- din, Iprodione, Isovaledione, Pefurazoat und Triazoxid;
anorganische Fungizide, z.B. Kaliumazid, Kaliumthiocyanat, Na- triumazid und Schwefel;
Quecksilber-Fungizide, insbesondere anorganische Quecksilber-Fungizide, z.B. Quecksilberchloride wie Quecksilber( II) -chlorid und Quecksilber( I ) -chlorid, Quecksilber( II)-oxid; Organoquecksilber- Fungizide, z.B. (3-Ethoxypropyl)quecksilberbromid, Ethylquecksil- beracetat, Ethylquecksilberbromid, Ethylquecksilberchlorid, Ethylquecksilber-2 , 3-dihydroxypropylmercaptid, Ethylquecksilber- phosphat, N-(Ethylquecksilber)-p-toluolsulphonanilid, Hydrarga- phen, 2-Methoxyethylquecksilberchlorid, Methylquecksilberbenzoat, Methylquecksilberdicyandiamid, Methylquecksilberpentachlorpheno- xid, 8-Phenylmercurioxychinolin, Phenylmercuriharnstoff, Phenyl- quecksilberacetat, Phenylquecksilberchlorid, Phenylquecksilber- Derivat von Pyrocatechol, Phenylquecksilber- nitrat, Phenylqueck- silbersalicylat, Thiomersal und Tolylquecksilberacetat;
Morpholin-Fungizide, z.B. Aldimorph, Benzamorf, Carbamorph, Dime- thomorph, Dodemorph, Fenpropimorph, Flumorph, und Tride orph;
Organophosphor-Fungizide, z.B. Ampropylfos, Ditalimfos, Edifen- 1Q phos, Fosetyl, Hexylthiofos, Iprobenfos, Phosdiphen, Pyrazophos, Tolclofos-methyl und Triamiphos;
Organozinn-Fungizide, z.B. Decafentin, Fentin, Tributylzinnoxid;
Oxathiin-Fungizide, z.B. Carboxin und Oxycarboxin;
Oxazol-Fungizide, z.B. Chlozolinate, Dichlozoline, Drazoxolon,
Famoxadone Hymexazol, Metazoxolon, Myclozolin, Oxadixyl und Vinc-
„_ lozolin; 20
Polysulfid-Fungizide, z.B. Bariumpolysulfid, Calciu polysulfid, Kaliumpolysulfid und Natriumpolysulfid;
25 Pyridin-Fungizide, z.B. Boscalid, Buthiobate, Dipyrithione, Flua- zinam, Pyridinitril, Pyrifenox, Pyroxychlor und Pyroxyfur;
Pyrimidin-Fungizide, z.B. Bupirimate, Cyprodinil, Diflumetorim, Dimethirimol, Ethirimol, Fenarimol, Ferimzone, Mepanipyrim, Nua- rimol, Pyrimethanil und Triarimol;
Pyrrol-Fungizide, z.B. Fenpiclonil, Fludioxonil und Fluorimid;
35 Chinolin-Fungizide, z.B. Ethoxyquin, Halacrinat, 8-Hydroxychino- linesulfat, Quinacetol und Quinoxyfen;
Chinon-Fungizide, z.B. Benquinox, Chloranil, Dichlone und Dithia- non; 40
Chinoxalin-Fungizide, z.B. Chinomethionat, Chlorquinox und Thio- quinox; 5 Thiazol-Fungizide, z.B. Ethaboxam, Etridiazole, Metsulfovax, Oct- hilinone, Thiabendazole, Thiadifluor und Thifluzamide; Thiocarbamat-Fungizide, z.B. Methasulfocarb und Prothiocarb;
Thiophen-Fungizide, z.B. Ethaboxam und Silthiofam;
Triazin-Fungizide, z.B. Anilazin;
Triazole-Fungizide, z.B. Bitertanol, Fluotrimazole und Triazbu- til;
Harnstoff-Fungizide, z.B. Bentaluron, Pencycuron und Quinazamid;
und weitere Fungizide, z.B. Acibenzolar, Acypetacs, Allylalkohol, Benzalkoniumchlorid, Benzamacril, Bethoxazin, Carvone, Chloropi- crin, DBCP, Dehydroessigsäure, Diclomezine, Diethylpyrocarbonat, Fenaminosulf, Fenitropan, Fenpropidin, Formaldehyd, Hexachlorbu- tadien, Isoprothiolan, Methylbromid, Methylisothiocyanat, Metra- fenone, Nitrostyrol, Nitrothal-isopropyl, OCH, 2-Phenylphenol, Phthalid, Piperalin, Probenazole, Proquinazid, Pyroquilon, Na- triuorthophenylphenoxide, Spiroxamin, Sultropen, Thicyofen, Tri- cyclazole und Zinknaphthenat.
Zu Fungiziden, mit denen die Benzamidoxim-Derivate gemeinsam an- gewendet werden können, gehören insbesondere:
Schwefel, Dithiocarbamate und deren Derivate, wie Ferridimethyl- dithiocarbamat, Zinkdimethyldithiocarba at, Zinkethylenbisdithio- carba at, Manganethylenbisdithiocarbamat, Mangan-Zink-ethylen- diamin-bis-dithiocarbamat, Tetramethylthiuramdisulfide, Ammoniak- Komplex von Zink-(N,N'-ethylen-bis-dithiocarbamat) , Ammoniak- Komplex von Zink-(N,N'-propylen-bis-dithiocarbamat) , Zink-(N,N'- propylen-bis-dithiocarbamat) , N,N'-Polypropylen-bis-(thio- carbamoyl) -disulfid;
Nitroderivate, wie Dinitro-( 1-methylheptyl) -phenylcrotonat, 2-sec. -Butyl-4 , 6-dinitrophenyl-3 , 3-dimethylacryla , 2-sec .- Butyl-4, 6-dinitrophenyl-iso-propylcarbonat, 5-Nitro-iso-phthal- säure-di-iso-propylester;
heterocyclische Substanzen, wie 2-Heptadecyl-2-imidazolin-acetat, 2, 4-Dichlor-6-(o-chloranilino) -s-triazin, 0,O-Diethyl-phthal- imidophosphonothioat, 5-Amino-1-[ is-(dimethylamino)-phosphinyl]- 3-phenyl-l, 2 , 4-triazol, 2 , 3-Dicyano-l, 4-dithioanthrachinon, 2-Thio-l, 3-dithiolo[ 4 , 5-b]chinoxalin, 1-(Butylcarbamoyl) -2-benz- imidazol-carbaminsäuremethylester, 2-Methoxycarbonylamino-benz- imidazol, 2-(Furyl-(2) )-benzimidazol, 2-(Thiazolyl-(4) )-benz- imidazol, N-( 1 , 1 , 2 , 2-Tetrachlorethylthio) -tetrahydrophthalimid, N-Trichlormethylthio-tetrahydrophthalimid, N-Trichlormethylthio- phthalimid,
N-Dichlorfluormethylthio-N' ,N' -dimethyl-N-phenyl-schwefelsäure- diamid, 5-Ethoxy-3-trichlormethyl-l,2,3-thiadiazol, 2-Rhodan- methylthiobenzthiazol, 1 , 4-Dichlor-2 , 5-dimethoxybenzol, 4- ( 2-Chlorphenylhydrazono) -3-methyl-5-isoxazolon, Pyridin- 2-thion-l-oxid, 8-Hydroxychinolin bzw. dessen Kupfersalz, 2,3-Di- hydro-5-carboxanilido-6-methyl-l,4-oxathiin, 2,3-Dihydro- 5-carboxanilido-6-methyl-l , 4-oxathiin-4 , 4-dioxid, 2-Methyl- 5 , 6-dihydro-4H-pyran-3-carbonsäure-anilid, 2-Methyl-furan-3-car- bonsäureanilid, 2 , 5-Dimethyl-furan-3-carbonsäureanilid, 2,4, 5-Trimethyl-furan-3-carbonsäureanilid, 2 , 5-Dimethyl-furan- 3-carbonsäurecyclohexylamid, N-Cyclohexyl-N-methoxy-2, 5-dimethyl- furan-3-carbonsäureamid, 2-Methyl-benzoesäure-anilid, 2-Iod-ben- zoesäure-anilid, N-Formyl-N-morpholin-2,2,2-trichlorethylacetal, Piperazin-1 , 4-diylbis- ( 1- ( 2, 2 , 2-trichlor-ethyl) -formamid, 1- ( 3 , 4-Dichloranilino)-1-formylamino-2 , 2 , 2-trichlorethan,
2,6-Dimethyl-N-tridecyl-morpholin bzw. dessen Salze, 2,6-Di- methyl-N-cyclododecyl-morpholin bzw. dessen Salze, N-[3-(p-tert.- Butylphenyl ) -2-methylpropyl ] -cis-2 , 6-dimethylmorpholin, N- [ 3- (p-ter . -Butylphenyl ) -2-methylpropyl ] -piperidin, 1-[ 2-( 2 , 4-Dichlorphenyl ) -4-ethyl-l , 3-dioxolan-2-yl-ethyl ] - 1H-1 , 2 , 4-triazol 1- [2-( 2 , 4-Dichlorphenyl ) -4-n-propyl-l , 3-di- oxolan-2-yl-ethyl] -1H-1 , 2 , 4-triazol, N- (n-Propyl ) -N- (2,4, 6-tri- chlorphenoxyethyl) -N' -imidazol-yl-harnstoff, 1- ( 4-Chlorphenoxy) - 3 , 3-dimethyl-l- ( 1H-1 , 2 , 4-triazol-l-yl ) -2-butanon, ( 2-Chlor- phenyl) - ( 4-chlorphenyl) -5-pyrimidin-methanol, 5-Butyl-2-dimethyl- amino-4-hydroxy-6-methyl-pyrimidin, Bis-(p-chlorphenyl)-3-pyri- dinmethanol, 1 , 2-Bis- ( 3-ethoxycarbonyl-2-thioureido) -benzol, 1 ,2-Bis- ( 3-methoxycarbonyl-2-thioureido) -benzol, [ 2- ( 4-Chlor- phenyl )ethyl] - ( 1 , 1-dimethylethyl ) -1H-1 , 2 , 4-triazol-l-ethanol, 1-[ 3- ( 2-Chlorphenyl ) -1-( 4-fluorphenyl)oxiran-2-yl-methyl ] - lH-l,2,4-triazol sowie
verschiedene Fungizide, wie Dodecylguanidinacetat, 3-[3-(3,5-Di- methyl-2-oxycyclohexyl)-2-hydroxyethyl ] glutarimid, Hexachlor- benzol, DL-Methyl-N-( 2 , 6-dimethyl-ρhenyl ) -N-furoyl ( 2 ) -alaninat, DL-N-( 2 , 6-Dimethyl-phenyl ) -N- ( 2 ' -methoxyacetyl) -alanin-methyl- ester, N- ( 2 , 6-Dimethylphenyl ) -N-chloracetyl-D,L-2-aminobutyrol- acton, DL-N- ( 2 , 6-Dimethylphenyl ) -N- (phenylacetyl) -alaninmethyl- ester, 5-Methyl-5-vinyl-3- ( 3 , 5-dichlorphenyl ) -2 , 4-dioxo-l , 3-oxa- zolidin, 3- [ ( 3 , 5-Dichlorphenyl ) -5-methyl-5-methoxymethyl-l , 3-oxa- zolidin-2 , 4-dion, 3-( 3 , 5-Dichlorphenyl ) -1-iso-propylcarbamoyl- hydantoin, N- ( 3, 5-Dichlorphenyl)-1, 2-dimethylcyclopropan- 1,2-dicarbonsäureimid, 2-Cyano-[N-(ethylaminocarbonyl)-2-meth- oximino]-acetamid, 1- [2-( 2 ,4-Dichlorphenyl)-pentyl]-1H-1 , 2 , 4-tri- azol, 2, 4-Difluor-α-( 1H-1, 2, 4-triazolyl-l-methyl)-benzhydrylalko- hol, N-( 3-Chlor-2 , 6-dinitro-4-trifluormethyl-phenyl) -5-trifluor- methyl-3-chlor-2-aminopyridin, l-( (bis-(4-Fluorphenyl)-methyl- silyl) -methyl )-1H-1,2, 4-triazol,
Strobilurine wie Methyl-E-methoximino-[α-{o-tolyloxy)- o-toly1]acetat, Methyl-E-2-{2-[ 6-( 2-cyanophenoxy)pyridimin-4-yl- oxy]phenyl}-3-methoxyacrylat, Methyl-E-methoximino- [α-( 2 , 5-di- methyloxy) -o-toly1]acetamid.
Anilino-Pyrimidine wie N-(4,6-dimethylpyrimidin-2-yl)anilin, N-[4-methyl-6-( l-propinyl)pyrimidin-2-yl]anilin, N-(4-methyl- 6-cyclopropyl-pyrimidin-2-yl)anilin.
Phenylpyrrole wie 4-(2,2-difluor-l,3-benzodioxol-4-yl)-pyrrol- 3-carbonitril.
Zimtsäureamide wie 3-(4-chlorphenyl)-3-(3,4-dimethoxy- phenyl )acrylsäuremorpholid.
Bevorzugte Kombinationspartner sind a) Azole, die vorzugsweise ausgewählt sind unter: Bromucona- zole, Cyproconazol, Difenoconazol, Diniconazol, Epoxicona- zol, Fenbuconazol, Fluquinconazol, Flusilazol, Hexaconazol, Metconazol, Prochloraz, Propiconazol, Tebuconazol, Triflu- mizol, Flutriafol, Myclobutanil, Penconazole, Simeconazole, Ipconazole, Triticonazole und Prothioconazole; b) Benzophenone der Formel IV,
Figure imgf000029_0001
worin
R9 für Chlor, Methyl, Acetoxy, Pivaloyloxy oder Hydroxy, vorzugseise Methoxy, steht;
R10 für Chlor oder vorzugseise Methyl steht; R11 für Wasserstoff, Halogen, vorzugsweise Brom, oder Methyl steht; und
R12 für Cχ-C6-Alkyl, vorzugsweise Methyl, oder Benzyl stehen, wobei der Phenylteil des Benzylrestes einen Halogen oder Methylsubstituenten tragen kann;
c) Oximetherderivate der Formel V
Figure imgf000030_0001
wobei die Substituenten X1 bis X5 und Y1 bis Y4 folgende Bedeutung haben:
X1 Halogen, Cχ-C4-Halogenalkyl Cχ-C4-Halogenalkoxy;
X2 bis X5 unabhängig voneinander Wasserstoff, Halogen,
Cχ-C4-Alkyl, Cχ-C4-Halogenalkyl, Cχ-C-Alkoxy oder Cχ-C4-Halogenalkoxy;
Y1 Cχ-C4-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, Cχ-C4-Al- kyl-C3-C7-cycloalkyl, wobei diese Reste einen oder mehrer unter Halogen, Cyano und Cχ-C4-Alkoxy ausgewählte Substituenten tragen können;
Y2 einen Phenylrest oder einen 5- oder 6-gliedrigen gesättigten oder ungesättigten heterocyclischen Rest mit mindestens einem unter N, 0 und S ausgewählten Heteroatom, wobei die cyclischen Reste einen bis drei unter Halogen, Cχ-C4-Alkyl, Cχ-C4-Alkoxy, Cχ-C4-Halogenalkyl, Cχ-C-Halo- genalkoxy, Cχ-C4-Alkoxy-C2-C4-alkenyl und Cχ-C4-Alkoxy- C-C4-alkinyl ausgewählte Substituenten aufweisen können; und
Y3, Y4 unabhängig voneinander Wasserstoff, Cχ-C4-Alkyl, Cχ-C4-Alkoxy, Cχ-C4-Alkylthio, N-Cχ-C4-Alkylamino, Cχ-C4-Halogenalkyl oder Cχ-C4-Halogenalkoxy; und
d) Pyraclostrobin. Ganz besonders hervorzuheben sind Kombination von Benzamidoxim- Derivaten der Formel (I) und insbesondere den bevorzugten Vertretern davon mit einem, zwei oder drei der folgenden Wirkstoffe: Metrafenone (ein Benzophenon der Formel (IV), worin R9 für Me- thoxy, R10 für Methyl, R11 für Brom, und R12 für Methyl stehen), Epoxiconazol und Pyraclostrobin.
Die erfindungsgemäß zu verwendenden Alkoholalkoxylate weisen ad- juvante, insbesondere wirkungsfordernde Eigenschaften auf. So wird bei Zusatz derartiger Alkoholalkoxylate zu den Benzamidoxim- Derivaten der Formel (I) bei ihrer Anwendung eine vergleichweise höhere fungizide Wirkung beobachtet. Aus der adjuvanten Wirkung leiten sich insbesondere folgende Aspekte bei der Anwendung eines oder mehrerer Benzamidoxim-Derivate der Formel (I), gegebenenfalls in Kombination mit einem oder mehreren weiteren Wirkstoffen, ab:
vergleichsweise höhere Wirksamkeit der Benzamidoxim-Derivate bei gegebener Aufwandmenge; vergleichsweise geringere Aufwandmenge der Benzamidoxim-Derivate bei gegebener Wirkung; vergleichsweise stärkere Aufnahme der Benzamidoxim-Derivate durch den zu behandelnden Organismus, insbesondere eine Pflanze, vor allem über das Blatt, und damit Vorteile im Nachauflaufverfahren, insbesondere bei der Sprühbehandlung von Pflanzen.
Die erfindungsgemäße Verwendung betrifft eine Reihe verschieden- artiger Anwendungsmöglichkeiten, die insbesondere auf den Pflanzenanbau, die Landwirtschaft und den Gartenbau gerichtet sind. Die Benzamidoxim-Derivate der Formel ( I ) sind insbesondere als Fungizide brauchbar und dienen damit der Kontrolle eines breiten Spektrums von pflanzenpathogenen Pilzen, insbesondere aus der Klasse der Ascomyceten, Basidiomyceten, Phycomyceten und Deutero- myceten. Sie sind zum Teil systemisch wirksam und können daher auch als Blatt- und/oder Bodenfungizide eingesetzt werden. Dies gilt in entsprechender Weise für Kombinationen der Benzamidoxim- Derivate und weiteren Wirkstoffen, insbesondere Fungiziden.
Demnach betrifft die vorliegende Erfindung auch obigen Verwendungszwecken entsprechende Verfahren zur Behandlung von Organismen, die von einem oder mehreren Schadpilzen befallen sind, oder zur vorbeugenden Behandlung von Organismen, bei denen man den Be- fall von Schadpilzen befürchtet und deshalb vermeiden möchte. Das Verfahren beinhaltet, dass man eine geeignete Menge an Wirkstoff und Adjuvans appliziert.
Bei den zu behandelnden Organismen handelt es sich vornehmlich um Pflanzen oder Pflanzenteile wie Samen. Die Behandlung erfolgt so, daß man eine - insbesondere fungizid - wirksame Menge (Aufwandmenge) der Kombination aus Wirkstoff und Adjuvans auf die Schadpilze, deren Lebensraum oder die von ihnen freizuhaltenden Organismen, insbesondere Pflanzen und Samen, Böden, Flächen, Materialien oder Räume, einwirken lässt.
Vorteile werden insbesondere bei der Bekämpfung einer Vielzahl von Pilzen an verschiedenen Kulturpflanzen wie Baumwolle, Gemüsepflanzen (z.B. Gurken, Bohnen, Tomaten, Kartoffeln und Kürbisgewächsen), Gerste, Gras, Hafer, Bananen, Kaffee, Mais, Obstpflanzen, Reis, Roggen, Soja, Wein, Weizen, Zierpflanzen, Zuckerrohr sowie an einer Vielzahl von Samen erzielt. Die dazu zweckmäßige Applikation ist Sache des Fachmanns.
Besondere Vorteile werden insbesondere bei der Bekämpfung der folgenden pflanzenpathogenen Pilze: Blumeria graminis (echter Mehltau) an Getreide, Erysiphe cichoracearum und Sphaerotheca fuliginea an Kürbisgewächsen, Podosphaera leucotricha an Äpfeln, Uncinula necator an Reben, Puccinia-Arten an Getreide, Rhizocto- nia-Arten an Baumwolle, Reis und Rasen, Ustilago-Arten an Getreide und Zuckerrohr, Venturia inaequalis (Schorf) an Äpfeln, Helminthosporium-Arten an Getreide, Septoria nodorum an Weizen, Botrytis cinera (Grauschimmel) an Erdbeeren, Gemüse, Zierpflanzen und Reben, Cercospora arachidicola an Erdnüssen, Pseudo- cercosporella herpotrichoides an Weizen und Gerste, Pyricularia oryzae an Reis, Phytophthora infestans an Kartoffeln und Tomaten, Plasmopara viticola an Reben, Pseudoperonospora-Arten in Hopfen und Gurken, Alternaria-Arten an Gemüse und Obst, Mycosphaerella- Arten in Bananen sowie Fusarium- und Verticillium-Arten.
Grundsätzlich kann die Aufwandmenge an Wirkstoff infolge der hohen Pflanzenverträglichkeit stark variiert werden. Typischerweise betragen die erfindungsgemäßen Aufwandmengen für die Benzamidoxim-Derivate der Formel (I) in der Regel bei 0,001 bis 2,5 kg/ha, vorzugsweise 0,005 bis 2 kg/ha, insbesondere 0,01 bis 1,0 kg/ha und für die Alkoholalkoxylate in der Regel bei 0,001 bis 25 kg/ha, vorzugsweise 0,05 bis 2 kg/ha, insbesondere 0,1 bis 1 kg/ha.
Bei der Saatgutbehandlung betragen Aufwandmengen für die Benzamidoxim-Derivate der Formel (I) im allgemeinen 0,001 bis 250 g/kg Saatgut, vorzugsweise 0,01 bis 100 g/kg, insbesondere 0,01 bis 50 g/kg und für die Alkoholalkoxylate in der Regel bei 0,001 bis 250 g/kg, vorzugsweise 0,01 bis 100 g/kg, insbesondere 0,01 bis 50 g/ kg.
Das Aufwandmengen-Verhältnis von Alkoholalkoxylaten zu Benzamido- xim-Derivaten liegt in der Regel im Bereich von 0,5 : 1 bis 100 : 1, vorzugsweise 1 : 1 bis 50 : 1, insbesondere 1 : 1 bis 20 : 1. Einem besonderen Aspekt zufolge sind die Aufwandmengen an Alkoholalkoxylaten größer als Aufwandmengen an Benzamidoxim-Derivaten.
Im Rahmen der erfindungsgemäßen Verwendung werden die Wirkstoffe in der Regel zunächst der landwirtschaftlichen Praxis entsprechend zu einem Mittel formuliert und dann als Mittel appliziert. Dabei kann das Adjuvans bereits dem wirkstoffhaltigen Mittel zu- gesetzt sein; es kann aber auch getrennt davon, gegebenenfalls der landwirtschaftlichen Praxis entsprechend ebenfalls zu einem weiteren Mittel formuliert, vorliegen und erst bei der eigentlichen Anwendung gleichzeitig oder in angemessenem zeitlichen Abstand so mit dem wirkstoffhaltigen Mittel appliziert werden, dass Wirkstoff und Adjuvans gemeinsam einwirken können.
Die erfindungsgemäße Verwendung umfasst daher auch den Einsatz der erfindungsgemäßen Alkoholalkoxylate als "stand-alone"-Pro- dukt. In diesem Sinne kann die erfindungsgemäße Kombination aus Wirkstoff und Adjuvans auch in Form eines Kits bereitgestellt werden. Ein solcher Kit beinhaltet zumindest zwei Behältnisse. Ein Behältnis umfasst wenigstens ein Benzamidoxim-Derivat der Formel (I), gegebenenfalls als Mittel mit zweckmäßigen Hilfsstoffen formuliert. Ein weiteres Behältnis umfaßt wenigstens ein Alkoholalkoxylat.
Gegenstand der vorliegenden Erfindung sind auch Mittel mit einer Wirkstoffkomponente (a), umfassend (al) wenigstens ein Benzamido- xim-Derivat der Formel (I), und mit einer Adjuvanskomponente (b), umfassend (bl) wenigstens einen alkoxylierten Alkohol, wobei dass Gewichtsverhältnis der Komponente (bl) zu (al) wenigstens 0,5 beträt.
Qer Anteil der Komponente (a) am Gesamtgewicht des Mittels macht in der Regel mehr als 1 Gew.-%, vorzugsweise mehr als 2 Gew.-% und insbesondere mehr als 2,5 Gew.-% aus. Andererseits macht der Anteil der Komponente (a) am Gesamtgewicht des Mittels in der Regel weniger als 75 Gew.-%, vorzugsweise weniger als 60 Gew.-% und insbesondere weniger als 50 Gew.-% aus. Der Anteil der Komponente (al) am Gesamtgewicht des Mittels macht in der Regel mehr als 1 Gew.-%, vorzugsweise mehr als 2 Gew.-% und insbesondere mehr als 2,5 Gew.-% aus. Andererseits macht der Anteil der Komponente (al) am Gesamtgewicht des Mittels in der Regel weniger als 50 Gew.-%, vorzugsweise weniger als 40 Ge.-% und insbesondere weniger als 35 Gew.-% aus.
Gemäß einer Ausführungsform der vorliegenden Erfindung besteht die Wirkstoffkomponente (a) im wesentlichen aus (al), d.h.
(al) einem oder mehreren Benzamidoxim-Derivaten der Formel (I).
Neben der Komponente (al) kann die irkstoffkomponente (a) er- findnungsgemäßer Mittel wenigstens einen weiteren Pflanzenwirkstoff aufweisen.
Gemäß einer besonderen Ausführungsform umfassen erfindungsgemäße Mittel als weiteren Pflanzenwirkstoff
( a2 ) wenigstens einen oder mehrere der oben beschiebenen Kombinationspartner, insbesondere einen oder mehrere Wirkstoffe, die ausgewählt sind unter den oben beschriebenen Azolen, Benzophenonen der Formel IV, Oximetherderivaten der Formel (V) und Pyraclostrobin.
Die relativen Wirkstoffanteile in solchen, eine Wirkstoffkombina- tion beinhaltenden Mitteln sind weitgehend variabel. Einem Aspekt zufolge werden verhältnismäßig größere Gewichtsanteile an Wirkstoffkomponente (a2) als an Wirksto fkomponente (al) eingesetzt. Typischerweise liegt dieses Gewichtsverhältnis von (a2) zu (al) in einem Bereich von 1,1:1 bis 20:1, vorzugsweise von 1,5:1 bis 10:1 und insbesondere von 2:1 bis 5:1.
Anteile der Komponente (b) am Gesamtgewicht des Mittels von mehr als 1 Gew.-%, vorzugsweise von mehr als 2 Gew.-% und insbesondere von mehr als 2,5 Gew.-% sind von Vorteil. Andererseits sind Anteile der Komponente (b) am Gesamtgewicht des Mittels von weniger als 80 Gew.-%, vorzugsweise von weniger als 60 Gew.-% und insbesondere von weniger als 50 Gew.-% in der Regel zweckmäßig.
Anteile der Komponente (bl) am Gesamtgewicht des Mittels von mehr als 5 Gew.-%, vorzugsweise von mehr als 8 Gew.-%, insbesondere von mehr als 10 Gew.-%, vor allem mehr als 15 Gew.-% und besonders von mehr als 20 Gew.-% sind von Vorteil. Andererseits sind Anteile der Komponente (bl) am Gesamtgewicht des Mittels von we- niger als 50 Gew.-%, vorzugsweise von weniger als 45 Gew.-% und insbesondere von weniger als 40 Gew.-% in der Regel zweckmäßig.
Gemäß einer Ausführungsform der vorliegenden Erfindung besteht die Wirkstoffkomponente (b) im wesentlichen aus (bl), d.h. einem oder mehreren Alkoholalkoxylaten.
Um einen ausreichenden adjuvanten Effekt zu gewährleisten, beträgt das Gewichtsverhältnis von Komponente (bl) zu Komponente (al) vorzugsweise mehr als 0,5, insbesondere mehr als 1 und vorteilhafterweise mehr als 2.
Die erfindungsgemäßen Mittel können beispielsweise in Form von direkt versprühbaren Lösungen, Pulver und Suspensionen oder in Form von hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen, Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten formuliert sein und auch angewendet werden. Die Anwendungsform ist dabei abhängig vom Ver- wendungszweck; sie soll in jedem Fall eine möglichst feine und gleichmäßige Verteilung der erfindungsgemäßen Mischung gewährleisten.
Erfindungsgemäße Mittel fallen vorzugsweise in den Bereich der Flüssigformulierungen. Hierzu gehören insbesondere wasserlösliche Konzentrate (SL-Formulierungen) , Suspensionskonzentrate (SC-For- mulierungen) , Suspoemulsionen (SE-Formulierungen) und Mikroemul- sionen.
Die vorliegende Erfindung betrifft gemäß einer Ausführungsform Mittel mit hohen Wirkstoffanteilen (Konzentrate). In diesem Fall macht der Anteil der Komponente (a) am Gesamtgewicht des Mittels in der Regel mehr als 100 g/1, vorzugsweise mehr als 200 g/1 und insbesondere mehr als 250 g/1 aus. Andererseits liegt der Anteil der Komponente (a) am Gesamtgewicht des Mittels zweckmäßigerweise in der Regel bei weniger als 700 g/1, vorzugsweise bei weniger als 650 g/1 und insbesondere bei weniger als 600 g/1. Bereiche von 200 bis 600 g/1 sind daher bevorzugt. Hierbei macht der Benz- amidoxim-Derivat-Anteil üblicherweise bis zu 300 g/1 aus.
Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung umfassen die Mittel als Komponente (c) mindestens einen Hilfsstoff.
Die Komponente (c) kann vielerlei Zwecke erfüllen. Die Wahl geeigneter Hilfsstoffe erfolgt den Anforderungen entsprechend übli- cherweise durch den Fachmann.
Beispielsweise sind Hilfsstoffe ausgewählt unter
5
(cl) oberflächenaktiven Hilfsmitteln;
(c2 ) Antiabsetzmitteln, Antischaummitteln, Retentionsmitteln, pH-Puffern, Antidriftreagenzien; 0
(c3) pflanzenverwertbaren Mineralien und Spurenelementen;
(c4 ) Chelatbildnern;
(c5)Lösungs- oder Verdünnungsmitteln; 5
Der Anteil der Komponente (c) am Gesamtgewicht des Mittels beträgt - sofern vorhanden - in der Regel 10 bis 60 Gew.-%, vorzugsweise 15 bis 50 Gew.-% und insbesondere 20 bis 45 Gew.-%. 0
Der Begriff "oberflächenaktives Hilfsmittel" bezeichnet hier grenzflächenaktive bzw. oberflächenaktive Mittel, wie Tenside, Dispergiermittel, Emulgiermittel oder Netzmittel. 5 Prinzipiell brauchbar sind anionische, kationische, amphotere und nichtionische Tenside.
Zu den anionischen Tensiden gehören beispielsweise Carboxylate,Q insbesondere Alkali-, Erdalkali- und Ammoniumsalze von Fettsäuren, z.B. Kaliumstearat, die üblicherweise auch als Seifen bezeichnet werden; Acylglutamate; Sarkosinate, z.B. Natriumlauroyl- sarkosinat; Taurate; Methylcellulosen; Alkylphosphate, insbesondere Mono- und Diphosphorsäurealkylester; Sulfate; Sulfonate,5 insbesondere Alkyl- und Alkylarylsulfonate, vor allem Alkali-, Erdalkali- und Ammoniumsalze von Arylsulfonsäuren sowie alkylsub- stituierten Arylsulfonsäuren, Alkylbenzolsulfonsäuren, wie beispielsweise Lignin- und Phenolsulfonsäure, Naphthalin- und Dibu- tylnaphthalinsulfonsäuren, oder Dodecylbenzolsulfonate, Alkyl-0 naphthalinsulfonate, Alkylmethylestersulfonate, Kondensationsprodukte von sulfoniertem Naphthalin und Derivaten davon mit Formaldehyd, Kondensationsprodukte von Naphthalinsulfonsäuren, Phenol- und/oder Phenolsulfonsäuren mit Formaldehyd oder mit Formaldehyl und Harnstoff, Mono- oder Dialkyl-bernsteinsäureestersulfonate;5 sowie Eiweißhydrolysate und Lignin-Sul itablaugen. Die zuvor genannten Sulfonsäuren werden vorteilhafterweise in Form ihrer neu- tralen oder gegebenenfalls basischen Salze verwendet.
Zu den kationischen Tensiden gehören beispielsweise quaternierte Ammoniumsalze, insbesondere Alkyltrimethylammonium- und Dialkyl- dimethylammonium-Halogenide und -Alkylsulfate sowie Pyridin- und Imidazolin-Derivate, insbesondere Alkylpyridinium-Halogenide.
Zu den nichtionischen Tensiden gehören insbesondere
Alkylarylalkoxylate, insbesondere Alkylphenolalkoxylate und vor allem deren Ethoxylate, wie beispielsweise ethoxylier- tes iso-Octyl-, Octyl- oder Nonyl-phenol, Tributylphenol- polyoxyethylenether; - Fettalkohol-polyoxyethylen-alkylester, beispielsweise Lau- rylalkohol-polyoxyethylenetheracetat; alkoxylierte tierische und/oder pflanzliche Fette und/oder Öle, beispielsweise Maisölethoxylate, Rizinusölethoxylate, Talgfettethoxylate; - Glycerinester, wie beispielsweise Glycerinmonostearat,
Fettaminalkoxylate, Fettsäureamid- und Fettsäurediethanol- amidalkoxylate, insbesondere deren Ethoxylate; Zuckertenside, insbesondere Sorbitester, wie beispielsweise Sorbitanfettsäureester (Sorbitanmonooleat, Sorbitantristea- rat), und ethoxylierte Carbonsäuren und Ester mono- oder polyfunktioneller Alkohole wie Polyoxyethylensorbitanfett- säureester, Alkyl(poly)glycoside und N-Alkylgluconamide;
— Alkylmethylsulfoxide;
— Alk ldimethylphosphinoxide, wie beispielsweise Tetradecyl- dimethylphosphinoxid.
Di-, Tri- und Multiblockpolymere vom Typ (AB)X, ABA und BAB, z.B. Polystyrol-Block-Polyethylenoxid, und AB-Kammpo- lymere, z.B. Polymethacrylat-comb-Polyethylenoxid sowie insbesondere Ethylenoxid-Propylenoxid-Blockcopolymere bzw. deren Endgruppen-verschlossenen Derivate.
Zu den amphoteren Tensiden gehören beispielsweise Sulfobetaine,
Carboxybetaine und Alkyldimethylaminoxide, z.B. Tetradecyldime- thylaminoxid.
Weitere Tenside, die hier beispielhaft genannt werden können, sind Perfluortenside, Silikontenside, Phospholipide, wie beispielsweise Lecithin oder chemisch modifizierte Lecithine, Amino- säuretenside, z.B. N-Lauroylglutamat und oberflächenaktive Homo- und Copolymere, z.B. Polyvmylpyrrolidon, Polyacrylsauren in Form ihrer Salze, Polyvinylalkohol, Polypropylenoxid, Polyethylenoxid, Maleinsäureanhydrid-Isobuten-Copolymere und Vinylpyrrolidon-Viny- lacetat-Copolymere.
Der Anteil der Komponente (cl) am Gesamtgewicht des Mittels beträgt - sofern vorhanden - in der Regel bis zu 20 Gew.-%, vorzugsweise bis zu 15 Gew.-% vor allem bis zu 10 Gew.-%,und insbesondere bis 5 Gew.-%. Q Antiabsetzmittel können insbesondere für Suspensionskonzentrate verwendet werden. Diese dienen vor allem zur rheologischen Stabilisierung. Insbesondere sind in diesem Zusammenhang mineralische Produkte, z.B. Bentonite, Talcite und Herktorite, zu nennen. 5 Zu den Antischaummitteln gehören insbesondere solchen vom Silicon-Typ, beispielsweise das von der Firma Wacker vertriebene Silicon SL und ähnliche.
Zu den pflanzenverwertbaren Mineralien und Spurenelementen gehö¬0 ren insbesondere anorganische Ammoniumsalzen, wie Ammoniumsulfat, Ammoniumnitrat, Ammoniumchlorid, Ammoniumphosphat oder weitere pflanzenverwertbare Mineralien oder Spurenelemente, insbesondere Ammoniumnitrat-Düngergranulate und/oder Harnstoff. Diese können beispielsweise als wässrige und gegebenenfalls gemischte Konzen¬5 trate, wie z. B. Ensol-Lösungen, in die erfindungsgemäßen Mittel eingebracht werden.
Sofern vorhanden, beträgt der Anteil der Komponente (c3) am Ge-Q samtgewicht des Mittels in der Regel 0,1 bis 35 Gew.-% und vorzugsweise 0,2 bis 20 Gew.-%.
Bevorzugte Chelatbildner sind Schwermetall- und insbesondere Übergangsmetall-komplexierende Verbindungen, z.B. EDTA und dessen5 Derivate.
Sofern vorhanden, beträgt der Anteil der Komponente (c4) am Gesamtgewicht des Mittels in der Regel 0,001 bis 0,5 Gew.-%, vorzugsweise 0,005 bis 0,2 Gew.-% und insbesondere 0,01 bis 0,10 Gew.-%.
Die Mittel können Lösungsmittel löslicher Bestandteile bzw. Verdünnungsmittel unlöslicher Bestandteile des Mittels enthalten.5
Prinzipiell brauchbar sind beispielsweise Mineralöle, synthetische Öle sowie pflanzliche und tierische Öle, sowie niedermoleku- lare hydrophile Lösungsmittel wie Alkohle, Ether, Ketone und ähnliches .
Einerseits sind daher vor allem aprotische bzw. apolare Lösungsbzw. Verdünnungsmittel zu nennen, wie Mineralölfraktionen von mittlerem bis hohem Siedepunkt, z.B. Kerosin und Dieselöl, ferner Kohlenteeröle, Kohlenwasserstoffe, Paraffinöle, z.B. Cs- bis Co-Kohlenwasserstoffe der n- oder iso-Alkan-Reihe oder Gemische davon, gegebenenfalls hydrierte oder teilhydrierte Aromaten oder Alkylaromaten aus der Benzol- oder Naphthalin-Reihe, z.B. aromatische oder cycloaliphatische C7- bis Cχβ-Kohlenwasserstoffverbin- dungen, aliphatische oder aromatische Carbonsäure- oder Dicarbon- säureester, Fette oder Öle pflanzlichen oder tierischen Ursprungs, wie Mono-, Di- und Triglyceride, in Reinform oder als Gemisch beispielsweise in Form öliger Naturstoffextrakte, z.B. Olivenöl, Sojaöl, Sonnenblumenöl, Castoröl, Sesamöl, Maisöl, Erd- nussöl, Rapsöl, Leinsamenöl, Mandelöl, Rhizinusöl, Safloröl, sowie deren Raffinate, z.B. hydrierte oder teilhydrierte Produkte davon und/oder deren Ester, insbesondere Methyl- und Ethylester.
Beispiele für Cs- bis Co-Kohlenwasserstoffe der n- oder iso-Alkan-Reihe sind n- und iso-Octan, -Decan, -Hexadecan, -Octadecan, -Eicosan, und vorzugsweise Kohlenwasserstoffgemische, wie Paraf- finöl (das in technischer Qualität bis zu etwa 5% Aromaten enthalten kann) und ein Cχ8-C4-Gemisch, das unter der Bezeichnung Spraytex-Öl im Handel von der Fa. Texaco erhältlich ist.
Zu den aromatischen oder cycloaliphatischen C7- bis Cχs-Kohlen- wasserstoffverbindungen gehören insbesondere aromatische oder cycloaliphatische Lösungsmittel aus der Alkyl-Aromatenreihe. Diese Verbindungen können unhydriert, teilhydriert oder vollständig hydriert sein. Zu derartigen Lösungsmitteln gehören insbesondere Mono-, Di- oder Trialkylbenzole, Mono-, Di-, Trialkyl-substi- tuierte Tetraline und/oder Mono-, Di-, Tri- oder Tetraalkyl-sub- stituierte Naphthaline (Alkyl steht vorzugsweise für Cχ-C6-Alkyl) . Beispiele derartiger Lösungsmittel sind Toluol, o-, m-, p-Xylol, Ethylbenzol, Isopropylbenzol, tert.-Butylbenzol und Gemische, wie die unter der Bezeichnung Shellsol und Solvesso vertriebenen Pro- dukte der Fa. Exxon, z.B. Solvesso 100, 150 und 200.
Beispiele für geeignete Monocarbonsäureester sind Ölsäureester, insbesondere Methyloleat und Ethyloleat, Laurinsäureester, insbe- sondere 2-Ethylhexyllaurat, Octyllaurat und Isopropyllaurat, Iso- propylmyristat, Palmitinsäureester, insbesondere 2-Ethylhexylpal- mitat und Isopropylpalmitat, Stearinsäureester, insbesondere Stearinsäure-n-butylester und 2-Ethylhexansaure-2-ethylhexyl- ester.
Beispiele für geeignete Dicarbonsäureester sind Adipinsäureester, insbesondere Dimethyladipat, Di-n-butyladipat, Di-n-octyladipat,
Di-iso-octyladipat, auch als Bis-(2-ethylhexyl)adipat bezeichnet,
Di-n-nonyladidipat, Di-iso-nonyladidipat und Ditridecyladipat;
Bernsteinsäureester, insbesondere Di-n-octylsuccinat und Di-iso- octylsuccinat, und Di-(iso-nonyl)cyclohexan-l,2-dicarboxylat .
Der Anteil an den zuvor beschriebenen aprotischen Lösungs- bzw. Verdünnungsmitteln am Gesamtgewicht des Mittels beträgt in der Regel weniger als 30 Gew.-%, vorzugsweise weniger als 20 Gew.-% und insbesondere weniger als 5 Gew.-%.
Andererseits sind protische bzw. polare Lösungs- bzw. Verdünnungsmittel zu nennen, z.B. Wasser, C2-Cs-Monoalkohole wie Etha- nol, Propanol, Isopropanol, Butanol, Isobutanol, tert-Butanol, Cyclohexanol und 2-Ethylhexanol, C3-Cs-Ketone wie Diethylketon, t-Butylmethylketon und Cyclohexanon, sowie aprotische Amine, wie N-Methyl- und N-Octylpyrrolidon.
Der Anteil an den zuvor beschriebenen protischen bzw. polaren Lösungs- bzw. Verdünnungsmitteln am Gesamtgewicht des Mittels wird erfindungsgemäß gering gehalten und beträgt in der Regel weniger als 20 Gew.-%, vorzugsweise weniger als 15 Gew.-% und insbesondere weniger als 10 Gew.-%.
Gemäß einer besonderen Ausführungsform betrifft die vorliegende Erfindung Mittel, umfassend
(a) 2 bis 35 Gew.-% wenigstens eines Benzamidoxim-Derivats der Formel (I), vorzugsweise N-Phenylacetyl-2-difluorme- thoxy-5,6-difluorbenzamid-(0-cyclopropylmethyl]-oxim oder N-Phenylacetyl-2-trifluormthoxy-5,6-difluorbenzamid-(0-cy- clopropylmethyl]-oxim, und gegebenenfalls 5 bis 25 Gew.-% Metrafenon, Epoxiconazol oder Pyraclostrobin, oder eines Gemisches aus 2 oder 3 dieser Wirkstoffe; und
(b) 5 bis 40 Gew.-% wenigstens eines Alkoholalkoxylats, vorzugsweise eines alkoxylierten C10- oder C13-0xoalkohols; sowie vorteilhafterweise
(c) 15 bis 45 Gew.-% eines oder mehrerer Hilfsstoffe. Die Herstellung erfindungsgemäßer Mittel kann in an sich bekannter Weise erfolgen. Dazu werden zumindest Teile der Komponenten zusammengegeben. Hierbei ist zu beachten, daß Produkte, insbesondere handelsübliche Produkte, verwendet werden können, deren Be- 5 standteile zu unterschiedlichen Komponenten beitragen können. Beispielsweise kann ein bestimmtes Tensid in einem aprotischen Lösungmittel gelöst sein, so daß dieses Produkt zu den erfindungsgemäßen Komponenten (cl) und (c5) beitragen kann. Als Gemisch sind die zusammengegebenen Produkte dann in der Regel in-0 tensiv miteinander zu vermengen und erforderlichenfalls - z.B. im Falle von Suspensionen, zu vermählen.
Das Vermengen kann in an sich bekannter Weise erfolgen, z.B. durch Homogenisieren mit geeigneten Vorrichtungen wie KPG- oder Magnetrührern.
Gegenstand der vorliegenden Erfindung ist auch die Verwendung erfindungsgemäßer Mittel bei den oben beschriebenen Anwendungsmög-o lichkeiten.
Die Applikation der Mittel kann in an sich bekannter Weise erfolgen, z.B. durch Versprühen, Vernebeln, Verstäuben, Verstreuen oder Gießen. Dazu kann es erforderlich sein, zunächst eine 5 Spritzbrühe zu bereiten, die dann z.B. mit einer fahrbaren
Spritzmaschine mittels feinstverteilender Düsen appliziert wird. Die hierfür gebräuchlichen Geräte und Arbeitstechniken sind dem Fachmann bekannt. 0 Spritzfähige Brühen enthalten normalerweise 0,0001 bis 10, vorzugsweise 0,001 bis 5, und insbesondere 0,002 bis 2,0 Gew.-% an Wirkstoffkomponente (a). Zur Herstellung einer üblichen Spritzbrühe können beispielsweise 0,2 bis 5,0, vorzugsweise 0,3 bis 3,0 und insbesondere 0,35 bis 2,0 1 eines Komponente (a) enthaltenden5 erfindungsgemäßen Wirkstoffkonzentrats mit Wasser auf 10 bis 2000 1, vorzugsweise 50 bis 1500 1 und insbesondere 100 bis 1000 1 verdünnt werden. Der Spritzbrühe können gegebenenfalls 0,1 Gew.-% bis 5 Gew.-% (bezogen auf Spritzbrühe) an weiteren Hilfsstoffen zugesetzt werden. Beispielhafte Stoffe für derartige Hil sstooffe0 sind Stärke und Stärkederivate, z.B. eine Carboxyl- und Sulfon- säuregruppen enthaltende Stärke (Nu-Film der Union Carbide Corp.) sowie Spreitmittel und Extender, wie Vapor Guard der Miller Chemical & Fertilizer Corp., zu nennen. 5 Im Rahmen der vorliegenden Beschreibung sind Mengenangaben im allgemeinen auf das Gesamtgewicht des Mittels zu beziehen, sofern nicht anderes angeben ist. Der Ausdruck "im wesentlichen" be- zeichnet erfindungsgemäß in der Regel ein prozentuales Verhältnis von wenigstens 90 %, vorzugsweise von wenigstens 95 % und insbesondere von wenigstens 98 %.
im Rahmen der vorliegenden Beschreibung umfassen Begriffe wie Alkyl, Alkoxy, etc. geradkettige oder verzweigte Kohlenwasserstoffgruppen, vorzugsweise mit - soweit nichts anderes angegeben ist - 1 bis 30 Kohlenstoffatomen, wobei die fettartigen Reste in der Regel 5 bis 30, vorzugsweise 8 bis 20 und insbesondere 9 bis 16 Kohlenstoffatome, und die kürzern Reste, z.B. als Substituenten aromatischer Gruppen in der Regel 1 bis 10, insbesondere 1 bis 6 und besonders bevorzugt 1 bis 4 Kohlenstoffatome aufweisen.
Der Begriffe "Alkenyl" und "Alkinyl" stehen für geradkettige oder verzweigte, 1-, 2-, 3-, 4-, 5- oder 6-fach ungesättigte Koh- lenwasserstoffgruppen, vorzugsweise mit - soweit nichts anderes angegeben ist - 2 bis 30 Kohlenstoffatomen, wobei die fettartigen Reste in der Regel 5 bis 30, vorzugsweise 8 bis 20 und insbesondere 9 bis 16 Kohlenstoff tome, und die kürzern Reste, z.B. als Substituenten aromatischer Gruppen in der Regel 2 bis 10, insbesondere 2 bis 6 und besonders bevorzugt 1 bis 4 Kohlenstoffatome aufweisen. Insbesondere sind hier die Reste ein- oder mehrfach ungesättigter Fettsäuren zu nennen.
Der Begriff "Halogen" steht vorzugsweise für Fluor, Chlor, Brom und Iod, insbesondere für Fluor und vor allem für Chlor.
Es stehen beispielsweise:
Cχ-C4-Alkyl für: Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl oder 1 , 1-Dimethyl- ethyl, insbesondere für Methyl oder Ethyl;
- C5-C4o-Al yl für: Lauryl, Steary oder Cetyl;
Cχ-C4-Halogenalkyl für: einen Cχ-C4-Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, z.B. Trichlormethyl, Tri- fluormethyl, 2-Fluorethyl, 2-Chlorethyl, 2-Bromethyl,
2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2,2,2-Trichlorethyl, 2-Fluorpropyl, 3-Fluorpropyl, 2-Chlorpropyl oder 3-Chlor- propyl, insbesondere für 2-Fluorethyl oder 2-Chlorethyl; Cyano-Cχ-C4-alkyl für: z.B. Cyanomethyl, 1-Cyanoeth-l-yl, 2-Cyanoeth-l-yl, 1-Cyanoprop-l-yl, 2-Cyanoprop-l-yl, 3-Cyano- prop-1-yl, l-Cyanoprop-2-yl oder 2-Cyanoprop-2-yl, insbesondere für Cyanomethyl oder 2-Cyanoethyl; 5
Cχ-C4-Alkoxy für: Methoxy, Ethoxy, n-Propoxy, 1-Methylethoxy, n-Butoxy, 1-Methylpropoxy, 2-Methylpropoxy oder 1, 1-Dimethyl- ethoxy, insbesondere für Methoxy oder Ethoxy; ° - Cχ-C4-Alkoxy-Cχ-C4-alkyl für: durch Cχ-C4-Alkoxy wie vorstehend genannt substituiertes Cχ-C4-Alkyl, also z.B. für Methoxymethy1, Ethoxymethyl, n-Propoxymethyl, (1-Methyl- ethoxy)methy1, n-Butoxymethyl, ( 1-Methylpropoxy)methy1, (2-Methylpropoxy)methyl, ( 1, 1-Dimethylethoxy)methy1, 5 2- (Methoxy)ethyl oder 2-(Ethoxy)ethyl, insbesondere für Methoxymethyl oder 2-Methoxyethyl;
C2-C6-Alkenyl für: z.B. Ethenyl, Prop-2-en-l-yl, n-Buten-4-yl, l-Methyl-prop-2-en-l-yl, 2-Methyl-prop-2-en-l-yl oder 0 2-Buten-l-yl, insbesondere für Prop-2-en-l-yl;
C3-C6-Halogenalkenyl für: C3-C6-Alkenyl wie vorstehend genannt, das partiell oder vollständig durch Fluor, Chlor und/oder Brom substituiert ist, z.B. 2-Chlorallyl, 3-Chloral-5 lyl, 2, 3-Dichlorallyl oder 3,3-Dichlorallyl, insbesondere für 2-Chlorallyl;
C2-Cg-Alkinyl für: z.B. Ethinyl, Prop-1-in-l-yl, Prop-2-in-l-yl, n-But-1-in-l-yl, n-But-l-in-3-yl, n-0 But-l-in-4-yl oder n-But-2-in-l-yl, insbesondere für Prop-2-in-l-yl;
C3-C8-Cycloalkyl-Cχ-C-alkyl für: z.B. Cyclopropylmethyl, Cy- clobutylmethyl, Cyclopentylmethyl, Cyclohexylmethyl, (Cyclo-5 propyl )ethyl, l-(Cyclobutyl)ethyl, l-(Cyclopentyl)ethyl, l-(Cyclohexyl)ethyl, l-(Cycloheptyl)ethyl, l-(Cyclo- octyl)ethyl, 2-(Cyclopropyl)ethyl oder 2-(Cyclobutyl)ethyl, insbesondere für Cyclopentylmethyl; 0
Phenyl-Cχ-C6-alkyl für: z.B. Benzyl, 1-Phenylethyl, 2-Phenyl- ethyl, 1-Phenylprop-l-yl, 2-Phenylprop-l-yl, 3-Phenylprop- 1-yl, insbesondere für Benzyl oder 2-Phenylethyl; _ - Thienyl-Cχ-C4-alkyl für: z.B. 2-Thienylmethyl, 3-Thienylmethyl oder 2-Thienylethyl; Pyrazolyl-Cχ-C4-alkyl für: z.B. 1-Pyrazolylmethyl, 2-Pyrazo- lylmethyl, 3-Pyrazolylmethyl oder 2-Pyrazolylylethyl.
Die Erfindung wird durch die nachfolgenden Beispiele näher erläu- 5 tert:
Beispiele 1: Biologische Wirksamkeit (kurative Bekämpfung von
Weizenmehltau) 10
Blätter von in Töpfen gewachsenen Weizenkeimlingen der Sorte "Kanzler" wurden im Zweiblattstadium mit Sporen des Weizenmehltaus (Erysiphe [syn. Blumeria] graminis forma specialis. tritici)
15 bestäubt und solange im Gewächshaus kultiviert, bis der Vorbefall durchschnittlich 20 % betrug. Dann wurden die Pflanzen mit einer wässrigen Suspension oder Emulsion besprüht, welche die unten angegebenen Wirkstoffe und Adjuvantien enthielt. Die Suspension oder Emulsion wurde aus einer Stammlösung angesetzt mit 10 %
20 Wirkstoff in einer Mischung bestehend aus 85 % Cyclohexanon, und 5 % Emulgiermittel. Nach dem Antrocknen des Spritzbelages wurden die Pflanzen wieder in das Gewächshaus zurückgeschoben. Die Versuchspflanzen wurden im Gewächshaus bei Temperaturen zwischen 20 und 24° C und 60 bis 90 % relativer Luftfeuchtigkeit aufgestellt. 25 20 bzw. 30 Tage nach der Applikation wurde das Ausmaß der Mehltauentwicklung visuell in % Befall der gesamten Blattfläche ermittelt.
Tabelle 1: %-Befall der Blätter nach Applikation der wässrigen 30 Wirkstoffformulierung, die einer Aufwandmenge von 7,5 g Aktivsubstanz pro ha entsprach
35
40
5
Figure imgf000044_0001
Figure imgf000045_0001
Wirkstoff A: N-Phenylacetyl-2-difluormethoxy-5, 6-difluorbenz- a id-(O-cyclopropylmethyl]-oxim Alkoxylat 1: ClO-Oxoalkohol x 3 EO Alkoxylat 2: C13-0xoalkohol x 6 EO x 3 PO
Es ist klar ersichtlich, dass die verwendeten Alkoholalkoxylate die fungizide Wirkung der Wirkstoffe bzw. Wirkstoffgemische ver- stärken.

Claims

Patentansprüche
1. Mittel, umfassend 5
(al) wenigstens ein Benzamidoxim-Derivat der Formel (I)
Figure imgf000047_0001
wobei die Substituenten die folgenden Bedeutungen haben;5
R1 Difluormethyl oder Trifluormethyl;
R2 Wasserstoff oder Fluor; 0
R3 Cχ-C4-Alkyl, welches durch Cyano substituiert sein kann, Cχ-C4-Halogenalkyl, Cχ-C4-Alkoxy-Cχ-C4-alkyl, C3-C6-Alkenyl, C3-C6-Halogenalkenyl, C3-Ce-Alkinyl oder C3-C8-Cycloalkyl-Cχ-C-Alkyl; 5
R4 Phenyl-Cχ-C6-alkyl, welches am Phenylring einen oder mehrere unter Halogen, Cχ-C4-Alkyl, Cχ-C4-Halogenal- kyl, Cχ-C4-Alkoxy und Cχ-C4-Halogenalkoxy ausgewählte Substituenten tragen kann, oder Q Thienyl-Cχ-C4-alkyl, welches am Thienylring einen oder mehrere unter Halogen, Cχ-C4-Alkyl, Cχ-C4-Halo- genalkyl, Cχ-C4-Alkoxy und Cχ-C4-Halogenalkoxy ausgewählte Substituenten tragen kann, oder Pyrazolyl-Cχ-C4-alkyl, welches am Pyrazolylring einen5 oder mehrere unter Halogen, Cχ-C4-Alkyl, Cχ-C4-Halo- genalkyl, Cχ-C4-Alkoxy oder Cχ-C4-Halogenalkoxy ausgewählte Substituenten tragen kann.
(bl) wenigstens einen alkoxylierten Alkohol, 0 wobei dass Gewichtsverhältnis der Komponente (bl) zu (al) wenigstens 0,5 beträgt.
2. Mittel nach Anspruch 1, dadurch gekennzeichnet, dass der An-5 teil der Komponente (bl) am Gesamtgewicht des Mittels größer ist als der Anteil der Komponente (al).
3. Mittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Alkohol 5 bis 30, vorzugsweise 8 bis 20 und insbesondere 9 bis 15 Kohlenstoffatome aufweist.
5 4. Mittel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Alkoxylierungsgrad 1 bis 100, vorzugsweise 1 bis 25, insbesondere 2 bis 15 und besonders bevorzugt 3 bis 12 beträgt.
10 5. Mittel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der alkoxylierte Alkohol ausgewählt ist unter Alkoholalkoxylaten der Formel (II)
R6-0- (CraH2m0)x- (CnH2nO)y- (CpH2pO) !!-H (II)
15 worin
R6 für C5-C3o-Alkyl oder C5-C3o-Alkenγl steht;
20 m,n,p unabhängig voneinander für eine ganze Zahl von 2 bis 16, vorzugsweise für 2, 3, 4 oder 5 stehen;
x,y,z unabhängig voneinander für eine Zahl von 0 bis 100 stehen; und
25 x+y+z einem Wert von 1 bis 100 entspricht.
6. Mittel nach Anspruch 5, dadurch gekennzeichnet, dass m = 2 ist, der Wert von x größer als Null und z = 0 ist.
30
7. Mittel nach Anspruch 6, dadurch gekennzeichnet, dass y Null ist.
8. Mittel nach Anspruch 6, dadurch gekennzeichnet, dass y größer als Null ist.
9. Mittel nach Anspruch 8, dadurch gekennzeichnet, dass n = 3 ist.
40
10. Mittel nach Anspruch 9, dadurch gekennzeichnet, dass das Verhältnis von x zu y 1:1 bis 4:1 und insbesondere 1,5:1 bis 3:1 beträg .
45 11. Mittel nach Anspruch 8, dadurch gekennzeichnet, dass n = 5 ist.
12. Mittel nach Anspruch 11, dadurch gekennzeichnet, dass der Wert von x 1 bis 50 und vorzugsweise 4 bis 25 beträgt und der Wert von y 0,5 bis 20, vorzugsweise 0,5 bis 4 und insbesondere 0,5 bis 2 beträgt.
5
13. Mittel nach Anspruch 5, dadurch gekennzeichnet, dass n == 2 ist, die Werte von y und x jeweils größer als Null sind und z = 0 ist.
10 14. Mittel nach Anspruch 13, dadurch gekennzeichnet, dass m = 3 ist.
15. Mittel nach Anspruch 14, dadurch gekennzeichnet, dass das Verhältnis von x zu y 1:10 bis 3:1 und insbesondere 1,5:1 bis
15 1:6 beträgt.
16. Mittel nach Anspruch 13, dadurch gekennzeichnet, dass m = 5 ist.
20 17. Mittel nach Anspruch 16, dadurch gekennzeichnet, dass der
Wert von x 0,5 bis 20, vorzugsweise 0,5 bis 4 und insbesondere 0,5 bis 2 beträgt und der Wert von y 3 bis 50 und vorzugsweise 4 bis 25 beträgt.
25
18. Mittel nach einem der Ansprüche 5 bis 17, dadurch gekennzeichnet, dass der Alkohol 2-Propylheptanol ist.
19. Mittel nach einem der Ansprüche 5 bis 17, dadurch gekennzeichnet, dass der Alkohol ein C13-Oxoalkohol ist. 0
20. Mittel nach Anspruch 19, dadurch gekennzeichnet, dass der C13-Oxoalkohol erhältlich ist durch Hydrierung von hydroformyliertem Trimerbuten. 5
21. Mittel nach Anspruch 19, dadurch gekennzeichnet, dass der C13-Oxoalkohol erhältlich ist durch Hydrierung von hydroformyliertem Dimerhexen.
22. Mittel nach einem der Ansprüche 5 bis 17, dadurch gekenn0 zeichnet, dass der Alkohol ein ClO-Oxoalkohol ist.
23. Mittel nach Anspruch 22, dadurch gekennzeichnet, dass der ClO-Oxoalkohol erhältlich ist durch Hydrierung von hydrofor- - myliertem Trimerpropen.
24. Mittel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Benzamidoxim-Derivat eine Verbindung der Formel la
Figure imgf000050_0001
R1 wie oben definiert ist;
20 R5 für Wasserstoff, Halogen, Cι-C4-Alkyl, C-C4-Halogen- alkyl, Cχ-C4-Alkoxy oder Cι-C4-Halogenalkoxy steht; und
n 1, 2 oder 3 ist.
25 25. Mittel nach Anspruch 24, dadurch gekennzeichnet, dass das
Benzamidoxim-Derivat N-Phenylacetyl-2-difluormethoxy-5, 6-di- fluorbenzamid-(O-cyclopropylmethyl]-oxim oder N-Phenylace- tyl-2-trifluormethoxy-5, 6-difluorbenzamid-(O-cyclopropylmethyl]-oxim ist.
30
26. Mittel nach einem der vorhergehenden Ansprüche, umfassend
(a2) wenigstens ein weiteres Fungizid.
35 27. Mittel nach Anspruch 26, dadurch gekennzeichnet, dass das weitere Fungizid ausgewählt ist unter Metrafenone, Epoxiconazol und Pyraclostrobin.
28. Mittel nach einem der vorhergehenden Ansprüche, umfassend 40
(c) weitere Hilfsmittel.
29. Mittel nach Anspruch 1, umfassend 5 (a) 2 bis 35 Gew.-% wenigstens eines Benzamidoxim-Derivats der Formel (I), vorzugsweise N-Phenylacetyl-2-difluor- methoxy-5, 6-difluorbenzamid-(O-cyclopropylmethyl]-oxim oder N-Phenylacetyl-2-trifluormthoxy-5, 6-difluorbenzamid-(O-cyclopropylmethyl]-oxim, und gegebenenfalls 5 bis 25 Gew.-% Metrafenon, Epoxiconazol oder Pyraclostrobin, oder eines Gemisches aus 2 oder 3 dieser Wirk- 5 stoffe; und
(b) 5 bis 40 Gew.-% wenigstens eines Alkoholalkoxylats, vorzugsweise eines alkoxylierten CIO- oder C13-Oxoalko- hols; sowie vorteilhafterweise
10
(c) 15 bis 45 Gew.-% eines oder mehrerer Hilfsstoffe.
30. Kit mit wenigstens zwei Behältnissen, wobei
15 (al) ein erstes Behältnis wenigstens ein Benzamidoxim-Derivat der Formel (I) beinhaltet und das Benzamidoxim-Derivat wie in einem der vorhergehenden Ansprüche definiert ist; und
AW (bl) ein zweites Behältnis wenigstens einen alkoxylierten
Alkohol beinhaltet und der alkoxylierte Alkohol wie in einem der vorhergehenden Ansprüche definiert ist.
31. Verwendung eines alkoxylierten Alkohols zur Verbesserung der
25 fungiziden Wirkung eines Benzamidoxim-Derivats der Formel
(I), wobei das Benzamidoxim-Derivat der Formel (I) wie in einem der vorhergehenden Ansprüche definiert ist.
32. Verwendung nach Anspruch 31, dadurch gekennzeichnet, dass das 30 Aufwandmengen-Verhältnis von Alkoholalkoxylat zu Benzamidoxim-Derivat im Bereich von 0,5 : 1 bis 100 : 1, vorzugsweise 1 : 1 bis 50 : 1, insbesondere 1 : 1 bis 20 : 1 liegt.
33. Verwendung nach Anspruch 31 oder 32, dadurch gekennzeichnet, 35 dass die Aufwandmenge an Alkoholalkoxylat größer ist als die
Aufwandmenge an Benzamidoxim-Derivat.
40
5
PCT/EP2004/009122 2003-08-14 2004-08-13 Verwendung von alkoholalkoxylaten als adjuvans für fungizide benzamidoxim-derivate, entsprechende mittel und kits WO2005015998A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA002535176A CA2535176A1 (en) 2003-08-14 2004-08-13 Use of alcohol-oxyalkylates in the form of adjuvants for benzamidoxime fungicidal derivatives, appropriate agents and kits
BRPI0413157-6A BRPI0413157A (pt) 2003-08-14 2004-08-13 agente, kit, e, uso de um álcool alcoxilado
US10/566,297 US20080064756A1 (en) 2003-08-14 2004-08-13 Use of Alcohol-Oxyalkylates in the Form of Adjuvants for Benzamidoxime Fungicidal Derivatives, Appropriate Agents and Kits
NZ545020A NZ545020A (en) 2003-08-14 2004-08-13 Use of alcohol-oxyalkylates in the form of adjuvants for benzamidoxime fungicidal derivatives, appropriate agents and kits
JP2006523000A JP2007502261A (ja) 2003-08-14 2004-08-13 アルコールオキシアルキレートの殺真菌剤ベンズアミドオキシム誘導体に対するアジュバントの形態での使用、適当な薬剤およびキット
EA200600335A EA200600335A1 (ru) 2003-08-14 2004-08-13 Применение алкоксилатов спирта в качестве активирующих добавок для фунгицидных производных бензамидоксима, соответствующие средства и наборы
EP04764116A EP1656019A1 (de) 2003-08-14 2004-08-13 Verwendung von alkoholalkoxylaten als adjuvans für fungizide benzamidoxim-derivate, entsprechende mittel und kits
AU2004264676A AU2004264676A1 (en) 2003-08-14 2004-08-13 Use of alcohol-oxyalkylates in the form of adjuvants for benzamidoxime gungicidal derivatives, appropriate agents and kits
MXPA06001515A MXPA06001515A (es) 2003-08-14 2004-08-13 Uso de alcohol oxialquilatos en la forma de adyuvantes para derivados fungicidas de benzamida oxima, agentes y equipos apropiados.
IL173188A IL173188A0 (en) 2003-08-14 2006-01-17 Use of alcohol-oxyalkyates in the form of adjuvants for benzamidoxime gungicidal derivatives, appropriate agents and kits

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10337560 2003-08-14
DE10337560.0 2003-08-14

Publications (1)

Publication Number Publication Date
WO2005015998A1 true WO2005015998A1 (de) 2005-02-24

Family

ID=34177602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/009122 WO2005015998A1 (de) 2003-08-14 2004-08-13 Verwendung von alkoholalkoxylaten als adjuvans für fungizide benzamidoxim-derivate, entsprechende mittel und kits

Country Status (15)

Country Link
US (1) US20080064756A1 (de)
EP (1) EP1656019A1 (de)
JP (1) JP2007502261A (de)
KR (1) KR20060064624A (de)
CN (1) CN1835680A (de)
AR (1) AR045376A1 (de)
AU (1) AU2004264676A1 (de)
BR (1) BRPI0413157A (de)
CA (1) CA2535176A1 (de)
EA (1) EA200600335A1 (de)
IL (1) IL173188A0 (de)
MX (1) MXPA06001515A (de)
NZ (1) NZ545020A (de)
WO (1) WO2005015998A1 (de)
ZA (1) ZA200602091B (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536840A (ja) * 2005-04-18 2008-09-11 ビーエーエスエフ ソシエタス・ヨーロピア 少なくとも1つのタイプの殺菌性コナゾールを含有する配合剤
WO2009130281A1 (de) 2008-04-24 2009-10-29 Basf Se Alkoholalkoxylate, diese enthaltende mittel und verwendung der alkoholalkoxylate als adjuvans für den agrochemischen bereich
US8084482B2 (en) 2006-12-07 2011-12-27 Basf Se Compositions and kits comprising a fungicidal triazole and an alkoxylated alcohol, and their uses
US8129312B2 (en) 2002-04-24 2012-03-06 Basf Se Use of defined alcohol alkoxylates as adjuvants in the agrotechnical field
WO2015169711A1 (en) 2014-05-06 2015-11-12 Basf Se Composition comprising a pesticide and a hydroxyalkyl polyoxylene glycol ether
EP2150515B1 (de) 2007-04-25 2016-08-24 Basf Se Alkoholalkoxylate, diese enthaltende mittel und verwendung der alkoholalkoxylate als adjuvans für den agrochemischen bereich
US10757935B2 (en) 2015-02-10 2020-09-01 Basf Se Composition comprising a pesticide and an alkoxylated ester

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2178366A2 (de) * 2007-07-20 2010-04-28 Basf Se Mittel enthaltend alkoholalkoxylate und verwendung der alkoholalkoxylate als adjuvans für den agrochemischen bereich
GB0907003D0 (en) * 2009-04-23 2009-06-03 Syngenta Ltd Formulation
UA118991C2 (uk) * 2014-09-16 2019-04-10 Басф Се Агрохімічний суспензійний концентрат, що включає алкоксильований спирт, розчинений у водній фазі
RU2735252C2 (ru) * 2016-04-15 2020-10-29 Исихара Сангио Кайся, Лтд. Способ усиления эффектов борьбы с болезнями растений фунгицида арилфенилкетона и способ борьбы с болезнями растений

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317940A (en) * 1980-12-23 1982-03-02 Olin Corporation Biodegradable surfactants
JPH09278605A (ja) * 1996-04-09 1997-10-28 Agro Kanesho Co Ltd 農薬展着剤用ノニオン界面活性剤
WO1999014187A1 (de) * 1997-09-18 1999-03-25 Basf Aktiengesellschaft Benzamidoxim-derivat, zwischenprodukte und verfahren zu deren herstellung und deren verwendung als fungizide
WO1999026472A1 (en) * 1997-11-25 1999-06-03 Cognis Corporation Use of narrow range ethoxylates of fatty alcohols in agricultural pesticide and adjuvant formulations
EP1077028A1 (de) * 1998-04-30 2001-02-21 Nippon Soda Co., Ltd. Bakterizidzusammensetzung für acker- und gartenbau
WO2001077276A1 (de) * 2000-04-07 2001-10-18 Basf Aktiengesellschaft Alkoholalkoxylate als schaumarme oder schaumdämpfende tenside
WO2002015697A2 (en) * 2000-08-25 2002-02-28 Basf Aktiengesellschaft Fungicidal formulation
WO2003022048A1 (en) * 2001-09-06 2003-03-20 Syngenta Limited Novel compounds
WO2004000019A1 (de) * 2002-06-20 2003-12-31 Basf Aktiengesellschaft Fungizide mischungen auf der basis von benzamidoxim-derivaten, benzophenonen und einem azol

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317940A (en) * 1980-12-23 1982-03-02 Olin Corporation Biodegradable surfactants
JPH09278605A (ja) * 1996-04-09 1997-10-28 Agro Kanesho Co Ltd 農薬展着剤用ノニオン界面活性剤
WO1999014187A1 (de) * 1997-09-18 1999-03-25 Basf Aktiengesellschaft Benzamidoxim-derivat, zwischenprodukte und verfahren zu deren herstellung und deren verwendung als fungizide
WO1999026472A1 (en) * 1997-11-25 1999-06-03 Cognis Corporation Use of narrow range ethoxylates of fatty alcohols in agricultural pesticide and adjuvant formulations
EP1077028A1 (de) * 1998-04-30 2001-02-21 Nippon Soda Co., Ltd. Bakterizidzusammensetzung für acker- und gartenbau
WO2001077276A1 (de) * 2000-04-07 2001-10-18 Basf Aktiengesellschaft Alkoholalkoxylate als schaumarme oder schaumdämpfende tenside
WO2002015697A2 (en) * 2000-08-25 2002-02-28 Basf Aktiengesellschaft Fungicidal formulation
WO2003022048A1 (en) * 2001-09-06 2003-03-20 Syngenta Limited Novel compounds
WO2004000019A1 (de) * 2002-06-20 2003-12-31 Basf Aktiengesellschaft Fungizide mischungen auf der basis von benzamidoxim-derivaten, benzophenonen und einem azol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199802, Derwent World Patents Index; Class A25, AN 1998-014636, XP002302850 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129312B2 (en) 2002-04-24 2012-03-06 Basf Se Use of defined alcohol alkoxylates as adjuvants in the agrotechnical field
US8877681B2 (en) 2002-04-24 2014-11-04 Basf Se Use of specific alcohol alkoxylates as an adjuvant for agrotechnical applications
JP2008536840A (ja) * 2005-04-18 2008-09-11 ビーエーエスエフ ソシエタス・ヨーロピア 少なくとも1つのタイプの殺菌性コナゾールを含有する配合剤
US8084482B2 (en) 2006-12-07 2011-12-27 Basf Se Compositions and kits comprising a fungicidal triazole and an alkoxylated alcohol, and their uses
EP2150515B1 (de) 2007-04-25 2016-08-24 Basf Se Alkoholalkoxylate, diese enthaltende mittel und verwendung der alkoholalkoxylate als adjuvans für den agrochemischen bereich
WO2009130281A1 (de) 2008-04-24 2009-10-29 Basf Se Alkoholalkoxylate, diese enthaltende mittel und verwendung der alkoholalkoxylate als adjuvans für den agrochemischen bereich
WO2015169711A1 (en) 2014-05-06 2015-11-12 Basf Se Composition comprising a pesticide and a hydroxyalkyl polyoxylene glycol ether
US10757935B2 (en) 2015-02-10 2020-09-01 Basf Se Composition comprising a pesticide and an alkoxylated ester

Also Published As

Publication number Publication date
US20080064756A1 (en) 2008-03-13
CN1835680A (zh) 2006-09-20
ZA200602091B (en) 2007-05-30
AR045376A1 (es) 2005-10-26
KR20060064624A (ko) 2006-06-13
IL173188A0 (en) 2006-06-11
EP1656019A1 (de) 2006-05-17
CA2535176A1 (en) 2005-02-24
MXPA06001515A (es) 2006-05-15
BRPI0413157A (pt) 2006-10-03
AU2004264676A1 (en) 2005-02-24
NZ545020A (en) 2009-04-30
EA200600335A1 (ru) 2006-08-25
JP2007502261A (ja) 2007-02-08

Similar Documents

Publication Publication Date Title
EP2181593B1 (de) Verwendung bestimmter Alkoholalkoxylate als Adjuvans für den agrotechnischen Bereich
CN105451552B (zh) 喷雾漂移减少
DE60015824T2 (de) Wässriges Suspensionskonzentrat
RU2709725C2 (ru) Фунгицидные соединения
DE69908701T2 (de) Fungizide Co-Formulierungen
CN105451551B (zh) 助剂组合
EP1622453B1 (de) Wirkstoffkombinationen mit nematiziden, insektiziden und fungiziden eigenschaften basierend auf trifluorbutenyl-verbindungen
EA029457B1 (ru) Синергетические фунгицидные смеси и композиции для борьбы с грибами
ZA200602091B (en) Use of alcohol-oxyalkylates in the form of adjuvants for benzamidoxime fungicidal derivatives, appropriate agents and kits
CN104918491B (zh) 用于农业化学配制剂的渗透剂
JP6890133B2 (ja) 植物油アルコキシレートのエストリド並びに製造及び使用方法
EP2375893B1 (de) Pflanzenschutzformulierungen, enthaltend dimethomorph und dithiocarbamat
DE69908996T2 (de) Erhöhung der Effektivität von Triazolopyrimidinen
WO2016055344A1 (de) Verwendung von hydrophoben, selbstemulgierenden polyglycerinestern als adjuvantien und anti-spray-drift mittel
DE60104126T2 (de) Fungizide formulierung
UA124887C2 (uk) Фунгіцидні сполуки і суміші для боротьби із грибковими захворюваннями зернових культур
DE60012590T2 (de) Verstärkung der Wirksamkeit bei Benzoylbenzenen
UA125304C2 (uk) Фунгіцидні сполуки і суміші для боротьби із грибковими захворюваннями зернових культур
CN109310080A (zh) 喷雾漂移减少
EP4085766A1 (de) Verwendung von 1,2-alkandiolen als adjuvans in der landwirtschaft
EP1740048A1 (de) Fungizide mischungen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480023373.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 545020

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2535176

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/001515

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2004764116

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 541/CHENP/2006

Country of ref document: IN

Ref document number: 1020067002948

Country of ref document: KR

Ref document number: 2004264676

Country of ref document: AU

Ref document number: 2006523000

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200600335

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2004264676

Country of ref document: AU

Date of ref document: 20040813

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004264676

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006/02091

Country of ref document: ZA

Ref document number: 200602091

Country of ref document: ZA

WWP Wipo information: published in national office

Ref document number: 2004764116

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 1020067002948

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0413157

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 10566297

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10566297

Country of ref document: US