WO2005013376A1 - Semiconductor magnetic sensor and magnetism measuring instrument using same - Google Patents

Semiconductor magnetic sensor and magnetism measuring instrument using same Download PDF

Info

Publication number
WO2005013376A1
WO2005013376A1 PCT/JP2004/010967 JP2004010967W WO2005013376A1 WO 2005013376 A1 WO2005013376 A1 WO 2005013376A1 JP 2004010967 W JP2004010967 W JP 2004010967W WO 2005013376 A1 WO2005013376 A1 WO 2005013376A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
magnetic sensor
semiconductor
recombination
semiconductor magnetic
Prior art date
Application number
PCT/JP2004/010967
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuteru Kimura
Original Assignee
Mitsuteru Kimura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuteru Kimura filed Critical Mitsuteru Kimura
Publication of WO2005013376A1 publication Critical patent/WO2005013376A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices

Definitions

  • the present invention relates to a magnetic sensor using a semiconductor, which can detect the magnitude and direction of a magnetic field with high sensitivity, small size, low power consumption, and a magnetic measurement device using the same.
  • a magnetic diode for example, Japanese Patent Application Laid-Open No. 2002-134758
  • This magnetic diode was basically a two-terminal pin structure, and its operating principle was as follows.
  • the i-region which is an intrinsic semiconductor region, has a recombination region, and a forward noise is applied between the p-type region and the n-type region to apply an external magnetic field in the double injection state of the carrier.
  • H is applied and both electrons (1) and holes (+), which are double-injected carriers, are bent to the recombination region side by Lorentz force, both flowing carriers disappear due to recombination and decrease.
  • the injection carrier is formed on the thin SOI layer of the SOI substrate, the injected carrier easily reaches the recombination region formed on the SOI surface even with a small external magnetic field H. A low driving voltage and low power consumption are required.
  • a magnetic transistor is generally known. This is because the carriers injected into the base B from the emitter E of the bipolar transistor are minority carriers in the base B region, and the injected minority carriers are electrically connected to the presence of free majority carriers in the base B. It flows into the reverse-biased collector C while maintaining neutrality.However, when an external magnetic field H is applied in a direction perpendicular to the flow, it is deflected without generating a Hall voltage due to Lorentz force. C is divided into two parts, a collector C1 and a collector C2, and the injected minority carrier force deflected by the oral Lenz force. Since a large amount flows in a small amount, the magnitude and direction of the external magnetic field H can be known by differential amplification of these different collector currents.
  • a MOSFET is formed instead of a magnetic transistor of a bipolar transistor, two drains corresponding to two collectors are provided, and injection is performed in a bipolar transistor-like operation region by adjusting gate voltage application.
  • a MAGFET has been reported as a magnetic sensor based on the same operating principle as a magnetic transistor, which detects the current difference between two drains by deflecting the minority carrier in the channel region by the Lorentz force.
  • this type of conventional magnetic sensor has a feature that the semiconductor magnetic sensor can be formed of a semiconductor such as silicon, so that it is compatible with a CMOS process and is easily integrated.
  • MAGFET is a semiconductor magnetic sensor that is a magnetic diode according to the inventor's invention with extremely low sensitivity. There has been a demand for a semiconductor magnetic sensor having an even higher magnetic sensitivity so that the magnetic field can be detected.
  • the present invention has the same basic principle as the conventional semiconductor magnetic sensor described above, which utilizes the magnetoresistance change based on the deflection and recombination of the double injection carrier of the semiconductor diode by the magnetic field, but the injection into the base is performed.
  • a semiconductor magnetic sensor that operates as a transistor that changes the recombination ratio of minority carriers in the selected base by an external magnetic field H. It can use the latest integration technology of semiconductors, and is ultra-small, low power consumption, and a stable recombination region. With the adoption of a semiconductor magnetic sensor that has high sensitivity with extremely little change over time and can integrate drive circuits, amplifier circuits, and various compensation circuits, it is also inexpensive, low power consumption, It is an object to provide a measuring device.
  • a semiconductor magnetic sensor provides a semiconductor magnetic sensor in which minority carriers are injected into a region B of one conductivity type (for example, p-type) of a semiconductor.
  • a region E of a type (for example, n-type) and a region C which is made of the same conductivity type or metal as the region E and receives the injected minority carriers are arranged close to each other.
  • a recombination region R for recombining the injected minority carriers is provided, and when an external magnetic field H is applied, the minority injected from the region E to the region B is provided.
  • the recombination region R is arranged so that the rate at which carriers are deflected by the Lorentz force and recombine in the recombination region R changes, and the injected minority that reaches the region C by the external magnetic field H is arranged.
  • the number of carriers changes and the area by this number of minority carriers It is characterized in that information such as the magnitude and direction of the external magnetic field H is obtained from changes in the current flowing through C.
  • the semiconductor magnetic sensor of the present invention can be roughly divided into a bipolar transistor type semiconductor magnetic sensor and a MOSFET type (or MISFET type) semiconductor magnetic sensor. It can be divided into air sensors.
  • bipolar transistor type semiconductor magnetic sensor will be described as follows.
  • the region B is a p-type region of a p-type Si substrate as an example.
  • an n-type region E as an emitter and an n-type region C as a collector, and electrons as minor carriers injected from the emitter into the p-type region B as a base region reach the collector region C.
  • the gap is formed as close as possible (the base length, which is the distance between the emitter region E and the collector region C, is sufficiently smaller than the diffusion distance of electrons as minority carriers).
  • a carrier recombination region R is formed in the base region B between the emitter region E and the collector region C at a position slightly shifted from the axis connecting the emitter region E and the collector region C.
  • a forward bias voltage is applied to the pn junction between the emitter region E and the base region B, and electrons, which are minority carriers in the p-type base region B, are injected from the emitter region E into the base region B. And the minority carrier electrons injected by the reverse bias voltage applied to the collector region C are swept out to the collector region C. At this time, of the electrons injected into the base region B, the amount diffused into the recombination region R is lost by the recombination, but the remaining amount reaches the collector region C and is swept out to become a collector current.
  • the electrons of the minority carriers injected into the base region B are mainly bent into the recombination region R by the Lorentz force of the applied external magnetic field H while flowing mainly through the collector region C by diffusion. Since the number reaching the collector region C decreases, the collector current decreases. On the other hand, when it is bent in the direction away from the recombination region R on average by the Lorentz force of the external magnetic field H applied, the minority carrier electrons lost in the recombination region R decrease and reach the collector region C. Since the number reached reaches, the collector current increases accordingly. In this way, information such as the magnitude and direction of the external magnetic field H can be obtained from the magnitude of the collector current and the spatial configuration of the external magnetic field H with respect to the semiconductor magnetic sensor.
  • the junction between the base region B and the collector region C has a reverse bias, the minority carrier electrons injected by the application of the external magnetic field H are bent toward the recombination region R, and Unless it is lost by recombination and does not reach the collector region C, almost no collector current flows, resulting in a large collector current change rate and a large magnetic sensitivity.
  • MOSFET type semiconductor magnetic sensor will be described as follows, corresponding to the bipolar transistor type semiconductor magnetic sensor.
  • the n-type source S of the MOSFET corresponds to the n-type emitter region E of the bipolar transistor type semiconductor magnetic sensor described above, and the n-type drain D corresponds to the collector region C.
  • the base region B corresponds to the channel region immediately below the gate oxide film and the p-type substrate.
  • the carrier will no longer be a minority carrier, and in majority carrier conduction, a hole electric field will be formed and the carrier will not bend due to an external magnetic field. It is necessary to operate by applying an appropriate gate voltage so that it operates as a bipolar transistor like the region, and to inject minority carrier electrons into the still p-type channel to reach the drain D.
  • the operation principle is the same as that of the bipolar transistor type semiconductor magnetic sensor, and the change in the drain current corresponding to the collector current causes The magnitude and direction of the magnetic field H can be detected.
  • the MISFET type which can be used as a MISFET instead of a MOSFET, is easier to create the recombination region R immediately below the gate.
  • the recombination region R may be formed not only immediately below the gate but also at a position shifted therefrom.
  • the collector region C and the drain D as the region C are different from the base region B as the region B.
  • the force S which was an example using a conductive n-type semiconductor, is used as a metal to form a Schottky junction with the base region B, which is then reverse biased. Then, even if the injected minority carrier is swept out, it operates on the same principle as described above.
  • a recombination region R As a recombination region R, an argon gas and a small amount of oxygen gas are flowed, and sputtering is performed using the ion of these gases to form defects on the surface, or the surface is chemically roughened using a solution or the like. Alternatively, it may be formed using a combination of a physical sputtering defect and a chemical reaction. Since defects in the crystal are repaired and crystallized by heat treatment, a small amount of oxygen is introduced at the time of sputtering to form an oxide at the defect, which impedes crystallization. In addition, it is possible to prevent the aging and prevent the aging. Of course, after forming defects on the surface by sputtering only with argon gas, thermal oxidation can be used to partially oxidize the vicinity of the defects or to perform chemical treatment to prevent aging due to crystallization. it can.
  • Gold, platinum, or the like may be added by an ion implantation method or a diffusion technique to function as a killer center to form a recombination region R that promotes carrier recombination.
  • silicon, germanium, or the like may be deposited on the surface to form a recombination region R that utilizes strain, defects, and the like at the interface.
  • the recombination region R described above may be an active recombination region R using a force pn junction or a Schottky junction as in the passive recombination region R.
  • an n-type recombination region R is formed in the p-type base region B, and a reverse bias voltage is applied to the ohmic electrode formed in the base region B. Then, the minority carrier electrons flowing into the recombination region R recombine with the majority carrier holes in the base region B.
  • the applied voltage may be zero.
  • the semiconductor magnetic sensor according to claim 2 of the present invention is a case where the S BI layer of the S ⁇ I substrate is used as the region B.
  • a silicon single crystal thin film layer formed on an insulator is used. If Since the technology of today's mature semiconductor integration (IC technology) can be used, a high-precision ultra-compact semiconductor magnetic sensor that is inexpensive, uniform, and mass-produced can be formed. The advantage is that peripheral circuits such as the sensor drive circuit, amplifier circuit and various compensation circuits can be integrated on the same substrate.
  • an S ⁇ I substrate a silicon oxide film formed on a silicon single crystal substrate and a silicon single crystal semiconductor thin film layer formed thereon may be used.
  • the single crystal semiconductor thin film layer a part or all of the single crystal semiconductor thin film layer other than the part where the transistor is formed is etched away, and the region B flowing from the region E to the region C via the region B (the base region B By passing the minority carrier to the region having magnetic sensitivity only in the region having magnetic sensitivity, almost no current flows through the region having no magnetic sensitivity, so that a high-sensitivity magnetic sensor can be provided.
  • the semiconductor magnetic sensor according to claim 3 of the present invention is a case where the recombination region R is electrically connected to the region B and has a conductivity type different from that of the region B.
  • the region B is p-type
  • an n-type region is formed by adding impurities to form a pn junction with the region B, or if a MOSFET type, a voltage is applied to the gate.
  • an inversion layer that becomes an n-type region is formed at the MOS interface so that these c region and p-type region B are electrically short-circuited or a voltage is applied to promote recombination. You may do it.
  • the recombination ratio of injected electrons which are minority carriers, can be adjusted.
  • the recombination of the minority carriers injected into the base region during the diffusion is used during the operation of the transistor, so that the base region has almost no drift electric field. Even if an n-type region is created as the recombination region R, the electric field distribution does not become complicated unlike the case where the drift electric field of the conventional double injection pin magnetic diode is generated. . Therefore, this n-type region effectively works as a recombination region R.
  • the semiconductor magnetic sensor according to claim 4 of the present invention is a case where a plurality of regions C are provided for one region E.
  • a plurality of regions C are arranged for one region E.
  • a semiconductor magnetic sensor according to claim 5 of the present invention is a case where a plurality of units of a semiconductor magnetic sensor having a region E, a region B, a region C, and a recombination region R are provided on the same substrate. Measurement of the magnetic field distribution and detection of the two-dimensional or three-dimensional external magnetic field H are advantageous because they can be miniaturized.
  • the semiconductor magnetic sensor according to claim 6 of the present invention is a case where two units are formed as a pair, and the output of the pair is differentially amplified. It is suitable for temperature correction and for increasing the output by connecting two units in opposite directions.
  • the semiconductor magnetic sensor according to claim 7 of the present invention is a case where a unit is arranged so that a two-dimensional or three-dimensional external magnetic field H can be measured.
  • the two-dimensional measurement of the external magnetic field H is achieved by arranging units on the same semiconductor substrate at right angles on a plane, but the three-dimensional external magnetic field H is measured with respect to the orthogonal arrangement on a two-dimensional plane. It is better to arrange them further orthogonally, or to arrange the three units so that they have orthogonal components to each other.
  • the semiconductor magnetic sensor according to claim 8 of the present invention is an integrated circuit together with other circuits on the same substrate, and includes a drive circuit, an amplifier circuit, various compensation circuits, an operation circuit,
  • the semiconductor magnetic sensor of the present invention is integrated with peripheral circuits of the semiconductor magnetic sensor and an integrated circuit for other purposes, such as a memory circuit and a display circuit for displaying outputs and the like.
  • the manufacturing process of the semiconductor magnetic sensor of the present invention is compatible with the CMOS process. Therefore, by integrating the semiconductor magnetic sensor with another integrated circuit on one chip, it is possible to reduce the length of the lead wires and the like.
  • other sensors such as temperature sensors, humidity sensors, and optical sensors, as well as integration of drive circuits required for those sensors, etc.
  • a multifunctional sensor device by integrating with a circuit, there is an advantage that a smaller and more compact device can be provided because the device can be integrated on one chip.
  • a yoke made of a ferromagnetic film is formed on the substrate on which the semiconductor magnetic sensor is formed, and the magnetically responsive portion of the semiconductor magnetic sensor is formed.
  • the intensity of the external magnetic field is increased.
  • a pair of yokes so that the magnetically sensitive portion of the semiconductor magnetic sensor is located at the gap between them. Since the ratio of the gap length to the length of the yoke of the ferromagnetic film greatly contributes to the magnetic flux convergence ratio, in order to increase the magnetic sensitivity, the magnetic sensitive portion of the semiconductor magnetic sensor is made as small as possible, and the gap length is reduced. Care should be taken to make it as small as possible.
  • the yoke greatly contributes to the magnetic sensitivity
  • the yoke is formed on the same plane by bending the yoke three-dimensionally along the plane perpendicular to the substrate to guide the magnetic flux along the plane. It is also possible to measure a two-dimensional or three-dimensional external magnetic field H even in a magnetically sensitive part of a semiconductor magnetic sensor.
  • a pair of yokes cannot be formed, only one of the yokes may be formed, and the magnetic sensitive portion of the semiconductor magnetic sensor may be arranged at the tip.
  • a conductor is disposed at a position of a magnetically responsive part or at a position separated by a predetermined distance from a tip of a yoke, and a current is caused to flow through this conductor, This is the case where the external magnetic field H is calibrated using the magnetic field due to the current.
  • Semiconductor magnetic sensors have temperature dependence and changes over time, and when these are used as measuring instruments, these changes need to be corrected. Calibration is performed every time after measurement, or calibration is sometimes performed. There is a need to. When a current is passed through the conductor, a magnetic field is generated around it, and the magnetic field due to the current flowing through the conductor at a predetermined distance from the magnetically sensitive part of the semiconductor magnetic sensor can be calculated.Therefore, pulse current, AC current, DC current, etc. Is passed through the conductor to calibrate the semiconductor magnetic sensor.
  • the conductor may be a straight line or a coil, or may be formed of a thin-film conductor so as to cover the magnetically sensitive portion of the semiconductor magnetic sensor so that a uniform magnetic field acts on the magnetically sensitive portion. Talk about it.
  • a yoke it may be formed by a thin film conductor so as to surround the yoke one or several times with a coil via an insulating layer. Since there is also leakage magnetic flux, the yoke It is better to set it as a predetermined value of the distance from one end of the graph so that it is easy to fit in calculations with good reproducibility.
  • a magnetic measuring device using the semiconductor magnetic sensor of the present invention according to claim 11 of the present invention includes a power supply unit, a drive circuit unit of the semiconductor magnetic sensor, a calibration circuit unit of the semiconductor magnetic sensor, an output amplifier
  • a magnetic measuring device having a circuit section including a circuit section, an arithmetic circuit section, and a display circuit section.
  • the measurement of geomagnetism, the measurement of magnetic flux, the measurement of current, the measurement of direction, the magnetic flaw detection and its image display, the magnetic head It is a device that performs measurements such as magnetic recording and magnetic field measurement and displays the results.It can be equipped with a magnetic sensor that can be completely integrated into an IC, so it is inexpensive, low power consumption, and compact. .
  • the present invention is different from the above-described semiconductor magnetic sensor, which utilizes a current change based on deflection and recombination of a conventional double injection carrier of a semiconductor diode due to a magnetic field. Since the semiconductor magnetic sensor operates as a transistor that changes the recombination ratio of minority carriers in the base injected into the base by the external magnetic field H, the double injection phenomenon is not used. Minority carriers can be easily injected into the base by application, and force diffusion mainly occurs, and the current slowly flows toward the collector drain, which is the region C. As the carrier velocity becomes smaller, the interaction time with the external magnetic field H decreases. In contrast to the case of the drift velocity due to the strong electric field during double injection of a magnetic diode with a long There is an advantage but is achieved.
  • bipolar transistor type and MOSFET type semiconductor magnetic sensors can be provided.
  • the MOSFET type since the MOSFET type has a gate, a channel can be formed by inverting the base region at the MOS interface, or even the inversion can be achieved.
  • the same operation as the bipolar transistor type can be performed in the absence of such a device, enabling fine control such as the adjustment of magnetic sensitivity and the dynamic range of magnetic measurement for the magnitude and direction of the external magnetic field H. It is.
  • a pn junction or an inversion layer can be used as the recombination region R, a design can be made and a stable and stable recombination region R can be formed. Further, since the magnetic sensitivity can be made variable by adjusting the applied voltage to the region B, a magnetic sensor and a magnetic measuring device having a large dynamic range can be provided.
  • a main part such as a magnetically sensitive part of the semiconductor magnetic sensor can be formed in the SOI layer, it is possible to limit the flow path of the injected minority carrier to the recombination region R. This means that the majority of the injected minority carriers can effectively reach the recombination region R or be separated from the recombination region R by the Lorentz force due to the external magnetic field H, so that high magnetic sensitivity can be obtained. There is an advantage when it is done.
  • Magnetic circuits can also be integrated using CMOS-compatible microfabrication technology, so that various applications as magnetic sensors can be expected.
  • FIG. 1 shows an embodiment of a semiconductor magnetic sensor, and is a schematic cross-sectional view of a main part of the sensor, in which the embodiment is implemented as an npn bipolar transistor type semiconductor magnetic sensor.
  • FIG. 2 is a bird's-eye view of the embodiment of the semiconductor magnetic sensor of the present invention shown in FIG. 1, and is a schematic diagram.
  • FIG. 3 is a schematic cross-sectional view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention, which is of a MOSFET type.
  • FIG. 4 is a schematic cross-sectional view of another embodiment showing the structure of the semiconductor magnetic sensor, in which a gate electrode 512 is partially formed.
  • FIG. 5 is a schematic plan view of the semiconductor magnetic sensor of the present invention shown in FIG.
  • FIG. 6 is a schematic plan view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention, in which a pn junction is used in the recombination region R.
  • FIG. 7 is a schematic view of another embodiment showing a structure using a pn junction in a recombination region R of a semiconductor magnetic sensor.
  • FIG. 8 is a schematic view of another embodiment showing a structure using a pn junction in a recombination region R of a semiconductor magnetic sensor.
  • FIG. 9 is a schematic view of another embodiment showing the structure of the semiconductor magnetic sensor, in which two regions C are provided for one region E.
  • FIG. 10 is a schematic plan view of another embodiment showing the structure of the semiconductor magnetic sensor, in which a yoke made of a pair of ferromagnetic materials is formed.
  • FIG. 11 is a schematic plan view of another embodiment showing the structure of the semiconductor magnetic sensor, in which a yoke suitable for a magnetic head is formed.
  • FIG. 12 is a schematic plan view of another embodiment showing the structure of a semiconductor magnetic sensor, in which a current It is passed through a conducting wire so that a magnetic field can be calibrated.
  • FIG. 13 is a block diagram showing various circuit sections as components of the magnetic measurement apparatus of the present invention and the flow of the electric signal system.
  • FIG. 1 shows an embodiment of a semiconductor magnetic sensor of the present invention, and is a schematic cross-sectional view of a main part of the sensor.
  • the embodiment is implemented as an npn-type bipolar transistor-type semiconductor magnetic sensor, and has a region as a base 102. This is a case where a recombination region R is provided in B.
  • the figure shows the emitter terminal E, the base terminal B, and the collector terminal C, and the oxide film and electrodes on the surface are omitted for simplicity.
  • a 1 ⁇ m-thick insulating layer of an electrical insulator 50 serving as a silicon oxide film is formed on an SOI substrate (for example, an underlying substrate 11 of p-type silicon (Si), and a single-crystal semiconductor
  • SOI substrate for example, an underlying substrate 11 of p-type silicon (Si)
  • a SOI layer 10 as a thin film layer with a thickness of 5 / m
  • a p-type semiconductor hereinafter referred to as p-type in the present specification
  • a region E and a region C of an n-type semiconductor hereinafter, referred to as n-type in the present specification
  • the etching removal portion 60 is formed. This is because the minority carriers injected from the region E into the region B flow only near the recombination region G, which is the magnetically sensitive portion, and reach the region C, thereby increasing the magnetic sensitivity.
  • argon gas and a small amount of oxygen gas are flowed while sputtering with ions of these gases to form defects on the surface, and recombination region R
  • a recombination region R for promoting recombination of carriers may be formed by adding gold, platinum, or the like by an ion implantation method or a diffusion technique to act as a killer center. Since the SOI layer is silicon, the oxide film becomes an extremely stable Si ⁇ film, and a stable recombination region R with very little change over time can be formed.
  • an SOI substrate is used as the substrate 1, and a thermal oxide film of silicon is stably formed on the back surface side of the recombination region R formed in the region B of the SOI layer 10.
  • a non-recombination region 5 is obtained.
  • These structures shown in Fig. 1 of this embodiment constitute a lateral npn-type bipolar transistor. Region E corresponds to emitter 101, region B corresponds to base 102, and region C corresponds to collector 103, respectively. ing. When a forward bias voltage Vb is applied to the emitter 101 and the base 102, a small number of carriers are injected into the base 102 from the n-type emitter 101 and the p-type base 102.
  • the collector 103 which is reverse-biased with respect to the base 102, is placed close to the base 102 through the applied voltage Vc of the emitter 101 and the collector 103, so that the collector 103 is swept out and the collector current Ic Mainly observed as output voltage across load resistance RL connected to collector 103
  • a recombination current flows through the diode even if the double injected electrons and holes are recombined, and the current value is saturated.
  • the transistor-type semiconductor magnetic sensor of the present invention utilizes only the flow of minority carriers. Therefore, when the injected minority carriers are lost due to recombination, almost all of the collector current is reduced. Since Ic stops flowing, a change in collector current Ic due to a large external magnetic field H can be obtained, so that a large magnetic sensitivity can be obtained.
  • the external magnetic field H When the external magnetic field H is not applied, it depends on the thickness and length of the base 102 and the recombination region R, and the degree of recombination of the recombination region R. Many of the minority carrier electrons are recombined in the recombination region R during diffusion, and the number of electrons that can reach the collector 103 is reduced. Therefore, the structure is such that the collector current Ic does not easily flow as compared with the device without the recombination region R.
  • the collector current Ic when the minority carriers injected into the base 102 are bent toward the recombination region R depending on the direction of application of the external magnetic field H, the collector current Ic is reduced when the external magnetic field H is absent. When it is bent toward the non-recombination region 5, the collector current Ic becomes larger than when there is no external magnetic field H, and the degree depends on the magnitude of the external magnetic field H. It becomes a magnetic sensor whose size and direction can be determined.
  • a 1 ⁇ m-thick thin film layer of an electrical insulator 50 made of a silicon oxide film is formed on a base substrate 11 of about 500 ⁇ m thickness of p-type silicon (Si).
  • An SOI substrate on which a p-type SOI layer 10 of about lcm is formed is used. This SOI substrate is thermally oxidized to form a 0.5 ⁇ thick insulating thin film 51 with SiO force on the entire surface.
  • the region of the p-type SOI layer 10 in which the regions E, B, and C are formed is left in the form of an island, and the periphery thereof is circled, and the insulating thin film 51 and the SOI layer on the surface are formed by known photolithography.
  • the layer 10 is removed by etching to form an etched portion 60.
  • the minority carriers in the base 102 as the region B in which the electron mobility is about three times larger than the hole mobility are such that the electrons can reach the collector 103 more easily. It is better to use layer 10.
  • the emitter 101 as the n-type region E and the collector 103 as the region C are separated by about 5 ⁇ m, and phosphorus (P), which is an n-type impurity, is formed by thermal diffusion or ion implantation.
  • P phosphorus
  • the base 102 as the region B the pn junction force of each of the emitter 101 and the collector 103 is separated by about 1 ⁇ m, and the remaining area of about 3 ⁇ m of the base 102 area is defined as the recombination area R.
  • sputtering is performed by adjusting the appropriate gas flow rate, power, and time in argon and a small amount of oxygen gas using a sputtering device. Then, defects are formed in the surface layer portion of this region to form a recombination region R. After that, when amorphous silicon is further deposited to form surface distortion, Both are used as surface protection films. After that, the contact horns 411, 412, 413, 414 are formed by ordinary photolithography. Do.
  • FIG. 2 shows the application of the semiconductor magnetic sensor of the present invention shown in FIG. 1 of the first embodiment to a magnetic head in consideration of the application of the base 102, which is a magnetic sensing part, to the end of the silicon chip of the substrate 1.
  • FIG. 3 is a schematic view of a bird's eye view of an example in which a connection region R is formed. The figure shows an emitter terminal E, a base terminal B, and a collector terminal C, and other electrical circuits and the like are omitted.
  • FIG. 3 is a schematic cross-sectional view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention, which is almost the same as the structure shown in FIGS. 1 and 2 of the first embodiment.
  • the insulating thin film 51 which is a gate oxide film
  • the gate electrode 512 is formed on the base 102 and the gate electrode 512 is formed, and the MOS interface of the p-type base 102 does not reach the n-type inversion.
  • the gate voltage Vg is applied to the source 111, and it is essentially the same as the bipolar transistor type.However, since the MOS structure gate 112 is provided, it is named as the MOSFET type. It is. Therefore, the region E in FIG. 1 of the first embodiment is referred to as the source 111, and the region C is referred to as the drain 113.
  • the forward voltage Vb applied between the source 111 and the base 102 electrons as a minority carrier are injected into the base 112.
  • the injected minority carriers are likely to occur on the MOS interface side corresponding to the channel 114 immediately below the gate electrode 512.
  • the gate voltage V g is an appropriate voltage applied so that the n-type inversion layer 3 is not formed at the MOS interface of the base 102, so that the channel 114 is not formed. ⁇ S It is easy to gather at the interface.
  • the minority carrier electrons injected into the base 102 are bent in the direction of the recombination region R by Lorentz force depending on the direction and magnitude of the external magnetic field H in the same manner as in the first embodiment, and are recombined.
  • the drain current Id hardly flows, or depending on the direction and magnitude of the reverse external magnetic field, it is bent to the non-recombination region 5 side and reaches the drain 113
  • the output is also easily connected to the load resistor connected to the drain terminal D. It can be extracted as an anti-RL voltage drop.
  • FIG. 4 is a schematic cross-sectional view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention.
  • the force is almost the same as the structure shown in FIG.
  • the difference is that the gate electrode 512 is partially formed in the middle between the source 111 and the drain 113, and the gate electrode 512 is formed on the gate electrode 512.
  • a relatively large voltage Vg is applied, and Vg is appropriately applied to the source 111 so that the n-type inversion layer 3 is formed at the MOS interface of the p-type base 102.
  • a recombination terminal R that is electrically connected to the inversion layer 3 is formed via the n-type layer 20 formed in 102, and a recombination promoting voltage Vr is applied between the recombination terminal R and the base terminal B.
  • This inversion layer 3 is used as a recombination region R.
  • the thickness of the sensor 113 reaches the bottom of the S 10I layer 10 serving as the base 102 as the region B.
  • the drain 113, the base 102 region under the gate electrode 512 and the region of the n-type layer 20 are left in an island shape, and the periphery thereof is formed in the SOI layer 10 as an insulating isolation region 61.
  • the minority carriers injected from the source 111 into the base are confined in the main part of these island-like components of the sensor, so that the injected electrons can be used.
  • the main difference is that it does not flow out of the area.
  • the insulating isolation region 61 is a layer which is formed as an electrical insulating layer by ion implantation of oxygen or the like or partial thermal oxidation, or a high-concentration p-type layer to prevent electrons as injected minority carriers. But it's fine.
  • FIG. 5 shows a schematic plan view of the semiconductor magnetic sensor of the present invention shown in FIG. In FIG. 5, the power supply unit and the like are omitted. The insulating thin film 52 on the surface, which is omitted in FIG. 4, is shown.
  • Example 4
  • FIG. 6 is a schematic plan view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention, and is substantially the same as the structure shown in FIGS. 1 and 2 of the first embodiment.
  • the first difference is that the n-type layer 20 formed near the surface of the base 102 is used as the recombination region R.
  • the conductive recombination terminal R of the n-type layer 20 and the base terminal B are short-circuited, or as described in the embodiment in FIGS. 4 and 5. Then, a recombination promoting voltage Vr may be applied.
  • the recombination region R does not completely block the path of the base 102 through which the injected minority carrier electrons flowing from the emitter 101 to the collector 103 pass through the n-type layer 20 as the recombination region R. 4, the direction of application of the external magnetic field H is also promising, and is applied perpendicularly to the SOI layer 10 having the layer of the base 102.
  • the n-type layer 20 may reach not only near the surface of the base 102 but also completely to the insulating thin film 51 below the surface of the SOI layer 10.
  • FIG. 7 is a schematic diagram of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention, which is similar to the semiconductor magnetic sensor shown in FIG.
  • the recombination region R the n-type layer 20 formed near the surface of the base 102 is formed so as to cross and cover the width of the base 102, so that electrons injected from the emitter 101 reach the collector 103.
  • the application direction of the external magnetic field H is parallel to the layer of the base 102 in that the layer passes under the recombination region R of the base 102.
  • FIG. 7 shows a case where a recombination promoting voltage Vr is applied to the base terminal B and the recombination terminal R.
  • the width of the depletion layer changes due to the reverse bias of the pn junction between the recombination region R composed of the n-type layer 20 and the p-type base 102 by adjusting the applied voltage of the recombination promoting voltage Vr.
  • the width of the path changes and the recombination rate can be adjusted.
  • the recombination promoting voltage Vr is set to zero, the base terminal B and the recombination terminal R are short-circuited.
  • FIG. 8 shows that, in the embodiment shown in FIG. 7, instead of externally short-circuiting the base terminal B and the recombination terminal R to the base electrode 502 of the embodiment shown in FIG.
  • An embodiment in which the coupling electrode 514 is combined with one electrode is shown. In this case, of course, the recombination ratio of electrons injected into the base 102 cannot be adjusted, but there is an advantage that the structure becomes compact.
  • FIG. 9 is a schematic view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention.
  • collectors CI and C2 as two regions C are provided for the emitter 101 as one region E.
  • only one base electrode 502 is required.
  • the two paired recombination regions R are arranged on the same side of the base 102, so that the collector current of one of the semiconductor magnetic sensors increases with respect to the external magnetic field H from the same direction.
  • these differential outputs have the advantage that they are almost twice as sensitive as a single force due to the variation in the characteristics of the paired semiconductor magnetic sensors.
  • FIG. 10 is a schematic plan view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention.
  • a magnetic field is shown in the recombination region R of the bipolar transistor type semiconductor magnetic sensor.
  • This figure shows a case in which the yokes 310a and 310b formed of a pair of elongated thin film-like ferromagnetic materials for converging magnetic flux as the air circuit 300 are arranged such that the gap 350 is positioned.
  • the yokes 310a and 310b formed of a pair of elongated thin film-like ferromagnetic materials for converging magnetic flux as the air circuit 300 are arranged such that the gap 350 is positioned.
  • a pair of yokes 310a and 310b are shown, and only one yoke has an effect of converging magnetic flux. If the shape effect of these yokes 320 is required to be great, it is appropriate to appropriately design the thickness, the length, the interval of the gap 350 in the case of a pair, and the magnetic flux convergence by sharpening the tip.
  • FIG. 11 is a schematic plan view of another embodiment showing the structure of the semiconductor magnetic sensor according to the present invention.
  • the semiconductor magnetic sensor of the bipolar transistor type is used again. This is the case where the gap is formed between the yokes 310a and 310b on the surface of a pair of thin and thin ferromagnetic materials that converge the magnetic flux as the magnetic circuit 300 in the coupling region R.
  • one yoke 310a is also extended on the back surface of the substrate 1 to form a back yoke 320, and the yoke 310b on the other surface is substantially equal to the thickness of the substrate 1
  • There is one gap 351 and the gap 351 and the sharpened magnetic head tip 330 of the yoke 310 b make a magnetic head for reading suitable for detecting a magnetic field from an extremely weak and minute magnetic domain, particularly a vertical magnetic head.
  • the structure is suitable for reading magnetic recording.
  • the ferromagnetic yoke 310 may be formed only on the side of the substrate 10 where the recombination region R, which is the magnetically responsive part, is formed.
  • FIG. 12 is a schematic plan view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention.
  • a semiconductor transistor of a non-polar transistor type for example, Above the recombination region R, which is a magnetically sensitive part, so that the current It flows in the direction along the base 102 toward the direction of the collector 103 as the region C and toward the emitter 101 as the region E, A thin conductive wire 600 is formed in close contact with an insulating layer and patterned, and a predetermined current It is applied to the electrode terminals Tl and T2 of the conductive wire 600. This is a case where the magnetic sensor is calibrated.
  • Calibration can be performed by passing a pulse-like current It or a current It of various magnitudes through the thin-film conductive wire 600. In addition, calibration can be performed by changing the direction of the current It.
  • FIG. 13 is a block diagram showing various circuit units constituting components of the magnetic measurement apparatus of the present invention equipped with the semiconductor magnetic sensor of the present invention and the flow of the electric signal system. Since the semiconductor magnetic sensor of the present invention is completely compatible with the CMOS process, a drive circuit of the semiconductor magnetic sensor as various circuit units, which are the components in the thick frame, in the magnetic measurement device indicated by the broken line Most of the semiconductor circuit, the calibration circuit, the output amplifier circuit, the arithmetic circuit, and the display circuit of the semiconductor magnetic sensor can be monolithically formed on the same substrate as the magnetic transistor, which is the magnetic detector of the semiconductor magnetic sensor. .
  • the semiconductor magnetic sensor according to the present invention and the magnetic measurement device using the same can determine the direction of the terrestrial magnetism, which is the direction of the magnetic field, and can be easily and easily used by using a bipolar transistor type semiconductor magnetic sensor. It is useful for magnetic measurement devices, especially suitable for semiconductor magnetic sensors for azimuth sensors and magnetic heads for reproducing perpendicular magnetic recording, and for magnetic measurement devices, portable Gauss meters, ammeters and geomagnetic measurements for position display. Suitable for equipment

Abstract

A semiconductor magnetic sensor which has an ultrasmall size, consumes small power, hardly varies with time, has a high sensitivity, and can have various integrated circuits, and a compact magnetism measuring instrument mounted with the semiconductor magnetic sensor. The semiconductor magnetic sensor has a bipolar or MOS transistor structure. A recombination region (R) is formed in the region corresponding to the base of the structure. The recombination rate of the minority carries injected into the base is varied by the Lorentz force due to an external magnetic field (H), and the strength and direction of the external magnetic field (H) are measured from the variation of the collector or drain current. If the recombination region (R) is of a type using a p-n junction, the recombination rate of the minority carriers can be also controlled by applying a bias voltage.

Description

明 細 書  Specification
半導体磁気センサとこれを用いた磁気計測装置  Semiconductor magnetic sensor and magnetic measuring device using the same
技術分野  Technical field
[0001] 本発明は、半導体を用いた高感度で小型、かつ低消費電力で、磁界の大きさと方 向が検出できる磁気センサと、これを用いた磁気計測装置に関するものである。 背景技術  TECHNICAL FIELD [0001] The present invention relates to a magnetic sensor using a semiconductor, which can detect the magnitude and direction of a magnetic field with high sensitivity, small size, low power consumption, and a magnetic measurement device using the same. Background art
[0002] 従来、本発明者が発明した半導体磁気センサとしての磁気ダイオード(例えば、特 開 2002— 134758)があった。この磁気ダイオードは基本的には pin構造の 2端子で あり、その動作原理は次のようなものであった。真性半導体領域である i領域には、再 結合領域を具備してあり、 p型領域と n型領域との間に順方向ノ ァスを印加して、キ ャリアの二重注入状態で外部磁場 Hを印加し、二重注入されたキャリアである電子 (一 )と正孔(+ )が共に再結合領域側にローレンツ力により曲げられたときには、流れる 両キャリアが再結合により消滅し少なくなるので、二重注入が抑止される傾向になる ので、ダイオード電流が小さくなる。また、逆に二重注入された電子と正孔のキャリア が共に再結合領域とは反対側に曲げられたときには、再結合が起こりにくい非再結 合領域としているので、二重注入キャリアが十分流れ、大きなダイオード電流が流れ るという原理を用いた半導体ダイオードの磁気センサであった。  Conventionally, there has been a magnetic diode (for example, Japanese Patent Application Laid-Open No. 2002-134758) as a semiconductor magnetic sensor invented by the present inventors. This magnetic diode was basically a two-terminal pin structure, and its operating principle was as follows. The i-region, which is an intrinsic semiconductor region, has a recombination region, and a forward noise is applied between the p-type region and the n-type region to apply an external magnetic field in the double injection state of the carrier. When H is applied and both electrons (1) and holes (+), which are double-injected carriers, are bent to the recombination region side by Lorentz force, both flowing carriers disappear due to recombination and decrease. In addition, since the double injection tends to be suppressed, the diode current decreases. On the other hand, when both of the double-injected electron and hole carriers are bent to the opposite side to the recombination region, the non-recombination region where recombination is unlikely occurs. It was a semiconductor diode magnetic sensor based on the principle that a large diode current flows.
[0003] また、 SOI基板の薄い SOI層に形成してあるので、小さな外部磁界 Hにおいても注 入キャリアは容易に SOI表面に形成してある再結合領域に到達するので、その分、 小型で駆動電圧が小さくて済み、消費電力も小さくて済むものであった。  [0003] Further, since the injection carrier is formed on the thin SOI layer of the SOI substrate, the injected carrier easily reaches the recombination region formed on the SOI surface even with a small external magnetic field H. A low driving voltage and low power consumption are required.
[0004] また、従来、磁気トランジスタが一般に知られている。これは、ノ ポーラトランジスタ のェミッタ Eからベース Bに注入されたキャリアは、ベース B領域では少数キャリアであ り、この注入された少数キャリアはベース Bでの自由な多数キャリアの存在で電気的 に中性を保ちながら逆方向バイアスされたコレクタ Cに流れて行くが、外部磁場 Hを 流れに対し直角方向に印加すると、ローレンツ力によりホール電圧を発生せずに偏 向することを利用し、コレクタ Cをコレクタ C1とコレクタ C2との二つに分割しておき、口 一レンツ力により偏向された注入された少数キャリア力 コレクタ C1とコレクタ C2のど ちらかに多く流入するので、これらの異なるコレクタ電流の差動増幅により、外部磁場 Hの大きさと方向を知るものである。 [0004] Conventionally, a magnetic transistor is generally known. This is because the carriers injected into the base B from the emitter E of the bipolar transistor are minority carriers in the base B region, and the injected minority carriers are electrically connected to the presence of free majority carriers in the base B. It flows into the reverse-biased collector C while maintaining neutrality.However, when an external magnetic field H is applied in a direction perpendicular to the flow, it is deflected without generating a Hall voltage due to Lorentz force. C is divided into two parts, a collector C1 and a collector C2, and the injected minority carrier force deflected by the oral Lenz force. Since a large amount flows in a small amount, the magnitude and direction of the external magnetic field H can be known by differential amplification of these different collector currents.
[0005] また、従来、バイポーラトランジスタの磁気トランジスタの代わりに MOSFETを形成 し、 2個のコレクタに対応する 2個のドレインを設けて、ゲート電圧の印加調整でバイ ポーラトランジスタ的動作領域で、注入された少数キャリアのチャンネル領域における ローレンツ力による偏向により、二つのドレイン間の電流の差を検出するという、磁気 トランジスタとほぼ同様な動作原理の基づく磁気センサとしての MAGFETが報告さ れている。 [0005] Conventionally, a MOSFET is formed instead of a magnetic transistor of a bipolar transistor, two drains corresponding to two collectors are provided, and injection is performed in a bipolar transistor-like operation region by adjusting gate voltage application. A MAGFET has been reported as a magnetic sensor based on the same operating principle as a magnetic transistor, which detects the current difference between two drains by deflecting the minority carrier in the channel region by the Lorentz force.
[0006] 従来の磁気を計測する装置では、完全に CMOS工程に適合する地磁気程度の弱 い磁場を計測できる程度の高感度のセンサが存在していなかったために、数百 MH z程度の高周波発生させて、インピーダンスを測定する磁気センサもあるが、この場 合、特殊な磁性体などの組み合わせや製作工程を必要とするので、磁気センサ部と 周辺回路部との集積化が困難で、どうしても大型化と共に高価な磁場計測装置にな らざるを得なかった。 GMRや TMRなどの高感度磁気センサでも、弱い磁場の領域 に磁気感度のピークを有しているので、弱い磁場が存在しているかどうかのオン、ォ フ信号のようなデジタル信号を得るには適する力 広範囲の磁場の計測には適しな レ、ので、広範囲の磁場計測装置としては適しなレ、ものであった。  [0006] In conventional magnetometers, since there is no high-sensitivity sensor capable of measuring a weak magnetic field equivalent to terrestrial magnetism that is completely compatible with the CMOS process, high-frequency generation of several hundred MHz is required. Some magnetic sensors measure impedance, but in this case, the combination of a special magnetic material and the like and the manufacturing process are required. With the advancement of the technology, it became necessary to use an expensive magnetic field measurement device. Even high-sensitivity magnetic sensors such as GMR and TMR have magnetic sensitivity peaks in the weak magnetic field region, so to obtain a digital signal such as an ON / OFF signal indicating whether a weak magnetic field exists. Suitable force Suitable for measuring a wide range of magnetic fields, so suitable for a wide range of magnetic field measurement devices.
[0007] また、従来の二重注入型 pin磁気ダイオード(特開 2002—134758)では、ドリフト 電界が発生している領域に pn接合による再結合領域 Rを形成しても、 i層中で電界集 中している中に pn接合を形成しても、その領域の存在のために i層の長さ方向が短 絡状態となり、電界分布が複雑になり、実質的に再結合領域 Rとしての効果が無いも のであった。  [0007] In the conventional double injection type pin magnetic diode (Japanese Patent Application Laid-Open No. 2002-134758), even if a recombination region R formed by a pn junction is formed in a region where a drift electric field is generated, the electric field remains in the i layer. Even if a pn junction is formed during the concentration, the length of the i-layer becomes short-circuited due to the existence of the region, the electric field distribution becomes complicated, and the recombination region R There was no effect.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] し力 ながら、従来のこのタイプの磁気センサは、この半導体磁気センサはシリコン などの半導体で形成できるので、 CMOS工程に適合し、集積化しやすいという特長 があるものの、従来の磁気トランジスタや MAGFETは、極めて感度が低ぐ本発明 者の発明による磁気ダイオードである半導体磁気センサで、ようやく地磁気の大きさ が検出できる程度で、磁気感度が更に大きい半導体磁気センサが望まれていた。 [0008] However, this type of conventional magnetic sensor has a feature that the semiconductor magnetic sensor can be formed of a semiconductor such as silicon, so that it is compatible with a CMOS process and is easily integrated. MAGFET is a semiconductor magnetic sensor that is a magnetic diode according to the inventor's invention with extremely low sensitivity. There has been a demand for a semiconductor magnetic sensor having an even higher magnetic sensitivity so that the magnetic field can be detected.
[0009] また、磁気ダイオードでは、二重注入された電子と正孔は、再結合しても再結合電 流が流れるので、それほど大きな外部磁場による電流変化が得られないので、磁気 感度がそれほど大きくなれないという問題もあった。  [0009] Further, in a magnetic diode, a double injection of electrons and holes causes a recombination current to flow even if they are recombined, so that a current change due to a very large external magnetic field cannot be obtained. There was also a problem that it could not grow.
[0010] また、再結合領域 Rとして、再現性があり、経時変化が極めて少なぐ設計しやすい 領域の形成が望まれてレ、た。  [0010] In addition, it has been desired to form a recombination region R that is reproducible and has an extremely small change with time and is easy to design.
[0011] 本発明は、従来の半導体ダイオードの二重注入キャリアの磁場による偏向と再結合 に基づく磁気抵抗変化を利用するという上述した半導体磁気センサとは基本原理が 同一であるが、ベースに注入されたベースにおける少数キャリアの再結合割合を外 部磁場 Hにより変化させるトランジスタとして動作させる半導体磁気センサで、半導体 の最新の集積化技術が利用でき、超小型、低消費電力、安定な再結合領域の採用 により経時変化の極めて少なぐ高感度であり、駆動回路、増幅回路や各種補償回 路などを集積化できる半導体磁気センサを提供すると共に、安価で、低消費電力で 、かつコンパ外な磁気計測装置を提供することを目的とする。  [0011] The present invention has the same basic principle as the conventional semiconductor magnetic sensor described above, which utilizes the magnetoresistance change based on the deflection and recombination of the double injection carrier of the semiconductor diode by the magnetic field, but the injection into the base is performed. A semiconductor magnetic sensor that operates as a transistor that changes the recombination ratio of minority carriers in the selected base by an external magnetic field H. It can use the latest integration technology of semiconductors, and is ultra-small, low power consumption, and a stable recombination region. With the adoption of a semiconductor magnetic sensor that has high sensitivity with extremely little change over time and can integrate drive circuits, amplifier circuits, and various compensation circuits, it is also inexpensive, low power consumption, It is an object to provide a measuring device.
課題を解決するための手段  Means for solving the problem
[0012] 上記の目的を達成するために、本発明の請求項 1に係わる半導体磁気センサは、 半導体の一方の導電型 (例えば、 p型)の領域 Bに、少数キャリアを注入する他方の 導電型 (例えば、 n型)の領域 Eと、この領域 Eと同一の導電型もしくは金属からなり、 この注入された少数キャリアを受け取る領域 Cとを近接して配設し、更に、領域 Eと領 域 Cとの間の領域 Bに、前記注入された少数キャリアを再結合させる再結合領域 Rを 具備してあり、外部磁場 Hが印加されたときに、領域 Eから領域 Bに注入された少数 キャリアがローレンツ力を受けて偏向して再結合領域 Rで再結合する割合が変化す るように再結合領域 Rを配設してあり、外部磁場 Hにより領域 Cに到達する前記注入 された少数キャリアの数が変化し、この少数キャリアの数による領域 Cを流れる電流の 変化から外部磁場 Hに関する大きさと方向などの情報を得るようにしたことを特徴とす るものである。 [0012] To achieve the above object, a semiconductor magnetic sensor according to claim 1 of the present invention provides a semiconductor magnetic sensor in which minority carriers are injected into a region B of one conductivity type (for example, p-type) of a semiconductor. A region E of a type (for example, n-type) and a region C which is made of the same conductivity type or metal as the region E and receives the injected minority carriers are arranged close to each other. In a region B between the region C and the region C, a recombination region R for recombining the injected minority carriers is provided, and when an external magnetic field H is applied, the minority injected from the region E to the region B is provided. The recombination region R is arranged so that the rate at which carriers are deflected by the Lorentz force and recombine in the recombination region R changes, and the injected minority that reaches the region C by the external magnetic field H is arranged. The number of carriers changes and the area by this number of minority carriers It is characterized in that information such as the magnitude and direction of the external magnetic field H is obtained from changes in the current flowing through C.
[0013] もう少し詳しく説明すると、本発明の半導体磁気センサは、大きく分けてバイポーラ トランジスタ型半導体磁気センサおよび MOSFET型(または MISFET型)半導体磁 気センサに分けることができる。 [0013] More specifically, the semiconductor magnetic sensor of the present invention can be roughly divided into a bipolar transistor type semiconductor magnetic sensor and a MOSFET type (or MISFET type) semiconductor magnetic sensor. It can be divided into air sensors.
[0014] 先ず、ノくイポーラトランジスタ型半導体磁気センサについて説明すると次のようであ る。  First, the bipolar transistor type semiconductor magnetic sensor will be described as follows.
[0015] 領域 Bとして p型 Si基板の p型領域を例にする。この領域にェミッタとしての n型の領 域 Eとコレクタとしての n型の領域 Cとを、ェミッタからベース領域である p型の領域 Bに 注入された少数キャリアである電子がコレクタ領域 Cに到達できる程度の近接した間 隔(ェミッタ領域 Eとコレクタ領域 Cとの間隔であるベース長は、少数キャリアである電 子の拡散距離よりも充分小さくする)で形成する。ベース領域 Bのうちェミッタ領域 Eと コレクタ領域 Cとの間で、ェミッタ領域 Eとコレクタ領域 Cとを結ぶ軸から少しずれた所 にキャリアの再結合領域 Rを形成しておく。ェミッタ領域 Eとベース領域 Bとの pn接合 に順方向バイアス電圧を印加して、ェミッタ領域 Eからベース領域 Bに、 p型のベース 領域 Bにおける少数キャリアである電子を注入させて、ベース領域 Bとコレクタ領域 C に印加した逆方向バイアス電圧により注入された少数キャリアである電子がコレクタ 領域 Cにスイープアウトされるようにする。このとき、ベース領域 Bに注入された電子の うち再結合領域 Rに拡散した分は、再結合により失われるが、残りの分はコレクタ領域 Cに到達し、スイープアウトされてコレクタ電流となる。ベース領域 Bに注入された少数 キャリアの電子は、コレクタ領域 Cに主に拡散により流れてゆく途中で、印加された外 部磁場 Hのローレンツ力によりに再結合領域 Rに平均して曲げられると、コレクタ領域 Cに到達する数が少なくなるので、コレクタ電流が小さくなる。また、逆に印加された 外部磁場 Hのローレンツ力によりに平均して再結合領域 Rから離れる方向に曲げら れると再結合領域 Rで失われる少数キャリアの電子が少なくなり、コレクタ領域 Cに到 達する数が増えるので、その分、コレクタ電流が大きくなる。このようにして、コレクタ 電流の大きさと、この半導体磁気センサに対する外部磁場 Hとの空間的配位から外 部磁場 Hの大きさと方向などの情報を得ることができる。  [0015] The region B is a p-type region of a p-type Si substrate as an example. In this region, an n-type region E as an emitter and an n-type region C as a collector, and electrons as minor carriers injected from the emitter into the p-type region B as a base region reach the collector region C. The gap is formed as close as possible (the base length, which is the distance between the emitter region E and the collector region C, is sufficiently smaller than the diffusion distance of electrons as minority carriers). A carrier recombination region R is formed in the base region B between the emitter region E and the collector region C at a position slightly shifted from the axis connecting the emitter region E and the collector region C. A forward bias voltage is applied to the pn junction between the emitter region E and the base region B, and electrons, which are minority carriers in the p-type base region B, are injected from the emitter region E into the base region B. And the minority carrier electrons injected by the reverse bias voltage applied to the collector region C are swept out to the collector region C. At this time, of the electrons injected into the base region B, the amount diffused into the recombination region R is lost by the recombination, but the remaining amount reaches the collector region C and is swept out to become a collector current. The electrons of the minority carriers injected into the base region B are mainly bent into the recombination region R by the Lorentz force of the applied external magnetic field H while flowing mainly through the collector region C by diffusion. Since the number reaching the collector region C decreases, the collector current decreases. On the other hand, when it is bent in the direction away from the recombination region R on average by the Lorentz force of the external magnetic field H applied, the minority carrier electrons lost in the recombination region R decrease and reach the collector region C. Since the number reached reaches, the collector current increases accordingly. In this way, information such as the magnitude and direction of the external magnetic field H can be obtained from the magnitude of the collector current and the spatial configuration of the external magnetic field H with respect to the semiconductor magnetic sensor.
[0016] 従来の pinダイオードを用いた二重注入キャリアによる半導体磁気センサでは、 i領 域に注入されたキャリアは、電界によるドリフトで走行し、ドリフト速度が大きぐ従って 、ローレンツ力は大きくなる力 S、走行するキャリアとの相互作用時間が短いので、結局 、キャリアの曲がりが少なくなる。むしろ、本発明の半導体磁気センサのように、ベー ス領域 B中を拡散でゆっくり少数キャリアが動いた方が相互作用時間が長いので、大 きく曲げられることになり、再結合領域 Rで少数キャリアが再結合して失われる割合が 大きくなり、その分、高感度磁気センサとなる。また、ベース領域 Bとコレクタ領域 Cと の接合は、逆方向バイアスになっているので、外部磁場 Hの印加により注入された少 数キャリアの電子が再結合領域 R側に曲げられて、そこでの再結合により失われて、 コレクタ領域 Cまで到達しないと、ほとんどコレクタ電流が流れないので、大きなコレク タ電流の変化割合となり大きな磁気感度になる。 [0016] In a conventional semiconductor magnetic sensor using a double injection carrier using a pin diode, the carrier injected into the i region travels by drift due to an electric field, and the Lorentz force increases as the drift speed increases. S, since the interaction time with the traveling carrier is short, the bending of the carrier is eventually reduced. Rather, like the semiconductor magnetic sensor of the present invention, the base When the minority carrier moves slowly by diffusion in the storage region B, the interaction time is longer, and the bend is greatly bent, and the proportion of minority carriers that are recombined and lost in the recombination region R increases. The result is a high-sensitivity magnetic sensor. Since the junction between the base region B and the collector region C has a reverse bias, the minority carrier electrons injected by the application of the external magnetic field H are bent toward the recombination region R, and Unless it is lost by recombination and does not reach the collector region C, almost no collector current flows, resulting in a large collector current change rate and a large magnetic sensitivity.
[0017] 次に MOSFET型半導体磁気センサについて、バイポーラトランジスタ型半導体磁 気センサに対応して説明すると次のようである。  Next, the MOSFET type semiconductor magnetic sensor will be described as follows, corresponding to the bipolar transistor type semiconductor magnetic sensor.
[0018] MOSFETの n型のソース Sは上述のバイポーラトランジスタ型半導体磁気センサの n型のェミッタ領域 Eに対応し、 n型のドレイン Dはコレクタ領域 Cに対応する。また、 ベース領域 Bはゲート酸化膜直下のチャンネル領域及び p型基板に相当する。しか し、ゲート電圧印加などで完全に n型チャンネルを形成してしまうと少数キャリアでなく なり、多数キヤリァ伝導ではホール電界が形成されキャリアが外部磁場により曲がらな くなるので、 MOSFETをサブシュレショルド領域のようにバイポーラトランジスタとして 動作するような適当なゲート電圧印加にして動作させ、まだ p型であるチャンネル部 に少数キャリアの電子を注入して、ドレイン Dに到達させる必要がある。例えば、チヤ ンネル部とゲート酸化膜との界面に再結合領域 Rを形成しておくと、バイポーラトラン ジスタ型半導体磁気センサと同様な動作原理で、コレクタ電流に対応するドレイン電 流の変化から外部磁場 Hの大きさと方向を検出することができる。  The n-type source S of the MOSFET corresponds to the n-type emitter region E of the bipolar transistor type semiconductor magnetic sensor described above, and the n-type drain D corresponds to the collector region C. The base region B corresponds to the channel region immediately below the gate oxide film and the p-type substrate. However, if an n-type channel is completely formed by applying a gate voltage, etc., the carrier will no longer be a minority carrier, and in majority carrier conduction, a hole electric field will be formed and the carrier will not bend due to an external magnetic field. It is necessary to operate by applying an appropriate gate voltage so that it operates as a bipolar transistor like the region, and to inject minority carrier electrons into the still p-type channel to reach the drain D. For example, if a recombination region R is formed at the interface between the channel and the gate oxide film, the operation principle is the same as that of the bipolar transistor type semiconductor magnetic sensor, and the change in the drain current corresponding to the collector current causes The magnitude and direction of the magnetic field H can be detected.
もちろん、 MOSFETの代わりに MISFETとしても良ぐ MISFET型の方が、ゲート 直下に再結合領域 Rを作成しやすい。  Of course, the MISFET type, which can be used as a MISFET instead of a MOSFET, is easier to create the recombination region R immediately below the gate.
[0019] また、再結合領域 Rは、ゲート直下ばかりでなぐそこからずれた所に形成しても良 レ、。  Also, the recombination region R may be formed not only immediately below the gate but also at a position shifted therefrom.
[0020] また、上述のバイポーラトランジスタ型半導体磁気センサと MOSFET型や MISFE T型の半導体磁気センサでは、領域 Cとしてのコレクタ領域 Cとドレイン Dとを領域 Bと してのベース領域 Bとは異なる導電型の n型半導体を使用した例であった力 S、これを 金属としてベース領域 Bに対するショットキー接合を形成して、これを逆方向バイアス にして、注入された少数キャリアをスイープアウトするようにしても、上述と同等の原理 で動作する。 In the above-mentioned bipolar transistor type semiconductor magnetic sensor and the MOSFET type or MISFET type semiconductor magnetic sensor, the collector region C and the drain D as the region C are different from the base region B as the region B. The force S, which was an example using a conductive n-type semiconductor, is used as a metal to form a Schottky junction with the base region B, which is then reverse biased. Then, even if the injected minority carrier is swept out, it operates on the same principle as described above.
[0021] 再結合領域 Rとして、アルゴンガスと少量の酸素ガスを流しながらこれらのガスのィ オンでスパッタリングして表面に欠陥を形成したり、溶液などを利用して化学的に表 面を荒らしたり、または、物理的なスパッタリング欠陥と化学的な反応の組み合わせな ど利用して形成しても良い。結晶中の欠陥は熱処理により修復されて結晶化するの で、結晶化を阻害する意味で、スッパッタリング時に少量の酸素を導入し、欠陥に酸 化物を形成してその後の熱処理などによる結晶化の促進を防止すると共に、経時変 化を防止することができる。もちろん、アルゴンガスのみでスパッタリングして表面に欠 陥を形成しのち、熱酸化して、欠陥付近を部分酸化したり、薬品処理をしたりして、結 晶化による経時変化を防止することができる。  [0021] As a recombination region R, an argon gas and a small amount of oxygen gas are flowed, and sputtering is performed using the ion of these gases to form defects on the surface, or the surface is chemically roughened using a solution or the like. Alternatively, it may be formed using a combination of a physical sputtering defect and a chemical reaction. Since defects in the crystal are repaired and crystallized by heat treatment, a small amount of oxygen is introduced at the time of sputtering to form an oxide at the defect, which impedes crystallization. In addition, it is possible to prevent the aging and prevent the aging. Of course, after forming defects on the surface by sputtering only with argon gas, thermal oxidation can be used to partially oxidize the vicinity of the defects or to perform chemical treatment to prevent aging due to crystallization. it can.
[0022] また、金や白金などをイオン注入法や拡散技術で添加してキラーセンターとして作 用させ、キャリアの再結合を促進させるようにした再結合領域 Rを形成してもよい。  [0022] Gold, platinum, or the like may be added by an ion implantation method or a diffusion technique to function as a killer center to form a recombination region R that promotes carrier recombination.
[0023] また、シリコンやゲルマニウムなどを表面に堆積させて、界面でのひずみや欠陥な どを利用する再結合領域 Rを形成しても良い。  [0023] Alternatively, silicon, germanium, or the like may be deposited on the surface to form a recombination region R that utilizes strain, defects, and the like at the interface.
[0024] 上述の再結合領域 Rは、パッシブな再結合領域 Rについてであった力 pn接合や ショットキー接合を利用したアクティブな再結合領域 Rにしても良い。例えば、 p型べ ース領域 Bにコレクタ領域 Cと同様に、 n型の再結合領域 Rを形成しておき、ベース領 域 Bに形成されたオーム性電極に対して逆方向バイアス電圧を印加すると、この再結 合領域 Rに流入する少数キャリアの電子はベース領域 Bの多数キャリアの正孔と再結 合する。このとき、逆方向バイアス電圧の大きさで再結合領域 Rに流入する少数キヤ リアの量の制御、すなわち少数キャリアの再結合割合の制御をすることができるとレ、う 利点がある。もちろん、印加電圧はゼロでもよい。  [0024] The recombination region R described above may be an active recombination region R using a force pn junction or a Schottky junction as in the passive recombination region R. For example, similarly to the collector region C, an n-type recombination region R is formed in the p-type base region B, and a reverse bias voltage is applied to the ohmic electrode formed in the base region B. Then, the minority carrier electrons flowing into the recombination region R recombine with the majority carrier holes in the base region B. At this time, there is an advantage that it is possible to control the amount of minority carriers flowing into the recombination region R by the magnitude of the reverse bias voltage, that is, to control the recombination rate of minority carriers. Of course, the applied voltage may be zero.
[0025] 上述の例では、半導体としてシリコンを例にした力 GaAsなどの化合物半導体を 利用しても良ぐ単結晶 GaAsを用いると、電子の移動度が大きいので、大きな磁気 感度にすることができる。  [0025] In the above example, when single crystal GaAs is used, which can easily use a compound semiconductor such as GaAs, for example, silicon as the semiconductor, the mobility of electrons is large. it can.
[0026] 本発明の請求項 2に係わる半導体磁気センサは、領域 Bとして、 S〇I基板の S〇I層 を用いた場合であり、特に絶縁体上に形成したシリコン単結晶薄膜層を用いた場合 は、現在の成熟した半導体の集積化技術 (IC化技術)が使用できるので、安価で、 画一的で、大量生産性のある高精度の超小型の半導体磁気センサが形成できるば 力りでなぐ同一基板上にセンサの駆動回路、増幅回路や各種補償回路などの周辺 回路を集積化できるという利点を持つ。 [0026] The semiconductor magnetic sensor according to claim 2 of the present invention is a case where the S BI layer of the S〇I substrate is used as the region B. In particular, a silicon single crystal thin film layer formed on an insulator is used. If Since the technology of today's mature semiconductor integration (IC technology) can be used, a high-precision ultra-compact semiconductor magnetic sensor that is inexpensive, uniform, and mass-produced can be formed. The advantage is that peripheral circuits such as the sensor drive circuit, amplifier circuit and various compensation circuits can be integrated on the same substrate.
[0027] S〇I基板として、シリコン単結晶基板上に形成してあるシリコンの酸化膜とその上に 形成してあるシリコンの単結晶半導体薄膜層力 成る基板を用いてもよぐシリコンと 格子定数の合う絶縁基板であるサファイア基板上にェピタキシャルシリコンの単結晶 半導体薄膜層を成長させた基板を用レ、てもよい。  [0027] As an S〇I substrate, a silicon oxide film formed on a silicon single crystal substrate and a silicon single crystal semiconductor thin film layer formed thereon may be used. A substrate obtained by growing a single-crystal semiconductor thin film layer of epitaxy silicon on a sapphire substrate, which is an insulating substrate having a constant constant, may be used.
[0028] また、単結晶半導体薄膜層のうち、トランジスタを形成部分以外の一部または全部 をエッチ除去して、領域 Eから領域 Bを経由して領域 Cに流入する領域 B (ベース領 域 B)に対する少数キャリアが、磁気感度を有する領域だけを通るようにすることにより 、磁気感度を有しない領域を経由する電流がほとんどなくなるから高感度の磁気セン サが提供できる。  Further, in the single crystal semiconductor thin film layer, a part or all of the single crystal semiconductor thin film layer other than the part where the transistor is formed is etched away, and the region B flowing from the region E to the region C via the region B (the base region B By passing the minority carrier to the region having magnetic sensitivity only in the region having magnetic sensitivity, almost no current flows through the region having no magnetic sensitivity, so that a high-sensitivity magnetic sensor can be provided.
[0029] 本発明の請求項 3に係わる半導体磁気センサは、再結合領域 Rとして、領域 Bと電 気的に導通してあり、領域 Bとは異なる導電型の領域とした場合である。領域 Bが p型 の場合は、不純物添加による n型の領域を形成して、領域 Bとの間で pn接合とするか 、または、 MOSFET型の場合には、ゲートに電圧を印加するなどして、 MOS界面に n型の領域となる反転層を形成して、これらの c領域と p型の領域 Bとの間を電気的に 短絡するか、電圧を印加して再結合を促進するようにしても良い。電圧を印加した場 合は、注入された少数キャリアである電子の再結合割合を調節することもできる。  The semiconductor magnetic sensor according to claim 3 of the present invention is a case where the recombination region R is electrically connected to the region B and has a conductivity type different from that of the region B. If the region B is p-type, an n-type region is formed by adding impurities to form a pn junction with the region B, or if a MOSFET type, a voltage is applied to the gate. Then, an inversion layer that becomes an n-type region is formed at the MOS interface so that these c region and p-type region B are electrically short-circuited or a voltage is applied to promote recombination. You may do it. When a voltage is applied, the recombination ratio of injected electrons, which are minority carriers, can be adjusted.
[0030] 本発明の半導体磁気センサでは、トランジスタ動作でベース領域に注入された少 数キャリアの拡散途中での再結合を利用するので、ベース領域にはドリフト電界はほ とんど無ぐ領域 Bに再結合領域 Rとしての n型の領域を作成しても、従来の二重注 入型 pin磁気ダイオードのドリフト電界が発生している場合とは異なり、電界分布が複 雑になることは無い。従って、この n型の領域は再結合領域 Rとして、有効に働く。  In the semiconductor magnetic sensor of the present invention, the recombination of the minority carriers injected into the base region during the diffusion is used during the operation of the transistor, so that the base region has almost no drift electric field. Even if an n-type region is created as the recombination region R, the electric field distribution does not become complicated unlike the case where the drift electric field of the conventional double injection pin magnetic diode is generated. . Therefore, this n-type region effectively works as a recombination region R.
[0031] 本発明の請求項 4に係わる半導体磁気センサは一つの領域 Eに対して複数の領域 Cを配設した場合である。二次元や三次元的な外部磁場 Hの検出や対となる半導体 磁気センサの形成では、一つの領域 Eに対して複数の領域 Cを配設することにより、 小型で、かつ、電極数が少なくて済むという利点がある。 The semiconductor magnetic sensor according to claim 4 of the present invention is a case where a plurality of regions C are provided for one region E. In the detection of a two-dimensional or three-dimensional external magnetic field H and the formation of a pair of semiconductor magnetic sensors, a plurality of regions C are arranged for one region E. There is an advantage that the size is small and the number of electrodes is small.
[0032] 本発明の請求項 5に係わる半導体磁気センサは、同一基板に領域 E、領域 B、領 域 Cおよび再結合領域 Rを持つ半導体磁気センサのユニットを複数個設けた場合で ある。磁場の分布の計測や二次元や三次元的な外部磁場 Hの検出では、小型化で きるので有利となる。 A semiconductor magnetic sensor according to claim 5 of the present invention is a case where a plurality of units of a semiconductor magnetic sensor having a region E, a region B, a region C, and a recombination region R are provided on the same substrate. Measurement of the magnetic field distribution and detection of the two-dimensional or three-dimensional external magnetic field H are advantageous because they can be miniaturized.
[0033] 本発明の請求項 6に係わる半導体磁気センサは、 2個のユニットを一対として形成 し、これらの一対の出力を差動増幅させるようにした場合である。温度補正や 2個の ユニットを逆向きに接続して出力の増大化を図る場合などに好適である。  [0033] The semiconductor magnetic sensor according to claim 6 of the present invention is a case where two units are formed as a pair, and the output of the pair is differentially amplified. It is suitable for temperature correction and for increasing the output by connecting two units in opposite directions.
[0034] 本発明の請求項 7に係わる半導体磁気センサは、二次元もしくは三次元的な外部 磁場 Hが計測できるようにユニットを配置した場合である。外部磁場 Hの二次元計測 では、同一半導体基板にユニットを平面上で直交配置することにより達成されるが、 三次元的な外部磁場 Hが計測では、二次元の平面上での直交配置に対し、更に直 交配置させるか、または、 3個のユニットが互いに直交成分があるように配置すると良 レ、。  [0034] The semiconductor magnetic sensor according to claim 7 of the present invention is a case where a unit is arranged so that a two-dimensional or three-dimensional external magnetic field H can be measured. The two-dimensional measurement of the external magnetic field H is achieved by arranging units on the same semiconductor substrate at right angles on a plane, but the three-dimensional external magnetic field H is measured with respect to the orthogonal arrangement on a two-dimensional plane. It is better to arrange them further orthogonally, or to arrange the three units so that they have orthogonal components to each other.
[0035] 本発明の請求項 8に係わる半導体磁気センサは、同一の基板に他の回路と共に集 積化した場合で、この半導体磁気センサの駆動回路、増幅回路、各種補償回路、演 算回路、メモリ回路、出力などを表示するための表示回路など、半導体磁気センサの 周辺回路や他の目的の集積回路と共に本発明の半導体磁気センサを集積化するも のである。  [0035] The semiconductor magnetic sensor according to claim 8 of the present invention is an integrated circuit together with other circuits on the same substrate, and includes a drive circuit, an amplifier circuit, various compensation circuits, an operation circuit, The semiconductor magnetic sensor of the present invention is integrated with peripheral circuits of the semiconductor magnetic sensor and an integrated circuit for other purposes, such as a memory circuit and a display circuit for displaying outputs and the like.
[0036] 本発明の半導体磁気センサの製作工程は、 CMOSプロセスに適合するので、 1つ のチップに他の集積回路と共に集積化することにより、リード線が短くて済むことなど から外部からの誘導雑音が小さくなり、高感度で、高性能の半導体磁気センサが提 供できるばかりでなぐたとえば、温度センサ、湿度センサや光センサなどの他のセン サゃそれらのセンサに必要な駆動回路などの集積回路と共に集積化して多機能セ ンサの装置を作製する場合、 1つのチップに集積化できるので、ばらばらで組み上げ るより小型でコンパクトな装置が提供できるという利点がある。  The manufacturing process of the semiconductor magnetic sensor of the present invention is compatible with the CMOS process. Therefore, by integrating the semiconductor magnetic sensor with another integrated circuit on one chip, it is possible to reduce the length of the lead wires and the like. In addition to providing low-noise, high-sensitivity, high-performance semiconductor magnetic sensors, other sensors such as temperature sensors, humidity sensors, and optical sensors, as well as integration of drive circuits required for those sensors, etc. In the case of manufacturing a multifunctional sensor device by integrating with a circuit, there is an advantage that a smaller and more compact device can be provided because the device can be integrated on one chip.
[0037] 本発明の請求項 9に係わる半導体磁気センサは、強磁性体膜からなるヨークを半 導体磁気センサの形成してある基板に形成して、半導体磁気センサの磁気感応部 における外部磁場の強さが大きくなるようにした場合である。強磁性体膜の透磁率は 大きい方が良ぐ保持力は小さい方が良い。強磁性体膜をスパッタリングなどで堆積 形成後、パターン化してヨークとして利用してもしても良ぐ強磁性体膜を貼り付ける などした後、パターンィ匕して、適当な形状の強磁性体膜のヨーク対を形成し、それら のギャップの位置に半導体磁気センサの磁気感応部が位置するようにすると良い。 強磁性体膜のヨークの長さに対するギャップ長の割合が磁束収束割合に大きく寄与 するので、磁気感度を大きくするためには、半導体磁気センサの磁気感応部をできる だけ小さくして、ギャップ長を可能な限り小さくできるように配慮すると良い。 In the semiconductor magnetic sensor according to claim 9 of the present invention, a yoke made of a ferromagnetic film is formed on the substrate on which the semiconductor magnetic sensor is formed, and the magnetically responsive portion of the semiconductor magnetic sensor is formed. In this case, the intensity of the external magnetic field is increased. The larger the magnetic permeability of the ferromagnetic film, the better and the smaller the coercive force. After depositing a ferromagnetic film by sputtering or the like, patterning and attaching a ferromagnetic film that can be used as a yoke, etc., and then patterning to form a ferromagnetic film of appropriate shape It is preferable to form a pair of yokes so that the magnetically sensitive portion of the semiconductor magnetic sensor is located at the gap between them. Since the ratio of the gap length to the length of the yoke of the ferromagnetic film greatly contributes to the magnetic flux convergence ratio, in order to increase the magnetic sensitivity, the magnetic sensitive portion of the semiconductor magnetic sensor is made as small as possible, and the gap length is reduced. Care should be taken to make it as small as possible.
[0038] また、ヨークが磁気感度に大きく寄与している場合には、ヨークを三次元的に基板 に直交面などに沿って曲げて磁束をそれに沿って誘導して、同一平面上に形成され た半導体磁気センサの磁気感応部であっても二次元や三次元の外部磁場 Hの計測 ができるようにすることができる。また、一対のヨークが形成できないときには、一方の ヨークだけを形成し、その先端に半導体磁気センサの磁気感応部を位置するように 配置しても良い。  When the yoke greatly contributes to the magnetic sensitivity, the yoke is formed on the same plane by bending the yoke three-dimensionally along the plane perpendicular to the substrate to guide the magnetic flux along the plane. It is also possible to measure a two-dimensional or three-dimensional external magnetic field H even in a magnetically sensitive part of a semiconductor magnetic sensor. When a pair of yokes cannot be formed, only one of the yokes may be formed, and the magnetic sensitive portion of the semiconductor magnetic sensor may be arranged at the tip.
[0039] 本発明の請求項 10に係わる半導体磁気センサは、磁気感応部の位置もしくはョー クの先端から所定の距離だけ離した位置に導線を配設し、この導線に電流を流し、こ の電流による磁界を利用して外部磁場 Hを校正するようにした場合である。  In the semiconductor magnetic sensor according to claim 10 of the present invention, a conductor is disposed at a position of a magnetically responsive part or at a position separated by a predetermined distance from a tip of a yoke, and a current is caused to flow through this conductor, This is the case where the external magnetic field H is calibrated using the magnetic field due to the current.
[0040] 半導体磁気センサは、温度依存性や経時変化が存在し、これを測定器として用い る場合は、これらの変化を補正する必要があり、測定する後毎に校正するか、時々、 校正する必要がある。導線に電流を流すとその回りに磁界が発生し、本半導体磁気 センサの磁気感応部から所定の距離にある導線に流れる電流による磁場は計算でき るので、パルス電流や交流電流、もしくは直流電流などを導線に流して、半導体磁気 センサの校正を行うものである。  [0040] Semiconductor magnetic sensors have temperature dependence and changes over time, and when these are used as measuring instruments, these changes need to be corrected. Calibration is performed every time after measurement, or calibration is sometimes performed. There is a need to. When a current is passed through the conductor, a magnetic field is generated around it, and the magnetic field due to the current flowing through the conductor at a predetermined distance from the magnetically sensitive part of the semiconductor magnetic sensor can be calculated.Therefore, pulse current, AC current, DC current, etc. Is passed through the conductor to calibrate the semiconductor magnetic sensor.
[0041] 導線は、直線状でも良ぐコイル状でも良いし、半導体磁気センサの磁気感応部を 覆うようにして、薄膜導体で導線を形成して、磁気感応部に一様磁界が働くようにす ることちでさる。  [0041] The conductor may be a straight line or a coil, or may be formed of a thin-film conductor so as to cover the magnetically sensitive portion of the semiconductor magnetic sensor so that a uniform magnetic field acts on the magnetically sensitive portion. Talk about it.
[0042] また、ヨークがある場合は、絶縁層を介してこのヨークの周囲を一周または数周だけ コイルで取り巻くように薄膜導線で密着形成しても良レ、。漏れ磁束もあるので、ヨーク の一端からの距離の所定の値として、再現性が良ぐ計算にも合い易くしておいた方 が良い。 If there is a yoke, it may be formed by a thin film conductor so as to surround the yoke one or several times with a coil via an insulating layer. Since there is also leakage magnetic flux, the yoke It is better to set it as a predetermined value of the distance from one end of the graph so that it is easy to fit in calculations with good reproducibility.
[0043] 本発明の請求項 11に係わる本発明の半導体磁気センサを用いた磁気計測装置は 、電源部と、この半導体磁気センサの駆動回路部、この半導体磁気センサの校正回 路部、出力増幅回路部、演算回路部及び表示回路部を含む回路部を具備している 磁気計測装置であり、地磁気の計測、磁束の計測、電流の計測、方位の計測、磁気 探傷とその画像表示、磁気ヘッドとしての磁気記録と磁界の計測などの計測やその 結果の表示などを行う装置で、完全に IC化が可能な磁気センサを搭載できるので、 安価で、低消費電力で、かつコンパクトなものである。  A magnetic measuring device using the semiconductor magnetic sensor of the present invention according to claim 11 of the present invention includes a power supply unit, a drive circuit unit of the semiconductor magnetic sensor, a calibration circuit unit of the semiconductor magnetic sensor, an output amplifier A magnetic measuring device having a circuit section including a circuit section, an arithmetic circuit section, and a display circuit section. The measurement of geomagnetism, the measurement of magnetic flux, the measurement of current, the measurement of direction, the magnetic flaw detection and its image display, the magnetic head It is a device that performs measurements such as magnetic recording and magnetic field measurement and displays the results.It can be equipped with a magnetic sensor that can be completely integrated into an IC, so it is inexpensive, low power consumption, and compact. .
発明の効果  The invention's effect
[0044] 本発明は、以上説明したように構成されているので、以下に記載されるような効果を 奏する。  Since the present invention is configured as described above, it has the following effects.
[0045] 本発明の半導体磁気センサでは、本発明は、従来の半導体ダイオードの二重注入 キャリアの磁場による偏向と再結合に基づく電流変化を利用するという上述した半導 体磁気センサとは基本原理が同一である力 ベースに注入されたベースにおける少 数キャリアの再結合割合を外部磁場 Hにより変化させるトランジスタ動作させる半導 体磁気センサであるから、二重注入現象を利用しないから、順方向電圧印加でベー スへの少数キャリアが容易に注入でき、し力 拡散が主体で領域 Cであるコレクタゃド レインに向かってゆっくり流れるので、キャリア速度が小さぐその分外部磁場 Hとの 相互作用時間が長ぐ磁気ダイオードの二重注入時の強電界に依るドリフト速度の場 合とは異なり、キャリアの曲がりが大きくなり、高感度の磁気センサが達成されるという 利点がある。  [0045] In the semiconductor magnetic sensor of the present invention, the present invention is different from the above-described semiconductor magnetic sensor, which utilizes a current change based on deflection and recombination of a conventional double injection carrier of a semiconductor diode due to a magnetic field. Since the semiconductor magnetic sensor operates as a transistor that changes the recombination ratio of minority carriers in the base injected into the base by the external magnetic field H, the double injection phenomenon is not used. Minority carriers can be easily injected into the base by application, and force diffusion mainly occurs, and the current slowly flows toward the collector drain, which is the region C. As the carrier velocity becomes smaller, the interaction time with the external magnetic field H decreases. In contrast to the case of the drift velocity due to the strong electric field during double injection of a magnetic diode with a long There is an advantage but is achieved.
[0046] また、バイポーラトランジスタ型と MOSFET型の半導体磁気センサが提供でき、特 に MOSFET型では、ゲートを有しているので、 MOS界面のベース領域を反転させ てチャンネル形成させたり、反転まで至らない状態で、ノくイポーラトランジスタ型と同 等な動作をさせたりできるので、外部磁場 Hの大きさや向きなどに対して、磁気感度 の調整や磁気計測のダイナミックレンジ調整など微細な制御が可能である。  In addition, bipolar transistor type and MOSFET type semiconductor magnetic sensors can be provided. In particular, since the MOSFET type has a gate, a channel can be formed by inverting the base region at the MOS interface, or even the inversion can be achieved. The same operation as the bipolar transistor type can be performed in the absence of such a device, enabling fine control such as the adjustment of magnetic sensitivity and the dynamic range of magnetic measurement for the magnitude and direction of the external magnetic field H. It is.
[0047] また、従来の二重注入型 pin磁気ダイオードでは、再結合領域 Rで二重注入された 電子と正孔とが外部磁場 Hにより曲げられ、完全に再結合しても、再結合電流が流 れてしまレ、、電流の変化率がそれほど大きくなれないのに対して、本発明の半導体 磁気センサはトランジスタ型なので、少数キャリアが外部磁場 Hにより曲げられ、再結 合領域 Rで再結合により消滅すると、コレクタ又はドレイン電流はほぼゼロになり、大 きな電流の変化割合になるので、大きな磁気感度が得られるという利点がある。 [0047] In the conventional double injection type pin magnetic diode, double injection is performed in the recombination region R. Even when electrons and holes are bent by the external magnetic field H and are completely recombined, a recombination current flows, and the current change rate does not increase so much. Since the magnetic sensor is a transistor type, if the minority carriers are bent by the external magnetic field H and disappear by recombination in the recombination region R, the collector or drain current becomes almost zero and the rate of change of the current becomes large. There is an advantage that a large magnetic sensitivity can be obtained.
[0048] 再結合領域 Rとして、 pn接合や反転層が利用できるので、設計ができやすぐかつ 安定な再結合領域 Rが形成できる。また、領域 Bに対する印加電圧の調整により磁気 感度を可変型とすることもできるので、大きなダイナミックレンジの磁気センサと磁気 計測装置が提供できる。  [0048] Since a pn junction or an inversion layer can be used as the recombination region R, a design can be made and a stable and stable recombination region R can be formed. Further, since the magnetic sensitivity can be made variable by adjusting the applied voltage to the region B, a magnetic sensor and a magnetic measuring device having a large dynamic range can be provided.
[0049] 半導体磁気センサの磁気感応部などの主要部が SOI層に形成できるので、再結合 領域 Rに対して注入少数キャリアの流路に制限を与えることができる。このことは外部 磁場 Hによるローレンツ力により、有効に注入少数キャリアの大部分を再結合領域 R に到達させたり、もしくは、再結合領域 Rから離したりすることができるので、大きな磁 気感度が得られるとレ、う利点がある。  [0049] Since a main part such as a magnetically sensitive part of the semiconductor magnetic sensor can be formed in the SOI layer, it is possible to limit the flow path of the injected minority carrier to the recombination region R. This means that the majority of the injected minority carriers can effectively reach the recombination region R or be separated from the recombination region R by the Lorentz force due to the external magnetic field H, so that high magnetic sensitivity can be obtained. There is an advantage when it is done.
[0050] CMOS適合の微細加工技術を用いて磁気回路も集積化できるので、磁気センサと して各種の応用が期待できる。  [0050] Magnetic circuits can also be integrated using CMOS-compatible microfabrication technology, so that various applications as magnetic sensors can be expected.
[0051] 半導体の最新の集積化技術が利用でき、超小型、低消費電力、経時変化の極め て少なぐ高感度であり、駆動回路、増幅回路や各種補償回路などを同一基板に集 積化できる半導体磁気センサが提供されると共に、安価で、低消費電力で、かつコン パクトな磁気計測装置を提供される。  [0051] The latest integration technology of semiconductors can be used, ultra-small, low power consumption, high sensitivity with extremely little change over time, and drive circuits, amplifier circuits, various compensation circuits, etc. are integrated on the same substrate. In addition to providing a semiconductor magnetic sensor that can be used, an inexpensive, low power consumption, and compact magnetic measurement device is provided.
図面の簡単な説明  Brief Description of Drawings
[0052] [図 1]図 1は、半導体磁気センサの一実施例を示し、そのセンサ主要部の断面概略 図で、 npn型のバイポーラトランジスタ型の半導体磁気センサとして実施した場合で ある。  [FIG. 1] FIG. 1 shows an embodiment of a semiconductor magnetic sensor, and is a schematic cross-sectional view of a main part of the sensor, in which the embodiment is implemented as an npn bipolar transistor type semiconductor magnetic sensor.
[図 2]図 2は、図 1に示した本発明の半導体磁気センサの一実施例の鳥瞰図で、概略 図である。  FIG. 2 is a bird's-eye view of the embodiment of the semiconductor magnetic sensor of the present invention shown in FIG. 1, and is a schematic diagram.
[図 3]図 3は、本発明の半導体磁気センサの構造を示す他の一実施例の断面概略図 を示したもので、 MOSFET型の場合である。 [図 4]図 4は、半導体磁気センサの構造を示す他の一実施例の断面概略図を示した もので、ゲート電極 512を部分的に形成した場合である。 FIG. 3 is a schematic cross-sectional view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention, which is of a MOSFET type. FIG. 4 is a schematic cross-sectional view of another embodiment showing the structure of the semiconductor magnetic sensor, in which a gate electrode 512 is partially formed.
園 5]図 5は、図 4に示した本発明の半導体磁気センサの平面図の概略図を示してあ る。 Garden 5] FIG. 5 is a schematic plan view of the semiconductor magnetic sensor of the present invention shown in FIG.
園 6]図 6は、本発明の半導体磁気センサの構造を示す他の一実施例の平面概略図 を示したもので、再結合領域 Rに pn接合を利用した場合である。 Garden 6] FIG. 6 is a schematic plan view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention, in which a pn junction is used in the recombination region R.
園 7]図 7は、半導体磁気センサの再結合領域 Rに pn接合を利用した構造を示す他 の一実施例の概略図を示したものである。 Garden 7] FIG. 7 is a schematic view of another embodiment showing a structure using a pn junction in a recombination region R of a semiconductor magnetic sensor.
園 8]図 8は、半導体磁気センサの再結合領域 Rに pn接合を利用した構造を示す他 の一実施例の概略図を示したものである。 Garden 8] FIG. 8 is a schematic view of another embodiment showing a structure using a pn junction in a recombination region R of a semiconductor magnetic sensor.
[図 9]図 9は、半導体磁気センサの構造を示す他の一実施例の概略図を示したもの で、 1個の領域 Eに対して 2個の領域 Cを設けた場合である。  FIG. 9 is a schematic view of another embodiment showing the structure of the semiconductor magnetic sensor, in which two regions C are provided for one region E.
[図 10]図 10は、半導体磁気センサの構造を示す他の一実施例の平面概略図を示し たもので、 1対の強磁性体からなるヨークを形成した場合である。  FIG. 10 is a schematic plan view of another embodiment showing the structure of the semiconductor magnetic sensor, in which a yoke made of a pair of ferromagnetic materials is formed.
[図 11]図 11は、半導体磁気センサの構造を示す他の一実施例の平面概略図を示し たもので、磁気ヘッドに好適なヨークを形成した場合である。 FIG. 11 is a schematic plan view of another embodiment showing the structure of the semiconductor magnetic sensor, in which a yoke suitable for a magnetic head is formed.
園 12]図 12は、半導体磁気センサの構造を示す他の一実施例の平面概略図を示し たもので、導線に電流 Itを流し、磁場の校正ができるようにした場合である。 Garden 12] FIG. 12 is a schematic plan view of another embodiment showing the structure of a semiconductor magnetic sensor, in which a current It is passed through a conducting wire so that a magnetic field can be calibrated.
園 13]図 13は、本発明の磁気計測装置に関し、その構成要素となる種々の回路部と その電気信号系の流れに対するブロック図を示したものである。 Garden 13] FIG. 13 is a block diagram showing various circuit sections as components of the magnetic measurement apparatus of the present invention and the flow of the electric signal system.
符号の説明 Explanation of symbols
1 基板  1 substrate
3 反転層  3 Inversion layer
4 チャンネル部  4 Channel section
5 非再結合領域  5 Non-recombination region
10 SOI層  10 SOI layer
11 下地基板  11 Base substrate
20 n型層 50 電気絶縁体 20 n-type layer 50 Electrical insulator
51 , 52 絶縁薄膜  51, 52 Insulating thin film
60 エッチ除去領域  60 Etch removal area
61 絶縁分離領域  61 Isolation area
101 ェミッタ  101 Emmitta
102 ベース  102 base
103 コレクタ  103 Collector
111 ソース  111 source
112 ゲート  112 gate
113 ドレイン  113 Drain
114 チャンネノレ  114 Channenore
300 磁気回路  300 magnetic circuit
310, 310a, 310b ヨーク  310, 310a, 310b Yoke
320 裏面ヨーク  320 back yoke
330 磁気ヘッド先端部  330 Magnetic Head Tip
350, 351 ギャップ  350, 351 gap
411 , 412, 413, 414 コンタク卜ホール  411, 412, 413, 414 Contact Hall
500 電極  500 electrodes
501 ェミッタ電極  501 emitter electrode
502 ベース電極  502 Base electrode
503 コレクタ電極  503 Collector electrode
511 ソース電極  511 source electrode
512 ゲート電極  512 Gate electrode
513 ドレイン電極  513 Drain electrode
514 再結合電極  514 recombination electrode
600 導線  600 conductor
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の半導体磁気センサの実施例について図面を参照して詳細に説明 する。 Hereinafter, embodiments of the semiconductor magnetic sensor of the present invention will be described in detail with reference to the drawings. To do.
実施例 1  Example 1
[0055] 図 1は、本発明の半導体磁気センサの一実施例を示し、そのセンサ主要部の断面 概略図で、 npn型のバイポーラトランジスタ型の半導体磁気センサとして実施し、その ベース 102としての領域 Bに再結合領域 Rを設けた場合である。なお、同図には、ェ ミッタ端子 E、ベース端子 B,コレクタ端子 Cを図示してあり、簡単のために表面の酸 化膜や電極などを省略してある。  FIG. 1 shows an embodiment of a semiconductor magnetic sensor of the present invention, and is a schematic cross-sectional view of a main part of the sensor. The embodiment is implemented as an npn-type bipolar transistor-type semiconductor magnetic sensor, and has a region as a base 102. This is a case where a recombination region R is provided in B. The figure shows the emitter terminal E, the base terminal B, and the collector terminal C, and the oxide film and electrodes on the surface are omitted for simplicity.
[0056] この実施例の半導体磁気センサとしての動作を説明すると、次のようである。  The operation of the semiconductor magnetic sensor of this embodiment will be described as follows.
基板 1として SOI基板(たとえば、 p型シリコン (Si)の下地基板 11上にシリコン酸化膜 力 なる電気絶縁体 50の 1 μ m厚の絶縁層が形成されてあり、その上に更に単結晶 半導体薄膜層である SOI層 10が 5 / m厚に形成されたもの)を用い、領域 Bとしての 一方の導電型である p型半導体 (以下、本明細書では p型として表示する)と、他方の 導電型である n型半導体(以下、本明細書では n型として表示する)の領域 Eおよび 領域 Cを、 SOI層 10に近接して形成し、その周りの SOI層 10をエッチング除去してェ ツチング除去部 60を形成してある。これは、領域 Eから領域 Bに注入された少数キヤリ ァが磁気感応部である再結合領域 Gの付近のみ流れて、領域 Cに到達することによ り、磁気感度を大きくさせるためである。  As a substrate 1, a 1 μm-thick insulating layer of an electrical insulator 50 serving as a silicon oxide film is formed on an SOI substrate (for example, an underlying substrate 11 of p-type silicon (Si), and a single-crystal semiconductor Using a SOI layer 10 as a thin film layer with a thickness of 5 / m), a p-type semiconductor (hereinafter referred to as p-type in the present specification) of one conductivity type as the region B and the other A region E and a region C of an n-type semiconductor (hereinafter, referred to as n-type in the present specification) having the conductivity type are formed close to the SOI layer 10, and the SOI layer 10 around the region E is removed by etching. The etching removal portion 60 is formed. This is because the minority carriers injected from the region E into the region B flow only near the recombination region G, which is the magnetically sensitive portion, and reach the region C, thereby increasing the magnetic sensitivity.
[0057] また、領域 Bの表面(一方の面)には、たとえば、アルゴンガスと少量の酸素ガスを 流しながらこれらのガスのイオンでスパッタリングして表面に欠陥を形成して再結合領 域 Rを形成したり、溶液などを利用して化学的に表面を荒らしたり、または、物理的な スパッタリング欠陥と薬品処理による化学的な反応の組み合わせなどして表面安定 化した再結合領域 Rを形成してもよい。また、金や白金などをイオン注入法や拡散技 術で添加してキラーセンターとして作用させ、キャリアの再結合を促進させる再結合 領域 Rを形成してもよい。 SOI層はシリコンなので、酸化膜は極めて安定な Si〇膜と なり、極めて経時変化の少なレ、安定な再結合領域 Rが形成できる。  On the surface (one surface) of region B, for example, argon gas and a small amount of oxygen gas are flowed while sputtering with ions of these gases to form defects on the surface, and recombination region R To form a recombination region R whose surface is stabilized by forming a surface, chemically roughening the surface using a solution, etc., or combining physical sputtering defects and a chemical reaction by chemical treatment. You may. Alternatively, a recombination region R for promoting recombination of carriers may be formed by adding gold, platinum, or the like by an ion implantation method or a diffusion technique to act as a killer center. Since the SOI layer is silicon, the oxide film becomes an extremely stable Si〇 film, and a stable recombination region R with very little change over time can be formed.
[0058] また、本実施例では、基板 1として SOI基板が用いられており、 SOI層 10の領域 B に形成してある再結合領域 Rの裏面側はシリコンの熱酸化膜が安定に形成されてあ り、非再結合領域 5となっている。 [0059] 本実施例の図 1に示すこれらの構造はラテラル型の npn型のバイポーラトランジスタ を構成してあり、領域 Eはェミッタ 101、領域 Bはベース 102、領域 Cはコレクタ 103に それぞれ対応している。ェミッタ 101とベース 102には順方向バイアス電圧 Vbを印加 すると、 n型のェミッタ 101から p型のベース 102に、ベース 102に対しては少数キヤリ ァである電子が注入されて、拡散によりコレクタ 103の方に移動し、ェミッタ 101とコレ クタ 103の印加電圧 Vcを通して、ベース 102に対して逆方向バイアスされているコレ クタ 103が近接配置されているので、ここにスイープアウトされ、コレクタ電流 Icの主体 となり、コレクタ 103の接続してある負荷抵抗 RLの両端の出力電圧として観測される Further, in the present embodiment, an SOI substrate is used as the substrate 1, and a thermal oxide film of silicon is stably formed on the back surface side of the recombination region R formed in the region B of the SOI layer 10. Thus, a non-recombination region 5 is obtained. [0059] These structures shown in Fig. 1 of this embodiment constitute a lateral npn-type bipolar transistor. Region E corresponds to emitter 101, region B corresponds to base 102, and region C corresponds to collector 103, respectively. ing. When a forward bias voltage Vb is applied to the emitter 101 and the base 102, a small number of carriers are injected into the base 102 from the n-type emitter 101 and the p-type base 102. The collector 103, which is reverse-biased with respect to the base 102, is placed close to the base 102 through the applied voltage Vc of the emitter 101 and the collector 103, so that the collector 103 is swept out and the collector current Ic Mainly observed as output voltage across load resistance RL connected to collector 103
[0060] 図 1に示すように、ェミッタ 101からベース 102に注入された少数キャリアの電子が 外部磁場 Hによるローレンツ力により、再結合領域 R側に曲げられると、ベース 102の 多数キャリアである正孔も電気的中性を維持するために集まり、これらの電子と正孔 が再結合領域 Rで再結合する。このとき失われた正孔は、ベース 102に設けたベー ス電極 502を通して補給され、ベース電流となる。このとき注入された電子は、再結 合により激しく失われ、コレクタ 103に到達する数が極めて小さくなると、逆バイアスさ れているコレクタ 103を流れるコレクタ電流 Icは極めて小さくなる。 As shown in FIG. 1, when the minority carrier electrons injected from the emitter 101 into the base 102 are bent toward the recombination region R by the Lorentz force due to the external magnetic field H, the positive carriers that are the majority carriers of the base 102 The holes also gather to maintain electrical neutrality, and these electrons and holes recombine in the recombination region R. The holes lost at this time are supplied through the base electrode 502 provided on the base 102 and become a base current. The electrons injected at this time are severely lost by recombination, and when the number reaching the collector 103 becomes extremely small, the collector current Ic flowing through the reverse-biased collector 103 becomes extremely small.
[0061] 従来の二重注入型ダイオードを用いた半導体磁気センサにおいては、二重注入さ れた電子と正孔が再結合しても、ダイオードには再結合電流が流れ、この電流値に 飽和する傾向があるのに対して、本発明のトランジスタ型の半導体磁気センサでは、 少数キャリアの流れのみを利用しているので、注入された少数キャリアが再結合によ り失われると、ほとんどコレクタ電流 Icが流れなくなるので、大きな外部磁場 Hによるコ レクタ電流 Icの変化が得られるので、大きな磁気感度が得られるとレ、う特徴がある。  [0061] In a conventional semiconductor magnetic sensor using a double injection type diode, a recombination current flows through the diode even if the double injected electrons and holes are recombined, and the current value is saturated. On the other hand, the transistor-type semiconductor magnetic sensor of the present invention utilizes only the flow of minority carriers. Therefore, when the injected minority carriers are lost due to recombination, almost all of the collector current is reduced. Since Ic stops flowing, a change in collector current Ic due to a large external magnetic field H can be obtained, so that a large magnetic sensitivity can be obtained.
[0062] また、ェミッタ 101から注入された少数キャリアの電子が図 1に示す外部磁場 Hの向 きとは逆向きに印加された場合、非再結合領域 5側に曲げられるので、再結合が極 めて少なく、多くの注入された少数キャリアの電子がコレクタ 103に到達し、大きなコ レクタ電流 Icとなる。  When the minority carrier electrons injected from the emitter 101 are applied in a direction opposite to the direction of the external magnetic field H shown in FIG. 1, the electrons are bent toward the non-recombination region 5 and recombination is prevented. Very few injected minority carrier electrons reach the collector 103, resulting in a large collector current Ic.
[0063] 外部磁場 Hを印加しない場合は、ベース 102と再結合領域 Rのそれぞれの厚みと 長さ、および再結合領域 Rの再結合程度にも大きく依存するが、実際には、注入され た少数キャリアの電子は、拡散途中の再結合領域 Rで多く再結合してしまい、コレク タ 103に到達できる数が少なくなつている。従って、再結合領域 Rが無いデバイスに 比べコレクタ電流 Icが流れ難い構造である。 [0063] When the external magnetic field H is not applied, it depends on the thickness and length of the base 102 and the recombination region R, and the degree of recombination of the recombination region R. Many of the minority carrier electrons are recombined in the recombination region R during diffusion, and the number of electrons that can reach the collector 103 is reduced. Therefore, the structure is such that the collector current Ic does not easily flow as compared with the device without the recombination region R.
[0064] 本発明の半導体磁気センサでは、ベース 102に注入された少数キャリアが外部磁 場 Hの印加の向きにより、再結合領域 R側に曲げられるとコレクタ電流 Icが外部磁場 Hが無いときに比べて小さくなり、非再結合領域 5側に曲げられるとコレクタ電流 Icが 外部磁場 Hが無いときに比べて大きくなり、その程度も外部磁場 Hの大きさに依存す るので、外部磁場 Hの大きさと方向が判別できる磁気センサとなる。  In the semiconductor magnetic sensor of the present invention, when the minority carriers injected into the base 102 are bent toward the recombination region R depending on the direction of application of the external magnetic field H, the collector current Ic is reduced when the external magnetic field H is absent. When it is bent toward the non-recombination region 5, the collector current Ic becomes larger than when there is no external magnetic field H, and the degree depends on the magnitude of the external magnetic field H. It becomes a magnetic sensor whose size and direction can be determined.
[0065] 本発明の半導体磁気センサの素子部分における製作工程の一例の概略を説明す る。先ず、基板 1として、 p型シリコン(Si)の約 500 x m厚の下地基板 11上にシリコン 酸化膜からなる電気絶縁体 50の 1 μ m厚の薄膜層が形成されてあり、その上に更に l Q cm程度の p型の SOI層 10が 厚に形成された SOI基板を用いる。この SOI 基板を熱酸化して全面に SiO力 成る絶縁薄膜 51を 0. 5 μ ΐη厚に形成し、不純物  An outline of an example of a manufacturing process in an element portion of the semiconductor magnetic sensor of the present invention will be described. First, as a substrate 1, a 1 μm-thick thin film layer of an electrical insulator 50 made of a silicon oxide film is formed on a base substrate 11 of about 500 × m thickness of p-type silicon (Si). An SOI substrate on which a p-type SOI layer 10 of about lcm is formed is used. This SOI substrate is thermally oxidized to form a 0.5 μΐη thick insulating thin film 51 with SiO force on the entire surface.
2  2
拡散のマスクとして用いる。その後、領域 E,領域 Bおよび領域 Cを形成する領域確 保した p型の SOI層 10の領域を島状に残し、その周囲を一周して、公知のフォトリソ グラフィにより表面の絶縁薄膜 51および SOI層 10をエッチング除去して、エッチ除去 部 60を形成する。  Used as a diffusion mask. Thereafter, the region of the p-type SOI layer 10 in which the regions E, B, and C are formed is left in the form of an island, and the periphery thereof is circled, and the insulating thin film 51 and the SOI layer on the surface are formed by known photolithography. The layer 10 is removed by etching to form an etched portion 60.
[0066] 一般に電子の移動度が正孔の移動度の 3倍程度大きぐ領域 Bとしてのベース 102 での少数キャリアが電子の方がコレクタ 103に到達しやすいので、領域 Bとして p型の SOI層 10を用いた方がょレ、。  In general, the minority carriers in the base 102 as the region B in which the electron mobility is about three times larger than the hole mobility are such that the electrons can reach the collector 103 more easily. It is better to use layer 10.
[0067] n型の領域 Eとしてのェミッタ 101と領域 Cとしてのコレクタ 103とを 5 μ m程度離して n型の不純物であるリン (P)を熱拡散またはイオン注入技術により形成する。次に、領 域 Bとしてのベース 102のうち、ェミッタ 101とコレクタ 103とのそれぞれの pn接合部 力 1 μ m程度離して、ベース 102領域の残り 3 μ m程度の領域を再結合領域 Rとす るために、その再結合領域 R上の熱酸化膜の全部をエッチング除去した後、スパッタ リング装置を用いてアルゴンと少量の酸素ガス中で適当なガス流量、電力と時間の 調整でスッパタリングして、この領域の表面層部分に欠陥を形成させて再結合領域 R を形成する。その後、更に、アモルファスシリコンの堆積して表面の歪を形成させると 共に表面の保護膜として利用する。その後、通常のフォトリソグラフィにより、コンタクト ホーノレ 411 , 412, 413, 414の形成、たと免ば、ァノレミニゥム薄莫による才ーム十生のェ ミッタ電極 501,ベース電極 502およびコレクタ電極 503の形成などを行う。 The emitter 101 as the n-type region E and the collector 103 as the region C are separated by about 5 μm, and phosphorus (P), which is an n-type impurity, is formed by thermal diffusion or ion implantation. Next, of the base 102 as the region B, the pn junction force of each of the emitter 101 and the collector 103 is separated by about 1 μm, and the remaining area of about 3 μm of the base 102 area is defined as the recombination area R. For this purpose, after removing the entire thermal oxide film on the recombination region R by etching, sputtering is performed by adjusting the appropriate gas flow rate, power, and time in argon and a small amount of oxygen gas using a sputtering device. Then, defects are formed in the surface layer portion of this region to form a recombination region R. After that, when amorphous silicon is further deposited to form surface distortion, Both are used as surface protection films. After that, the contact horns 411, 412, 413, 414 are formed by ordinary photolithography. Do.
[0068] 図 2は、上述の実施例 1における図 1の本発明の半導体磁気センサを磁気ヘッドへ の応用を考慮し、基板 1のシリコンチップの端部に磁気感応部であるベース 102の再 結合領域 Rを形成した例で、その鳥瞰図の概略図である。同図には、ェミッタ端子 E 、ベース端子 B,コレクタ端子 Cを図示し、他の電気回路などは省略した。 FIG. 2 shows the application of the semiconductor magnetic sensor of the present invention shown in FIG. 1 of the first embodiment to a magnetic head in consideration of the application of the base 102, which is a magnetic sensing part, to the end of the silicon chip of the substrate 1. FIG. 3 is a schematic view of a bird's eye view of an example in which a connection region R is formed. The figure shows an emitter terminal E, a base terminal B, and a collector terminal C, and other electrical circuits and the like are omitted.
実施例 2  Example 2
[0069] 図 3には、本発明の半導体磁気センサの構造を示す他の一実施例の断面概略図 を示したもので、実施例 1の図 1と図 2で示した構造とほぼ同様である力 大きな違い はベース 102の上にゲート酸化膜である絶縁薄膜 51を形成し、ゲート電極 512を形 成してあり、 p型のベース 102の MOS界面に n型反転までにはならない程度にゲート 電圧 Vgをソース 111に対して印加してレ、ること、更にバイポーラトランジスタ型と本質 的には同等であるが、 MOS構造のゲート 112を設けているので、 MOSFET型とし て名付けている点である。従って、実施例 1の図 1における領域 Eとしてソース 111と 称し、領域 Cとしてドレイン 113と称することにしてレ、る。  FIG. 3 is a schematic cross-sectional view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention, which is almost the same as the structure shown in FIGS. 1 and 2 of the first embodiment. One major difference is that the insulating thin film 51, which is a gate oxide film, is formed on the base 102 and the gate electrode 512 is formed, and the MOS interface of the p-type base 102 does not reach the n-type inversion. The gate voltage Vg is applied to the source 111, and it is essentially the same as the bipolar transistor type.However, since the MOS structure gate 112 is provided, it is named as the MOSFET type. It is. Therefore, the region E in FIG. 1 of the first embodiment is referred to as the source 111, and the region C is referred to as the drain 113.
[0070] ソース 111とベース 102間に印加した順方向電圧 Vbにより、ベース 112に少数キヤ リアである電子が注入される。この注入された少数キャリアは、ゲート電極 512直下の チャンネル 114部に相当する MOS界面側で起こりやすい。実際には、ゲート電圧 V gはベース 102の MOS界面に n型の反転層 3が形成されない程度の適当な電圧の 印加なので、チャンネル 114は形成されていなレ、が、電子はポテンシャル的に M〇S 界面に集まりやすくなつてレ、る。  [0070] By the forward voltage Vb applied between the source 111 and the base 102, electrons as a minority carrier are injected into the base 112. The injected minority carriers are likely to occur on the MOS interface side corresponding to the channel 114 immediately below the gate electrode 512. Actually, the gate voltage V g is an appropriate voltage applied so that the n-type inversion layer 3 is not formed at the MOS interface of the base 102, so that the channel 114 is not formed. 〇S It is easy to gather at the interface.
[0071] ベース 102に注入された少数キャリアの電子は上述の実施例 1の場合と同様に、外 部磁場 Hの向きと大きさによりローレンツ力により、再結合領域 Rの方向に曲げられ再 結合し、領域 Cとしてのドレイン 113まで到達できなくなり、ドレイン電流 Idがほとんど 流れなくなったり、逆の外部磁場の向きや大きさによっては、非再結合領域 5側に曲 げられ、ドレイン 113に到達する電子が多くなり、比較的大きなドレイン電流 Idが流れ るようになったりする。この場合の出力も容易にドレイン端子 Dに接続してある負荷抵 抗 RLの電圧降下として取り出すことができる。 The minority carrier electrons injected into the base 102 are bent in the direction of the recombination region R by Lorentz force depending on the direction and magnitude of the external magnetic field H in the same manner as in the first embodiment, and are recombined. As a result, it is impossible to reach the drain 113 as the region C, and the drain current Id hardly flows, or depending on the direction and magnitude of the reverse external magnetic field, it is bent to the non-recombination region 5 side and reaches the drain 113 As the number of electrons increases, a relatively large drain current Id flows. In this case, the output is also easily connected to the load resistor connected to the drain terminal D. It can be extracted as an anti-RL voltage drop.
[0072] ベース端子 Bを開放にすることも可能で、このときは純粋な MOSFETとして動作す る力 ソース 111からベース 102への少数キャリアの電子の注入が少なくなるので、 ベース'ソース間の pn接合に順方向電圧 Vbを印加して少数キャリアの注入を促進し た方が良い。 [0072] It is also possible to open the base terminal B. In this case, the injection of minority carrier electrons from the source 111 to the base 102, which acts as a pure MOSFET, is reduced. It is better to apply a forward voltage Vb to the junction to promote minority carrier injection.
実施例 3  Example 3
[0073] 図 4には、本発明の半導体磁気センサの構造を示す他の一実施例の断面概略図 を示したもので、実施例 2における図 3で示した構造とほぼ同様である力 大きな違い は、ベース 102の上にゲート酸化膜である絶縁薄膜 51を形成してある力 ゲート電極 512をソース 111とドレイン 113との間の途中で部分的に形成してあり、ゲート電極 5 12に比較的大きな電圧 Vgを印加して、 p型のベース 102の MOS界面に n型の反転 層 3が形成されるように Vgをソース 111に対して適当に印加していること、更に、ベー ス 102に形成した n型層 20を介して、この反転層 3と導通する再結合用端子 Rを形成 して、この再結合用端子 Rとベース端子 Bとの間に再結合促進電圧 Vrが印加できる ようにしており、この反転層 3を再結合領域 Rとしている点、更に、ソース 111とドレイン 113の厚みが領域 Bとしてのベース 102となる S〇I層 10の底まで到達してレ、なレ、場 合であること、更に、このセンサの構成主要部であるソース 111、ベース 102、ドレイ ン 113、ゲート電極 512の下部のベース 102領域及び n型層 20の領域を島状に残し て、その周囲を絶縁分離領域 61として SOI層 10に形成してあり、 S〇I層 10を平坦な まま使用できるようにした場合であり、ソース 111からベースに注入された少数キヤリ ァである電子をセンサのこれらの島状の構成主要部内に閉じ込めるようにして、注入 された電子がこの領域から流れ出さないようにしている点が主な相違点である。なお 、絶縁分離領域 61は、酸素などのイオン注入や部分熱酸化などによる電気的な絶 縁層にしたり、高濃度の p型層にして、注入少数キャリアである電子を寄せ付けないよ うにした層でも良い。  FIG. 4 is a schematic cross-sectional view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention. The force is almost the same as the structure shown in FIG. The difference is that the gate electrode 512 is partially formed in the middle between the source 111 and the drain 113, and the gate electrode 512 is formed on the gate electrode 512. A relatively large voltage Vg is applied, and Vg is appropriately applied to the source 111 so that the n-type inversion layer 3 is formed at the MOS interface of the p-type base 102. A recombination terminal R that is electrically connected to the inversion layer 3 is formed via the n-type layer 20 formed in 102, and a recombination promoting voltage Vr is applied between the recombination terminal R and the base terminal B. This inversion layer 3 is used as a recombination region R. In this case, the thickness of the sensor 113 reaches the bottom of the S 10I layer 10 serving as the base 102 as the region B. , The drain 113, the base 102 region under the gate electrode 512 and the region of the n-type layer 20 are left in an island shape, and the periphery thereof is formed in the SOI layer 10 as an insulating isolation region 61. In this case, the minority carriers injected from the source 111 into the base are confined in the main part of these island-like components of the sensor, so that the injected electrons can be used. The main difference is that it does not flow out of the area. Note that the insulating isolation region 61 is a layer which is formed as an electrical insulating layer by ion implantation of oxygen or the like or partial thermal oxidation, or a high-concentration p-type layer to prevent electrons as injected minority carriers. But it's fine.
[0074] 図 5には、図 4に示した本発明の半導体磁気センサの平面図の概略図を示してある 。なお、この図 5では、電源部などは省略している力 図 4において省略した表面の絶 縁薄膜 52は図示している。 実施例 4 FIG. 5 shows a schematic plan view of the semiconductor magnetic sensor of the present invention shown in FIG. In FIG. 5, the power supply unit and the like are omitted. The insulating thin film 52 on the surface, which is omitted in FIG. 4, is shown. Example 4
[0075] 図 6には、本発明の半導体磁気センサの構造を示す他の一実施例の平面概略図 を示したもので、実施例 1の図 1と図 2で示した構造とほぼ同様で、バイポーラトランジ スタ型である力 大きな違いは、第 1に、再結合領域 Rとして、ベース 102の表面付近 に形成した n型層 20とした点である。再結合領域 Rを有効にするには、この n型層 20 の導通する再結合用端子 Rとベース端子 Bとを短絡するか、もしくは、図 4と図 5にお ける実施例で説明したように、再結合促進電圧 Vrを印加するようにしても良い。第 2 に、この再結合領域 Rとしての n型層 20を、ェミッタ 101からコレクタ 103に流入する 注入された少数キャリアの電子が通るベース 102の通路を再結合領域 Rが完全に塞 がないように、片側にずらして形成してあり、外部磁場 Hの印加方向もこれを繁栄して 、ベース 102の層を持つ SOI層 10面に垂直に印加するようにしている点、更に、図 4 でも説明した絶縁分離領域 61として SOI層 10に形成してあり、 SOI層 10を平坦なま ま使用できるようにしてレ、る点である。  FIG. 6 is a schematic plan view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention, and is substantially the same as the structure shown in FIGS. 1 and 2 of the first embodiment. The first difference is that the n-type layer 20 formed near the surface of the base 102 is used as the recombination region R. To make the recombination region R effective, the conductive recombination terminal R of the n-type layer 20 and the base terminal B are short-circuited, or as described in the embodiment in FIGS. 4 and 5. Then, a recombination promoting voltage Vr may be applied. Second, the recombination region R does not completely block the path of the base 102 through which the injected minority carrier electrons flowing from the emitter 101 to the collector 103 pass through the n-type layer 20 as the recombination region R. 4, the direction of application of the external magnetic field H is also prosperous, and is applied perpendicularly to the SOI layer 10 having the layer of the base 102. The point that the SOI layer 10 is formed as the insulating isolation region 61 described above so that the SOI layer 10 can be used while being flat.
[0076] n型層 20は、ベース 102の表面付近ばかりでなぐ完全に SOI層 10面の下部の絶 縁薄膜 51まで到達していても良い。  The n-type layer 20 may reach not only near the surface of the base 102 but also completely to the insulating thin film 51 below the surface of the SOI layer 10.
実施例 5  Example 5
[0077] 図 7には、本発明の半導体磁気センサの構造を示す他の一実施例の概略図を示し たもので、図 6に示した半導体磁気センサと同様であるが、大きな違いは、再結合領 域 Rとして、ベース 102の表面付近に形成した n型層 20がベース 102の幅を横切り、 かつ覆うように形成してあり、ェミッタ 101から注入された電子がコレクタ 103に到達 するのに、ベース 102のうちの再結合領域 Rの下を通るようにしている点で、外部磁 場 Hの印加方向がベース 102の層に平行な方向としている場合である。また、この図 7には、ベース端子 Bと再結合用端子 Rに再結合促進電圧 Vrを印加した場合を示し ている。再結合促進電圧 Vrの印加電圧の調整により、 n型層 20からなる再結合領域 Rと p型のベース 102との pn接合の逆方向バイアスにより、空乏層幅が変化するので 、注入された電子の通り道の幅が変化し、再結合割合が調整できることになる。もち ろん、再結合促進電圧 Vrをゼロとすれば、ベース端子 Bと再結合用端子 Rとを短絡し たことになる。 [0078] 図 8には、図 7に示す実施例で、ベース端子 Bと再結合用端子 Rとを外部で短絡す る代わりに、設計時点で図 7に示す実施例のベース電極 502と再結合電極 514とを まとめて、一つの電極にした実施例を示してある。この場合は、当然ながらベース 10 2への注入電子の再結合割合は調整できないが、コンパクトな構造になるという利点 がる。 FIG. 7 is a schematic diagram of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention, which is similar to the semiconductor magnetic sensor shown in FIG. As the recombination region R, the n-type layer 20 formed near the surface of the base 102 is formed so as to cross and cover the width of the base 102, so that electrons injected from the emitter 101 reach the collector 103. In this case, the application direction of the external magnetic field H is parallel to the layer of the base 102 in that the layer passes under the recombination region R of the base 102. FIG. 7 shows a case where a recombination promoting voltage Vr is applied to the base terminal B and the recombination terminal R. The width of the depletion layer changes due to the reverse bias of the pn junction between the recombination region R composed of the n-type layer 20 and the p-type base 102 by adjusting the applied voltage of the recombination promoting voltage Vr. The width of the path changes and the recombination rate can be adjusted. Of course, if the recombination promoting voltage Vr is set to zero, the base terminal B and the recombination terminal R are short-circuited. FIG. 8 shows that, in the embodiment shown in FIG. 7, instead of externally short-circuiting the base terminal B and the recombination terminal R to the base electrode 502 of the embodiment shown in FIG. An embodiment in which the coupling electrode 514 is combined with one electrode is shown. In this case, of course, the recombination ratio of electrons injected into the base 102 cannot be adjusted, but there is an advantage that the structure becomes compact.
実施例 6  Example 6
[0079] 図 9には、本発明の半導体磁気センサの構造を示す他の一実施例の概略図を示し たもので、実施例 5の図 7で示した構造を、もう一つ反対向きに形成して、 1個の領域 Eとしてのェミッタ 101に対して 2個の領域 Cとしてのコレクタ CI , C2を設けた場合で ある。この場合、ベース電極 502も 1個で済ませた実施例である。 2個の対となるなる 再結合領域 Rは、ベース 102の同一の側に配設してあるので、同一方向からの外部 磁場 Hに対して、一方の半導体磁気センサは、コレクタ電流が大きくなるが、他方の コレクタ電流は小さくなるので、これらの差動出力は、対となる半導体磁気センサの特 性のばらつきにも依る力 1個の場合のほぼ 2倍の感度となるという利点がある。また 、差動増幅とすることにより、両者に共通する雑音がほぼ相殺されること、外部磁場 H がゼロにおける出力をゼロにできるので、 SN比の大きな高感度の半導体磁気センサ となり得るという利点がある。  FIG. 9 is a schematic view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention. The structure shown in FIG. In this case, collectors CI and C2 as two regions C are provided for the emitter 101 as one region E. In this case, only one base electrode 502 is required. The two paired recombination regions R are arranged on the same side of the base 102, so that the collector current of one of the semiconductor magnetic sensors increases with respect to the external magnetic field H from the same direction. However, since the other collector current is smaller, these differential outputs have the advantage that they are almost twice as sensitive as a single force due to the variation in the characteristics of the paired semiconductor magnetic sensors. Also, by using differential amplification, the noise common to both is almost canceled, and the output when the external magnetic field H is zero can be made zero, so that there is an advantage that a high sensitivity semiconductor magnetic sensor with a large SN ratio can be obtained. is there.
実施例 7  Example 7
[0080] 図 10は、本発明の半導体磁気センサの構造を示す他の一実施例の平面概略図を 示したもので、ノくイポーラトランジスタ型の半導体磁気センサの再結合領域 Rに、磁 気回路 300としての磁束を収束させる細長い薄膜状の 1対の強磁性体からなるヨーク 310a, 310bのギャップ 350が位置するように配設した場合を示している。このような 構造にすることにより、半導体磁気センサの磁気感応部である再結合領域 Rに、離れ た箇所の磁束を有効に導くことができる。  FIG. 10 is a schematic plan view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention. In the recombination region R of the bipolar transistor type semiconductor magnetic sensor, a magnetic field is shown. This figure shows a case in which the yokes 310a and 310b formed of a pair of elongated thin film-like ferromagnetic materials for converging magnetic flux as the air circuit 300 are arranged such that the gap 350 is positioned. With such a structure, it is possible to effectively guide the magnetic flux at a remote location to the recombination region R, which is the magnetically responsive part of the semiconductor magnetic sensor.
[0081] この実施例の図 9では、 1対のヨーク 310a、 310bを図示してある力 一方のヨーク だけでも、磁束収束の効果がある。これらのヨーク 320の形状効果が大きぐ必要に 応じ、その厚み、長さや対の場合のギャップ 350の間隔、更には先端の先鋭ィ匕など による磁束収束など、適宜、設計すると良い。 実施例 8 [0081] In Fig. 9 of this embodiment, a pair of yokes 310a and 310b are shown, and only one yoke has an effect of converging magnetic flux. If the shape effect of these yokes 320 is required to be great, it is appropriate to appropriately design the thickness, the length, the interval of the gap 350 in the case of a pair, and the magnetic flux convergence by sharpening the tip. Example 8
[0082] 図 11は、本発明の半導体磁気センサの構造を示す他の一実施例の平面概略図を 示したもので、実施例 7の場合と同様、ノイポーラトランジスタ型の半導体磁気センサ の再結合領域 Rに、磁気回路 300としての磁束を収束させる細長い薄膜状の 1対の 強磁性体からなる表面のヨーク 310a、 310bのギャップが位置するように配設した場 合である。大きな違いは、磁気回路 300として、基板 1の裏面にも一方のヨーク 310a を延長して、裏面ヨーク 320を形成し、他方の表面のヨーク 310bとの間に、基板 1の 厚みにほぼ等しいもう一つのギャップ 351があり、このギャップ 351とヨーク 310bの先 鋭化した磁気ヘッド先端部 330とで、極めて微弱で微小の磁区からの磁場を検出す るに好適な読み出し用の磁気ヘッド、特に垂直磁気記録の読み出し用に好適なよう な構造にした点にある。  FIG. 11 is a schematic plan view of another embodiment showing the structure of the semiconductor magnetic sensor according to the present invention. As in the case of the seventh embodiment, the semiconductor magnetic sensor of the bipolar transistor type is used again. This is the case where the gap is formed between the yokes 310a and 310b on the surface of a pair of thin and thin ferromagnetic materials that converge the magnetic flux as the magnetic circuit 300 in the coupling region R. The major difference is that, as the magnetic circuit 300, one yoke 310a is also extended on the back surface of the substrate 1 to form a back yoke 320, and the yoke 310b on the other surface is substantially equal to the thickness of the substrate 1 There is one gap 351, and the gap 351 and the sharpened magnetic head tip 330 of the yoke 310 b make a magnetic head for reading suitable for detecting a magnetic field from an extremely weak and minute magnetic domain, particularly a vertical magnetic head. The point is that the structure is suitable for reading magnetic recording.
[0083] また、ここでは図示しないが、強磁性体のヨーク 310を基板 10の磁気感応部である 再結合領域 Rの形成してある側にのみ形成することもできる。  Although not shown here, the ferromagnetic yoke 310 may be formed only on the side of the substrate 10 where the recombination region R, which is the magnetically responsive part, is formed.
実施例 9  Example 9
[0084] 図 12は、本発明の半導体磁気センサの構造を示す他の一実施例の平面概略図を 示したもので、ノ ポーラトランジスタ型の半導体磁気センサを例に取った場合で、 例えば、領域 Cとしてのコレクタ 103の方向力、ら領域 Eとしてのェミッタ 101の方向に 向かってベース 102に沿った方向に電流 Itが流れるように、磁気感応部である再結 合領域 Rの上に、絶縁層を介して薄膜状の導線 600を密着形成してパターン化させ てあり、導線 600の電極端子 Tl , T2に所定の電流 Itを流し、このとき発生する既知 の磁界を利用して、半導体磁気センサを校正するようにした場合である。  FIG. 12 is a schematic plan view of another embodiment showing the structure of the semiconductor magnetic sensor of the present invention. In the case of a semiconductor transistor of a non-polar transistor type, for example, Above the recombination region R, which is a magnetically sensitive part, so that the current It flows in the direction along the base 102 toward the direction of the collector 103 as the region C and toward the emitter 101 as the region E, A thin conductive wire 600 is formed in close contact with an insulating layer and patterned, and a predetermined current It is applied to the electrode terminals Tl and T2 of the conductive wire 600. This is a case where the magnetic sensor is calibrated.
[0085] この薄膜状の導線 600には、パルス状の電流 Itを流したり、種々の大きさの電流 It を流したりして校正することができる。更に、電流 Itの向きを変えて校正することもでき る。  [0085] Calibration can be performed by passing a pulse-like current It or a current It of various magnitudes through the thin-film conductive wire 600. In addition, calibration can be performed by changing the direction of the current It.
実施例 10  Example 10
[0086] 図 13は、本発明の半導体磁気センサを搭載した本発明の磁気計測装置の構成要 素となる種々の回路部とその電気信号系の流れに対するブロック図を示したものであ る。 [0087] 本発明の半導体磁気センサは、完全に CMOS工程に適合するので、破線で示し た磁気計測装置のうち、太枠内の構成要素である種々の回路部としての半導体磁気 センサの駆動回路部、この半導体磁気センサの校正回路部、出力増幅回路部、演 算回路部及び表示回路部の大部分は、半導体磁気センサの磁気検出部である磁気 トランジスタ部と同一の基板にモノリシックに形成できる。 FIG. 13 is a block diagram showing various circuit units constituting components of the magnetic measurement apparatus of the present invention equipped with the semiconductor magnetic sensor of the present invention and the flow of the electric signal system. Since the semiconductor magnetic sensor of the present invention is completely compatible with the CMOS process, a drive circuit of the semiconductor magnetic sensor as various circuit units, which are the components in the thick frame, in the magnetic measurement device indicated by the broken line Most of the semiconductor circuit, the calibration circuit, the output amplifier circuit, the arithmetic circuit, and the display circuit of the semiconductor magnetic sensor can be monolithically formed on the same substrate as the magnetic transistor, which is the magnetic detector of the semiconductor magnetic sensor. .
[0088] このように外部からの電源部とスィッチ、表示部などを除けば、ほとんどの回路部が 半導体磁気センサと同一基板に集積化が容易であり、し力も大量生産可能なので、 コンパクトで安価な磁気計測装置を提供することができる。  Except for the external power supply unit, switch, display unit, and the like, most of the circuit units can be easily integrated on the same substrate as the semiconductor magnetic sensor, and the power can be mass-produced. It is possible to provide a simple magnetic measurement device.
[0089] 上述の実施例は本発明の一実施例に過ぎず、本発明の主旨および作用、効果が 同一でありながら、本発明の多くの変形があることは明らかである。 [0089] The above embodiment is merely an embodiment of the present invention, and it is apparent that there are many modifications of the present invention while the gist, operation, and effects of the present invention are the same.
産業上の利用可能性  Industrial applicability
[0090] 以上のように、本発明に係わる半導体磁気センサとこれを用いた磁気計測装置は、 バイポーラトランジスタ型半導体磁気センサを用いて、磁界方向である地磁気の方位 の決定や簡便で携帯用の磁気計測装置に有用であり、特に、半導体磁気センサとし ては、方位センサや水直磁気記録の再生用磁気ヘッドに適し、磁気計測装置として は、携帯用ガウスメータ、電流計や地磁気計測による位置表示装置などに適している As described above, the semiconductor magnetic sensor according to the present invention and the magnetic measurement device using the same can determine the direction of the terrestrial magnetism, which is the direction of the magnetic field, and can be easily and easily used by using a bipolar transistor type semiconductor magnetic sensor. It is useful for magnetic measurement devices, especially suitable for semiconductor magnetic sensors for azimuth sensors and magnetic heads for reproducing perpendicular magnetic recording, and for magnetic measurement devices, portable Gauss meters, ammeters and geomagnetic measurements for position display. Suitable for equipment

Claims

請求の範囲 The scope of the claims
[1] 半導体の一方の導電型の領域 Bに、少数キャリアを注入する他方の導電型の領域 Eと、この領域 Eと同一の導電型もしくは金属からなり、この注入された少数キャリアを 受け取る領域 Cとを近接して配設し、更に、領域 Eと領域 Cとの間の領域 Bに、前記注 入された少数キャリアを再結合させる再結合領域 Rを具備してあり、外部磁場 Hが印 カロされたときに、領域 E力も領域 Bに注入された少数キャリアがローレンツ力を受けて 偏向して再結合領域 Rで再結合する割合が変化するように再結合領域 Rを配設して あり、外部磁場 Hにより領域 Cに到達する前記注入された少数キャリアの数が変化し 、この少数キャリアの数の変化による領域 Cを流れる電流の変化から外部磁場 Hに関 する情報を得るようにしたことを特徴とする半導体磁気センサ。  [1] One conductivity type region B of the semiconductor, the other conductivity type region E into which minority carriers are injected, and a region which is made of the same conductivity type or metal as this region E and receives the injected minority carriers. C are disposed in close proximity to each other, and a region B between the region E and the region C is provided with a recombination region R for recombining the injected minority carriers. The recombination region R is arranged so that the minority carriers injected into the region B are deflected by the Lorentz force and recombined at the recombination region R when the heat is applied. The number of the injected minority carriers reaching the region C is changed by the external magnetic field H, and information on the external magnetic field H is obtained from a change in the current flowing through the region C due to the change in the number of the minority carriers. A semiconductor magnetic sensor characterized in that:
[2] 領域 Bとして、 SOI層を使用した請求項 1に記載の半導体磁気センサ。  [2] The semiconductor magnetic sensor according to claim 1, wherein an SOI layer is used as the region B.
[3] 再結合領域 Rとして、領域 Bと電気的に導通した領域であり、かつ領域 Bとは異なる 導電型の領域とした請求項 1もしくは 2に記載の半導体磁気センサ。  3. The semiconductor magnetic sensor according to claim 1, wherein the recombination region R is a region that is electrically conductive with the region B and has a conductivity type different from that of the region B.
[4] 一つの領域 Eに対して複数の領域 Cを配設した請求項 1乃至 3のいずれかに記載 の半導体磁気センサ。  [4] The semiconductor magnetic sensor according to any one of claims 1 to 3, wherein a plurality of regions C are arranged for one region E.
[5] 同一基板に領域 E、領域 B、領域 Cおよび再結合領域 Rを持つ半導体磁気センサ のユニットを複数個設けた請求項 1乃至 4のいずれかに記載の半導体磁気センサ。  [5] The semiconductor magnetic sensor according to any one of claims 1 to 4, wherein a plurality of semiconductor magnetic sensor units each having a region E, a region B, a region C, and a recombination region R are provided on the same substrate.
[6] 2個のユニットを一対として形成し、これらの一対の出力を差動増幅させるようにした 請求項 5に記載の半導体磁気センサ。 [6] The semiconductor magnetic sensor according to claim 5, wherein the two units are formed as a pair, and the output of the pair is differentially amplified.
[7] 二次元もしくは三次元的な外部磁場 Hが計測できるようにユニットを配置した請求 項 5もしくは 6に記載の半導体磁気センサ。 7. The semiconductor magnetic sensor according to claim 5, wherein the unit is arranged so that a two-dimensional or three-dimensional external magnetic field H can be measured.
[8] 同一の基板に他の回路と共に集積化した請求項 1乃至 7のいずれかに記載の半導 体磁気センサ。 [8] The semiconductor magnetic sensor according to any one of claims 1 to 7, wherein the semiconductor magnetic sensor is integrated with other circuits on the same substrate.
[9] 強磁性体膜からなるヨークを半導体磁気センサの形成してある基板に形成して、半 導体磁気センサの磁気感応部における磁場の強さが大きくなるようにした請求項 1乃 至 8のレ、ずれかに記載の半導体磁気センサ。  [9] The yoke made of a ferromagnetic film is formed on the substrate on which the semiconductor magnetic sensor is formed so that the strength of the magnetic field in the magnetically sensitive portion of the semiconductor magnetic sensor is increased. The semiconductor magnetic sensor according to any one of claims 1 to 4.
[10] 磁気感応部の位置もしくはヨークの先端から所定の距離だけ離した位置に導線を 配設し、この導線に電流を流し、この電流による磁界を利用して外部磁場 Hを校正す るようにした請求項 1乃至 9のいずれかに記載の半導体磁気センサ。 [10] A conductor is placed at the position of the magnetically sensitive part or at a predetermined distance from the tip of the yoke, a current is passed through this conductor, and the external magnetic field H is calibrated using the magnetic field generated by the current. The semiconductor magnetic sensor according to any one of claims 1 to 9, wherein:
請求項 1乃至 10のいずれかに記載の半導体磁気センサを用いてあり、電源部と、 この半導体磁気センサの駆動回路部、この半導体磁気センサの校正回路部、出力 増幅回路部、演算回路部及び表示回路部を含む回路部を具備したことを特徴とする 磁気計測装置。  A power supply unit, a drive circuit unit of the semiconductor magnetic sensor, a calibration circuit unit of the semiconductor magnetic sensor, an output amplifying circuit unit, an arithmetic circuit unit, and a power supply unit. A magnetic measuring device comprising a circuit unit including a display circuit unit.
PCT/JP2004/010967 2003-07-31 2004-07-30 Semiconductor magnetic sensor and magnetism measuring instrument using same WO2005013376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-205199 2003-07-31
JP2003205199A JP4287905B2 (en) 2003-07-31 2003-07-31 Semiconductor magnetic sensor and magnetic measuring device using the same

Publications (1)

Publication Number Publication Date
WO2005013376A1 true WO2005013376A1 (en) 2005-02-10

Family

ID=34113666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010967 WO2005013376A1 (en) 2003-07-31 2004-07-30 Semiconductor magnetic sensor and magnetism measuring instrument using same

Country Status (2)

Country Link
JP (1) JP4287905B2 (en)
WO (1) WO2005013376A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362355C (en) * 2005-05-27 2008-01-16 东南大学 Miniature anti-radiation electric field sensor
WO2013162918A3 (en) * 2012-04-27 2014-01-23 Varian Semiconductor Equipment Associates, Inc. Techniques for patterning multilayer magnetic memory devices using ion implantation
CN106475894A (en) * 2016-11-30 2017-03-08 上海华力微电子有限公司 Prevent device, method and milling apparatus that grinding head is bumped against with grinding mat trimmer
US10890630B2 (en) 2016-05-24 2021-01-12 Tdk Corporation Magnetic sensor
CN114114098A (en) * 2021-11-15 2022-03-01 东南大学 MEMS magnetic sensor based on piezoelectric electronics and magnetic field measuring method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086457A (en) * 2004-09-17 2006-03-30 Matsushita Electric Works Ltd Magnetic detection device
ATE523904T1 (en) * 2008-06-09 2011-09-15 Hitachi Ltd MAGNETIC RESISTANCE DEVICE
JP5069776B2 (en) * 2010-06-28 2012-11-07 パナソニック株式会社 Magnetic detector
JP2019219182A (en) * 2018-06-15 2019-12-26 Tdk株式会社 Magnetic sensor
WO2020138170A1 (en) 2018-12-26 2020-07-02 旭化成エレクトロニクス株式会社 Magnetic field measuring device
US11497425B2 (en) 2019-03-08 2022-11-15 Asahi Kasei Microdevices Corporation Magnetic field measurement apparatus
JP2022111838A (en) 2021-01-20 2022-08-01 旭化成エレクトロニクス株式会社 Magnetic field measurement device, magnetic field measurement method, and magnetic field measurement program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177573A (en) * 1981-04-13 1982-11-01 Ibm Magnetic sensitive transistor
JPS59222969A (en) * 1983-05-27 1984-12-14 インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン Magnetic responsive transistor
JPH04320065A (en) * 1991-04-18 1992-11-10 New Japan Radio Co Ltd Transistor type magnetic sensor
JP2002134758A (en) * 2000-10-20 2002-05-10 Mitsuteru Kimura Semiconductor magnetic sensor
JP2002176165A (en) * 2000-12-06 2002-06-21 Tokin Corp Semiconductor magnetic sensor
JP2003110118A (en) * 2001-09-28 2003-04-11 Nec Tokin Corp Semiconductor magnetic sensor and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177573A (en) * 1981-04-13 1982-11-01 Ibm Magnetic sensitive transistor
JPS59222969A (en) * 1983-05-27 1984-12-14 インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン Magnetic responsive transistor
JPH04320065A (en) * 1991-04-18 1992-11-10 New Japan Radio Co Ltd Transistor type magnetic sensor
JP2002134758A (en) * 2000-10-20 2002-05-10 Mitsuteru Kimura Semiconductor magnetic sensor
JP2002176165A (en) * 2000-12-06 2002-06-21 Tokin Corp Semiconductor magnetic sensor
JP2003110118A (en) * 2001-09-28 2003-04-11 Nec Tokin Corp Semiconductor magnetic sensor and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAHASHI S. ET AL.: "Handotai Daiode Jiki Sensor no Kokandoka no Kento", PHYSICAL SENSOR KENKYUKAI SHIRYO, THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, 28 November 2003 (2003-11-28), PHS-03-18, pages 21 - 24, XP002985618 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100362355C (en) * 2005-05-27 2008-01-16 东南大学 Miniature anti-radiation electric field sensor
WO2013162918A3 (en) * 2012-04-27 2014-01-23 Varian Semiconductor Equipment Associates, Inc. Techniques for patterning multilayer magnetic memory devices using ion implantation
WO2013163653A3 (en) * 2012-04-27 2014-01-23 Varian Semiconductor Equipment Associates, Inc. Magnetic memory and method of fabrication
KR20150004891A (en) * 2012-04-27 2015-01-13 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Magnetic memory and method of fabrication
US8946836B2 (en) 2012-04-27 2015-02-03 Varian Semiconductor Equipment Associates, Inc. Magnetic memory and method of fabrication
US9070854B2 (en) 2012-04-27 2015-06-30 Varian Semiconductor Equipment Associates, Inc. Techniques for patterning multilayer magnetic memory devices using ion implantation
US9082949B2 (en) 2012-04-27 2015-07-14 Varian Semiconductor Equipment Associates, Inc. Magnetic memory and method of fabrication
KR101589230B1 (en) 2012-04-27 2016-01-27 베리안 세미콘덕터 이큅먼트 어소시에이츠, 인크. Magnetic memory and method of fabrication
US10890630B2 (en) 2016-05-24 2021-01-12 Tdk Corporation Magnetic sensor
CN106475894A (en) * 2016-11-30 2017-03-08 上海华力微电子有限公司 Prevent device, method and milling apparatus that grinding head is bumped against with grinding mat trimmer
CN114114098A (en) * 2021-11-15 2022-03-01 东南大学 MEMS magnetic sensor based on piezoelectric electronics and magnetic field measuring method
CN114114098B (en) * 2021-11-15 2023-12-29 东南大学 MEMS magnetic sensor based on piezoelectronics and method for measuring magnetic field

Also Published As

Publication number Publication date
JP4287905B2 (en) 2009-07-01
JP2005049179A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
US4700211A (en) Sensitive magnetotransistor magnetic field sensor
US4607271A (en) Magnetic field sensor
RU2238571C2 (en) Magnetic field sensor
JPH01251763A (en) Vertical hall element and integrated magnetic sensor
WO2005013376A1 (en) Semiconductor magnetic sensor and magnetism measuring instrument using same
US6191581B1 (en) Planar thin-film magnetic field sensor for determining directional magnetic fields
KR20080033959A (en) Tunnel junction sensor with magnetic cladding
JPH0728058B2 (en) Hall element that can be integrated in an integrated circuit
CN110632538B (en) Magnetic field/acceleration integrated sensor and integration process method
JPH06148301A (en) Magnetic sensor
US9121899B2 (en) Semiconductor device
EP2495578A1 (en) Magnetic sensors
US8324672B2 (en) Spin transport device
JPH05281319A (en) Magnetic sensor
JP3471986B2 (en) Hall element and watt hour meter using the same
RU2515377C1 (en) Orthogonal magnetotransistor converter
JP2001116773A (en) Current sensor and current detector
RU2498457C1 (en) Three-collector bipolar magnetic transistor
EP0305978B1 (en) Magnetoelectric element and magnetoelectric apparatus
RU2387046C1 (en) Integral electromagnetic transducer built around bipolar magnetic transistor
JP5424469B2 (en) Magnetoresistive element
EP0667648A2 (en) Hall-effect sensor
JP2005159273A (en) Magnetic-electric conversion element, magnetism detecting device, and earth magnetism sensor
JPH11304825A (en) Semiconductor distortion sensor and its manufacture, and scanning probe microscope
JPH11317555A (en) In-plane magnetoresistive bridge

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase