WO2005012256A1 - 3, 4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinases (cdk) and glycogen synthase kinase-3 (gsk-3) modulators - Google Patents

3, 4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinases (cdk) and glycogen synthase kinase-3 (gsk-3) modulators Download PDF

Info

Publication number
WO2005012256A1
WO2005012256A1 PCT/GB2004/003179 GB2004003179W WO2005012256A1 WO 2005012256 A1 WO2005012256 A1 WO 2005012256A1 GB 2004003179 W GB2004003179 W GB 2004003179W WO 2005012256 A1 WO2005012256 A1 WO 2005012256A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
groups
optionally substituted
carbocyclic
ring members
Prior art date
Application number
PCT/GB2004/003179
Other languages
French (fr)
Other versions
WO2005012256A8 (en
Inventor
Valerio Berdini
Michael Alistair O'brien
Maria Grazia Carr
Theresa Rachel Early
Adrian Liam Gill
Gary Trewartha
Alison Jo-Anne Woolford
Andrew James Woodhead
Paul Graham Wyatt
Original Assignee
Astex Therapeutics Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0317127.9A external-priority patent/GB0317127D0/en
Priority to AU2004261459A priority Critical patent/AU2004261459B2/en
Priority to KR1020067001424A priority patent/KR101204247B1/en
Priority to DK04743512.8T priority patent/DK1651612T5/en
Priority to ES04743512T priority patent/ES2385328T3/en
Priority to JP2006520896A priority patent/JP4681548B2/en
Priority to PL04743512T priority patent/PL1651612T3/en
Priority to SI200431891T priority patent/SI1651612T1/en
Priority to RU2006105338/04A priority patent/RU2408585C2/en
Priority to EP04743512A priority patent/EP1651612B9/en
Priority to MXPA06000794A priority patent/MXPA06000794A/en
Priority to NZ544756A priority patent/NZ544756A/en
Priority to BRPI0412259-3A priority patent/BRPI0412259B1/en
Priority to CN2004800211596A priority patent/CN1826323B/en
Application filed by Astex Therapeutics Limited filed Critical Astex Therapeutics Limited
Priority to CA2532965A priority patent/CA2532965C/en
Priority to AT04743512T priority patent/ATE553091T1/en
Publication of WO2005012256A1 publication Critical patent/WO2005012256A1/en
Publication of WO2005012256A8 publication Critical patent/WO2005012256A8/en
Priority to IL173271A priority patent/IL173271A/en
Priority to US11/336,599 priority patent/US7385059B2/en
Priority to TNP2006000019A priority patent/TNSN06019A1/en
Priority to EGNA2006000065 priority patent/EG27104A/en
Priority to IS8310A priority patent/IS2898B/en
Priority to NO20060855A priority patent/NO335069B1/en
Priority to HK06110511.3A priority patent/HK1090041A1/xx
Priority to US11/875,470 priority patent/US7745638B2/en
Priority to US11/875,482 priority patent/US7825140B2/en
Priority to US12/877,499 priority patent/US8080666B2/en
Priority to US13/289,373 priority patent/US8779147B2/en
Priority to US14/281,360 priority patent/US9051278B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/38Nitrogen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/41521,2-Diazoles having oxo groups directly attached to the heterocyclic ring, e.g. antipyrine, phenylbutazone, sulfinpyrazone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/41551,2-Diazoles non condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/4161,2-Diazoles condensed with carbocyclic ring systems, e.g. indazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41961,2,4-Triazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/541Non-condensed thiazines containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/38Nitrogen atoms
    • C07D231/40Acylated on said nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D453/00Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids
    • C07D453/02Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • This invention relates to pyrazole compounds that inhibit or modulate the activity of cyclin dependent kinases (CDK) and glycogen synthase kinase-3 (GSK-3), to the use of the compounds in the treatment or prophylaxis of disease states or conditions mediated by cyclin dependent kinases and glycogen synthase kinase-3, and to novel compounds having cyclin dependent kinase or glycogen synthase kinase-3 inhibitory or modulating activity. Also provided are pharmaceutical compositions containing the compounds and novel chemical intermediates.
  • Protein kinases constitute a large family of structurally related enzymes that are responsible for the control of a wide variety of signal transduction processes within the cell (Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Book. I and II, Academic Press, San Diego, CA).
  • the kinases may be categorized into families by the substrates they phosphorylate (e.g., protein-tyrosine, protein-serine/threonine, lipids, etc.).
  • Protein kinases may be characterized by their regulation mechanisms. These mechanisms include, for example, autophosphorylation, transphosphorylation by other kinases, protein-protein interactions, protein-lipid interactions, and protein- polynucleotide interactions. An individual protein kinase may be regulated by more than one mechanism.
  • Kinases regulate many different cell processes including, but nqt limited to, proliferation, differentiation, apoptosis, motility, transcription, translation and other signalling processes, by adding phosphate groups to target proteins. These phosphorylation events act as molecular on/off switches that can modulate or regulate the target protein biological function. Phosphorylation of target proteins occurs in response to a variety of extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc.), cell cycle events, environmental or nutritional stresses, etc.
  • the appropriate protein kinase functions in signalling pathways to activate or inactivate (either directly or indirectly), for example, a metabolic enzyme, regulatory protein, receptor, cytoskeletal protein, ion channel or pump, or transcription factor.
  • Uncontrolled signalling due to defective control of protein phosphorylation has been implicated in a number of diseases, including, for example, inflammation, cancer, allergy/asthma, disease and conditions of the immune system, disease and conditions of the central nervous system, and angiogenesis.
  • CDKs cyclin dependent kinases
  • cyclins are cdc2 (also known as CDK1) homologous serine-threonine kinase proteins that are able to utilise ATP as a substrate in the phosphorylation of diverse polypeptides in a sequence dependent context.
  • Cyclins are a family of proteins characterised by a homology region, containing approximately 100 amino acids, termed the "cyclin box" which is used in binding to, and defining selectivity for, specific CDK partner proteins.
  • Modulation of the expression levels, degradation rates, and activation levels of various CDKs and cyclins throughout the cell cycle leads to the cyclical formation of a series of CDK/cyclin complexes, in which the CDKs are enzymatically active.
  • the formation of these complexes controls passage through discrete cell cycle checkpoints and thereby enables the process of cell division to continue.
  • Failure to satisfy the pre-requisite biochemical criteria at a given cell cycle checkpoint, i.e. failure to form a required CDK/cyclin complex can lead to cell cycle arrest and/or cellular apoptosis. Aberrant cellular proliferation, as manifested in cancer, can often be attributed to loss of correct cell cycle control.
  • CDK enzymatic activity therefore provides a means by which abnormally dividing cells can have their division arrested and/or be killed.
  • the diversity of CDKs, and CDK complexes, and their critical roles in mediating the cell cycle, provides a broad spectrum of potential therapeutic targets selected on the basis of a defined biochemical rationale.
  • Progression from the Gl phase to the S phase of the cell cycle is primarily regulated by CDK2, CDK3, CDK4 and CDK6 via association with members of the D and E type cyclins.
  • the D-type cyclins appear instrumental in enabling passage beyond the Gl restriction point, where as the CDK2/cyclin E complex is key to the transition from the Gl to S phase. Subsequent progression through S phase and entry into G2 is thought to require the CDK2/cyclin A complex. Both mitosis, and the G2 to M phase transition which triggers it, are regulated by complexes of CDK1 and the A and B type cyclins.
  • Rb Retinoblastoma protein
  • Rb and pi 30 are substrates for CDK(2, 4, & 6)/cyclin complexes. Progression through Gl is in part facilitated by hyperphosphorylation, and thus inactivation, of Rb and pi 30 by the CDK(4/6)/cyclin-D complexes. Hyperphosphorylation of Rb and pi 30 causes the release of transcription factors, such as E2F, and thus the expression of genes necessary for progression through Gl and for entry into S-phase, such as the gene for cyclin E. Expression of cyclin E facilitates formation of the CDK2/cyclin E complex which amplifies, or maintains, E2F levels via further phosphorylation of Rb.
  • transcription factors such as E2F
  • the CDK2/cyclin E complex also phosphorylates other proteins necessary for DNA replication, such as NPAT, which has been implicated in histone biosynthesis. Gl progression and the Gl/S transition are also regulated via the mitogen stimulated Myc pathway, which feeds into the CDK2/cyclin E pathway. CDK2 is also connected to the p53 mediated DNA damage response pathway via p53 regulation of p21 levels. p21 is a protein inhibitor of CDK2/cyclin E and is thus capable of blocking, or delaying, the Gl/S transition.
  • the CDK2/cyclin E complex may thus represent a point at which biochemical stimuli from the Rb, Myc and p53 pathways are to some degree integrated. CDK2 and/or the CDK2/cyclin E complex therefore represent good targets for therapeutics designed at arresting, or recovering control of, the cell cycle in aberrantly dividing cells.
  • CDK3 in the cell cycle is not clear. As yet no cognate cyclin partner has been identified, but a dominant negative form of CDK3 delayed cells in
  • CDK5 which is necessary for correct neuronal development and which has also been implicated in the phosphorylation of several neuronal proteins such as Tau, NUDE-1, synapsinl, DARPP32 and the Muncl8/SyntaxinlA complex.
  • Neuronal CDK5 is conventionally activated by binding to the p35/p39 proteins.
  • CDK5 activity can, however, be deregulated by the binding of p25, a truncated version of p35.
  • p35 Conversion of p35 to p25, and subsequent deregulation of CDK5 activity, can be induced by ischemia, excitotoxicity, and ⁇ -amyloid peptide. Consequently p25 has been implicated in the pathogenesis of neurodegenerative diseases, such as Alzheimer's, and is therefore of interest as a target for therapeutics directed against these diseases.
  • CDK7 is a nuclear protein that has cdc2 CAK activity and binds to cyclin H.
  • CDK7 has been identified as component of the TFIIH transcriptional complex which has RNA polymerase II C-terminal domain (CTD) activity. This has been associated with the regulation of HIV- 1 transcription via a Tat-mediated biochemical pathway.
  • CTD RNA polymerase II C-terminal domain
  • CDK8 binds cyclin C and has been implicated in the phosphorylation of the CTD of RNA polymerase II.
  • the CDK9/cyclin-Tl complex (P-TEFb complex) has been implicated in elongation control of RNA polymerase II.
  • PTEF-b is also required for activation of transcription of the HIN-1 genome by the viral transactivator Tat through its interaction with cyclin Tl .
  • CDK7, CDK8, CDK9 and the P-TEFb complex are therefore potential targets for anti-viral therapeutics.
  • CDK phosphorylation is performed by a group of CDK activating kinases (CAKs) and/or kinases such as weel, Mytl and Mikl.
  • Dephosphorylation is performed by phosphatases such as cdc25(a & c), pp2a, or KAP.
  • CDK/cyclin complex activity may be further regulated by two families of endogenous cellular proteinaceous inhibitors: the Kip/Cip family, or the INK family.
  • the INK proteins specifically bind CDK4 and CDK6.
  • pl6 ink4 also known as MTS1
  • MTS1 is a potential tumour suppressor gene that is mutated, or deleted, in a large number of primary cancers.
  • the Kip/Cip family contains proteins such as p21 cipl ' Wafl , p27 ⁇ ipl and p57 ⁇ ip2 . As discussed previously p21 is induced by p53 and is able to inactivate the CDK2/cyclin(E/A) and CDK4/cyclin(Dl/D2/D3) complexes.
  • cyclin E Atypically low levels of p27 expression have been observed in breast, colon and prostate cancers. Conversely over expression of cyclin E in solid tumours has been shown to correlate with poor patient prognosis. Over expression of cyclin Dl has been associated with oesophageal, breast, squamous, and non- small cell lung carcinomas.
  • CDKs The pivotal roles of CDKs, and their associated proteins, in co-ordinating and driving the cell cycle in proliferating cells have been outlined above. Some of the biochemical pathways in which CDKs play a key role have also been described.
  • CDK inhibitors could conceivably also be used to treat other conditions such as viral infections, autoimmune diseases and neuro-degenerative diseases, amongst others.
  • CDK targeted therapeutics may also provide clinical benefits in the treatment of the previously described diseases when used in combination therapy with either existing, or new, therapeutic agents.
  • CDK targeted anticancer therapies could potentially have advantages over many current antitumour agents as they would not directly interact with DNA and should therefore reduce the risk of secondary tumour development.
  • Glycogen Synthase Kinase-3 (GSK3) is a serine-threonine kinase that occurs as two ubiquitously expressed isoforms in humans (GSK3 ⁇ & beta GSK3 ⁇ ).
  • GSK3 has been implicated as having roles in embryonic development, protein synthesis, cell proliferation, cell differentiation, microtubule dynamics, cell motility and cellular apoptosis. As such GSK3 has been implicated in the progression of disease states such as diabetes, cancer, Alzheimer's disease, stroke, epilepsy, motor neuron disease and/or head trauma.
  • CDKs cyclin dependent kinases
  • the consensus peptide substrate sequence recognised by GSK3 is (Ser/Thr)-X-X- X-(pSer/pThr), where X is any amino acid (at positions (n+1), (n+2), (n+3)) and pSer and pThr are phospho-serine and phospho-threonine respectively (n+4).
  • GSK3 phosphorylates the first serine, or threonine, at position (n). Phospho-serine, or phospho-threonine, at the (n+4) position appear necessary for priming GSK3 to give maximal substrate turnover. Phosphorylation of GSK3 ⁇ at Ser21, or GSK3 ⁇ at Ser9, leads to inhibition of GSK3.
  • GSK3 ⁇ and GSK ⁇ may be subtly regulated by phosphorylation of tyrosines 279 and 216 respectively. Mutation of these residues to a Phe caused a reduction in in vivo kinase activity.
  • the X-ray crystallographic structure of GSK3 ⁇ has helped to shed light on all aspects of GSK3 activation and regulation.
  • GSK3 forms part of the mammalian insulin response pathway and is able to phosphorylate, and thereby inactivate, glycogen synthase. Upregulation of glycogen synthase activity, and thereby glycogen synthesis, through inhibition of GSK3, has thus been considered a potential means of combating type II, or non- insulin-dependent diabetes mellitus (NIDDM): a condition in which body tissues become resistant to insulin stimulation.
  • NIDDM non- insulin-dependent diabetes mellitus
  • PI3K phosphoinositide-3 kinase
  • PBP3 second messenger phosphatidylinosityl 3,4,5-trisphosphate
  • PKB 3-phosphoinositide-dedependent protein kinase 1
  • PKB protein kinase B
  • PKB is able to phosphorylate, and thereby inhibit, GSK3 ⁇ and/or GSK ⁇ through phosphorylation of Ser9, or ser21, respectively.
  • the inhibition of GSK3 then triggers upregulation of glycogen synthase activity.
  • Therapeutic agents able to inhibit GSK3 may thus be able to induce cellular responses akin to those seen on insulin stimulation.
  • a further in vivo substrate of GSK3 is the eukaryotic protein synthesis initiation factor 2B (eIF2B).
  • eIF2B is inactivated via phosphorylation and is thus able to suppress protein biosynthesis.
  • Inhibition of GSK3, e.g. by inactivation of the "mammalian target of rapamycin" protein (mTOR), can thus upregulate protein biosynthesis.
  • GSK3 activity via the mitogen activated protein kinase (MAPK) pathway through phosphorylation of GSK3 by kinases such as mitogen activated protein kinase activated protein kinase 1 (MAPKAP-K1 or RSK).
  • MAPK mitogen activated protein kinase
  • RSK mitogen activated protein kinase activated protein kinase 1
  • GSK3 ⁇ is a key component in the vertebrate Wnt signalling pathway. This biochemical pathway has been shown to be critical for normal embryonic development and regulates cell proliferation in normal tissues. GSK3 becomes inhibited in response to Wnt stimulii. This can lead to the dephosphorylation of GSK3 substrates such as Axin, the adenomatous polyposis coli (APC) gene product and ⁇ -catenin. Aberrant regulation of the Wnt pathway has been associated with many cancers. Mutations in APC, and/or ⁇ -catenin, are common in colorectal cancer and other tumours, ⁇ -catenin has also been shown to be of importance in cell adhesion.
  • APC adenomatous polyposis coli
  • GSK3 may also modulate cellular adhesion processes to some degree.
  • GSK3 may also modulate cellular adhesion processes to some degree.
  • transcription factors such as c-Jun, CCAAT/enhancer binding protein ⁇ (C/EBP ⁇ ), c-Myc and/or other substrates such as Nuclear Factor of Activated T-cells (NFATc), Heat Shock Factor-1 (HSF-1) and the c-AMP response element binding protein (CREB).
  • NFATc Nuclear Factor of Activated T-cells
  • HSF-1 Heat Shock Factor-1
  • CREB c-AMP response element binding protein
  • GSK3 The role of GSK3 in modulating cellular apoptosis, via a pro-apoptotic mechanism, may be of particular relevance to medical conditions in which neuronal apoptosis can occur. Examples of these are head trauma, stroke, epilepsy, Alzheimer's and motor neuron diseases, progressive supranuclear palsy, corticobasal degeneration, and Pick's disease.
  • head trauma head trauma
  • stroke epilepsy
  • Alzheimer's and motor neuron diseases progressive supranuclear palsy
  • corticobasal degeneration corticobasal degeneration
  • Pick's disease In vitro it has been shown that GSK3 is able to hyper- phosphorylate the microtubule associated protein Tau. Hyperphosphorylation of Tau disrupts its normal binding to microtubules and may also lead to the formation of intra-cellular Tau filaments. It is believed that the progressive accumulation of these filaments leads to eventual neuronal dysfunction and degeneration. Inhbition of Tau phosphorylation, through inhibition of GSK3
  • WO 02/34721 from Du Pont discloses a class of indeno [l,2-c]pyrazol-4-ones as inhibitors of cyclin dependent kinases.
  • WO 01/81348 from Bristol Myers Squibb describes the use of 5-thio-, sulphinyl- and sulphonylpyrazolo[3,4-b]-pyridines as cyclin dependent kinase inhibitors.
  • WO 00/62778 also from Bristol Myers Squibb discloses a class of protein tyrosine kinase inhibitors.
  • WO 01/72745A1 from Cyclacel describes 2-substituted 4-heteroaryl-pyrimidines and their preparation, pharmaceutical compositions containing them and their use as inhibitors of cyclin-dependant kinases (CDKs) and hence their use in the treatment of proliferative disorders such as cancer, leukaemia, psoriasis and the like.
  • WO 99/21845 from Agouron describes 4-aminothiazole derivatives for inhibiting cyclin-dependent kinases (CDKs), such as CDK1, CDK2, CDK4, and CDK6.
  • CDKs cyclin-dependent kinases
  • the invention is also directed to the therapeutic or prophylactic use of pharmaceutical compositions containing such compounds and to methods of treating malignancies and other disorders by administering effective amounts of such compounds.
  • WO 01/53274 from Agouron discloses as CDK kinase inhibitors a class of compounds which can comprise an amide-substituted benzene ring linked to an N- containing heterocyclic group.
  • WO 01/98290 discloses a class of 3-aminocarbonyl-2- carboxamido thiophene derivatives as protein kinase inhibitors.
  • WO 01/53268 and WO 01/02369 from Agouron disclose compounds that mediate or inhibit cell proliferation through the inhibition of protein kinases such as cyclin dependent kinase or tyrosine kinase.
  • WO 00/39108 and WO 02/00651 both to Du Pont Pharmaceuticals describe heterocyclic compounds that are inhibitors of trypsin-like serine protease enzymes, especially factor Xa and thrombin.
  • the compounds are stated to be useful as anticoagulants or for the prevention of thromboembolic disorders.
  • WO 97/03071 discloses a class of heterocyclyl-carboxamide derivatives for use in the treatment of central nervous system disorders. Pyrazoles are mentioned generally as examples of heterocyclic groups but no specific pyrazole compounds are disclosed or exemplified.
  • WO 97/40017 (Novo Nordisk) describes compounds that are modulators of protein tyrosine phosphatases.
  • WO 03/020217 (Univ. Connecticut) discloses a class of pyrazole 3-carboxamides as cannabinoid receptor modulators for treating neurological conditions. It is stated (page 15) that the compounds can be used in cancer chemotherapy but it is not made clear whether the compounds are active as anti-cancer agents or whether they are administered for other purposes.
  • WO 01/58869 (Bristol Myers Squibb) discloses cannabinoid receptor modulators that can be used inter alia to treat a variety of diseases.
  • the main use envisaged is the treatment of respiratory diseases, although reference is made to the treatment of cancer.
  • WO 01/02385 (Aventis Crop Science) discloses l-(quinoline-4-yl)-lH-pyrazole derivatives as fungicides. 1-Unsubsituted pyrazoles are disclosed as synthetic intermediates.
  • WO 2004/039795 discloses amides containing a 1 -substituted pyrazole group as inhibitors of apolipoprotein B secretion. The compounds are stated to be useful in treating such conditions as hyperlipidemia.
  • WO 2004/000318 discloses various amino-substituted monocycles as kinase modulators. None of the exemplified compounds are pyrazoles. Summary of the Invention
  • the invention provides compounds that have cyclin dependent kinase inhibiting or modulating activity, and which it is envisaged will be useful in preventing or treating disease states or conditions mediated by the kinases.
  • the compounds of the invention will be useful in alleviating or reducing the incidence of cancer.
  • the invention provides the use of a compound for the manufacture of a medicament for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase, the compound having the formula (0):
  • X is a group R ⁇ A-NR 4 - or a 5- or 6-membered carbocyclic or heterocyclic ring;
  • Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length;
  • R 1 is hydrogen; a carbocyclic or heterocyclic group having from 3 to 12 ring members; or a -s hydrocarbyl group optionally substituted by one or more substituents selected from halogen (e.g. fluorine), hydroxy, C 1 . 4 hydrocarbyloxy, amino, mono- or di-Ci.
  • halogen e.g. fluorine
  • R 2 is hydrogen; halogen; C alkoxy (e.g. methoxy); or a C 1 . hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C ⁇ alkoxy (e.g. methoxy);
  • R 3 is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members;
  • R 4 is hydrogen or a C M hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C ⁇ alkoxy (e.g. methoxy).
  • halogen e.g. fluorine
  • hydroxyl or C ⁇ alkoxy e.g. methoxy
  • the invention provides the use of a compound for the manufacture of a medicament for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase, the compound having the formula
  • X is a group R'-A-NR 4 - or a 5- or 6-membered carbocyclic or heterocyclic ring;
  • R 1 is hydrogen; a carbocyclic or heterocyclic group having from 3 to 12 ring members; or a C ⁇ . 8 hydrocarbyl group optionally substituted by one or more substituents selected from halogen (e.g. fluorine), hydroxy, C hydrocarbyloxy, amino, mono- or CH-C M hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO 2 ;
  • R 2 is hydrogen; halogen; C M alkoxy (e.g. methoxy); or a C 1 - hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C alkoxy (e.g. methoxy);
  • R 3 is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members;
  • R 4 is hydrogen or a C hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C alkoxy (e.g. methoxy).
  • halogen e.g. fluorine
  • hydroxyl or C alkoxy e.g. methoxy
  • the invention also provides the use of a compound for the manufacture of a medicament for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase, the compound having the formula (I):
  • Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length;
  • R 1 is hydrogen; a carbocyclic or heterocyclic group having from 3 to 12 ring members; or a C ⁇ profession 8 hydrocarbyl group optionally substituted by one or more substituents selected from halogen (e.g. fluorine), hydroxy, C hydrocarbyloxy, amino, mono- or di-C 1 . 4 hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO 2 ;
  • R 2 is hydrogen; halogen; C alkoxy (e.g. methoxy); or a C M hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C M alkoxy (e.g. methoxy);
  • R 3 is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members;
  • R 4 is hydrogen or a C M hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C 1 - 4 alkoxy (e.g. methoxy).
  • halogen e.g. fluorine
  • hydroxyl e.g. hydroxyl
  • C 1 - 4 alkoxy e.g. methoxy
  • R 1 is other than a substituted or unsubstituted dihydronaphthalene, dihydrochroman, dihydrothiochroman, tetrahydroquinoline or tetrahydrobenzfuranyl group.
  • (a-ii) X and R are each other than a moiety containing a maleimide group wherein the maleimide group has nitrogen atoms attached to the 3-and 4-positions thereof.
  • R 1 is other than a moiety containing a purine nucleoside group.
  • (a-iv) X and R are each other than a moiety containing a cyclobutene-1 ,2-dione group wherein the cyclobutene-1, 2-dione group has nitrogen atoms attached to the 3-and 4-positions thereof.
  • R 3 is other than a moiety containing a 4-monosubsituted or 4,5-disubstituted 2-pyridyl or 2-pyrimidinyl group or a 5-monosubstituted or 5,6-disubstituted 1,2,4- triazin-3-yl or 3-pyridazinyl group.
  • X and R 3 are each other than a moiety containing a substituted or unsubstituted pyrazol-3-ylamine group linked to a substituted or unsubstituted pyridine, diazine or triazine group.
  • R 1 is other than a substituted or unsubstituted tetrahydronaphthalene, tetrahydroquinolinyl, tetrahydrochromanyl or tetrahydrothiochromanyl group.
  • R is H and A is a bond
  • R is other than a moiety containing a bis- aryl, bis-heteroaryl or aryl heteroaryl group.
  • R 3 is other than a moiety containing a l,2,8,8a-tetrahydro-7-methyl- cyclopropa[c]pyrrolo [3 ,2,e] indole-4-(5H)-one group.
  • (a-xi) X is other than 4-(tert-butyloxycarbonylamino)-3-methylimidazol-2- ylcarbonylamino .
  • the invention provides, for use in medicine, a sub-group of compounds of the formula (I) represented by the general formula (la):
  • X is a group R J -A-NR 4 -;
  • Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length;
  • R 1 is a carbocyclic or heterocyclic group having from 3 to 12 ring members; or a Ci-s hydrocarbyl group optionally substituted by one or more substituents selected from fluorine, hydroxy, C M hydrocarbyloxy, amino, mono- or di-C M hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO 2 ;
  • R 2 is hydrogen; halogen; C M alkoxy (e.g. methoxy); or a C 1 - hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C M alkoxy (e.g. methoxy);
  • R 3 is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members;
  • R 4 is hydrogen or a C M hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C M alkoxy (e.g. methoxy).
  • halogen e.g. fluorine
  • hydroxyl or C M alkoxy e.g. methoxy
  • (b-i) R is other than a bridged azabicyclo group.
  • R 3 is other than a moiety containing an unsubstituted or substituted phenyl group having attached to an ortho position thereof, a substituted or unsubstituted carbamoyl or thiocarbamoyl group.
  • R 3 is other than a moiety containing an isoquinoline or quinoxaline group each having attached thereto a substituted or unsubstituted piperidine or piperazine ring.
  • R 3 is other than a moiety containing a thiatriazine group.
  • R 1 is other than an arylalkyl, heteroarylalkyl or piperidinylalkyl group each having attached thereto a substituent selected from cyano, and substituted or unsubstituted amino, aminoalkyl, amidine, guanidine, and carbamoyl groups.
  • R 3 is other than a six membered monocyclic aryl or heteroaryl group linked directly to a 5,6-fused bicyclic heteroaryl group.
  • the invention provides a sub-group of novel compounds of the formulae (I) and (la) as defined herein, the novel compounds being represented by the formula (lb):
  • X is a group R ⁇ A-NR 4 -;
  • Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length;
  • R 1 is a carbocyclic or heterocyclic group having from 3 to 12 ring members; or a -s hydrocarbyl group optionally substituted by one or more substituents selected from fluorine, hydroxy, C 1 . hydrocarbyloxy, amino, mono- or di-C M hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO 2 ;
  • R 2 is hydrogen; halogen; C M alkoxy (e.g. methoxy); or a C M hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C M alkoxy (e.g. methoxy);
  • R is selected from carbocyclic and heterocyclic groups having from 3 to 12 ring members;
  • R 4 is hydrogen or a C M hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C M alkoxy (e.g. methoxy). Any one or more of the following optional provisos, in any combination, may apply to the compounds of formula (lb) and sub-groups thereof:
  • R 1 is other than a substituted arylalkyl, heteroarylalkyl or piperidinylalkyl group.
  • R 3 is other than a disubstituted thiazolyl group wherein one of the substituents is selected from cyano and fluoroalkyl.
  • the reference in proviso (a-iii) to a purine nucleoside group refers to substituted and unsubstituted purine groups having attached thereto a monosaccharide group (e.g. a pentose or hexose) or a derivative of a monosaccharide group, for example a deoxy monosaccharide group or a substituted monosaccharide group.
  • a monosaccharide group e.g. a pentose or hexose
  • a derivative of a monosaccharide group for example a deoxy monosaccharide group or a substituted monosaccharide group.
  • proviso (b-i) to a bridged azabicyclo group refers to bicycloalkane bridged ring systems in which one of the carbon atoms of the bicycloalkane has been replaced by a nitrogen atom.
  • two rings share more than two atoms, see for example Advanced Organic Chemistry, by Jerry March, 4 th Edition, Wiley Interscience, pages 131-133, 1992.
  • the invention also provides the use of a compound of the formulae (la) or (lb) as defined herein for the manufacture of a medicament for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase.
  • any one or more of the foregoing optional provisos, (a-i) to (a-xi), (b-i) to (b-vii), (c-i) and (c-ii) in any combination, may also apply to the compounds of formulae (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein.
  • the invention also provides:
  • a method for alleviating or reducing the incidence of a disease or condition comprising or arising from abnormal cell growth in a mammal which method comprises administering to the mammal a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein in an amount effective in inhibiting abnormal cell growth.
  • a method for alleviating or reducing the incidence of a disease state or condition mediated by a cyclin dependent kinase or glycogen synthase kinase-3 which method comprises administering to a subject in need thereof a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein.
  • a method for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase comprises administering to a subject in need thereof a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (NIII) and sub-groups thereof as defined herein.
  • a method for treating a disease or condition comprising or arising from abnormal cell growth in a mammal comprises administering to the mammal a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IN), (INa), (Na), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein in an amount effective in inhibiting abnormal cell growth.
  • a method for treating a disease or condition comprising or arising from abnormal cell growth in a mammal comprising administering to the mammal a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein in an amount effective to inhibit a cyclin dependent kinase (e.g. CDK2).
  • a cyclin dependent kinase e.g. CDK2
  • a method of inhibiting a cyclin dependent kinase which method comprises contacting the kinase with a kinase-inhibiting compound of the formula (0), (1°), (I), (la) (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein.
  • a method of modulating a cellular process by inhibiting the activity of a cyclin dependent kinase using a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (Nil) or (NIII) and sub-groups thereof as defined herein.
  • the compounds of the invention are also considered to be inhibitors of glycogen synthase kinase-3 (GSK3) and, accordingly, the invention also provides methods and uses of kinase inhibitors or modulators of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (Nil) or (VIII) and sub-groups thereof as defined herein but wherein the kinase is glycogen synthase kinase-3.
  • the invention provides:
  • a pharmaceutical composition comprising a compound of the formula (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and subgroups thereof as defined herein and a pharmaceutically acceptable carrier.
  • a method for the treatment or prophylaxis of any one of the disease states or consitions disclosed herein comprises administering to a patient (e.g. a patient in need thereof) a compound (e.g. a therapeutically effective amount) of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein.
  • a method for alleviating or reducing the incidence of a disease state or condition disclosed herein which method comprises administering to a patient (e,g, a patient in need thereof) a compound (e.g.
  • a therapeutically effective amount of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein.
  • a method for the diagnosis and treatment of a disease state or condition mediated by a cyclin dependent kinase comprises (i) screening a patient to determine whether a disease or condition from which the patient is or may be suffering is one which would be susceptible to treatment with a compound having activity against cyclin dependent kinases; and (ii) where it is indicated that the disease or condition from which the patient is thus susceptible, thereafter administering to the patient a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein.
  • references to formula (I) include formulae (0), (1°), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups, examples or embodiments of formulae (0), (1°), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (Nil) or (VIII) unless the context indicates otherwise.
  • references to inter alia therapeutic uses, pharmaceutical formulations and processes for making compounds, where they refer to formula (I), are also to be taken as referring to formulae (0), (1°), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups, examples or embodiments of formulae (0), (1°), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII).
  • references to "carbocyclic” and “heterocyclic” groups as used herein shall, unless the context indicates otherwise, include both aromatic and non-aromatic ring systems.
  • the term “carbocyclic and heterocyclic groups” includes within its scope aromatic, non-aromatic, unsaturated, partially saturated and fully saturated carbocyclic and heterocyclic ring systems.
  • such groups may be monocyclic or bicyclic and may contain, for example, 3 to 12 ring members, more usually 5 to 10 ring members.
  • Examples of monocyclic groups are groups containing 3, 4, 5, 6, 7, and 8 ring members, more usually 3 to 7, and preferably 5 or 6 ring members.
  • bicyclic groups are those containing 8, 9, 10, 11 and 12 ring members, and more usually 9 or 10 ring members.
  • the carbocyclic or heterocyclic groups can be aryl or heteroaryl groups having from 5 to 12 ring members, more usually from 5 to 10 ring members.
  • aryl refers to a carbocyclic group having aromatic character and the term “heteroaryl” is used herein to denote a heterocyclic group having aromatic character.
  • aryl and “heteroaryl” embrace polycyclic (e.g. bicyclic) ring systems wherein one or more rings are non-aromatic, provided that at least one ring is aromatic.
  • the group may be attached by the aromatic ring, or by a non-aromatic ring.
  • the aryl or heteroaryl groups can be monocyclic or bicyclic groups and can be unsubstituted or substituted with one or more substituents, for example one or more groups R 10 as defined herein.
  • non-aromatic group embraces unsaturated ring systems without aromatic character, partially saturated and fully saturated carbocyclic and heterocyclic ring systems.
  • fully saturated refers to rings where there are no multiple bonds between ring atoms.
  • Saturated carbocyclic groups include cycloalkyl groups as defined below.
  • Partially saturated carbocyclic groups include cycloalkenyl groups as defined below, for example cyclopentenyl, cycloheptenyl and cyclooctenyl.
  • a further example of a cycloalkenyl group is cyclohexenyl.
  • heteroaryl groups are monocyclic and bicyclic groups containing from five to twelve ring members, and more usually from five to ten ring members.
  • the heteroaryl group can be, for example, a five membered or six membered monocyclic ring or a bicyclic structure formed from fused five and six membered rings or two fused six membered rings or, by way of a further example, two fused five membered rings.
  • Each ring may contain up to about four heteroatoms typically selected from nitrogen, sulphur and oxygen.
  • the heteroaryl ring will contain up to 4 heteroatoms, more typically up to 3 heteroatoms, more usually up to 2, for example a single heteroatom.
  • the heteroaryl ring contains at least one ring nitrogen atom.
  • the nitrogen atoms in the heteroaryl rings can be basic, as in the case of an imidazole or pyridine, or essentially non-basic as in the case of an indole or pyrrole nitrogen. In general the number of basic nitrogen atoms present in the heteroaryl group, including any amino group substituents of the ring, will be less than five.
  • Examples of five membered heteroaryl groups include but are not limited to pyrrole, furan, thiophene, imidazole, f ⁇ irazan, oxazole, oxadiazole, oxatriazole, isoxazole, thiazole, isothiazole, pyrazole, triazole and tetrazole groups.
  • Examples of six membered heteroaryl groups include but are not limited to pyridine, pyrazine, pyridazine, pyrimidine and triazine.
  • a bicyclic heteroaryl group may be, for example, a group selected from: a) a benzene ring fused to a 5- or 6-membered ring containing 1 , 2 or 3 ring heteroatoms; b) a pyridine ring fused to a 5- or 6-membered ring containing 1, 2 or 3 ring heteroatoms; c) a pyrimidine ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; d) a pyrrole ring fused to a a 5- or 6-membered ring containing 1, 2 or 3 ring heteroatoms; e) a pyrazole ring fused to a a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; f) an imidazole ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; g) an oxazole ring fused to a 5-
  • bicyclic heteroaryl groups containing a five membered ring fused to another five membered ring include but are not limited to imidazothiazole (e.g. imidazo[2,l-b]thiazole) and imidazoimidazole (e.g. imidazo[l,2-a] imidazole).
  • imidazothiazole e.g. imidazo[2,l-b]thiazole
  • imidazoimidazole e.g. imidazo[l,2-a] imidazole
  • bicyclic heteroaryl groups containing a six membered ring fused to a five membered ring include but are not limited to benzfuran, benzthiophene, benzimidazole, benzoxazole, isobenzoxazole, benzisoxazole, benzthiazole, benzisothiazole, isobenzofuran, indole, isoindole, indolizine, indoline, isoindoline, purine (e.g., adenine, guanine), indazole, pyrazolopyrimidine (e.g. pyrazolo[l,5-a]pyrimidine), triazolopyrimidine (e.g.
  • pyrazolopyridine e.g. pyrazolo[l,5-a]pyridine
  • bicyclic heteroaryl groups containing two fused six membered rings include but are not limited to quinoline, isoquinoline, chroman, thiochroman, chromene, isochromene, chroman, isochroman, benzodioxan, quinolizine, benzoxazine, benzodiazine, pyridopyridine, quinoxaline, quinazoline, cinnoline, phthalazine, naphthyridine and pteridine groups.
  • One sub-group of heteroaryl groups comprises pyridyl, pyrrolyl, f iranyl, thienyl, imidazolyl, oxazolyl, oxadiazolyl, oxatriazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, pyrazinyl, pyridazinyl, pyrimidinyl, triazinyl, triazolyl, tetrazolyl, quinolinyl, isoquinolinyl, benzfuranyl, benzthienyl, chromanyl, thiochromanyl, benzimidazolyl, benzoxazolyl, benzisoxazole, benzthiazolyl and benzisothiazole, isobenzofuranyl, indolyl, isoindolyl, indolizinyl, indolinyl, isoindolin
  • polycyclic aryl and heteroaryl groups containing an aromatic ring and a non-aromatic ring examples include tetrahydronaphthalene, tetrahydroisoquinoline, tetrahydroquinoline, dihydrobenzthiene, dihydrobenzfuran, 2,3-dihydro- benzo[l,4]dioxine, benzo[l,3]dioxole, 4,5,6,7-tetrahydrobenzofuran, indoline and indane groups.
  • carbocyclic aryl groups examples include phenyl, naphthyl, indenyl, and tetrahydronaphthyl groups.
  • non-aromatic heterocyclic groups include unsubstituted or substituted (by one or more groups R 10 ) heterocyclic groups having from 3 to 12 ring members, typically 4 to 12 ring members, and more usually from 5 to 10 ring members.
  • groups can be monocyclic or bicyclic, for example, and typically have from 1 to 5 heteroatom ring members (more usually 1,2,3 or 4 heteroatom ring members) typically selected from nitrogen, oxygen and sulphur. When sulphur is present, it may, where the nature of the adjacent atoms and groups permits, exist as -S-, -S(O)- or -S(O) 2 -.
  • the heterocylic groups can contain, for example, cyclic ether moieties (e.g. as in tetrahydrofuran and dioxane), cyclic thioether moieties (e.g. as in tetrahydrothiophene and dithiane), cyclic amine moieties (e.g. as in pyrrolidine), cyclic amide moieties (e.g. as in pyrrolidone), cyclic thioamides, cyclic thioesters, cyclic ester moieties (e.g. as in butyrolactone), cyclic sulphones (e.g.
  • heterocyclic groups are those containing a cyclic urea moiety (e.g. as in imidazolidin-2-one),
  • the heterocyclic groups contain cyclic ether moieties (e.g as in tetrahydrofuran and dioxane), cyclic thioether moieties (e.g. as in tetrahydrothiophene and dithiane), cyclic amine moieties (e.g. as in pyrrolidine), cyclic sulphones (e.g. as in sulpholane and sulpholene), cyclic sulphoxides, cyclic sulphonamides and combinations thereof (e.g. thiomorpholine).
  • cyclic ether moieties e.g as in tetrahydrofuran and dioxane
  • cyclic thioether moieties e.g. as in tetrahydrothiophene and dithiane
  • cyclic amine moieties e.g. as in pyrrolidine
  • cyclic sulphones e.g. as in sul
  • Examples of monocyclic non-aromatic heterocyclic groups include 5-, 6-and 7- membered monocyclic heterocyclic groups.
  • Particular examples include morpholine, piperidine (e.g. 1-piperidinyl, 2-piperidinyl, 3-piperidinyl and 4- piperidinyl), pyrrolidine (e.g.
  • thiomorpholine and its S-oxide and S,S-dioxide particularly thiomorpholine
  • Still further examples include azetidine, piperidone, piperazone, and N-alkyl piperidines such as N-methyl piperidine.
  • One preferred sub-set of non-aromatic heterocyclic groups consists of saturated groups such as azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine, thiomorpholine S,S-dioxide, piperazine, N-alkyl piperazines, and N-alkyl piperidines.
  • non-aromatic heterocyclic groups consist of pyrrolidine, piperidine, morpholine, thiomorpholine, thiomorpholine S,S-dioxide, piperazine and N-alkyl piperazines such as N-methyl piperazine.
  • heterocyclic groups consist of pyrrolidine, piperidine, morpholine and N-alkyl piperazines (e.g. N-methyl piperazine), and optionally thiomorpholine .
  • non-aromatic carbocyclic groups include cycloalkane groups such as cyclohexyl and cyclopentyl, cycloalkenyl groups such as cyclopentenyl, cyclohexenyl, cycloheptenyl and cyclooctenyl, as well as cyclohexadienyl, cyclooctatetraene, tetrahydronaphthenyl and decalinyl.
  • Preferred non-aromatic carbocyclic groups are monocyclic rings and most preferably saturated monocyclic rings.
  • Typical examples are three, four, five and six membered saturated carbocyclic rings, e.g. optionally substituted cyclopentyl and cyclohexyl rings.
  • Non-aromatic carboyclic groups includes unsubstituted or substituted (by one or more groups R 10 ) monocyclic groups and particularly saturated monocyclic groups, e.g. cycloalkyl groups.
  • cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl; more typically cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, particularly cyclohexyl.
  • non-aromatic cyclic groups include bridged ring systems such as bicycloalkanes and azabicycloalkanes although such bridged ring systems are generally less preferred.
  • bridged ring systems is meant ring systems in which two rings share more than two atoms, see for example Advanced Organic Chemistry, by Jerry March, 4 th Edition, Wiley Interscience, pages 131-133, 1992.
  • bridged ring systems examples include bicyclo[2.2.1]heptane, aza- bicyclo[2.2.1 jheptane, bicyclo[2.2.2]octane, aza-bicyclo[2.2.2]octane, bicyclo[3.2.1]octane and aza-bicyclo[3.2.1]octane.
  • a particular example of a bridged ring system is the l-aza-bicyclo[2.2.2]octan-3-yl group.
  • carbocyclic and heterocyclic groups the carbocyclic or heterocyclic ring can, unless the context indicates otherwise, be unsubstituted or substituted by one or more substituent groups R 10 selected from halogen, hydroxy, trifluoromethyl, cyano, nitro, carboxy, amino, mono- or di-C 1 .
  • the said carbocyclic or heterocyclic group may be unsubstituted or may itself be substituted with one or more further substituent groups R 10 .
  • such further substituent groups R 10 may include carbocyclic or heterocyclic groups, which are typically not themselves further substituted.
  • the said further substituents do not include carbocyclic or heterocyclic groups but are otherwise selected from the groups listed above in the definition of R 10 .
  • the substituents R 10 may be selected such that they contain no more than 20 non- hydrogen atoms, for example, no more than 15 non-hydrogen atoms, e.g. no more than 12, or 11, or 10, or 9, or 8, or 7, or 6, or 5 non-hydrogen atoms.
  • the two substituents may be linked so as to form a cyclic group.
  • two adjacent groups R 10 together with the carbon atoms or heteroatoms to which they are attached may form a 5 -membered heteroaryl ring or a 5- or 6-membered non-aromatic carbocyclic or heterocyclic ring, wherein the said heteroaryl and heterocyclic groups contain up to 3 heteroatom ring members selected from N, O and S .
  • an adjacent pair of substituents on adjacent carbon atoms of a ring may be linked via one or more heteroatoms and optionally substituted alkylene groups to form a fused oxa-, dioxa-, aza-, diaza- or oxa-aza- cycloalkyl group.
  • halogen substituents include fluorine, chlorine, bromine and iodine. Fluorine and chlorine are particularly preferred.
  • hydrocarbyl is a generic term encompassing aliphatic, alicyclic and aromatic groups having an all-carbon backbone and consisting of carbon and hydrogen atoms, except where otherwise stated.
  • one or more of the carbon atoms making up the carbon backbone may be replaced by a specified atom or group of atoms.
  • hydrocarbyl groups include alkyl, cycloalkyl, cycloalkenyl, carbocyclic aryl, alkenyl, alkynyl, cycloalkylalkyl, cycloalkenylalkyl, and carbocyclic aralkyl, aralkenyl and aralkynyl groups. Such groups can be unsubstituted or, where stated, substituted by one or more substituents as defined herein.
  • the examples and preferences expressed below apply to each of the hydrocarbyl substituent groups or hydrocarbyl-containing substituent groups referred to in the various definitions of substituents for compounds of the formula (I) unless the context indicates otherwise.
  • Preferred non-aromatic hydrocarbyl groups are saturated groups such as alkyl and cycloalkyl groups.
  • the hydrocarbyl groups can have up to eight carbon atoms, unless the context requires otherwise.
  • hydrocarbyl groups having 1 to 8 carbon atoms particular examples are Ci- 6 hydrocarbyl groups, such as C M hydrocarbyl groups (e.g. C 1 . 3 hydrocarbyl groups or Ci. 2 hydrocarbyl groups), specific examples being any individual value or combination of values selected from C l5 C 2 , C 3 , C 4 , C 5 , C 6 , C and C 8 hydrocarbyl groups.
  • alkyl covers both straight chain and branched chain alkyl groups.
  • alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2-methyl butyl, 3 -methyl butyl, and n-hexyl and its isomers.
  • C ⁇ alkyl groups such as C 1 . 4 alkyl groups (e.g. Ci- 3 alkyl groups or C 1 - 2 alkyl groups).
  • cycloalkyl groups are those derived from cyclopropane, cyclobutane, cyclopentane, cyclohexane and cycloheptane. Within the sub-set of cycloalkyl groups the cycloalkyl group will have from 3 to 8 carbon atoms, particular examples being C 3 . 6 cycloalkyl groups.
  • alkenyl groups include, but are not limited to, ethenyl (vinyl), 1- propenyl, 2-propenyl (allyl), isopropenyl, butenyl, buta-l,4-dienyl, pentenyl, and hexenyl.
  • alkenyl groups will have 2 to 8 carbon atoms, particular examples being C 2 . 6 alkenyl groups, such as C 2 . 4 alkenyl groups.
  • cycloalkenyl groups include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl and cyclohexenyl. Within the subset of cycloalkenyl groups the cycloalkenyl groups have from 3 to 8 carbon atoms, and particular examples are C3- 6 cycloalkenyl groups.
  • alkynyl groups include, but are not limited to, ethynyl and 2-propynyl (propargyl) groups. Within the sub-set of alkynyl groups having 2 to 8 carbon atoms, particular examples are C 2 . 6 alkynyl groups, such as C 2 . alkynyl groups.
  • carbocyclic aryl groups include substituted and unsubstituted phenyl groups.
  • cycloalkylalkyl, cycloalkenylalkyl, carbocyclic aralkyl, aralkenyl and aralkynyl groups include phenethyl, benzyl, styryl, phenylethynyl, cyclohexylmethyl, cyclopentylmethyl, cyclobutylmethyl, cyclopropylmethyl and cyclopentenylmethyl groups.
  • a hydrocarbyl group can be optionally substituted by one or more substituents selected from hydroxy, oxo, alkoxy, carboxy, halogen, cyano, nitro, amino, mono- or di-C ⁇ - t hydrocarbylamino, and monocyclic or bicyclic carbocyclic and heterocyclic groups having from 3 to 12 (typically 3 to 10 and more usually 5 to 10) ring members.
  • Preferred substituents include halogen such as fluorine.
  • the substituted hydrocarbyl group can be a partially fluorinated or perfluorinated group such as difluoromethyl or trifluoromethyl.
  • preferred substituents include monocyclic carbocyclic and heterocyclic groups having 3-7 ring members, more usually 3, 4, 5 or 6 ring members.
  • one or more carbon atoms of a hydrocarbyl group may optionally be replaced by O, S, SO, SO 2 , NR C , X J C(X 2 ), C(X 2 )X J or X 1 C(X 2 )X 1 (or a sub-group thereof) wherein X 1 and X 2 are as hereinbefore defined, provided that at least one carbon atom of the hydrocarbyl group remains.
  • 1, 2, 3 or 4 carbon atoms of the hydrocarbyl group may be replaced by one of the atoms or groups listed, and the replacing atoms or groups may be the same or different.
  • the number of linear or backbone carbon atoms replaced will correspond to the number of linear or backbone atoms in the group replacing them.
  • Examples of groups in which one or more carbon atom of the hydrocarbyl group have been replaced by a replacement atom or group as defined above include ethers and thioethers (C replaced by O or S), amides, esters, thioamides and thioesters (C-C replaced by X*C(X 2 ) or C(X 2 )X 1 ), sulphones and sulphoxides (C replaced by SO or SO 2 ), amines (C replaced by NR°). Further examples include ureas, carbonates and carbamates (C-C-C replaced by X 1 C(X 2 )X 1 ).
  • an amino group may, together with the nitrogen atom to which they are attached, and optionally with another heteroatom such as nitrogen, sulphur, or oxygen, link to form a ring structure of 4 to 7 ring members, more usually 5 to 6 ring members.
  • aza-cycloalkyl refers to a cycloalkyl group in which one of the carbon ring members has been replaced by a nitrogen atom.
  • examples of aza-cycloalkyl groups include piperidine and pyrrolidine.
  • oxa- cycloalkyl refers to a cycloalkyl group in which one of the carbon ring members has been replaced by an oxygen atom.
  • examples of oxa- cycloalkyl groups include tetrahydrofuran and tetrahydropyran.
  • diaza-cycloalkyl refers respectively to cycloalkyl groups in which two carbon ring members have been replaced by two nitrogen atoms, or by two oxygen atoms, or by one nitrogen atom and one oxygen atom.
  • R a -R b as used herein, either with regard to substituents present on a carbocyclic or heterocyclic moiety, or with regard to other substituents present at other locations on the compounds of the formula (I), includes inter alia compounds wherein R a is selected from a bond, O, CO, OC(O), SC(O), NR°C(O), OC(S), SC(S), NR C C(S), OC(NR°), SC(NR C ), NR C C(NR C ), C(O)O, C(O)S, C(O)NR c , C(S)O, C(S)S, C(S) NR C , C(NR c )O, C(NR C )S, C(NR C )NR°, OC(O)O, SC(O)O, NR c C(O)O, OC(S)O, SC(O)O, NR c C(O)O, OC(S)O, SC(S
  • the moiety R can be hydrogen or it can be a group selected from carbocyclic and heterocyclic groups having from 3 to 12 ring members (typically 3 to 10 and more usually from 5 to 10), and a C ⁇ profession 8 hydrocarbyl group optionally substituted as hereinbefore defined. Examples of hydrocarbyl, carbocyclic and heterocyclic groups are as set out above.
  • R a and R b together form a hydrocarbyloxy group.
  • Preferred hydrocarbyloxy groups include saturated hydrocarbyloxy such as alkoxy (e.g. Ci- ⁇ alkoxy, more usually C M alkoxy such as ethoxy and methoxy, particularly methoxy), cycloalkoxy (e.g. C 3 . 6 cycloalkoxy such as cyclopropyloxy, cyclobutyloxy, cyclopentyloxy and cyclohexyloxy) and cycloalkyalkoxy (e.g. C 3 - 6 cycloalkyl-C ⁇ alkoxy such as cyclopropylmethoxy).
  • alkoxy e.g. Ci- ⁇ alkoxy, more usually C M alkoxy such as ethoxy and methoxy, particularly methoxy
  • cycloalkoxy e.g. C 3 . 6 cycloalkoxy such as cyclopropyloxy, cyclobutyl
  • the hydrocarbyloxy groups can be substituted by various substituents as defined herein.
  • the alkoxy groups can be substituted by halogen (e.g. as in difluoromethoxy and trifluoromethoxy), hydroxy (e.g. as in hydroxyethoxy), C 1 - 2 alkoxy (e.g. as in methoxyethoxy), hydroxy-C ⁇ alkyl (as in hydroxyethoxyethoxy) or a cyclic group (e.g. a cycloalkyl group or non-aromatic heterocyclic group as hereinbefore defined).
  • halogen e.g. as in difluoromethoxy and trifluoromethoxy
  • hydroxy e.g. as in hydroxyethoxy
  • C 1 - 2 alkoxy e.g. as in methoxyethoxy
  • hydroxy-C ⁇ alkyl e.g. a cycloalkyl group or non-aromatic heterocyclic group as hereinbefore
  • alkoxy groups bearing a non-aromatic heterocyclic group as a substituent are those in which the heterocyclic group is a saturated cyclic amine such as morpholine, piperidine, pyrrolidine, piperazine, C ⁇ - alkyl-piperazines, C3- -cycloalkyl-piperazines, tetrahydropyran or tetrahydrofuran and the alkoxy group is a C 1 . alkoxy group, more typically a Ci-3 alkoxy group such as methoxy, ethoxy or n-propoxy.
  • Alkoxy groups substituted by a monocyclic group such as pyrrolidine, piperidine, morpholine and piperazine and N-substituted derivatives thereof such as N-benzyl, N-C 1 . 4 acyl and N-C ⁇ alkoxycarbonyl.
  • a monocyclic group such as pyrrolidine, piperidine, morpholine and piperazine and N-substituted derivatives thereof such as N-benzyl, N-C 1 . 4 acyl and N-C ⁇ alkoxycarbonyl.
  • Particular examples include pyrrolidinoethoxy, piperidinoethoxy and piperazinoethoxy.
  • hydrocarbyl groups R -R are as hereinbefore defined.
  • the hydrocarbyl groups may be saturated groups such as cycloalkyl and alkyl and particular examples of such groups include methyl, ethyl and cyclopropyl.
  • the hydrocarbyl (e.g. alkyl) groups can be substituted by various groups and atoms as defined herein. Examples of substituted alkyl groups include alkyl groups substituted by one or more halogen atoms such as fluorine and chlorine (particular examples including bromoethyl, chloroethyl and trifluoromethyl), or hydroxy (e.g.
  • Ci-s acyloxy e.g. acetoxymethyl and benzyloxymethyl
  • amino and mono- and dialkylamino e.g. aminoethyl, methylaminoethyl, dimethylaminomethyl, dimethylaminoethyl and tert-butylaminomethyl
  • alkoxy e.g. C 1 . 2 alkoxy such as methoxy - as in methoxyethyl
  • cyclic groups such as cycloalkyl groups, aryl groups, heteroaryl groups and non-aromatic heterocyclic groups as hereinbefore defined).
  • alkyl groups substituted by a cyclic group are those wherein the cyclic group is a saturated cyclic amine such as morpholine, piperidine, pyrrolidine, piperazine, C M -alkyl-piperazines, C 3 . -cycloalkyl-piperazines, tetrahydropyran or tetrahydrofuran and the alkyl group is a C M alkyl group, more typically a C ⁇ alkyl group such as methyl, ethyl or n-propyl.
  • alkyl groups substituted by a cyclic group include pyrrolidinomethyl, pyrrolidinopropyl, morpholinomethyl, morpholinoethyl, morpholinopropyl, piperidinylmethyl, piperazinomethyl and N-substituted forms thereof as defined herein.
  • alkyl groups substituted by aryl groups and heteroaryl groups include benzyl and pyridylmethyl groups.
  • R a is SO 2 NR c
  • R b can be, for example, hydrogen or an optionally substituted Ci-s hydrocarbyl group, or a carbocyclic or heterocyclic group.
  • R a -R b where R a is SO 2 NR c include aminosulphonyl, C M alkylaminosulphonyl and di-C t - 4 alkylaminosulphonyl groups, and sulphonamides formed from a cyclic amino group such as piperidine, morpholine, pyrrolidine, or an optionally N-substituted piperazine such as N-methyl piperazine.
  • Examples of groups R a -R b where R is SO 2 include alkylsulphonyl, heteroarylsulphonyl and arylsulphonyl groups, particularly monocyclic aryl and heteroaryl sulphonyl groups. Particular examples include methylsulphonyl, phenylsulphonyl and toluenesulphonyl.
  • R b can be, for example, hydrogen or an optionally substituted C ⁇ . 8 hydrocarbyl group, or a carbocyclic or heterocyclic group.
  • R a -R b where R a is NR C include amino, C M alkylamino (e.g. methylamino, ethylamino, propylamino, isopropylamino, tert-butylamino), di-C 1 . alkylamino (e.g. dimethylamino and diethylamino) and cycloalkylamino (e.g. cyclopropylamino, cyclopentylamino and cyclohexylamino).
  • C M alkylamino e.g. methylamino, ethylamino, propylamino, isopropylamino, tert-butylamino
  • di-C 1 . alkylamino e.g. dimethylamin
  • X is a group R ! -A-NR 4 - or a 5- or 6-membered carbocyclic or heterocyclic ring.
  • X is a group R ⁇ A-NR 4 -.
  • X is a 5- or 6-membered carbocyclic or heterocyclic ring.
  • A is a bond and hence the group R ⁇ A-NR 4 takes the form of an amine R M .
  • R 4 is hydrogen or a C M hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C 1 . 4 alkoxy (e.g. methoxy).
  • halogen e.g. fluorine
  • hydroxyl e.g. hydroxyl
  • C 1 . 4 alkoxy e.g. methoxy
  • the number of optional subsitutents on the hydrocarbyl group typically will vary according to the nature of the substituent.
  • the substituent is halogen
  • the substituent is hydroxyl or an alkoxy group, typically there will be only a single such substituent present
  • R 4 is preferably hydrogen or C 1 . 3 alkyl, more preferably hydrogen or methyl and most preferably is hydrogen.
  • R g is hydrogen or a C M hydrocarbyl group optionally substituted by hydroxyl or C M alkoxy (e.g. methoxy).
  • R g is C hydrocarbyl substituted by hydroxyl or C alkoxy, typically there is only one such substituent present.
  • R g is hydrogen or C 1 . 3 alkyl, more preferably hydrogen or methyl and most preferably R g is hydrogen.
  • R 2 is hydrogen, halogen, C M alkoxy, or a C M hydrocarbyl group optionally substituted by halogen, hydroxyl or C M alkoxy.
  • R 2 is halogen, preferably it is selected from chlorine and fluorine and more preferably it is fluorine.
  • R is C M alkoxy, it can be, for example, C ⁇ alkoxy, more preferably C ⁇ . 2 alkoxy and most preferably methoxy.
  • R is an optionally substituted C M hydrocarbyl group
  • the hydrocarbyl group is preferably a C1.3 hydrocarbyl group, more preferably a C 1 . 2 hydrocarbyl group, for example an optionally substituted methyl group.
  • the optional substituents for the optionally substituted hydrocarbyl group are preferably selected from fluorine, hydroxyl and methoxy.
  • the number of optional substituents on the hydrocarbyl group typically will vary according to the nature of the substituent. For example, where the substituent is halogen, there may be from one to three halogen atoms present, preferably two or three. Where the substituent is hydroxyl or methoxy, typically there will be only a single such substituent present.
  • the hydrocarbyl groups constituting R 2 are preferably saturated hydrocarbyl groups.
  • saturated hydrocarbyl groups include methyl, ethyl, n-propyl, /-propyl and cyclopropyl.
  • R is hydrogen, halogen, C M alkoxy, or a C M hydrocarbyl group optionally substituted by halogen, hydroxyl or C M alkoxy.
  • R 2 is hydrogen, fluorine, chlorine, methoxy, or a C t - 3 hydrocarbyl group optionally substituted by fluorine, hydroxyl or methoxy.
  • R 2 is hydrogen or methyl, most preferably hydrogen.
  • R 1 is hydrogen, a carbocyclic or heterocyclic group having from 3 to 12 ring members, or a C ⁇ . 8 hydrocarbyl group optionally substituted by one or more substituents selected from halogen (e.g. fluorine), hydroxy, C M hydrocarbyloxy, amino, mono- or di-Ci- 4 hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO 2 .
  • Examples of carbocyclic or heterocyclic groups and hydrocarbyl groups and general preferences for such groups are as set out above in the General Preferences and Definitions section, and as set out below.
  • R 1 is an aryl or heteroaryl group.
  • R 1 is a heteroaryl group
  • particular heteroaryl groups include monocyclic heteroaryl groups containing up to three heteroatom ring members selected from O, S and N, and bicyclic heteroaryl groups containing up to 2 heteroatom ring members selected from O, S and N and wherein both rings are aromatic.
  • Examples of such groups include furanyl (e.g. 2-furanyl or 3-furanyl), indolyl (e.g. 3-indolyl, 6-indolyl), 2,3-dihydro-benzo[l,4]dioxinyl (e.g. 2,3-dihydro- benzo[l,4]dioxin-5-yl), pyrazolyl (e.g. pyrazole-5-yl), pyrazolo[l,5-a]pyridinyl (e.g. pyrazolo[l,5-a]pyridine-3-yl), oxazolyl (e.g. ), isoxazolyl (e.g.
  • isoxazol-4-yl pyridyl (e.g. 2-pyridyl, 3-pyridyl, 4-pyridyl), quinolinyl (e.g. 2-quinolinyl), pyrrolyl (e.g. 3-pyrrolyl), imidazolyl and thienyl (e.g. 2-thienyl, 3-thienyl).
  • R 1 One sub-group of heteroaryl groups R 1 consists of furanyl (e.g. 2-furanyl or 3- furanyl), indolyl, oxazolyl, isoxazolyl, pyridyl, quinolinyl, pyrrolyl, imidazolyl and thienyl.
  • furanyl e.g. 2-furanyl or 3- furanyl
  • indolyl e.g. 2-furanyl or 3- furanyl
  • oxazolyl e.g. 2-furanyl or 3- furanyl
  • isoxazolyl e.g. 2-furanyl or 3- furanyl
  • pyridyl e.g. 2-furanyl or 3- furanyl
  • quinolinyl e.g. 2-furanyl or 3- furanyl
  • pyrrolyl e.g. 2-furanyl or 3- furanyl
  • imidazolyl e.g. 2-furanyl or 3- furanyl
  • R 1 heteroaryl groups includes 2-furanyl, 3-furanyl, pyrrolyl, imidazolyl and thienyl.
  • Preferred aryl groups R 1 are phenyl groups.
  • the group R 1 can be an unsubstituted or substituted carbocylic or heterocyclic group in which one or more substituents can be selected from the group R as hereinbefore defined.
  • the substituents on R 1 may be selected from the group R 10a consisting of halogen, hydroxy, trifluoromethyl, cyano, nitro, carboxy, a group R a -R b wherein R a is a bond, O, CO, X 3 C(X 4 ), C(X )X 3 ,
  • the two substituents may be linked so as to form a cyclic group.
  • two adjacent groups R 10 together with the carbon atoms or heteroatoms to which they are attached may form a 5 -membered heteroaryl ring or a 5- or 6-membered non-aromatic carbocyclic or heterocyclic ring, wherein the said heteroaryl and heterocyclic groups contain up to 3 heteroatom ring members selected from N, O and S.
  • the two adjacent groups R 10 may form a 6- membered non-aromatic heterocyclic ring, containing up to 3, in particular 2, heteroatom ring members selected from N, O and S. More particularly the two adjacent groups R 10 may form a 6-membered non-aromatic heterocyclic ring, containing 2 heteroatom ring members selected from N, or O, such as dioxan e.g. [1,4 dioxan].
  • R 1 is a carbocyclic group e.g. phenyl having a pair of substituents on adjacent ring atoms linked so as to form a cyclic group e.g. to form 2,3-dihydro-benzo[l,4]dioxine.
  • R 1 may be selected from halogen, hydroxy, trifluoromethyl, a group R a -R b wherein R a is a bond or O, and R b is selected from hydrogen and a C M hydrocarbyl group optionally substituted by one or more substituents selected from hydroxyl, halogen (preferably fluorine) and 5 and 6 membered saturated carbocyclic and heterocyclic groups (for example groups containing up to two heteroatoms selected from O, S and N, such as unsubstituted piperidine, pyrrolidino, morpholino, piperazino and N-methyl piperazino).
  • halogen preferably fluorine
  • 5 and 6 membered saturated carbocyclic and heterocyclic groups for example groups containing up to two heteroatoms selected from O, S and N, such as unsubstituted piperidine, pyrrolidino, morpholino, piperazino and N-methyl piperazino.
  • R 1 may be substituted by more than one substituent. Thus, for example, there may be 1 or 2 or 3 or 4 substituents. In one embodiment, where R 1 is a six membered ring (e.g. a carbocyclic ring such as a phenyl ring), there may be one, two or three substituents and these may be located at the 2-, 3-, 4- or 6-positions around the ring.
  • R 1 is a six membered ring (e.g. a carbocyclic ring such as a phenyl ring)
  • substituents may be located at the 2-, 3-, 4- or 6-positions around the ring.
  • a phenyl group R 1 may be 2-monosubstituted, 3-monosubstituted, 2,6-disubstituted, 2,3-disubstituted, 2,4-disubstituted 2,5- disubstituted, 2,3,6-trisubstituted or 2,4,6-trisubstituted. More particularly, a phenyl group R 1 may be monosubstituted at the 2-position or disubstituted at positions 2- and 6- with substituents selected from fluorine, chlorine and R a -R b , where R a is O and R b is C 1 _ 4 alkyl (e.g. methyl or ethyl). In one embodiment, fluorine is a preferred substituent. In another embodiment, preferred substituents are selected from fluorine, chlorine and methoxy.
  • non-aromatic groups R 1 include unsubstituted or substituted (by one or more groups R 10 ) monocyclic cycloalkyl groups.
  • cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl; more typically cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, particularly cyclohexyl.
  • non-aromatic groups R 1 include unsubstituted or substituted (by one or more groups R 10 ) heterocyclic groups having from 3 to 12 ring members, typically 4 to 12 ring members, and more usually from 5 to 10 ring members.
  • groups R 10 can be monocyclic or bicyclic, for example, and typically have from 1 to 5 heteroatom ring members (more usually 1,2,3 or 4 heteroatom ring members) typically selected from nitrogen , oxygen and sulphur.
  • sulphur When sulphur is present, it may, where the nature of the adjacent atoms and groups permits, exist as -S-, -S(O)- or -S(O) 2 -.
  • the heterocylic groups can contain, for example, cyclic ether moieties (e.g as in tetrahydrofuran and dioxane), cyclic thioether moieties (e.g. as in tetrahydrothiophene and dithiane), cyclic amine moieties (e.g. as in pyrrolidine), cyclic amides (e.g. as in pyrrolidone), cyclic esters (e.g. as in butyrolactone), cyclic thioamides and thioesters, cyclic sulphones (e.g.
  • cyclic ether moieties e.g as in tetrahydrofuran and dioxane
  • cyclic thioether moieties e.g. as in tetrahydrothiophene and dithiane
  • cyclic amine moieties e.g. as in pyrrolidine
  • cyclic amides
  • heterocyclic groups R 1 the heterocyclic groups contain cyclic ether moieties (e.g as in tetrahydrofuran and dioxane), cyclic thioether moieties (e.g. as in tetrahydrothiophene and dithiane), cyclic amine moieties (e.g. as in pyrrolidine), cyclic sulphones (e.g. as in sulpholane and sulpholene), cyclic sulphoxides, cyclic sulphonamides and combinations thereof (e.g. thiomorpholine).
  • cyclic ether moieties e.g as in tetrahydrofuran and dioxane
  • cyclic thioether moieties e.g. as in tetrahydrothiophene and dithiane
  • cyclic amine moieties e.g. as in pyrrolidine
  • cyclic sulphones e.g
  • Examples of monocyclic non-aromatic heterocyclic groups R 1 include 5-, 6-and 7- membered monocyclic heterocyclic groups such as morpholine, piperidine (e.g. 1- piperidinyl, 2-piperidinyl 3-piperidinyl and 4-piperidinyl), pyrrolidine (e.g.
  • One sub-group of non-aromatic heterocyclic groups R 1 includes unsubstituted or substituted (by one or more groups R 10 ) 5-, 6-and 7-membered monocyclic heterocyclic groups such as morpholine, piperidine (e.g. 1-piperidinyl, 2-piperidinyl 3-piperidinyl and 4-piperidinyl), pyrrolidine (e.g.
  • preferred non-aromatic heterocyclic groups include pyrrolidine, piperidine, morpholine, thiomorpholine, thiomo ⁇ holine S,S-dioxide, piperazine, N- alkyl piperazines, and N-alkyl piperidines.
  • heterocyclic groups consists of pyrrolidine, piperidine, morpholine and N-alkyl piperazines, and optionally, N-methyl piperazine and thiomorpholine.
  • R 1 is a d- 8 hydrocarbyl group substituted by a carbocyclic or heterocyclic group
  • the carbocyclic and heterocyclic groups can be aromatic or non-aromatic and can be selected from the examples of such groups set out hereinabove.
  • the substituted hydrocarbyl group is typically a saturated C M hydrocarbyl group such as an alkyl group, preferably a CH 2 or CH 2 CH 2 group.
  • the substituted hydrocarbyl group is a C 2 . 4 hydrocarbyl group
  • one of the carbon atoms and its associated hydrogen atoms may be replaced by a sulphonyl group, for example as in the moiety SO 2 CH 2 .
  • carbocyclic or heterocylic group attached to the a -s hydrocarbyl group is aromatic
  • examples of such groups include monocyclic aryl groups and monocyclic heteroaryl groups containing up to four heteroatom ring members selected from O, S and N, and bicyclic heteroaryl groups containing up to 2 heteroatom ring members selected from O, S and N and wherein both rings are aromatic.
  • Such groups include furanyl (e.g. 2-furanyl or 3-furanyl), indolyl, oxazolyl, isoxazolyl, pyridyl, quinolinyl, pyrrolyl, imidazolyl and thienyl.
  • Particular examples of aryl and heteroaryl groups as substituents for a -s hydrocarbyl group include phenyl, imidazolyl, tetrazolyl, triazolyl, indolyl, 2- furanyl, 3-furanyl, pyrrolyl and thienyl.
  • Such groups may be substituted by one or more substituents R 10 or R 10a as defined herein.
  • the non-aromatic or heterocyclic group may be a group selected from the lists of such groups set out hereinabove.
  • the non-aromatic group can be a monocyclic group having from 4 to 7 ring members, e.g. 5 to 7 ring members, and typically containing from 0 to 3, more typically 0, 1 or 2, heteroatom ring members selected from O, S and N.
  • the cyclic group is a carbocyclic group, it may additionally be selected from monocyclic groups having 3 ring members.
  • Particular examples include monocyclic cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl, and 5-, 6-and 7- membered monocyclic heterocyclic groups such as morpholine, piperidine (e.g. 1- piperidinyl, 2-piperidinyl, 3-piperidinyl and 4-piperidinyl), pyrrolidine (e.g. 1- pyrrolidinyl, 2-pyrrolidinyl and 3-pyrrolidinyl), pyrrolidone, piperazine, and N- alkyl piperazines such as N-methyl piperazine.
  • preferred non-aromatic heterocyclic groups include pyrrolidine, piperidine, morpholine, thiomorpholine and N-methyl piperazine.
  • R 1 is an optionally substituted C ⁇ _ 8 hydrocarbyl group
  • the hydrocarbyl group may be as hereinbefore defined, and is preferably up to four carbon atoms in length, more usually up to three carbon atoms in length for example one or two carbon atoms in length.
  • the hydrocarbyl group is saturated and may be acyclic or cyclic, for example acyclic.
  • An acyclic saturated hydrocarbyl group i.e. an alkyl group
  • Examples of straight chain alkyl groups R 1 include methyl, ethyl, propyl and butyl.
  • branched chain alkyl groups R 1 include isopropyl, isobutyl, tert-butyl and 2,2-dimethylpropyl.
  • the hydrocarbyl group is a linear saturated group having from 1-6 carbon atoms, more usually 1-4 carbon atoms, for example 1-3 carbon atoms, e.g. 1, 2 or 3 carbon atoms.
  • the hydrocarbyl group is substituted, particular examples of such groups are substituted (e.g. by a carbocyclic or heterocyclic group) methyl and ethyl groups.
  • a Ci-s hydrocarbyl group R 1 can be optionally substituted by one or more substituents selected from halogen (e.g. fluorine), hydroxy, C M hydrocarbyloxy, amino, mono- or di-Ci- 4 hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO 2 .
  • Particular substituents for the hydrocarbyl group include hydroxy, chlorine, fluorine (e.g. as in trifluoromethyl), methoxy, ethoxy, amino, methylamino and dimethylamino, preferred substituents being hydroxy and fluorine.
  • group B in the table is the trifluoroacetyl group
  • group D in the table is the phenylacetyl group
  • group I in the table is the 3-(4-chlorophenyl)propionyl group.
  • One sub-group of groups R ! -CO consists of groups A to BF in Table 1 above.
  • R ⁇ CO Another sub-group of groups R ⁇ CO consists of groups A to BS in Table 1 above.
  • R ⁇ CO One set of preferred groups R ⁇ CO consists of the groups J, AB, AH, AJ, AL, AS, AX, AY, AZ, BA, BB, BD, BH, BL, BQ, BS and BAI
  • R*-CO consists of the groups J, AB, AH, AJ, AL, AS, AX, AY, AZ, BA, BB, BD, BH, BL, BQ and BS.
  • R ⁇ CO- More preferred groups R ⁇ CO- are AJ, AX, BQ, BS and BAI.
  • One particularly preferred sub-set of groups R ! -CO- consists of AJ, BQ and BS.
  • R ⁇ CO- Another particularly preferred sub-set of groups R ⁇ CO- consists of AJ and BQ.
  • the substituent at the 4-position is preferably other than a phenyl group having a group SO 2 NH 2 or SO 2 Me at the or/bo-position.
  • R 1 may be other than a substituted or unsubstituted tefrahydroquinoline, chroman, chromene, thiochroman, thiochromene, dihydro- naphthalene or tetrahydronaphthalene group. More particularly, R 1 may be other than a substituted or unsubstituted tetrahydroquinoline, chroman, chromene, thiochroman, thiochromene, dihydro-naphthalene or tetrahydronaphthalene group linked by its aromatic ring to the moiety A-NR 4 -.
  • R 1 when R 1 is a substituted or unsubstituted phenyl group, the moiety Y-R 3 may be other than hydrogen, unsubstituted C ⁇ o alkyl, unsubstituted C5. 1 0 cycloalkyl, unsubstituted phenyl, unsubstituted C O alkylphenyl or unsubstituted phenyl-C M o alkyl.
  • R 1 is an optionally substituted hydrocarbyl group and the hydrocarbyl group comprises or contains a substituted or unsubstituted alkene group
  • R 1 is an optionally substituted hydrocarbyl group and the hydrocarbyl group comprises or contains a substituted or unsubstituted alkene group
  • the carbon-carbon double bond of the alkene group is not directly bonded to the group A.
  • the hydrocarbyl group may be other than an alkene group.
  • each substituent on the phenyl group may be other than a group CH 2 -P(O)R x R y where R x and R y are each selected from alkoxy and phenyl groups.
  • Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length.
  • alkylene has its usual meaning and refers to a divalent saturated acyclic hydrocarbon chain.
  • the hydrocarbon chain may be branched or unbranched. Where an alkylene chain is branched, it may have one or more methyl group side chains.
  • alkylene groups include -CH 2 -, -CH 2 -CH2-, -CH2-CH2-CH2-, CH(CH 3 )-, -C(CH 3 ) 2 -, -CH 2 -CH(CH 3 )-, -CH 2 -C(CH 3 ) 2 - and -CH(CH 3 )-CH(CH 3 )-.
  • Y is a bond
  • Y is an alkylene chain.
  • Y is an alkylene chain, preferably it is unbranched and more particularly contains 1 or 2 carbon atoms, preferably 1 carbon atom.
  • preferred groups Y are -CH 2 - and -CH2-CH2-, a most preferred group being (CH 2 )-.
  • Y is a branched chain, preferably it has no more than two methyl side chains. For example, it may have a single methyl side chain. In one embodiment, Y is a group -CH(Me)-.
  • Y is a bond, CH 2 , CH 2 CH 2 or CH 2 CH(CH 3 ).
  • the group R is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members.
  • Y is a bond and R 3 is hydrogen.
  • Y is an alkylene chain as hereinbefore defined and R is hydrogen.
  • Y is a bond or an alkylene chain (e.g. a group -(CH 2 )-) and R is a carbocyclic or heterocyclic group.
  • Y is a bond and R is a carbocyclic or heterocyclic group.
  • Y is an alkylene chain (e.g. a group -(CH 2 )-) and R is a carbocyclic or heterocyclic group.
  • the carbocyclic and heterocyclic groups R 3 can be aryl, heteroaryl, non-aromatic carbocyclic or non-aromatic heterocyclic and examples of such groups are as set out in detail above in the General Preferences and Definitions section, and as set out below.
  • Preferred aryl groups R 3 are unsubstituted and substituted phenyl groups.
  • heteroaryl groups R 3 include monocyclic heteroaryl groups containing up to three (and more preferably up to two) heteroatom ring members selected from O, S and N.
  • Preferred heteroaryl groups include five membered rings containing one or two heteroatom ring members and six membered rings containing a single heteroatom ring member, most preferably nitrogen.
  • Particular examples of heteroaryl groups include unsubstituted or substituted pyridyl, imidazole, pyrazole, thiazole, isothiazole, isoxazole, oxazole, furyl and thiophene groups.
  • heteroaryl groups are unsubstituted and substituted pyridyl groups, e.g. 2- pyridyl, 3-pyridyl and 4-pyridyl groups, especially 3- and 4-pyridyl groups.
  • the pyridyl groups can bear one or more substituents, typically no more than two, and more usually one substituent selected, for example, from C 1 . 4 alkyl (e.g. methyl), halogen (e.g. fluorine or chlorine, preferably chlorine), and C M alkoxy (e.g. methoxy).
  • substituents on the pyridyl group may further be selected from amino, mono-C 1 - 4 alkylamino and di-C M alkylamino, particularly amino.
  • R 3 when R 3 is an aryl (e.g. phenyl) or heteroaryl group, the substituents on the carbocyclic or heterocyclic group may be selected from the group R 10a consisting of halogen, hydroxy, trifluoromethyl, cyano, monocyclic carbocyclic and heterocyclic groups having from 3 to 7 (typically 5 or 6) ring members, and a group R a -R b wherein R a is a bond, O, CO, X 1 C(X 2 ), X 1 C(X 2 )X 1 , S, SO, SO 2 , NR°, SO 2 NR° or NR c SO 2 ; and R b is selected from hydrogen, a carbocyclic or heterocyclic group with 3-7 ring members and a C ⁇ s hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, cyano, nitro, carboxy, amino, mono- or di-C ⁇
  • non-aromatic groups R 3 include optionally substituted (by R 10 or R 10a ) cycloalkyl, oxa-cycloalkyl, aza-cycloalkyl, diaza-cycloalkyl, dioxa-cycloalkyl and aza-oxa-cycloalkyl groups. Further examples include C 7 . 1 o aza-bicycloalkyl groups such as l-aza-bicyclo[2.2.2]octan-3-yl.
  • Such groups include unsubstituted or substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydropyran, morpholine, tetrahydrofuran, piperidine and pyrrolidine groups.
  • R 3 One sub-set of non-aromatic groups R 3 consists of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydropyran, tetrahydrofuran, piperidine and pyrrolidine groups.
  • Preferred non-aromatic groups R 3 include unsubstituted or substituted cyclopentyl, cyclohexyl, tetrahydropyran, tetrahydrofuran, piperidine and pyrrolidine groups,
  • the non-aromatic groups may be unsubstituted or substituted with one or more groups R 10 or R 10a as hereinbefore defined.
  • R 10a consisting of halogen; hydroxy; monocyclic carbocyclic and heterocyclic groups having from 3 to 6 ring members and containing up to 2 heteroataom ring members selected from O, N and S; and a group R a -R b wherein R a is a bond, O, CO, CO 2 , SO 2 , NH, SO 2 NH or NHSO 2 ; and R is selected from hydrogen, a carbocyclic or heterocyclic group with 3-6 ring members and containing up to 2 heteroatom ring members selected from O, N and S; and a C ⁇ hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, carboxy, amino, mono- or di-C M hydrocarbylamino, a carbocyclic or
  • preferred R 10a substituent groups on R 3 include halogen, a group R a -R b wherein R a is a bond, O, CO, C(X 2 )X 1 , and R b is selected from hydrogen, heterocyclic groups having 3-7 ring members and a C 1 . 4 hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, carboxy, amino, mono- or di-C 1 . 4 hydrocarbylamino, and heterocyclic groups having 3-7 ring members.
  • substituent groups R 10a on R 3 include halogen, especially fluorine, C 1 - 3 alkoxy such as methoxy, and C 1 - 3 hydrocarbyl optionally substituted by fluorine, hydroxy (e.g. hydroxymethyl), Ci. 2 alkoxy or a 5- or 6- membered saturated heterocyclic ring such as piperidino, morpholino, piperazino and N-methylpiperazino .
  • substituents for R are selected from:
  • halogen e.g. fluorine and chlorine
  • C M alkoxy e.g. methoxy and ethoxy
  • C M alkoxy optionally substituted by one or substituents selected from halogen, hydroxy, C ⁇ alkoxy and five and six membered saturated heterocyclic rings containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic rings being optionally further substituted by one or more C 1 - groups (e.g. methyl) and wherein the S, when present, may be present as S, SO or SO 2
  • C M alkyl optionally substituted by one or substituents selected from halogen, hydroxy, C M alkoxy, amino, C M alkylsulphonylamino, 3 to 6 membered cycloalkyl groups (e.g.
  • cyclopropyl phenyl (optionally substituted by one or more substituents selected from halogen, methyl, methoxy and amino) and five and six membered saturated heterocyclic rings containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic rings being optionally further substituted by one or more C M groups (e.g. methyl) and wherein the S, when present, may be present as S, SO or SO 2 ;
  • Het s is a five or six membered saturated heterocyclic ring containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic rings being optionally further substituted by one or more C groups (e.g. methyl) and wherein the S, when present, may be present as S, SO or SO 2 ;
  • R is a carbocyclic or heterocyclic group R 3a selected from phenyl; C 3 - 6 cycloalkyl; five and six membered saturated non- aromatic heterocyclic rings containing up to two heteroatom ring members selected from N, O, S and SO 2 ; six membered heteroaryl rings containing one, two or three nitrogen ring members; and five membered heteroaryl rings having up to three heteroatom ring members selected from N, O and S; wherein each carbocyclic or heterocyclic group R 3a is optionally substituted by up to four, preferably up to three, and more preferably up to two (e.g.
  • substituents selected from amino; hydroxy; oxo; fluorine; chlorine; C 1 . 4 alkyl-(O) q - wherein q is 0 or 1 and the CM alkyl moiety is optionally substituted by fluorine, hydroxy or - 2 alkoxy; mono-C M alkylamino; di-Ci. 4 alkylamino; CM alkoxycarbonyl; carboxy; a group R e -R 16 where R e is a bond or a C 1 . 3 alkylene chain and R 16 is selected from CM alkylsulphonyl; C alkylaminosulphonyl; C 1 .
  • alkylsulphonylamino- amino; mono-C M alkylamino; CU-CM alkylamino; C1-7- hydrocarbyloxycarbonylamino; six membered aromatic groups containing up to three nitrogen ring members; C3-6 cycloalkyl; five or six membered saturated non- aromatic heterocyclic groups containing one or two heteroatom ring members selected from N, O, S and SO2, the group R 16 when a saturated non-aromatic group being optionally substituted by one or more methyl groups, and the group R 16 when aromatic being optionally substituted by one or more groups selected from fluorine, chlorine, hydroxy, C1. 2 alkoxy and C 1 . 2 alkyl.
  • R is selected from:
  • group Y-R 3 Specific examples of the group Y-R 3 are set out in Table 2.
  • Table 2 the point of attachment of the group to the nitrogen atom of the pyrazole-3-carboxamide group is represented by the terminal single bond extending from the group.
  • group CA in the table is the 4-fluorophenyl
  • group CB in the table is the 4-methoxybenzyl group
  • group CC in the table is the 4-(4- methylpiperazino)-phenylmethyl group.
  • One sub-set of groups selected from table 2 consists of groups CA to EU.
  • Another sub-set of groups selected from table 2 consists of groups CA to CV.
  • Preferred groups selected from Table 2 include groups CL, CM, ES, ET, FC, FG and FH.
  • Particularly preferred groups selected from Table 2 include groups CL, CM and ES, and most preferably CL and CM.
  • R 3 is other than an optionally substituted phenyl group bearing a substituted or unsubstituted cyclohexyloxy or cyclohexylthio group.
  • R 3 is other than a moiety containing a five membered heteroaryl ring linked directly by a single bond to a monocyclic or bicyclic aryl group or R is other than a moiety containing a bis heteroaryl group comprising two five membered heteroaryl rings linked together by a single bond.
  • R 1 is other than a moiety containing a five membered heteroaryl ring linked directly by a single bond to a monocyclic or bicyclic aryl group or R 1 is other than a moiety containing a bis heteroaryl group comprising two five membered heteroaryl rings linked together by a single bond.
  • R'-A-NR 4 is other than an optionally substituted nicotinoyl-amino or benzoyl-amino group when Y-R is an alkyl, cycloalkyl, optionally substituted phenyl or optionally substituted phenylalkyl group.
  • Y-R 3 may be other than a cycloalkyl group substituted at the 1 -position with a hydrocarbon chain simultaneously bearing an oxy substituent such as hydroxy, an aryl substituent and a diazole or triazole substituent.
  • R 1 or R 3 each are other than a moiety containing a substituted phenyl group having thio and/or oxy substituents such as hydroxy, alkoxy and alkylthio at both the 3- and 4-positions of the phenyl ring.
  • X when Y-R 3 is unsubstituted or substituted benzyl or phenethyl or naphthylmethyl, X may be other than C 1 . 5 alkylamino or C ⁇ . ⁇ acylamino.
  • the group Y-R 3 preferably does not include a benzo-fused lactam group having attached thereto an unsubstituted or substituted imidazole group.
  • neither R nor R contain a moiety in which a five membered nitrogen-containing heteroaryl group is linked directly or via an alkylene, oxa-alkylene, thia-alkylene or aza-alkylene group to an unsubstituted pyridyl group or to a substituted aryl, heteroaryl or piperidine ring, each said ring having attached thereto a subsitutent selected from cyano, and substituted or unsubstituted amino, aminoalkyl, amidine, guanidine, and carbamoyl groups.
  • R 1 and R 3 are each other than an unsaturated nitrogen-containing heterocyclic group or a nitrogen-containing heteroaryl group, or a benzfuran or benzthiophene group wherein the said nitrogen-containing heterocyclic group, nitrogen-containing heteroaryl group, bicyclic benzfuran or benzthiophene group are linked directly by a single bond to a substituted pyridyl or phenyl group.
  • neither R 1 nor R 3 contain a moiety in which a five membered nitrogen-containing heteroaryl group is linked directly or via an alkylene, oxa-alkylene, thia-alkylene or aza-alkylene group to a substituted aryl, heteroaryl or piperidine group or to an unsubstituted pyridyl group.
  • the compounds of the invention, where they contain a carboxylic acid group contain no more than one such group.
  • R 1 , R 2 , R 3 and Y are each independently selected from R 1 , R 2 , R 3 and Y as defined herein.
  • R 2 is hydrogen or C alkyl (e.g. C 1 . 3 alkyl), and more preferably R is hydrogen.
  • R 1 is: 1
  • phenyl optionally substituted by one or more substituents (e.g. 1, 2 or 3) * selected from fluorine; chlorine; hydroxy; 5- and 6-membered saturated ; heterocyclic groups containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic groups being optionally substituted by one or more C alkyl groups;! C M hydrocarbyloxy; and C hydrocarbyl; wherein the C M hydrocarbyl and C ⁇ . hydrocarbyloxy groups are optionally substituted by one or more substituents chosen from hydroxy, fluorine, Cn-2 alkoxy, amino, mono and di-Ci. alkylamino, i .
  • substituents e.g. 1, 2 or 3 * selected from fluorine; chlorine; hydroxy; 5- and 6-membered saturated ; heterocyclic groups containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic groups being optionally substituted by one or more C alkyl groups;! C M hydrocarbyloxy; and
  • a sub-group of groups R 1 consists of phenyl optionally substituted by one or more substituents selected from fluorine; chlorine; hydroxy; C 1 . 3 hydrocarbyloxy; and C 1 . 3 hydrocarbyl wherein the C 1 . 3 hydrocarbyl group is optionally substituted by one or more substituents chosen from hydroxy, fluorine, C ⁇ - 2 alkoxy, amino, mono and di-C ⁇ - 4 alkylamino, saturated carbocyclic groups having 3 to 7 ring members (more preferably 4, 5 or 6 ring members, e.g. 5 or 6 ring members) or saturated heterocyclic groups of 5 or 6 ring members and containing up to 2 heteroatoms selected from O, S and N.
  • R 1 is selected from (i) and (iii) above and additionally from a sub-set (aii) where sub-set (aii) consists of 2- furanyl, 3-furanyl, imidazolyl, 2-pyridyl, indolyl, 2-thienyl and 3 -thienyl, each optionally substituted by one or more substituents selected from fluorine, chlorine, C 1 - 3 hydrocarbyloxy, and C ⁇ profession 3 hydrocarbyl optionally substituted by hydroxy, fluorine or methoxy.
  • R 1 is (i) an optionally substituted phenyl group
  • R 1 may be, for example, an unsubstituted phenyl group or a 2-monosubstituted, 3-monosubstituted, 2,3 disubstituted, 2,5 disubstituted or 2,6 disubstituted phenyl group or 2, 3-dihydro-benzo[l,4]dioxine, where the substituents are selected from halogen; hydroxyl; C1-3 alkoxy; and Ci-3 alkyl groups wherein the C 1 .
  • 3 alkyl group is optionally substituted by hydroxy, fluorine, C 1-2 alkoxy, amino, mono and di-C 1 . 4 alkylamino, or saturated carbocyclic groups having 3 to 6 ring members and/or saturated heterocyclic groups of 5 or 6 ring members and containing 1 or 2 heteroatoms selected from N and O.
  • R 1 is selected from unsubstituted phenyl, 2-fluorophenyl, 2- hydroxyphenyl, 2-methoxyphenyl, 2-methylphenyl, 2-(2-(pyrrolidin-l-yl)ethoxy)- phenyl, 3 -fluorophenyl, 3-methoxyphenyl, 2,6-difluorophenyl, 2-fluoro-6- hydroxyphenyl, 2-fluoro-3-methoxyphenyl, 2-fluoro-5-methoxyphenyl, 2-chloro-6- methoxyphenyl, 2-fluoro-6-methoxyphenyl, 2,6-dichlorophenyl and 2-chloro-6- fluorophenyl, and is optionally further selected from 5-fluoro-2-methoxyphenyl.
  • R 1 is selected from unsubstituted phenyl, 2-fluorophenyl, 2-hydroxyphenyl, 2-methoxyphenyl, 2-methylphenyl, 2-(2-(pyrrolidin-l- yl)ethoxy)-phenyl, 3 -fluorophenyl, 3-methoxyphenyl, 2,6-difluorophenyl, 2-fluoro- 6-hydroxyphenyl, 2-fluoro-3-methoxyphenyl and 2-fluoro-5-methoxyphenyl.
  • R 1 are 2,6-difluorophenyl, 2-fluoro-6-methoxyphenyl and 2,6- dichlorophenyl.
  • One particularly preferred group R 1 is 2,6-difluorophenyl.
  • Another particularly preferred group R 1 is 2,6-dichlorophenyl.
  • R 1 is (ii) a monocyclic heteroaryl group containing one or two heteroatoms selected from O, S and N or a bicyclic heteroaryl group containing a single heteroatom
  • monocyclic and bicyclic heteroaryl groups include furanyl (e.g. 2-furanyl and 3-furanyl), imidazolyl, pyridyl (e.g. 2-pyridyl), indolyl, thienyl (e.g. 2-thienyl and 3 -thienyl) groups.
  • the optional substituents for such groups can include chlorine, fluorine, methyl, methoxy, hydroxymethyl, methoxymethyl, mo holinomethyl, piperazinomethyl, N-methylypiperazinomethyl and piperidinylmethyl groups.
  • groups (ii) include unsubstituted 2-furanyl, 3-methyl-2-furanyl, unsubstituted 4-(lH)-imidazolyl, unsubstituted 5- (lH)-imidazolyl, unsubstituted 3-furanyl, unsubstituted 3-thienyl, 2-methyl-3- thienyl and unsubstituted 3 -pyrrolyl, and further examples include 4-methoxy-3- thienyl, 5-(l-pyrrolidinyl)methyl-2-furyl and 5-(4-morpholino)methyl-2-furyl groups.
  • R 1 is (iii) an optionally substituted cycloalkyl group
  • it can be for example a substituted or unsubstituted cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl group.
  • preferred substituents include methyl, fluorine and hydroxyl.
  • Particular examples of cycloalkyl groups include 1- methylcyclopropyl, 1-hydroxycyclopropyl, and unsubstituted cyclohexyl, cyclopentyl and cyclobutyl.
  • optionally substituted hydrocarbyl groups are optionally substituted methyl, ethyl and propyl groups wherein one of the carbon atoms of the hydrocarbyl group is optionally replaced by O, NH, SO or SO 2 .
  • Such groups include methyl, ethyl, trifluoromethyl, methyl and ethyl substituted with a carbocyclic or heterocyclic group having from 3 to 12 ring members, sulphonylmethyl substituted with a carbocyclic or heterocyclic group having from 3 to 12 ring members, hydroxymethyl, hydroxy ethyl, 3-hydroxy-2-propyl, propyl, isopropyl, butyl and tertiary butyl.
  • hydrocarbyl groups and carbocylic and heteroacyclic groups are as set out above in the general definitions of such groups.
  • Particular carbocyclic and heterocyclic groups include unsubstituted or substituted phenyl, indolyl, tetrazolyl, triazolyl, piperidinyl, morpholinyl, piperazinyl, N- methylpiperazinyl, imidazolyl wherein the optional substituents may be selected from the group R 10 , and sub-groups thereof, as defined herein.
  • R 1 is a C M hydrocarbyl group optionally substituted by one or more substituents selected from fluorine, hydroxy, C M hydrocarbyloxy, amino, mono- or di-C M hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, NH, SO and SO 2 .
  • R 1 is a group R la -(V) n - where: n is O or 1;
  • N is selected from CH 2 , CH 2 CH 2 and SO 2 CH 2 ;
  • R la is a carbocyclic or heterocyclic group selected from phenyl; five membered heteroaryl rings having up to 4 heteroatom ring members selected from ⁇ , O and S; six membered heteroaryl rings containing one or two nitrogen ring members; five or six membered saturated non-aromatic heterocyclic rings containing one or two heteroatom ring members selected from ⁇ , O, S and SO 2 ;
  • each of the carbocyclic and heterocyclic groups R la can be optionally substituted by one or more substituents selected from five or six membered saturated non-aromatic carbocyclic and heterocyclic groups containing up to two heteroatom ring members selected from ⁇ , O, S and SO 2 ; hydroxy; amino; oxo; mono-C M alkylamino; di-C M alkylamino; fluorine; chlorine; nitro; C M alkyl-(O) q - wherein q is 0 or 1 and the C M alkyl moiety is optionally substituted by fluorine, hydroxy, C 1 . 2 alkoxy or a five or six membered saturated non-aromatic carbocyclic or heterocyclic group containing up to two heteroatom ring members selected from
  • R*-CO consists of the groups J, AB, AH, AJ, AL, AS, AX, AY, AZ, BA, BB, BD, BH, BL, BQ and BS.
  • Another sub-group of groups R ⁇ CO consists of the groups A to BF.
  • a further sub-group of groups R'-CO consists of the groups A to BS.
  • Particularly preferred groups are the groups AJ, BQ and BS in Table 1, e.g. the sub- set consisting of AJ and BQ.
  • Another group of compounds of the invention is represented by the formula (III): or salts or tautomers or N-oxides or solvates thereof; wherein R 1 , R 2 , R 3 and Y are as defined herein.
  • R 1 , R 2 , R 3 and Y are as set out above for compounds of the formulae (0), (1°), (I), (la), (lb) and (II) unless the context indicates otherwise.
  • R 1 is a heteroaryl group containing 1, 2 or 3 heteroatom ring members selected from N, O and S;
  • R 1 is a C ⁇ hydrocarbyl group optionally substituted by one or more substituents selected from fluorine, hydroxy, C M hydrocarbyloxy, amino, mono- or di-CM hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, NH, SO and SO 2 ; and
  • R 1 is a non-aromatic carbocyclic or heterocyclic group having from 3 to 12 ring members.
  • Examples of compounds of the formula (III) wherein R 1 is (i) a heteroaryl group include 5- and 6-membered monocyclic heteroaryl groups, e.g. containing lor 2 heteratom ring members selected from O, N and S.
  • the heteroaryl group is a monocyclic group containing 1 or 2 nitrogen ring members.
  • the heteroaryl groups are selected from 6-membered rings containing 1 or 2 nitrogen ring members, for example pyridine, pyrimidine, pyrazine and pridazine groups, one particular sub-group consisting of pyrazinyl and pyridyl.
  • the heteroaryl groups can be unbsubstituted or substituted by one or more groups R 10 as defined herein.
  • Examples of compounds of the formula (III) wherein R 1 is (ii) an optionally substituted C ⁇ hydrocarbyl group include those in which the hydrocarbyl group is • unsubstituted hydrocarbyl, for example unsubstituted alkyl such as methyl, ethyl, , ' propyl, isopropyl, butyl, isobutyl, t-butyl, 1-pentyl, 2-pentyl and 3-pentyl.
  • R 1 is a non-aromatic carbocyclic or heterocyclic . group
  • examples of compounds wherein R 1 is a non-aromatic carbocyclic or heterocyclic . group include those wherein the carbocyclic or heterocylic group is monocyclic and contains up to 2 heteroatoms selected from oxygen and nitrogen. Particular examples of such groups are cyclohexyl and piperidino.
  • R and R are as defined herein; an optional second bond may be present between carbon atoms numbered 1 and 2; one of U and T is selected from CH 2 , CHR 13 , CR ⁇ R 13 , ⁇ R 14 , ⁇ (O)R 15 , 0 and
  • R 13 is selected from hydrogen, NHR 14 , NOH, NOR 14 and R a -R b ;
  • R 14 is selected from hydrogen and R d -R b ;
  • R d is selected from a bond, CO, C(X 2 )X 1 , SO 2 and SO 2 NR c ; R a , R b and R c are as hereinbefore defined; and
  • R is selected from C M saturated hydrocarbyl optionally substituted by hydroxy, C!- 2 alkoxy, halogen or a monocyclic 5- or 6-membered carbocyclic or heterocyclic group, provided that U and T cannot be O simultaneously.
  • r can be 0, 1, 2, 3 or 4. In one embodiment, r is 0. In another embodiment, r is 2, and in a further embodiment r is 4.
  • one sub-set of preferred compounds is the set of compounds where there is only a single bond between the carbon atoms numbered 1 and 2.
  • Another sub-set of compounds is characterised by gem disubstitution at the 2- carbon (when there is a single bond between carbon atoms numbers 1 and 2) and/or the 6-carbon.
  • Preferred gem disubstituents include difluoro and dimethyl.
  • a further sub-set of compounds is characterised by the presence of an alkoxy group, for example a methoxy group at the carbon atom numbered 3, i.e. at a position ⁇ with respect to the group T.
  • Preferred ring systems include Gl and G3.
  • a preferred sub-group of compounds within formula (IV) can be represented by the formula (IVa):
  • R 1 and R 2 are as hereinbefore defined; one of U and T is selected from CH 2 , CHR 13 , CR n R 13 , NR 14 , N(O)R 15 , O and
  • R 11 is selected from hydrogen and C 1 . 3 alkyl
  • R 13 is selected from hydrogen and R a -R b ;
  • R 14 is selected from hydrogen and R d -R b ;
  • R d is selected from a bond, CO, C(X 2 )X 1 , SO 2 and SO 2 NR c ;
  • R a , R b and R c are as hereinbefore defined; and R 15 is selected from C saturated hydrocarbyl optionally substituted by hydroxy,
  • R 11 is preferably selected from hydrogen and methyl and most preferably is hydrogen.
  • R 13 is preferably selected from hydrogen; hydroxy; halogen; cyano; amino; mono- C M saturated hydrocarbylamino; di-C 1 . 4 saturated hydrocarbylamino; monocyclic 5- or 6-membered carbocyclic and heterocyclic groups; C ⁇ - 4 saturated hydrocarbyl optionally substituted by hydroxy, C ⁇ alkoxy, halogen or a monocyclic 5- or 6- membered carbocyclic or heterocyclic group.
  • R are hydrogen, hydroxy, amino, C ⁇ . 2 alkylamino (e.g. methylamino) C M alkyl (e.g. methyl, ethyl, propyl and butyl), C 1 - 2 alkoxy (e.g. methoxy), C1.2 alkylsulphonamido (e.g. methanesulphonamido), hydroxy-C ⁇ -2 alkyl (e.g. hydroxymethyl), alkyl (e.g. methoxymethyl and methoxyethyl), carboxy, C M alkoxycarbonyl (e.g.ethoxycarbonyl) and amino-Ci-r alkyl (e.g. aminomethyl).
  • C M alkoxycarbonyl e.g.ethoxycarbonyl
  • amino-Ci-r alkyl e.g. aminomethyl
  • R 14 are hydrogen; C M alkyl optionally substituted by fluoro or a five or six membered saturated heterocyclic group (e.g. a group selected from (i) methyl, ethyl, n-propyl, i-propyl, butyl, 2,2,2-trifluoroethyl and tetrahydrofuranylmethyl; and/or (ii) 2-fluoroethyl and 2,2-difluoroethyl); cyclopropylmethyl; substituted or unsubstituted pyridyl-C ⁇ - 2 alkyl (e.g.
  • 2- pyridylmethyl substituted or unsubstituted phenyl-C ⁇ alkyl (e.g. benzyl); C M alkoxycarbonyl (e.g.ethoxycarbonyl and t-butyloxycarbonyl); substituted and unsubstituted phenyl-C ⁇ alkoxycarbonyl (e.g. benzyloxycarbonyl); substituted and unsubstituted 5- and 6-membered heteroaryl groups such as pyridyl (e.g. 2- pyridyl and 6-chloro-2 -pyridyl) and pyrimidinyl (e.g.
  • 2-pyrimidinyl C ⁇ - 2 -alkoxy- C ⁇ - 2 alkyl (e.g. methoxymethyl and methoxyethyl); C M alkylsulphonyl (e.g. methanesulphonyl) .
  • Preferred compounds include those in which (i) U is CHR 13 (more preferably CH 2 ) and T is NR 14 , and (ii) T is CHR 13 (more preferably CH 2 ) and U is NR 14 .
  • R 14a is selected from hydrogen, C M alkyl optionally substituted by fluoro (e.g. methyl, ethyl, n-propyl, i-propyl, butyl and 2,2,2-trifluoroethyl), cyclopropylmethyl, phenyl-C ⁇ -2 alkyl (e.g. benzyl), CM alkoxycarbonyl (e.g.ethoxycarbonyl and t-butyloxycarbonyl), phenyl-C ⁇ alkoxycarbonyl (e.g.
  • benzyloxycarbonyl C ⁇ -alkoxy-Ci- 2 alkyl (e.g. methoxymethyl and methoxyethyl), and C M alkylsulphonyl (e.g.methanesulphonyl), wherein the phenyl moieties when present are optionally substituted by one to three substituents selected from fluorine, chlorine, C 1 - 4 alkoxy optionally substituted by fluoro or d- 2 - alkoxy, and C M alkyl optionally substituted by fluoro or - 2 -alkoxy; w is 0, 1, 2 or 3;
  • R 2 is hydrogen or methyl, most preferably hydrogen; R 11 and r are as hereinbefore defined; and R 19 is selected from fluorine; chlorine; C M alkoxy optionally substituted by fluoro or Ct- 2 -alkoxy; and C M alkyl optionally substituted by fluoro or Ci- 2 -alkoxy.
  • R 14a is selected from hydrogen, C M alkyl optionally substituted by fluoro (e.g. methyl, ethyl, n-propyl, i-propyl, butyl and 2,2,2-trifluoroethyl), cyclopropylmethyl, phenyl-C ⁇ alkyl (e.g. benzyl), C alkoxycarbonyl (e.g.ethoxycarbonyl and t-butyloxycarbonyl), phenyl-C ⁇ - 2 alkoxycarbonyl (e.g. benzyloxycarbonyl), C ⁇ -alkoxy-C ⁇ alkyl (e.g.
  • alkylsulphonyl e.g.methanesulphonyl
  • phenyl moieties when present are optionally substituted by one to three substituents selected from fluorine, chlorine, C M alkoxy optionally substituted by fluoro or C1.2- alkoxy, and C M alkyl optionally substituted by fluoro or C ⁇ -2-alkoxy
  • w is 0, 1, 2 or 3
  • R 2 is hydrogen or methyl, most preferably hydrogen;
  • R 11 and r are as hereinbefore defined;
  • R 19 is selected from fluorine; chlorine; C M alkoxy optionally substituted by fluoro or Ci-2-alkoxy; and C M alkyl optionally substituted by fluoro or d. 2 -alkoxy.
  • the phenyl ring is 2-monosubstituted, 3-monosubstituted, 2,6-disubstituted, 2,3-disubstituted, 2,4- disubstituted 2,5-disubstituted, 2,3,6-trisubstituted or 2,4,6-trisubstituted.
  • the phenyl ring is disubstituted at positions 2- and 6- with substituents selected from fluorine, chlorine and methoxy.
  • R 11 is preferably hydrogen (or r is 0).
  • R 14a is most preferably hydrogen or methyl.
  • R 20 is selected from hydrogen and methyl
  • R 21 is selected from fluorine and chlorine
  • R 22 is selected from fluorine, chlorine and methoxy; or one of R 21 and R 22 is hydrogen and the other is selected from chlorine, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy and benzyloxy.
  • Another preferred sub-group of compounds of the formula (Na) can be represented by the formula (Nib): or salts or tautomers or ⁇ -oxides or solvates thereof; wherein R 20 is selected from hydrogen and methyl;
  • R ,21a is selected from fluorine and chlorine; and R 22a is selected from fluorine, chlorine and methoxy.
  • a further group of compounds of the invention is represented by the formula (VII):
  • R 2 , R 3 and Y are as hereinbefore defined and G is a 5- or 6-membered carbocyclic or heterocyclic ring.
  • the group G can be an unsubstituted carbocyclic or heterocyclic ring or it can be a substituted carbocyclic or heterocyclic ring bearing one or more substituents selected from the groups R 10 and R 10a as hereinbefore defined
  • the carbocyclic or heterocyclic ring may be aromatic or non-aromatic and examples of such heterocyclic rings are set out above.
  • preferred heterocyclic rings are those containing a nitrogen ring atom through which the group G is connected to the pyrazole ring.
  • Particular heterocyclic rings are saturated heterocyclic rings containing up to 3 nitrogen atoms (more usually up to 2, for example 1) and optionally an oxygen atom.
  • Particular examples of such rings are six membered rings such as piperidine, piperazine, N-methyl piperazine and morpholine.
  • the group G when the group G is a carbocyclic group, it can be, for example a 6-membered aryl ring.
  • the group G can be an unsubsituted phenyl group or it can be a substituted phenyl group bearing one or more substituents selected from the groups R 10 and R 10a as hereinbefore defined.
  • the substituents when present, are more typically small substituents such as hydroxyl, halogen (e.g. fluorine and chlorine), and C M hydrocarbyl (methyl, ethyl and cyclopropyl) optionally substituted by fluorine (e.g. trifluoromethyl) or hydroxy (e.g. hydroxymethyl).
  • R 3 may be other than a six membered monocyclic aryl or heteroaryl group linked directly to a 5,6-fused bicyclic heteroaryl group.
  • a further group of compounds of the invention is represented by the formula (VIII):
  • R 1 , R 2 , R 3 and Y are as defined herein.
  • Preferred groups R 1 , R 2 , Y and R 3 are as set out above in the section headed "General Preferences and Definitions" and in relation to compounds of the formulae (I) and (II) and sub-groups thereof as defined herein.
  • each general and specific preference, embodiment and example of the groups R 1 may be combined with each general and specific preference, embodiment and example of the groups R 2 and/or R 3 and/or R 4 and/or R 10 and/or Y and/or R s and/or sub-groups thereof as defined herein and that all such combinations are embraced by this application.
  • the various functional groups and substituents making up the compounds of the formula (I) are typically chosen such that the molecular weight of the compound of the formula (I) does not exceed 1000. More usually, the molecular weight of the compound will be less than 750, for example less than 700, or less than 650, or less than 600, or less than 550. More preferably, the molecular weight is less than 525 and, for example, is 500 or less.
  • a reference to a particular compound also includes ionic, salt, solvate, and protected forms thereof, for example, as discussed below.
  • salts can exist in the form of salts, for example acid addition salts or, in certain cases salts of organic and inorganic bases such as carboxylate, sulphonate and phosphate salts. All such salts are within the scope of this invention, and references to compounds of the formula (I) include the salt forms of the compounds. As in the preceding sections of this application, all references to formula (I) should be taken to refer also to formulae (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof unless the context indicates otherwise. Salt forms may be selected and prepared according to methods described in Pharmaceutical Salts: Properties, Selection, and Use, P. Heinrich Stahl (Editor), Camille G. Wermuth (Editor), ISBN: 3-90639-026-8, Hardcover, 388 pages, August 2002.
  • Acid addition salts may be formed with a wide variety of acids, both inorganic and organic.
  • acid addition salts include salts formed with an acid selected from the group consisting of acetic, 2,2-dichloroacetic, adipic, alginic, ascorbic (e.g.
  • salts consist of salts formed from hydrochloric, hydriodic, phosphoric, nitric, sulphuric, citric, lactic, succinic, maleic, malic, isethionic, fumaric, benzenesulphonic, toluenesulphonic, methanesulphonic, ethanesulphonic, naphthalenesulphonic, valeric, acetic, propanoic, butanoic, malonic, glucuronic and lactobionic acids.
  • One preferred group of salts consists of salts formed from hydrochloric, acetic, adipic, L-aspartic and DL-lactic acids.
  • Particularly preferred salts are hydrochloride salts
  • a salt may be formed with a suitable cation.
  • suitable inorganic cations include, but are not limited to, alkali metal ions such as Na + and K + , alkaline earth cations such as Ca 2+ and Mg 2+ , and other cations such as Al 3+ .
  • Suitable organic cations include, but are not limited to, ammonium ion (i.e., NH 4 ) and substituted ammonium ions (e.g., NH3R0 NH 2 R 2 + , NHR 3 + , NR0).
  • suitable substituted ammonium ions are those derived from: ethylamine, diethylamine, dicyclohexylamine, triethylamine, butylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, benzylamine, phenylbenzylamine, choline, meglumine, and tromethamine, as well as amino acids, such as lysine and arginine.
  • An example of a common quaternary ammonium ion is N(CH 3 ) 4 + .
  • the salt forms of the compounds of the invention are typically pharmaceutically acceptable salts, and examples of pharmaceutically acceptable salts are discussed in Berge et al, 1977, "Pharmaceutically Acceptable Salts," J Pharm. Sci., Vol. 66, pp. 1-19. However, salts that are not pharmaceutically acceptable may also be prepared as intermediate forms which may then be converted into pharmaceutically acceptable salts. Such non-pharmaceutically acceptable salts forms, which may be useful, for example, in the purification or separation of the compounds of the invention, also form part of the invention.
  • Compounds of the formula (I) containing an amine function may also form N- oxides.
  • a reference herein to a compound of the formula (I) that contains an amine function also includes the N-oxide.
  • N-oxide may be oxidised to form an N-oxide.
  • N- oxides are the N-oxides of a tertiary amine or a nitrogen atom of a nitrogen- containing heterocycle.
  • N-Oxides can be formed by treatment of the corresponding amine with an oxidizing agent such as hydrogen peroxide or a per-acid (e.g. a peroxycarboxylic acid), see for example Advanced Organic Chemistry, by Jerry March, 4 th Edition, Wiley Interscience, pages. More particularly, N-oxides can be made by the procedure of L. W. Deady (Syn. Comm. 1911, 1, 509-514) in which the amine compound is reacted with m-chloroperoxybenzoic acid (MCPBA), for example, in an inert solvent such as dichloromethane.
  • MCPBA m-chloroperoxybenzoic acid
  • the pyrazole group may take either of the following two tautomeric forms A and B.
  • the general formula (I) illustrates form A but the formula is to be taken as embracing both tautomeric forms.
  • tautomeric forms include, for example, keto-, enol-, and enolate- forms, as in, for example, the following tautomeric pairs: keto/enol (illustrated below), imine/enamine, amide/imino alcohol, amidine/amidine, nitroso/oxime, thioketone/enethiol, and nitro/aci-nitro. keto enol enolate
  • references to compounds of the formula (I) include all optical isomeric forms thereof (e.g. enantiomers, epimers and diastereoisomers), either as individual optical isomers, or mixtures (e.g. racemic mixtures) or two or more optical isomers, unless the context requires otherwise.
  • optical isomers may be characterised and identified by their optical activity (i.e. as + and - isomers, or d and / isomers) or they may be characterised in terms of their absolute stereochemistry using the "R and S" nomenclature developed by Cahn, Ingold and Prelog, see Advanced Organic Chemistry by Jerry March, 4 th Edition, John Wiley & Sons, New York, 1992, pages 109-114, and see also Cahn, Ingold & Prelog, Angew. Chem. Int. Ed. Engl, 1966, 5, 385-415.
  • Optical isomers can be separated by a number of techniques including chiral chromatography (chromatography on a chiral support) and such techniques are well known to the person skilled in the art.
  • compositions containing a compound of the formula (I) having one or more chiral centres wherein at least 55% (e.g. at least 60%, 65%, 70%, 75%, 80%, 85%, 90%) or 95%) of the compound of the formula (I) is present as a single optical isomer (e.g.
  • 99% or more (e.g. substantially all) of the total amount of the compound of the formula (I) may be present as a single optical isomer (e.g. enantiomer or diastereoisomer) .
  • the compounds of the invention include compounds with one or more isotopic substitutions, and a reference to a particular element includes within its scope all isotopes of the element.
  • a reference to hydrogen includes within its scope 1H, 2 H (D), and 3 H (T).
  • references to carbon and oxygen include within their scope respectively 12 C, 13 C and 14 C and 16 O and 18 O.
  • the isotopes may be radioactive or non-radioactive.
  • the compounds contain no radioactive isotopes. Such compounds are preferred for therapeutic use.
  • the compound may contain one or more radioisotopes. Compounds containing such radioisotopes may be useful in a diagnostic context.
  • Esters such as carboxylic acid esters and acyloxy esters of the compounds of formula (I) bearing a carboxylic acid group or a hydroxyl group are also embraced by Formula (I). Examples of esters are compounds containing the group
  • R is an ester substituent, for example, a C 1 . 7 alkyl group, a C 3 - 2 o heterocyclyl group, or a C 5 - 2 o aryl group, preferably a € 1 . 7 alkyl group.
  • formula (I) Also encompassed by formula (I) are any polymorphic forms of the compounds, solvates (e.g. hydrates), complexes (e.g. inclusion complexes or clathrates with compounds such as cyclodextrins, or complexes with metals) of the compounds, and pro-drugs of the compounds.
  • solvates e.g. hydrates
  • complexes e.g. inclusion complexes or clathrates with compounds such as cyclodextrins, or complexes with metals
  • pro-drugs is meant for example any compound that is converted in vivo into a biologically active compound of the formula (I).
  • acyloxymethyl e.g., acyloxymethyl; acyloxyethyl; pivaloyloxymethyl; acetoxymethyl; 1-acetoxyethyl;
  • prodrugs are activated enzymatically to yield the active compound, or a compound which, upon further chemical reaction, yields the active compound (for example, as in ADEPT, GDEPT, LIDEPT, etc.).
  • the prodrug may be a sugar derivative or other glycoside conjugate, or may be an amino acid ester derivative.
  • the compounds of the formulae (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), - (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof are inhibitors of cyclin dependent kinases, and in particular cyclin dependent kinases selected from CDK1, CDK2, CDK3, CDK4, CDK5 and CDK6.
  • Preferred compounds are compounds that inhibit one or more CDK kinases selected from CDK1, CDK2, CDK4 and CDK5, for example CDK1 and/or CDK2.
  • the compounds of the invention are also considered to be inhibitors of glycogen synthase kinase-3 (GSK3).
  • the compounds of the invention will be useful in treating conditions such as viral infections, type II or non-insulin dependent diabetes mellitus, autoimmune diseases, head trauma, stroke, epilepsy, neurodegenerative diseases such as Alzheimer's, motor neurone disease, . progressive supranuclear palsy, corticobasal degeneration and Pick's disease for example.
  • One sub-group of disease states and conditions where it is envisaged that the compounds of the invention will be useful consists of viral infections, autoimmune diseases and neurodegenerative diseases. ' ⁇
  • CDKs play a role in the regulation of the cell cycle, apoptosis, transcription, differentiation and CNS function. Therefore, CDK inhibitors could be useful in the • treatment of diseases in which there is a disorder of proliferation, apoptosis or differentiation such as cancer.
  • RB+ve tumours may be particularly sensitive to CDK inhibitors.
  • RB-ve tumours may also be sensitive to CDK inhibitors.
  • cancers which may be inhibited include, but are not limited to, a carcinoma, for example a carcinoma of the bladder, breast, colon (e.g. colorectal carcinomas such as colon adenocarcinoma and colon adenoma), kidney, epidermis, liver, lung, for example adenocarcinoma, small cell lung cancer and non-small cell lung carcinomas, oesophagus, gall bladder, ovary, pancreas e.g.
  • a carcinoma for example a carcinoma of the bladder, breast, colon (e.g. colorectal carcinomas such as colon adenocarcinoma and colon adenoma), kidney, epidermis, liver, lung, for example adenocarcinoma, small cell lung cancer and non-small cell lung carcinomas, oesophagus, gall bladder, ovary, pancreas e.g.
  • exocrine pancreatic carcinoma, stomach, cervix, thyroid, prostate, or skin for example squamous cell carcinoma
  • a hematopoietic tumour of lymphoid lineage for example leukemia, acute lymphocytic leukemia, B-cell lymphoma, T-cell lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hairy cell lymphoma, or Burkett's lymphoma
  • a hematopoietic tumour of myeloid lineage for example acute and chronic myelogenous leukemias, myelodysplastic syndrome, or promyelocytic leukemia
  • thyroid follicular cancer a tumour of mesenchymal origin, for example fibrosarcoma or habdomyosarcoma, a tumour of the central or peripheral nervous system, for example asirocytoma, neuroblastoma, glioma or schwannoma; melanom
  • the cancers may be cancers which are sensitive to inhibition of any one or more cyclin dependent kinases selected from CDK1, CDK2, CDK3, CDK4, CDK5 and CDK6, for example, one or more CDK kinases selected from CDK1, CDK2, CDK4 and CDK5, e.g. CDK1 and/or CDK2.
  • Whether or not a particular cancer is one which is sensitive to inhibition by a cyclin dependent kinase may be determined by means of a cell growth assay as set out in Example 250 below or by a method as set out in the section headed "Methods of Diagnosis”.
  • CDKs are also known to play a role in apoptosis, proliferation, differentiation and transcription and therefore CDK inhibitors could also be useful in the treatment of the following diseases other than cancer; viral infections, for example herpes virus, pox virus, Epstein-Barr virus, Sindbis virus, adenovirus, HIV, HPV, HCV and HCMV; prevention of AIDS development in HIV-infected individuals; chronic inflammatory diseases, for example systemic lupus erythematosus, autoimmune mediated glomerulonephritis, rheumatoid arthritis, psoriasis, inflammatory bowel disease, and autoimmune diabetes mellitus; cardiovascular diseases for example cardiac hypertrophy, restenosis, atherosclerosis; neurodegenerative disorders, for example Alzheimer's disease, AIDS-related dementia, Parkinson's disease, amyotropic lateral sclerosis, retinitis pigmentosa, spinal muscular atropy and cerebellar degeneration; glomerulonephritis; myelody
  • cyclin-dependent kinase inhibitors can be used in combination with other anticancer agents.
  • the cyclin-dependent kinase inhibitor flavopiridol has been used with other anticancer agents in combination therapy.
  • the disease or condition comprising abnormal cell growth in one embodiment is a cancer.
  • cancers include human breast cancers (e.g. primary breast tumours, node-negative breast cancer, invasive duct adenocarcinomas of the breast, non- endometrioid breast cancers); and mantle cell lymphomas.
  • other cancers are colorectal and endometrial cancers.
  • Another sub-set of cancers includes breast cancer, ovarian cancer, colon cancer, prostate cancer, oesophageal cancer, squamous cancer and non-small cell lung carcinomas.
  • the activity of the compounds of the invention as inhibitors of cyclin dependent kinases and glycogen synthase kinase-3 can be measured using the assays set forth in the examples below and the level of activity exhibited by a given compound can be defined in terms of the IC50 value.
  • Preferred compounds of the present invention are compounds having an IC50 value of less than 1 micromole, more preferably less than 0.1 micromole.
  • references to formula (I) should be taken to refer also to formulae (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof unless the context indicates otherwise.
  • the starting material for the synthetic route shown in Scheme 1 is the 4-nitro- pyrazole-3-carboxylic acid (X) which can either be obtained commercially or can be prepared by nitration of the corresponding 4-unsubstituted pyrazole carboxy compound.
  • the 4-nitro-pyrazole carboxylic acid (X), or a reactive derivative thereof, is reacted with the amine H 2 N-Y-R 3 to give the 4-nitro-amide (XI).
  • the coupling reaction between the carboxylic acid (X) and the amine is preferably carried out in the presence of a reagent of the type commonly used in the formation of peptide linkages. Examples of such reagents include 1,3-dicyclohexylcarbodiimide (DCC) (Sheehan et al, J. Amer. Chem Soc.
  • uronium-based coupling agents such as O-(7-azabenzotriazol-l-yl)- N,N.N',N'-tetramethyluronium hexafluorophosphate (HATU) and phosphonium- based coupling agents such as l-benzo-triazolyloxytris-(pyrrolidino)phosphonium hexafluorophosphate (PyBOP) (Castro et al, Tetrahedron Letters, 1990, 31, 205).
  • Carbodiimide-based coupling agents are advantageously used in combination with l-hydroxy-7-azabenzotriazole (HO At) (L. A. Carpino, J. Amer.
  • Preferred coupling reagents include EDC (ED AC) and DCC in combination with HO At or HOBt.
  • the coupling reaction is typically carried out in a non-aqueous, non-protic solvent such as acetonitrile, dioxan, dimethylsulphoxide, dichloromethane, dimethylformamide or N-methylpyrrolidine, or in an aqueous solvent optionally together with one or more miscible co-solvents.
  • a non-aqueous, non-protic solvent such as acetonitrile, dioxan, dimethylsulphoxide, dichloromethane, dimethylformamide or N-methylpyrrolidine
  • an aqueous solvent optionally together with one or more miscible co-solvents.
  • the reaction can be carried out at room temperature or, where the reactants are less reactive (for example in the case of electron-poor anilines bearing electron withdrawing groups such as sulphonamide groups) at an appropriately elevated temperature.
  • the reaction may be carried out in the presence of a non-interfering base, for example a tertiary amine such as triethyl
  • a reactive derivative of the carboxylic acid e.g. an anhydride or acid chloride
  • Reaction with a reactive derivative such an anhydride is typically accomplished by stirring the amine and anhydride at room temperature in the presence of a base such as pyridine.
  • Amines of the formula H 2 ⁇ -Y-R 3 can be obtained from commercial sources or can be prepared by any of a large number of standard synthetic methods well known those skilled in the art, see for example see Advanced Organic Chemistry by Jerry March, 4 th Edition, John Wiley & Sons, 1992, and and Organic Syntheses, Volumes 1-8, John Wiley, edited by Jeremiah P. Freeman (ISBN: 0-471-31192-8), 1995, and see also the methods described in the experimental section below.
  • the nitro-pyrazole amide (XI) is reduced to give the corresponding 4-amino- compound of the formula (XII).
  • the reduction may be carried out by standard methods such as catalytic hydrogenation, for example in the presence of palladium on carbon in a polar solvent such as ethanol or dimethylformamide at room temperature.
  • reduction may be effected using a reducing agent such as tin (II) chloride in ethanol, typically with heating, for example to the reflux temperature of the solvent.
  • the 4-amino-pyrazole compound (XII) is then reacted with a carboxylic acid of the formula R ! -CO 2 H, or a reactive derivative thereof, using the methods and conditions described above for the formation of the amide (XI), to give a compound of the formula (I).
  • Carboxylic acids of the formula R 1 -CO 2 H can be obtained commercially or can be synthesised according to methods well known to the skilled person, see for example Advanced Organic Chemistry and Organic Syntheses, the details for which are given above.
  • compounds of the formula (I) can be prepared by reaction of a compound of the formula (XIII) with a compound of the formula R 3 -Y-NH 2 .
  • the reaction can be carried out using the amide coupling conditions described above.
  • such compounds can be prepared by reacting an aminopyrazole compound of the formula (XII) with a suitably substituted phenylisocyanate in a polar solvent such as DMF. The reaction is conveniently carried out at room temperature.
  • Compounds of the formula (I), wherein A is SO 2 can be prepared from amino- compounds of the formula (XII) by standard methods for the formation of sulphonamides.
  • compounds of the fomrula XII) can be reacted with sulphonyl chlorides of the formula R 1 SO 2 Cl or anhydrides of the formula (R ! S 0 2 ) 2 0.
  • the reaction is typically carried out in an aprotic solvent such as acetonitrile or a chlorinated hydrocarbon (for example dichloromethane) in the presence of a non-interfering base such as a tertiary amine (e.g. triethylamine) or pyridine, or diisopropylethyl amine (Hunigs base).
  • a tertiary amine e.g. triethylamine
  • pyridine diisopropylethyl amine
  • the base is a liquid, as is the case with pyridine, the
  • an aldehyde (XIV) (in which X is a C-linked aryl or heteroaryl group such as phenyl) is condensed with malononitrile to give the alkyne (XVI).
  • the reaction is typically carried out in a polar solvent such as ethanol in the presence of a base such as piperidine, usually with heating.
  • the alkyne (XVI) is then reacted with trimethylsilyldiazomethane in the presence an alkyl lithium such as butyl lithium to give the 5-trimethylsilyl pyrazole-3-nitrile (XVII).
  • the reaction is carried out in a dry aprotic solvent such as THF under a protective atmosphere (e.g. nitrogen) at a reduced temperature (e.g. -78 °C).
  • the nitrile (XVII) is hydrolysed with an alkali metal hydroxide such as potassium hydroxide to give the acid (XIX) and/or the amide (XVII). Where a mixture of acid and amide are formed, they may be separated according to standard methods such as chromatography.
  • the acid (XIX) can then be coupled with an amine of the formula R 3 -Y-NH 2 under typical amide coupling conditions of the type described above to give the compound of the formula (I).
  • compounds of the formula (I) in which X is a C-linked aryl or heteroaryl group such as phenyl can be prepared from compounds of the formula (XX):
  • Hal is a halogen such as chlorine, bromine or iodine
  • a Suzuki coupling reaction with the appropriate aryl or heteroaryl boronate.
  • the reaction can be carried out under typical Suzuki Coupling conditions in the presence of a palladium catalyst such as bis(tri-t-butylphosphine)palladium and a base (e.g. a carbonate such as potassium carbonate).
  • a palladium catalyst such as bis(tri-t-butylphosphine)palladium
  • a base e.g. a carbonate such as potassium carbonate
  • the reaction may be carried out in an aqueous solvent system, for example aqueous ethanol, and the reaction mixture is typically subjected to heating, for example to a temperature in excess of 100°C.
  • Compounds of the formula (XX) can be prepared from amino-pyrazole compounds of the formula (XII) by means of the Sandmeyer reaction (see Advanced Organic Chemistry, 4 th edition, by Jerry March, John Wiley & Sons, 1992, page 723) in which the amino group is converted to a diazonium group by reaction with nitrous acid, and the diazonium compound is then reacted with a copper (I) halide such as Cu(I)Cl or Cu(I)I.
  • one compound of the formula (I) may be transformed into another compound of the formula (I) using standard chemistry procedures well known in the art.
  • functional group interconversions see for example, Fiesers' Reagents for Organic Synthesis, Volumes 1-17, John Wiley, edited by Mary Fieser (ISBN: 0-471-58283-2), and Organic Syntheses, Volumes 1-8, John Wiley, edited by Jeremiah P. Freeman (ISBN: 0-471-31192-8), 1995.
  • the starting materials for the synthetic routes shown in the Schemes above can either be obtained commercially or can be prepared by methods known to those skilled in the art. They can be obtained using known methods e.g. from ketones, such as in a process described in EP308020 (Merck), or the methods discussed by Schmidt in Helv. Chim. Acta., 1956, 39, 986-991 and Helv. Chim. Acta., 1958, 41, 306-309. Alternatively they can be obtained by conversion of a commercially available pyrazole, for example those containing halogen, nitro, ester, or amide functionalities, to pyrazoles containing the desired functionality by standard methods known to a person skilled in the art.
  • 4-Nitro-pyrazole-3 -carboxylic acid (XII) can either be obtained commercially or can be prepared by nitration of the corresponding 4- unsubstituted pyrazole carboxy compound, and pyrazoles containing a halogen, may be utilized in coupling reactions with tin or palladium chemistry.
  • the aldehyde or ketone group is readily regenerated by hydrolysis using a large excess of water in the presence of acid.
  • An amine group may be protected, for example, as an amide (-NRCO-R) or a urethane (-NRCO-OR), for example, as: a methyl amide (-NHCO-CH3); a benzyloxy amide (-NHCO-OCH 2 C 6 H 5 , -NH-Cbz or NH-Z); as a t-butoxy amide (-NHCO-OC(CH 3 ) 3 , -NH-Boc); a 2-biphenyl-2-propoxy amide (-NHCO- OC(CH 3 ) 2 C 6 H 4 C 6 H 5 , -NH-Bpoc), as a 9-fluorenylmethoxy amide (-NH-Fmoc), as a 6-nitroveratryloxy amide (-NH-Nvoc), as a 2-trimethylsilylethyloxy amide (-NH- Teoc), as a 2,2,2-trichloroethyloxy amide (-NH-T
  • the second amino group when the moiety R 3 in the amine H 2 N-Y-R 3 contains a second amino group, such as a cyclic amino group (e.g. a piperidine or pyrrolidine group), the second amino group can be protected by means of a protecting group as hereinbefore defined, one preferred group being the tert- butyloxycarbonyl (Boc) group.
  • the protecting group can be carried through the reaction sequence to give an N-protected form of a compound of the formula (I) which can then be de-protected by standard methods (e.g. treatment with acid in the case of the Boc group) to give the compound of formula (I).
  • protecting groups for amines include toluenesulphonyl (tosyl) and methanesulphonyl (mesyl) groups, benzyl groups such as a ⁇ r -methoxybenzyl (PMB) group and tetrahydropyranyl (THP) groups.
  • a carboxylic acid group may be protected as an ester for example, as: an C 1 . 7 alkyl ester (e.g., a methyl ester; a t-butyl ester); a C 1 - 7 haloalkyl ester (e.g., a C 1 . 7 trihaloalkyl ester); a triCi- 7 alkylsilyl-C ⁇ alkyl ester; or a C5.20 aryl- -7 alkyl ester (e.g., a benzyl ester; a nitrobenzyl ester); or as an amide, for example, as a methyl amide.
  • an C 1 . 7 alkyl ester e.g., a methyl ester; a t-butyl ester
  • a C 1 - 7 haloalkyl ester e.g., a C 1 . 7 trihaloalkyl ester
  • the compounds of the invention can be isolated and purified according to standard techniques well known to the person skilled in the art.
  • One technique of particular usefulness in purifying the compounds is preparative liquid chromatography using mass spectrometry as a means of detecting the purified compounds emerging from the chromatography column.
  • Preparative LC-MS is a standard and effective method used for the purification of small organic molecules such as the compounds described herein.
  • the methods for the liquid chromatography (LC) and mass spectrometry (MS) can be varied to provide better separation of the crude materials and improved detection of the samples by MS.
  • Optimisation of the preparative gradient LC method will involve varying columns, volatile eluents and modifiers, and gradients.
  • the active compound While it is possible for the active compound to be administered alone, it is preferable to present it as a pharmaceutical composition (e.g. formulation) comprising at least one active compound of the invention together with one or more pharmaceutically acceptable carriers, adjuvants, excipients, diluents, fillers, buffers, stabilisers, preservatives, lubricants, or other materials well known to those skilled in the art and optionally other therapeutic or prophylactic agents.
  • a pharmaceutical composition e.g. formulation
  • pharmaceutically acceptable carriers e.g. formulation
  • adjuvants e.g., a pharmaceutically acceptable carriers, adjuvants, excipients, diluents, fillers, buffers, stabilisers, preservatives, lubricants, or other materials well known to those skilled in the art and optionally other therapeutic or prophylactic agents.
  • the present invention further provides pharmaceutical compositions, as defined above, and methods of making a pharmaceutical composition comprising admixing at least one active compound, as defined above, together with one or more pharmaceutically acceptable carriers, excipients, buffers, adjuvants, stabilizers, or other materials, as described herein.
  • pharmaceutically acceptable refers to compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of a subject (e.g. human) without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
  • a subject e.g. human
  • Each carrier, excipient, etc. must also be “acceptable” in the sense of being compatible with the other ingredients of the formulation.
  • the invention provides compounds of the formula (0) and sub-groups thereof such as formulae (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein in the form of pharmaceutical compositions.
  • compositions can be in any form suitable for oral, parenteral, topical, intranasal, ophthalmic, otic, rectal, intra-vaginal, or transdermal administration.
  • compositions are intended for parenteral administration, they can be formulated for intravenous, intramuscular, intraperitoneal, subcutaneous administration or for direct delivery into a target organ or tissue by injection, infusion or other means of delivery.
  • the pharmaceutical composition is in a form suitable for i.v. administration, for example by injection or infusion.
  • the pharmaceutical composition is in a form suitable for sub-cutaneous (s.c.) administration.
  • Pharmaceutical dosage forms suitable for oral administration include tablets, capsules, caplets, pills, lozenges, syrups, solutions, powders, granules, elixirs and suspensions, sublingual tablets, wafers or patches and buccal patches.
  • compositions containing compounds of the formula (I) can be formulated in accordance with known techniques, see for example, Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, PA, USA.
  • tablet compositions can contain a unit dosage of active compound together with an inert diluent or carrier such as a sugar or sugar alcohol, eg; lactose, sucrose, sorbitol or mannitol; and/or a non-sugar derived diluent such as sodium carbonate, calcium phosphate, calcium carbonate, or a cellulose or derivative thereof such as methyl cellulose, ethyl cellulose, hydroxypropyl methyl cellulose, and starches such as corn starch. Tablets may also contain such standard ingredients as binding and granulating agents such as polyvinylpyrrolidone, disintegrants (e.g.
  • swellable crosslinked polymers such as crosslinked carboxymethylcellulose
  • lubricating agents e.g. stearates
  • preservatives e.g. parabens
  • antioxidants e.g. BHT
  • buffering agents for example phosphate or citrate buffers
  • effervescent agents such as citrate/bicarbonate mixtures.
  • Capsule formulations may be of the hard gelatin or soft gelatin variety and can contain the active component in solid, semi-solid, or liquid form.
  • Gelatin capsules can be formed from animal gelatin or synthetic or plant derived equivalents thereof.
  • the solid dosage forms can be coated or un-coated, but typically have a coating, for example a protective film coating (e.g. a wax or varnish) or a release controlling coating.
  • a protective film coating e.g. a wax or varnish
  • the coating e.g. a Eudragit TM type polymer
  • the coating can be designed to release the active component at a desired location within the gastro-intestinal tract.
  • the coating can be selected so as to degrade under certain pH conditions within the gastrointestinal tract, thereby selectively release the compound in the stomach or in the ileum or duodenum.
  • the drug can be presented in a solid matrix comprising a release controlling agent, for example a release delaying agent which may be adapted to selectively release the compound under conditions of varying acidity or alkalinity in the gastrointestinal tract.
  • a release controlling agent for example a release delaying agent which may be adapted to selectively release the compound under conditions of varying acidity or alkalinity in the gastrointestinal tract.
  • the matrix material or release retarding coating can take the form of an erodible polymer (e.g. a maleic anhydride polymer) which is substantially continuously eroded as the dosage form passes through the gastrointestinal tract.
  • the active compound can be formulated in a delivery system that provides osmotic control of the release of the compound. Osmotic release and other delayed release or sustained release formulations may be prepared in accordance with methods well known to those skilled in the art.
  • compositions for topical use include ointments, creams, sprays, patches, gels, liquid drops and inserts (for example intraocular inserts). Such compositions can be formulated in accordance with known methods.
  • compositions for parenteral administration are typically presented as sterile aqueous or oily solutions or fine suspensions, or may be provided in finely divided sterile powder form for making up extemporaneously with sterile water for injection.
  • formulations for rectal or intra-vaginal administration include pessaries and suppositories which may be, for example, formed from a shaped moldable or waxy material containing the active compound.
  • compositions for administration by inhalation may take the form of inhalable powder compositions or liquid or powder sprays, and can be administrated in standard form using powder inhaler devices or aerosol dispensing devices. Such devices are well known.
  • the powdered formulations typically comprise the active compound together with an inert solid powdered diluent such as lactose.
  • the compounds of the inventions will generally be presented in unit dosage form and, as such, will typically contain sufficient compound to provide a desired level of biological activity.
  • a formulation intended for oral administration may contain from 0.1 milligrams to 2 grams of active ingredient, more usually from 10 milligrams to 1 gram, for example, 50 milligrams to 500 milligrams.
  • the active compound will be administered to a patient in need thereof (for example a human or animal patient) in an amount sufficient to achieve the desired therapeutic effect.
  • the compounds of the formula (0) and sub-groups thereof such as formulae (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein will be useful in the prophylaxis or treatment of a range of disease states or conditions mediated by cyclin dependent kinases. Examples of such disease states and conditions are set out above.
  • the compounds are generally administered to a subject in need of such administration, for example a human or animal patient, preferably a human.
  • the compounds will typically be administered in amounts that are therapeutically or prophylactically useful and which generally are non-toxic.
  • the benefits of administering a compound of the formula (I) may outweigh the disadvantages of any toxic effects or side effects, in which case it may be considered desirable to administer compounds in amounts that are associated with a degree of toxicity.
  • the compounds may be administered over a prolonged term to maintain beneficial therapeutic effects or may be administered for a short period only. Alternatively they may be administered in a pulsatile or continuous manner.
  • a typical daily dose of the compound can be in the range from 100 picograms to 100 milligrams per kilogram of body weight, more typically 5 nanograms to 25 milligrams per kilogram of bodyweight, and more usually 10 nanograms to 15 milligrams per kilogram (e.g. 10 nanograms to 10 milligrams) per kilogram of bodyweight although higher or lower doses may be administered where required.
  • the quantity of compound administered and the type of composition used will be commensurate with the nature of the disease or physiological condition being treated and will be at the discretion of the physician.
  • the compounds of the formula (I) can be administered as the sole therapeutic agent or they can be administered in combination therapy with one of more other compounds for treatment of a particular disease state, for example a neoplastic disease such as a cancer as hereinbefore defined.
  • a neoplastic disease such as a cancer as hereinbefore defined.
  • other therapeutic agents that may be administered together (whether concurrently or at different time intervals) with the compounds of the formula (I) include but are not limited to topoisomerase inhibitors, alkylating agents, antimetabolites, DNA binders and microtubule inhibitors (tubulin targeting agents), such as cisplatin, cyclophosphamide, doxorubicin, irinotecan, fludarabine, 5FU, taxanes, mitomycin C, or radiotherapy.
  • the compounds of the formula (I) can be administered in a combination therapy with monoclonal antibodies or signal transduction inhibitors.
  • the two or more treatments may be given in individually varying dose schedules and via different routes.
  • the compounds of the formula (I) can be administered simultaneously or sequentially.
  • they can be administered at closely spaced intervals (for example over a period of 5-10 minutes) or at longer intervals (for example 1, 2, 3, 4 or more hours apart, or even longer periods apart where required), the precise dosage regimen being commensurate with the properties of the therapeutic agent(s).
  • the compounds of the invention may also be administered in conjunction with non- chemotherapeutic treatments such as radiotherapy, photodynamic therapy, gene therapy; surgery and controlled diets.
  • the compound of the formula (I) and one, two, three, four or more other therapeutic agents can be, for example, formulated together in a dosage form containing two, three, four or more therapeutic agents.
  • the individual therapeutic agents may be formulated separately and presented together in the form of a kit, optionally with instructions for their use.
  • a patient Prior to administration of a compound of the formula (I), a patient may be screened to determine whether a disease or condition from which the patient is or may be suffering is one which would be susceptible to treatment with a compound having activity against cyclin dependent kinases.
  • a biological sample taken from a patient may be analysed to determine whether a condition or disease, such as cancer, that the patient is or may be suffering from is one which is characterised by a genetic abnormality or abnormal protein expression which leads to over-activation of CDKs or to sensitisation of a pathway to normal CDK activity.
  • a condition or disease such as cancer
  • Examples of such abnormalities that result in activation or sensitisation of the CDK2 signal include up-regulation of cyclin E, (Harwell RM, Mull BB, Porter DC, Keyomarsi K.; J Biol Chem.
  • up-regulation includes elevated expression or over-expression, including gene amplification (i.e. multiple gene copies) and increased expression by a transcriptional effect, and hyperactivity and activation, including activation by mutations.
  • the patient may be subjected to a diagnostic test to detect a marker characteristic of up- regulation of cyclin E, or loss of p21 or p27, or presence of CDC4 variants.
  • marker includes screening.
  • marker we include genetic markers including, for example, the measurement of DNA composition to identify mutations of CDC4.
  • the term marker also includes markers which are characteristic of up regulation of cyclin E, including enzyme activity, enzyme levels, enzyme state (e.g. phosphorylated or not) and mRNA levels of the aforementioned proteins.
  • Tumours with upregulation of cyclin E, or loss of p21 or p27 may be particularly sensitive to CDK inhibitors. Tumours may preferentially be screened for upregulation of cyclin E, or loss of p21 or p27 prior to treatment.
  • the patient may be subjected to a diagnostic test to detect a marker characteristic of upregulation of cyclin E, or loss of p21 or p27.
  • the diagnostic tests are typically conducted on a biological sample selected from tumour biopsy samples, blood samples (isolation and enrichment of shed tumour cells), stool biopsies, sputum, chromosome analysis, pleural fluid, peritoneal fluid, or urine.
  • CDC4 also known as Fbw7 or Archipelago
  • Identification of individual carrying a mutation in CDC4 may mean that the patient would be particularly suitable for treatment with a CDK inhibitor.
  • Tumours may preferentially be screened for presence of a CDC4 variant prior to treatment. The screening process will typically involve direct sequencing, oligonucleotide microarray analysis, or a mutant specific antibody.
  • Screening methods could include, but are not limited to, standard methods such as reverse-transcriptase polymerase chain reaction (RT-PCR) or in-situ hybridisation.
  • RT-PCR reverse-transcriptase polymerase chain reaction
  • telomere amplification is assessed by creating a cDNA copy of the mRNA followed by amplification of the cDNA by PCR.
  • Methods of PCR amplification, the selection of primers, and conditions for amplification, are known to a person skilled in the art.
  • Nucleic acid manipulations and PCR are carried out by standard methods, as described for example in Ausubel, F.M. et al, eds. Current Protocols in Molecular Biology, 2004, John Wiley & Sons Inc., or Innis, M.A. et-al., eds. PCR Protocols: a guide to methods and applications, 1990, Academic Press, San Diego.
  • FISH fluorescence in-situ hybridisation
  • in situ hybridization comprises the following major steps: (1) fixation of tissue to be analyzed; (2) prehybridization treatment of the sample to increase accessibility of target nucleic acid, and to reduce nonspecific binding; (3) hybridization of the mixture of nucleic acids to the nucleic acid in the biological structure or tissue; (4) post-hybridization washes to remove nucleic acid fragments not bound in the hybridization, and (5) detection of the hybridized nucleic acid fragments.
  • the probes used in such applications are typically labeled, for example, with radioisotopes or fluorescent reporters.
  • Preferred probes are sufficiently long, for example, from about 50, 100, or 200 nucleotides to about 1000 or more nucleotides, to enable specific hybridization with the target nucleic acid(s) under stringent conditions.
  • Standard methods for carrying out FISH are described in Ausubel, F.M. et al., eds. Current Protocols in Molecular Biology, 2004, John Wiley & Sons Inc and Fluorescence In Situ Hybridization: Technical Overview by John M. S. Bartlett in Molecular Diagnosis of Cancer, Methods and Protocols, 2nd ed.; ISBN: 1-59259-760-2; March 2004, pps. 077-088; Series: Methods in Molecular Medicine.
  • the protein products expressed from the mRNAs may be assayed by immunohistochemistry of tumour samples, solid phase immunoassay with microtiter plates, Western blotting, 2-dimensional SDS-polyacrylamide gel electrophoresis, ELISA, flow cytometry and other methods known in the art for detection of specific proteins. Detection methods would include the use of site specific antibodies. The skilled person will recognize that all such well-known techniques for detection of upregulation of cyclin E, or loss of p21 or p27, or detection of CDC4 variants could be applicable in the present case.
  • MCL mantle cell lymphoma
  • t(l 1 ; 14)(ql 3;q32) translocation Over-expression of cyclin D 1 mR A, found in mantle cell lymphoma (MCL), is a critical diagnostic marker. Yatabe et al (Blood.
  • the invention provides the use of the compounds of the formulae (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein as antifungal agents.
  • the compounds may be used in animal medicine (for example in the treatment of mammals such as humans), or in the treatment of plants (e.g. in agriculture and horticulture), or as general antifungal agents, for example as preservatives and disinfectants.
  • the invention provides a compound of the formula (0) and subgroups thereof such as formulae (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein for use in the prophylaxis or treatment of a fungal infection in a mammal such as a human.
  • a compound of the formula (0) and sub-groups thereof such as formulae (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein for the manufacture of a medicament for use in the prophylaxis or treatment of a fungal infection in a mammal such as a human.
  • compounds of the invention may be administered to human patients suffering from, or at risk of infection by, topical fungal infections caused by among other organisms, species of Candida, Trichophyton, Microsporum or Epidermophyton, or in mucosal infections caused by Candida albicans (e.g. thrush and vaginal candidiasis).
  • the compounds of the invention can also be administered for the treatment or prophylaxis of systemic fungal infections caused by, for example, Candida albicans, Cryptococcus neoformans, Aspergillus flavus, Aspergillus fumigatus, Coccidiodies, Paracoccidioides, Histoplasma or Blastomyces.
  • the invention provides an antifungal composition for agricultural (including horticultural) use, comprising a compound of the formula (1°) and subgroups thereof such as formulae (I), (la), (lb), (II), (III), (IV), (V), (VI) and (VII) as hereinbefore defined together with an agriculturally acceptable diluent or carrier.
  • the invention further provides a method of treating an animal (including a mammal such as a human), plant or seed having a fungal infection, which comprises treating said animal, plant or seed, or the locus of said plant or seed, with an effective amount of a compound of the formula (1°) and sub-groups thereof such as formulae (I), (la), (lb), (II), (III), (IV), (V), (VI) and (VII) as hereinbefore defined.
  • the invention also provides a method of treating a fungal infection in a plant or seed which comprises treating the plant or seed with an antifungally effective amount of a fungicidal composition as hereinbefore defined.
  • Differential screening assays may be used to select for those compounds of the present invention with specificity for non-human CDK enzymes.
  • Compounds which act specifically on the CDK enzymes of eukaryotic pathogens can be used as antifungal or anti-parasitic agents.
  • Inhibitors of the Candida CDK kinase, CKSI can be used in the treatment of candidiasis.
  • Antifungal agents can be used against infections of the type hereinbefore defined, or opportunistic infections that commonly occur in debilitated and immunosuppressed patients such as patients with leukemias and lymphomas, people who are receiving immunosuppressive therapy, and patients with predisposing conditions such as diabetes mellitus or AIDS, as well as for non-immunosuppressed patients.
  • Assays described in the art can be used to screen for agents which may be useful for inhibiting at least one fungus implicated in mycosis such as candidiasis, aspergillosis, mucormycosis, blastomycosis, geotrichosis, cryptococcosis, chromoblastomycosis, coccidiodomycosis, conidiosporosis, histoplasmosis, maduromycosis, rhinosporidosis, nocaidiosis, para-actinomycosis, penicilliosis, monoliasis, or sporotrichosis.
  • mycosis such as candidiasis, aspergillosis, mucormycosis, blastomycosis, geotrichosis, cryptococcosis, chromoblastomycosis, coccidiodomycosis, conidiosporosis, histoplasmosis, maduromycosis, rhinosporidosis,
  • the differential screening assays can be used to identify anti-fungal agents which may have therapeutic value in the treatment of aspergillosis by making use of the CDK genes cloned from yeast such as Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus nidulans, or Aspergillus terreus, or where the mycotic infection is mucon-nycosis, the CDK assay can be derived from yeast such as Rhizopus arrhizus, Rhizopus oryzae, Absidia corymbifera, Absidia ramosa, or Mucorpusillus. Sources of other CDK enzymes include the pathogen Pneumocystis carinii.
  • M.I.C. minimum inhibitory concentration
  • a series of agar plates, each having the test compound incorporated at a particular concentration is inoculated with a standard culture of, for example, Candida albicans and each plate is then incubated for an appropriate period at 37 °C. The plates are then examined for the presence or absence of growth of the fungus and the appropriate M.I.C. value is noted
  • the in vivo evaluation of the compounds can be carried out at a series of dose levels by intraperitoneal or intravenous injection or by oral administration, to mice that have been inoculated with a fungus, e.g., a strain of Candida albicans or Aspergillus flavus.
  • the activity of the compounds can be assessed on the basis of the survival of a treated group of mice after the death of an untreated group of mice. The activity may be measured in terms of the dose level at which the compound provides 50% protection against the lethal effect of the infection (PD 5 o).
  • the compounds can be administered alone or in admixture with a pharmaceutical carrier selected in accordance with the intended route of administration and standard pharmaceutical practice.
  • a pharmaceutical carrier selected in accordance with the intended route of administration and standard pharmaceutical practice.
  • they may be administered orally, parenterally, intravenously, intramuscularly or subcutaneously by means of the formulations described above in the section headed "Pharmaceutical Formulations".
  • the daily dosage level of the antifungal compounds of the invention can be from 0.01 to 10 mg/kg (in divided doses), depending on inter alia the potency of the compounds when administered by either the oral or parenteral route.
  • Tablets or capsules of the compounds may contain, for example, from 5 mg. to 0.5 g of active compound for administration singly or two or more at a time as appropriate. The physician in any event will determine the actual dosage (effective amount) which will be most suitable for an individual patient and it will vary with the age, weight and response of the particular patient.
  • the antifungal compounds can be administered in the form of a suppository or pessary, or they may be applied topically in the form of a lotion, solution, cream, ointment or dusting powder.
  • they can be incorporated into a cream consisting of an aqueous emulsion of polyethylene glycols or liquid paraffin; or they can be incorporated, at a concentration between 1 and 10%, into an ointment consisting of a white wax or white soft paraffin base together with such stabilizers and preservatives as may be required.
  • anti-fungal agents developed with such differential screening assays can be used, for example, as preservatives in foodstuff, feed supplement for promoting weight gain in livestock, or in disinfectant formulations for treatment of non-living matter, e.g., for decontaminating hospital equipment and rooms.
  • side by side comparison of inhibition of a mammalian CDK and an insect CDK such as the Drosophilia CDK5 gene (Hellmich et al. (1994) FEBS Lett 356:317-21)
  • the present invention expressly contemplates the use and formulations of the compounds of the invention in insecticides, such as for use in management of insects like the fruit fly.
  • certain of the subject CDK inhibitors can be selected on the basis of inhibitory specificity for plant CDK's relative to the mammalian enzyme.
  • a plant CDK can be disposed in a differential screen with one or more of the human enzymes to select those compounds of greatest selectivity for inhibiting the plant enzyme.
  • the present invention specifically contemplates formulations of the subject CDK inhibitors for agricultural applications, such as in the form of a defoliant or the like.
  • the compounds of the invention may be used in the form of a composition formulated as appropriate to the particular use and intended purpose.
  • the compounds may be applied in the form of dusting powders, or granules, seed dressings, aqueous solutions, dispersions or emulsions, dips, sprays, aerosols or smokes.
  • Compositions may also be supplied in the form of dispersible powders, granules or grains, or concentrates for dilution prior to use.
  • Such compositions may contain such conventional carriers, diluents or adjuvants as are known and acceptable in agriculture and horticulture and they are manufactured in accordance with conventional procedures.
  • compositions may also incorporate other active ingredients, for example, compounds having herbicidal or insecticidal activity or a further fungicide.
  • the compounds and compositions can be applied in a number of ways, for example they can be applied directly to the plant foliage, stems, branches, seeds or roots or to the soil or other growing medium, and they may be used not only to eradicate disease, but also prophylactically to protect the plants or seeds from attack.
  • the compositions may contain from 0.01 to 1 wt.% of the active ingredient. For field use, likely application rates of the active ingredient may be from 50 to 5000 g/hectare.
  • the invention also contemplates the use of the compounds of the formula (0) and sub-groups thereof such as formulae (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein in the control of wood decaying fungi and in the treatment of soil where plants grow, paddy fields for seedlings, or water for perfusion.
  • formulae (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein in the control of wood decaying fungi and in the treatment of soil where plants grow, paddy fields for seedlings, or water for perfusion.
  • Also contemplated by the invention is the use of the compounds of the formula (0) and sub-groups thereof such as formulae (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein to protect stored grain and other non-plant loci from fungal infestation.
  • formulae (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein to protect stored grain and other non-plant loci from fungal infestation.
  • the compounds prepared were characterised by liquid chromatography and mass spectroscopy (LC-MS) using the system and operating conditions set out below. Where chlorine is present and a single mass is quoted, the mass quoted for the compound is for 35 C1.
  • the two systems were equipped with identical chromatography columns and were set up to run under the same operating conditions. The operating conditions used are also described below. In the examples, the retention times are given in minutes.
  • Mass Spec Detector Micromass Platform LC PDA Detector: Waters 996 PDA
  • Mass Spec Detector Micromass Platform LC PDA Detector: Waters 2996 PDA
  • Capillary voltage 3.6 kV Cone voltage: 30 V
  • Source Temperature 120 °C Scan Range: 165-700 amu Ionisation Mode: ElectroSpray Positive or ElectroSpray Negative or ElectroSpray Positive & Negative
  • CFO column fluidic organiser
  • RMA Waters reagent manager
  • Solvent A H 2 0 + 0.1 % Formic Acid, pH 1.5
  • Solvent B CH 3 CN + 0.1% Formic Acid
  • Solvent A H 2 0 + 10 mM NH 4 HCO 3 + NH OH, pH 9.5
  • Solvent B CH 3 CN
  • Re-equilibration A 2.1 minute re-equilibration step is carried out to prepare the system for the next run Make Up flow rate: 1 ml/min
  • Example 2B 4-Amino-lH-pyrazole-3-carboxylic acid (4-fluorophenyl)-amide (Example 2B) (500 mg; 2.27 mmol) was dissolved in 5 ml of pyridine, treated with trifluoroacetic anhydride (320 ⁇ l, 2.5 mmol) then stirred at room temperature overnight. The solvent was removed by evaporation, the residue was partitioned between ethyl acetate (50 ml) and 2 M hydrochloric acid (50 ml), and the ethyl acetate layer was separated, washed with brine (50 ml), dried (MgSO 4 ), filtered and evaporated to give 560 mg of product as a brown solid. (LC/MS: [M+H] + 317).
  • the compound was prepared in a manner analogous to Example 23, but using 2- chloropyrazine in place of 2,3-dichloropyrazine. (LC/MS: R t 3.28 [M+H] + 299).
  • Diisopropylazodicarboxylate (0.404 g, 2 mmol) was added dropwise to a solution of triphenylphosphine (0.524 g, 2 mmol) in THF (10 ml).
  • Methyl salicylate (0.304 g, 2 mmol) was added dropwise and the resultant mixture was stirred at room temperature for 1 hour.
  • 1,2-Hydroxyethyl pyrrolidine (0.230 g, 2 mmol) was added dropwise and the reaction mixture was left stirring at room temperature for a further 1.5 hours.
  • This compound was prepared in a manner analogous to the compound of Example 19 by succssive reductive alkylations using firstly cyclohexanone and then formaldehyde. (LC/MS: R t 2.77 [MH] + 316.71 ).
  • Trifluoroacetic acid 200 ⁇ l was added to a stirred suspension of ⁇ 2-[3-(4-fluoro- phenylcarbamoyl)- 1 H-pyrazol-4-ylcarbamoyl] - 1 -methyl- 1 H-imidazol-4-yl ⁇ - carbamic acid tert-butyl ester (30 mg) in dichloromethane (5 ml), then stirred at room temperature for 2 hours. The solvent was evaporated then re-evaporated with toluene (2 x 10 ml). The residue was triturated with diethyl ether and the resultant solid collected by filtration.
  • 4-thiomorpholine-4-yl-cyclohexylamine 4-( 1 , 1 -dioxo-thiomorpholine-4-yl)-cyclohexylamine; N- (tetrahydro-pyran-4-yl)-cyclohexane- 1 ,4-diamine; 4-(4-methyl-piperazin- 1 -yl)-cyclohexylamine; r-methyl-[l,4']bipiperidinyl-4-ylamine; and 4-morpholin-4-yl-cyclohexylamine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Oncology (AREA)
  • Immunology (AREA)
  • Communicable Diseases (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Diabetes (AREA)
  • Molecular Biology (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Obesity (AREA)
  • AIDS & HIV (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)

Abstract

The invention provides compounds of the formula (0) or salts or tautomers or N-oxides or solvates thereof for use in the prophylaxis or treatment of disease states and conditions such as cancers mediated by cyclin-dependent kinase and glycogen synthase kinase-3. Formula (0). In formula (0): X is a group R1-A-NR4- or a 5- or 6-membered carbocyclic or heterocyclic ring; A is a bond, S02, C=O, NRg(C=O) or O(C=O) wherein Rg is hydrogen or C1-4 hydrocarbyl optionally substituted by hydroxy or C1-4 alkoxy; Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length; R1 is hydrogen; a carbocyclic or heterocyclic group having from 3 to 12 ring members; or a C1-8 hydrocarbyl group optionally substituted by one or more substituents selected from halogen (e.g. fluorine), hydroxy, C1-4 hydrocarbyloxy, amino, mono- or di-C1-4 hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from 0, S, NH, SO, S02; R2 is hydrogen; halogen; C1-4 alkoxy (e.g. methoxy); or a C1-4 hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C1-4 alkoxy (e.g. methoxy); R3 is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members; and R4 is hydrogen or a C1-4 hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C1-4 alkoxy (e.g. methoxy).

Description

3 , 4-DISUBSTITUTED IH- PYRAZOLE COMPOUNDS AND THEIR USE AS CYCLIN DEPENDENT KINASES ( CDK) AND GLYCOGEN SYNTHASE KINASE-3 (GSK-3 ) MODULATORS
This invention relates to pyrazole compounds that inhibit or modulate the activity of cyclin dependent kinases (CDK) and glycogen synthase kinase-3 (GSK-3), to the use of the compounds in the treatment or prophylaxis of disease states or conditions mediated by cyclin dependent kinases and glycogen synthase kinase-3, and to novel compounds having cyclin dependent kinase or glycogen synthase kinase-3 inhibitory or modulating activity. Also provided are pharmaceutical compositions containing the compounds and novel chemical intermediates.
Background of the Invention
Protein kinases constitute a large family of structurally related enzymes that are responsible for the control of a wide variety of signal transduction processes within the cell (Hardie, G. and Hanks, S. (1995) The Protein Kinase Facts Book. I and II, Academic Press, San Diego, CA). The kinases may be categorized into families by the substrates they phosphorylate (e.g., protein-tyrosine, protein-serine/threonine, lipids, etc.). Sequence motifs have been identified that generally correspond to each of these kinase families (e.g., Hanks, S.K., Hunter, T., FASEB J., 9:576-596 (1995); Knighton, et al, Science, 253:407-414 (1991); Hiles, et al, Cell, 70:419-429 (1992); Kunz, et al, Cell, 73:585-596 (1993); Garcia-Bustos, et al, EMBO J., 13:2352-2361 (1994)).
Protein kinases may be characterized by their regulation mechanisms. These mechanisms include, for example, autophosphorylation, transphosphorylation by other kinases, protein-protein interactions, protein-lipid interactions, and protein- polynucleotide interactions. An individual protein kinase may be regulated by more than one mechanism.
Kinases regulate many different cell processes including, but nqt limited to, proliferation, differentiation, apoptosis, motility, transcription, translation and other signalling processes, by adding phosphate groups to target proteins. These phosphorylation events act as molecular on/off switches that can modulate or regulate the target protein biological function. Phosphorylation of target proteins occurs in response to a variety of extracellular signals (hormones, neurotransmitters, growth and differentiation factors, etc.), cell cycle events, environmental or nutritional stresses, etc. The appropriate protein kinase functions in signalling pathways to activate or inactivate (either directly or indirectly), for example, a metabolic enzyme, regulatory protein, receptor, cytoskeletal protein, ion channel or pump, or transcription factor. Uncontrolled signalling due to defective control of protein phosphorylation has been implicated in a number of diseases, including, for example, inflammation, cancer, allergy/asthma, disease and conditions of the immune system, disease and conditions of the central nervous system, and angiogenesis.
The process of eukaryotic cell division may be broadly divided into a series of sequential phases termed Gl, S, G2 and M. Correct progression through the various phases of the cell cycle has been shown to be critically dependent upon the spatial and temporal regulation of a family of proteins known as cyclin dependent kinases (CDKs) and a diverse set of their cognate protein partners termed cyclins. CDKs are cdc2 (also known as CDK1) homologous serine-threonine kinase proteins that are able to utilise ATP as a substrate in the phosphorylation of diverse polypeptides in a sequence dependent context. Cyclins are a family of proteins characterised by a homology region, containing approximately 100 amino acids, termed the "cyclin box" which is used in binding to, and defining selectivity for, specific CDK partner proteins.
Modulation of the expression levels, degradation rates, and activation levels of various CDKs and cyclins throughout the cell cycle leads to the cyclical formation of a series of CDK/cyclin complexes, in which the CDKs are enzymatically active. The formation of these complexes controls passage through discrete cell cycle checkpoints and thereby enables the process of cell division to continue. Failure to satisfy the pre-requisite biochemical criteria at a given cell cycle checkpoint, i.e. failure to form a required CDK/cyclin complex, can lead to cell cycle arrest and/or cellular apoptosis. Aberrant cellular proliferation, as manifested in cancer, can often be attributed to loss of correct cell cycle control. Inhibition of CDK enzymatic activity therefore provides a means by which abnormally dividing cells can have their division arrested and/or be killed. The diversity of CDKs, and CDK complexes, and their critical roles in mediating the cell cycle, provides a broad spectrum of potential therapeutic targets selected on the basis of a defined biochemical rationale.
Progression from the Gl phase to the S phase of the cell cycle is primarily regulated by CDK2, CDK3, CDK4 and CDK6 via association with members of the D and E type cyclins. The D-type cyclins appear instrumental in enabling passage beyond the Gl restriction point, where as the CDK2/cyclin E complex is key to the transition from the Gl to S phase. Subsequent progression through S phase and entry into G2 is thought to require the CDK2/cyclin A complex. Both mitosis, and the G2 to M phase transition which triggers it, are regulated by complexes of CDK1 and the A and B type cyclins.
During Gl phase Retinoblastoma protein (Rb), and related pocket proteins such as pi 30, are substrates for CDK(2, 4, & 6)/cyclin complexes. Progression through Gl is in part facilitated by hyperphosphorylation, and thus inactivation, of Rb and pi 30 by the CDK(4/6)/cyclin-D complexes. Hyperphosphorylation of Rb and pi 30 causes the release of transcription factors, such as E2F, and thus the expression of genes necessary for progression through Gl and for entry into S-phase, such as the gene for cyclin E. Expression of cyclin E facilitates formation of the CDK2/cyclin E complex which amplifies, or maintains, E2F levels via further phosphorylation of Rb. The CDK2/cyclin E complex also phosphorylates other proteins necessary for DNA replication, such as NPAT, which has been implicated in histone biosynthesis. Gl progression and the Gl/S transition are also regulated via the mitogen stimulated Myc pathway, which feeds into the CDK2/cyclin E pathway. CDK2 is also connected to the p53 mediated DNA damage response pathway via p53 regulation of p21 levels. p21 is a protein inhibitor of CDK2/cyclin E and is thus capable of blocking, or delaying, the Gl/S transition. The CDK2/cyclin E complex may thus represent a point at which biochemical stimuli from the Rb, Myc and p53 pathways are to some degree integrated. CDK2 and/or the CDK2/cyclin E complex therefore represent good targets for therapeutics designed at arresting, or recovering control of, the cell cycle in aberrantly dividing cells.
The exact role of CDK3 in the cell cycle is not clear. As yet no cognate cyclin partner has been identified, but a dominant negative form of CDK3 delayed cells in
Gl, thereby suggesting that CDK3 has a role in regulating the Gl/S transition.
Although most CDKs have been implicated in regulation of the cell cycle there is evidence that certain members of the CDK family are involved in other biochemical processes. This is exemplified by CDK5 which is necessary for correct neuronal development and which has also been implicated in the phosphorylation of several neuronal proteins such as Tau, NUDE-1, synapsinl, DARPP32 and the Muncl8/SyntaxinlA complex. Neuronal CDK5 is conventionally activated by binding to the p35/p39 proteins. CDK5 activity can, however, be deregulated by the binding of p25, a truncated version of p35. Conversion of p35 to p25, and subsequent deregulation of CDK5 activity, can be induced by ischemia, excitotoxicity, and β-amyloid peptide. Consequently p25 has been implicated in the pathogenesis of neurodegenerative diseases, such as Alzheimer's, and is therefore of interest as a target for therapeutics directed against these diseases.
CDK7 is a nuclear protein that has cdc2 CAK activity and binds to cyclin H. CDK7 has been identified as component of the TFIIH transcriptional complex which has RNA polymerase II C-terminal domain (CTD) activity. This has been associated with the regulation of HIV- 1 transcription via a Tat-mediated biochemical pathway. CDK8 binds cyclin C and has been implicated in the phosphorylation of the CTD of RNA polymerase II. Similarly the CDK9/cyclin-Tl complex (P-TEFb complex) has been implicated in elongation control of RNA polymerase II. PTEF-b is also required for activation of transcription of the HIN-1 genome by the viral transactivator Tat through its interaction with cyclin Tl . CDK7, CDK8, CDK9 and the P-TEFb complex are therefore potential targets for anti-viral therapeutics. At a molecular level mediation of CDK/cyclin complex activity requires a series of stimulatory and inhibitory phosphorylation, or dephosphorylation, events. CDK phosphorylation is performed by a group of CDK activating kinases (CAKs) and/or kinases such as weel, Mytl and Mikl. Dephosphorylation is performed by phosphatases such as cdc25(a & c), pp2a, or KAP.
CDK/cyclin complex activity may be further regulated by two families of endogenous cellular proteinaceous inhibitors: the Kip/Cip family, or the INK family. The INK proteins specifically bind CDK4 and CDK6. pl6ink4 (also known as MTS1) is a potential tumour suppressor gene that is mutated, or deleted, in a large number of primary cancers. The Kip/Cip family contains proteins such as p21cipl'Wafl, p27κipl and p57κip2. As discussed previously p21 is induced by p53 and is able to inactivate the CDK2/cyclin(E/A) and CDK4/cyclin(Dl/D2/D3) complexes. Atypically low levels of p27 expression have been observed in breast, colon and prostate cancers. Conversely over expression of cyclin E in solid tumours has been shown to correlate with poor patient prognosis. Over expression of cyclin Dl has been associated with oesophageal, breast, squamous, and non- small cell lung carcinomas.
The pivotal roles of CDKs, and their associated proteins, in co-ordinating and driving the cell cycle in proliferating cells have been outlined above. Some of the biochemical pathways in which CDKs play a key role have also been described.
The development of monotherapies for the treatment of proliferative disorders, such as cancers, using therapeutics targeted generically at CDKs, or at specific CDKs, is therefore potentially highly desirable. CDK inhibitors could conceivably also be used to treat other conditions such as viral infections, autoimmune diseases and neuro-degenerative diseases, amongst others. CDK targeted therapeutics may also provide clinical benefits in the treatment of the previously described diseases when used in combination therapy with either existing, or new, therapeutic agents. CDK targeted anticancer therapies could potentially have advantages over many current antitumour agents as they would not directly interact with DNA and should therefore reduce the risk of secondary tumour development. Glycogen Synthase Kinase-3 (GSK3) is a serine-threonine kinase that occurs as two ubiquitously expressed isoforms in humans (GSK3α & beta GSK3β). GSK3 has been implicated as having roles in embryonic development, protein synthesis, cell proliferation, cell differentiation, microtubule dynamics, cell motility and cellular apoptosis. As such GSK3 has been implicated in the progression of disease states such as diabetes, cancer, Alzheimer's disease, stroke, epilepsy, motor neuron disease and/or head trauma. Phylogenetically GSK3 is most closely related to the cyclin dependent kinases (CDKs).
The consensus peptide substrate sequence recognised by GSK3 is (Ser/Thr)-X-X- X-(pSer/pThr), where X is any amino acid (at positions (n+1), (n+2), (n+3)) and pSer and pThr are phospho-serine and phospho-threonine respectively (n+4). GSK3 phosphorylates the first serine, or threonine, at position (n). Phospho-serine, or phospho-threonine, at the (n+4) position appear necessary for priming GSK3 to give maximal substrate turnover. Phosphorylation of GSK3α at Ser21, or GSK3β at Ser9, leads to inhibition of GSK3. Mutagenesis and peptide competition studies have led to the model that the phosphorylated N-terminus of GSK3 is able to compete with phospho-peptide substrate (S/TXXXpS/pT) via an autoinhibitory mechanism. There are also data suggesting that GSK3α and GSKβ may be subtly regulated by phosphorylation of tyrosines 279 and 216 respectively. Mutation of these residues to a Phe caused a reduction in in vivo kinase activity. The X-ray crystallographic structure of GSK3β has helped to shed light on all aspects of GSK3 activation and regulation.
GSK3 forms part of the mammalian insulin response pathway and is able to phosphorylate, and thereby inactivate, glycogen synthase. Upregulation of glycogen synthase activity, and thereby glycogen synthesis, through inhibition of GSK3, has thus been considered a potential means of combating type II, or non- insulin-dependent diabetes mellitus (NIDDM): a condition in which body tissues become resistant to insulin stimulation. The cellular insulin response in liver, adipose, or muscle tissues, is triggered by insulin binding to an extracellular insulin receptor. This causes the phosphorylation, and subsequent recruitment to the plasma membrane, of the insulin receptor substrate (IRS) proteins. Further phosphorylation of the IRS proteins initiates recruitment of phosphoinositide-3 kinase (PI3K) to the plasma membrane where it is able to liberate the second messenger phosphatidylinosityl 3,4,5-trisphosphate (PIP3). This facilitates co- localisation of 3-phosphoinositide-dedependent protein kinase 1 (PDK1) and protein kinase B (PKB or Akt) to the membrane, where PDK1 activates PKB. PKB is able to phosphorylate, and thereby inhibit, GSK3α and/or GSKβ through phosphorylation of Ser9, or ser21, respectively. The inhibition of GSK3 then triggers upregulation of glycogen synthase activity. Therapeutic agents able to inhibit GSK3 may thus be able to induce cellular responses akin to those seen on insulin stimulation. A further in vivo substrate of GSK3 is the eukaryotic protein synthesis initiation factor 2B (eIF2B). eIF2B is inactivated via phosphorylation and is thus able to suppress protein biosynthesis. Inhibition of GSK3, e.g. by inactivation of the "mammalian target of rapamycin" protein (mTOR), can thus upregulate protein biosynthesis. Finally there is some evidence for regulation of GSK3 activity via the mitogen activated protein kinase (MAPK) pathway through phosphorylation of GSK3 by kinases such as mitogen activated protein kinase activated protein kinase 1 (MAPKAP-K1 or RSK). These data suggest that GSK3 activity may be modulated by mitogenic, insulin and/or amino acid stimulii.
It has also been shown that GSK3β is a key component in the vertebrate Wnt signalling pathway. This biochemical pathway has been shown to be critical for normal embryonic development and regulates cell proliferation in normal tissues. GSK3 becomes inhibited in response to Wnt stimulii. This can lead to the dephosphorylation of GSK3 substrates such as Axin, the adenomatous polyposis coli (APC) gene product and β-catenin. Aberrant regulation of the Wnt pathway has been associated with many cancers. Mutations in APC, and/or β-catenin, are common in colorectal cancer and other tumours, β-catenin has also been shown to be of importance in cell adhesion. Thus GSK3 may also modulate cellular adhesion processes to some degree. Apart from the biochemical pathways already described there are also data implicating GSK3 in the regulation of cell division via phosphorylation of cyclin-Dl, in the phosphorylation of transcription factors such as c-Jun, CCAAT/enhancer binding protein α (C/EBPα), c-Myc and/or other substrates such as Nuclear Factor of Activated T-cells (NFATc), Heat Shock Factor-1 (HSF-1) and the c-AMP response element binding protein (CREB). GSK3 also appears to play a role, albeit tissue specific, in regulating cellular apoptosis. The role of GSK3 in modulating cellular apoptosis, via a pro-apoptotic mechanism, may be of particular relevance to medical conditions in which neuronal apoptosis can occur. Examples of these are head trauma, stroke, epilepsy, Alzheimer's and motor neuron diseases, progressive supranuclear palsy, corticobasal degeneration, and Pick's disease. In vitro it has been shown that GSK3 is able to hyper- phosphorylate the microtubule associated protein Tau. Hyperphosphorylation of Tau disrupts its normal binding to microtubules and may also lead to the formation of intra-cellular Tau filaments. It is believed that the progressive accumulation of these filaments leads to eventual neuronal dysfunction and degeneration. Inhbition of Tau phosphorylation, through inhibition of GSK3 , may thus provide a means of limiting and/or preventing neurodegenerative effects.
Prior Art
WO 02/34721 from Du Pont discloses a class of indeno [l,2-c]pyrazol-4-ones as inhibitors of cyclin dependent kinases.
WO 01/81348 from Bristol Myers Squibb describes the use of 5-thio-, sulphinyl- and sulphonylpyrazolo[3,4-b]-pyridines as cyclin dependent kinase inhibitors.
WO 00/62778 also from Bristol Myers Squibb discloses a class of protein tyrosine kinase inhibitors.
WO 01/72745A1 from Cyclacel describes 2-substituted 4-heteroaryl-pyrimidines and their preparation, pharmaceutical compositions containing them and their use as inhibitors of cyclin-dependant kinases (CDKs) and hence their use in the treatment of proliferative disorders such as cancer, leukaemia, psoriasis and the like. WO 99/21845 from Agouron describes 4-aminothiazole derivatives for inhibiting cyclin-dependent kinases (CDKs), such as CDK1, CDK2, CDK4, and CDK6. The invention is also directed to the therapeutic or prophylactic use of pharmaceutical compositions containing such compounds and to methods of treating malignancies and other disorders by administering effective amounts of such compounds.
WO 01/53274 from Agouron discloses as CDK kinase inhibitors a class of compounds which can comprise an amide-substituted benzene ring linked to an N- containing heterocyclic group.
WO 01/98290 (Pharmacia & Upjohn) discloses a class of 3-aminocarbonyl-2- carboxamido thiophene derivatives as protein kinase inhibitors.
WO 01/53268 and WO 01/02369 from Agouron disclose compounds that mediate or inhibit cell proliferation through the inhibition of protein kinases such as cyclin dependent kinase or tyrosine kinase. The Agouron compounds have an aryl or heteroaryl ring attached directly or though a CH=CH or CH=N group to the 3- position of an indazole ring.
WO 00/39108 and WO 02/00651 (both to Du Pont Pharmaceuticals) describe heterocyclic compounds that are inhibitors of trypsin-like serine protease enzymes, especially factor Xa and thrombin. The compounds are stated to be useful as anticoagulants or for the prevention of thromboembolic disorders.
US 2002/0091116 (Zhu et al), WO 01/19798 and WO 01/64642 each disclose diverse groups of heterocyclic compounds as inhibitors of Factor Xa. Some 1- substituted pyrazole carboxamides are disclosed and exemplified.
US 6,127,382, WO 01/70668, WO 00/68191, WO 97/48672, WO 97/19052 and WO 97/19062 (all to Allergan) each describe compounds having retinoid-like activity for use in the treatment of various hyperproliferative diseases including cancers. WO 02/070510 (Bayer) describes a class of amino-dicarboxylic acid compounds for use in the treatment of cardiovascular diseases. Although pyrazoles are mentioned generically, there are no specific examples of pyrazoles in this document.
WO 97/03071 (Knoll AG) discloses a class of heterocyclyl-carboxamide derivatives for use in the treatment of central nervous system disorders. Pyrazoles are mentioned generally as examples of heterocyclic groups but no specific pyrazole compounds are disclosed or exemplified.
WO 97/40017 (Novo Nordisk) describes compounds that are modulators of protein tyrosine phosphatases.
WO 03/020217 (Univ. Connecticut) discloses a class of pyrazole 3-carboxamides as cannabinoid receptor modulators for treating neurological conditions. It is stated (page 15) that the compounds can be used in cancer chemotherapy but it is not made clear whether the compounds are active as anti-cancer agents or whether they are administered for other purposes.
WO 01/58869 (Bristol Myers Squibb) discloses cannabinoid receptor modulators that can be used inter alia to treat a variety of diseases. The main use envisaged is the treatment of respiratory diseases, although reference is made to the treatment of cancer.
WO 01/02385 (Aventis Crop Science) discloses l-(quinoline-4-yl)-lH-pyrazole derivatives as fungicides. 1-Unsubsituted pyrazoles are disclosed as synthetic intermediates.
WO 2004/039795 (Fujisawa) discloses amides containing a 1 -substituted pyrazole group as inhibitors of apolipoprotein B secretion. The compounds are stated to be useful in treating such conditions as hyperlipidemia.
WO 2004/000318 (Cellular Genomics) discloses various amino-substituted monocycles as kinase modulators. None of the exemplified compounds are pyrazoles. Summary of the Invention
The invention provides compounds that have cyclin dependent kinase inhibiting or modulating activity, and which it is envisaged will be useful in preventing or treating disease states or conditions mediated by the kinases.
Thus, for example, it is envisaged that the compounds of the invention will be useful in alleviating or reducing the incidence of cancer.
Accordingly, in one aspect, the invention provides the use of a compound for the manufacture of a medicament for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase, the compound having the formula (0):
Figure imgf000013_0001
or salts or tautomers or N-oxides or solvates thereof; wherein X is a group R^A-NR4- or a 5- or 6-membered carbocyclic or heterocyclic ring;
A is a bond, SO2, C=O, NRs(C=O) or O(C=O) wherein Rg is hydrogen or Ci-4 hydrocarbyl optionally substituted by hydroxy or Cμ alkoxy;
Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length; R1 is hydrogen; a carbocyclic or heterocyclic group having from 3 to 12 ring members; or a -s hydrocarbyl group optionally substituted by one or more substituents selected from halogen (e.g. fluorine), hydroxy, C1.4 hydrocarbyloxy, amino, mono- or di-Ci. hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO2; R2 is hydrogen; halogen; C alkoxy (e.g. methoxy); or a C1. hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or Cμ alkoxy (e.g. methoxy);
R3 is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members; and
R4 is hydrogen or a CM hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or Cμ alkoxy (e.g. methoxy).
In one embodiment, the invention provides the use of a compound for the manufacture of a medicament for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase, the compound having the formula
Figure imgf000014_0001
or salts or tautomers or N-oxides or solvates thereof; wherein
X is a group R'-A-NR4- or a 5- or 6-membered carbocyclic or heterocyclic ring;
A is a bond, C=O, NRs(C=O) or O(C=O) wherein Rg is hydrogen or CM hydrocarbyl optionally substituted by hydroxy or Ci-4 alkoxy; Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length;
R1 is hydrogen; a carbocyclic or heterocyclic group having from 3 to 12 ring members; or a Cι.8 hydrocarbyl group optionally substituted by one or more substituents selected from halogen (e.g. fluorine), hydroxy, C hydrocarbyloxy, amino, mono- or CH-CM hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO2; R2 is hydrogen; halogen; CM alkoxy (e.g. methoxy); or a C1- hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C alkoxy (e.g. methoxy);
R3 is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members; and
R4 is hydrogen or a C hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C alkoxy (e.g. methoxy).
The invention also provides the use of a compound for the manufacture of a medicament for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase, the compound having the formula (I):
Figure imgf000015_0001
or salts or tautomers or N-oxides or solvates thereof; wherein X is a group R*-A-NR4-;
A is a bond, C=O, NRg(C= ) or O(C=O) wherein Rg is hydrogen or CM hydrocarbyl optionally substituted by hydroxy or CM alkoxy;
Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length; R1 is hydrogen; a carbocyclic or heterocyclic group having from 3 to 12 ring members; or a Cι„8 hydrocarbyl group optionally substituted by one or more substituents selected from halogen (e.g. fluorine), hydroxy, C hydrocarbyloxy, amino, mono- or di-C1.4 hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO2;
R2 is hydrogen; halogen; C alkoxy (e.g. methoxy); or a CM hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or CM alkoxy (e.g. methoxy); R3 is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members; and
R4 is hydrogen or a CM hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C1-4 alkoxy (e.g. methoxy).
Any one or more of the following optional provisos, in any combination, may apply to the compounds of formulae (0), (1°), (I) and sub-groups thereof:
(a-i) When A is a bond and Y-R3 is an alkyl, cycloalkyl, optionally substituted phenyl or optionally substituted phenylalkyl, then R1 is other than a substituted or unsubstituted dihydronaphthalene, dihydrochroman, dihydrothiochroman, tetrahydroquinoline or tetrahydrobenzfuranyl group.
(a-ii) X and R are each other than a moiety containing a maleimide group wherein the maleimide group has nitrogen atoms attached to the 3-and 4-positions thereof.
(a-iii) R1 is other than a moiety containing a purine nucleoside group.
(a-iv) X and R are each other than a moiety containing a cyclobutene-1 ,2-dione group wherein the cyclobutene-1, 2-dione group has nitrogen atoms attached to the 3-and 4-positions thereof.
(a-v) R3 is other than a moiety containing a 4-monosubsituted or 4,5-disubstituted 2-pyridyl or 2-pyrimidinyl group or a 5-monosubstituted or 5,6-disubstituted 1,2,4- triazin-3-yl or 3-pyridazinyl group.
(a-vi) X and R3 are each other than a moiety containing a substituted or unsubstituted pyrazol-3-ylamine group linked to a substituted or unsubstituted pyridine, diazine or triazine group.
(a-vii) When A is C=O and Y-R3 is an alkyl, cycloalkyl, optionally substituted phenyl or optionally substituted phenylalkyl group, then R1 is other than a substituted or unsubstituted tetrahydronaphthalene, tetrahydroquinolinyl, tetrahydrochromanyl or tetrahydrothiochromanyl group. ι
(a-viii) When R is H and A is a bond, R is other than a moiety containing a bis- aryl, bis-heteroaryl or aryl heteroaryl group.
(a-ix) R3 is other than a moiety containing a l,2,8,8a-tetrahydro-7-methyl- cyclopropa[c]pyrrolo [3 ,2,e] indole-4-(5H)-one group.
(a-x) When Y is a bond, R is hydrogen, A is CO and R is a substituted phenyl group, each substituent on the phenyl group is other than a group CH2-P(O)RxRy where Rx and Ry are each selected from alkoxy and phenyl groups.
(a-xi) X is other than 4-(tert-butyloxycarbonylamino)-3-methylimidazol-2- ylcarbonylamino .
In another aspect, the invention provides, for use in medicine, a sub-group of compounds of the formula (I) represented by the general formula (la):
Figure imgf000017_0001
or salts or tautomers or N-oxides or solvates thereof; wherein
X is a group RJ-A-NR4-;
A is a bond, C=O, NRg(C=O) or O(C=O) wherein R is hydrogen or CM hydrocarbyl optionally substituted by hydroxy or C alkoxy;
Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length; R1 is a carbocyclic or heterocyclic group having from 3 to 12 ring members; or a Ci-s hydrocarbyl group optionally substituted by one or more substituents selected from fluorine, hydroxy, CM hydrocarbyloxy, amino, mono- or di-CM hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO2; R2 is hydrogen; halogen; CM alkoxy (e.g. methoxy); or a C1- hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or CM alkoxy (e.g. methoxy);
R3 is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members; and
R4 is hydrogen or a CM hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or CM alkoxy (e.g. methoxy).
Any one or more of the following optional provisos, in any combination, may apply to the compounds of formula (la) and sub-groups thereof:
Provisos (a-i) to (a-xi) above.
(b-i) R is other than a bridged azabicyclo group.
(b-ii) When A is a bond, then R3 is other than a moiety containing an unsubstituted or substituted phenyl group having attached to an ortho position thereof, a substituted or unsubstituted carbamoyl or thiocarbamoyl group.
(b-iii) When A is a bond, then R3 is other than a moiety containing an isoquinoline or quinoxaline group each having attached thereto a substituted or unsubstituted piperidine or piperazine ring.
(b-iv) When A is a bond and R1 is an alkyl group, then R3 is other than a moiety containing a thiatriazine group.
1 ^ (b-v) When R or R contain a moiety in which a heterocyclic ring having an
S(=O)2 ring member is fused to a carbocyclic ring, the said carbocyclic ring is other than a substituted or unsubstituted benzene ring
(b-vi) When A is a bond, R1 is other than an arylalkyl, heteroarylalkyl or piperidinylalkyl group each having attached thereto a substituent selected from cyano, and substituted or unsubstituted amino, aminoalkyl, amidine, guanidine, and carbamoyl groups. (b-vii) When X is a group R^A-NR4-, A is a bond and R1 is a non-aromatic group, then R3 is other than a six membered monocyclic aryl or heteroaryl group linked directly to a 5,6-fused bicyclic heteroaryl group.
In a further aspect, the invention provides a sub-group of novel compounds of the formulae (I) and (la) as defined herein, the novel compounds being represented by the formula (lb):
Figure imgf000019_0001
or salts or tautomers or N-oxides or solvates thereof; wherein
X is a group R^A-NR4-;
A is a bond, C=O, NRg(C=O) or O(C=O) wherein R8 is hydrogen or CM hydrocarbyl optionally substituted by hydroxy or CM alkoxy;
Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length; R1 is a carbocyclic or heterocyclic group having from 3 to 12 ring members; or a -s hydrocarbyl group optionally substituted by one or more substituents selected from fluorine, hydroxy, C1. hydrocarbyloxy, amino, mono- or di-CM hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO2;
R2 is hydrogen; halogen; CM alkoxy (e.g. methoxy); or a CM hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or CM alkoxy (e.g. methoxy);
R is selected from carbocyclic and heterocyclic groups having from 3 to 12 ring members; and
R4 is hydrogen or a CM hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or CM alkoxy (e.g. methoxy). Any one or more of the following optional provisos, in any combination, may apply to the compounds of formula (lb) and sub-groups thereof:
Provisos (a-i) to (a-vii), (a-ix) and (a-xi).
Provisos (b-i) to (b-vii).
(c-i) When A is a bond, R1 is other than a substituted arylalkyl, heteroarylalkyl or piperidinylalkyl group.
(c-ii) When X is an amino or alkylamino group and Y is a bond, R3 is other than a disubstituted thiazolyl group wherein one of the substituents is selected from cyano and fluoroalkyl.
The reference in proviso (a-iii) to a purine nucleoside group refers to substituted and unsubstituted purine groups having attached thereto a monosaccharide group (e.g. a pentose or hexose) or a derivative of a monosaccharide group, for example a deoxy monosaccharide group or a substituted monosaccharide group.
The reference in proviso (b-i) to a bridged azabicyclo group refers to bicycloalkane bridged ring systems in which one of the carbon atoms of the bicycloalkane has been replaced by a nitrogen atom. In bridged ring systems, two rings share more than two atoms, see for example Advanced Organic Chemistry, by Jerry March, 4th Edition, Wiley Interscience, pages 131-133, 1992.
The invention also provides the use of a compound of the formulae (la) or (lb) as defined herein for the manufacture of a medicament for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase.
The provisos (a-i) to (a-x), (b-i) to (b-vii), (c-i) and (c-ii) in formulae (I), (la) and (lb) above refer to the disclosures in the following prior art documents.
(a-i) US 2003/0166932, US 6,127,382, US 6,093,838
(a-ii) WO 03/031440
(a-iii) WO 03/014137 (a-vi) WO 02/22608, WO 02/22605, WO 02/22603 & WO 02/22601
(a-vii) WO 97/48672, WO 97/19052
(a-viii) WO 00/06169
(a-ix) US 5,502,068
(a-x) JP 07188269
(b-i) WO 03/040147
(b-ii) WO 01/70671
(b-iii) WO 01/32626
(b-iv) WO 98/08845
(b-v) WO 00/59902
(b-vi) US 6,020,357, WO 99/32454 & WO 98/28269
(b-vii) WO 2004/012736
(c-i) US 6,020,357, WO 99/32454 & WO 98/28269
(c-ii) US 2004/0082629
Any one or more of the foregoing optional provisos, (a-i) to (a-xi), (b-i) to (b-vii), (c-i) and (c-ii) in any combination, may also apply to the compounds of formulae (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein.
The invention also provides:
• The use of a compound of the formula (la), (lb), (II), (III), (IV), (IVa), (Va), (Nb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein for manufacture of a medicament for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase.
• A method for alleviating or reducing the incidence of a disease or condition comprising or arising from abnormal cell growth in a mammal, which method comprises administering to the mammal a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein in an amount effective in inhibiting abnormal cell growth.
• A method for alleviating or reducing the incidence of a disease state or condition mediated by a cyclin dependent kinase or glycogen synthase kinase-3, which method comprises administering to a subject in need thereof a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein.
• A method for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase, which method comprises administering to a subject in need thereof a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (NIII) and sub-groups thereof as defined herein.
• A method for treating a disease or condition comprising or arising from abnormal cell growth in a mammal, which method comprises administering to the mammal a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IN), (INa), (Na), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein in an amount effective in inhibiting abnormal cell growth.
• A method for treating a disease or condition comprising or arising from abnormal cell growth in a mammal, the method comprising administering to the mammal a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein in an amount effective to inhibit a cyclin dependent kinase (e.g. CDK2).
• A method of inhibiting a cyclin dependent kinase, which method comprises contacting the kinase with a kinase-inhibiting compound of the formula (0), (1°), (I), (la) (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein. • A method of modulating a cellular process (for example cell division) by inhibiting the activity of a cyclin dependent kinase using a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (Nil) or (NIII) and sub-groups thereof as defined herein.
The compounds of the invention are also considered to be inhibitors of glycogen synthase kinase-3 (GSK3) and, accordingly, the invention also provides methods and uses of kinase inhibitors or modulators of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (Nil) or (VIII) and sub-groups thereof as defined herein but wherein the kinase is glycogen synthase kinase-3.
In further aspects, the invention provides:
• A pharmaceutical composition comprising a compound of the formula (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and subgroups thereof as defined herein and a pharmaceutically acceptable carrier.
• Compounds of the formula (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Nib), (NH) or (NIII) and sub-groups thereof as defined herein for use in medicine.
• The use of a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IN), (INa), (Na), (Nb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein, for the manufacture of a medicament for the prophylaxis or treatment of any one of the disease states or conditions disclosed herein.
• A method for the treatment or prophylaxis of any one of the disease states or consitions disclosed herein, which method comprises administering to a patient (e.g. a patient in need thereof) a compound (e.g. a therapeutically effective amount) of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein. • A method for alleviating or reducing the incidence of a disease state or condition disclosed herein, which method comprises administering to a patient (e,g, a patient in need thereof) a compound (e.g. a therapeutically effective amount) of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein.
• A method for the diagnosis and treatment of a disease state or condition mediated by a cyclin dependent kinase, which method comprises (i) screening a patient to determine whether a disease or condition from which the patient is or may be suffering is one which would be susceptible to treatment with a compound having activity against cyclin dependent kinases; and (ii) where it is indicated that the disease or condition from which the patient is thus susceptible, thereafter administering to the patient a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein.
• The use of a compound of the formula (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein for the manufacture of a medicament for the treatment or prophylaxis of a disease state or condition in a patient who has been screened and has been determined as suffering from, or being at risk of suffering from, a disease or condition which would be susceptible to treatment with a compound having activity against cyclin dependent kinase.
In each of the foregoing uses, methods and other aspects of the invention, as well as any aspects and embodiments of the invention as set out below, references to compounds of the formulae (0), (1°), (I), (la), (lb), (II), (III), (IV),
(IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein include within their scope the salts or solvates or tautomers or N- oxides of the compounds.
General Preferences and Definitions The following general preferences and definitions shall apply to each of the moieties X, Y, Rg, R1 to R4 and any sub-definition, sub-group or embodiment thereof, unless the context indicates otherwise.
In this specification, references to formula (I) include formulae (0), (1°), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups, examples or embodiments of formulae (0), (1°), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (Nil) or (VIII) unless the context indicates otherwise.
Thus for example, references to inter alia therapeutic uses, pharmaceutical formulations and processes for making compounds, where they refer to formula (I), are also to be taken as referring to formulae (0), (1°), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups, examples or embodiments of formulae (0), (1°), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII).
Similarly, where preferences, embodiments and examples are given for compounds of the formula (I), they are also applicable to formulae (0), (1°), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups, examples or embodiments of formulae (0), (1°), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Nib), (VII) or (VIII) unless the context requires otherwise.
References to "carbocyclic" and "heterocyclic" groups as used herein shall, unless the context indicates otherwise, include both aromatic and non-aromatic ring systems. Thus, for example, the term "carbocyclic and heterocyclic groups" includes within its scope aromatic, non-aromatic, unsaturated, partially saturated and fully saturated carbocyclic and heterocyclic ring systems. In general, such groups may be monocyclic or bicyclic and may contain, for example, 3 to 12 ring members, more usually 5 to 10 ring members. Examples of monocyclic groups are groups containing 3, 4, 5, 6, 7, and 8 ring members, more usually 3 to 7, and preferably 5 or 6 ring members. Examples of bicyclic groups are those containing 8, 9, 10, 11 and 12 ring members, and more usually 9 or 10 ring members. The carbocyclic or heterocyclic groups can be aryl or heteroaryl groups having from 5 to 12 ring members, more usually from 5 to 10 ring members. The term "aryl" as used herein refers to a carbocyclic group having aromatic character and the term "heteroaryl" is used herein to denote a heterocyclic group having aromatic character. The terms "aryl" and "heteroaryl" embrace polycyclic (e.g. bicyclic) ring systems wherein one or more rings are non-aromatic, provided that at least one ring is aromatic. In such polycyclic systems, the group may be attached by the aromatic ring, or by a non-aromatic ring. The aryl or heteroaryl groups can be monocyclic or bicyclic groups and can be unsubstituted or substituted with one or more substituents, for example one or more groups R10 as defined herein.
The term "non-aromatic group" embraces unsaturated ring systems without aromatic character, partially saturated and fully saturated carbocyclic and heterocyclic ring systems. The terms "unsaturated" and "partially saturated" refer to rings wherein the ring structure(s) contains atoms sharing more than one valence bond i.e. the ring contains at least one multiple bond e.g. a C=C, C≡C or N=C bond. The term "fully saturated" refers to rings where there are no multiple bonds between ring atoms. Saturated carbocyclic groups include cycloalkyl groups as defined below. Partially saturated carbocyclic groups include cycloalkenyl groups as defined below, for example cyclopentenyl, cycloheptenyl and cyclooctenyl. A further example of a cycloalkenyl group is cyclohexenyl.
Examples of heteroaryl groups are monocyclic and bicyclic groups containing from five to twelve ring members, and more usually from five to ten ring members. The heteroaryl group can be, for example, a five membered or six membered monocyclic ring or a bicyclic structure formed from fused five and six membered rings or two fused six membered rings or, by way of a further example, two fused five membered rings. Each ring may contain up to about four heteroatoms typically selected from nitrogen, sulphur and oxygen. Typically the heteroaryl ring will contain up to 4 heteroatoms, more typically up to 3 heteroatoms, more usually up to 2, for example a single heteroatom. In one embodiment, the heteroaryl ring contains at least one ring nitrogen atom. The nitrogen atoms in the heteroaryl rings can be basic, as in the case of an imidazole or pyridine, or essentially non-basic as in the case of an indole or pyrrole nitrogen. In general the number of basic nitrogen atoms present in the heteroaryl group, including any amino group substituents of the ring, will be less than five.
Examples of five membered heteroaryl groups include but are not limited to pyrrole, furan, thiophene, imidazole, fϊirazan, oxazole, oxadiazole, oxatriazole, isoxazole, thiazole, isothiazole, pyrazole, triazole and tetrazole groups.
Examples of six membered heteroaryl groups include but are not limited to pyridine, pyrazine, pyridazine, pyrimidine and triazine.
A bicyclic heteroaryl group may be, for example, a group selected from: a) a benzene ring fused to a 5- or 6-membered ring containing 1 , 2 or 3 ring heteroatoms; b) a pyridine ring fused to a 5- or 6-membered ring containing 1, 2 or 3 ring heteroatoms; c) a pyrimidine ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; d) a pyrrole ring fused to a a 5- or 6-membered ring containing 1, 2 or 3 ring heteroatoms; e) a pyrazole ring fused to a a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; f) an imidazole ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; g) an oxazole ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; h) an isoxazole ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; i) a thiazole ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; j) an isothiazole ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; k) a thiophene ring fused to a 5- or 6-membered ring containing 1, 2 or 3 ring heteroatoms;
1) a furan ring fused to a 5- or 6-membered ring containing 1, 2 or 3 ring heteroatoms; m) an oxazole ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; n) an isoxazole ring fused to a 5- or 6-membered ring containing 1 or 2 ring heteroatoms; o) a cyclohexyl ring fused to a 5- or 6-membered ring containing 1, 2 or 3 ring heteroatoms; and p) a cyclopentyl ring fused to a 5- or 6-membered ring containing 1, 2 or 3 ring heteroatoms.
Particular examples of bicyclic heteroaryl groups containing a five membered ring fused to another five membered ring include but are not limited to imidazothiazole (e.g. imidazo[2,l-b]thiazole) and imidazoimidazole (e.g. imidazo[l,2-a] imidazole).
Particular examples of bicyclic heteroaryl groups containing a six membered ring fused to a five membered ring include but are not limited to benzfuran, benzthiophene, benzimidazole, benzoxazole, isobenzoxazole, benzisoxazole, benzthiazole, benzisothiazole, isobenzofuran, indole, isoindole, indolizine, indoline, isoindoline, purine (e.g., adenine, guanine), indazole, pyrazolopyrimidine (e.g. pyrazolo[l,5-a]pyrimidine), triazolopyrimidine (e.g. [l,2,4]triazolo[l,5- ajpyrimidine), benzodioxole and pyrazolopyridine (e.g. pyrazolo[l,5-a]pyridine) groups. Particular examples of bicyclic heteroaryl groups containing two fused six membered rings include but are not limited to quinoline, isoquinoline, chroman, thiochroman, chromene, isochromene, chroman, isochroman, benzodioxan, quinolizine, benzoxazine, benzodiazine, pyridopyridine, quinoxaline, quinazoline, cinnoline, phthalazine, naphthyridine and pteridine groups.
One sub-group of heteroaryl groups comprises pyridyl, pyrrolyl, f iranyl, thienyl, imidazolyl, oxazolyl, oxadiazolyl, oxatriazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, pyrazinyl, pyridazinyl, pyrimidinyl, triazinyl, triazolyl, tetrazolyl, quinolinyl, isoquinolinyl, benzfuranyl, benzthienyl, chromanyl, thiochromanyl, benzimidazolyl, benzoxazolyl, benzisoxazole, benzthiazolyl and benzisothiazole, isobenzofuranyl, indolyl, isoindolyl, indolizinyl, indolinyl, isoindolinyl, purinyl (e.g., adenine, guanine), indazolyl, benzodioxolyl, chromenyl, isochromenyl, isochromanyl, benzodioxanyl, quinolizinyl, benzoxazinyl, benzodiazinyl, pyridopyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, phthalazinyl, naphthyridinyl and pteridinyl groups.
Examples of polycyclic aryl and heteroaryl groups containing an aromatic ring and a non-aromatic ring include tetrahydronaphthalene, tetrahydroisoquinoline, tetrahydroquinoline, dihydrobenzthiene, dihydrobenzfuran, 2,3-dihydro- benzo[l,4]dioxine, benzo[l,3]dioxole, 4,5,6,7-tetrahydrobenzofuran, indoline and indane groups.
Examples of carbocyclic aryl groups include phenyl, naphthyl, indenyl, and tetrahydronaphthyl groups.
Examples of non-aromatic heterocyclic groups include unsubstituted or substituted (by one or more groups R10) heterocyclic groups having from 3 to 12 ring members, typically 4 to 12 ring members, and more usually from 5 to 10 ring members. Such groups can be monocyclic or bicyclic, for example, and typically have from 1 to 5 heteroatom ring members (more usually 1,2,3 or 4 heteroatom ring members) typically selected from nitrogen, oxygen and sulphur. When sulphur is present, it may, where the nature of the adjacent atoms and groups permits, exist as -S-, -S(O)- or -S(O)2-.
The heterocylic groups can contain, for example, cyclic ether moieties (e.g. as in tetrahydrofuran and dioxane), cyclic thioether moieties (e.g. as in tetrahydrothiophene and dithiane), cyclic amine moieties (e.g. as in pyrrolidine), cyclic amide moieties (e.g. as in pyrrolidone), cyclic thioamides, cyclic thioesters, cyclic ester moieties (e.g. as in butyrolactone), cyclic sulphones (e.g. as in sulpholane and sulpholene), cyclic sulphoxides, cyclic sulphonamides and combinations thereof (e.g. morpholine and thiomorpholine and its S-oxide and S,S- dioxide). Further examples of heterocyclic groups are those containing a cyclic urea moiety (e.g. as in imidazolidin-2-one),
In one sub-set of heterocyclic groups, the heterocyclic groups contain cyclic ether moieties (e.g as in tetrahydrofuran and dioxane), cyclic thioether moieties (e.g. as in tetrahydrothiophene and dithiane), cyclic amine moieties (e.g. as in pyrrolidine), cyclic sulphones (e.g. as in sulpholane and sulpholene), cyclic sulphoxides, cyclic sulphonamides and combinations thereof (e.g. thiomorpholine).
Examples of monocyclic non-aromatic heterocyclic groups include 5-, 6-and 7- membered monocyclic heterocyclic groups. Particular examples include morpholine, piperidine (e.g. 1-piperidinyl, 2-piperidinyl, 3-piperidinyl and 4- piperidinyl), pyrrolidine (e.g. 1-pyrrolidinyl, 2-pyrrolidinyl and 3-pyrrolidinyl), pyrrolidone, pyran (2H-pyran or 4H-pyran), dihydrothiophene, dihydropyran, dihydrofuran, dihydrothiazole, tetrahydrofuran, tetrahydrothiophene, dioxane, tetrahydropyran (e.g. 4-tetrahydro pyranyl), imidazoline, imidazolidinone, oxazoline, thiazoline, 2-pyrazoline, pyrazolidine, piperazine, and N-alkyl piperazines such as N-methyl piperazine. Further examples include thiomorpholine and its S-oxide and S,S-dioxide (particularly thiomorpholine). Still further examples include azetidine, piperidone, piperazone, and N-alkyl piperidines such as N-methyl piperidine. One preferred sub-set of non-aromatic heterocyclic groups consists of saturated groups such as azetidine, pyrrolidine, piperidine, morpholine, thiomorpholine, thiomorpholine S,S-dioxide, piperazine, N-alkyl piperazines, and N-alkyl piperidines.
Another sub-set of non-aromatic heterocyclic groups consists of pyrrolidine, piperidine, morpholine, thiomorpholine, thiomorpholine S,S-dioxide, piperazine and N-alkyl piperazines such as N-methyl piperazine.
One particular sub-set of heterocyclic groups consists of pyrrolidine, piperidine, morpholine and N-alkyl piperazines (e.g. N-methyl piperazine), and optionally thiomorpholine .
Examples of non-aromatic carbocyclic groups include cycloalkane groups such as cyclohexyl and cyclopentyl, cycloalkenyl groups such as cyclopentenyl, cyclohexenyl, cycloheptenyl and cyclooctenyl, as well as cyclohexadienyl, cyclooctatetraene, tetrahydronaphthenyl and decalinyl.
Preferred non-aromatic carbocyclic groups are monocyclic rings and most preferably saturated monocyclic rings.
Typical examples are three, four, five and six membered saturated carbocyclic rings, e.g. optionally substituted cyclopentyl and cyclohexyl rings.
One sub-set of non-aromatic carboyclic groups includes unsubstituted or substituted (by one or more groups R10) monocyclic groups and particularly saturated monocyclic groups, e.g. cycloalkyl groups. Examples of such cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl; more typically cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, particularly cyclohexyl.
Further examples of non-aromatic cyclic groups include bridged ring systems such as bicycloalkanes and azabicycloalkanes although such bridged ring systems are generally less preferred. By "bridged ring systems" is meant ring systems in which two rings share more than two atoms, see for example Advanced Organic Chemistry, by Jerry March, 4th Edition, Wiley Interscience, pages 131-133, 1992. Examples of bridged ring systems include bicyclo[2.2.1]heptane, aza- bicyclo[2.2.1 jheptane, bicyclo[2.2.2]octane, aza-bicyclo[2.2.2]octane, bicyclo[3.2.1]octane and aza-bicyclo[3.2.1]octane. A particular example of a bridged ring system is the l-aza-bicyclo[2.2.2]octan-3-yl group.
Where reference is made herein to carbocyclic and heterocyclic groups, the carbocyclic or heterocyclic ring can, unless the context indicates otherwise, be unsubstituted or substituted by one or more substituent groups R10 selected from halogen, hydroxy, trifluoromethyl, cyano, nitro, carboxy, amino, mono- or di-C1. hydrocarbylamino, carbocyclic and heterocyclic groups having from 3 to 12 ring members; a group Ra-Rb wherein Ra is a bond, O, CO, X1C(X2),
Figure imgf000032_0001
X1C(X2)X1, S, SO, SO2, NRC, SO2NRc or NRcSO2; and Rb is selected from hydrogen, carbocyclic and heterocyclic groups having from 3 to 12 ring members, and a Ci-β hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, cyano, nitro, carboxy, amino, mono- or di- CM hydrocarbylamino, carbocyclic and heterocyclic groups having from 3 to 12 ring members and wherein one or more carbon atoms of the -s hydrocarbyl group may optionally be replaced by O, S, SO, SO2, NR°, X1C(X2), C(X2)Xl or X^CX^X1;
RQ is selected from hydrogen and CM hydrocarbyl; and X1 is O, S or NRC and X2 is O, =S or =NR°.
Where the substituent group R10 comprises or includes a carbocyclic or heterocyclic group, the said carbocyclic or heterocyclic group may be unsubstituted or may itself be substituted with one or more further substituent groups R10. In one sub-group of compounds of the formula (I), such further substituent groups R10may include carbocyclic or heterocyclic groups, which are typically not themselves further substituted. In another sub-group of compounds of the formula (I), the said further substituents do not include carbocyclic or heterocyclic groups but are otherwise selected from the groups listed above in the definition of R10. The substituents R10 may be selected such that they contain no more than 20 non- hydrogen atoms, for example, no more than 15 non-hydrogen atoms, e.g. no more than 12, or 11, or 10, or 9, or 8, or 7, or 6, or 5 non-hydrogen atoms.
Where the carbocyclic and heterocyclic groups have a pair of substituents on adjacent ring atoms, the two substituents may be linked so as to form a cyclic group. Thus, two adjacent groups R10, together with the carbon atoms or heteroatoms to which they are attached may form a 5 -membered heteroaryl ring or a 5- or 6-membered non-aromatic carbocyclic or heterocyclic ring, wherein the said heteroaryl and heterocyclic groups contain up to 3 heteroatom ring members selected from N, O and S . For example, an adjacent pair of substituents on adjacent carbon atoms of a ring may be linked via one or more heteroatoms and optionally substituted alkylene groups to form a fused oxa-, dioxa-, aza-, diaza- or oxa-aza- cycloalkyl group.
Examples of such linked substituent groups include:
Figure imgf000033_0001
Examples of halogen substituents include fluorine, chlorine, bromine and iodine. Fluorine and chlorine are particularly preferred.
In the definition of the compounds of the formula (I) above and as used hereinafter, the term "hydrocarbyl" is a generic term encompassing aliphatic, alicyclic and aromatic groups having an all-carbon backbone and consisting of carbon and hydrogen atoms, except where otherwise stated.
In certain cases, as defined herein, one or more of the carbon atoms making up the carbon backbone may be replaced by a specified atom or group of atoms. Examples of hydrocarbyl groups include alkyl, cycloalkyl, cycloalkenyl, carbocyclic aryl, alkenyl, alkynyl, cycloalkylalkyl, cycloalkenylalkyl, and carbocyclic aralkyl, aralkenyl and aralkynyl groups. Such groups can be unsubstituted or, where stated, substituted by one or more substituents as defined herein. The examples and preferences expressed below apply to each of the hydrocarbyl substituent groups or hydrocarbyl-containing substituent groups referred to in the various definitions of substituents for compounds of the formula (I) unless the context indicates otherwise.
Preferred non-aromatic hydrocarbyl groups are saturated groups such as alkyl and cycloalkyl groups.
Generally by way of example, the hydrocarbyl groups can have up to eight carbon atoms, unless the context requires otherwise. Within the sub-set of hydrocarbyl groups having 1 to 8 carbon atoms, particular examples are Ci-6 hydrocarbyl groups, such as CM hydrocarbyl groups (e.g. C1.3 hydrocarbyl groups or Ci.2 hydrocarbyl groups), specific examples being any individual value or combination of values selected from Cl5 C2, C3, C4, C5, C6, C and C8 hydrocarbyl groups.
The term "alkyl" covers both straight chain and branched chain alkyl groups. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2-methyl butyl, 3 -methyl butyl, and n-hexyl and its isomers. Within the sub-set of alkyl groups having 1 to 8 carbon atoms, particular examples are Cμβ alkyl groups, such as C1.4 alkyl groups (e.g. Ci-3 alkyl groups or C1-2 alkyl groups).
Examples of cycloalkyl groups are those derived from cyclopropane, cyclobutane, cyclopentane, cyclohexane and cycloheptane. Within the sub-set of cycloalkyl groups the cycloalkyl group will have from 3 to 8 carbon atoms, particular examples being C3.6 cycloalkyl groups.
Examples of alkenyl groups include, but are not limited to, ethenyl (vinyl), 1- propenyl, 2-propenyl (allyl), isopropenyl, butenyl, buta-l,4-dienyl, pentenyl, and hexenyl. Within the sub-set of alkenyl groups the alkenyl group will have 2 to 8 carbon atoms, particular examples being C2.6 alkenyl groups, such as C2.4 alkenyl groups.
Examples of cycloalkenyl groups include, but are not limited to, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl and cyclohexenyl. Within the subset of cycloalkenyl groups the cycloalkenyl groups have from 3 to 8 carbon atoms, and particular examples are C3-6 cycloalkenyl groups.
Examples of alkynyl groups include, but are not limited to, ethynyl and 2-propynyl (propargyl) groups. Within the sub-set of alkynyl groups having 2 to 8 carbon atoms, particular examples are C2.6 alkynyl groups, such as C2. alkynyl groups.
Examples of carbocyclic aryl groups include substituted and unsubstituted phenyl groups.
Examples of cycloalkylalkyl, cycloalkenylalkyl, carbocyclic aralkyl, aralkenyl and aralkynyl groups include phenethyl, benzyl, styryl, phenylethynyl, cyclohexylmethyl, cyclopentylmethyl, cyclobutylmethyl, cyclopropylmethyl and cyclopentenylmethyl groups.
When present, and where stated, a hydrocarbyl group can be optionally substituted by one or more substituents selected from hydroxy, oxo, alkoxy, carboxy, halogen, cyano, nitro, amino, mono- or di-Cμ-t hydrocarbylamino, and monocyclic or bicyclic carbocyclic and heterocyclic groups having from 3 to 12 (typically 3 to 10 and more usually 5 to 10) ring members. Preferred substituents include halogen such as fluorine. Thus, for example, the substituted hydrocarbyl group can be a partially fluorinated or perfluorinated group such as difluoromethyl or trifluoromethyl. In one embodiment preferred substituents include monocyclic carbocyclic and heterocyclic groups having 3-7 ring members, more usually 3, 4, 5 or 6 ring members.
Where stated, one or more carbon atoms of a hydrocarbyl group may optionally be replaced by O, S, SO, SO2, NRC, XJC(X2), C(X2)XJ or X1C(X2)X1 (or a sub-group thereof) wherein X1 and X2 are as hereinbefore defined, provided that at least one carbon atom of the hydrocarbyl group remains. For example, 1, 2, 3 or 4 carbon atoms of the hydrocarbyl group may be replaced by one of the atoms or groups listed, and the replacing atoms or groups may be the same or different. In general, the number of linear or backbone carbon atoms replaced will correspond to the number of linear or backbone atoms in the group replacing them. Examples of groups in which one or more carbon atom of the hydrocarbyl group have been replaced by a replacement atom or group as defined above include ethers and thioethers (C replaced by O or S), amides, esters, thioamides and thioesters (C-C replaced by X*C(X2) or C(X2)X1), sulphones and sulphoxides (C replaced by SO or SO2), amines (C replaced by NR°). Further examples include ureas, carbonates and carbamates (C-C-C replaced by X1C(X2)X1).
Where an amino group has two hydrocarbyl substituents, they may, together with the nitrogen atom to which they are attached, and optionally with another heteroatom such as nitrogen, sulphur, or oxygen, link to form a ring structure of 4 to 7 ring members, more usually 5 to 6 ring members.
The term "aza-cycloalkyl" as used herein refers to a cycloalkyl group in which one of the carbon ring members has been replaced by a nitrogen atom. Thus examples of aza-cycloalkyl groups include piperidine and pyrrolidine. The term "oxa- cycloalkyl" as used herein refers to a cycloalkyl group in which one of the carbon ring members has been replaced by an oxygen atom. Thus examples of oxa- cycloalkyl groups include tetrahydrofuran and tetrahydropyran. In an analogous manner, the terms "diaza-cycloalkyl", "dioxa-cycloalkyl" and "aza-oxa-cycloalkyl" refer respectively to cycloalkyl groups in which two carbon ring members have been replaced by two nitrogen atoms, or by two oxygen atoms, or by one nitrogen atom and one oxygen atom.
The definition "Ra-Rb" as used herein, either with regard to substituents present on a carbocyclic or heterocyclic moiety, or with regard to other substituents present at other locations on the compounds of the formula (I), includes inter alia compounds wherein Ra is selected from a bond, O, CO, OC(O), SC(O), NR°C(O), OC(S), SC(S), NRCC(S), OC(NR°), SC(NRC), NRCC(NRC), C(O)O, C(O)S, C(O)NRc, C(S)O, C(S)S, C(S) NRC, C(NRc)O, C(NRC)S, C(NRC)NR°, OC(O)O, SC(O)O, NRcC(O)O, OC(S)O, SC(S)O, NRcC(S)O, OC(NRc)O, SC(NRc)O, NRcC(NRc)O, OC(O)S, SC(O)S, NRcC(O)S, OC(S)S, SC(S)S, NRCC(S)S, OC(NRc)S, SC(NR°)S, NRCC(NRC)S, OC(O)NRc, SC(O)NRc, NRcC(O) NRC, OC(S)NRc, SC(S) NR°, NRCC(S)NRC, OC(NRc)NRc, SC(NRC)NR°, NRCC(NRCNRC, S, SO, SO2 ,NRc, SO2NRc and NRcSO2 wherein Rc is as hereinbefore defined.
The moiety R can be hydrogen or it can be a group selected from carbocyclic and heterocyclic groups having from 3 to 12 ring members (typically 3 to 10 and more usually from 5 to 10), and a Cι„8 hydrocarbyl group optionally substituted as hereinbefore defined. Examples of hydrocarbyl, carbocyclic and heterocyclic groups are as set out above.
When Ra is O and Rb is a Ci-s hydrocarbyl group, Ra and Rb together form a hydrocarbyloxy group. Preferred hydrocarbyloxy groups include saturated hydrocarbyloxy such as alkoxy (e.g. Ci-β alkoxy, more usually CM alkoxy such as ethoxy and methoxy, particularly methoxy), cycloalkoxy (e.g. C3.6 cycloalkoxy such as cyclopropyloxy, cyclobutyloxy, cyclopentyloxy and cyclohexyloxy) and cycloalkyalkoxy (e.g. C3-6 cycloalkyl-C^ alkoxy such as cyclopropylmethoxy).
The hydrocarbyloxy groups can be substituted by various substituents as defined herein. For example, the alkoxy groups can be substituted by halogen (e.g. as in difluoromethoxy and trifluoromethoxy), hydroxy (e.g. as in hydroxyethoxy), C1-2 alkoxy (e.g. as in methoxyethoxy), hydroxy-Cμ alkyl (as in hydroxyethoxyethoxy) or a cyclic group (e.g. a cycloalkyl group or non-aromatic heterocyclic group as hereinbefore defined). Examples of alkoxy groups bearing a non-aromatic heterocyclic group as a substituent are those in which the heterocyclic group is a saturated cyclic amine such as morpholine, piperidine, pyrrolidine, piperazine, Cμ- alkyl-piperazines, C3- -cycloalkyl-piperazines, tetrahydropyran or tetrahydrofuran and the alkoxy group is a C1. alkoxy group, more typically a Ci-3 alkoxy group such as methoxy, ethoxy or n-propoxy. Alkoxy groups substituted by a monocyclic group such as pyrrolidine, piperidine, morpholine and piperazine and N-substituted derivatives thereof such as N-benzyl, N-C1.4 acyl and N-Cμ alkoxycarbonyl. Particular examples include pyrrolidinoethoxy, piperidinoethoxy and piperazinoethoxy.
When Ra is a bond and Rb is a Cι-8 hydrocarbyl group, examples of hydrocarbyl groups R -R are as hereinbefore defined. The hydrocarbyl groups may be saturated groups such as cycloalkyl and alkyl and particular examples of such groups include methyl, ethyl and cyclopropyl. The hydrocarbyl (e.g. alkyl) groups can be substituted by various groups and atoms as defined herein. Examples of substituted alkyl groups include alkyl groups substituted by one or more halogen atoms such as fluorine and chlorine (particular examples including bromoethyl, chloroethyl and trifluoromethyl), or hydroxy (e.g. hydroxymethyl and hydroxyethyl), Ci-s acyloxy (e.g. acetoxymethyl and benzyloxymethyl), amino and mono- and dialkylamino (e.g. aminoethyl, methylaminoethyl, dimethylaminomethyl, dimethylaminoethyl and tert-butylaminomethyl), alkoxy (e.g. C1.2 alkoxy such as methoxy - as in methoxyethyl), and cyclic groups such as cycloalkyl groups, aryl groups, heteroaryl groups and non-aromatic heterocyclic groups as hereinbefore defined).
Particular examples of alkyl groups substituted by a cyclic group are those wherein the cyclic group is a saturated cyclic amine such as morpholine, piperidine, pyrrolidine, piperazine, CM-alkyl-piperazines, C3. -cycloalkyl-piperazines, tetrahydropyran or tetrahydrofuran and the alkyl group is a CM alkyl group, more typically a C^ alkyl group such as methyl, ethyl or n-propyl. Specific examples of alkyl groups substituted by a cyclic group include pyrrolidinomethyl, pyrrolidinopropyl, morpholinomethyl, morpholinoethyl, morpholinopropyl, piperidinylmethyl, piperazinomethyl and N-substituted forms thereof as defined herein.
Particular examples of alkyl groups substituted by aryl groups and heteroaryl groups include benzyl and pyridylmethyl groups. When Ra is SO2NRc, Rb can be, for example, hydrogen or an optionally substituted Ci-s hydrocarbyl group, or a carbocyclic or heterocyclic group. Examples of Ra-Rb where Ra is SO2NRc include aminosulphonyl, CM alkylaminosulphonyl and di-Ct-4 alkylaminosulphonyl groups, and sulphonamides formed from a cyclic amino group such as piperidine, morpholine, pyrrolidine, or an optionally N-substituted piperazine such as N-methyl piperazine.
Examples of groups Ra-Rb where R is SO2 include alkylsulphonyl, heteroarylsulphonyl and arylsulphonyl groups, particularly monocyclic aryl and heteroaryl sulphonyl groups. Particular examples include methylsulphonyl, phenylsulphonyl and toluenesulphonyl.
When Ra is NRC, Rb can be, for example, hydrogen or an optionally substituted Cι.8 hydrocarbyl group, or a carbocyclic or heterocyclic group. Examples of Ra-Rb where Ra is NRC include amino, CM alkylamino (e.g. methylamino, ethylamino, propylamino, isopropylamino, tert-butylamino), di-C1. alkylamino (e.g. dimethylamino and diethylamino) and cycloalkylamino (e.g. cyclopropylamino, cyclopentylamino and cyclohexylamino).
Specific Embodiments of and Preferences for X. Y, A, R , R1 to R4 and R10
x
In formula (I), X is a group R!-A-NR4- or a 5- or 6-membered carbocyclic or heterocyclic ring.
In one embodiment, X is a group R^A-NR4-.
In another embodiment, X is a 5- or 6-membered carbocyclic or heterocyclic ring.
In formula (I), A is a bond, CO, NRg(C=O) or O(C=O). It will be appreciated that the moiety R^A-NR4 linked to the 4-position of the pyrazole ring can therefore take the form of an amine R -NR4, an amide R -C(=O)NR4, a urea R -NRgC(=O)NR4 or a carbamate R -OC(=O)NR4. In one preferred group of compounds of the invention, A is C=O and hence the group R^A-NR4 takes the form of an amide R1-C(=O)NR4. In another group of compounds of the invention, A is a bond and hence the group R^A-NR4 takes the form of an amine R M .
R4
R4 is hydrogen or a CM hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C1.4 alkoxy (e.g. methoxy).
The number of optional subsitutents on the hydrocarbyl group typically will vary according to the nature of the substituent. For example, where the substituent is halogen, there may be from one to three halogen atoms present, preferably two or three. Where the substituent is hydroxyl or an alkoxy group, typically there will be only a single such substituent present
R4 is preferably hydrogen or C1.3 alkyl, more preferably hydrogen or methyl and most preferably is hydrogen.
R
Rg is hydrogen or a CM hydrocarbyl group optionally substituted by hydroxyl or CM alkoxy (e.g. methoxy).
When Rg is C hydrocarbyl substituted by hydroxyl or C alkoxy, typically there is only one such substituent present.
Preferably Rg is hydrogen or C1.3 alkyl, more preferably hydrogen or methyl and most preferably Rg is hydrogen.
R2 is hydrogen, halogen, CM alkoxy, or a CM hydrocarbyl group optionally substituted by halogen, hydroxyl or CM alkoxy.
When R2 is halogen, preferably it is selected from chlorine and fluorine and more preferably it is fluorine. When R is CM alkoxy, it can be, for example, C^ alkoxy, more preferably Cι.2 alkoxy and most preferably methoxy.
When R is an optionally substituted CM hydrocarbyl group, the hydrocarbyl group is preferably a C1.3 hydrocarbyl group, more preferably a C1.2 hydrocarbyl group, for example an optionally substituted methyl group. The optional substituents for the optionally substituted hydrocarbyl group are preferably selected from fluorine, hydroxyl and methoxy.
The number of optional substituents on the hydrocarbyl group typically will vary according to the nature of the substituent. For example, where the substituent is halogen, there may be from one to three halogen atoms present, preferably two or three. Where the substituent is hydroxyl or methoxy, typically there will be only a single such substituent present.
The hydrocarbyl groups constituting R2 are preferably saturated hydrocarbyl groups. Examples of saturated hydrocarbyl groups include methyl, ethyl, n-propyl, /-propyl and cyclopropyl.
In one embodiment, R is hydrogen, halogen, CM alkoxy, or a CM hydrocarbyl group optionally substituted by halogen, hydroxyl or CM alkoxy.
In another embodiment, R2 is hydrogen, fluorine, chlorine, methoxy, or a Ct-3 hydrocarbyl group optionally substituted by fluorine, hydroxyl or methoxy.
In a preferred embodiment, R2 is hydrogen or methyl, most preferably hydrogen. l
R1 is hydrogen, a carbocyclic or heterocyclic group having from 3 to 12 ring members, or a Cι.8 hydrocarbyl group optionally substituted by one or more substituents selected from halogen (e.g. fluorine), hydroxy, CM hydrocarbyloxy, amino, mono- or di-Ci-4 hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO2. Examples of carbocyclic or heterocyclic groups and hydrocarbyl groups and general preferences for such groups are as set out above in the General Preferences and Definitions section, and as set out below.
In one embodiment, R1 is an aryl or heteroaryl group.
When R1 is a heteroaryl group, particular heteroaryl groups include monocyclic heteroaryl groups containing up to three heteroatom ring members selected from O, S and N, and bicyclic heteroaryl groups containing up to 2 heteroatom ring members selected from O, S and N and wherein both rings are aromatic.
Examples of such groups include furanyl (e.g. 2-furanyl or 3-furanyl), indolyl (e.g. 3-indolyl, 6-indolyl), 2,3-dihydro-benzo[l,4]dioxinyl (e.g. 2,3-dihydro- benzo[l,4]dioxin-5-yl), pyrazolyl (e.g. pyrazole-5-yl), pyrazolo[l,5-a]pyridinyl (e.g. pyrazolo[l,5-a]pyridine-3-yl), oxazolyl (e.g. ), isoxazolyl (e.g. isoxazol-4-yl), pyridyl (e.g. 2-pyridyl, 3-pyridyl, 4-pyridyl), quinolinyl (e.g. 2-quinolinyl), pyrrolyl (e.g. 3-pyrrolyl), imidazolyl and thienyl (e.g. 2-thienyl, 3-thienyl).
One sub-group of heteroaryl groups R1 consists of furanyl (e.g. 2-furanyl or 3- furanyl), indolyl, oxazolyl, isoxazolyl, pyridyl, quinolinyl, pyrrolyl, imidazolyl and thienyl.
A preferred sub-set of R1 heteroaryl groups includes 2-furanyl, 3-furanyl, pyrrolyl, imidazolyl and thienyl.
Preferred aryl groups R1 are phenyl groups.
The group R1 can be an unsubstituted or substituted carbocylic or heterocyclic group in which one or more substituents can be selected from the group R as hereinbefore defined. In one embodiment, the substituents on R1 may be selected from the group R10a consisting of halogen, hydroxy, trifluoromethyl, cyano, nitro, carboxy, a group Ra-Rb wherein Ra is a bond, O, CO, X3C(X4), C(X )X3,
X3C(X4)X3, S, SO, or SO2, and Rb is selected from hydrogen and a Cι.8 hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, cyano, nitro, carboxy and monocyclic non-aromatic carbocyclic or heterocyclic groups having from 3 to 6 ring members; wherein one or more carbon atoms of the Ci-8 hydrocarbyl group may optionally be replaced by O, S, SO, SO2, X3C(X4), C(X4)X3 or X3C(X4)X3; X3 is O or S; and X4 is =O or =S.
Where the carbocyclic and heterocyclic groups have a pair of substituents on adjacent ring atoms, the two substituents may be linked so as to form a cyclic group. Thus, two adjacent groups R10, together with the carbon atoms or heteroatoms to which they are attached may form a 5 -membered heteroaryl ring or a 5- or 6-membered non-aromatic carbocyclic or heterocyclic ring, wherein the said heteroaryl and heterocyclic groups contain up to 3 heteroatom ring members selected from N, O and S. In particular the two adjacent groups R10, together with the carbon atoms or heteroatoms to which they are attached, may form a 6- membered non-aromatic heterocyclic ring, containing up to 3, in particular 2, heteroatom ring members selected from N, O and S. More particularly the two adjacent groups R10 may form a 6-membered non-aromatic heterocyclic ring, containing 2 heteroatom ring members selected from N, or O, such as dioxan e.g. [1,4 dioxan]. In one embodiment R1 is a carbocyclic group e.g. phenyl having a pair of substituents on adjacent ring atoms linked so as to form a cyclic group e.g. to form 2,3-dihydro-benzo[l,4]dioxine.
More particularly, the substituents on R1 may be selected from halogen, hydroxy, trifluoromethyl, a group Ra-Rb wherein Ra is a bond or O, and Rb is selected from hydrogen and a CM hydrocarbyl group optionally substituted by one or more substituents selected from hydroxyl, halogen (preferably fluorine) and 5 and 6 membered saturated carbocyclic and heterocyclic groups (for example groups containing up to two heteroatoms selected from O, S and N, such as unsubstituted piperidine, pyrrolidino, morpholino, piperazino and N-methyl piperazino).
The group R1 may be substituted by more than one substituent. Thus, for example, there may be 1 or 2 or 3 or 4 substituents. In one embodiment, where R1 is a six membered ring (e.g. a carbocyclic ring such as a phenyl ring), there may be one, two or three substituents and these may be located at the 2-, 3-, 4- or 6-positions around the ring. By way of example, a phenyl group R1 may be 2-monosubstituted, 3-monosubstituted, 2,6-disubstituted, 2,3-disubstituted, 2,4-disubstituted 2,5- disubstituted, 2,3,6-trisubstituted or 2,4,6-trisubstituted. More particularly, a phenyl group R1 may be monosubstituted at the 2-position or disubstituted at positions 2- and 6- with substituents selected from fluorine, chlorine and Ra-Rb, where Ra is O and Rb is C1_4 alkyl (e.g. methyl or ethyl). In one embodiment, fluorine is a preferred substituent. In another embodiment, preferred substituents are selected from fluorine, chlorine and methoxy.
Particular examples of non-aromatic groups R1 include unsubstituted or substituted (by one or more groups R10) monocyclic cycloalkyl groups. Examples of such cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl; more typically cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, particularly cyclohexyl.
Further examples of non-aromatic groups R1 include unsubstituted or substituted (by one or more groups R10) heterocyclic groups having from 3 to 12 ring members, typically 4 to 12 ring members, and more usually from 5 to 10 ring members. Such groups can be monocyclic or bicyclic, for example, and typically have from 1 to 5 heteroatom ring members (more usually 1,2,3 or 4 heteroatom ring members) typically selected from nitrogen , oxygen and sulphur.
When sulphur is present, it may, where the nature of the adjacent atoms and groups permits, exist as -S-, -S(O)- or -S(O)2-.
The heterocylic groups can contain, for example, cyclic ether moieties (e.g as in tetrahydrofuran and dioxane), cyclic thioether moieties (e.g. as in tetrahydrothiophene and dithiane), cyclic amine moieties (e.g. as in pyrrolidine), cyclic amides (e.g. as in pyrrolidone), cyclic esters (e.g. as in butyrolactone), cyclic thioamides and thioesters, cyclic sulphones (e.g. as in sulpholane and sulpholene), cyclic sulphoxides, cyclic sulphonamides and combinations thereof (e.g. morpholine and thiomorpholine and its S-oxide and S,S -dioxide). In one sub-set of heterocyclic groups R1, the heterocyclic groups contain cyclic ether moieties (e.g as in tetrahydrofuran and dioxane), cyclic thioether moieties (e.g. as in tetrahydrothiophene and dithiane), cyclic amine moieties (e.g. as in pyrrolidine), cyclic sulphones (e.g. as in sulpholane and sulpholene), cyclic sulphoxides, cyclic sulphonamides and combinations thereof (e.g. thiomorpholine).
Examples of monocyclic non-aromatic heterocyclic groups R1 include 5-, 6-and 7- membered monocyclic heterocyclic groups such as morpholine, piperidine (e.g. 1- piperidinyl, 2-piperidinyl 3-piperidinyl and 4-piperidinyl), pyrrolidine (e.g. 1- pyrrolidinyl, 2-pyrrolidinyl and 3-pyrrolidinyl), pyrrolidone, pyran (2H-pyran or 4H-pyran), dihydrothiophene, dihydropyran, dihydrofuran, dihydrothiazole, tetrahydrofuran, tetrahydrothiophene, dioxane, tetrahydropyran (e.g. 4-tetrahydro pyranyl), imidazoline, imidazolidinone, oxazoline, thiazoline, 2-pyrazoline, pyrazolidine, piperazine, and N-alkyl piperazines such as N-methyl piperazine. Further examples include thiomorpholine and its S-oxide and S,S-dioxide (particularly thiomorpholine). Still further examples include N-alkyl piperidines such as N-methyl piperidine.
One sub-group of non-aromatic heterocyclic groups R1 includes unsubstituted or substituted (by one or more groups R10) 5-, 6-and 7-membered monocyclic heterocyclic groups such as morpholine, piperidine (e.g. 1-piperidinyl, 2-piperidinyl 3-piperidinyl and 4-piperidinyl), pyrrolidine (e.g. 1-pyrrolidinyl, 2-pyrrolidinyl and 3-pyrrolidinyl), pyrrolidone, piperazine, and N-alkyl piperazines such as N-methyl piperazine, wherein a particular sub-set consists of pyrrolidine, piperidine, morpholine, thiomorpholine and N-methyl piperazine.
In general, preferred non-aromatic heterocyclic groups include pyrrolidine, piperidine, morpholine, thiomorpholine, thiomoφholine S,S-dioxide, piperazine, N- alkyl piperazines, and N-alkyl piperidines.
-Another particular sub-set of heterocyclic groups consists of pyrrolidine, piperidine, morpholine and N-alkyl piperazines, and optionally, N-methyl piperazine and thiomorpholine. When R1 is a d-8 hydrocarbyl group substituted by a carbocyclic or heterocyclic group, the carbocyclic and heterocyclic groups can be aromatic or non-aromatic and can be selected from the examples of such groups set out hereinabove. The substituted hydrocarbyl group is typically a saturated CM hydrocarbyl group such as an alkyl group, preferably a CH2 or CH2CH2 group. Where the substituted hydrocarbyl group is a C2.4 hydrocarbyl group, one of the carbon atoms and its associated hydrogen atoms may be replaced by a sulphonyl group, for example as in the moiety SO2CH2.
When the carbocyclic or heterocylic group attached to the a -s hydrocarbyl group is aromatic, examples of such groups include monocyclic aryl groups and monocyclic heteroaryl groups containing up to four heteroatom ring members selected from O, S and N, and bicyclic heteroaryl groups containing up to 2 heteroatom ring members selected from O, S and N and wherein both rings are aromatic.
Examples of such groups are set out in the "General Preferences and Definitions" section above.
Particular examples of such groups include furanyl (e.g. 2-furanyl or 3-furanyl), indolyl, oxazolyl, isoxazolyl, pyridyl, quinolinyl, pyrrolyl, imidazolyl and thienyl. Particular examples of aryl and heteroaryl groups as substituents for a -s hydrocarbyl group include phenyl, imidazolyl, tetrazolyl, triazolyl, indolyl, 2- furanyl, 3-furanyl, pyrrolyl and thienyl. Such groups may be substituted by one or more substituents R10 or R10a as defined herein.
When R1 is a C^s hydrocarbyl group substituted by a non-aromatic carbocyclic or heterocyclic group, the non-aromatic or heterocyclic group may be a group selected from the lists of such groups set out hereinabove. For example, the non-aromatic group can be a monocyclic group having from 4 to 7 ring members, e.g. 5 to 7 ring members, and typically containing from 0 to 3, more typically 0, 1 or 2, heteroatom ring members selected from O, S and N. When the cyclic group is a carbocyclic group, it may additionally be selected from monocyclic groups having 3 ring members. Particular examples include monocyclic cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl, and 5-, 6-and 7- membered monocyclic heterocyclic groups such as morpholine, piperidine (e.g. 1- piperidinyl, 2-piperidinyl, 3-piperidinyl and 4-piperidinyl), pyrrolidine (e.g. 1- pyrrolidinyl, 2-pyrrolidinyl and 3-pyrrolidinyl), pyrrolidone, piperazine, and N- alkyl piperazines such as N-methyl piperazine. In general, preferred non-aromatic heterocyclic groups include pyrrolidine, piperidine, morpholine, thiomorpholine and N-methyl piperazine.
When R1 is an optionally substituted Cι_8 hydrocarbyl group, the hydrocarbyl group may be as hereinbefore defined, and is preferably up to four carbon atoms in length, more usually up to three carbon atoms in length for example one or two carbon atoms in length.
In one embodiment, the hydrocarbyl group is saturated and may be acyclic or cyclic, for example acyclic. An acyclic saturated hydrocarbyl group (i.e. an alkyl group) may be a straight chain or branched alkyl group.
Examples of straight chain alkyl groups R1 include methyl, ethyl, propyl and butyl.
Examples of branched chain alkyl groups R1 include isopropyl, isobutyl, tert-butyl and 2,2-dimethylpropyl.
In one embodiment, the hydrocarbyl group is a linear saturated group having from 1-6 carbon atoms, more usually 1-4 carbon atoms, for example 1-3 carbon atoms, e.g. 1, 2 or 3 carbon atoms. When the hydrocarbyl group is substituted, particular examples of such groups are substituted (e.g. by a carbocyclic or heterocyclic group) methyl and ethyl groups.
A Ci-s hydrocarbyl group R1 can be optionally substituted by one or more substituents selected from halogen (e.g. fluorine), hydroxy, CM hydrocarbyloxy, amino, mono- or di-Ci-4 hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO2. Particular substituents for the hydrocarbyl group include hydroxy, chlorine, fluorine (e.g. as in trifluoromethyl), methoxy, ethoxy, amino, methylamino and dimethylamino, preferred substituents being hydroxy and fluorine.
When A is C=O, particular groups R^CO are the groups set out in Table 1 below.
In Table 1, the point of attachment of the group to the nitrogen atom of the pyrazole-4-amino group is represented by the terminal single bond extending from the carbonyl group. Thus, by way of illustration, group B in the table is the trifluoroacetyl group, group D in the table is the phenylacetyl group and group I in the table is the 3-(4-chlorophenyl)propionyl group.
Figure imgf000048_0001
Figure imgf000049_0001
Figure imgf000050_0001
Figure imgf000051_0001
Figure imgf000052_0001
Figure imgf000053_0001
One sub-group of groups R!-CO consists of groups A to BF in Table 1 above.
Another sub-group of groups R^CO consists of groups A to BS in Table 1 above.
One set of preferred groups R^CO consists of the groups J, AB, AH, AJ, AL, AS, AX, AY, AZ, BA, BB, BD, BH, BL, BQ, BS and BAI
Another set of preferred groups R*-CO consists of the groups J, AB, AH, AJ, AL, AS, AX, AY, AZ, BA, BB, BD, BH, BL, BQ and BS.
More preferred groups R^CO- are AJ, AX, BQ, BS and BAI.
One particularly preferred sub-set of groups R!-CO- consists of AJ, BQ and BS.
Another particularly preferred sub-set of groups R^CO- consists of AJ and BQ.
When X is R^A-NR4 and A is C=O, and R1 is a phenyl ring bearing a substituent at the 4-position, the substituent at the 4-position is preferably other than a phenyl group having a group SO2NH2 or SO2Me at the or/bo-position.
In one general embodiment, R1 may be other than a substituted or unsubstituted tefrahydroquinoline, chroman, chromene, thiochroman, thiochromene, dihydro- naphthalene or tetrahydronaphthalene group. More particularly, R1 may be other than a substituted or unsubstituted tetrahydroquinoline, chroman, chromene, thiochroman, thiochromene, dihydro-naphthalene or tetrahydronaphthalene group linked by its aromatic ring to the moiety A-NR4-. In another general embodiment, when R1 is a substituted or unsubstituted phenyl group, the moiety Y-R3 may be other than hydrogen, unsubstituted Cμo alkyl, unsubstituted C5.10 cycloalkyl, unsubstituted phenyl, unsubstituted C O alkylphenyl or unsubstituted phenyl-CMo alkyl.
In the context of the group R^A-NR4-, when R1 is an optionally substituted hydrocarbyl group and the hydrocarbyl group comprises or contains a substituted or unsubstituted alkene group, it is preferred that the carbon-carbon double bond of the alkene group is not directly bonded to the group A.
Also in the context of the group R^A-NR4-, when R1 is an optionally substituted hydrocarbyl group, the hydrocarbyl group may be other than an alkene group.
In another general embodiment, when Y is a bond, R is hydrogen, A is CO and R is a substituted phenyl group, each substituent on the phenyl group may be other than a group CH2-P(O)RxRy where Rx and Ry are each selected from alkoxy and phenyl groups.
Y
In the compounds of the formula (I), Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length.
The term "alkylene" has its usual meaning and refers to a divalent saturated acyclic hydrocarbon chain. The hydrocarbon chain may be branched or unbranched. Where an alkylene chain is branched, it may have one or more methyl group side chains. Examples of alkylene groups include -CH2-, -CH2-CH2-, -CH2-CH2-CH2-, CH(CH3)-, -C(CH3)2-, -CH2-CH(CH3)-, -CH2-C(CH3)2- and -CH(CH3)-CH(CH3)-.
In one embodiment, Y is a bond.
In another embodiment, Y is an alkylene chain. When Y is an alkylene chain, preferably it is unbranched and more particularly contains 1 or 2 carbon atoms, preferably 1 carbon atom. Thus preferred groups Y are -CH2- and -CH2-CH2-, a most preferred group being (CH2)-.
Where Y is a branched chain, preferably it has no more than two methyl side chains. For example, it may have a single methyl side chain. In one embodiment, Y is a group -CH(Me)-.
In one sub-group of compounds, Y is a bond, CH2, CH2CH2 or CH2CH(CH3). R3
The group R is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members.
In one sub-group of compounds, Y is a bond and R3 is hydrogen.
In another sub-group of compounds Y is an alkylene chain as hereinbefore defined and R is hydrogen.
In a another sub-group of compounds, Y is a bond or an alkylene chain (e.g. a group -(CH2)-) and R is a carbocyclic or heterocyclic group.
In a further sub-group of compounds, Y is a bond and R is a carbocyclic or heterocyclic group.
In a still further sub-group of compounds, Y is an alkylene chain (e.g. a group -(CH2)-) and R is a carbocyclic or heterocyclic group.
The carbocyclic and heterocyclic groups R3 can be aryl, heteroaryl, non-aromatic carbocyclic or non-aromatic heterocyclic and examples of such groups are as set out in detail above in the General Preferences and Definitions section, and as set out below.
Preferred aryl groups R3 are unsubstituted and substituted phenyl groups. Examples of heteroaryl groups R3 include monocyclic heteroaryl groups containing up to three (and more preferably up to two) heteroatom ring members selected from O, S and N. Preferred heteroaryl groups include five membered rings containing one or two heteroatom ring members and six membered rings containing a single heteroatom ring member, most preferably nitrogen. Particular examples of heteroaryl groups include unsubstituted or substituted pyridyl, imidazole, pyrazole, thiazole, isothiazole, isoxazole, oxazole, furyl and thiophene groups.
Particular heteroaryl groups are unsubstituted and substituted pyridyl groups, e.g. 2- pyridyl, 3-pyridyl and 4-pyridyl groups, especially 3- and 4-pyridyl groups. When the pyridyl groups are substituted, they can bear one or more substituents, typically no more than two, and more usually one substituent selected, for example, from C1.4 alkyl (e.g. methyl), halogen (e.g. fluorine or chlorine, preferably chlorine), and CM alkoxy (e.g. methoxy). Substituents on the pyridyl group may further be selected from amino, mono-C1-4 alkylamino and di-CM alkylamino, particularly amino.
In one embodiment, when R3 is an aryl (e.g. phenyl) or heteroaryl group, the substituents on the carbocyclic or heterocyclic group may be selected from the group R10a consisting of halogen, hydroxy, trifluoromethyl, cyano, monocyclic carbocyclic and heterocyclic groups having from 3 to 7 (typically 5 or 6) ring members, and a group Ra-Rb wherein Ra is a bond, O, CO, X1C(X2),
Figure imgf000056_0001
X1C(X2)X1, S, SO, SO2, NR°, SO2NR° or NRcSO2; and Rb is selected from hydrogen, a carbocyclic or heterocyclic group with 3-7 ring members and a C^s hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, cyano, nitro, carboxy, amino, mono- or di-Cμ hydrocarbylamino, a carbocyclic or heterocyclic group with 3-7 ring members and wherein one or more carbon atoms of the
Figure imgf000056_0002
hydrocarbyl group may optionally be replaced by O, S, SO, SO2, NRC, X1C(X2), C(X2)X* or X1C(X2)X1; and Rc, X1 and X2 are as hereinbefore defined.
Examples of non-aromatic groups R3 include optionally substituted (by R10 or R10a) cycloalkyl, oxa-cycloalkyl, aza-cycloalkyl, diaza-cycloalkyl, dioxa-cycloalkyl and aza-oxa-cycloalkyl groups. Further examples include C7.1o aza-bicycloalkyl groups such as l-aza-bicyclo[2.2.2]octan-3-yl.
Particular examples of such groups include unsubstituted or substituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydropyran, morpholine, tetrahydrofuran, piperidine and pyrrolidine groups.
One sub-set of non-aromatic groups R3 consists of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydropyran, tetrahydrofuran, piperidine and pyrrolidine groups.
Preferred non-aromatic groups R3 include unsubstituted or substituted cyclopentyl, cyclohexyl, tetrahydropyran, tetrahydrofuran, piperidine and pyrrolidine groups,
The non-aromatic groups may be unsubstituted or substituted with one or more groups R10 or R10a as hereinbefore defined.
Particular substituents for R (e.g. (i) when R is an aryl or heteroaryl group or (ii) when R3 is a non-aromatic group) are selected from the group R10a consisting of halogen; hydroxy; monocyclic carbocyclic and heterocyclic groups having from 3 to 6 ring members and containing up to 2 heteroataom ring members selected from O, N and S; and a group Ra-Rb wherein Ra is a bond, O, CO, CO2, SO2, NH, SO2NH or NHSO2; and R is selected from hydrogen, a carbocyclic or heterocyclic group with 3-6 ring members and containing up to 2 heteroatom ring members selected from O, N and S; and a C^ hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, carboxy, amino, mono- or di-CM hydrocarbylamino, a carbocyclic or heterocyclic group with 3-6 ring members and containing up to 2 heteroatom ring members selcted from O, N and S; and wherein one or two carbon atoms of the C1-6 hydrocarbyl group may optionally be replaced by O, S, SO, SO2 or NH.
In one embodiment, preferred R10a substituent groups on R3 (e.g. (i) when R3 is an aryl or heteroaryl group or (ii) when R3 is a non-aromatic group) include halogen, a group Ra-Rb wherein Ra is a bond, O, CO, C(X2)X1, and Rb is selected from hydrogen, heterocyclic groups having 3-7 ring members and a C1.4 hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, carboxy, amino, mono- or di-C1.4 hydrocarbylamino, and heterocyclic groups having 3-7 ring members.
Particularly preferred substituent groups R10a on R3 (e.g. (i) when R3 is an aryl or heteroaryl group or (ii) when R is a non-aromatic group) include halogen, especially fluorine, C1-3 alkoxy such as methoxy, and C1-3 hydrocarbyl optionally substituted by fluorine, hydroxy (e.g. hydroxymethyl), Ci.2 alkoxy or a 5- or 6- membered saturated heterocyclic ring such as piperidino, morpholino, piperazino and N-methylpiperazino .
In another embodiment, the substituents for R (whether aromatic or non-aromatic) are selected from:
• halogen (e.g. fluorine and chlorine)
• CM alkoxy (e.g. methoxy and ethoxy) optionally substituted by one or substituents selected from halogen, hydroxy, C^ alkoxy and five and six membered saturated heterocyclic rings containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic rings being optionally further substituted by one or more C1- groups (e.g. methyl) and wherein the S, when present, may be present as S, SO or SO2; • CM alkyl optionally substituted by one or substituents selected from halogen, hydroxy, CM alkoxy, amino, CM alkylsulphonylamino, 3 to 6 membered cycloalkyl groups (e.g. cyclopropyl), phenyl (optionally substituted by one or more substituents selected from halogen, methyl, methoxy and amino) and five and six membered saturated heterocyclic rings containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic rings being optionally further substituted by one or more CM groups (e.g. methyl) and wherein the S, when present, may be present as S, SO or SO2;
• hydroxy;
• amino, mono-CM alkylamino, CU-CM alkylamino, benzyloxycarbonylamino and CM alkoxycarbonylamino; • carboxy and CM alkoxycarbonyl;
• CM alkylaminosulphonyl and C alkylsulphonylamino;
• CM alkylsulphonyl;
• a group O-Hets or NH-Hets where Hets is a five or six membered saturated heterocyclic ring containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic rings being optionally further substituted by one or more C groups (e.g. methyl) and wherein the S, when present, may be present as S, SO or SO2;
• five and six membered saturated heterocyclic rings containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic rings being optionally further substituted by one or more CM groups (e.g. methyl) and wherein the S, when present, may be present as S, SO or SO2;
• oxo; and
• six membered aryl and heteroaryl rings containing up to two nitrogen ring members and being optionally substituted by one or substituents selected from halogen, methyl and methoxy.
In one preferred sub-group of compounds, R is a carbocyclic or heterocyclic group R3a selected from phenyl; C3-6 cycloalkyl; five and six membered saturated non- aromatic heterocyclic rings containing up to two heteroatom ring members selected from N, O, S and SO2; six membered heteroaryl rings containing one, two or three nitrogen ring members; and five membered heteroaryl rings having up to three heteroatom ring members selected from N, O and S; wherein each carbocyclic or heterocyclic group R3a is optionally substituted by up to four, preferably up to three, and more preferably up to two (e.g. one) substituents selected from amino; hydroxy; oxo; fluorine; chlorine; C1.4 alkyl-(O)q- wherein q is 0 or 1 and the CM alkyl moiety is optionally substituted by fluorine, hydroxy or -2 alkoxy; mono-CM alkylamino; di-Ci.4 alkylamino; CM alkoxycarbonyl; carboxy; a group Re-R16 where Re is a bond or a C1.3 alkylene chain and R16 is selected from CM alkylsulphonyl; C alkylaminosulphonyl; C1. alkylsulphonylamino-; amino; mono-CM alkylamino; CU-CM alkylamino; C1-7- hydrocarbyloxycarbonylamino; six membered aromatic groups containing up to three nitrogen ring members; C3-6 cycloalkyl; five or six membered saturated non- aromatic heterocyclic groups containing one or two heteroatom ring members selected from N, O, S and SO2, the group R16 when a saturated non-aromatic group being optionally substituted by one or more methyl groups, and the group R16 when aromatic being optionally substituted by one or more groups selected from fluorine, chlorine, hydroxy, C1.2 alkoxy and C1.2 alkyl.
In a further embodiment, R is selected from:
• monocyclic aryl groups optionally substituted by 1-4 (for example 1-2, e.g. 1) substituents R10 or R10a;
• C3-C7 cycloalkyl groups optionally substituted by 1-4 (for example 1-2, e.g. 1) substituents R10 or R10a;
• saturated five membered heterocyclic rings containing 1 ring heteroatom selected from O, N and S and being optionally substituted by an oxo group and/or by 1 -4 (for example 1 -2, e.g. 1) substituents R10 or R10a;
• saturated six membered heterocyclic rings containing 1 or 2 ring heteroatoms selected from O, N and S and being optionally substituted by an oxo group and/or by 1-4 (for example 1-2, e.g. 1) substituents R10 or R10a;
• five membered heteroaryl rings containing 1 or 2 ring heteroatoms selected from O, N and S and being optionally substituted by 1-4 (for example 1-2, e.g. 1) substituents R10 or R10a;
• six membered heteroaryl rings containing 1 or 2 nitrogen ring members (preferably 1 nitrogen ring member) and being optionally substituted by 1-4 (for example 1-2, e.g. 1) substituents R10 or R10a; • mono-azabicycloalkyl and diazabicycloalkyl groups each having 7 to 9 ring members and being optionally substituted by 1-4 (for example 1-2, e.g. 1) substituents R10 or R10a.
Specific examples of the group Y-R3 are set out in Table 2. In Table 2, the point of attachment of the group to the nitrogen atom of the pyrazole-3-carboxamide group is represented by the terminal single bond extending from the group. Thus, by way of illustration, group CA in the table is the 4-fluorophenyl, group CB in the table is the 4-methoxybenzyl group and group CC in the table is the 4-(4- methylpiperazino)-phenylmethyl group.
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000065_0001
One sub-set of groups selected from table 2 consists of groups CA to EU.
Another sub-set of groups selected from table 2 consists of groups CA to CV.
Preferred groups selected from Table 2 include groups CL, CM, ES, ET, FC, FG and FH.
Particularly preferred groups selected from Table 2 include groups CL, CM and ES, and most preferably CL and CM.
In another general embodiment, when R3 is an aza-cycloalkyl group, the group X in the compound of the formula (I) is preferably R^A-NR4 wherein A is CO, NRs(C=O) or O(G=O). Additionally, or alternatively, when R3 is an aza-cycloalkyl group, the nitrogen atom of the aza-cycloalkyl group is preferably not substituted with an alkylene chain linked to a 2,3-dihydro-benzo[l,4]dioxine or tetrahydronaphthalene group.
In another general embodiment, when Y is an alkylene chain of 1 carbon atom in length, R3 is other than an optionally substituted phenyl group bearing a substituted or unsubstituted cyclohexyloxy or cyclohexylthio group.
In another general embodiment, R3 is other than a moiety containing a five membered heteroaryl ring linked directly by a single bond to a monocyclic or bicyclic aryl group or R is other than a moiety containing a bis heteroaryl group comprising two five membered heteroaryl rings linked together by a single bond.
In a further general embodiment, R1 is other than a moiety containing a five membered heteroaryl ring linked directly by a single bond to a monocyclic or bicyclic aryl group or R1 is other than a moiety containing a bis heteroaryl group comprising two five membered heteroaryl rings linked together by a single bond.
In another general embodiment, R'-A-NR4 is other than an optionally substituted nicotinoyl-amino or benzoyl-amino group when Y-R is an alkyl, cycloalkyl, optionally substituted phenyl or optionally substituted phenylalkyl group.
When A is a bond (and optionally when A is CO, NR8(C=O) or O(C=O)), Y-R3 may be other than a cycloalkyl group substituted at the 1 -position with a hydrocarbon chain simultaneously bearing an oxy substituent such as hydroxy, an aryl substituent and a diazole or triazole substituent.
Preferably, R1 or R3 each are other than a moiety containing a substituted phenyl group having thio and/or oxy substituents such as hydroxy, alkoxy and alkylthio at both the 3- and 4-positions of the phenyl ring.
In a further general embodiment, when Y-R3 is unsubstituted or substituted benzyl or phenethyl or naphthylmethyl, X may be other than C1.5 alkylamino or C\.η acylamino. The group Y-R3 preferably does not include a benzo-fused lactam group having attached thereto an unsubstituted or substituted imidazole group.
The group Y-R3 preferably does not include the moiety -CH=C(CO2Rq)-S- where Rq is hydrogen or alkyl.
In another general embodiment, neither R nor R contain a moiety in which a five membered nitrogen-containing heteroaryl group is linked directly or via an alkylene, oxa-alkylene, thia-alkylene or aza-alkylene group to an unsubstituted pyridyl group or to a substituted aryl, heteroaryl or piperidine ring, each said ring having attached thereto a subsitutent selected from cyano, and substituted or unsubstituted amino, aminoalkyl, amidine, guanidine, and carbamoyl groups.
In a further general embodiment, R1 and R3 are each other than an unsaturated nitrogen-containing heterocyclic group or a nitrogen-containing heteroaryl group, or a benzfuran or benzthiophene group wherein the said nitrogen-containing heterocyclic group, nitrogen-containing heteroaryl group, bicyclic benzfuran or benzthiophene group are linked directly by a single bond to a substituted pyridyl or phenyl group.
In another general embodiment, neither R1 nor R3 contain a moiety in which a five membered nitrogen-containing heteroaryl group is linked directly or via an alkylene, oxa-alkylene, thia-alkylene or aza-alkylene group to a substituted aryl, heteroaryl or piperidine group or to an unsubstituted pyridyl group.
In general, it is preferred that the compounds of the invention, where they contain a carboxylic acid group, contain no more than one such group.
Particular and Preferred Sub-groups of the formulae (I), (la) and (lb)
One particular group of compounds of the invention is represented by the formula (II):
Figure imgf000068_0001
or salts or tautomers or N-oxides or solvates thereof; wherein R1, R2, R3 and Y are each independently selected from R1, R2, R3 and Y as defined herein. j
Within formula (II), it is preferred that R2 is hydrogen or C alkyl (e.g. C1.3 alkyl), and more preferably R is hydrogen.
In one sub-group of compounds of the formula (II), R1 is: 1
(i) phenyl optionally substituted by one or more substituents (e.g. 1, 2 or 3) * selected from fluorine; chlorine; hydroxy; 5- and 6-membered saturated ; heterocyclic groups containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic groups being optionally substituted by one or more C alkyl groups;! CM hydrocarbyloxy; and C hydrocarbyl; wherein the CM hydrocarbyl and Cμ . hydrocarbyloxy groups are optionally substituted by one or more substituents chosen from hydroxy, fluorine, Cn-2 alkoxy, amino, mono and di-Ci. alkylamino, i . phenyl, halophenyl, saturated carbocyclic groups having 3 to 7 ring members (more preferably 4, 5 or 6 ring members, e.g. 5 or 6 ring members) or saturated ; heterocyclic groups of 5 or 6 ring members and containing up to 2 heteroatoms j selected from O, S and N; or 2, 3-dihydro-benzo[l ,4]dioxine; or j
(ii) a monocyclic heteroaryl group containing one or two heteroatoms selected from O, S and N; or a bicyclic heteroaryl group containing a single heteroatom selected from O, S and N; the monocyclic and bicyclic heteroaryl groups each being optionally substituted by one or more substituents selected from fluorine; chlorine; C1-3 hydrocarbyloxy; and C1.3 hydrocarbyl optionally substituted by hydroxy, fluorine, methoxy or a five or six membered saturated carbocyclic or heterocyclic group containing up to two heteroatoms selected from O, S and N; or
(iii) a substituted or unsubstituted cycloalkyl group having from 3 to 6 ring members; or (iv) a CM hydrocarbyl group optionally substituted by one or more substituents selected from fluorine; hydroxy; C hydrocarbyloxy; amino; mono- or di-C1. hydrocarbylamino; and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein one of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, NH, SO and SO2.
Within group (i), a sub-group of groups R1 consists of phenyl optionally substituted by one or more substituents selected from fluorine; chlorine; hydroxy; C1.3 hydrocarbyloxy; and C1.3 hydrocarbyl wherein the C1.3 hydrocarbyl group is optionally substituted by one or more substituents chosen from hydroxy, fluorine, Cι-2 alkoxy, amino, mono and di-Cι-4 alkylamino, saturated carbocyclic groups having 3 to 7 ring members (more preferably 4, 5 or 6 ring members, e.g. 5 or 6 ring members) or saturated heterocyclic groups of 5 or 6 ring members and containing up to 2 heteroatoms selected from O, S and N.
In another sub-group of compounds of the formula (II), R1 is selected from (i) and (iii) above and additionally from a sub-set (aii) where sub-set (aii) consists of 2- furanyl, 3-furanyl, imidazolyl, 2-pyridyl, indolyl, 2-thienyl and 3 -thienyl, each optionally substituted by one or more substituents selected from fluorine, chlorine, C1-3 hydrocarbyloxy, and Cι„3 hydrocarbyl optionally substituted by hydroxy, fluorine or methoxy.
Within the group of compounds defined by the formula (II), where R1 is (i) an optionally substituted phenyl group, it may be, for example, an unsubstituted phenyl group or a 2-monosubstituted, 3-monosubstituted, 2,3 disubstituted, 2,5 disubstituted or 2,6 disubstituted phenyl group or 2, 3-dihydro-benzo[l,4]dioxine, where the substituents are selected from halogen; hydroxyl; C1-3 alkoxy; and Ci-3 alkyl groups wherein the C1.3 alkyl group is optionally substituted by hydroxy, fluorine, C1-2 alkoxy, amino, mono and di-C1.4 alkylamino, or saturated carbocyclic groups having 3 to 6 ring members and/or saturated heterocyclic groups of 5 or 6 ring members and containing 1 or 2 heteroatoms selected from N and O.
In one embodiment, R1 is selected from unsubstituted phenyl, 2-fluorophenyl, 2- hydroxyphenyl, 2-methoxyphenyl, 2-methylphenyl, 2-(2-(pyrrolidin-l-yl)ethoxy)- phenyl, 3 -fluorophenyl, 3-methoxyphenyl, 2,6-difluorophenyl, 2-fluoro-6- hydroxyphenyl, 2-fluoro-3-methoxyphenyl, 2-fluoro-5-methoxyphenyl, 2-chloro-6- methoxyphenyl, 2-fluoro-6-methoxyphenyl, 2,6-dichlorophenyl and 2-chloro-6- fluorophenyl, and is optionally further selected from 5-fluoro-2-methoxyphenyl.
In another embodiment, R1 is selected from unsubstituted phenyl, 2-fluorophenyl, 2-hydroxyphenyl, 2-methoxyphenyl, 2-methylphenyl, 2-(2-(pyrrolidin-l- yl)ethoxy)-phenyl, 3 -fluorophenyl, 3-methoxyphenyl, 2,6-difluorophenyl, 2-fluoro- 6-hydroxyphenyl, 2-fluoro-3-methoxyphenyl and 2-fluoro-5-methoxyphenyl.
Particular groups R1 are 2,6-difluorophenyl, 2-fluoro-6-methoxyphenyl and 2,6- dichlorophenyl.
One particularly preferred group R1 is 2,6-difluorophenyl.
Another particularly preferred group R1 is 2,6-dichlorophenyl.
When R1 is (ii) a monocyclic heteroaryl group containing one or two heteroatoms selected from O, S and N or a bicyclic heteroaryl group containing a single heteroatom, examples of monocyclic and bicyclic heteroaryl groups include furanyl (e.g. 2-furanyl and 3-furanyl), imidazolyl, pyridyl (e.g. 2-pyridyl), indolyl, thienyl (e.g. 2-thienyl and 3 -thienyl) groups. The optional substituents for such groups can include chlorine, fluorine, methyl, methoxy, hydroxymethyl, methoxymethyl, mo holinomethyl, piperazinomethyl, N-methylypiperazinomethyl and piperidinylmethyl groups. Particular examples of groups (ii) include unsubstituted 2-furanyl, 3-methyl-2-furanyl, unsubstituted 4-(lH)-imidazolyl, unsubstituted 5- (lH)-imidazolyl, unsubstituted 3-furanyl, unsubstituted 3-thienyl, 2-methyl-3- thienyl and unsubstituted 3 -pyrrolyl, and further examples include 4-methoxy-3- thienyl, 5-(l-pyrrolidinyl)methyl-2-furyl and 5-(4-morpholino)methyl-2-furyl groups.
When R1 is (iii) an optionally substituted cycloalkyl group, it can be for example a substituted or unsubstituted cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl group. When the cycloalkyl group is substituted, preferred substituents include methyl, fluorine and hydroxyl. Particular examples of cycloalkyl groups include 1- methylcyclopropyl, 1-hydroxycyclopropyl, and unsubstituted cyclohexyl, cyclopentyl and cyclobutyl.
In the context of formula (II) and the group R1, examples of optionally substituted hydrocarbyl groups are optionally substituted methyl, ethyl and propyl groups wherein one of the carbon atoms of the hydrocarbyl group is optionally replaced by O, NH, SO or SO2 . Particular examples of such groups include methyl, ethyl, trifluoromethyl, methyl and ethyl substituted with a carbocyclic or heterocyclic group having from 3 to 12 ring members, sulphonylmethyl substituted with a carbocyclic or heterocyclic group having from 3 to 12 ring members, hydroxymethyl, hydroxy ethyl, 3-hydroxy-2-propyl, propyl, isopropyl, butyl and tertiary butyl. Examples of hydrocarbyl groups and carbocylic and heteroacyclic groups are as set out above in the general definitions of such groups. Particular carbocyclic and heterocyclic groups include unsubstituted or substituted phenyl, indolyl, tetrazolyl, triazolyl, piperidinyl, morpholinyl, piperazinyl, N- methylpiperazinyl, imidazolyl wherein the optional substituents may be selected from the group R10, and sub-groups thereof, as defined herein.
In another sub-group of compounds of the formula (II), R1 is a CM hydrocarbyl group optionally substituted by one or more substituents selected from fluorine, hydroxy, CM hydrocarbyloxy, amino, mono- or di-CM hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, NH, SO and SO2.
In one embodiment, R1 is a group Rla-(V)n- where: n is O or 1;
N is selected from CH2, CH2CH2 and SO2CH2; and
Rla is a carbocyclic or heterocyclic group selected from phenyl; five membered heteroaryl rings having up to 4 heteroatom ring members selected fromΝ, O and S; six membered heteroaryl rings containing one or two nitrogen ring members; five or six membered saturated non-aromatic heterocyclic rings containing one or two heteroatom ring members selected from Ν, O, S and SO2;
C3-6 cycloalkyl groups; indole; and quinoline; wherein each of the carbocyclic and heterocyclic groups Rla can be optionally substituted by one or more substituents selected from five or six membered saturated non-aromatic carbocyclic and heterocyclic groups containing up to two heteroatom ring members selected from Ν, O, S and SO2; hydroxy; amino; oxo; mono-CM alkylamino; di-CM alkylamino; fluorine; chlorine; nitro; CM alkyl-(O)q- wherein q is 0 or 1 and the CM alkyl moiety is optionally substituted by fluorine, hydroxy, C1.2 alkoxy or a five or six membered saturated non-aromatic carbocyclic or heterocyclic group containing up to two heteroatom ring members selected from
Ν, O, S and SO2; phenyl and C ^-alkylene dioxy.
Specific examples of groups R^CO- in fonnula (II) are set out in Table 1 above.
One sub-group of preferred groups R*-CO consists of the groups J, AB, AH, AJ, AL, AS, AX, AY, AZ, BA, BB, BD, BH, BL, BQ and BS.
Another sub-group of groups R^CO consists of the groups A to BF.
A further sub-group of groups R'-CO consists of the groups A to BS.
Particularly preferred groups are the groups AJ, BQ and BS in Table 1, e.g. the sub- set consisting of AJ and BQ.
Another group of compounds of the invention is represented by the formula (III):
Figure imgf000073_0001
or salts or tautomers or N-oxides or solvates thereof; wherein R1, R2, R3 and Y are as defined herein.
Examples of, and preferences, for the groups R1, R2, R3 and Y are as set out above for compounds of the formulae (0), (1°), (I), (la), (lb) and (II) unless the context indicates otherwise.
Particular sub-groups of compounds of the formula (III) include:
(i) compounds wherein R1 is a heteroaryl group containing 1, 2 or 3 heteroatom ring members selected from N, O and S; (ii) compounds wherein R1 is a C^ hydrocarbyl group optionally substituted by one or more substituents selected from fluorine, hydroxy, CM hydrocarbyloxy, amino, mono- or di-CM hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, NH, SO and SO2; and
(iii) compounds wherein R1 is a non-aromatic carbocyclic or heterocyclic group having from 3 to 12 ring members.
Examples of compounds of the formula (III) wherein R1 is (i) a heteroaryl group include 5- and 6-membered monocyclic heteroaryl groups, e.g. containing lor 2 heteratom ring members selected from O, N and S. In one embodiment, the heteroaryl group is a monocyclic group containing 1 or 2 nitrogen ring members. In another embodiment, the heteroaryl groups are selected from 6-membered rings containing 1 or 2 nitrogen ring members, for example pyridine, pyrimidine, pyrazine and pridazine groups, one particular sub-group consisting of pyrazinyl and pyridyl. The heteroaryl groups can be unbsubstituted or substituted by one or more groups R10 as defined herein.
Examples of compounds of the formula (III) wherein R1 is (ii) an optionally substituted C^ hydrocarbyl group include those in which the hydrocarbyl group is • unsubstituted hydrocarbyl, for example unsubstituted alkyl such as methyl, ethyl, ,' propyl, isopropyl, butyl, isobutyl, t-butyl, 1-pentyl, 2-pentyl and 3-pentyl.
Examples of compounds wherein R1 is a non-aromatic carbocyclic or heterocyclic . group include those wherein the carbocyclic or heterocylic group is monocyclic and contains up to 2 heteroatoms selected from oxygen and nitrogen. Particular examples of such groups are cyclohexyl and piperidino.
Another sub-group of compounds of the formula (I) can be represented by the formula (IN):
Figure imgf000074_0001
or salts or tautomers or Ν-oxides or solvates thereof; wherein R and R are as defined herein; an optional second bond may be present between carbon atoms numbered 1 and 2; one of U and T is selected from CH2, CHR13, CRπR13, ΝR14, Ν(O)R15, 0 and
S(O)t; and the other of U and T is selected from , NR14, O, CH2, CHR11, C(Rn)2, and C=O; r is 0, 1, 2, 3 or 4; t is 0, 1 or 2; R11 is selected from hydrogen, halogen (particularly fluorine), C1.3 alkyl (e.g. methyl) and C1.3 alkoxy (e.g. methoxy);
R13 is selected from hydrogen, NHR14, NOH, NOR14 and Ra-Rb;
R14 is selected from hydrogen and Rd-Rb;
Rd is selected from a bond, CO, C(X2)X1, SO2 and SO2NRc; Ra, Rb and Rc are as hereinbefore defined; and
R is selected from CM saturated hydrocarbyl optionally substituted by hydroxy, C!-2 alkoxy, halogen or a monocyclic 5- or 6-membered carbocyclic or heterocyclic group, provided that U and T cannot be O simultaneously.
Examples of, and preferences, for the groups R1 and R2 are as set out above for compounds of the formulae (I), (la), (lb) and (II) unless the context indicates otherwise.
Within formula (IV), r can be 0, 1, 2, 3 or 4. In one embodiment, r is 0. In another embodiment, r is 2, and in a further embodiment r is 4.
Within formula (IV), one sub-set of preferred compounds is the set of compounds where there is only a single bond between the carbon atoms numbered 1 and 2.
However, in another sub-set of compounds, there is a double bond between the carbon atoms numbered 1 and 2.
Another sub-set of compounds is characterised by gem disubstitution at the 2- carbon (when there is a single bond between carbon atoms numbers 1 and 2) and/or the 6-carbon. Preferred gem disubstituents include difluoro and dimethyl.
A further sub-set of compounds is characterised by the presence of an alkoxy group, for example a methoxy group at the carbon atom numbered 3, i.e. at a position α with respect to the group T.
Within formula (IV) are compounds wherein, for example, R is selected from any of the following ring systems:
Figure imgf000075_0001
Figure imgf000076_0001
Preferred ring systems include Gl and G3.
A preferred sub-group of compounds within formula (IV) can be represented by the formula (IVa):
Figure imgf000076_0002
or salts or tautomers or N-oxides or solvates thereof; wherein R1 and R2 are as hereinbefore defined; one of U and T is selected from CH2, CHR13, CRnR13, NR14, N(O)R15, O and
S(O)t; and the other of U and T is selected from CH2, CHR11, C(Rπ)2, and C=O; r is
0, 1 or 2; t is 0, 1 or 2; R11 is selected from hydrogen and C1.3 alkyl;
R13 is selected from hydrogen and Ra-Rb;
R14 is selected from hydrogen and Rd-Rb;
Rd is selected from a bond, CO, C(X2)X1, SO2 and SO2NRc;
Ra, Rb and Rc are as hereinbefore defined; and R15 is selected from C saturated hydrocarbyl optionally substituted by hydroxy,
Cι-2 alkoxy, halogen or a monocyclic 5- or 6-membered carbocyclic or heterocyclic group. Examples of, and preferences, for the groups R1 and R2 are as set out above for compounds of the formulae (0), (1°), (I), (la), (lb) and (II) unless the context indicates otherwise.
In formula (IVa), T is preferably selected from CH2, CHR13, CRUR13, NR14, N(O)R15, O and S(O)t; and U is preferably selected from CH2, CHR11, C(Rπ)2, and C=O.
In the definitions for substituents R11 and R14, Rb is preferably selected from hydrogen; monocyclic carbocyclic and heterocyclic groups having from 3 to 7 ring members; and CM hydrocarbyl (more preferably acyclic saturated CM groups) optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, amino, mono- or di-Cι-4 hydrocarbylamino, and monocyclic carbocyclic and heterocyclic groups having from 3 to 7 ring members (more preferably 3 to 6 ring members) and wherein one or more carbon atoms of the CM hydrocarbyl group may optionally be replaced by O, S, SO, SO2, NRC, X^ X2), C(X2)Xl ; Rc is selected from hydrogen and C hydrocarbyl; and X1 is O, S or NRC and X2 is =O, =S or =NRC.
R11 is preferably selected from hydrogen and methyl and most preferably is hydrogen.
R13 is preferably selected from hydrogen; hydroxy; halogen; cyano; amino; mono- CM saturated hydrocarbylamino; di-C1.4 saturated hydrocarbylamino; monocyclic 5- or 6-membered carbocyclic and heterocyclic groups; Cι-4 saturated hydrocarbyl optionally substituted by hydroxy, C^ alkoxy, halogen or a monocyclic 5- or 6- membered carbocyclic or heterocyclic group.
Particular examples of R are hydrogen, hydroxy, amino, Cι.2 alkylamino (e.g. methylamino) CM alkyl (e.g. methyl, ethyl, propyl and butyl), C1-2 alkoxy (e.g. methoxy), C1.2 alkylsulphonamido (e.g. methanesulphonamido), hydroxy-Cι-2 alkyl (e.g. hydroxymethyl),
Figure imgf000077_0001
alkyl (e.g. methoxymethyl and methoxyethyl), carboxy, CM alkoxycarbonyl (e.g.ethoxycarbonyl) and amino-Ci-r alkyl (e.g. aminomethyl).
Particular examples of R14 are hydrogen; CM alkyl optionally substituted by fluoro or a five or six membered saturated heterocyclic group (e.g. a group selected from (i) methyl, ethyl, n-propyl, i-propyl, butyl, 2,2,2-trifluoroethyl and tetrahydrofuranylmethyl; and/or (ii) 2-fluoroethyl and 2,2-difluoroethyl); cyclopropylmethyl; substituted or unsubstituted pyridyl-Cι-2 alkyl (e.g. 2- pyridylmethyl); substituted or unsubstituted phenyl-C^ alkyl (e.g. benzyl); CM alkoxycarbonyl (e.g.ethoxycarbonyl and t-butyloxycarbonyl); substituted and unsubstituted phenyl-C^ alkoxycarbonyl (e.g. benzyloxycarbonyl); substituted and unsubstituted 5- and 6-membered heteroaryl groups such as pyridyl (e.g. 2- pyridyl and 6-chloro-2 -pyridyl) and pyrimidinyl (e.g. 2-pyrimidinyl); Cι-2-alkoxy- Cι-2 alkyl (e.g. methoxymethyl and methoxyethyl); CM alkylsulphonyl (e.g. methanesulphonyl) .
Preferred compounds include those in which (i) U is CHR13 (more preferably CH2) and T is NR14, and (ii) T is CHR13 (more preferably CH2) and U is NR14.
One particular preferred sub-group of compounds of the formula (IV) can be represented by the formula (Va):
Figure imgf000078_0001
or salts or tautomers or N-oxides or solvates thereof; wherein R14a is selected from hydrogen, CM alkyl optionally substituted by fluoro (e.g. methyl, ethyl, n-propyl, i-propyl, butyl and 2,2,2-trifluoroethyl), cyclopropylmethyl, phenyl-Cι-2 alkyl (e.g. benzyl), CM alkoxycarbonyl (e.g.ethoxycarbonyl and t-butyloxycarbonyl), phenyl-C^ alkoxycarbonyl (e.g. benzyloxycarbonyl), C^-alkoxy-Ci-2 alkyl (e.g. methoxymethyl and methoxyethyl), and CM alkylsulphonyl (e.g.methanesulphonyl), wherein the phenyl moieties when present are optionally substituted by one to three substituents selected from fluorine, chlorine, C1-4 alkoxy optionally substituted by fluoro or d-2- alkoxy, and CM alkyl optionally substituted by fluoro or -2-alkoxy; w is 0, 1, 2 or 3;
R2 is hydrogen or methyl, most preferably hydrogen; R11 and r are as hereinbefore defined; and R19 is selected from fluorine; chlorine; CM alkoxy optionally substituted by fluoro or Ct-2-alkoxy; and CM alkyl optionally substituted by fluoro or Ci-2-alkoxy.
-Another particular preferred sub-group of compounds of the formula (IV) can be represented by the formula (Vb):
Figure imgf000079_0001
or salts or tautomers or N-oxides or solvates thereof; wherein R14a is selected from hydrogen, CM alkyl optionally substituted by fluoro (e.g. methyl, ethyl, n-propyl, i-propyl, butyl and 2,2,2-trifluoroethyl), cyclopropylmethyl, phenyl-C^ alkyl (e.g. benzyl), C alkoxycarbonyl (e.g.ethoxycarbonyl and t-butyloxycarbonyl), phenyl-Cι-2 alkoxycarbonyl (e.g. benzyloxycarbonyl), C^-alkoxy-C^ alkyl (e.g. methoxymethyl and methoxyethyl), and C1. alkylsulphonyl (e.g.methanesulphonyl), wherein the phenyl moieties when present are optionally substituted by one to three substituents selected from fluorine, chlorine, CM alkoxy optionally substituted by fluoro or C1.2- alkoxy, and CM alkyl optionally substituted by fluoro or Cι-2-alkoxy; w is 0, 1, 2 or 3; R2 is hydrogen or methyl, most preferably hydrogen;
R11 and r are as hereinbefore defined; and
R19 is selected from fluorine; chlorine; CM alkoxy optionally substituted by fluoro or Ci-2-alkoxy; and CM alkyl optionally substituted by fluoro or d.2-alkoxy.
In formulae (Na) and (Vb), when w is 1, 2 or 3, it is preferred that the phenyl ring is 2-monosubstituted, 3-monosubstituted, 2,6-disubstituted, 2,3-disubstituted, 2,4- disubstituted 2,5-disubstituted, 2,3,6-trisubstituted or 2,4,6-trisubstituted. Most preferably the phenyl ring is disubstituted at positions 2- and 6- with substituents selected from fluorine, chlorine and methoxy.
R11 is preferably hydrogen (or r is 0).
R14a is most preferably hydrogen or methyl.
One preferred sub-group of compounds of the formula (Na) can be represented by the formula (Via):
Figure imgf000080_0001
or salts or tautomers or Ν-oxides or solvates thereof; wherein R20 is selected from hydrogen and methyl;
R21 is selected from fluorine and chlorine; and
R22 is selected from fluorine, chlorine and methoxy; or one of R21 and R22 is hydrogen and the other is selected from chlorine, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy and benzyloxy.
Another preferred sub-group of compounds of the formula (Na) can be represented by the formula (Nib):
Figure imgf000081_0001
or salts or tautomers or Ν-oxides or solvates thereof; wherein R20 is selected from hydrogen and methyl;
R ,21a is selected from fluorine and chlorine; and R22a is selected from fluorine, chlorine and methoxy.
Particular compounds within formula (Vlb) include:
4-(2,6-difluoro-benzoylamino)-lH-pyrazole-3-carboxylic acid piperidin-4-ylamide;
4-(2,6-difluoro-benzoylamino)-lH-pyrazole-3-carboxylic acid (1-methyl-piperidin-
4-yl)-amide;
4-(2,6-dichloro-benzoylamino)-lH-pyrazole-3-carboxylic acid piperidin-4-ylamide; and
4-(2-fluoro-6-methoxy-benzoylamino)-lH-pyrazole-3-carboxylic acid piperidin-4- ylamide; or salts or tautomers or Ν-oxides or solvates thereof.
A further group of compounds of the invention is represented by the formula (VII):
Figure imgf000081_0002
or salts or tautomers or Ν-oxides or solvates thereof; wherein R2, R3 and Y are as hereinbefore defined and G is a 5- or 6-membered carbocyclic or heterocyclic ring. The group G can be an unsubstituted carbocyclic or heterocyclic ring or it can be a substituted carbocyclic or heterocyclic ring bearing one or more substituents selected from the groups R10 and R10a as hereinbefore defined
The carbocyclic or heterocyclic ring may be aromatic or non-aromatic and examples of such heterocyclic rings are set out above. In the context of the group G, preferred heterocyclic rings are those containing a nitrogen ring atom through which the group G is connected to the pyrazole ring. Particular heterocyclic rings are saturated heterocyclic rings containing up to 3 nitrogen atoms (more usually up to 2, for example 1) and optionally an oxygen atom. Particular examples of such rings are six membered rings such as piperidine, piperazine, N-methyl piperazine and morpholine.
When the group G is a carbocyclic group, it can be, for example a 6-membered aryl ring. For example, the group G can be an unsubsituted phenyl group or it can be a substituted phenyl group bearing one or more substituents selected from the groups R10 and R10a as hereinbefore defined. The substituents, when present, are more typically small substituents such as hydroxyl, halogen (e.g. fluorine and chlorine), and CM hydrocarbyl (methyl, ethyl and cyclopropyl) optionally substituted by fluorine (e.g. trifluoromethyl) or hydroxy (e.g. hydroxymethyl).
In one general embodiment, when X is a non-aromatic heterocyclic group, then R3 may be other than a six membered monocyclic aryl or heteroaryl group linked directly to a 5,6-fused bicyclic heteroaryl group.
A further group of compounds of the invention is represented by the formula (VIII):
Figure imgf000082_0001
or salts or tautomers or N-oxides or solvates thereof; wherein R1, R2, R3 and Y are as defined herein. Preferred groups R1, R2, Y and R3 are as set out above in the section headed "General Preferences and Definitions" and in relation to compounds of the formulae (I) and (II) and sub-groups thereof as defined herein.
For the avoidance of doubt, it is to be understood that each general and specific preference, embodiment and example of the groups R1 may be combined with each general and specific preference, embodiment and example of the groups R2 and/or R3 and/or R4 and/or R10 and/or Y and/or Rs and/or sub-groups thereof as defined herein and that all such combinations are embraced by this application.
The various functional groups and substituents making up the compounds of the formula (I) are typically chosen such that the molecular weight of the compound of the formula (I) does not exceed 1000. More usually, the molecular weight of the compound will be less than 750, for example less than 700, or less than 650, or less than 600, or less than 550. More preferably, the molecular weight is less than 525 and, for example, is 500 or less.
Particular compounds of the invention are as illustrated in the examples below.
Salts. Solvates, Tautomers. Isomers, N-Oxides. Esters. Prodrugs and Isotopes
Unless otherwise specified, a reference to a particular compound also includes ionic, salt, solvate, and protected forms thereof, for example, as discussed below.
Many compounds of the formula (I) can exist in the form of salts, for example acid addition salts or, in certain cases salts of organic and inorganic bases such as carboxylate, sulphonate and phosphate salts. All such salts are within the scope of this invention, and references to compounds of the formula (I) include the salt forms of the compounds. As in the preceding sections of this application, all references to formula (I) should be taken to refer also to formulae (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof unless the context indicates otherwise. Salt forms may be selected and prepared according to methods described in Pharmaceutical Salts: Properties, Selection, and Use, P. Heinrich Stahl (Editor), Camille G. Wermuth (Editor), ISBN: 3-90639-026-8, Hardcover, 388 pages, August 2002.
Acid addition salts may be formed with a wide variety of acids, both inorganic and organic. Examples of acid addition salts include salts formed with an acid selected from the group consisting of acetic, 2,2-dichloroacetic, adipic, alginic, ascorbic (e.g. L-ascorbic), L-aspartic, benzenesulphonic, benzoic, 4-acetamidobenzoic, butanoic, (+) camphoric, camphor-sulphonic, (+)-(lS)-camphor-10-sulphonic, capric, caproic, caprylic, cinnamic, citric, cyclamic, dodecylsulphuric, ethane- 1,2- disulphonic, ethanesulphonic, 2-hydroxyethanesulphonic, formic, fumaric, galactaric, gentisic, glucoheptonic, D-gluconic, glucuronic (e.g. D-glucuronic), glutamic (e.g. L-glutamic), α-oxoglutaric, glycolic, hippuric, hydrobromic, hydrochloric, hydriodic, isethionic, (+)-L-lactic, (±)-DL-lactic, lactobionic, maleic, malic, (-)-L-malic, malonic, (±)-DL-mandelic, methanesulphonic, naphthalene-2- sulphonic, naphthalene- 1,5-disulphonic, l-hydroxy-2-naphthoic, nicotinic, nitric, oleic, orotic, oxalic, palmitic, pamoic, phosphoric, propionic, L-pyroglutamic, salicylic, 4-amino-salicylic, sebacic, stearic, succinic, sulphuric, tannic, (+)-L- tartaric, thiocyanic, /?-toluenesulphonic, undecylenic and valeric acids, as well as acylated amino acids and cation exchange resins.
One particular group of salts consists of salts formed from hydrochloric, hydriodic, phosphoric, nitric, sulphuric, citric, lactic, succinic, maleic, malic, isethionic, fumaric, benzenesulphonic, toluenesulphonic, methanesulphonic, ethanesulphonic, naphthalenesulphonic, valeric, acetic, propanoic, butanoic, malonic, glucuronic and lactobionic acids.
One preferred group of salts consists of salts formed from hydrochloric, acetic, adipic, L-aspartic and DL-lactic acids.
Particularly preferred salts are hydrochloride salts For example, if the compound is anionic, or has a functional group which may be anionic (e.g., -COOH may be -COO"), then a salt may be formed with a suitable cation. Examples of suitable inorganic cations include, but are not limited to, alkali metal ions such as Na+ and K+, alkaline earth cations such as Ca2+ and Mg2+, and other cations such as Al3+. Examples of suitable organic cations include, but are not limited to, ammonium ion (i.e., NH4 ) and substituted ammonium ions (e.g., NH3R0 NH2R2 +, NHR3 +, NR0). Examples of some suitable substituted ammonium ions are those derived from: ethylamine, diethylamine, dicyclohexylamine, triethylamine, butylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine, benzylamine, phenylbenzylamine, choline, meglumine, and tromethamine, as well as amino acids, such as lysine and arginine. An example of a common quaternary ammonium ion is N(CH3)4 +.
Where the compounds of the formula (I) contain an amine function, these may form quaternary ammonium salts, for example by reaction with an alkylating agent according to methods well known to the skilled person. Such quaternary ammonium compounds are within the scope of formula (I).
The salt forms of the compounds of the invention are typically pharmaceutically acceptable salts, and examples of pharmaceutically acceptable salts are discussed in Berge et al, 1977, "Pharmaceutically Acceptable Salts," J Pharm. Sci., Vol. 66, pp. 1-19. However, salts that are not pharmaceutically acceptable may also be prepared as intermediate forms which may then be converted into pharmaceutically acceptable salts. Such non-pharmaceutically acceptable salts forms, which may be useful, for example, in the purification or separation of the compounds of the invention, also form part of the invention.
Compounds of the formula (I) containing an amine function may also form N- oxides. A reference herein to a compound of the formula (I) that contains an amine function also includes the N-oxide.
Where a compound contains several amine functions, one or more than one nitrogen atom may be oxidised to form an N-oxide. Particular examples of N- oxides are the N-oxides of a tertiary amine or a nitrogen atom of a nitrogen- containing heterocycle.
N-Oxides can be formed by treatment of the corresponding amine with an oxidizing agent such as hydrogen peroxide or a per-acid (e.g. a peroxycarboxylic acid), see for example Advanced Organic Chemistry, by Jerry March, 4th Edition, Wiley Interscience, pages. More particularly, N-oxides can be made by the procedure of L. W. Deady (Syn. Comm. 1911, 1, 509-514) in which the amine compound is reacted with m-chloroperoxybenzoic acid (MCPBA), for example, in an inert solvent such as dichloromethane.
Compounds of the formula (I) may exist in a number of different geometric isomeric, and tautomeric forms and references to compounds of the formula (I) include all such forms. For the avoidance of doubt, where a compound can exist in one of several geometric isomeric or tautomeric forms and only one is specifically described or shown, all others are nevertheless embraced by formula (I).
For example, in compounds of the formula (I) the pyrazole group may take either of the following two tautomeric forms A and B. For simplicity, the general formula (I) illustrates form A but the formula is to be taken as embracing both tautomeric forms.
Figure imgf000086_0001
A B
Other examples of tautomeric forms include, for example, keto-, enol-, and enolate- forms, as in, for example, the following tautomeric pairs: keto/enol (illustrated below), imine/enamine, amide/imino alcohol, amidine/amidine, nitroso/oxime, thioketone/enethiol, and nitro/aci-nitro.
Figure imgf000087_0001
keto enol enolate
Where compounds of the formula (I) contain one or more chiral centres, and can exist in the form of two or more optical isomers, references to compounds of the formula (I) include all optical isomeric forms thereof (e.g. enantiomers, epimers and diastereoisomers), either as individual optical isomers, or mixtures (e.g. racemic mixtures) or two or more optical isomers, unless the context requires otherwise.
The optical isomers may be characterised and identified by their optical activity (i.e. as + and - isomers, or d and / isomers) or they may be characterised in terms of their absolute stereochemistry using the "R and S" nomenclature developed by Cahn, Ingold and Prelog, see Advanced Organic Chemistry by Jerry March, 4th Edition, John Wiley & Sons, New York, 1992, pages 109-114, and see also Cahn, Ingold & Prelog, Angew. Chem. Int. Ed. Engl, 1966, 5, 385-415.
Optical isomers can be separated by a number of techniques including chiral chromatography (chromatography on a chiral support) and such techniques are well known to the person skilled in the art.
Where compounds of the formula (I) exist as two or more optical isomeric forms, one enantiomer in a pair of enantiomers may exhibit advantages over the other enantiomer, for example, in terms of biological activity. Thus, in certain circumstances, it may be desirable to use as a therapeutic agent only one of a pair of enantiomers, or only one of a plurality of diastereoisomers. Accordingly, the invention provides compositions containing a compound of the formula (I) having one or more chiral centres, wherein at least 55% (e.g. at least 60%, 65%, 70%, 75%, 80%, 85%, 90%) or 95%) of the compound of the formula (I) is present as a single optical isomer (e.g. enantiomer or diastereoisomer). In one general embodiment, 99% or more (e.g. substantially all) of the total amount of the compound of the formula (I) may be present as a single optical isomer (e.g. enantiomer or diastereoisomer) .
The compounds of the invention include compounds with one or more isotopic substitutions, and a reference to a particular element includes within its scope all isotopes of the element. For example, a reference to hydrogen includes within its scope 1H, 2H (D), and 3H (T). Similarly, references to carbon and oxygen include within their scope respectively 12C, 13C and 14C and 16O and 18O.
The isotopes may be radioactive or non-radioactive. In one embodiment of the invention, the compounds contain no radioactive isotopes. Such compounds are preferred for therapeutic use. In another embodiment, however, the compound may contain one or more radioisotopes. Compounds containing such radioisotopes may be useful in a diagnostic context.
Esters such as carboxylic acid esters and acyloxy esters of the compounds of formula (I) bearing a carboxylic acid group or a hydroxyl group are also embraced by Formula (I). Examples of esters are compounds containing the group
-C(=O)OR, wherein R is an ester substituent, for example, a C1.7 alkyl group, a C3-2o heterocyclyl group, or a C5-2o aryl group, preferably a €1.7 alkyl group. Particular examples of ester groups include, but are not limited to, -C(=O)OCH3, -C(=O)OCH2CH3, -C(=O)OC(CH3)3, and -C(=O)OPh. Examples of acyloxy (reverse ester) groups are represented by -OC(=O)R, wherein R is an acyloxy substituent, for example, a C1.7 alkyl group, a C3-20 heterocyclyl group, or a Cs-20 aryl group, preferably a C1.7 alkyl group. Particular examples of acyloxy groups include, but are not limited to, -OC(=O)CH3 (acetoxy), -OC(=O)CH2CH3, -OC(=O)C(CH3)3, -OC(=O)Ph, and -OC(=O)CH2Ph.
Also encompassed by formula (I) are any polymorphic forms of the compounds, solvates (e.g. hydrates), complexes (e.g. inclusion complexes or clathrates with compounds such as cyclodextrins, or complexes with metals) of the compounds, and pro-drugs of the compounds. By "prodrugs" is meant for example any compound that is converted in vivo into a biologically active compound of the formula (I).
For example, some prodrugs are esters of the active compound (e.g., a physiologically acceptable metabolically labile ester). During metabolism, the ester group (-C(=O)OR) is cleaved to yield the active drug. Such esters may be formed by esterification, for example, of any of the carboxylic acid groups (-C(=O)OH) in the parent compound, with, where appropriate, prior protection of any other reactive groups present in the parent compound, followed by deprotection if required.
Examples of such metabolically labile esters include those of the formula - C(=O)OR wherein R is :
Cι.7alk l
(e.g., -Me, -Et, -nPr, -iPr, -nBu, -sBu, -iBu, -tBu);
C^aminoalkyl
(e.g., aminoethyl; 2-(N,N-diethylamino)ethyl; 2-(4-morpholino)ethyl); and acyloxy-C ^alkyl
(e.g., acyloxymethyl; acyloxyethyl; pivaloyloxymethyl; acetoxymethyl; 1-acetoxyethyl;
1 -(1 -methoxy- 1 -methyl)ethyl-carbonxyloxyethyl;
1 -(benzoyloxy)ethyl; isopropoxy-carbonyloxymethyl;
1 -isopropoxy-carbonyloxyethyl; cyclohexyl-carbonyloxymethyl;
1 -cyclohexyl-carbonyloxyethyl; cyclohexyloxy-carbonyloxymethyl;
1 -cyclohexyloxy-carbonyloxyethyl;
(4-tetrahydropyranyloxy) carbonyloxymethyl; l-(4-tetrahydropyranyloxy)carbonyloxyethyl;
(4-tetrahydropyranyl)carbonyloxymethyl; and l-(4-tetrahydropyranyl)carbonyloxyethyl). Also, some prodrugs are activated enzymatically to yield the active compound, or a compound which, upon further chemical reaction, yields the active compound (for example, as in ADEPT, GDEPT, LIDEPT, etc.). For example, the prodrug may be a sugar derivative or other glycoside conjugate, or may be an amino acid ester derivative.
Biological Activity
The compounds of the formulae (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), - (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof are inhibitors of cyclin dependent kinases, and in particular cyclin dependent kinases selected from CDK1, CDK2, CDK3, CDK4, CDK5 and CDK6.
Preferred compounds are compounds that inhibit one or more CDK kinases selected from CDK1, CDK2, CDK4 and CDK5, for example CDK1 and/or CDK2.
The compounds of the invention are also considered to be inhibitors of glycogen synthase kinase-3 (GSK3).
As a consequence of their activity in modulating or inhibiting CDK kinases and glycogen synthase kinase, they are expected to be useful in providing a means of ; arresting, or recovering control of, the cell cycle in abnormally dividing cells. It is therefore anticipated that the compounds will prove useful in treating or preventing proliferative disorders such as cancers. It is also envisaged that the compounds of the invention will be useful in treating conditions such as viral infections, type II or non-insulin dependent diabetes mellitus, autoimmune diseases, head trauma, stroke, epilepsy, neurodegenerative diseases such as Alzheimer's, motor neurone disease, . progressive supranuclear palsy, corticobasal degeneration and Pick's disease for example. One sub-group of disease states and conditions where it is envisaged that the compounds of the invention will be useful consists of viral infections, autoimmune diseases and neurodegenerative diseases. '
CDKs play a role in the regulation of the cell cycle, apoptosis, transcription, differentiation and CNS function. Therefore, CDK inhibitors could be useful in the • treatment of diseases in which there is a disorder of proliferation, apoptosis or differentiation such as cancer. In particular RB+ve tumours may be particularly sensitive to CDK inhibitors. RB-ve tumours may also be sensitive to CDK inhibitors.
Examples of cancers which may be inhibited include, but are not limited to, a carcinoma, for example a carcinoma of the bladder, breast, colon (e.g. colorectal carcinomas such as colon adenocarcinoma and colon adenoma), kidney, epidermis, liver, lung, for example adenocarcinoma, small cell lung cancer and non-small cell lung carcinomas, oesophagus, gall bladder, ovary, pancreas e.g. exocrine pancreatic carcinoma, stomach, cervix, thyroid, prostate, or skin, for example squamous cell carcinoma; a hematopoietic tumour of lymphoid lineage, for example leukemia, acute lymphocytic leukemia, B-cell lymphoma, T-cell lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hairy cell lymphoma, or Burkett's lymphoma; a hematopoietic tumour of myeloid lineage, for example acute and chronic myelogenous leukemias, myelodysplastic syndrome, or promyelocytic leukemia; thyroid follicular cancer; a tumour of mesenchymal origin, for example fibrosarcoma or habdomyosarcoma, a tumour of the central or peripheral nervous system, for example asirocytoma, neuroblastoma, glioma or schwannoma; melanoma; seminoma; teratocarcinoma; osteosarcoma; xeroderma pigmentosum; keratoctanthoma; thyroid follicular cancer; or Kaposi's sarcoma.
The cancers may be cancers which are sensitive to inhibition of any one or more cyclin dependent kinases selected from CDK1, CDK2, CDK3, CDK4, CDK5 and CDK6, for example, one or more CDK kinases selected from CDK1, CDK2, CDK4 and CDK5, e.g. CDK1 and/or CDK2.
Whether or not a particular cancer is one which is sensitive to inhibition by a cyclin dependent kinase may be determined by means of a cell growth assay as set out in Example 250 below or by a method as set out in the section headed "Methods of Diagnosis". CDKs are also known to play a role in apoptosis, proliferation, differentiation and transcription and therefore CDK inhibitors could also be useful in the treatment of the following diseases other than cancer; viral infections, for example herpes virus, pox virus, Epstein-Barr virus, Sindbis virus, adenovirus, HIV, HPV, HCV and HCMV; prevention of AIDS development in HIV-infected individuals; chronic inflammatory diseases, for example systemic lupus erythematosus, autoimmune mediated glomerulonephritis, rheumatoid arthritis, psoriasis, inflammatory bowel disease, and autoimmune diabetes mellitus; cardiovascular diseases for example cardiac hypertrophy, restenosis, atherosclerosis; neurodegenerative disorders, for example Alzheimer's disease, AIDS-related dementia, Parkinson's disease, amyotropic lateral sclerosis, retinitis pigmentosa, spinal muscular atropy and cerebellar degeneration; glomerulonephritis; myelodysplastic syndromes, ischemic injury associated myocardial infarctions, stroke and reperfusion injury, arrhythmia, atherosclerosis, toxin-induced or alcohol related liver diseases, haematological diseases, for example, chronic anemia and aplastic anemia; degenerative diseases of the musculoskeletal system, for example, osteoporosis and arthritis, aspirin-senstive rhinosinusitis, cystic fibrosis, multiple sclerosis, kidney diseases and cancer pain.
It has also been discovered that some cyclin-dependent kinase inhibitors can be used in combination with other anticancer agents. For example, the cyclin- dependent kinase inhibitor flavopiridol has been used with other anticancer agents in combination therapy.
Thus, in the pharmaceutical compositions, uses or methods of this invention for treating a disease or condition comprising abnormal cell growth, the disease or condition comprising abnormal cell growth in one embodiment is a cancer.
One group of cancers includes human breast cancers (e.g. primary breast tumours, node-negative breast cancer, invasive duct adenocarcinomas of the breast, non- endometrioid breast cancers); and mantle cell lymphomas. In addition, other cancers are colorectal and endometrial cancers. Another sub-set of cancers includes breast cancer, ovarian cancer, colon cancer, prostate cancer, oesophageal cancer, squamous cancer and non-small cell lung carcinomas.
The activity of the compounds of the invention as inhibitors of cyclin dependent kinases and glycogen synthase kinase-3 can be measured using the assays set forth in the examples below and the level of activity exhibited by a given compound can be defined in terms of the IC50 value. Preferred compounds of the present invention are compounds having an IC50 value of less than 1 micromole, more preferably less than 0.1 micromole.
Methods for the Preparation of Compounds of the Invention
Compounds of the formula (I) and the various sub-groups thereof can be prepared in accordance with synthetic methods well known to the skilled person. Unless stated otherwise, R1, R2, R3, Y, X and A are as hereinbefore defined.
In this section, as in all the other sections of this application, references to formula (I) should be taken to refer also to formulae (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof unless the context indicates otherwise.
Compounds of the formula (I) wherein Rx-A- forms an acyl group R^CO- can be prepared by reacting a carboxylic acid of the formula R1-CO2H or an activated derivative thereof with an appropriately substituted 4-amino-pyrazole as shown in Scheme 1.
Figure imgf000094_0001
(XII) Scheme 1
The starting material for the synthetic route shown in Scheme 1 is the 4-nitro- pyrazole-3-carboxylic acid (X) which can either be obtained commercially or can be prepared by nitration of the corresponding 4-unsubstituted pyrazole carboxy compound.
The 4-nitro-pyrazole carboxylic acid (X), or a reactive derivative thereof, is reacted with the amine H2N-Y-R3 to give the 4-nitro-amide (XI). The coupling reaction between the carboxylic acid (X) and the amine is preferably carried out in the presence of a reagent of the type commonly used in the formation of peptide linkages. Examples of such reagents include 1,3-dicyclohexylcarbodiimide (DCC) (Sheehan et al, J. Amer. Chem Soc. 1955, 77, 1067), l-ethyl-3-(3'- dimethylaminopropyl)-carbodiimide (referred to herein either as EDC or ED AC but also known in the art as EDCI and WSCDI) (Sheehan et al, J. Org. Chem., 1961, 26, 2525), uronium-based coupling agents such as O-(7-azabenzotriazol-l-yl)- N,N.N',N'-tetramethyluronium hexafluorophosphate (HATU) and phosphonium- based coupling agents such as l-benzo-triazolyloxytris-(pyrrolidino)phosphonium hexafluorophosphate (PyBOP) (Castro et al, Tetrahedron Letters, 1990, 31, 205). Carbodiimide-based coupling agents are advantageously used in combination with l-hydroxy-7-azabenzotriazole (HO At) (L. A. Carpino, J. Amer. Chem. Soc, 1993, 115, 4397) or 1-hydroxybenzotriazole (HOBt) (Konig et al, Chem. Ber., 103, 708, 2024-2034). Preferred coupling reagents include EDC (ED AC) and DCC in combination with HO At or HOBt.
The coupling reaction is typically carried out in a non-aqueous, non-protic solvent such as acetonitrile, dioxan, dimethylsulphoxide, dichloromethane, dimethylformamide or N-methylpyrrolidine, or in an aqueous solvent optionally together with one or more miscible co-solvents. The reaction can be carried out at room temperature or, where the reactants are less reactive (for example in the case of electron-poor anilines bearing electron withdrawing groups such as sulphonamide groups) at an appropriately elevated temperature. The reaction may be carried out in the presence of a non-interfering base, for example a tertiary amine such as triethylamine or N.N-diisopropylethylamine.
As an alternative, a reactive derivative of the carboxylic acid, e.g. an anhydride or acid chloride, may be used. Reaction with a reactive derivative such an anhydride is typically accomplished by stirring the amine and anhydride at room temperature in the presence of a base such as pyridine.
Amines of the formula H2Ν-Y-R3 can be obtained from commercial sources or can be prepared by any of a large number of standard synthetic methods well known those skilled in the art, see for example see Advanced Organic Chemistry by Jerry March, 4th Edition, John Wiley & Sons, 1992, and and Organic Syntheses, Volumes 1-8, John Wiley, edited by Jeremiah P. Freeman (ISBN: 0-471-31192-8), 1995, and see also the methods described in the experimental section below.
The nitro-pyrazole amide (XI) is reduced to give the corresponding 4-amino- compound of the formula (XII). The reduction may be carried out by standard methods such as catalytic hydrogenation, for example in the presence of palladium on carbon in a polar solvent such as ethanol or dimethylformamide at room temperature. As an alternative, reduction may be effected using a reducing agent such as tin (II) chloride in ethanol, typically with heating, for example to the reflux temperature of the solvent. The 4-amino-pyrazole compound (XII) is then reacted with a carboxylic acid of the formula R!-CO2H, or a reactive derivative thereof, using the methods and conditions described above for the formation of the amide (XI), to give a compound of the formula (I).
Carboxylic acids of the formula R1-CO2H can be obtained commercially or can be synthesised according to methods well known to the skilled person, see for example Advanced Organic Chemistry and Organic Syntheses, the details for which are given above.
Compounds of the formula (I) in which X is a group R^A-NR4, where A is a bond, can be prepared from the 4-amino compounds of the formula (XII) by a number of methods. Reductive amination with an appropriately substituted aldehyde or ketone can be carried out in the presence of variety of reducing agents (see Advanced Organic Chemistry by Jerry March, 4th Edition, John Wiley & Sons, 1992, pp898- 900. For example, reductive amination can be carried out in the presence of sodium triacetoxyborohydride in the presence of an aprotic solvent such as dichloromethane at or near ambient temperatures.
Compounds in which X is a group R^A-NR4 where A is a bond can also be prepared by the reaction of the 4-amino pyrazole compound (XII) with a compound of the formula R -L in a nucleophilic displacement reaction where L is a leaving group such as a halogen.
In an alternative synthetic route, compounds of the formula (I) can be prepared by reaction of a compound of the formula (XIII) with a compound of the formula R3-Y-NH2. The reaction can be carried out using the amide coupling conditions described above.
Figure imgf000096_0001
Compounds of the formula (I) where A is NH(C=O) can be prepared using standard methods for the synthesis of ureas. For example, such compounds can be prepared by reacting an aminopyrazole compound of the formula (XII) with a suitably substituted phenylisocyanate in a polar solvent such as DMF. The reaction is conveniently carried out at room temperature.
Compounds of the formula (I) where A is O(C=O) can be made using standard methods for the synthesis of carbamates, for example by reaction of an amino pyrazole compound of the formula (XII) with a chloroformate derivative of the formula R1-O-C(O)-Cl under conditions well known to the skilled person.
Compounds of the formula (I), wherein A is SO2, can be prepared from amino- compounds of the formula (XII) by standard methods for the formation of sulphonamides. For example, compounds of the fomrula XII) can be reacted with sulphonyl chlorides of the formula R1SO2Cl or anhydrides of the formula (R!S 02)20. The reaction is typically carried out in an aprotic solvent such as acetonitrile or a chlorinated hydrocarbon (for example dichloromethane) in the presence of a non-interfering base such as a tertiary amine (e.g. triethylamine) or pyridine, or diisopropylethyl amine (Hunigs base). Alternatively, where the base is a liquid, as is the case with pyridine, the base itself may be used as the solvent for the reaction.
Compounds wherein X is a 5- or 6-membered ring containing a carbon atom ring member linked to the pyrazole group can be prepared by the sequence of reactions set out in Scheme 2.
As shown in Scheme 2, an aldehyde (XIV) (in which X is a C-linked aryl or heteroaryl group such as phenyl) is condensed with malononitrile to give the alkyne (XVI). The reaction is typically carried out in a polar solvent such as ethanol in the presence of a base such as piperidine, usually with heating. The alkyne (XVI) is then reacted with trimethylsilyldiazomethane in the presence an alkyl lithium such as butyl lithium to give the 5-trimethylsilyl pyrazole-3-nitrile (XVII). The reaction is carried out in a dry aprotic solvent such as THF under a protective atmosphere (e.g. nitrogen) at a reduced temperature (e.g. -78 °C).
The nitrile (XVII) is hydrolysed with an alkali metal hydroxide such as potassium hydroxide to give the acid (XIX) and/or the amide (XVII). Where a mixture of acid and amide are formed, they may be separated according to standard methods such as chromatography. The acid (XIX) can then be coupled with an amine of the formula R3-Y-NH2 under typical amide coupling conditions of the type described above to give the compound of the formula (I).
N2
Figure imgf000099_0001
(XIX)
Scheme 2
Alternatively, compounds of the formula (I) in which X is a C-linked aryl or heteroaryl group such as phenyl can be prepared from compounds of the formula (XX):
Figure imgf000100_0001
where "Hal" is a halogen such as chlorine, bromine or iodine, by means of a Suzuki coupling reaction with the appropriate aryl or heteroaryl boronate. The reaction can be carried out under typical Suzuki Coupling conditions in the presence of a palladium catalyst such as bis(tri-t-butylphosphine)palladium and a base (e.g. a carbonate such as potassium carbonate). The reaction may be carried out in an aqueous solvent system, for example aqueous ethanol, and the reaction mixture is typically subjected to heating, for example to a temperature in excess of 100°C.
Compounds of the formula (XX) can be prepared from amino-pyrazole compounds of the formula (XII) by means of the Sandmeyer reaction (see Advanced Organic Chemistry, 4th edition, by Jerry March, John Wiley & Sons, 1992, page 723) in which the amino group is converted to a diazonium group by reaction with nitrous acid, and the diazonium compound is then reacted with a copper (I) halide such as Cu(I)Cl or Cu(I)I.
Once formed, one compound of the formula (I) may be transformed into another compound of the formula (I) using standard chemistry procedures well known in the art. For examples of functional group interconversions, see for example, Fiesers' Reagents for Organic Synthesis, Volumes 1-17, John Wiley, edited by Mary Fieser (ISBN: 0-471-58283-2), and Organic Syntheses, Volumes 1-8, John Wiley, edited by Jeremiah P. Freeman (ISBN: 0-471-31192-8), 1995.
The starting materials for the synthetic routes shown in the Schemes above, e.g. the pyrazoles of formula (X), can either be obtained commercially or can be prepared by methods known to those skilled in the art. They can be obtained using known methods e.g. from ketones, such as in a process described in EP308020 (Merck), or the methods discussed by Schmidt in Helv. Chim. Acta., 1956, 39, 986-991 and Helv. Chim. Acta., 1958, 41, 306-309. Alternatively they can be obtained by conversion of a commercially available pyrazole, for example those containing halogen, nitro, ester, or amide functionalities, to pyrazoles containing the desired functionality by standard methods known to a person skilled in the art. For example, in 3-carboxy-4-nitropyrazole, the nitro group can be reduced to an amine by standard methods. 4-Nitro-pyrazole-3 -carboxylic acid (XII) can either be obtained commercially or can be prepared by nitration of the corresponding 4- unsubstituted pyrazole carboxy compound, and pyrazoles containing a halogen, may be utilized in coupling reactions with tin or palladium chemistry.
Protecting Groups
In many of the reactions described above, it may be necessary to protect one or more groups to prevent reaction from taking place at an undesirable location on the molecule. Examples of protecting groups, and methods of protecting and deprotecting functional groups, can be found in Protective Groups in Organic Synthesis (T. Green and P. Wuts; 3rd Edition; John Wiley and Sons, 1999).
A hydroxy group may be protected, for example, as an ether (-OR) or an ester (- OC(=O)R), for example, as: a t-butyl ether; a tetrahydropyranyl (THP) ether; a benzyl, benzhydryl (diphenylmethyl), or trityl (triphenylmethyl) ether; a trimethylsilyl or t-butyldimethylsilyl ether; or an acetyl ester (-OC(=O)CH3, -OAc).
An aldehyde or ketone group may be protected, for example, as an acetal (R- CH(OR)2) or ketal (R2C(OR)2), respectively, in which the carbonyl group (>C=O) is converted to a diether (>C(OR)2), by reaction with, for example, a primary alcohol. The aldehyde or ketone group is readily regenerated by hydrolysis using a large excess of water in the presence of acid.
An amine group may be protected, for example, as an amide (-NRCO-R) or a urethane (-NRCO-OR), for example, as: a methyl amide (-NHCO-CH3); a benzyloxy amide (-NHCO-OCH2C6H5, -NH-Cbz or NH-Z); as a t-butoxy amide (-NHCO-OC(CH3)3, -NH-Boc); a 2-biphenyl-2-propoxy amide (-NHCO- OC(CH3)2C6H4C6H5, -NH-Bpoc), as a 9-fluorenylmethoxy amide (-NH-Fmoc), as a 6-nitroveratryloxy amide (-NH-Nvoc), as a 2-trimethylsilylethyloxy amide (-NH- Teoc), as a 2,2,2-trichloroethyloxy amide (-NH-Troc), as an allyloxy amide (-NH- Alloc), or as a 2(-phenylsulphonyl)ethyloxy amide (-NH-Psec).
For example, in Scheme 1 above, when the moiety R3 in the amine H2N-Y-R3 contains a second amino group, such as a cyclic amino group (e.g. a piperidine or pyrrolidine group), the second amino group can be protected by means of a protecting group as hereinbefore defined, one preferred group being the tert- butyloxycarbonyl (Boc) group. Where no subsequent modification of the second amino group is required, the protecting group can be carried through the reaction sequence to give an N-protected form of a compound of the formula (I) which can then be de-protected by standard methods (e.g. treatment with acid in the case of the Boc group) to give the compound of formula (I).
Other protecting groups for amines, such as cyclic amines and heterocyclic N-H groups, include toluenesulphonyl (tosyl) and methanesulphonyl (mesyl) groups, benzyl groups such as a^αr -methoxybenzyl (PMB) group and tetrahydropyranyl (THP) groups.
A carboxylic acid group may be protected as an ester for example, as: an C1.7 alkyl ester (e.g., a methyl ester; a t-butyl ester); a C1-7 haloalkyl ester (e.g., a C1.7 trihaloalkyl ester); a triCi-7 alkylsilyl-C^alkyl ester; or a C5.20 aryl- -7 alkyl ester (e.g., a benzyl ester; a nitrobenzyl ester); or as an amide, for example, as a methyl amide. A thiol group may be protected, for example, as a thioether (-SR), for example, as: a benzyl thioether; an acetamidomethyl ether (-S-CH2NHC(=O)CH3).
Isolation and purification of the compounds of the invention
The compounds of the invention can be isolated and purified according to standard techniques well known to the person skilled in the art. One technique of particular usefulness in purifying the compounds is preparative liquid chromatography using mass spectrometry as a means of detecting the purified compounds emerging from the chromatography column. Preparative LC-MS is a standard and effective method used for the purification of small organic molecules such as the compounds described herein. The methods for the liquid chromatography (LC) and mass spectrometry (MS) can be varied to provide better separation of the crude materials and improved detection of the samples by MS. Optimisation of the preparative gradient LC method will involve varying columns, volatile eluents and modifiers, and gradients. Methods are well known in the art for optimising preparative LC-MS methods and then using them to purify compounds. Such methods are described in Rosentreter U, Huber U.; Optimal fraction collecting in preparative LC/MS; J Comb Chem.; 2004; 6(2), 159- 64 and Leister W, Strauss K, Wisnoski D, Zhao Z, Lindsley C, Development of a custom high-throughput preparative liquid chromatography/mass spectrometer platform for the preparative purification and analytical analysis of compound libraries; J Comb Chem.; 2003; 5(3); 322-9.
An example of such a system for purifying compounds via preparative LC-MS is described below in the Examples section of this application (under the heading
"Mass Directed Purification LC-MS System"). However, it will be appreciated that alternative systems and methods to those described could be used. In particular, normal phase preparative LC based methods might be used in place of the reverse phase methods described here. Most preparative LC-MS systems utilise reverse phase LC and volatile acidic modifiers, since the approach is very effective for the purification of small molecules and because the eluents are compatible with positive ion electrospray mass spectrometry. Employing other chromatographic solutions e.g. normal phase LC, alternatively buffered mobile phase, basic modifiers etc as outlined in the analytical methods described below could alternatively be used to purify the compounds.
Pharmaceutical Formulations
While it is possible for the active compound to be administered alone, it is preferable to present it as a pharmaceutical composition (e.g. formulation) comprising at least one active compound of the invention together with one or more pharmaceutically acceptable carriers, adjuvants, excipients, diluents, fillers, buffers, stabilisers, preservatives, lubricants, or other materials well known to those skilled in the art and optionally other therapeutic or prophylactic agents.
Thus, the present invention further provides pharmaceutical compositions, as defined above, and methods of making a pharmaceutical composition comprising admixing at least one active compound, as defined above, together with one or more pharmaceutically acceptable carriers, excipients, buffers, adjuvants, stabilizers, or other materials, as described herein.
The term "pharmaceutically acceptable" as used herein pertains to compounds, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of a subject (e.g. human) without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio. Each carrier, excipient, etc. must also be "acceptable" in the sense of being compatible with the other ingredients of the formulation.
Accordingly, in a further aspect, the invention provides compounds of the formula (0) and sub-groups thereof such as formulae (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein in the form of pharmaceutical compositions.
The pharmaceutical compositions can be in any form suitable for oral, parenteral, topical, intranasal, ophthalmic, otic, rectal, intra-vaginal, or transdermal administration. Where the compositions are intended for parenteral administration, they can be formulated for intravenous, intramuscular, intraperitoneal, subcutaneous administration or for direct delivery into a target organ or tissue by injection, infusion or other means of delivery.
In one preferred embodiment of the invention, the pharmaceutical composition is in a form suitable for i.v. administration, for example by injection or infusion.
In another preferred embodiment, the pharmaceutical composition is in a form suitable for sub-cutaneous (s.c.) administration. Pharmaceutical dosage forms suitable for oral administration include tablets, capsules, caplets, pills, lozenges, syrups, solutions, powders, granules, elixirs and suspensions, sublingual tablets, wafers or patches and buccal patches.
Pharmaceutical compositions containing compounds of the formula (I) can be formulated in accordance with known techniques, see for example, Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, PA, USA.
Thus, tablet compositions can contain a unit dosage of active compound together with an inert diluent or carrier such as a sugar or sugar alcohol, eg; lactose, sucrose, sorbitol or mannitol; and/or a non-sugar derived diluent such as sodium carbonate, calcium phosphate, calcium carbonate, or a cellulose or derivative thereof such as methyl cellulose, ethyl cellulose, hydroxypropyl methyl cellulose, and starches such as corn starch. Tablets may also contain such standard ingredients as binding and granulating agents such as polyvinylpyrrolidone, disintegrants (e.g. swellable crosslinked polymers such as crosslinked carboxymethylcellulose), lubricating agents (e.g. stearates), preservatives (e.g. parabens), antioxidants (e.g. BHT), buffering agents (for example phosphate or citrate buffers), and effervescent agents such as citrate/bicarbonate mixtures. Such excipients are well known and do not need to be discussed in detail here.
Capsule formulations may be of the hard gelatin or soft gelatin variety and can contain the active component in solid, semi-solid, or liquid form. Gelatin capsules can be formed from animal gelatin or synthetic or plant derived equivalents thereof.
The solid dosage forms (eg; tablets, capsules etc.) can be coated or un-coated, but typically have a coating, for example a protective film coating (e.g. a wax or varnish) or a release controlling coating. The coating (e.g. a Eudragit ™ type polymer) can be designed to release the active component at a desired location within the gastro-intestinal tract. Thus, the coating can be selected so as to degrade under certain pH conditions within the gastrointestinal tract, thereby selectively release the compound in the stomach or in the ileum or duodenum. Instead of, or in addition to, a coating, the drug can be presented in a solid matrix comprising a release controlling agent, for example a release delaying agent which may be adapted to selectively release the compound under conditions of varying acidity or alkalinity in the gastrointestinal tract. Alternatively, the matrix material or release retarding coating can take the form of an erodible polymer (e.g. a maleic anhydride polymer) which is substantially continuously eroded as the dosage form passes through the gastrointestinal tract. As a further alternative, the active compound can be formulated in a delivery system that provides osmotic control of the release of the compound. Osmotic release and other delayed release or sustained release formulations may be prepared in accordance with methods well known to those skilled in the art.
Compositions for topical use include ointments, creams, sprays, patches, gels, liquid drops and inserts (for example intraocular inserts). Such compositions can be formulated in accordance with known methods.
Compositions for parenteral administration are typically presented as sterile aqueous or oily solutions or fine suspensions, or may be provided in finely divided sterile powder form for making up extemporaneously with sterile water for injection.
Examples of formulations for rectal or intra-vaginal administration include pessaries and suppositories which may be, for example, formed from a shaped moldable or waxy material containing the active compound.
Compositions for administration by inhalation may take the form of inhalable powder compositions or liquid or powder sprays, and can be administrated in standard form using powder inhaler devices or aerosol dispensing devices. Such devices are well known. For administration by inhalation, the powdered formulations typically comprise the active compound together with an inert solid powdered diluent such as lactose. The compounds of the inventions will generally be presented in unit dosage form and, as such, will typically contain sufficient compound to provide a desired level of biological activity. For example, a formulation intended for oral administration may contain from 0.1 milligrams to 2 grams of active ingredient, more usually from 10 milligrams to 1 gram, for example, 50 milligrams to 500 milligrams.
The active compound will be administered to a patient in need thereof (for example a human or animal patient) in an amount sufficient to achieve the desired therapeutic effect.
Methods of Treatment
It is envisaged that the compounds of the formula (0) and sub-groups thereof such as formulae (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein will be useful in the prophylaxis or treatment of a range of disease states or conditions mediated by cyclin dependent kinases. Examples of such disease states and conditions are set out above.
The compounds are generally administered to a subject in need of such administration, for example a human or animal patient, preferably a human.
The compounds will typically be administered in amounts that are therapeutically or prophylactically useful and which generally are non-toxic. However, in certain situations (for example in the case of life threatening diseases), the benefits of administering a compound of the formula (I) may outweigh the disadvantages of any toxic effects or side effects, in which case it may be considered desirable to administer compounds in amounts that are associated with a degree of toxicity.
The compounds may be administered over a prolonged term to maintain beneficial therapeutic effects or may be administered for a short period only. Alternatively they may be administered in a pulsatile or continuous manner.
A typical daily dose of the compound can be in the range from 100 picograms to 100 milligrams per kilogram of body weight, more typically 5 nanograms to 25 milligrams per kilogram of bodyweight, and more usually 10 nanograms to 15 milligrams per kilogram (e.g. 10 nanograms to 10 milligrams) per kilogram of bodyweight although higher or lower doses may be administered where required. Ultimately, the quantity of compound administered and the type of composition used will be commensurate with the nature of the disease or physiological condition being treated and will be at the discretion of the physician.
The compounds of the formula (I) can be administered as the sole therapeutic agent or they can be administered in combination therapy with one of more other compounds for treatment of a particular disease state, for example a neoplastic disease such as a cancer as hereinbefore defined. Examples of other therapeutic agents that may be administered together (whether concurrently or at different time intervals) with the compounds of the formula (I) include but are not limited to topoisomerase inhibitors, alkylating agents, antimetabolites, DNA binders and microtubule inhibitors (tubulin targeting agents), such as cisplatin, cyclophosphamide, doxorubicin, irinotecan, fludarabine, 5FU, taxanes, mitomycin C, or radiotherapy. Alternatively, the compounds of the formula (I) can be administered in a combination therapy with monoclonal antibodies or signal transduction inhibitors. For the case of CDK inhibitors combined with other therapies, the two or more treatments may be given in individually varying dose schedules and via different routes.
Where the compound of the formula (I) is administered in combination therapy with one, two, three, four or more other therapeutic agents (preferably one or two, more preferably one), the compounds can be administered simultaneously or sequentially. When administered sequentially, they can be administered at closely spaced intervals (for example over a period of 5-10 minutes) or at longer intervals (for example 1, 2, 3, 4 or more hours apart, or even longer periods apart where required), the precise dosage regimen being commensurate with the properties of the therapeutic agent(s). The compounds of the invention may also be administered in conjunction with non- chemotherapeutic treatments such as radiotherapy, photodynamic therapy, gene therapy; surgery and controlled diets.
For use in combination therapy with another chemotherapeutic agent, the compound of the formula (I) and one, two, three, four or more other therapeutic agents can be, for example, formulated together in a dosage form containing two, three, four or more therapeutic agents. In an alternative, the individual therapeutic agents may be formulated separately and presented together in the form of a kit, optionally with instructions for their use.
A person skilled in the art would know through their common general knowledge the dosing regimes and combination therapies to use.
Methods of Diagnosis
Prior to administration of a compound of the formula (I), a patient may be screened to determine whether a disease or condition from which the patient is or may be suffering is one which would be susceptible to treatment with a compound having activity against cyclin dependent kinases.
For example, a biological sample taken from a patient may be analysed to determine whether a condition or disease, such as cancer, that the patient is or may be suffering from is one which is characterised by a genetic abnormality or abnormal protein expression which leads to over-activation of CDKs or to sensitisation of a pathway to normal CDK activity. Examples of such abnormalities that result in activation or sensitisation of the CDK2 signal include up-regulation of cyclin E, (Harwell RM, Mull BB, Porter DC, Keyomarsi K.; J Biol Chem. 2004 Mar 26;279(13): 12695-705) or loss of p21 or p27, or presence of CDC4 variants (Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B, Lengauer C; Nature. 2004 Mar 4;428(6978):77-81). The term up-regulation includes elevated expression or over-expression, including gene amplification (i.e. multiple gene copies) and increased expression by a transcriptional effect, and hyperactivity and activation, including activation by mutations. Thus, the patient may be subjected to a diagnostic test to detect a marker characteristic of up- regulation of cyclin E, or loss of p21 or p27, or presence of CDC4 variants. The term diagnosis includes screening. By marker we include genetic markers including, for example, the measurement of DNA composition to identify mutations of CDC4. The term marker also includes markers which are characteristic of up regulation of cyclin E, including enzyme activity, enzyme levels, enzyme state (e.g. phosphorylated or not) and mRNA levels of the aforementioned proteins.
Tumours with upregulation of cyclin E, or loss of p21 or p27 may be particularly sensitive to CDK inhibitors. Tumours may preferentially be screened for upregulation of cyclin E, or loss of p21 or p27 prior to treatment. Thus, the patient may be subjected to a diagnostic test to detect a marker characteristic of upregulation of cyclin E, or loss of p21 or p27. The diagnostic tests are typically conducted on a biological sample selected from tumour biopsy samples, blood samples (isolation and enrichment of shed tumour cells), stool biopsies, sputum, chromosome analysis, pleural fluid, peritoneal fluid, or urine.
It has been found, Rajagopalan et al (Nature. 2004 Mar 4;428(6978):77-81), that there were mutations present in CDC4 (also known as Fbw7 or Archipelago) in human colorectal cancers and endometrial cancers (Spruck et al, Cancer Res. 2002 Aug 15;62(16):4535-9). Identification of individual carrying a mutation in CDC4 may mean that the patient would be particularly suitable for treatment with a CDK inhibitor. Tumours may preferentially be screened for presence of a CDC4 variant prior to treatment. The screening process will typically involve direct sequencing, oligonucleotide microarray analysis, or a mutant specific antibody.
Methods of identification and analysis of mutations and up-regulation of proteins are known to a person skilled in the art. Screening methods could include, but are not limited to, standard methods such as reverse-transcriptase polymerase chain reaction (RT-PCR) or in-situ hybridisation.
In screening by RT-PCR, the level of mRNA in the tumour is assessed by creating a cDNA copy of the mRNA followed by amplification of the cDNA by PCR. Methods of PCR amplification, the selection of primers, and conditions for amplification, are known to a person skilled in the art. Nucleic acid manipulations and PCR are carried out by standard methods, as described for example in Ausubel, F.M. et al, eds. Current Protocols in Molecular Biology, 2004, John Wiley & Sons Inc., or Innis, M.A. et-al., eds. PCR Protocols: a guide to methods and applications, 1990, Academic Press, San Diego. Reactions and manipulations involving nucleic acid techniques are also described in Sambrook et al., 2001, 3rd Ed, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press. Alternatively a commercially available kit for RT-PCR (for example Roche Molecular Biochemicals) may be used, or methodology as set forth in United States patents 4,666,828; 4,683,202; 4,801,531; 5,192,659, 5,272,057, 5,882,864, and 6,218,529 and incorporated herein by reference.
An example of an in-situ hybridisation technique for assessing mRNA expression would be fluorescence in-situ hybridisation (FISH) (see Angerer, 1987 Meth. Enzymol., 152: 649).
Generally, in situ hybridization comprises the following major steps: (1) fixation of tissue to be analyzed; (2) prehybridization treatment of the sample to increase accessibility of target nucleic acid, and to reduce nonspecific binding; (3) hybridization of the mixture of nucleic acids to the nucleic acid in the biological structure or tissue; (4) post-hybridization washes to remove nucleic acid fragments not bound in the hybridization, and (5) detection of the hybridized nucleic acid fragments. The probes used in such applications are typically labeled, for example, with radioisotopes or fluorescent reporters. Preferred probes are sufficiently long, for example, from about 50, 100, or 200 nucleotides to about 1000 or more nucleotides, to enable specific hybridization with the target nucleic acid(s) under stringent conditions. Standard methods for carrying out FISH are described in Ausubel, F.M. et al., eds. Current Protocols in Molecular Biology, 2004, John Wiley & Sons Inc and Fluorescence In Situ Hybridization: Technical Overview by John M. S. Bartlett in Molecular Diagnosis of Cancer, Methods and Protocols, 2nd ed.; ISBN: 1-59259-760-2; March 2004, pps. 077-088; Series: Methods in Molecular Medicine.
Alternatively, the protein products expressed from the mRNAs may be assayed by immunohistochemistry of tumour samples, solid phase immunoassay with microtiter plates, Western blotting, 2-dimensional SDS-polyacrylamide gel electrophoresis, ELISA, flow cytometry and other methods known in the art for detection of specific proteins. Detection methods would include the use of site specific antibodies. The skilled person will recognize that all such well-known techniques for detection of upregulation of cyclin E, or loss of p21 or p27, or detection of CDC4 variants could be applicable in the present case.
Therefore all of these techniques could also be used to identify tumours particularly suitable for treatment with CDK inhibitors. Patients with mantle cell lymphoma (MCL) could be selected for treatment with a CDK inhibitor using diagnostic tests outlined herein. MCL is a distinct clinicopathologic entity of non-Hodgkin's lymphoma, characterized by proliferation of small to medium-sized lymphocytes with co-expression of CD5 and CD20, an aggressive and incurable clinical course, and frequent t(l 1 ; 14)(ql 3;q32) translocation. Over-expression of cyclin D 1 mR A, found in mantle cell lymphoma (MCL), is a critical diagnostic marker. Yatabe et al (Blood. 2000 Apr 1;95(7):2253-61) proposed that cyclin Dl-positivity should be included as one of the standard criteria for MCL, and that innovative therapies for this incurable disease should be explored on the basis of the new criteria. Jones et al (J Mol Diagn. 2004 May;6(2):84-9) developed a real-time, quantitative, reverse transcription PCR assay for cyclin Dl (CCND1) expression to aid in the diagnosis of mantle cell lymphoma (MCL). Howe et al (Clin Chem. 2004 Jan;50(l):80-7) used real-time quantitative RT-PCR to evaluate cyclin Dl mRNA expression and found that quantitative RT-PCR for cyclin Dl mRNA normalized to CD 19 mRNA can be used in the diagnosis of MCL in blood, marrow, and tissue. Alternatively, patients with breast cancer could be selected for treatment with a CDK inhibitor using diagnostic tests outline above. Tumour cells commonly overexpress cyclin E and it has been shown that cyclin E is over-expressed in breast cancer (Harwell et al, Cancer Res, 2000, 60, 481-489). Therefore breast cancer may in particular be treated with a CDK inhibitor.
Antifungal Use
In a further aspect, the invention provides the use of the compounds of the formulae (0), (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein as antifungal agents.
The compounds may be used in animal medicine (for example in the treatment of mammals such as humans), or in the treatment of plants (e.g. in agriculture and horticulture), or as general antifungal agents, for example as preservatives and disinfectants.
In one embodiment, the invention provides a compound of the formula (0) and subgroups thereof such as formulae (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein for use in the prophylaxis or treatment of a fungal infection in a mammal such as a human.
Also provided is the use of a compound of the formula (0) and sub-groups thereof such as formulae (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein for the manufacture of a medicament for use in the prophylaxis or treatment of a fungal infection in a mammal such as a human.
For example, compounds of the invention may be administered to human patients suffering from, or at risk of infection by, topical fungal infections caused by among other organisms, species of Candida, Trichophyton, Microsporum or Epidermophyton, or in mucosal infections caused by Candida albicans (e.g. thrush and vaginal candidiasis). The compounds of the invention can also be administered for the treatment or prophylaxis of systemic fungal infections caused by, for example, Candida albicans, Cryptococcus neoformans, Aspergillus flavus, Aspergillus fumigatus, Coccidiodies, Paracoccidioides, Histoplasma or Blastomyces. In another aspect, the invention provides an antifungal composition for agricultural (including horticultural) use, comprising a compound of the formula (1°) and subgroups thereof such as formulae (I), (la), (lb), (II), (III), (IV), (V), (VI) and (VII) as hereinbefore defined together with an agriculturally acceptable diluent or carrier.
The invention further provides a method of treating an animal (including a mammal such as a human), plant or seed having a fungal infection, which comprises treating said animal, plant or seed, or the locus of said plant or seed, with an effective amount of a compound of the formula (1°) and sub-groups thereof such as formulae (I), (la), (lb), (II), (III), (IV), (V), (VI) and (VII) as hereinbefore defined.
The invention also provides a method of treating a fungal infection in a plant or seed which comprises treating the plant or seed with an antifungally effective amount of a fungicidal composition as hereinbefore defined.
Differential screening assays may be used to select for those compounds of the present invention with specificity for non-human CDK enzymes. Compounds which act specifically on the CDK enzymes of eukaryotic pathogens can be used as antifungal or anti-parasitic agents. Inhibitors of the Candida CDK kinase, CKSI, can be used in the treatment of candidiasis. Antifungal agents can be used against infections of the type hereinbefore defined, or opportunistic infections that commonly occur in debilitated and immunosuppressed patients such as patients with leukemias and lymphomas, people who are receiving immunosuppressive therapy, and patients with predisposing conditions such as diabetes mellitus or AIDS, as well as for non-immunosuppressed patients.
Assays described in the art can be used to screen for agents which may be useful for inhibiting at least one fungus implicated in mycosis such as candidiasis, aspergillosis, mucormycosis, blastomycosis, geotrichosis, cryptococcosis, chromoblastomycosis, coccidiodomycosis, conidiosporosis, histoplasmosis, maduromycosis, rhinosporidosis, nocaidiosis, para-actinomycosis, penicilliosis, monoliasis, or sporotrichosis. The differential screening assays can be used to identify anti-fungal agents which may have therapeutic value in the treatment of aspergillosis by making use of the CDK genes cloned from yeast such as Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus nidulans, or Aspergillus terreus, or where the mycotic infection is mucon-nycosis, the CDK assay can be derived from yeast such as Rhizopus arrhizus, Rhizopus oryzae, Absidia corymbifera, Absidia ramosa, or Mucorpusillus. Sources of other CDK enzymes include the pathogen Pneumocystis carinii.
By way of example, in vitro evaluation of the antifungal activity of the compounds can be performed by determining the minimum inhibitory concentration (M.I.C.) which is the concentration of the test compounds, in a suitable medium, at which growth of the particular microorganism fails to occur. In practice, a series of agar plates, each having the test compound incorporated at a particular concentration is inoculated with a standard culture of, for example, Candida albicans and each plate is then incubated for an appropriate period at 37 °C. The plates are then examined for the presence or absence of growth of the fungus and the appropriate M.I.C. value is noted
The in vivo evaluation of the compounds can be carried out at a series of dose levels by intraperitoneal or intravenous injection or by oral administration, to mice that have been inoculated with a fungus, e.g., a strain of Candida albicans or Aspergillus flavus. The activity of the compounds can be assessed on the basis of the survival of a treated group of mice after the death of an untreated group of mice. The activity may be measured in terms of the dose level at which the compound provides 50% protection against the lethal effect of the infection (PD5o).
For human antifungal use, the compounds can be administered alone or in admixture with a pharmaceutical carrier selected in accordance with the intended route of administration and standard pharmaceutical practice. Thus, for example, they may be administered orally, parenterally, intravenously, intramuscularly or subcutaneously by means of the formulations described above in the section headed "Pharmaceutical Formulations". For oral and parenteral administration to human patients, the daily dosage level of the antifungal compounds of the invention can be from 0.01 to 10 mg/kg (in divided doses), depending on inter alia the potency of the compounds when administered by either the oral or parenteral route. Tablets or capsules of the compounds may contain, for example, from 5 mg. to 0.5 g of active compound for administration singly or two or more at a time as appropriate. The physician in any event will determine the actual dosage (effective amount) which will be most suitable for an individual patient and it will vary with the age, weight and response of the particular patient.
Alternatively, the antifungal compounds can be administered in the form of a suppository or pessary, or they may be applied topically in the form of a lotion, solution, cream, ointment or dusting powder. For example, they can be incorporated into a cream consisting of an aqueous emulsion of polyethylene glycols or liquid paraffin; or they can be incorporated, at a concentration between 1 and 10%, into an ointment consisting of a white wax or white soft paraffin base together with such stabilizers and preservatives as may be required.
In addition to the therapeutic uses described above, anti-fungal agents developed with such differential screening assays can be used, for example, as preservatives in foodstuff, feed supplement for promoting weight gain in livestock, or in disinfectant formulations for treatment of non-living matter, e.g., for decontaminating hospital equipment and rooms. In similar fashion, side by side comparison of inhibition of a mammalian CDK and an insect CDK, such as the Drosophilia CDK5 gene (Hellmich et al. (1994) FEBS Lett 356:317-21), will permit selection amongst the compounds herein of inhibitors which discriminate between the human/mammalian and insect enzymes. Accordingly, the present invention expressly contemplates the use and formulations of the compounds of the invention in insecticides, such as for use in management of insects like the fruit fly.
In yet another embodiment, certain of the subject CDK inhibitors can be selected on the basis of inhibitory specificity for plant CDK's relative to the mammalian enzyme. For example, a plant CDK can be disposed in a differential screen with one or more of the human enzymes to select those compounds of greatest selectivity for inhibiting the plant enzyme. Thus, the present invention specifically contemplates formulations of the subject CDK inhibitors for agricultural applications, such as in the form of a defoliant or the like.
For agricultural and horticultural purposes the compounds of the invention may be used in the form of a composition formulated as appropriate to the particular use and intended purpose. Thus the compounds may be applied in the form of dusting powders, or granules, seed dressings, aqueous solutions, dispersions or emulsions, dips, sprays, aerosols or smokes. Compositions may also be supplied in the form of dispersible powders, granules or grains, or concentrates for dilution prior to use. Such compositions may contain such conventional carriers, diluents or adjuvants as are known and acceptable in agriculture and horticulture and they are manufactured in accordance with conventional procedures. The compositions may also incorporate other active ingredients, for example, compounds having herbicidal or insecticidal activity or a further fungicide. The compounds and compositions can be applied in a number of ways, for example they can be applied directly to the plant foliage, stems, branches, seeds or roots or to the soil or other growing medium, and they may be used not only to eradicate disease, but also prophylactically to protect the plants or seeds from attack. By way of example, the compositions may contain from 0.01 to 1 wt.% of the active ingredient. For field use, likely application rates of the active ingredient may be from 50 to 5000 g/hectare.
The invention also contemplates the use of the compounds of the formula (0) and sub-groups thereof such as formulae (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein in the control of wood decaying fungi and in the treatment of soil where plants grow, paddy fields for seedlings, or water for perfusion. Also contemplated by the invention is the use of the compounds of the formula (0) and sub-groups thereof such as formulae (1°), (I), (la), (lb), (II), (III), (IV), (IVa), (Va), (Vb), (Via), (Vlb), (VII) or (VIII) and sub-groups thereof as defined herein to protect stored grain and other non-plant loci from fungal infestation. EXAMPLES
The invention will now be illustrated, but not limited, by reference to the specific embodiments described in the following examples.
In the examples, the compounds prepared were characterised by liquid chromatography and mass spectroscopy (LC-MS) using the system and operating conditions set out below. Where chlorine is present and a single mass is quoted, the mass quoted for the compound is for 35C1. The two systems were equipped with identical chromatography columns and were set up to run under the same operating conditions. The operating conditions used are also described below. In the examples, the retention times are given in minutes.
Platform system
System: Waters 2790/Platform LC
Mass Spec Detector: Micromass Platform LC PDA Detector: Waters 996 PDA
Analytical conditions:
Eluent A: 5% CH3CN in 95% H2O (0.1 % Formic Acid)
Eluent B: CH3CN (0.1% Formic Acid)
Gradient: 10-95% eluent B
Flow: 1.2 ml/min Column: Synergi 4μm Max-RP Cn, 80A, 50 x 4.6 mm (Phenomenex)
MS conditions:
Capillary voltage : 3.5 kV
Cone voltage: 30 V
Source Temperature: 120 °C
FractionLvnx system
System: Waters FractionLynx (dual analytical/prep) Mass Spec Detector: Waters-Micromass ZQ PDA Detector: Waters 2996 PDA
Analytical conditions:
Eluent A: H2O (0.1 % Formic Acid) Eluent B: CH3CN (0.1 % Formic Acid)
Gradient: 5-95% eluent B
Flow: 1.5 ml/min
Column: Synergi 4μm Max-RP Cn, 80A, 50 x 4.6 mm (Phenomenex)
MS conditions: Capillary voltage: 3.5 kV
Cone voltage: 30 V
Source Temperature: 120 °C
Desolvation Temperature: 300 °C
Analytical LC-MS System Several systems were used, as described below, and these were equipped with were set up to run under closely similar operating conditions. The operating conditions used are also described below.
HPLC System: Waters 2795
Mass Spec Detector: Micromass Platform LC PDA Detector: Waters 2996 PDA
Acidic Analytical conditions :
Eluent A: H2O (0.1 % Formic Acid)
Eluent B : CH3CN (0.1 % Formic Acid)
Gradient: 5-95% eluent B over 3.5 minutes Flow: 0.8 ml/min
Column: Phenomenex Synergi 4μ MAX-RP 80A, 2.0 x 50 mm Basic Analytical conditions:
Eluent A: H2O (lOmM NH4HCO3 buffer adjusted to pH=9.5 with NH OH)
Eluent B: CH3CN
Gradient: 05-95% eluent B over 3.5 minutes
Flow: 0.8 ml/min
Column: Thermo Hypersil-Keystone BetaBasic-18 5μm 2.1 x 50 mm or
Column: Phenomenex Luna C18(2) 5μm 2.0 x 50 mm
Polar Analytical conditions:
Eluent A: H2O (0.1 % Formic Acid)
Eluent B: CH3CN (0.1% Formic Acid)
Gradient: 00-50% eluent B over 3 minutes
Flow: 0.8 ml/min
Column: Thermo Hypersil-Keystone HyPurity Aquastar, 5 μ, 2.1 x 50 mm or
Column: Phenomenex Synergi 4μ MAX-RP 80A, 2.0 x 50 mm or
Longer Analytical conditions:
Eluent A: H2O (0.1 % Formic Acid)
Eluent B : CH3CN (0.1 % Formic Acid)
Gradient: 05-95% eluent B over 15 minutes
Flow: 0.4 ml/min
Column: Phenomenex Synergi 4μ MAX-RP 80 A, 2.0 x 150 mm
MS conditions:
Capillary voltage: 3.6 kV Cone voltage: 30 V Source Temperature: 120 °C Scan Range: 165-700 amu Ionisation Mode: ElectroSpray Positive or ElectroSpray Negative or ElectroSpray Positive & Negative
Mass Directed Purification LC-MS System
The following preparative chromatography systems can be used to purify the compounds of the invention.
• Hardware:
Waters Fractionlynx system: 2767 Dual Autosampler/Fraction Collector 2525 preparative pump
CFO (column fluidic organiser) for column selection RMA (Waters reagent manager) as make up pump Waters ZQ Mass Spectrometer Waters 2996 Photo Diode Array detector
• Software: Masslynx 4.0
• Columns: 1. Low pH chromatography: Phenomenex Synergy MAX-RP, lOμ, 150 x 15mm (alternatively used same column type with 100 x 21.2mm dimensions).
2. High pH chromatography: Phenomenex Luna C 18 (2), 10 μ, 100 x 21.2 mm (alternatively used Thermo Hypersil Keystone BetaBasic C 18, 5 μ, 100 x 21.2 mm)
• Eluents: 1. Low pH chromatography:
Solvent A: H20 + 0.1 % Formic Acid, pH 1.5 Solvent B: CH3CN + 0.1% Formic Acid
2. High pH chromatography:
Solvent A: H20 + 10 mM NH4HCO3 + NH OH, pH 9.5 Solvent B: CH3CN
3. Make up solvent: MeOH + 0.1 % formic acid (for both chromatography type)
• Methods: Prior to using preparative chromatography to isolate and purify the product compounds, analytical LC-MS (see above) can first be used to determine the most appropriate conditions for preparative chromatography. A typical routine is to run an analytical LC-MS using the type of chromatography (low or high pH) most suited for compound structure. Once the analytical trace shows good chromatography, a suitable preparative method of the same type can be chosen. Typical running condition for both low and high pH chromatography methods are:
Flow rate: 24 ml/min
Gradient: Generally all gradients have an initial 0.4 min step with 95% A + 5% B. Then according to analytical trace a 3.6 min gradient is chosen in order to achieve good separation (e.g. from 5% to 50% B for early retaining compounds; from 35% to 80% B for middle retaining compounds and so on)
Wash: 1 minute wash step is performed at the end of the gradient
Re-equilibration: A 2.1 minute re-equilibration step is carried out to prepare the system for the next run Make Up flow rate: 1 ml/min
• Solvent:
All compounds were usually dissolved in 100% MeOH or 100% DMSO
• MS running conditions:
Capillary voltage: 3.2 kV Cone voltage: 25 V
Source Temperature: 120 °C Multiplier: 500 V
Scan Range: 125-800 amu
Ionisation Mode : ElectroSpray Positive
The starting materials for each of the Examples are commercially available unless otherwise specified.
EXAMPLE 1
4-Amino-lH-pyrazole-3 -carboxylic acid phenylamide
1A. 4-Nitro-lH-pyrazole-3 -carboxylic acid phenylamide
Figure imgf000123_0001
4-Nitropyrazole-3 -carboxylic acid (2.5 g; 15.9 mmol) was added to a stirred solution of aniline (1.6 ml; 17.5 mmol), EDC (3.7 g; 19.1 mmol), and HOBt (2.6 g; 19.1 mmol) in N,N-dimethylformamide (DMF) (25 ml), then stirred at room temperature overnight. The solvent was removed by evaporation under reduced pressure and the residue triturated with ethyl acetate / saturated NaHCO3 solution. The resultant solid was collected by filtration, washed with water and diethyl ether then dried under vacuum to give 2.85 g of the title compound (sodium salt) as a yellow /brown solid. (LC/MS: Rt 2.78, [M+H]+ 232.95).
IB. 4-Amino-lH-pyrazole-3-carboxylic acid phenylamide
Figure imgf000123_0002
4-Nitro-lH-pyrazole-3 -carboxylic acid phenylamide (100 mg; 0.43 mmol) was dissolved in ethanol (5 ml), treated with tin (II) chloride dihydrate (500 mg; 2.15 mmol) then heated at reflux overnight. The reaction mixture was cooled and evaporated. The residue was partitioned between ethyl acetate and brine, and the ethyl acetate layer was separated, dried (MgSO4), filtered and evaporated. The crude product was purified by flash column chromatography eluting with 1 : 1 ethyl acetate /petroleum ether then 5% methanol / dichloromethane. Evaporation of product containing fractions followed by preparative LC/MS gave 15 mg of the product as an off white solid. (LC/MS: Rt 1.40, [M+H]+ 202.95).
EXAMPLE 2
4-Acetylamino-lH-pyrazole-3 -carboxylic acid (4-fluoro-phenyl)-amide
2A. 4-Nitro-lH-pyrazole-3 -carboxylic acid (4-fluoro-phenyl)-amide
Figure imgf000124_0001
4-Nitropyrazole-3 -carboxylic acid (10 g; 63.66 mmol) was added to a stirred solution of 4-fluoroaniline (6.7 ml; 70 mmol), EDC (14.6 g; 76.4 mmol), and HOBt (10.3 g; 76.4 mmol) in DMF (25 ml), then stirred at room temperature overnight. The solvent was removed by evaporation under reduced pressure and the residue triturated with ethyl acetate / saturated brine solution. The resultant yellow solid was collected by filtration, washed with 2M hydrochloric acid, then dried under vacuum to give 15.5 g of the title compound. (LC/MS: Rt2.92 [M+H]+ 250.89).
2B. 4-Amino-lH-pyrazole-3 -carboxylic acid (4-fluoro-phenyD-amide
Figure imgf000125_0001
4-Nitro-lH-pyrazole-3 -carboxylic acid (4-fluorophenyl)-amide (15 g) was dissolved in 200 ml of ethanol, treated with 1.5 g of 10% palladium on carbon under a nitrogen atmosphere, then hydrogenated at room temperature and pressure overnight. The catalyst was removed by filtration through Celite and the filtrate evaporated. The crude product was dissolved in acetone / water (100 ml: 100 ml) and after slow evaporation of the acetone the product was collected by filtration as a brown crystalline solid (8.1 g). (LC/MS: Rt 1.58, [M+H]+ 220.95).
2C. 4-Acetylamino-lH-pyrazole-3 -carboxylic acid (4-fluoro-phenvD-amide
Figure imgf000125_0002
4-Amino-lH-pyrazole-3-carboxylic acid (4-fluorophenyl)-amide (500 mg; 2.27 mmol) was dissolved in 5 ml of pyridine, treated with acetic anhydride (240 μl, 2.5 mmol) then stirred at room temperature overnight. The solvent was removed by evaporation then dichloromethane (20 ml) and 2M hydrochloric acid (20 ml) were added. The undissolved solid was collected by filtration, washed with more dichloromethane and water then dried under vacuum. The product was isolated as an off white solid (275 mg). (LC/MS: Rt 2.96, [M+H]+ 262.91 ).
EXAMPLE 3 4- 2.2.2-Trifluoro-acetylamino -lH-pyrazole-3-carboxylic acid 4-fluoro-phenylV amide
Figure imgf000126_0001
4-Amino-lH-pyrazole-3-carboxylic acid (4-fluorophenyl)-amide (Example 2B) (500 mg; 2.27 mmol) was dissolved in 5 ml of pyridine, treated with trifluoroacetic anhydride (320 μl, 2.5 mmol) then stirred at room temperature overnight. The solvent was removed by evaporation, the residue was partitioned between ethyl acetate (50 ml) and 2 M hydrochloric acid (50 ml), and the ethyl acetate layer was separated, washed with brine (50 ml), dried (MgSO4), filtered and evaporated to give 560 mg of product as a brown solid. (LC/MS: [M+H]+ 317).
EXAMPLE 4
4- |Y 5 -Oxo-pyrrolidine-2-carbonyl)-amino] - 1 H-p yrazole-3 -carboxylic acid (4- fluoro-phenvD-amide
Figure imgf000126_0002
To a stirred solution of 4-amino-lH-pyrazole-3-carboxylic acid (4-fluorophenyl)- amide (Example 2B) (50 mg; 0.23 mmol), ED AC (52 mg; 0.27 mmol) and HOBt (37 mg; 0.27 mmol) in 5 ml of DMF was added 2-oxoproline (33 mg; 0.25 mmol), and the mixture was then left at room temperature overnight. The reaction mixture was evaporated and the residue purified by preparative LC/MS, to give 24 mg of the product as a white solid. (LC/MS: Rt 2.27 [M+H]+ 332).
EXAMPLE 5
4-Phenylacetylamino- 1 H-pyrazole-3 -carboxylic acid (4-fluoro-phenvD-amide
Figure imgf000127_0001
The reaction was carried out in a manner analogous to Example 4 but using phenylacetic acid (34mg; 0.23 mmol) as the starting material. The title compound (14 mg) was isolated as a white solid. (LC/MS: Rt 3.24 [M+H]+ 339 ).
EXAMPLE 6
4-(2- 1 H-Indol-3-yl-acetylamino - 1 H-pyrazole-3 -carboxylic acid f4-fluoro-phenvD- amide
Figure imgf000127_0002
The reaction was carried out in a manner analogous to Example 4, but using indole- 3-acetic acid (44 mg; 0.23 mmol) as the starting material. The title product (14 mg) was isolated as a white solid. (LC/MS: Rt 3.05 [M+H]+ 378 ).
EXAMPLE 7 4-(2-Benzenesulphonyl-acetylamino -lH-pyrazole-3-carboxylic acid ('4-fluoro- phenylVamide
Figure imgf000128_0001
The reaction was carried out in a manner analogous to Example 4, but using 2- (phenylsulphonyl) acetic acid (50 mg; 0.23 mmol) as the starting material. The title compound (29 mg) was isolated as a white solid. (LC/MS: Rt 3.00 [M+H]+ 403 ).
EXAMPLE 8
4-[2-f5-Amino-tetrazol-l -yl -acetylamino]-lH-pyrazole-3-carboxylic acid (4- fluoro-phenvP-amide
Figure imgf000128_0002
The reaction was carried out in a manner analogous to Example 4, but 5- aminotetrazole-1 -acetic acid (36 mg; 0.23 mmol) was used as the starting material. The title compound (23 mg) was isolated as a white solid. (LC/MS: Rt 2.37 [M+H]+ 346).
EXAMPLE 9
N-[3-(4-Fluoro-phenylcarbamoyl -lH-pyrazol-4-yll-6-hydroxy-nicotinamide
Figure imgf000129_0001
The reaction was carried out in a manner analogous to Example 4, but using 6- hydroxynicotinic acid (38 mg; 0.23 mmol) as the starting material. The title compound (17 mg) was isolated as a white solid. (LC/MS: Rt 2.32 [M+H]+ 342).
EXAMPLE 10
4- [3 -(4-Chloro-phenyl)-propionylamino] - 1 H-pyrazole-3 -carboxylic acid (4-fluoro- phenylVamide
Figure imgf000129_0002
The reaction was carried out in a manner analogous to Example 4, but using 3-(4- chlorophenyl)propionic acid (46 mg; 0.23 mmol) as the starting material. The title compound (40 mg) was isolated as a white solid. (LC/MS: Rt 3.60 [M+H]+ 388 ).
EXAMPLE 11
4-f3-4H-|T ,2.41Triazol-3-yl-propionylamino -lH-pyrazole-3-carboxylic acid (4- fluoro-phenylVamide
Figure imgf000130_0001
The reaction was carried out in a manner analogous to Example 4, but using 3- triazol-3-yl propionic acid (36 mg; 0.23 mmol) as the starting material. The title compound (18 mg) was isolated as a white solid. (LC/MS: Rt 2.39 [M+H]+ 344).
EXAMPLE 12
4- [2-( 1 -Methyl- 1 H-indol-3 -vD-acetylaminol - 1 H-pyrazole-3 -carboxylic acid (4- fluoro-phenyD-amide
Figure imgf000130_0002
The reaction was carried out in a manner analogous to Example 4, but using N- methyl indole-3 -acetic acid (48 mg; 0.23 mmol) as the starting material. The title compound (20 mg) was isolated as a white solid. (LC/MS: Rt 3.34 [M+H]+ 392).
EXAMPLE 13
4- [Y 1 -Hydroxy-cyclopropanecarbonvD-aminol - 1 H-pyrazole-3 -carboxylic acid (4- fluoro-phenvD-amide
Figure imgf000131_0001
The reaction was carried out in a manner analogous to Example 4, but using 1- hydroxycyclopropane carboxylic acid (26 mg; 0.23 mmol) as the starting material. The title compound (24 mg) was isolated as a white solid. (LC/MS: Rt 2.55 [M+H]+ 305 ).
EXAMPLE 14
l-Acetyl-piperidine-4-carboxylic acid [3-(4-fluoro-phenylcarbamoyl -lH-pyrazol- 4-yl] -amide
Figure imgf000131_0002
The reaction was carried out in a manner analogous to Example 4, but using N- acetylpiperidine acetic acid (43 mg; 0.23 mmol) as the starting material. The title compound (19 mg) was isolated as a white solid. (LC/MS: Rt 2.49 [M+H]+ 374 ).
EXAMPLE 15
4- f 3 -(4-Methyl-piperazin- 1 -yl -propionylamino] - 1 H-pyrazole-3 -carboxylic acid (4- fluoro-phenylVamide
Figure imgf000132_0001
The reaction was carried out in a manner analogous to Example 4, but using 4-N- methylpiperazine-1-N-propionic acid (31 mg; 0.23 mmol) as the starting material. The title compound (19 mg) was isolated as a white solid. (LC/MS: Rt 1.77 [M+H]+ 375 ).
EXAMPLE 16
4-(2-lH-Imidazol-4-yl-acetylamino -lH-pyrazole-3-carboxylic acid (4- fluorophenylVamide
Figure imgf000132_0002
The reaction was carried out in a manner analogous to Example 4, but using imidazole-4-acetic acid (32 mg; 0.23 mmol) as the starting material. The title compound (35 mg) was isolated as a white solid. (LC/MS: Rt 1.82 [M+H]+ 329).
EXAMPLE 17
4-(3 -Morpholin-4- yl-propionylaminoV 1 H-pyrazole-3 -carboxylic acid (4- fluorophenvD-amide
Figure imgf000133_0001
The reaction was carried out in a manner analogous to Example 4, but using 3- morpholin-4-yl-propionic acid (40 mg; 0.23 mmol) as the starting material. The title compound (15 mg) was isolated as a white solid. (LC/MS: Rt 1.84 [M+H]+ 362).
EXAMPLE 18
4-(3 -Piperidin- 1 - yl-propionylaminoV 1 H-pyrazole-3 -carboxylic acid (4-fluoro- phenylVamide
Figure imgf000133_0002
The reaction was carried out in a manner analogous to Example 4, but using 3- piperidine-4-yl-propionic acid (39 mg; 0.23 mmol) as the starting material. The title compound (19 mg) was isolated as a white solid. (LC/MS: R 1.92 [M+H]+ 360).
EXAMPLE 19
4-Cyclohexylamino- 1 H-pyrazole-3 -carboxylic acid f 4-fluoro-phenyl)-amide
Figure imgf000134_0001
To a solution of 4-amino- 1 H-pyrazole-3 -carboxylic acid (4-fluoro-phenyl)-amide (200 mg; 1 mmol) and cyclohexanone (107 mg; 1.1 mmol) in dichloromethane (10 ml) were added 3 A molecular sieves (1 g) and sodium triacetoxyborohydride (315 mg; 1.5 mmol), and the mixture was then stirred at room temperature over the weekend. The reaction mixture was filtered through Celite®, diluted with ethyl acetate, washed with brine, dried (MgSO ) and evaporated to give the 48 mg of the product as a grey gum. (LC/MS: Rt 2.95, [M+H]+285).
EXAMPLE 20
4-Isopropylamino- 1 H-pyrazole-3 -carboxylic acid (4-fluoro-phenyl - amide
Figure imgf000134_0002
The title compound was prepared in a manner analogous to Example 19, but using acetone in place of cyclohexanone. (LC/MS: Rt 2.08, [M+H]+ 245).
EXAMPLE 21
4-r2-Hydroχy-l-methyl-ethylamino -lH-pyrazole-3-carboxylic acid (4- fluorophenvD-amide
Figure imgf000135_0001
The compound was prepared in a manner analogous to Example 19, but using hydroxyacetone in place of cyclohexanone. 1HNMR (400MHz, D6-DMSO): 9.9 (IH, br s), 7.8 (2H, dd), 7.3 (IH, s), 7.15 (2H, t), 5.15 (IH, d), 4.7 (IH, br s), 3.4 (2H, m), 3.2 (IH, m), 1.1 (3H, d).
EXAMPLE 22
4-fl-Ethyl-propylamino)-lH-pyrazole-3-carboxylic acid C4-fluoro-phenylVamide
Figure imgf000135_0002
The compound was prepared in a manner analogous to Example 19, but using 3- pentanone in place of cyclohexanone. 1HNMR (400MHz, D6-DMSO): 12.85 (lh,br s), 9.9 (IH, br s), 7.8 (2H, br t), 7.3 (IH, s), 7.15 (2H, t), 5.0 (IH, d), 2.9 (IH, br m), 1.5 (4H, m), 3.2 (IH, m), 0.9 (6H, t).
EXAMPLE 23
4-(3-Chloro-pyrazin-2-ylaminoV 1 H-pyrazole-3 -carboxylic acid f4-fluoro-phenyl)- amide
Figure imgf000136_0001
A mixture of 4-amino-lH-pyrazole-3-carboxylic acid (4-fluoro-phenyl)-amide (50 mg; 0.23 mmol) and 2,3-dichloropyrazine (140 mg; 0.92 mmol) was heated at 150°C (50W) for 20 minutes in a CEM Discover™ microwave synthesiser. The crude reaction mixture was purified by flash column chromatography eluting with ethyl acetate / hexane (1 :3 then 1 :2). Product containing fractions were combined and evaporated to give 15 mg of the title compound as a white solid. (LC/MS: Rt 4.06 M+H]+ 332).
EXAMPLE 24
4-(Pyrazin-2-ylamino VI H-pyrazole-3 -carboxylic acid f4-fluoro-phenylVamide
Figure imgf000136_0002
The compound was prepared in a manner analogous to Example 23, but using 2- chloropyrazine in place of 2,3-dichloropyrazine. (LC/MS: Rt 3.28 [M+H]+ 299).
EXAMPLE 25
Synthesis of 4-f2-Methoxy-benzoylaminoVlH-pyrazole-3-carboxylic acid (4- fmoro-phenylVamide
Figure imgf000137_0001
2-Methoxy-benzoic acid (38 mg, 0.25 mmol) was added to a solution of 4-amino- 1 H-pyrazole-3 -carboxylic acid (4-fluoro-phenyl)-amide (50 mg, 0.23 mmol), EDC (53 mg, 0.27 mmol), and HOBt (37 mg, 0.27 mmol) in DMF (5ml). The reaction mixture was stirred at room temperature for 24 hours. The solvent was removed under reduced pressure. The residue was purified by preparative LC/MS and, after evaporation of product-containing fractions, yielded the product as a pinkish solid (12 mg, 15%). (LC/MS: Rt 4.00, [M+H]+ 354.67).
EXAMPLE 26
Synthesis of 4-Benzoylamino-lH-pyrazole-3-carboxylic acid (4-fluoro-phenyl)- amide
Figure imgf000137_0002
The experiment was carried out in a manner analogous to that of Example 25 using benzoic acid (31 mg, 0.25 mmol) as starting acid. The product was isolated as a pink solid (26 mg, 35%). (LC/MS: Rt 3.96, [M+H]+ 324.65).
EXAMPLE 27
Synthesis of 4-(Cvclohexanecarbonyl-aminoVl H-pyrazole-3 -carboxylic acid (4- fluoro-phenylVamide 136
Figure imgf000138_0001
The experiment was carried out in a manner analogous to that of Example 25 using cyclohexanecarboxylic acid (32 mg, 0.25 mmol) as starting acid. The product was isolated as a pink solid (28 mg, 37%). (LC/MS: Rt 4.16, [M+H]+ 330.70).
EXAMPLE 28
Synthesis of 4- [(1-Methy l-cyclopropanecarbonylVamino"l-l H-pyrazole-3 - carboxylic acid (4-fluoro-phenylVamide
Figure imgf000138_0002
The experiment was carried out in a manner analogous to that of Example 25 using 1-methyl-cyclopropanecarboxylic acid (25 mg, 0.25 mmol) as starting acid. The product was isolated as a pink solid (24 mg, 35%). (LC/MS: Rt 3.72, [M+H]+ 302.68).
EXAMPLE 29
Synthesis of 4-(2-Hydroxy-acetylamino)-lH-pyrazole-3-carboχylic acid (4-fluoro- phenylVamide
Figure imgf000138_0003
The experiment was carried out in a manner analogous to that of Example 25 using hydroxy-acetic acid (19 mg, 0.25 mmol) as starting acid. The product was isolated as a white solid (26 mg, 41%). (LC/MS: Rt 2.65, [M+H]+ 278.61).
EXAMPLE 30
Synthesis of 4-f2.2-Dimemyl-propionylamino l H-pyrazole-3 -carboxylic acid (4- fluoro-phenylVamide
Figure imgf000139_0001
The experiment was carried out in a manner analogous to that of Example 25 using 2,2-dimethyl-propionic acid (26 mg, 0.25 mmol) as starting acid. The product was isolated as a pink solid (21 mg, 30%). (LC/MS: Rt 3.83, [M+H]+ 304.68).
EXAMPLE 31
Synthesis of 4-(3-Hvdroxy-propionylamino VI H-pyrazole-3 -carboxylic acid (4- fluoro-phenylVamide
Figure imgf000139_0002
The experiment was carried out in a manner analogous to that of Example 25 using 3-hydroxy-propionic acid (75.1 mg, 0.25 mmol) as starting acid. The product was isolated as a beige solid (5 mg, 8%). (LC/MS: Rt 2.58, [M+H]+ 292.65).
EXAMPLE 32
Synthesis of 4-('2-Fluoro-benzoylamino -lH-pyrazole-3-carboxylic acid (4-fluoro- phenylVamide
Figure imgf000140_0001
2-Fluorobenzoic acid (36 mg, 0.25 mmol) was added to a solution of 4-amino-lH- pyrazole-3-carboxylic acid (4-fluoro-phenyl)-amide (50 mg, 0.23 mmol), EDC (53 mg, 0.27 mmol) and HOBt (37 mg, 0.27 mmol) in DMSO (1 ml). The reaction mixture was stirred at room temperature for 24 hours and purified by preparative LC/MS. Evaporation of product-containing fractions yielded the product as a white solid (15 mg, 19 %). (LC/MS: Rt 3.91, [M+H]+ 342.66).
EXAMPLE 33
Synthesis of 4-(3-Fluoro-beιιzoylaminoVlH-pyrazole-3-carboxylic acid (4-fluoro- phenylVamide
Figure imgf000140_0002
The experiment was carried out in a manner analogous to that of Example 32 using 3-fluorobenzoic acid (36 mg, 0.25 mmol) as starting acid. The product was isolated as a white solid (19 mg, 24%). (LC/MS: Rt 4.03, [M+H]+ 342.67).
EXAMPLE 34
Synthesis of 4-(3-Methoxy-benzoylaminoVlH-pyrazole-3-carboxylic acid (4- fluoro-phenylVamide
Figure imgf000141_0001
The experiment was carried out in a manner analogous to that of Example 32 using 3-methoxy-benzoic acid (39 mg, 0.25 mmol) as starting acid. The product was isolated as a white solid (20 mg, 25%). (LC/MS: Rt 3.97, [M+H]+ 354.68).
EXAMPLE 35
Synthesis of 4-f2-Nitro-benzoylaminoVl H-pyrazole-3 -carboxylic acid (4-fluoro- phenylVamide
Figure imgf000141_0002
The experiment was carried out in a manner analogous to that of Example 32 using 2-nitrobenzoic acid (43 mg, 0.25 mmol) as starting acid. The product was isolated as a white solid (17 mg, 20%). (LC/MS: Rt 3.67, [M+H]+ 369.66).
EXAMPLE 36
Synthesis of 4-f4-Nitro-benzoylaminoVlH-pyrazole-3-carboxylic acid (4-fluoro- phenylVamide
Figure imgf000141_0003
The experiment was carried out in a manner analogous to that of Example 32 using 4-nitrobenzoic acid (43 mg, 0.25 mmol) as starting acid. The product was isolated as a white solid (15 mg, 18%). (LC/MS: Rt 3.98, [M+H]+ 369.63).
EXAMPLE 37
Synthesis of 4- 3-Methyl-furan-2-carbonyl -amino1-lH-pyrazole-3-carboxylic acid (4-fluoro-phenvιVamide
Figure imgf000142_0001
The experiment was carried out in a manner analogous to that of Example 32 using 3-methyl-2-furoic acid (32 mg, 0.25 mmol) as starting acid. The product was isolated as a white solid (15 mg, 20%). (LC/MS: Rt 3.86, [M+H]+ 328.68).
EXAMPLE 38
Synthesis of 4-[(Furan-2-carbonylVamino]-lH-pyrazole-3-carboxylic acid (4- fluoro-phenylVamide
Figure imgf000142_0002
The experiment was carried out in a manner analogous to that of Example 32 using 2-furoic acid (29 mg, 0.25 mmol) as starting acid. The product was isolated as a white solid (18 mg, 25%). (LC/MS: Rt 3.56, [M+H]+ 314.64).
EXAMPLE 39 Synthesis of 4-[f3H-Imidazole-4-carbonylVamino1-lH-pyrazole-3-carboxylic acid f4-fluoro-phenylVamide
Figure imgf000143_0001
The experiment was carried out in a manner analogous to that of Example 32 using lH-imidazole-4-carboxylic acid (29 mg, 0.25 mmol) as starting acid. The product was isolated as a white solid (16 mg, 22%). (LC/MS: Rt 2.59, [M+H]+ 314.65).
EXAMPLE 40
Synthesis of 4-f4-Fluoro-benzoylaminoVlH-pyrazole-3-carboxylic acid f4-fluoro- phenylVamide
Figure imgf000143_0002
The experiment was carried out in a manner analogous to that of Example 32 using 4-fluorobenzoic acid (36 mg, 0.25 mmol) as starting acid. The product was isolated as a cream coloured solid (23 mg, 29%). (LC/MS: Rt 4.00, [M+H]+ 342.67).
EXAMPLE 41
Synthesis of 4-f2.6-Difluoro-benzoylaminoVlH-pyrazole-3-carboxylic acid (4- fluoro-phenylVamide
Figure imgf000144_0001
The experiment was carried out in a manner analogous to that of Example 32 using 2,6-difluorobenzoic acid (40 mg, 0.25 mmol) as starting acid. The product was isolated as a cream coloured solid (25 mg, 30%). (LC/MS: Rt 3.76, [M+H]+ 360.66).
EXAMPLE 42
Synthesis of 4-(3-Nitro-benzoylaminoVlH-pyrazole-3-carboxylic acid (4-fluoro- phenylVamide
Figure imgf000144_0002
The experiment was carried out in a manner analogous to that of Example 32 using 3-nitrobenzoic acid (43 mg, 0.25 mmol) as starting acid. The product was isolated as a cream coloured solid (15 mg, 18%). (LC/MS: Rt 3.94, [M+H]+ 369.65).
EXAMPLE 43
Synthesis of lH-Indole-3 -carboxylic acid [3-(4-fluoro-phenylcarbamoylVlH- pyrazol-4- yl] -amide
Figure imgf000144_0003
The experiment was carried out in a manner analogous to that of Example 32 using indole-3 -carboxylic acid (41 mg, 0.25 mmol) as starting acid. The product was isolated as a rust coloured solid (14 mg, 17%). (LC/MS: Rt 3.60, [M+H]+ 363.66).
EXAMPLE 44
Synthesis of 4-(4-Hvdroxymethyl-benzoylamino -l H-pyrazole-3 -carboxylic acid (4-fluoro-phenylVamide
Figure imgf000145_0001
The experiment was carried out in a manner analogous to that of Example 32 using 4-hydroxymethylbenzoic acid (39 mg, 0.25 mmol) as starting acid. The product was isolated as a white solid (19 mg, 23%). (LC/MS: Rt 3.12, [M+H]+ 354.68).
EXAMPLE 45
Synthesis of 4-(3-Methyl-benzoylaminoVl H-pyrazole-3 -carboxylic acid (4-fluoro- phenylVamide
Figure imgf000145_0002
The experiment was carried out in a manner analogous to that of Example 32 using 3-methylbenzoic acid (35 mg, 0.25 mmol) as starting acid. The product was isolated as an off- white solid (21 mg, 27%). (LC/MS: Rt 4.13, [M+H]+ 338.71).
EXAMPLE 46 Synthesis of 4-(2-Methyl-benzo ylamino VI H-pyrazole-3 -carboxylic acid (4-fluoro- phenyiVamide
Figure imgf000146_0001
The experiment was carried out in a manner analogous to that of Example 32 using 2-methylbenzoic acid (35 mg, 0.25 mmol) as starting acid. The product was isolated as an off-white solid (20 mg, 26%). (LC/MS: Rt 4.05, [M+H]+ 338.69).
EXAMPLE 47
Synthesis of 4-C4-Methyl-benzoylaminoVlH-pyrazole-3-carboxylic acid C4-fluoro- phenylVamide
Figure imgf000146_0002
The experiment was carried out in a manner analogous to that of Example 32 using 4-methylbenzoic acid (35 mg, 0.25 mmol) as starting acid. The product was isolated as an off- white solid (19 mg, 24%). (LC/MS: Rt 4.16, [M+H]+ 338.70).
EXAMPLE 48
Synthesis of 4- [Y2-Methyl-thioρhene-3 -carbonylVamino] - 1 H-pyrazole-3 -carboxylic acid (4-fluoro-phenyιVamide
Figure imgf000147_0001
2-Methyl-3-thiophenecarboxylic acid (36 mg, 0.25 mmol) was added to a solution of 4-amino- 1 H-pyrazole-3 -carboxylic acid (4-fluoro-phenyl)-amide (Example 2B) (50 mg, 0.23 mmol), EDC (53 mg, 0.27 mmol), and HOBt (37 mg, 0.27 mmol) in DMSO (1 ml). The reaction mixture was stirred at room temperature for 24 hours. The reaction mixture was added dropwise to water (30 ml) and the resultant solid was collected by filtration, washed with water and sucked dry. The title compound was obtained as a beige solid (15 mg, 19%). (LC/MS: Rt 4.08, [M+H]+ 344.67).
EXAMPLE 49
Synthesis of Quinoline-2-carboxylic acid r3-f4-fluoro-phenylcarbamovιVlH- pyrazol-4- yll -amide
Figure imgf000147_0002
The experiment was carried out in a manner analogous to that of Example 48 using quinaldic acid (44 mg, 0.25 mmol) as starting acid. The product was isolated as a brown solid (16 mg, 19%). (LC/MS: Rt 4.29, [M+H]+ 375.66).
EXAMPLE 50
Synthesis of 4- ffThiophene-3 -carbonyl Vamino"|-l H-pyrazole-3 -carboxylic acid (4- fluoro-phenylVamide
Figure imgf000148_0001
The experiment was carried out in a manner analogous to that of Example 48 using thiophene-3 -carboxylic acid (33 mg, 0.25 mmol) as starting acid. The product was isolated as a beige solid (15 mg, 20%). (LC/MS: Rt 3.77, [M+H]+ 330.61).
EXAMPLE 51
4- 2-fluoro-3-methoxy-benzoylamino -lH-pyrazole-3-carboxylic acid ('4-fluoro- phenylVamide
Figure imgf000148_0002
2-Fluoro-3-methoxybenzoic acid (0.047 g, 0.28 mmol), 4-amino- 1 H-pyrazole-3 - carboxylic acid (4-fluoro-phenyl)-amide (Example 2B) (0.055 g, 0.25 mmol), EDC (0.58 g, 0.30 mmol) and HOBt (0.041 g, 0.30 mmol) were stirred at room temperature in DMSO (1.25 ml) for 5 hours. The reaction mixture was poured into water (30 ml) and the resultant solid was collected by filtration and dried in a vacuum oven to give the title compound as a grey solid (0.058 g, 63 %). (LC/MS: Rt 3.99, [MH]+ 372.98).
EXAMPLE 52
Synthesis of 4-r2-(2-Pyrrolidin- 1 -yl-ethoxyVbenzoylamino - 1 H-pyrazole-3 - carboxylic acid 4-fluorophenylamide 52 A 2-(2-Pyrrolidin-l-yl-ethoxyVbenzoic acid methyl ester
Figure imgf000149_0001
Diisopropylazodicarboxylate (0.404 g, 2 mmol) was added dropwise to a solution of triphenylphosphine (0.524 g, 2 mmol) in THF (10 ml). Methyl salicylate (0.304 g, 2 mmol) was added dropwise and the resultant mixture was stirred at room temperature for 1 hour. 1,2-Hydroxyethyl pyrrolidine (0.230 g, 2 mmol) was added dropwise and the reaction mixture was left stirring at room temperature for a further 1.5 hours. The resulting solution was reduced in vacuo and subject to flash column chromatography, eluting with hexane: ethyl acetate (5:1, 1:1) then ethyl acetate : methanol (4:1) to give the product as a clear yellow oil (0.104 g, 21 %). (LC/MS: Rt 0.69, 1.62, [MH]+ 250.02).
52B. 4- r2-(2-Pyrrolidin-l-yl-ethoxyVbenzoylamino"l-l H-pyrazole-3 -carboxylic acid 4-fluorophenylamide
Figure imgf000149_0002
2-(2-Pyrrolidin- 1 -yl-ethoxy)-benzoic acid methyl ester (0.104 g, 0.42 mmol) was treated with 2 M aqueous NaOH (20 ml) and water (20 ml). The reaction mixture was stirred at room temperature for 20 hours, then reduced in vacuo and azeofroped with toluene (3 x 5 ml). Water (50 ml) was added and the mixture taken to pH 5 using 1M aqueous HCl. The resulting solution was reduced in vacuo and azeofroped with toluene (3 x 5 ml) to give a white solid, which was combined with 4-amino- 1 H-pyrazole-3 -carboxylic acid (4-fluoro-phenyl)-amide (Example 2B) (0.055 g, 0.25 mmol), EDC (0.058 g, 0.3 mmol) and HOBt (0.041 g, 0.3 mmol) and stirred at room temperature in DMSO (3 ml) for 20 hours. The reaction mixture was poured into water (30 ml) and the resultant solid was collected by filtration and dried in a vacuum oven to give the title compound as a grey solid (0.015 g, 14 %). (LC/MS: Rt 2.18, [MH]+ 438.06).
EXAMPLE 53
Synthesis of 4-C2,6-Difluoro-benzoylaminoVlH-pyrazole-3-carboxylic acid (1- methyl-piperidin-4-ylVamide
Figure imgf000150_0001
A mixture of 4-(2,6-difluoro-benzoylamino)-lH-pyrazole-3-carboxylic acid (134 mg, 0.50 mmol), 4-amino-N-methylpiperidine (50.0 μl, 0.45 mmol), ED AC (104 mg, 0.54 mmol) and ΗOBt (73.0 mg, 0.54 mmol) in DMF (3 ml) was stirred at ambient temperature for 16 hours. The mixture was reduced in vacuo, the residue taken up in EtOAc and washed successively with saturated aqueous sodium bicarbonate, water and brine. The organic portion was dried (MgSO4) and reduced in vacuo to give 4-(2,6-difluoro-benzoylamino)-lH-pyrazole-3-carboxylic acid (1- methyl-piperidin-4-yl)-amide as a white solid (113 mg, 69%). (LC/MS: Rt 2.52, [M+Η]+ 364.19).
EXAMPLE 54
Synthesis of 4-fCycloheχyl-methyl-aminoVl H-pyrazole-3 -carboxylic acid (4- fluoro-phenylVamide
Figure imgf000151_0001
This compound was prepared in a manner analogous to the compound of Example 19 by succssive reductive alkylations using firstly cyclohexanone and then formaldehyde. (LC/MS: Rt 2.77 [MH]+ 316.71 ).
EXAMPLE 55
4-(Pyridin-2-ylamino -lH-pyrazole-3-carboxylic acid (4-fluoro-phenyl)-amide
Figure imgf000151_0002
The title compound was prepared in a manner analogous to the compound of Example 23. (LC/MS: Rt 2.07 [MH]+ 298.03).
EXAMPLES 56 - 81
By following the procedures described in the foregoing examples or methods analogous thereto, or by carrying out chemical transformations using the compounds described in the above examples and synthetic methods well known to the skilled person, the compounds set out in Table 3 were prepared.
Table 3
Figure imgf000152_0001
Figure imgf000153_0001
Figure imgf000154_0001
Figure imgf000155_0001
Figure imgf000156_0001
EXAMPLE 82
4- [(4- Amino- 1 -methyl- 1 H-imidazole-2-carbonylVamino] - 1 H-pyrazole-3 - carboxylic acid (4-fluoro-phenylVamide
Figure imgf000157_0001
Trifluoroacetic acid (200 μl) was added to a stirred suspension of {2-[3-(4-fluoro- phenylcarbamoyl)- 1 H-pyrazol-4-ylcarbamoyl] - 1 -methyl- 1 H-imidazol-4-yl } - carbamic acid tert-butyl ester (30 mg) in dichloromethane (5 ml), then stirred at room temperature for 2 hours. The solvent was evaporated then re-evaporated with toluene (2 x 10 ml). The residue was triturated with diethyl ether and the resultant solid collected by filtration. The solid was washed with diethyl ether then dried under vacuum to give 15 mg of 4- [(4-amino- 1 -methyl- 1 H-imidazole-2-carbonyl)- amino]-l H-pyrazole-3 -carboxylic acid (4-fluoro-phenyl)-amide as an off-white solid. (LC/MS: [M+H]+ 343.72).
EXAMPLE 83
Synthesis of4-{[4-(2,6-Difluoro-benzoylaminoVlH-pyrazole-3-carbonyl]-aminol- cyclohexanecarboxylic acid
83A. 4-{|"4-(2,6-difluoro-benzoylaminoVlH-pyrazole-3-carbonyl]-amino>- cyclohexanecarboxylic acid ethyl ester
Figure imgf000157_0002
Thionyl chloride (0.32 ml, 4.40 mmol) was slowly added to a mixture of 4- aminocyclohexanecarboxylic acid (572 mg, 4.00 mmol) in EtOH (10 ml) and stirred at ambient temperature for 16 hours. The mixture was reduced in vacuo, azeotroping with toluene, to give the corresponding ethyl ester (650 mg) as a pale solid.
A mixture of the ethyl ester (103 mg, 0.60 mmol), 4-(2,6-difluoro-benzoylamino)- lH-pyrazole-3-carboxylic acid (134 mg, 0.50 mmol), EDC (115 mg, 0.60 mmol) and ΗOBt (81 mg, 0.60 mmol) in DMF (5 ml) was stirred at ambient temperature for 16 hours. The mixture was reduced in vacuo, the residue taken up in EtOAc and washed successively with saturated aqueous sodium bicarbonate, water and brine. The organic portion was dried (MgSO4) and reduced in vacuo to give 4-{[4-(2,6- difluoro-benzoylamino)- 1 Η-pyrazole-3 -carbonyl] -amino } -cyclohexanecarboxylic acid ethyl ester (112 mg) .
83B . 4-{ [4-f 2,6-difluoro-benzoylaminoV 1 Η-pyrazole-3 -carbonyl] -amino} - cyclohexanecarboxylic acid
Figure imgf000158_0001
A mixture of the ester (45 mg) (from 83A) in MeOΗ (2.5 ml) and 2M aqueous NaOΗ (2.5 ml) was stirred at ambient temperature for 16 hours. The volatiles were removed in vacuo, water (10 ml) added and the mixture taken to pΗ 5 using 1M aqueous ΗC1. The precipitate formed was collected by filtration and purified by column chromatography using EtOAc/MeOΗ (1 :0 - 9:1) to give 4-{[4-(2,6- difluoro-benzoylamino)- 1 Η-pyrazole-3 -carbonyl] -amino } -cyclohexanecarboxylic acid (11 mg) as a white solid and mixture of c/-y-/tr< y-isomers. (LC/MS: Rt 2.78 and 2.96, [M+Η]+ 393.09).
EXAMPLES 84 - 152
General Procedure A
Preparation of Amide from Pyrazole Carboxylic Acid Amine
Figure imgf000159_0001
A mixture of the appropriate benzoylamino-1 H-pyrazole-3 -carboxylic acid (0.50 mmol), ED AC (104 mg, 0.54 mmol), ΗOBt (73.0 mg, 0.54 mmol) and the corresponding amine (0.45 mmol) in DMF (3 ml) was stirred at ambient temperature for 16 hours. The mixture was reduced in vacuo, the residue taken up in EtOAc and washed successively with saturated aqueous sodium bicarbonate, water and brine. The organic portion was dried (MgSO4) and reduced in vacuo to give the desired product.
General Procedure B Preparation of Amide from Amino-Pyrazole
Figure imgf000159_0002
To a stirred solution of the appropriate 4-amino-lΗ-pyrazole-3-carboxylic acid amide (0.23 mmol), ED AC (52 mg; 0.27 mmol) and HOBt (37 mg; 0.27 mmol) in 5 ml of N,N-dimethylformamide was added the corresponding carboxylic acid (0.25 mmol), and the mixture was then left at room temperature overnight. The reaction mixture was evaporated and the residue purified by preparative LC/MS, to give the product.
General Procedure C Deprotection of Piperidine Ring Nitrogen by Removal of tert-Butoxycarbonyl Group A product of Procedure A or Procedure B containing a piperidine group bearing an N-tert-butoxycarbonyl (t-Boc) protecting group (40 mg) was treated with saturated ethyl acetate/HCl, and stirred at room temperature for 1 hour. A solid precipitated out of the reaction mixture, which was filtered off, washed with ether, and then dried to give 25 mg product (LC/MS : [M+H]+ 364).
Procedure L
Preparation of Amine Starting Materials
The following method was used to prepare the following amines:
4-thiomorpholine-4-yl-cyclohexylamine; 4-( 1 , 1 -dioxo-thiomorpholine-4-yl)-cyclohexylamine; N- (tetrahydro-pyran-4-yl)-cyclohexane- 1 ,4-diamine; 4-(4-methyl-piperazin- 1 -yl)-cyclohexylamine; r-methyl-[l,4']bipiperidinyl-4-ylamine; and 4-morpholin-4-yl-cyclohexylamine.
A solution of N-4-Boc-aminocyclohexanone (0.5 g, 2.3 mmol) in THF (10 ml) was treated with the appropriate amine, e.g. thiomorpholine (0.236 g, 2.3 mmol), and sodium triacetoxyborohydride (0.715 g, 2.76 mmol) and acetic acid (0.182 ml). The reaction was stirred overnight at room temperature, then diluted with CH2C12 and washed with saturated sodium carbonate. The organic layer was dried over MgSO and evaporated to give a white solid which was used without further purification in the next step. The white solid was treated with with saturated HCl/EtOAc, stirred at room temperature for 1 hour, evaporated to dryness and then re-evaporated with toluene. The resulting amines were isolated as the hydrochloride salt. (LC/MS: Rt 1.75, [M+H]+201).
By following General Procedures A, B, C and L, modified where stated, the compounds set out in Table 4 were prepared.
Table 4
Figure imgf000161_0001
Figure imgf000162_0001
Figure imgf000163_0001
Figure imgf000164_0001
Figure imgf000165_0001
164
Figure imgf000166_0001
Figure imgf000167_0001
166
Figure imgf000168_0001
Figure imgf000169_0001
Figure imgf000170_0001
Figure imgf000171_0001
170
Figure imgf000172_0001
171
Figure imgf000173_0001
Figure imgf000174_0001
Figure imgf000175_0001
Figure imgf000176_0001
EXAMPLES 153 - 165
General Procedure D
Preparation of Protected 4-Amino-pyrazol-3-yl carboxylic acid 4-hydroxy- cvclohexylamide
Figure imgf000177_0001
pg = protecting group
Step D (i):
A mixture of 4-nitro-3-pyrazolecarboxylic acid (4.98 g, 31.7 mmol), trans 4- aminocyclohexanol (3.65 g, 31.7 mmol), EDAC (6.68 g, 34.8 mmol) and HOBt (4.7 g, 34.8 mmol) in DMF (120 ml) was stirred at ambient temperature for 16 hours. The mixture was reduced in vacuo, the residue taken up in CH2C12 and washed successively with 5% citric acid, saturated aqueous sodium bicarbonate, water and brine. The product was found to be mainly in the citric acid wash, which was basified and extracted with EtOAc. The organic layer was dried over MgSO , filtered and evaporated to give a white solid, which was triturated with CHC13 to give 1.95 g of 4-nitro-l H-pyrazole-3 -carboxylic acid 4-hydroxy-cyclohexylamide. (LC/MS: Rt 1.62, [M+H]+255).
Step D (ii : Introduction of Tetrahydro-pyran-2-yl Protecting Group
A solution of 4-nitro-l H-pyrazole-3 -carboxylic acid 4-hydroxy-cyclohexylamide (1.95 g; 7.67 mmol) in a mix of THF (50 ml) and chloroform (100 ml), was treated with 3,4-dihydro-2H-pyran (1.54 ml, 15.34 mmol) and p-toluenesulphonic acid monohydrate (100 mg). The reaction mixture was stirred at room temperature overnight, and then excess pyran (0.9 ml) was added in total to bring reaction to completion. The reaction mixture was diluted with CH2C12 and washed successively with saturated aqueous sodium bicarbonate, water and brine. The resulting solution was reduced in vacuo and subject to Biotage column chromatography, eluting with hexane (2 column lengths) followed by 30% ethyl acetate: hexane (10 column lengths), 70% ethyl acetate: hexane (10 column lengths) to give 1.25 g of 4- nitro-1- (tetrahydro-pyran-2-yl-lH-pyrazole-3-carboxylic acid [4-(tetrahydro-pyran-2- yloxy)-cyclohexyl]-amide. (LC/MS: Rt 2.97, [M+H]+423).
Step D flip:
A solution of 4- nitro-1- (tetrahydro-pyran-2-yl)-lH-pyrazole-3-carboxylic acid [4- (tetrahydro-pyran-2-yloxy)-cyclohexyl]-amide (0.3 g; 0.71 mmol) in methanol (25 ml), was treated with 10% palladium on carbon (30 mg) then hydrogenated at room temperature and pressure overnight. The catalyst was removed by filtration and washed three times with methanol. The filtrate was evaporated to give 0.264 g of the required product. (LC/MS : Rt 2.39, [M+H]+ 393).
General Procedure E
Procedure for Removal of a Tetrahydropyran-2-yl Protecting Group
To a suspension of 4-(2-methoxy- benzoylamino)-l- (tetrahydro-pyran-2-yl-lH- pyrazole-3 -carboxylic acid [4-(tetrahydro-pyran-2-yloxy)-cyclohexyl]-amide (0.125 g, 0.23 mmol) in EtOH (10 ml) was added p-toluene sulphonic acid hydrate (90 mg, 0.46 mmol). The reaction mixture was heated at 70 °C for 30 mins. The reaction was diluted with EtOAc and washed successively with saturated aqueous sodium bicarbonate, water and brine. The resulting solution was reduced in vacuo to give a white solid, which contained traces ofp-toluene sulphonic acid hydrate. The solid was then taken up in EtOAc and washed with 1M NaOH and then brine. The resulting solution was reduced in vacuo and then triturated with ether/ hexane to give 10 mg of required product. (LC/MS: Rt 2.29, [M+H]+359)
General Procedure F Preparation of a Urea from a 4-Amino-pyrazole-3-carboxylic acid amide
To a solution of 4-amino- 1- (tetrahydro-pyran-2-yl-l H-pyrazole-3 -carboxylic acid [4-(tetrahydro-pyran-2-yloxy)-cyclohexyl]-amide (80 mg, 0.2 mmol) in toluene (2 ml) was added phenyl isocyanate (929 mg, 0.24 mmol). The reaction mixture was heated at 70 °C for lhour. The reaction was diluted with EtOAc and washed successively with water and brine. The resulting solution was reduced in vacuo to give yellow oil. This was used without further purification. (LC/MS: Rt 2.28, [M+H]+344).
General Procedure G
Conversion of a 4-Amino-ρyrazole group to a 4-(Morpholine-4-carbonylamino)- Pyrazole Group
To a solution of 4-amino-l- (tetrahydro-pyran-2-yl-lH-pyrazole-3-carboxylic acid [4-(tetrahydro-pyran-2-yloxy)-cyclohexyl]-amide (0.1 g, 0.255 mmol) in CH2C12 (5 ml) at -10 °C was added in a dropwise manner a 20% solution of phosgene in toluene. The reaction mixture was stirred at -10 °C for 15 mins and then morpholine (0.765 mmol) was added. The reaction mixture was allowed to warm up to room temperature over 1 hour then stirred at room temperature overnight. The reaction was diluted with CH2C12 and washed successively with saturated sodium bicarbonate and brine. The resulting solution was reduced in vacuo to give a yellow oil which was used without further purification. (LC/MS: Rt 1.68,[M+H]+338).
General Procedure H
Preparation of N-Oxides
To a suspension of the compound of Example 53 (7.7 mg, 0.02 mmol) in CH2C12 (0.5 ml) was added metα-chloroperbenzoic acid (MCPBA) (3.6 mg, 0.02 mmol). The reaction mixture was stirred at room temperature overnight, and then evaporated. The residue was purified by preparative LC/MS, to give 3 mg of the required product. (LC/MS: Rt 1.83, [M+H]+ 380)
General Procedure I Removal of a Benzyloxycarbonyl Protecting Group
A solution of the compound of Example 130 (0.2 g; 0.39 mmol) in EtOAc (40 ml) was treated with 10% palladium on carbon (20 mg) then hydrogenated at room temperature and pressure for 3 hours. The catalyst was removed by filtration and washed three times with EtOAc. The filtrate was evaporated and the residue was subjected to chromatography using 10% MeOH-CH2Cl2 then 20% MeOH- CH2C12 to give 80 mg of the required product. (LC/MS: Rt 1.88, [M+H]+ 378).
General Procedure J
Mesylation of an Amine
To a solution of the compound of Example 163 (20 mg, 0.05 mmol) in CH3CN (3 ml) added methane-sulphonyl chloride (0.0045 ml, 0.058 mmol) followed by Hunig's Base (0.018 ml, 0.1 mmol). The reaction mixture was stirred at room temperature for 2 hours and was then evaporated down. The residue was purified by preparative LC/ MS to give 8mg of the required product. (LC/MS: Rt 2.54, [M+Hf 456).
By following Procedures A to L, the compounds set out in Table 5 were prepared.
Table 5
Figure imgf000180_0001
Figure imgf000181_0001
Figure imgf000182_0001
Figure imgf000183_0002
General Procedure M
Formation of pyrazole 4-amide group
Figure imgf000183_0001
4-Nitropyrazole-3-carboxylic acid (7.3 g; 15.9 mmol) was added to a stirred solution of 4-amino- 1-Boc-piperidine (10.2 mg; 51 mmol), EDC (10.7 g; 55.8 mmol), and HOAt (55.8 g; 19.1 mmol) in DMF (100 ml), and then stirred at room temperature overnight. The solvent was removed by evaporation under reduced pressure and the residue triturated with water (250ml). The resultant cream solid was collected by filtration, washed with water then dried under vacuum to give 13.05 g of 4-[(4-nitro- lH-pyrazole-3-carbonyl)-amino]-piperidine- 1 -carboxylic acid tert-butyl ester (LC/MS: Rt 2.50, [M+H]+ 340).
4-[(4-Nitro-lH-pyrazole-3-carbonyl)-amino]-piperidine-l-carboxylic acid tert-butyl ester (13.05 g) was dissolved in ethanol / DMF (300 ml / 75 ml), treated with 10% palladium on carbon (500 mg) then hydrogenated at room temperature and pressure overnight. The catalyst was removed by filtration through Celite and the filtrate evaporated and re-evaporated with toluene. The crude material was purified by flash column chromatography eluting with EtOAc then 2% MeOH / EtOAc then 5% MeOH / EtOAc. Product containing fractions were combined and evaporated to give 8.78 g of 4-[(4-amino-lH-pyrazole-3-carbonyl)-amino]-piperidine-l- carboxylic acid tert-butyl ester as a brown foam. (LC/MS: R 1.91, [M+H]+ 310).
To a stirred solution of 4-[(4-amino-lH-pyrazole-3-carbonyl)-amino]-piperidine-l- carboxylic acid tert-butyl ester (200 mg; 0.65 mmol), EDAC (150 mg; 0.78 mmol) and HOBt (105 mg; 0.78 mmol) in 5 ml of N,N-dimethylformamide was added the corresponding carboxylic acid (0.25 mmol), and the mixture was then left at room temperature overnight. The reaction mixture was diluted with saturated aqueous sodium bicarbonate solution and the product collected by filtration and dried under vacuum. The Boc-protected compound was dissolved in saturated HCl / EtOAc and stirred at room temperature for 3 hours. The product was collected by filtration, washed with diethyl ether and dried under vacuum.
General Procedure N
Preparation of l-tert-Butyl-piperidin-4-ylamine
Figure imgf000184_0001
Ste N i To a solution of l-ethyl-4-oxopiperidine (25 g, 0.197 mol) in acetone (250 ml) at RT in a water bath was added methyl iodide (15.5 ml, 0.25 mol) at such a rate to keep the temperature below 30 °C. The mixture was filtered and the precipitate washed with acetone and dried to yield 1- ethyl- l-methyl-4-oxopiperidinium iodide (45 g) (LC/MS: Rt 0.38, [M+H]+ 143).
Ste N (ii)
To a solution of t-butylamine (78.2 ml, 0.74 mol) in toluene (400 ml) was added a solution of 1 -ethyl- l-methyl-4-oxopiperidinium iodide (40g, 0.148 mol) and sodium bicarbonate (1.245 g,0.014 mol) in water (60 ml). The reaction mixture was heated at 78 °C for 6 hours and then allowed to cool to ambient temperature. The layers were separated and the aqueous layer was washed with EtOAc. The organics were combined and washed with brine,dried (MgSO4), filtered and reduced in vacuo to yield l-tert-butyl-4-oxoρiperidine (14g) (LC/MS: Rt 0.39, [M+H]+ 156).
Step N (iip A solution of l-tert-butyl-4-oxopiperidine (3.6g, 23.1), benzylamine (5.1ml, 46.8 mmol), acetic acid (1.5 ml) and sodium triacetoxyborohydride (7.38 g, 34.8 mmol) was stirred at ambient for 2 days. Reaction mixture reduced in vacuo, residue partitioned between aqueous K2CO3 and EtOAc. The organic portion was dried (Na2SO4), filtered and reduced in vacuo. The residue was subjected to chromatography using CH2Cl2/MeOH/NH4OH (87/12/l)as the eluent to yield N- benzyl-l-tert-butylpiperidin-4-amine (1.5g) (LC/MS: Rt 0.45, [M+H]+ 247).
Step N (iv)
A solution of N-benzyl-l-tert-butylpiperidin-4-amine (1.56 g) and 10% palladium on carbon (2 g) in MeOH (250 ml) was hydrogenated in a Parr shaker at 50 psi for 16 hours. The solution was filtered and the reaction mixture reduced in vacuo, to yield l-tert-butylpiperidin-4-amine (0.64 g) (LC/MS: Rt 02.31, no [M+H]+).
EXAMPLE 165 Synthesis of 4-(2.6-difluoro-benzoylaminoVlH-pyrazole-3-carboxylic acid [5- fluoro-2-(l-methyl-piperidin-4-yloxyVphenyl] -amide
165 A. Synthesis of 4-nitro-l H-pyrazole-3 -carboxylic acid ethyl ester
Figure imgf000186_0001
Thionyl chloride (2.90 ml, 39.8 mmol) was slowly added to a mixture of 4-nitro-3- pyrazolecarboxylic acid (5.68 g, 36.2 mmol) in EtOH (100 ml) at ambient temperature and the mixture stirred for 48 h. The mixture was reduced in vacuo and dried through azeotrope with toluene to afford 4-nitro-l H-pyrazole-3 - carboxylic acid ethyl ester as a white solid (6.42 g, 96%). (1H NMR (400 MHz, DMSO-d6) δ 14.4 (s, IH), 9.0 (s, IH), 4.4 (q, 2H), 1.3 (t, 3H)).
165B. Synthesis of 4-amino- 1 H-pyrazole-3 -carboxylic acid ethyl ester
Figure imgf000186_0002
A mixture of 4-nitro-l H-pyrazole-3 -carboxylic acid ethyl ester (6.40 g, 34.6 mmol) and 10% Pd/C (650 mg) in EtOH (150ml) was stirred under an atmosphere of hydrogen for 20 h. The mixture was filtered through a plug of Celite, reduced in vacuo and dried through azeotrope with toluene to afford 4-amino- 1 H-pyrazole-3 - carboxylic acid ethyl ester as a pink solid (5.28 g, 98%). (1H NMR (400 MHz, DMSO-de) δ 12.7 (s, IH), 7.1 (s, IH), 4.8 (s, 2H), 4.3 (q, 2H), 1.3 (t, 3H)).
165C. Synthesis of 4-(2.6-difluoro-benzoylamino)-lH-pyrazole-3-carboxylie acid ethyl ester
Figure imgf000187_0001
A mixture of 2,6-difluorobenzoic acid (6.32 g, 40.0 mmol), 4-amino- lH-pyrazole- 3-carboxylic acid ethyl ester (5.96 g, 38.4 mmol), EDC (8.83 g, 46.1 mmol) and HOBt (6.23 g, 46.1 mmol) in DMF (100 ml) was stirred at ambient temperature for 6 h. The mixture was reduced in vacuo, water added and the solid formed collected by filtration and air-dried to give 4-(2,6-difluoro-benzoylamino)-lH-pyrazole-3- carboxylic acid ethyl ester as the major component of a mixture (15.3 g). (LC/MS: Rt 3.11, [M+H]+ 295.99).
165D. Synthesis of 4-(2,6-difluoro-benzoylamino)-lH-pyrazole-3-carboxylic acid
Figure imgf000187_0002
A mixture of 4-(2,6-difluoro-benzoylamino)-lH-pyrazole-3-carboxylic acid ethyl ester (10.2 g) in 2 M aqueous NaOH/MeOH (1:1, 250 ml) was stirred at ambient temperature for 14 h. Volatile materials were removed in vacuo, water (300 ml) added and the mixture taken to pH 5 using 1M aqueous HCl. The resultant precipitate was collected by filtration and dried through azeotrope with toluene to afford 4-(2,6-difluoro-benzoylamino)-l H-pyrazole-3 -carboxylic acid as a pink solid (5.70 g). (LC/MS: Rt 2.33, [M+H]+ 267.96).
165E. Synthesis of 5-fluoro-2-(l -methyl-piperidin-4-yloχy)-phenylamine
Figure imgf000188_0001
3,4-Dinitrofluorobenzene (1.86 g, 10 mmol) and 4-hydroxy-l-methylpiperidine (1.38 g, 12 mmol) were dissolved in THF (20 ml) and stirred at ambient temperature while sodium hydride (60 % dispersion in mineral oil, 0.40 g, 10 mmol) was added in several small portions. The reaction mixture was stirred for one hour and then reduced in vacuo, partitioned between ethyl acetate and water, and the organic phase washed with brine, dried (MgSO4) and reduced in vacuo. The resulting residue was subject to column chromatography, eluting with 5% MeOH / DCM to give a yellow solid (1.76 g, 2:1 ratio of 4-(3,4-dinitro-phenoxy)-l- methyl-piperidine and a 4-(4-fluoro-2-nitro-phenoxy)- 1 -methyl-piperidine).
A sample of the mixture of products obtained (0.562 g) was dissolved in DMF (10 ml) under an atmosphere of nitrogen. Palladium on carbon (10 %, 0.056 g) was added and the reaction mixture was shaken under a hydrogen atmosphere for 40 hours. The solids were removed by filtration and the filtrate reduced in vacuo, taken up in ethyl acetate, washed (saturated aqueous ammonium chloride solution, then saturated aqueous brine), dried (MgSO4) and reduced in vacuo to give 5- fluoro-2-(l-methyl-piperidin-4-yloxy)-phenylamine) as a brown oil (0.049 g, 7 %). (1H NMR (400 MHz, MeOD-d- δ 6.6 (m, 2H), 6.4 (m, IH), 4.3 (m, IH), 2.7 (m, 2H), 2.3 (m, 2H), 1.9 (m, 2H), 1.7 (m, 2H)).
165F. Synthesis of 4-(2,6-Difluoro-benzoylamino)-lH-pyrazole-3-carboxylic acid [5-fluoro-2-(l-methyl-piperidin-4-yloxy)-phenyl]-amide
Figure imgf000189_0001
5-fluoro-2-(l-methyl-piperidin-4-yloxy)-phenylamine) (0.049 g, 0.22 mmol) was combined with 4-(2,6-difluoro-benzoylamino)-lH-pyrazole-3-carboxylic acid (0.053 g, 0.20 mmol), EDC (0.048 g, 0.25 mmol), HOBt (0.034 g, 0.25 mmol) and DMF (1 ml) and the resulting reaction mixture was stirred at ambient temperature for 18 hours. The reaction mixture was reduced in vacuo and purified by preparative LC/MS to give 4-(2,6-Difluoro-benzoylamino)-lH-pyrazole-3- carboxylic acid [5-fluoro-2-(l-methyl-piperidin-4-yloxy)-phenyl]-amide as a buff solid. (0.010 g, 11 %) (LC/MS: Rt 2.19, [M+H]+ 474.27).
EXAMPLE 166
Synthesis of 4-(2,6-Difluoro-benzoylamino -lH-pyrazole-3-carboxylic acid [5- fluoro-2-(2-pyrrolidin- 1 -yl-ethoxyVphenyll -amide
Figure imgf000189_0002
3,4-Dinitrofluorobenzene (0.93 g, 5 mmol) and l-(2-hydroxyethylpyrrolidine) (0.69 g, 6 mmol) were dissolved in THF (10 ml) and stirred at ambient temperature while sodium hydride (60 % dispersion in mineral oil, 0.24 g, 6 mmol) was added in several small portions. The reaction mixture was stirred for 5 hours, diluted with ethyl acetate and the combined organics washed with water and brine, dried (MgSO4) and reduced in vacuo. The resulting residue was subject to column chromatography, eluting with 5% MeOH / DCM to give an orange oil (0.94 g, 1 : 1 ratio of l-[2-(3,4-dinitro-phenoxy)-ethyl]-pyrrolidine and l-[2-(4-Fluoro-2-nitro- phenoxy)-ethyl]-pyrrolidine.
A sample of the mixture of products obtained (0.281 g) was dissolved in DMF (5 ml) under an atmosphere of nitrogen. Palladium on carbon (10 %, 0.028 g) was added and the reaction mixture was shaken under a hydrogen atmosphere for 20 hours. The solids were removed by filtration and the filtrate reduced in vacuo and combined with 4-(2,6-difluoro-benzoylamino)-lH-pyrazole-3-carboxylic acid (0.134 g, 0.50 mmol), EDC (0.116 g, 0.60 mmol), HOBt (0.081 g, 0.60 mmol) and DMF (2.5 ml) and the resulting reaction mixture was stirred at ambient temperature for 18 hours. The reaction mixture was reduced in vacuo and the residue partitioned between ethyl acetate (50 ml) and saturated aqueous sodium bicarbonate solution (50 ml). The organic layer was washed with brine, dried (MgSO ) and reduced in vacuo to give the intermediate amides. Acetic acid (10 ml) was added to the crude amide and the mixture was heated at reflux for 3 hours and then reduced in vacuo. 4-(2,6-Difluoro-benzoylamino)-lH-pyrazole-3-carboxylic acid [5-fluoro- 2-(2-pyrrolidin-l-yl-ethoxy)-phenyl] -amide was isolated from the residue by preparative LC/MS as an off white solid (0.040 g, 5.6 %). (LC/MS: Rt 2.38, [M+H]+ 474.33).
EXAMPLES 167 - 223
By following the procedures described above, the compounds set out in Table 6 were prepared.
Table 6
Figure imgf000190_0001
Figure imgf000191_0001
Figure imgf000192_0001
Figure imgf000193_0001
Figure imgf000194_0001
Figure imgf000195_0001
Figure imgf000196_0001
Figure imgf000197_0001
Figure imgf000198_0001
Figure imgf000199_0001
Figure imgf000200_0001
Figure imgf000201_0001
Figure imgf000202_0002
EXAMPLE 224
4-(4-Methyl-piperazin-l-yl)-lH-pyrazole-3-carboxylic acid (4-fluoro-phenyl - amide
Figure imgf000202_0001
Bis(2-chloroethyl)methylamine hydrochloride (97mg; 0.5mmol) was added to a stirred solution of 4-amino-lH-pyrazole-3-carboxylic acid (4-fluoro-phenyl)-amide (lOOmg; 0.45mmol), tetrabutylammonium iodide (20mg; 0.045mmol) and diisopropyethylamine (200ul) 1.13mmol) in DMF (5ml), and the resulting mixture was heated at 200°C (100W) for 30 minutes in a CEM Discover™ microwave synthesiser. The DMF was removed under vacuum, then purified by flash column chromatography, eluting with dichloromethane / methanol / acetic acid / water (90:18:3:2). Product containing fractions were combined and evaporated, treated with HCl in ethyl acetate and then re-evaporated with toluene (2x20ml) to give an off white solid (27mg). (LC/MS: Rt 1.64, [M+Hf 378 ).
EXAMPLE 225
4-Morpholin-4-yl-lH-pyrazole-3-carboxylic acid (4-fluoro-phenyl -amide
Figure imgf000203_0001
The compound was prepared in a manner analogous to Example 224, but using bis(2-chloroethyl)ether in place of bis(2-chloroethyl)methylamine hydrochloride. (LC/MS: Rt 2.48 [M+Hf 291).
EXAMPLE 226
4-(2,4-Dichloro-phenyl)-lH-pyrazole-3-carboxylic acid 4-(4-methyl-piperazin-l- vD-benzylamide
Figure imgf000203_0002
226A. Preparation of 4-(2,4-dichloro-ρhenyl)-lH-pyrazole-3-carboxylic acid
A solution of 4-(2,4-dichloro-phenyl)- 1 H-pyrazole-3 -carboxylic acid ethyl ester (205 mg; 0.72 mmol) and lithium hydroxide monohydrate (125 mg; 2.9 mmol) in 1:1 THF/water (10 ml) was heated at 60 °C overnight. The THF was removed by evaporation, the aqueous phase acidified with 1M hydrochloric acid then extracted with ethyl acetate (20 ml). The ethyl acetate layer was dried (MgSO ), filtered and evaporated to give 200 mg of 4-(2,4-dichloro-phenyl)- 1 H-pyrazole-3 -carboxylic acid. (LC/MS: [M+Hf 256.85).
226B. Preparation of 4-(2.4-dichloro-phenylVlH-pyrazole-3-carboχylic acid 4-(4- methyl-piperazin- 1 -yP-benzylamide
A solution of 4-(2,4-dichloro-phenyl)-l H-pyrazole-3 -carboxylic acid (70 mg; 0.27 mmol), 4-(4-methyl-piperazin-l-yl)-benzylamine (62 mg; 0.3 mmol), EDAC (63 mg; 0.33 mmol) and HOBt (45 mg; 0.33 mmol) in 5 ml of DMF was stirred at room temperature for 48 hours. The reaction was evaporated and the residue partitioned between ethyl acetate and brine. The ethyl acetate layer was separated, dried (MgSO ), filtered, evaporated then dried further under vacuum to give 34 mg of 4- (2,4-dichloro-phenyl)- 1 H-pyrazole-3 -carboxylic acid 4-(4-methyl-piperazin- 1 -yl)- benzylamide. (LC/MS: Rt 2.42 [M+H]+ 444).
EXAMPLE 227
4-(2.4-Dichloro-phenylVlH-pyrazole-3-carboxylic acid 4- methylsulphamoylmethyl-benzylamide
Figure imgf000204_0001
The title compound was prepared in a manner analogous to Example 226, but using (4-aminomethyl-phenyl)-N-methyl-methanesulρhonamide as the starting material. 6 mg of product were isolated as a white solid. (LC/MS: Rt 3.56 [M+Hf 440).
EXAMPLE 228 4-Phenyl-l H-pyrazole-3 -carboxylic acid amide
Figure imgf000204_0002
228A. 2-Benzylidene-but-3-yne nitrile
To a solution of benzaldehyde (2 g; 18.9 mmol) and malononitrile (1.37 g; 20.7 mmol) in ethanol (40 ml) was added 5 drops of piperidine and the mixture was heated at reflux overnight. The reaction was cooled, evaporated then purified by flash column chromatography eluting with 1 :9 ethyl acetate/hexane and the product containing fractions combined and evaporated to give 930 mg of 2-benzylidene-but- 3-yne nitrile.
228B. 4-phenyl-5-trimethylsilanyl-lH-pyrazole-3-carbonitrile n-Butyl lithium (2.7 M solution in heptane) (3.3 ml, 9 mmol) was added drop wise to a stirred solution of trimethylsilyl diazomethane (2 M solution in diethyl ether) (4.5 ml, 9 mmol) in anhydrous THF (10 ml) at -78 °C under a nitrogen atmosphere, then stirred for a further 30 minutes. To this was added drop wise a solution of 2-benzylidene-but-3-yne nitrile (920 mg; 6 mmol) in anhydrous THF (5 ml), the mixture stirred for 30 minutes at -78 °C then gradually allowed to warm to room temperature overnight. The reaction mixture was diluted with ethyl acetate (30 ml) then washed with saturated ammonium chloride solution followed by brine. The ethyl acetate layer was separated, dried (MgSO ), filtered and evaporated. The crude product was purified by flash column chromatography eluting with 1 :8 then 1:4 ethyl acetate/hexane and the product containing fractions combined and evaporated to give 1.0 g of 4-phenyl-5-trimethylsilanyl-lH-pyrazole-3-carbonitrile.
228C. 4-phenyl-l H-pyrazole-3 -carboxylic acid amide
4-Phenyl-5-trimethylsilanyl-lH-pyrazole-3-carbonitrile (500 mg; 2.1 mmol) was dissolved in 1 ml of ethanol, treated with potassium hydroxide (600 mg) in water (3 ml) then heated at 150 °C (100 W) for 30 minutes then 170 °C (100 W) for 20 minutes in a CEM Discover™ microwave synthesiser. The reaction mixture was acidified to pHl with concentrated hydrochloric acid, diluted with water (40 ml) then extracted with ethyl acetate (2 x 40 ml). The combined ethyl acetate layers were separated, dried (MgSO4), filtered and evaporated to give a 3:1 mixture of 4- phenyl- 1 H-pyrazole-3 -carboxylic acid and 4-phenyl-lH-pyrazole-3-carboxylic acid amide. A 50 mg batch of the crude material was purified by flash column chromatography eluting with 5% methanol/dichloromethane, and the product containing fractions combined and evaporated to give 15 mg of 4-phenyl-l H- pyrazole-3-carboxylic acid amide as a white solid. (LC/MS: Rt 2.15 [M+Hf 188). EXAMPLE 229
4-phenyl-l H-pyrazole-3 -carboxylic acid phenylamide
Figure imgf000206_0001
A solution of 4-phenyl-l H-pyrazole-3 -carboxylic acid (75 mg; 0.4 mmol) (prepared according to Example 228C), aniline (45 μl; 0.48 mmol), EDAC (92 mg; 0.48 mmol) and HOBt (65 mg; 0.48 mmol) in 5 ml of DMF was stirred at room temperature overnight. The reaction was evaporated then purified by flash column chromatography eluting with 1 :3 then 1 :2 ethyl acetate/hexane. Product containing fractions were combined and evaporated to give 30 mg of 4-phenyl-l H-pyrazole-3 - carboxylic acid phenylamide as a white solid. (LC/MS : Rt 3.12 [M+Hf 264).
EXAMPLE 230 4-Phenyl-lH-pyrazole-3-carboxylic acid 4-(4-methyl-piperazin-l-yl -benzylamide
Figure imgf000206_0002
The compound was prepared in a manner analogous to Example 229, but using 4- (4-methyl-piperazin-l-yl)-benzylamine as the starting material. 6 mg of product were isolated as a white solid. (LC/MS: Rt 2.05 [M+Hf 376).
EXAMPLE 231
4-Phenyl-l H-pyrazole-3 -carboxylic acid (6-methoxy-pyridin-3-yl) amide
Figure imgf000207_0001
The compound was prepared in a manner analogous to Example 230, but using 3- amino-6-methoxypyridine as the amine fragment. 100 mg of product were isolated as a pale brown solid. (LC/MS: Rt 3.17 [M+Hf 295).
EXAMPLE 232
4-(3-Benzyloxy-phenyl)-lH-pyrazole-3-carboxylic acid 4-(4-methyl-piperazin-l- yl)-benzylamide
Figure imgf000207_0002
The compound was prepared in a manner analogous to Example 226. The product was isolated as a white solid. (LC/MS: Rt 2.65 [M+Hf 482).
EXAMPLE 233
4-(3 -Hvdroxy-phenyl)- 1 H-pyrazole-3 -carboxylic acid 4-(4-methyl-piperazin- 1 -vD- benzylamide
Figure imgf000207_0003
A solution of 4-(3-benzyloxy-phenyl)-l H-pyrazole-3 -carboxylic acid 4-(4-methyl- piperazin-l-yl)-benzylamide (25 mg; 0.05mmol) in methanol (5 ml), was treated with 10% palladium on carbon (10 mg) then hydrogenated at room temperature and pressure overnight. The catalyst was removed by filtration through Celite and the filtrate evaporated. Purification by preparative LC/MS gave 8 mg of the required product as a cream solid. (LC/MS: Rt 1.67 [M+Hf 392).
EXAMPLE 234
4-(5-Methyl-3H-imidazol-4-yl)- 1 H-pyrazole-3 -carboxylic acid (4-fluoro-phenylV amide
Figure imgf000208_0001
The compound was prepared in a manner analogous to Example 226, but using 4- methyl-5-formylimidazole as the starting material in the condensation step. The product (6 mg) was isolated as a white solid. (LC/MS: Rt 2.00 [M+Hf 286).
EXAMPLE 235 4-(2.5-Dimethyl-τ3yrrol-l -yl)-lH-pyrazole-3-carboxylic acid (4-fluoro-phenyl)- amide
Figure imgf000208_0002
A mixture of 4-amino- 1 H-pyrazole-3 -carboxylic acid (4-fluoro-phenyl)-amide (100 mg) and Montmorillonite KSF clay (100 mg) in acetonylacetone (1 ml) was heated at 120 °C (50 W) for 15 minutes in a CEM discover microwave synthesiser. The reaction mixture was diluted with 5% methanol/dichloromethane, filtered and evaporated. The crude product was purified by flash column chromatography eluting with 1 :2 ethyl acetate/hexane, and the product containing fractions were combined and evaporated to give 65 mg of the target molecule as a pale brown solid. (LC/MS: Rt 3.75 [M+Hf 299).
EXAMPLE 236
4-(3 -Hydroxymethyl-phenyl)- 1 H-pyrazole-3 -carboxylic acid phenylamide
Figure imgf000209_0001
236A. 4-iodo-l H-pyrazole-3 -carboxylic acid phenylamide
An aqueous solution of sodium nitrite (760 mg) in 2 ml of water was added drop wise to a stirred suspension of 4-amino- 1 H-pyrazole-3 -carboxylic acid phenylamide (2 g; 10 mmol) in concentrated hydrochloric acid (20 ml) at 0 °C, then stirred at 0 °C for a further 60 minutes. The reaction mixture was diluted with acetone (10 ml) then treated with potassium iodide (1.8 g) and copper (I) iodide (2.1 g) and stirred at room temperature for 90 minutes. The reaction mixture was diluted with brine and ethyl acetate then washed with saturated sodium thiosulphate solution. The ethyl acetate layer was separated, dried (MgSO ), filtered and evaporated to give 680 mg of 4-iodo-l H-pyrazole-3 -carboxylic acid phenylamide.
236B. 4-iodo-l -(4-methoxy-benzyl)-lH-pyrazole-3-carboχylic acid phenylamide
A solution of 4-iodo-l H-pyrazole-3 -carboxylic acid phenylamide (670 mg; 2.14 mmol) in acetonitrile (10 ml) was treated with potassium carbonate (360 mg; 2.57mmol)) followed by 4-methoxybenzyl chloride (320 μl; 2.35 mmol). The mixture was stirred at room temperature overnight then evaporated under reduced pressure. The residue was partitioned between ethyl acetate and brine; the ethyl acetate layer was separated, dried (MgSO ), filtered and evaporated. The crude material was purified by flash column chromatography eluting with 1 :3 ethyl acetate/hexane and the product containing fractions combined and evaporated to give 660 mg of 4-iodo-l-(4-methoxy-benzyl)-lH-pyrazole-3-carboxylic acid phenylamide.
236C .4-(3 -hydroxymethyl-phenylV 1 -(4-methoχy-benzyl)- 1 H-pyrazole-3 - carboxylic acid phenylamide
A mixture of 4-iodo-l -(4-methoxy-benzyl)-lH-pyrazole-3-carboxylic acid phenylamide (50 mg; 0.11 mmol), bis(tri-tert-butylphosphine)palladium (12 mg), potassium carbonate (100 mg; 0.66 mmol) and 3-(hydroxmethyl)benzene boronic acid (21mg; O.Hmmol) in ethanol/toluene/water (4 ml:l ml:l ml) was heated at 120 °C (50 W) for 15 minutes in a CEM Discover microwave synthesiser. The reaction was evaporated and the residue partitioned between ethyl acetate and brine. The ethyl acetate layer was separated, dried (MgSO ), filtered and evaporated and the crude material purified by flash column chromatography eluting with 1 :2 then 2:1 ethyl acetate/hexane. Product containing fractions were combined and evaporated to give 60 mg of 4-(3-hydroxymethyl-phenyl)-l-(4-methoxy-benzyl)-lH-pyrazole-3- carboxylic acid phenylamide.
236D. 4-(3-Hydroxymethyl-phenyl)-l H-pyrazole-3 -carboxylic acid phenylamide
A mixture of 4-(3 -hydroxymethyl-phenyl)- 1 -(4-methoxy-benzyl)- 1 H-pyrazole-3 - carboxylic acid phenylamide (20 mg) and anisole (20 μl) in trifluoroacetic acid (1 ml) was heated at 120 °C (50 W) for 15 minutes in a CEM Discover microwave synthesiser. The reaction was evaporated then purified by flash column chromatography eluting with 2: 1 ethyl acetate/hexane. Product containing fractions were combined and evaporated to give 5 mg of product. (LC/MS: Rt 2.55 [M+Hf 294).
EXAMPLE 237 Preparation of 4-(2,6-dichloro-benzoylamino)-lH-pyrazole-3-carboxylic acid piperidin-4-ylamide hydrochloride
237A. 4-(2,6-dichloro-benzoylamino -lH-pyrazole-3-carboxylic acid
2,6-dichlorobenzoyl chloride (8.2 g; 39.05 mmol) was added cautiously to a solution of 4-amino- 1 H-pyrazole-3 -carboxylic acid methyl ester (prepared in a manner analogous to 165B) (5 g; 35.5 mmol) and triethylamine (5.95 ml; 42.6 mmol) in dioxan (50 ml) then stirred at room temperature for 5 hours. The reaction mixture was filtered and the filtrate treated with methanol (50 ml) and 2M sodium hydroxide solution (100 ml), heated at 50 °C for 4 hours, and then evaporated. 100 ml of water was added to the residue then acidified with concentrated hydrochloric acid. The solid was collected by filtration, washed with water (100 ml) and sucked dry to give 10.05 g of 4-(2,6-dichloro-benzoylamino)-lH-pyrazole-3-carboxylic acid as a pale violet solid.
237B . 4- { f4-(2,6-dichloro-benzoylamino)- 1 H-pyrazole-3 -carbonyl] -amino I - piperidine- 1 -carboxylic acid tert-butyl ester
A mixture of 4-(2,6-dichloro-benzoylamino)-lH-ρyrazole-3-carboxylic acid (6.5 g, 21.6 mmol), 4-amino-l-BOC-piperidine (4.76 g, 23.8 mmol), EDC (5.0 g, 25.9 mmol) and HOBt (3.5 g, 25.9 mmol) in DMF (75 ml) was stirred at room temperature for 20 hours. The reaction mixture was reduced in vacuo and the residue partitioned between ethyl acetate (100 ml) and saturated aqueous sodium bicarbonate solution (100 ml). The organic layer was washed with brine, dried (MgSO ) and reduced in vacuo. The residue was taken up in 5 % MeOH-DCM (~30 ml). The insoluble material was collected by filtration and, washed with DCM and dried in vacuo to give 4-{[4-(2,6-dichloro-benzoylamino)-lH-pyrazole-3- carbonyl] -amino} -piperidine- 1 -carboxylic acid tert-butyl ester (5.38 g) as a white solid. The filtrate was reduced in vacuo and the residue purified by column chromatography using gradient elution 1:2 EtOAc / hexane to EtOAc to give further 4- { [4-(2,6-dichloro-benzoylamino)- 1 H-pyrazole-3 -carbonyl] -amino } -piperidine- 1 - carboxylic acid tert-butyl ester (2.54 g) as a white solid. 237C. 4-(2.6-dichloro-benzoylamino)-lH-pyrazole-3-carboxylic acid piperidin-4- ylamide
A solution of 4- { [4-(2,6-dichloro-benzoylamino)- 1 H-pyrazole-3 -carbonyl] -amino } - piperidine- 1 -carboxylic acid tert-butyl ester (7.9 g) in MeOH (50 mL) and EtOAc (50ml) was treated with sat. HCl-EtOAc (40 mL) then stirred at r.t. overnight. The product did not crystallise due to the presence of methanol, and therefore the reaction mixture was evaporated and the residue triturated with EtOAc. The resulting off white solid was collected by filtration, washed with EtOAc and sucked dry on the sinter to give 6.3g of 4-(2,6-dichloro-benzoylamino)-lH-pyrazole-3- carboxylic acid piperidin-4-ylamide as the hydrochloride salt. (LC/MS: Rt 5.89, [M+Hf 382 / 384).
EXAMPLE 238
4-Methanesulfonylamino- 1 H-pyrazole-3 -carboxylic acid (4-fluoro-phenyl -amide
Figure imgf000212_0001
A solution of 4-amino- 1 H-pyrazole-3 -carboxylic acid (4-fluorophenyl)-amide (50mg) (Example 2B) and methanesulphonic anhydride (45mg) in pyridine (1ml) was stirred at room temperature overnight then evaporated and purified by flash column chromatography eluting with 2:1 EtOAc / hexane. Evaporation of product containing fractions gave 20mg of the title compound. (LC/MS: Rt 2.87; [M+H+] 299).
EXAMPLES 239 TO 245
The compounds of Examples 239 to 245 were prepared using the methods described above or methods closely analogous thereto. EXAMPLE 239
4-(2,6-Difluoro-benzoylamino)- 1 H-pyrazole-3 -carboxylic acid [ 1 -(2-fluoro-ethyl)- piperidin-4' -vl] -amide
Figure imgf000213_0001
EXAMPLE 240
4-(2,6-Dichloro-benzoylamino)-lH-pyrazole-3-carboxylic acid (6-chloro-pyridin-3- yl)-amide
Figure imgf000213_0002
EXAMPLE 241 4-(2,6-Dichloro-benzoylamino -lH-pyrazole-3-carboxylic acid (6-amino-pyridin-3- yl -amide
Figure imgf000213_0003
EXAMPLE 242 4-(2,6-Dichloro-benzoylamino)-lH-pyrazole-3-carboxylic acid (6-methoxy- pyridin-3 - yl)-amide
Figure imgf000214_0001
EXAMPLE 243
4- 3-Chloro-5-(4-methyl-piperazin-l-ylVbenzoylamino1-lH-pyrazole-3-carboxylic acid cyclohexylamide
Figure imgf000214_0002
EXAMPLE 244
4-(2,6-Difluoro-benzoylamino )- 1 H-pyrazole-3 -carboxylic acid [ 1 -(2,2-difluoro- ethyl)-piperidin-4- yl] -amide
Figure imgf000214_0003
EXAMPLE 245
4- [3 -(4-Methyl-piperazin- 1 - vD-benzoylamino] - 1 H-pyrazole-3 -carboxylic acid cyclohexylamide
Figure imgf000215_0001
BIOLOGICAL ACTIVITY
EXAMPLE 246
Measurement of CDK2 Kinase Inhibitory Activity (IC n
Compounds of the invention were tested for kinase inhibitory activity using either the following protocol or the activated CDK2/cyclin A kinase protocol described in Example 241.
1.7 μl of active CDK2/CyclinA (Upstate Biotechnology, lOU/μl) is diluted in assay buffer (250μl of 10X strength assay buffer (200mM MOPS pH 7.2, 250mM β- glycerophosphate, 50mM EDTA, 150mM MgCl2), 11.27 μl 1 OmM ATP, 2.5 μl lM DTT, 25 μl lOOmM sodium orthovanadate, 708.53 μl H2O), and 10 μl mixed with 10 μl of histone substrate mix (60 μl bovine histone HI (Upstate Biotechnology, 5 mg/ml), 940 μl H2O, 35 μCi γ33P-ATP) and added to 96 well plates along with 5 μl of various dilutions of the test compound in DMSO (up to 2.5%). The reaction is allowed to proceed for 5 hours before being stopped with an excess of ortho-phosphoric acid (30 μl at 2%).
γ33P-ATP which remains unincorporated into the histone HI is separated from phosphorylated histone HI on a Millipore MAPH filter plate. The wells of the MAPH plate are wetted with 0.5% orthophosphoric acid, and then the results of the reaction are filtered with a Millipore vacuum filtration unit through the wells. Following filtration, the residue is washed twice with 200 μl of 0.5% orthophosphoric acid. Once the filters have dried, 25 μl of Microscint 20 scintillant is added, and then counted on a Packard Topcount for 30 seconds. The % inhibition of the CDK2 activity is calculated and plotted in order to determine the concentration of test compound required to inhibit 50% of the CDK2 activity (IC50).
By means of the protocol set out above, it was found that the compounds of Examples 2C to 87, 89-92, 94, 96-101, 104-105, 165, 166, 224, 225, 227, 229, 231, 233, 234 and 236 each have IC50 values less than 20 μM or provide at least 50% inhibition of the CDK2 activity at a concentration of 10 μM. The compounds of Examples 88, 93, 226, 228, 230 and 235 each have IC50 values less than 750 μM.
EXAMPLE 247 CDK Selectivity Assays
Compounds of the invention are tested for kinase inhibitory activity against a number of different kinases using the general protocol described in Example 239, but modified as set out below.
Kinases are diluted to a 1 Ox working stock in 20mM MOPS pH 7.0, 1 mM EDTA, 0.1% γ-mercaptoethanol, 0.01% Brij-35, 5% glycerol, 1 mg/ml BSA. One unit equals the incorporation of 1 nmol of phosphate per minute into 0.1 mg/ml histone HI, or CDK7 substrate peptide at 30 °C with a final ATP concentration of 100 uM.
The substrate for all the CDK assays (except CDK7) is histone HI, diluted to 10X working stock in 20 mM MOPS pH 7.4 prior to use. The substrate for CDK7 is a specific peptide obtained from Upstate diluted to 10X working stock in deionised water.
Assay Procedure for CDKl/cvclinB. CDK2/cvclinA, CDK2/cvclinE. CDK3/cvclinE. CDK5/p35. CDK6/cvclinD3:
In a final reaction volume of 25 μl, the enzyme (5-10 mU) is incubated with 8 mM MOPS pH 7.0, 0.2 mM EDTA, 0.1 mg/ml histone HI , 10 mM MgAcetate and [γ- 33P-ATP] (specific activity approx 500 cpm/pmol, concentration as required). The reaction is initiated by the addition of Mg2+ [γ-33P-ATP]. After incubation for 40 minutes at room temperature the reaction is stopped by the addition of 5 μl of a 3% phosphoric acid solution. 10 ml of the reaction is spotted onto a P30 filter mat and washed 3 times for 5 minutes in 75 mM phosphoric acid and once in methanol prior to drying and counting.
In the CDK3/cyclinE assay, the compound of Example 150 had an IC5o of less than 20 μM.
In the CDK5/p35 assay, the compounds of Examples 41 and 150 had an IC50 of less than 20 μM.
In the CDK6/cyclinD3 assay, the compound of Example 150 had an IC50 of less than 20 μM.
Assay procedure for CDK7/cvclinH/MATl
In a final reaction volume of 25 μl, the enzyme (5-10mU) is incubated with 8 mM MOPS pH 7.0, 0.2 mM EDTA, 500 μM peptide, 10 mM MgAcetate and [γ-33P- ATP] (specific activity approx 500 cpm/pmol, concentration as required). The reaction is initiated by the addition of Mg2+[γ-33P-ATP] . After incubation for 40 minutes at room temperature the reaction is stopped by the addition of 5 μl of a 3% phosphoric acid solution. 10 ml of the reaction is spotted onto a P30 filtermat and washed 3 times for 5 minutes in 75 mM phosphoric acid and once in methanol prior to drying and counting.
EXAMPLE 248
A. Measurement of Activated CDK2/CyclinA Kinase Inhibitory Activity Assay OCso)
Compounds of the invention were tested for kinase inhibitory activity using the following protocol.
Activated CDK2/CyclinA (Brown et al, Nat. Cell Biol., 1 , pp438-443, 1999; Lowe, E.D., et al Biochemistry, 41, ppl 5625-15634, 2002) is diluted to 125 pM in 2.5X strength assay buffer (50 mM MOPS pH 7.2, 62.5 mM β-glycerophosphate, 12.5 mM EDTA, 37.5 mM MgCl2, 112.5 mM ATP, 2.5 mM DTT, 2.5 mM sodium orthovanadate, 0.25 mg/ml bovine serum albumin), and 10 μl mixed with 10 μl of histone substrate mix (60 μl bovine histone HI (Upstate Biotechnology, 5 mg/ml), 940 μl H2O, 35 μCi γ33P-ATP) and added to 96 well plates along with 5 μl of various dilutions of the test compound in DMSO (up to 2.5%). The reaction is allowed to proceed for 2 to 4 hours before being stopped with an excess of orthophosphoric acid (5 μl at 2%).
γ33P-ATP which remains unincorporated into the histone HI is separated from phosphorylated histone HI on a Millipore MAPH filter plate. The wells of the MAPH plate are wetted with 0.5% orthophosphoric acid, and then the results of the reaction are filtered with a Millipore vacuum filtration unit through the wells. Following filtration, the residue is washed twice with 200 μl of 0.5% orthophosphoric acid. Once the filters have dried, 20 μl of Microscint 20 scintillant is added, and then counted on a Packard Topcount for 30 seconds.
The % inhibition of the CDK2 activity is calculated and plotted in order to determine the concentration of test compound required to inhibit 50% of the CDK2 activity (IC50).
By means of the foregoing protocol, it was found that the compounds of Examples 95, 96, 99-104, 106-121, 123-125, 130-137, 139, 142-145, 147-150, 152-156, 158- 160, 162-164, 167-173, 177-179, 181-182, 184-190, 194, 196-204, 208-213 and 215 have IC50 values less than 20 μM. The compounds of Examples 122, 126-129, 140, 141, 146, 157 and 161 each have IC50 values less than than 750 μM and most have IC50 values of less than 100 μM.
B. CDKl/CvclinB Assay. CDKl/CyclinB assay is identical to the CDK2/CyclinA above except that
CDKl/CyclinB (Upstate Discovery) is used and the enzyme is diluted to 6.25 nM.
In the CDK1 assay carried out as described above or by means of the protocol set out in Example 240, the compounds of Examples 2C, 41, 48, 53, 64, 65, 66, 73, 76, 77, 91, 95, 102, 106, 117, 123, 125, 133, 137, 142, 150, 152, 154, 167, 186, 187, 189, 190, 193, 194, 196, 199, 202-204, 207, 208-213, 215 AND 218-223 were found to have IC50 values less than 20 μM, and the compounds of Examples 188 and 206, were found to have IC5o values less than 100 μM.
EXAMPLE 249
Assay Procedure for CDK4
Assays for CDK4 inhibitory activity were carried out by Proqinase GmbH, Freiburg, Germany using their proprietary 33PanQinase® Activity Assay. The assays were performed in 96 well FlashPlates™ (PerkinElmer). In each case, the reaction cocktail (50 μl final volume) is composed of; 20 μl assay buffer (final composition 60 mM HEPES-NaOH, pH 7.5, 3 mM MgCl2, 3 μM Na- orthovanadate, 1.2mM DTT, 50 μg/ml PEG2ooo, 5 μl ATP solution (final concentration 1 μM [γ-33P]-ATP (approx 5xl05 cpm per well)), 5 μl test compound (in 10% DMSO), 10 μl substrate/ 10 μl enzyme solution (premixed). The final amounts of enzyme and substrate were as below.
Figure imgf000219_0001
The reaction cocktail was incubated at 30 °C for 80 minutes. The reaction was stopped with 50 μl of 2 % H3PO4, plates were aspirated and washed twice with 200 μl 0.9%) NaCl. Incorporation of P was determined with a microplate scintillation counter. Background values were subtracted from the data before calculating the residual activities for each well. IC50S were calculated using Prism 3.03.
The compound of Example 150 has an IC50 of less than 5 μM in this assay.
EXAMPLE 250 Anti-proliferative Activity The anti-proliferative activities of compounds of the invention are determined by measuring the ability of the compounds to inhibition of cell growth in a number of cell lines. Inhibition of cell growth is measured using the Alamar Blue assay (Nociari, M. M, Shalev, A., Benias, P., Russo, C. Journal of Immunological Methods 1998, 213, 157-167). The method is based on the ability of viable cells to reduce resazurin to its fluorescent product resorufin. For each proliferation assay cells are plated onto 96 well plates and allowed to recover for 16 hours prior to the addition of inhibitor compounds for a further 72 hours. At the end of the incubation period 10% (v/v) Alamar Blue is added and incubated for a further 6 hours prior to determination of fluorescent product at 535nM ex / 590nM em. In the case of the non-proliferating cell assay cells are maintained at confluence for 96 hour prior to the addition of inhibitor compounds for a further 72 hours. The number of viable cells is determined by Alamar Blue assay as before. All cell lines are obtained from ECACC (European Collection of cell Cultures).
In assays against the human colon carcinoma cell line HCT 116 (ECACC No. 91091005), the compounds of Examples 10, 25-27, 41, 44, 46, 48, 50, 52, 53, 60, 62, 64-67, 69, 73-77, 79, 80, 83A, 86, 90-93, 95-98, 100-104, 106, 107, 109-121, 123-125, 131-134, 136-143, 147-155, 158, 159, 162-164, 166, 167, 178, 179, 185- 190, 192-205, 207-215 and 218-223 have IC50 values of less than 20 μM and the compounds of Examples 2C, 3, 29, 38, 39, 49, 51, 85, 89, 99, 108, 135, 160, 182, 183, 206 and 216 have IC50 values of less than 100 μM.
EXAMPLE 251
Measurement of inhibitory activity against Glycogen Synthase Kinase-3 (GSK-3)
The activities of the compounds of the invention as inhibitors of GSK-3 were determined using either Protocol A or Protocol B below.
Protocol A
GSK3-β (Upstate Discovery) is diluted to 7.5 nM in 25 mM MOPS, pH 7.00, 25 mg/ml BSA, 0.0025% Brij-35R™, 1.25% glycerol, 0.5 mM EDTA, 25 mM MgCl2, 0.025% β-mercaptoethanol, 37.5 mM ATP and 10 μl mixed with 10 μl of substrate mix. The substrate mix is 12.5 μM phospho-glycogen synthase peptide-2 (Upstate Discovery) in 1ml of water with 35 μCi γ33P-ATP. Enzyme and substrate are added to 96 well plates along with 5 μl of various dilutions of the test compound in DMSO (up to 2.5%). The reaction is allowed to proceed for 3 hours before being stopped with an excess of ortho-phosphoric acid (5 μl at 2%). The filtration procedure is as for Activated CDK2/CyclinA assay above.
Protocol B
GSK3β (human) is diluted to a lOx working stock in 50mM Tris pH 7.5, O.lmM EGTA, O.lmM sodium vanadate, 0.1% β-mercaptoethanol, lmg/ml BSA. One unit equals the incorporation of lnmol of phosphate per minute phospho-glycogen synthase peptide 2 per minute.
In a final reaction volume of 25 μl, GSK3β (5-10 mU) is incubated with 8mM MOPS 7.0, 0.2mM EDTA, 20μM YRRAANPPSPSLSRHSSPHQS(p)EDEEE (phospho GS2 peptide) , lOmM MgAcetate and [γ-33P-ATP] (specific activity approx 500cpm/pmol, concentration as required). The reaction is initiated by the addition of Mg2+[γ-33P-ATP]. After incubation for 40 minutes at room temperature the reaction is stopped by the addition of 5μl of a 3% phosphoric acid solution. lOμl of the reaction is spotted onto a P30 filter mat and washed 3 times for 5 minutes in 50mM phosphoric acid and once in methanol prior to drying and counting.
From the results of the GSK3-B assays carried out using either of the two procols set out above, it was found that the compounds of Examples 2C, 26, 48, 53, 65, 76, 77, 84, 86, 95, 102, 106, 119, 122, 123, 126, 127, 128, 129, 131, 134, 135, 138, 140, 141, 142, 143, 144, 145, 146, 147, 149, 150 and 151 each have IC50 values of less than 10 μM.
PHARMACEUTICAL FORMULATIONS
EXAMPLE 252
(i) Tablet Formulation A tablet composition containing a compound of the formula (I) is prepared by mixing 50mg of the compound with 197mg of lactose (BP) as diluent, and 3mg magnesium stearate as a lubricant and compressing to form a tablet in known manner.
(ii) Capsule Formulation
A capsule formulation is prepared by mixing lOOmg of a compound of the formula (I) with lOOmg lactose and filling the resulting mixture into standard opaque hard gelatin capsules.
(iii) Iniectable Formulation I A parenteral composition for administration by injection can be prepared by dissolving a compound of the formula (I) (e.g. in a salt form) in water containing 10% propylene glycol to give a concentration of active compound of 1.5 % by weight. The solution is then sterilised by filtration, filled into an ampoule and sealed.
(iv) Iniectable Formulation II
A parenteral compositon for injection is prepared by dissolving in water a compound of the formula (I) (e.g. in salt form) (2 mg/ml) and mannitol (50 mg/ml), sterile filtering the solution and filling into sealable 1 ml vials or ampoules.
(iv) Subcutaneous Injection Formulation A composition for sub-cutaneous administration is prepared by mixing a compound of the formula (I) with pharmaceutical grade corn oil to give a concentration of 5 mg/ml. The composition is sterilised and filled into a suitable container.
EXAMPLE 253
Determination of Antifungal Activity
The antifungal activity of the compounds of the formula (I) is determined using the following protocol. The compounds are tested against a panel of fungi including Candida parpsilosis, Candida tropicalis, Candida albicans- ATCC 36082 and Cryptococcus neoformans. The test organisms are maintained on Sabourahd Dextrose Agar slants at 4 °C. Singlet suspensions of each organism are prepared by growing the yeast overnight at 27 °C on a rotating drum in yeast-nitrogen base broth (YNB) with amino acids (Difco, Detroit, Mich.), pH 7.0 with 0.05 morpholine propanesulphonic acid (MOPS). The suspension is then centrifuged and washed twice with 0.85% NaCl before sonicating the washed cell suspension for 4 seconds (Branson Sonifier, model 350, Danbury, Conn.). The singlet blastospores are counted in a haemocytometer and adjusted to the desired concentration in 0.85% NaCl.
The activity of the test compounds is determined using a modification of a broth microdilution technique. Test compounds are diluted in DMSO to a 1.0 mg/ml ratio then diluted to 64 μg/ml in YNB broth, pH 7.0 with MOPS (Fluconazole is used as the control) to provide a working solution of each compound. Using a 96-well plate, wells 1 and 3 through 12 are prepared with YNB broth, ten fold dilutions of the compound solution are made in wells 2 to 11 (concentration ranges are 64 to 0.125 μg/ml). Well 1 serves as a sterility control and blank for the spectrophotometric assays. Well 12 serves as a growth control. The microtitre plates are inoculated with 10 μl in each of well 2 to 11 (final inoculum size is 104 organisms/ml). Inoculated plates are incubated for 48 hours at 35 °C. The MIC values are determined spectrophotometrically by measuring the absorbance at 420 nm (Automatic Microplate Reader, DuPont Instruments, Wilmington, Del.) after agitation of the plates for 2 minutes with a vortex-mixer (Vorte-Genie 2 Mixer, Scientific Industries, Inc., Bolemia, N.Y.). The MIC endpoint is defined as the lowest drug concentration exhibiting approximately 50% (or more) reduction of the growth compared with the control well. With the turbidity assay this is defined as the lowest drug concentration at which turbidity in the well is <50%of the control (IC50). Minimal Cytolytic Concentrations (MCC) are determined by sub-culturing all wells from the 96-well plate onto a Sabourahd Dextrose Agar (SDA) plate, incubating for 1 to 2 days at 35 °C and then checking viability. EXAMPLE 254
Protocol for the Biological Evaluation of Control of in vivo Whole Plant Fungal
Infection
Compounds of the formula (I) are dissolved in acetone, with subsequent serial dilutions in acetone to obtain a range of desired concentrations. Final treatment volumes are obtained by adding 9 volumes of 0.05% aqueous Tween-20 ™ or 0.01% Triton X-100™, depending upon the pathogen.
The compositions are then used to test the activity of the compounds of the invention against tomato blight (Phytophthora infestans) using the following protocol. Tomatoes (cultivar Rutgers) are grown from seed in a soil-less peat-based potting mixture until the seedlings are 10-20 cm tall. The plants are then sprayed to run-off with the test compound at a rate of 100 ppm. After 24 hours the test plants are inoculated by spraying with an aqueous sporangia suspension of Phytophthora infestans, and kept in a dew chamber overnight. The plants are then transferred to the greenhouse until disease develops on the untreated control plants.
Similar protocols are also used to test the activity of the compounds of the invention in combatting Brown Rust of Wheat (Puccinia), Powdery Mildew of Wheat (Ervsiphe vraminis), Wheat (cultivar Monon), Leaf Blotch of Wheat (Septoria tritici), and Glume Blotch of Wheat (Leptosphaeria nodorum).
Equivalents
The foregoing examples are presented for the purpose of illustrating the invention and should not be construed as imposing any limitation on the scope of the invention. It will readily be apparent that numerous modifications and alterations may be made to the specific embodiments of the invention described above and illustrated in the examples without departing from the principles underlying the invention. All such modifications and alterations are intended to be embraced by this application.

Claims

1. The use of a compound for the manufacture of a medicament for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase, the compound having the formula (0):
Figure imgf000225_0001
or salts or tautomers or N-oxides or solvates thereof; wherein
X is a group R^A-NR4- or a 5- or 6-membered carbocyclic or heterocyclic ring;
A is a bond, SO2, C=O, NRg(C=O) or O(C=O) wherein Rε is hydrogen or CM hydrocarbyl optionally substituted by hydroxy or C alkoxy;
Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length; R1 is hydrogen; a carbocyclic or heterocyclic group having from 3 to
12 ring members; or a Cμ8 hydrocarbyl group optionally substituted by one or more substituents selected from halogen (e.g. fluorine), hydroxy, CM hydrocarbyloxy, amino, mono- or di-Cϊ.4 hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO2;
R2 is hydrogen; halogen; C alkoxy (e.g. methoxy); or a C hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or CM alkoxy (e.g. methoxy); R3 is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members; and
R4 is hydrogen or a CM hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or CM alkoxy (e.g. methoxy). The use of a compound for the manufacture of a medicament for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase, the compound having the formula (I0):
Figure imgf000226_0001
or salts or tautomers or N-oxides or solvates thereof; wherein
X is a group R^A-NR4- or a 5- or 6-membered carbocyclic or heterocyclic ring; A is a bond, C=O, NRg(C=O) or O(C=O) wherein Rg is hydrogen or
C hydrocarbyl optionally substituted by hydroxy or C alkoxy;
Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length; R1 is hydrogen; a carbocyclic or heterocyclic group having from 3 to
12 ring members; or a -s hydrocarbyl group optionally substituted by one or more substituents selected from halogen (e.g. fluorine), hydroxy, CM hydrocarbyloxy, amino, mono- or di-Ci-4 hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO2; R2 is hydrogen; halogen; Cι-4 alkoxy (e.g. methoxy); or a CM hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or CM alkoxy (e.g. methoxy);
R3 is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members; and R4 is hydrogen or a C hydrocarbyl group optionally substituted by halogen (e.g. fluorine), hydroxyl or C alkoxy (e.g. methoxy).
. The use according to claim 2 wherein the compound has the formula (I):
Figure imgf000227_0001
or salts or tautomers or N-oxides or solvates thereof; wherein
X is a group R!-A-NR4-;
A is a bond, C=O, NRg(C=O) or O(C=O) wherein Rg is hydrogen or CM hydrocarbyl optionally substituted by hydroxy or C alkoxy; Y is a bond or an alkylene chain of 1 , 2 or 3 carbon atoms in length;
R1 is hydrogen; a carbocyclic or heterocyclic group having from 3 to 12 ring members; or a Cι.8 hydrocarbyl group optionally substituted by one or more substituents selected from halogen, hydroxy, C hydrocarbyloxy, amino, mono- or di-C1.4 hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO2;
R2 is hydrogen; halogen; C alkoxy; or a CM hydrocarbyl group optionally substituted by halogen, hydroxyl or CM alkoxy; R3 is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members; and
R4 is hydrogen or a C hydrocarbyl group optionally substituted by halogen, hydroxyl or C alkoxy.
4. A compound for use in medicine, the compound having the formula (la):
Figure imgf000228_0001
or salts or tautomers or N-oxides or solvates thereof; wherein X is a group R^A-NR4-;
A is a bond, C=O, NRg(C=O) or O(C=O) wherein Rg is hydrogen or C hydrocarbyl optionally substituted by hydroxy or C1.4 alkoxy;
Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length; R1 is a carbocyclic or heterocyclic group having from 3 to 12 ring members; or a Ct-s hydrocarbyl group optionally substituted by one or more substituents selected from fluorine, hydroxy, CM hydrocarbyloxy, amino, mono- or di-CM hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO2;
R2 is hydrogen; halogen; C alkoxy; or a C hydrocarbyl group optionally substituted by halogen, hydroxyl or CM alkoxy;
R3 is selected from hydrogen and carbocyclic and heterocyclic groups having from 3 to 12 ring members; and R4 is hydrogen or a C hydrocarbyl group optionally substituted by halogen, hydroxyl or C1.4 alkoxy.
5. A compound of the formula (lb):
Figure imgf000228_0002
or salts or tautomers or N-oxides or solvates thereof; wherein
X is a group R'-A-NR4-;
A is a bond, C=O, NRg(C=O) or O(C=O) wherein Rs is hydrogen or CM hydrocarbyl optionally substituted by hydroxy or C1.4 alkoxy;
Y is a bond or an alkylene chain of 1, 2 or 3 carbon atoms in length;
R1 is a carbocyclic or heterocyclic group having from 3 to 12 ring members; or a -s hydrocarbyl group optionally substituted by one or more substituents selected from fluorine, hydroxy, CM hydrocarbyloxy, amino, mono- or di-d-4 hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO2;
R is hydrogen; halogen; CM alkoxy; or a C hydrocarbyl group optionally substituted by halogen or C alkoxy;
R3 is selected from carbocyclic and heterocyclic groups having from 3 to 12 ring members; and
R4 is hydrogen or a C hydrocarbyl group optionally substituted by halogen, hydroxyl or C alkoxy.
6. A compound according to claim 5 wherein A is C=O.
7. A compound according to claim 5 or claim 6 wherein R4 is hydrogen.
8. A compound according to any one of claims 5 to 7 wherein R is hydrogen or methyl, preferably hydrogen.
9. A compound according to any one of claims 5 to 8 wherein Y is a bond.
10. A compound according to any one of claims 5 to 8 wherein Y is an alkylene chain containing 1 or 2 carbon atoms (e.g. -(CH2)-).
11. A compound according to any one of claims 5 to 10 wherein R1 is a carbocyclic or heterocyclic group having from 3 to 12 ring members (e.g. 5 to 10 ring members).
12. A compound according to any one of claims 5 to 10 wherein R1 is a Ct-s hydrocarbyl group (e.g. an optionally substituted C hydrocarbyl group such as a hydroxy-substituted CM hydrocarbyl group) optionally substituted by one or more substituents selected from fluorine, hydroxy, CM hydrocarbyloxy, amino, mono- or di-CM hydrocarbylamino, and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein 1 or 2 of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, S, NH, SO, SO2.
13. A compound according to claim 12 wherein R1 is a C hydrocarbyl group (e.g. methyl or ethyl, preferably methyl) substituted by a carbocyclic or heterocyclic group having from 3 to 12 ring members (e.g. from 5 to 10 ring members).
14. A compound according to any one of claims 11 to 13 wherein the carbocyclic and heterocyclic groups are monocyclic.
15. A compound according to any one of claims 11 to 13 wherein the carbocyclic and heterocyclic groups are bicyclic.
16. A compound according to claim 14 or 15 wherein the monocyclic and bicyclic groups are aryl groups.
17. A compound according to claim 16 wherein the aryl group is a substituted or unsubstituted phenyl group.
18. A compound according to claim 14 or claim 15 wherein the monocyclic and bicyclic groups are heteroaryl groups.
19. A compound according to claim 18 wherein the heteroaryl group contains up to 4 heteroatoms (for example up to 3 heteroatoms) selected from nitrogen, sulphur and oxygen and is selected from monocyclic 5-membered rings, monocyclic 6-membered rings, bicyclic groups formed by fused 5- and 6-membered rings and bicyclic groups formed by two fused 6- membered rings.
20. A compound according to claim 19 wherein the heteroaryl group is selected from furanyl (e.g. 2-furanyl or 3-furanyl), indolyl (e.g. 3-indolyl, 6-indolyl), 2,3-dihydro-benzo[l,4]dioxinyl (e.g. 2,3-dihydro-benzo[l,4]dioxin-5-yl), pyrazolyl (e.g. pyrazole-5-yl), pyrazolo[l,5-a]pyridinyl (e.g. pyrazolo[l,5- a]pyridine-3-yl), oxazolyl (e.g. ), isoxazolyl (e.g. isoxazol-4-yl), pyridyl (e.g. 2-pyridyl, 3-pyridyl, 4-pyridyl), quinolinyl (e.g. 2-quinolinyl), pyrrolyl
(e.g. 3-pyrrolyl), imidazolyl and thienyl (e.g. 2-thienyl, 3-thienyl).
21. A compound according to claim 19 wherein the heteroaryl group is selected from pyridyl, pyrrolyl, furanyl, thienyl, imidazolyl, oxazolyl, oxadiazolyl, oxatriazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, pyrazinyl, pyridazinyl, pyrimidinyl, triazinyl, triazolyl, tetrazolyl, quinolinyl, isoquinolinyl, benzfuranyl, benzthienyl, chromanyl, thiochromanyl, benzimidazolyl, benzoxazolyl, benzisoxazole, benzthiazolyl and benzisothiazole, isobenzofuranyl, indolyl, isoindolyl, indolizinyl, indolinyl, isoindolinyl, purinyl (e.g., adenine, guanine), indazolyl, benzodioxolyl, chromenyl, isochromenyl, isochromanyl, benzodioxanyl, quinolizinyl, benzoxazinyl, benzodiazinyl, pyridopyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, phthalazinyl, naphthyridinyl and pteridinyl.
22. A compound according to claim 21 wherein the heteroaryl group is selected from indolyl, tetrazolyl, pyridyl, triazolyl, oxazolyl, imidazolyl, furanyl, thienyl, quinolinyl, pyrrolyl and pyrazinyl.
23. A compound according to claim 14 or claim 15 wherein the monocyclic and bicyclic groups are non-aromatic groups.
24. A compound according to claim 23 wherein the non-aromatic groups are heterocyclic groups (e.g. monocyclic groups) containing 1, 2, 3 or 4 (preferably 1 or 2) heteroatom ring members selected from nitrogen, oxygen and sulphur.
25. A compound according to claim 23 wherein the non-aromatic groups are selected from:
(i) carbocyclic groups such as unsubstituted or substituted monocyclic cycloalkyl groups, for example cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl (particularly cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, e.g. cyclopropyl and cyclohexyl);
(ii) 5-, 6-and 7-membered monocyclic heterocyclic groups such as morpholine, piperidine (e.g. 1-piperidinyl, 2-piperidinyl 3-piperidinyl and 4- piperidinyl), pyrrolidine (e.g. 1-pyrrolidinyl, 2-pyrrolidinyl and 3- pyrrolidinyl), pyrrolidone, pyran (2H-pyran or 4H-pyran), dihydrothiophene, dihydropyran, dihydrofuran, dihydrothiazole, tetrahydrofuran, tetrahydrothiophene, dioxane, tetrahydropyran (e.g. 4- tetrahydro pyranyl), imidazoline, imidazolidinone, oxazoline, thiazoline, 2- pyrazoline, pyrazolidine, piperazine, and N-alkyl piperazines such as N- methyl piperazine; (iii) thiomorpholine and its S-oxide and S,S -dioxide (particularly thiomorpholine); and
(iv) N-alkyl piperidines such as N-methyl piperidine.
26. A compound according to claim 23 wherein the heterocyclic groups are selected from morpholine, piperidine, pyrrolidine, pyrrolidone, pyran, dihydrothiophene, dihydropyran, dihydrofuran, dihydrothiazole, tetrahydrofuran, tetrahydrothiophene, dioxane, tetrahydropyran, imidazoline, imidazolidinone, oxazoline, thiazoline, pyrazoline, pyrazolidine, piperazine, and N-alkyl piperazines such as N-methyl piperazine, and in particular are selected from piperidine, N-methyl piperazine, morpholine and imidazolidinone.
27. A compound according to any one of claims 11 to 26 wherein the carbocyclic and heterocyclic groups are substituted by one or more (e.g. 1 or 2 or 3 or 4) substituent groups R10 selected from halogen, hydroxy, trifluoromethyl, cyano, nitro, carboxy, amino, mono- or di-C1. hydrocarbylamino, carbocyclic and heterocyclic groups having from 3 to 12 ring members; a group Ra-Rb wherein Ra is a bond, O, CO, X1C(X2), C(X2)XJ, X1C(X2)X1, S, SO, SO2, NRC, SO2NRc or NRcSO2; and Rb is selected from hydrogen, carbocyclic and heterocyclic groups having from 3 to 12 ring members, and a C^s hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, cyano, nitro, carboxy, amino, mono- or di-CM hydrocarbylamino, carbocyclic and heterocyclic groups having from 3 to 12 ring members and wherein one or more carbon atoms of the d-8 hydrocarbyl group may optionally be replaced by O, S, SO, SO2, NRC, XJC(X2), C(X2)Xl or X1C(X2)X1; Rc is selected from hydrogen and C hydrocarbyl; and X1 is O, S or NRC and X2 is =O, =S or =NR°.
28. A compound according to claim 27 wherein the substituent groups R10 are selected from the group R10a consisting of halogen, hydroxy, trifluoromethyl, cyano, nitro, carboxy, a group Ra-Rb wherein Ra is a bond, O, CO, X3C(X4), C(X4)X3, X3C(X4)X3, S, SO, or SO2, and Rb is selected from hydrogen and a Cι.8 hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, cyano, nitro, carboxy and monocyclic non-aromatic carbocyclic or heterocyclic groups having from 3 to 6 ring members; wherein one or more carbon atoms of the Ci-s hydrocarbyl group may optionally be replaced by O, S, SO, SO2, X3C(X4), C(X4)X3 or X3C(X4)X3; X3 is O or S; and X4 is =O or =S.
29. A compound according to claim 28 wherein the substituents are selected from halogen, hydroxy, trifluoromethyl, a group R -Rb wherein Ra is a bond or O, and R is selected from hydrogen and a CM hydrocarbyl group optionally substituted by one or more substituents selected from hydroxyl, halogen (preferably fluorine) and 5 and 6 membered saturated carbocyclic and heterocyclic groups.
30. A compound according to any one of claims 27 to 29 wherein R1 is a phenyl ring having 1, 2 or 3 substituents located at the 2-, 3-, 4-, 5- or 6- positions around the ring.
31. A compound according to claim 30 wherein the phenyl group is 2- monosubstituted, 3-monosubstituted, 2,6-disubstituted, 2,3-disubstituted, 2,4-disubstituted 2,5-disubstituted, 2,3,6-trisubstituted or 2,4,6- trisubstituted.
32. A compound according to claim 31 wherein the phenyl group is:
(i) monosubstituted at the 2-position, or disubstituted at positions 2- and 3-, or disubstituted at positions 2- and 6- with substituents selected from fluorine, chlorine and Ra-Rb, where Ra is O and Rb is CM alkyl; or
(ii) monosubstituted at the 2-position with a substituent selected from fluorine; chlorine; CM alkoxy optionally substituted by one or more fluorine atoms; or disubstituted at the 2- and 5-positions with substituents selected from fluorine, chlorine and methoxy.
33. A compound according to any one of claims 5 to 32 wherein A is CO and R^CO- is selected from the groups listed in Table 1 herein, particularly groups J, AB, AH, AJ, AL, AS, AX, AY, AZ, BA, BB, BD, BH, BL, BQ and BS, and more particularly groups AJ, AX, BQ, BS and BAI, and preferably groups AJ and BQ.
34. A compound according to claim 5 having the formula (II):
Figure imgf000235_0001
wherein R , R , R and Y are as defined in any one of claims 5 to 33.
35. A compound according to claim 34 wherein R1 is selected from:
(i) phenyl optionally substituted by one or more substituents (e.g. 1, 2 or 3) selected from fluorine; chlorine; hydroxy; 5- and 6-membered saturated heterocyclic groups containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic groups being optionally substituted by one or more C alkyl groups; CM hydrocarbyloxy; and CM hydrocarbyl; wherein the C hydrocarbyl and C hydrocarbyloxy groups are optionally substituted by one or more substituents chosen from hydroxy, fluorine, Cι.2 alkoxy, amino, mono and CU-CM alkylamino, phenyl, halophenyl, saturated carbocyclic groups having 3 to 7 ring members (more preferably 4, 5 or 6 ring members, e.g. 5 or 6 ring members) or saturated heterocyclic groups of 5 or 6 ring members and containing up to 2 heteroatoms selected from O, S and N; or 2, 3-dihydro-benzo[l,4]dioxine; or
(ii) a monocyclic heteroaryl group containing one or two heteroatoms selected from O, S and N; or a bicyclic heteroaryl group containing a single heteroatom selected from O, S and N; the monocyclic and bicyclic heteroaryl groups each being optionally substituted by one or more substituents selected from fluorine; chlorine; C1-3 hydrocarbyloxy; and C1.3 hydrocarbyl optionally substituted by hydroxy, fluorine, methoxy or a five or six membered saturated carbocyclic or heterocyclic group containing up to two heteroatoms selected from O, S and N;
(iii) a substituted or unsubstituted cycloalkyl group having from 3 to 6 ring members; and (iv) a C hydrocarbyl group optionally substituted by one or more substituents selected from fluorine; hydroxy; CM hydrocarbyloxy; amino; mono- or di-CM hydrocarbylamino; and carbocyclic or heterocyclic groups having from 3 to 12 ring members, and wherein one of the carbon atoms of the hydrocarbyl group may optionally be replaced by an atom or group selected from O, NH, SO and SO2.
36. A compound according to claim 35 wherein R1 is selected from substituent groups (i) where (i) consists of phenyl optionally substituted by one or more substituents selected from fluorine; chlorine; hydroxy; d-3 hydrocarbyloxy; and d-3 hydrocarbyl wherein the d-3 hydrocarbyl group is optionally substituted by one or more substituents chosen from hydroxy, fluorine, d-2 alkoxy, amino, mono and di-d. alkylamino, saturated carbocyclic groups having 3 to 7 ring members (more preferably 4, 5 or 6 ring members, e.g. 5 or 6 ring members) or saturated heterocyclic groups of 5 or 6 ring members and containing up to 2 heteroatoms selected from O, S and N.
37. A compound according to claim 35 or claim 36 wherein R1 is selected from substituent groups (i), (ii) and (iii).
38. A compound according to claim 35 or claim 36 wherein R1 is selected from substituent group (i).
39. A compound according to claim 38 wherein R an unsubstituted phenyl group or a 2-monosubstituted, 3-monosubstituted, 2,3 disubstituted, 2,5 disubstituted or 2,6 disubstituted phenyl group or 2, 3-dihydro- benzo[l,4]dioxine, where the substituents are selected from halogen; hydroxyl; C1.3 alkoxy; and d-3 alkyl groups wherein the d.3 alkyl group is optionally substituted by hydroxy, fluorine, d.2 alkoxy, amino, mono and di-Ci-4 alkylamino, or saturated carbocyclic groups having 3 to 6 ring members and/or saturated heterocyclic groups of 5 or 6 ring members and containing 1 or 2 heteroatoms selected from N and O.
40. A compound according to claim 39 wherein R1 is selected from unsubstituted phenyl, 2-fluorophenyl, 2-hydroxyphenyl, 2-methoxyphenyl, 2-methylphenyl, 2-(2-(pyrrolidin-l-yl)ethoxy)-phenyl, 3-fluorophenyl, 3- methoxyphenyl, 2,6-difluorophenyl, 2-fluoro-6-hydroxyphenyl, 2-fluoro-3- methoxyphenyl, 2-fluoro-5-methoxyphenyl, 2-chloro-6-methoxyphenyl, 2- fluoro-6-methoxyphenyl, 2,6-dichlorophenyl and 2-chloro-6-fluorophenyl; and is optionally further selected from 5-fluoro-2 -methoxyphenyl.
41. A compound according to claim 40 wherein R1 is selected from 2,6- difluorophenyl, 2-fluoro-6-methoxyphenyl, 2,6-dichlorophenyl and 2- chloro-6-fluorophenyl.
42. A compound according to claim 5 having the formula (III):
Figure imgf000237_0001
wherein R , 1 , r R>2 , r R>3 and Y are as defined in any one of claims 5 to 41.
43. A compound according to any one of claims 5 to 42 wherein R is selected from monocyclic carbocyclic and heterocyclic groups having from 3 to 6 ring members.
44. A compound according to claim 43 wherein R is an aryl or heteroaryl group.
45. A compound according to claim 44 wherein R is an unsubstituted or substituted phenyl group.
46. A compound according to claim 44 wherein R is an unsubstituted or substituted pyridyl group.
47. A compound according to claim 58 or claim 59 wherein the aryl or heteroaryl group is substituted by one or more groups R10 as defined in claim 27.
48. A compound according to claim 47 wherein the aryl or heteroaryl group is substituted by one or more substituents selected from the group R10a consisting of halogen, hydroxy, trifluoromethyl, cyano, monocyclic carbocyclic and heterocyclic groups having from 3 to 7 (typically 5 or 6) ring members, and a group Ra-Rb wherein Ra is a bond, O, CO, X1C(X2), C(X2)X!, X1C(X2)X1, S, SO, SO2, NRC, SO2NRc or NRcSO2; and Rb is selected from hydrogen, a carbocyclic or heterocyclic group with 3-7 ring members and a d-8 hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, cyano, nitro, carboxy, amino, mono- or di-d- hydrocarbylamino, a carbocyclic or heterocyclic group with 3-7 ring members and wherein one or more carbon atoms of the d-8 hydrocarbyl group may optionally be replaced by O, S,
SO, SO2, NRC, XlC(X2), C(X2)Xλ or X1C(X2)X1.
49. A compound according to claim 48 wherein the one or more substituents are selected from the group R10a consisting of halogen; hydroxy; monocyclic carbocyclic and heterocyclic groups having from 3 to 6 ring members and containing up to 2 heteroatom ring members selected from O, N and S; and a group Ra-Rb wherein Ra is a bond, O, CO, CO2, SO2, NH, SO2NH or NHSO2; and Rb is selected from hydrogen, a carbocyclic or heterocyclic group with 3-6 ring members and containing up to 2 heteroatom ring members selected from O, N and S; and a d-6 hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, carboxy, amino, mono- or di-d.4 hydrocarbylamino, a carbocyclic or heterocyclic group with 3-6 ring members and containing up to 2 heteroatom ring members selected from O, N and S; and wherein one or two carbon atoms of the d-6 hydrocarbyl group may optionally be replaced by O, S, SO, SO2 or NH.
50. A compound according to claim 49 wherein the substituents R10a are selected from halogen, a group Ra-Rb wherein Ra is a bond, O, CO,
9 1 h
C(X )X , and R is selected from hydrogen, heterocyclic group having 3-7 ring members and a d_4 hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, carboxy, amino, mono- or di-d- hydrocarbylamino, and heterocyclic groups having 3-7 ring members.
51. A compound according to claim 50 wherein the substituent groups R10a are selected from halogen, especially fluorine, d.3 alkoxy such as methoxy, and d-3 hydrocarbyl optionally substituted by fluorine, hydroxy (e.g. hydroxymethyl), d_2 alkoxy or a 5- or 6-membered saturated heterocyclic ring such as piperidino, morpholino, piperazino and N-methylpiperazino.
52. A compound according to any one of claims 47 to 51 wherein the aryl or heteroaryl group is substituted by 1 or 2 substituents (e.g. 1 substituent).
53. A compound according to claim 43 wherein R3 is selected from non- aromatic groups.
54. A compound according to claim 53 wherein the non-aromatic groups are selected from cycloalkyl, oxa-cycloalkyl, aza-cycloalkyl, diaza-cycloalkyl, dioxa-cycloalkyl and aza-oxa-cycloalkyl groups, and optionally also from C7.1o azabicycloalkyl groups, wherein the non-aromatic groups are optionally substituted by one or more substituent groups R10 or R10a as defined in any one of the preceding claims.
55. A compound according to claim 54 wherein the non-aromatic groups are selected from substituted and unsubstituted cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydropyran, morpholine, tetrahydrofuran, piperidine and pyrrolidine groups
56. A compound according to claim 55 wherein the non-aromatic groups are selected from cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, tetrahydropyran, tetrahydrofuran, piperidine and pyrrolidine groups.
7. A compound according to any one of claims 43 to 56 wherein the carbocyclic and heterocyclic groups are substituted by 1, 2 or 3 (typically 1 or 2, e.g. 1) substituents selected from:
• halogen (e.g. fluorine and chlorine) • C alkoxy (e.g. methoxy and ethoxy) optionally substituted by one or substituents selected from halogen, hydroxy, d_2 alkoxy and five and six membered saturated heterocyclic rings containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic rings being optionally further substituted by one or more C groups (e.g. methyl) and wherein the S, when present, may be present as S, SO or SO2;
• C alkyl optionally substituted by one or substituents selected from halogen, hydroxy, CM alkoxy, amino, CM alkylsulphonylamino, 3 to 6 membered cycloalkyl groups (e.g. cyclopropyl), phenyl (optionally substituted by one or more substituents selected from halogen, methyl, methoxy and amino) and five and six membered saturated heterocyclic rings containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic rings being optionally further substituted by one or more C groups (e.g. methyl) and wherein the S, when present, may be present as S, SO or SO2;
• hydroxy; • amino, mono-CM alkylamino, di-d- alkylamino, benzyloxycarbonylamino and CM alkoxycarbonylamino;
• carboxy and C alkoxycarbonyl;
• C alkylaminosulphonyl and CM alkylsulphonylamino;
• C alkylsulphonyl; • a group O-He or NH-Hets where Hets is a five or six membered saturated heterocyclic ring containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic rings being optionally further substituted by one or more C groups (e.g. methyl) and wherein the S, when present, may be present as S, SO or SO2;
• five and six membered saturated heterocyclic rings containing 1 or 2 heteroatoms selected from O, N and S, the heterocyclic rings being optionally further substituted by one or more C1.4 groups (e.g. methyl) and wherein the S, when present, may be present as S, SO or SO2;
• oxo; and
• six membered aryl and heteroaryl rings containing up to two nitrogen ring members and being optionally substituted by one or substituents selected from halogen, methyl and methoxy.
58. A compound according to any one of the preceding claims wherein R3 is a carbocyclic or heterocyclic group R3a selected from phenyl; .6 cycloalkyl; five and six membered saturated non-aromatic heterocyclic rings containing up to two heteroatom ring members selected from N, O, S and SO2; six membered heteroaryl rings containing one, two or three nitrogen ring members; and five membered heteroaryl rings having up to three heteroatom ring members selected from N, O and S; wherein each carbocyclic or heterocyclic group R3a is optionally substituted by up to four, preferably up to three, and more preferably up to two (e.g. one) substituents selected from amino; hydroxy; oxo; fluorine; chlorine; C alkyl-(O)q- wherein q is 0 or 1 and the CM alkyl moiety is optionally substituted by fluorine, hydroxy or d.2 alkoxy; mono-d-4 alkylamino; di- d-4 alkylamino; C alkoxycarbonyl; carboxy; a group Re-R16 where Re is a bond or a C1-3 alkylene chain and R16 is selected from C alkylsulphonyl; C alkylaminosulphonyl; C alkylsulphonylamino-; amino; mono-CM alkylamino; di-d-4 alkylamino; Cι. -hydrocarbyloxycarbonylamino; six membered aromatic groups containing up to three nitrogen ring members; C3.6 cycloalkyl; five or six membered saturated non-aromatic heterocyclic groups containing one or two heteroatom ring members selected from N, O, S and SO2, the group R16 when a saturated non-aromatic group being optionally substituted by one or more methyl groups, and the group R16 when aromatic being optionally substituted by one or more groups selected from fluorine, chlorine, hydroxy, d-2 alkoxy and d-2 alkyl.
59. A compound according to any one of the preceding claims wherein R3 is selected from:
• monocyclic aryl groups optionally substituted by 1-4 (for example 1-2, e.g. 1) substituents R10 or R10a;
• C3-C7 cycloalkyl groups optionally substituted by 1-4 (for example 1-2, e.g. 1) substituents R10 or R10a; • saturated five membered heterocyclic rings containing 1 ring heteroatom selected from O, N and S and being optionally substituted by an oxo group and/or by 1-4 (for example 1-2, e.g. 1) substituents R10 or R10a;
• saturated six membered heterocyclic rings containing 1 or 2 ring heteroatoms selected from O, N and S and being optionally substituted by an oxo group and/or by 1-4 (for example 1-2, e.g. 1) substituents R10 or R10 ;
• five membered heteroaryl rings containing 1 or 2 ring heteroatoms selected from O, N and S and being optionally substituted by 1-4 (for example 1-2, e.g. 1) substituents R10 or R10a;
• six membered heteroaryl rings containing 1 or 2 nitrogen ring members (preferably 1 nitrogen ring member) and being optionally substituted by 1-4
(for example 1-2, e.g. 1) substituents R10 or R10a;
• mono-azabicycloalkyl and diazabicycloalkyl groups each having 7 to 9 ring members and being optionally substituted by 1-4 (for example 1-2, e.g. 1) substituents R10 or R10a.
60. A compound according to any one of claims 5 to 59 wherein the group Y-R is selected from the groups set out in Table 2 herein.
61. A compound according to claim 60 wherein the group Y-R3 is selected from the groups CL, CM, ES, ET, FC, FG and FH set out in Table 2 herein, preferably groups CL, CM and ES, and most preferably CL and CM.
62. A compound according to any one of claims 5 to 61 wherein, R1 is a group Rla-(N)n- where: n is 0 or 1 ;
N is selected from CH2, CH2CH2 and SO2CH2; and Rla is a carbocyclic or heterocyclic group selected from selected from phenyl; five membered heteroaryl rings having up to 4 heteroatom ring members selected from Ν, O and S; six membered heteroaryl rings containing one or two nitrogen ring members; five or six membered saturated non-aromatic heterocyclic rings containing one or two heteroatom ring members selected from Ν, O, S and SO2; -6 cycloalkyl groups; indole; and quinoline; wherein each of the carbocyclic and heterocyclic groups Rla can be optionally substituted by one or more substituents selected from five or six membered saturated non-aromatic carbocyclic and heterocyclic groups containing up to two heteroatom ring members selected from Ν, O, S and
SO2; hydroxy; amino; oxo; mono-d. alkylamino; di-d- alkylamino; fluorine; chlorine; nitro; C1. alkyl-(O)q- wherein q is 0 or 1 and the d.4 alkyl moiety is optionally substituted by fluorine, hydroxy, d-2 alkoxy or a five or six membered saturated non-aromatic carbocyclic or heterocyclic group containing up to two heteroatom ring members selected from Ν, O, S and SO2; phenyl and Cι-2-alkylene dioxy.
63. A compound according to any one of claims 5 to 62 wherein Y is a bond, CH2, CH2CH2 or CH2CH(CH3).
64. A compound according to any one of claims 5 to 63 wherein A is a bond and R1 is a carbocyclic or heterocyclic group having from 3 to 7 ring members.
65. A compound according to any one of claims 5 to 64 wherein R2 is hydrogen, halogen, methoxy, or a C1-3 hydrocarbyl group (e.g. a d.2 hydrocarbyl group) optionally substituted by fluorine, hydroxyl or methoxy.
66. A compound according to any one of claims 5 to 65 wherein: (i) neither R1 nor R3 contain a substituted tetrazole group; and/or
(ii) Y-R3 is other than a substituted or unsubstituted pyrimidinyl group; and/or
(iii) X and R3 are each other than a moiety containing a bicyclic benzo- fiised group wherein the benzene ring of the benzo-fiised group has a further cyclic group attached by a single bond thereto; and/or
(iv) R is other than tertiary butyl; and/or
(v) when A is a bond and R1 is an alkyl group, then R3 is other than a piperidino ring or a piperidino ring substituted by an alkylene chain to which is attached a bicyclic group; and/or (vi) R is other than a substituted or unsubstituted 4-cyanophenyl group; and/or (vii) R is other than a bicyclic group comprising fused five and six membered rings and containing from 2 to 4 nitrogen ring members.
67. A compound according to claim 5 having the formula (IN):
Figure imgf000244_0001
or salts or tautomers or Ν-oxides or solvates thereof; wherein R and R are as defined in any one of the preceding claims; an optional second bond may be present betrween between carbon atoms numbered 1 and 2; one of U and T is selected from CH2, CHR13, CRπR13, NR14, N(O)R15, O and S(O)t; and the other of U and T is selected from , NR14, O, CH2, CHR11, C(Rπ)2, and C=O; r is 0, 1, 2, 3 or 4; t is 0, 1 or 2; R11 is selected from hydrogen, halogen (particularly fluorine), d-3 alkyl (e.g. methyl) and d-3 alkoxy (e.g. methoxy);
R13 is selected from hydrogen, NHR14, NOH, NOR14 and Ra-Rb; R14 is selected from hydrogen and Rd-Rb; Rd is selected from a bond, CO, C(X2)X!, SO2 and SO2NRc; Ra, Rb and Rc are as hereinbefore defined; and R15 is selected from d- saturated hydrocarbyl optionally substituted by hydroxy, d-2 alkoxy, halogen or a monocyclic 5- or 6-membered carbocyclic or heterocyclic group, provided that U and T cannot be O simultaneously.
68. A compound according to claim 67 having the formula (INa):
Figure imgf000245_0001
or salts or tautomers or Ν-oxides or solvates thereof; wherein one of U and T is selected from CH2, CHR13, CRπR13, ΝR14, Ν(O)R15, O and S(O)t; and the other of U and T is selected from CH2, CHR11, C(Rπ)2, and CO; r is 0, 1 or 2; t is 0, 1 or 2; R11 is selected from hydrogen and C1-3 alkyl;
R13 is selected from hydrogen and Ra-Rb; R14 is selected from hydrogen and Rd-Rb; Rd is selected from a bond, CO, C(X2)XI, SO2 and SO2NRc; R15 is selected from d.4 saturated hydrocarbyl optionally substituted by hydroxy, d.2 alkoxy, halogen or a monocyclic 5- or 6-membered carbocyclic or heterocyclic group; and R1, R2, Ra, Rb and Rc are as defined in any one of the preceding claims.
69. A compound according to claim 68 wherein T is selected from CH2, CHR13, CHnR13, NR14, N(O)R15, 0 and S(O)t.
70. A compound according to claim 68 or 69 wherein U is selected from CH2, CHR11, C(Rπ)2, and C=O.
71. A compound according to any one of claims 68 to 70 wherein R11 is selected from hydrogen and methyl (preferably hydrogen).
72. A compound according to any one of claims 68 to 71 wherein R13 is selected from hydrogen and R -R wherein R is selected from hydrogen; monocyclic carbocyclic and heterocyclic groups having from 3 to 7 ring members; and .4 hydrocarbyl (more preferably acyclic saturated C groups) optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, amino, mono- or di-d_4 hydrocarbylamino, and monocyclic carbocyclic and heterocyclic groups having from 3 to 7 ring members (more preferably 3 to 6 ring members) and wherein one or more carbon atoms of the CM hydrocarbyl group may optionally be replaced by O, S, SO, SO2, NRC, X!C(X2), C(X2)X! ;RC is selected from hydrogen and
C hydrocarbyl; and X1 is O, S or NR° and X2 is =O, =S or =NRC.
73. A compound according to claim 72 wherein R is selected from hydrogen; hydroxy; halogen; cyano; amino; mono-CM saturated hydrocarbylamino; di-d-4 saturated hydrocarbylamino; monocyclic 5- or 6-membered carbocyclic and heterocyclic groups; CM saturated hydrocarbyl optionally substituted by hydroxy, Cι-2 alkoxy, halogen or a monocyclic 5- or 6- membered carbocyclic or heterocyclic group.
74. A compound according to claim 73 wherein R13 is selected from hydroxy, amino, d-2 alkylamino (e.g. methylamino) CM alkyl (e.g. methyl, ethyl, propyl and butyl), d-2 alkoxy (e.g. methoxy), d_2 alkylsulphonamido (e.g. methanesulphonamido), hydroxy-Cι-2 alkyl (e.g. hydroxymethyl), C1-2- alkoxy-Cι-2 alkyl (e.g. methoxymethyl and methoxyethyl), carboxy, CM alkoxycarbonyl (e.g. ethoxycarbonyl) and amino-d-2-alkyl (e.g. aminomethyl).
75. A compound according to any one of claims 68 to 74 wherein R14 is selected from hydrogen and Rd-Rb where Rb is selected from hydrogen; monocyclic carbocyclic and heterocyclic groups having from 3 to 7 ring members; and d.4 hydrocarbyl (more preferably acyclic saturated d- groups) optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, amino, mono- or di-d-4 hydrocarbylamino, and monocyclic carbocyclic and heterocyclic groups having from 3 to 7 ring members (more preferably 3 to 6 ring members) and wherein one or more carbon atoms of the CM hydrocarbyl group may optionally be replaced by O, S, SO, SO2, NRC, X1C(X2), C(X2)Xl ; R° is selected from hydrogen and CM hydrocarbyl; and X1 is O, S or NRC and X2 is =O, =S or =NRC.
76. A compound according to claim 75 wherein R14 is selected from hydrogen, d.4 alkyl optionally substituted by fluoro or a five or six membered saturated heterocyclic group (e.g. methyl, ethyl, n-propyl, i-propyl, butyl, 2,2,2-trifluorethyl and tetrahydrofuranylmethyl), cyclopropylmethyl, substituted or unsubstituted pyridyl-d-2 alkyl (e.g. 2-pyridylmethyl), substituted or unsubstituted phenyl-d.2 alkyl (e.g. benzyl), d- alkoxycarbonyl (e.g.ethoxycarbonyl and t-butyloxycarbonyl), substituted and unsubstituted phenyl-d-2 alkoxycarbonyl (e.g. benzyloxycarbonyl), substituted and unsubstituted 5- and 6-membered heteroaryl groups such as pyridyl (e.g. 2-pyridyl and 6-chloro-2-pyridyl) and pyrimidinyl (e.g. 2- pyrimidinyl), d.2-alkoxy-d-2 alkyl (e.g. methoxymethyl and methoxyethyl), and C alkylsulphonyl (e.g. methanesulphonyl).
77. A compound according to any one of claims 68 to 76 having the formula (Va):
Figure imgf000248_0001
or salts or tautomers or N-oxides or solvates thereof; wherein R14a is selected from hydrogen, CM alkyl optionally substituted by fluoro (e.g. methyl, ethyl, n-propyl, i-propyl, butyl and 2,2,2-trifluoroethyl), cyclopropylmethyl, phenyl-d-2 alkyl (e.g. benzyl), C alkoxycarbonyl
(e.g.ethoxycarbonyl and t-butyloxycarbonyl), phenyl-d-2 alkoxycarbonyl
(e.g. benzyloxycarbonyl), Cι-2-alkoxy-Cι.2 alkyl (e.g. methoxymethyl and methoxyethyl), and d.4 alkylsulphonyl (e.g.methanesulphonyl), wherein the phenyl moieties when present are optionally substituted by one to three substituents selected from fluorine, chlorine, CM alkoxy optionally substituted by fluoro or d-2-alkoxy, and C alkyl optionally substituted by fluoro or d.2-alkoxy; w is 0, 1, 2 or 3;
R2 is hydrogen or methyl, most preferably hydrogen;
R11 and r are as defined in any one of claims 82 to 90; and
R19 is selected from fluorine; chlorine; CM alkoxy optionally substituted by fluoro or d.2-alkoxy; and CM alkyl optionally substituted by fluoro or d-2- alkoxy.
78. A compound according to any one of claims 68 to 76 having the formula (Vb):
Figure imgf000249_0001
or salts or tautomers or N-oxides or solvates thereof; wherein R14a is selected from hydrogen, C1. alkyl optionally substituted by fluoro (e.g. methyl, ethyl, n-propyl, i-propyl, butyl and 2,2,2-trifluoroethyl), cyclopropylmethyl, phenyl-d-2 alkyl (e.g. benzyl), d.4 alkoxycarbonyl
(e.g.ethoxycarbonyl and t-butyloxycarbonyl), phenyl-d-2 alkoxycarbonyl
(e.g. benzyloxycarbonyl), d.2-alkoxy-Cι-2 alkyl (e.g. methoxymethyl and methoxyethyl), and CM alkylsulphonyl (e.g.methanesulphonyl), wherein the phenyl moieties when present are optionally substituted by one to three substituents selected from fluorine, chlorine, d.4 alkoxy optionally substituted by fluoro or Cι- -alkoxy, and C1.4 alkyl optionally substituted by fluoro or d.2-alkoxy; w is 0, 1, 2 or 3;
R2 is hydrogen or methyl, most preferably hydrogen;
R11 and r are as hereinbefore defined; and
R19 is selected from fluorine; chlorine; C alkoxy optionally substituted by fluoro or C ^-alkoxy; and CM alkyl optionally substituted by fluoro or d_2- alkoxy.
A compound according to claim 77 or claim 78 wherein w is 0 or w is 1, 2 or 3 and the phenyl ring is 2-monosubstituted, 3-monosubstituted, 2,6- disubstituted, 2,3-disubstituted, 2,4-disubstituted 2,5-disubstituted, 2,3,6- trisubstituted or 2,4,6-trisubstituted.
80. A compound according to claim 79 wherein the phenyl ring is disubstituted at positions 2- and 6- with substituents selected from fluorine, chlorine and methoxy.
81. A compound according to any one of claims 68 to 80 wherein Rn is hydrogen.
82. A compound according to any one of claims 68 to 81 wherein R14a is hydrogen or methyl.
83. A compound of the formula (Via):
Figure imgf000250_0001
or salts or tautomers or N-oxides or solvates thereof; wherein R20 is selected from hydrogen and methyl; R21 is selected from fluorine and chlorine; and R is selected from fluorine, chlorine and methoxy; or 1 99 one of R and R is hydrogen and the other is selected from chlorine, methoxy, ethoxy, difluoromethoxy, trifluoromethoxy and benzyloxy.
84. A compound of the formula (Vlb):
Figure imgf000250_0002
or salts or tautomers or N-oxides or solvates thereof;
90 wherein R is selected from hydrogen and methyl; R21a is selected from fluorine and chlorine; and R22a is selected from fluorine, chlorine and methoxy.
85. A compound according to claim 84 selected from:
4-(2,6-difluoro-benzoylamino)- 1 H-pyrazole-3 -carboxylic acid piperidin-4- ylamide;
4-(2,6-difluoro-benzoylamino)-l H-pyrazole-3 -carboxylic acid (1-methyl- piperidin-4-yl)-amide; 4-(2,6-dichloro-benzoylamino)-lH-pyrazole-3-carboxylic acid piperidin-4- ylamide; and
4-(2-fluoro-6-methoxy-benzoylamino)- 1 H-pyrazole-3 -carboxylic acid piperidin-4-ylamide.
86. A compound of the formula (lb) wherein the compound is as defined in any one of claims 5 to 85 provided that:
(a-i) when A is a bond and Y-R3 is an alkyl, cycloalkyl, optionally substituted phenyl or optionally substituted phenylalkyl, then R1 is other than a substituted or unsubstituted dihydronaphthalene, dihydrochroman, dihydrothiochroman, tetrahydroquinoline or tetrahydrobenzfuranyl group; and/or
(a-ii) X and R are each other than a moiety containing a maleimide group wherein the maleimide group has nitrogen atoms attached to the 3-and 4- positions thereof; and/or
(a-iii) R1 is other than a moiety containing a purine nucleoside group; and/or
(a-iv) X and R3 are each other than a moiety containing a cyclobutene- 1 ,2- dione group wherein the cyclobutene- 1,2-dione group has nitrogen atoms attached to the 3-and 4-positions thereof; and/or (a-v) R is other than a moiety containing a 4-monosubsituted or 4,5- disubstituted 2-pyridyl or 2-pyrimidinyl group or a 5-monosubstituted or 5,6-disubstituted l,2,4-triazin-3-yl or 3-pyridazinyl group; and/or
(a-vi) X and R3 are each other than a moiety containing a substituted or unsubstituted pyrazol-3-ylamine group linked to a substituted or unsubstituted pyridine, diazine or triazine group; and/or
(a-vii) when A is C=O and Y-R3 is an alkyl, cycloalkyl, optionally substituted phenyl or optionally substituted phenylalkyl group, then R1 is other than a substituted or unsubstituted tetrahydronaphthalene, tetrahydroquinolinyl, tetrahydrochromanyl or tetrahydrothiochromanyl group; and/or
(a-ix) R is other than a moiety containing a l,2,8,8a-tetrahydro-7-methyl- cyclopropa[c]pyrrolo[3,2,e]indole-4-(5H)-one group; and/or
(a-xi) X is other than 4-(tert-butyloxycarbonylamino)-3-methylimidazol-2- ylcarbonylamino; and/or
(b-i) R is other than a bridged azabicyclo group; and/or
(b-ii) when A is a bond, then R3 is other than a moiety containing an unsubstituted or substituted phenyl group having attached to an ortho position thereof, a substituted or unsubstituted carbamoyl or thiocarbamoyl group; and/or
(b-iii) when A is a bond, then R3 is other than a moiety containing an isoquinoline or quinoxaline group each having attached thereto a substituted or unsubstituted piperidine or piperazine ring; and/or
1 "\
(b-iv) when A is a bond and R is an alkyl group, then R is other than a moiety containing a thiatriazine group; and/or
1 "\
(b-v) when R or R contain a moiety in which a heterocyclic ring having an S(=O)2 ring member is fused to a carbocyclic ring, the said carbocyclic ring is other than a substituted or unsubstituted benzene ring; and/or (b-vi) When A is a bond, R1 is other than an arylalkyl, heteroarylalkyl or piperidinylalkyl group each having attached thereto a substituent selected from cyano, and substituted or unsubstituted amino, aminoalkyl, amidine, guanidine, and carbamoyl groups;and/or (b-vii) When X is a group R^A-NR4-, A is a bond and R1 is a non-aromatic group, then R3 is other than a six membered monocyclic aryl or heteroaryl group linked directly to a 5,6-fused bicyclic heteroaryl group; and/or
(c-i) when A is a bond, R1 is other than a substituted arylalkyl, heteroarylalkyl or piperidinylalkyl group and/or (c-ii) When X is an amino or alkylamino group and Y is a bond, R3 is other than a disubstituted thiazolyl group wherein one of the substituents is selected from cyano and fluoroalkyl.
87. A compound according to claim 86 wherein formula (lb) is subject to all of provisos (a-i) to (a-xi), (b-i) to (b-vii), (c-i) and (c-ii).
88. A compound according to any one of claims 4 to 86 wherein the compound is in the form of a salt.
89. The use according to claim 3 wherein the compound of the formula (I) is as defined in claim 3 provided that:
(a-i) when A is a bond and Y-R3 is an alkyl, cycloalkyl, optionally substituted phenyl or optionally substituted phenylalkyl, then R1 is other than a substituted or unsubstituted dihydronaphthalene, dihydrochroman, dihydrothiochroman, tetrahydroquinoline or tetrahydrobenzfuranyl group; and/or
(a-ii) X and R3 are each other than a moiety containing a maleimide group wherein the maleimide group has nitrogen atoms attached to the 3-and 4- positions thereof; and/or
(a-iii) R1 is other than a moiety containing a purine nucleoside group; and/or (a-iv) X and R are each other than a moiety containing a cyclobutene-1 ,2- dione group wherein the cyclobutene- 1,2-dione group has nitrogen atoms attached to the 3-and 4-positions thereof; and/or
(a-v) R3 is other than a moiety containing a 4-monosubsituted or 4,5- disubstituted 2-pyridyl or 2-pyrimidinyl group or a 5-monosubstituted or
5,6-disubstituted l,2,4-triazin-3-yl or 3-pyridazinyl group; and/or
(a-vi) X and R3 are each other than a moiety containing a substituted or unsubstituted pyrazol-3-ylamine group linked to a substituted or unsubstituted pyridine, diazine or triazine group; and/or (a-vii) when A is C=O and Y-R3 is an alkyl, cycloalkyl, optionally substituted phenyl or optionally substituted phenylalkyl group, then R1 is other than a substituted or unsubstituted tetrahydronaphthalene, tetrahydroquinolinyl, tetrahydrochromanyl or tetrahydrothiochromanyl group; and/or (a-viii) when R is H and A is a bond, R is other than a moiety containing a bis-aryl, bis-heteroaryl or aryl heteroaryl group; and/or
(a-ix) R is other than a moiety containing a l,2,8,8a-tetrahydro-7-methyl- cyclopropa[c]pyrrolo[3,2,e]indole-4-(5H)-one group; and/or
(a-x) when Y is a bond, R3 is hydrogen, A is CO and R1 is a substituted phenyl group, each substituent on the phenyl group is other than a group
CH2-P(O)RxRy where Rx and Ry are each selected from alkoxy and phenyl groups; and/or
(a-xi) X is other than 4-(ter/-butyloxycarbonylamino)-3-methylimidazol-2- ylcarbonylamino .
90. The use according to claim 89 wherein formula (I) is subject to all of provisos (a-i) to (a-xi).
91. A compound of the formula (la) for use in medicine, the compound being as defined in claim 4, provided that: (a-i) when A is a bond and Y-R3 is an alkyl, cycloalkyl, optionally substituted phenyl or optionally substituted phenylalkyl, then R1 is other than a substituted or unsubstituted dihydronaphthalene, dihydrochroman, dihydrothiochroman, tetrahydroquinoline or tetrahydrobenzfuranyl group; and/or
(a-ii) X and R3 are each other than a moiety containing a maleimide group wherein the maleimide group has nitrogen atoms attached to the 3-and 4- positions thereof; and/or
(a-iii) R1 is other than a moiety containing a purine nucleoside group; and/or
(a-iv) X and R are each other than a moiety containing a cyclobutene- 1,2- dione group wherein the cyclobutene- 1,2-dione group has nitrogen atoms attached to the 3-and 4-positions thereof; and/or
(a-v) R is other than a moiety containing a 4-monosubsituted or 4,5- disubstituted 2-pyridyl or 2-pyrimidinyl group or a 5-monosubstituted or
5,6-disubstituted l,2,4-triazin-3-yl or 3-pyridazinyl group; and/or
(a-vi) X and R are each other than a moiety containing a substituted or unsubstituted pyrazol-3-ylamine group linked to a substituted or unsubstituted pyridine, diazine or triazine group; and/or (a-vii) when A is C=O and Y-R3 is an alkyl, cycloalkyl, optionally substituted phenyl or optionally substituted phenylalkyl group, then R1 is other than a substituted or unsubstituted tetrahydronaphthalene, tetrahydroquinolinyl, tetrahydrochromanyl or tetrahydrothiochromanyl group; and/or (a-viii) when R3 is H and A is a bond, R1 is other than a moiety containing a bis-aryl, bis-heteroaryl or aryl heteroaryl group; and/or
(a-ix) R3 is other than a moiety containing a l,2,8,8a-tetrahydro-7-methyl- cyclopropa[c]pyrrolo[3,2,e]indole-4-(5H)-one group; and/or (a-x) when Y is a bond, R3 is hydrogen, A is CO and R1 is a substituted phenyl group, each substituent on the phenyl group is other than a group CH2-P(O)RxRy where Rx and Ry are each selected from alkoxy and phenyl groups; and/or (a-xi) X is other than 4-(tert-butyloxycarbonylamino)-3-methylimidazol-2- ylcarbonylamino; and/or
(b-i) R is other than a bridged azabicyclo group; and/or
(b-ii) when A is a bond, then R3 is other than a moiety containing an unsubstituted or substituted phenyl group having attached to an ortho position thereof, a substituted or unsubstituted carbamoyl or thiocarbamoyl group; and/or
(b-iii) when A is a bond, then R3 is other than a moiety containing an isoquinoline or quinoxaline group each having attached thereto a substituted or unsubstituted piperidine or piperazine ring; and/or (b-iv) when A is a bond and R is an alkyl group, then R is other than a moiety containing a thiatriazine group; and/or
1 "
(b-v) when R or R contain a moiety in which a heterocyclic ring having an S(=O)2 ring member is fused to a carbocyclic ring, the said carbocyclic ring is other than a substituted or unsubstituted benzene ring; and/or (b-vi) when A is a bond, R1 is other than an arylalkyl, heteroarylalkyl or piperidinylalkyl group each having attached thereto a substituent selected from cyano, and substituted or unsubstituted amino, aminoalkyl, amidine, guanidine, and carbamoyl groups; and/or
(b-vii) when X is a group R^A-NR4-, A is a bond and R1 is a non-aromatic group, then R3 is other than a six membered monocyclic aryl or heteroaryl group linked directly to a 5,6-fused bicyclic heteroaryl group.
92. A compound for use according to claim 91 wherein formula (la) is subject to all of provisos (a-i) to (a-xi) and (b-i) to (b-vii).
93. A compound for use according to claim 4, wherein the compound is as defined in any one of claims 5 to 92.
94. The use of a compound according to any one of claims 1 to 3 wherein the compound is as defined in any one of claims 4 to 92.
95. The use according to claim 1 wherein the compound is represented by the formula (Nil):
Figure imgf000257_0001
9 wherein R , R and Y are as defined in any one of the preceding claims and G is a 5- or 6-membered carbocyclic or heterocyclic ring.
96. A compound of the formula (VII) as defined in claim 95, for example for use in medicine.
97. A pharmaceutical composition comprising a compound as defined in any one of the preceding claims and a pharmaceutically acceptable carrier.
98. A method for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase, which method comprises administering to a subject in need thereof a compound as defined in any one of claim 1 to 95.
99. A method of inhibiting a cyclin dependent kinase, which method comprises contacting the kinase with a kinase-inhibiting compound as defined in any one of claims 1 to 95.
100. A method of modulating a cellular process (for example cell division) by inhibiting the activity of a cyclin dependent kinase using a compound as defined in any one of claims 1 to 95.
101. A method for treating a disease or condition comprising or arising from abnormal cell growth in a mammal, which method comprises administering to the mammal a compound as defined in any one of claims 1 to 95 in an amount effective in inhibiting abnormal cell growth.
102. A method for treating a disease or condition comprising or arising from abnormal cell growth in a mammal, the method comprising administering to the mammal a compound as defined in any one of claims 1 to 95 in an amount effective to inhibit CDK activity (e.g. CDK1 or CDK2 activity).
103. The use of a compound as defined in any one of claims 1 to 95 for the manufacture of a medicament for the prophylaxis or treatment of a disease state or condition mediated by glycogen synthase kinase-3.
104. A method for the prophylaxis or treatment of a disease state or condition mediated by glycogen synthase kinase-3, which method comprises administering to a subject in need thereof a compound as defined in any one of claims 1 to 95.
105. A method of inhibiting glycogen synthase kinase-3 , which method comprises contacting the kinase with a kinase-inhibiting compound as defined in any one of claims 1 to 95.
106. A method of modulating a cellular process (for example cell division) by inhibiting the activity of glycogen synthase kinase-3 using a compound as defined in any one of claims 1 to 95.
107. A method for treating a disease or condition comprising or arising from abnormal cell growth in a mammal, the method comprising administering to the mammal a compound defined in any one of claims 1 to 95 in an amount effective to inhibit glycogen synthase kinase-3 activity.
108. A compound for use, a use, or a method as defined in any one of the preceding claims wherein the disease state or condition is selected from proliferative disorders such as cancers and conditions such as viral infections, autoimmune diseases and neurodegenerative diseases.
109. A method for alleviating or reducing the incidence of a disease or condition comprising or arising from abnormal cell growth in a mammal, which method comprises administering to the mammal a compound of the formula
(0), (1°), (I), (la) or (lb) as defined in any one of the preceding claims in an amount effective in inhibiting abnormal cell growth.
110. A method for alleviating or reducing the incidence of a disease state or condition mediated by a cyclin dependent kinase or glycogen synthase kinase-3, which method comprises administering to a subject in need thereof a compound of the formula (0), (1°), (I), (la) or (lb) as defined in any one of the preceding claims.
111. A compound for use, a use or a method according to any one of the preceding claims wherein the disease state or condition is a cancer selected from breast cancer, ovarian cancer, colon cancer, prostate cancer, oesophageal cancer, squamous cancer, and non-small cell lung carcinomas.
112. A process for the preparation of a compound as defined in any one of the preceding claims , which process comprises;
(i) the reaction of a carboxylic acid of the formula R^CO^ or an activated derivative thereof with a 4-amino-pyrazole of the formula (XII):
Figure imgf000259_0001
wherein Y, R1, R2 and R3 are as defined in any one of the preceding claims; or
(ii) the reaction of a compound of the formula (XIII) :
Figure imgf000260_0001
with a compound of the formula R3-Y-NH2 where X, R2 and R3 are as defined in any one of the preceding claims.
113. A compound according to any one of claims 1 to 95 for use as an antifungal agent.
114. A method for the diagnosis and treatment of a disease state or condition mediated by a cyclin dependent kinase, which method comprises (i) screening a patient to determine whether a disease or condition from which the patient is or may be suffering is one which would be susceptible to treatment with a compound having activity against cyclin dependent kinases; and (ii) where it is indicated that the disease or condition from which the patient is thus susceptible, thereafter administering to the patient a compound as defined in any one of claims 1 to 95.
115. The use of a compound as defined in any one of claims 1 to 95 for the manufacture of a medicament for the treatment or prophylaxis of a disease state or condition in a patient who has been screened and has been determined as suffering from, or being at risk of suffering from, a disease or condition which would be susceptible to treatment with a compound having activity against cyclin dependent kinase.
PCT/GB2004/003179 2003-07-22 2004-07-22 3, 4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinases (cdk) and glycogen synthase kinase-3 (gsk-3) modulators WO2005012256A1 (en)

Priority Applications (27)

Application Number Priority Date Filing Date Title
CA2532965A CA2532965C (en) 2003-07-22 2004-07-22 3, 4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinases (cdk) and glycogen synthase kinase-3 (gsk-3) modulators
AT04743512T ATE553091T1 (en) 2003-07-22 2004-07-22 3,4-DISUBSTITUTED 1H-PYRAZOLE COMPOUNDS AND THEIR USE AS CYCLIN DEPENDENT KINASE (CDK) AND GLYCOGEN SYNTHASE KINASE-3 (GSK-3) MODULATORS
KR1020067001424A KR101204247B1 (en) 2003-07-22 2004-07-22 3,4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinases cdk and glycogen synthase kinase-3 gsk-3 modulators
ES04743512T ES2385328T3 (en) 2003-07-22 2004-07-22 Compounds 1H-pyrazole 3.4 disubstituted and their use as modulators of cyclin dependent kinases (CDK) and glycogen synthase kinase-3 (GSK-3)
JP2006520896A JP4681548B2 (en) 2003-07-22 2004-07-22 3,4-disubstituted 1H-pyrazole compounds and their use as cyclin dependent kinase (CDK) and glycogen synthetase kinase-3 (GSK-3) modulators
PL04743512T PL1651612T3 (en) 2003-07-22 2004-07-22 3,4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinases (cdk) and glycogen synthase kinase-3 (gsk-3) modulators
SI200431891T SI1651612T1 (en) 2003-07-22 2004-07-22 3,4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinases (cdk) and glycogen synthase kinase-3 (gsk-3) modulators
RU2006105338/04A RU2408585C2 (en) 2003-07-22 2004-07-22 3,4-substituted 1h-pirazole compounds and their application as cyclin-dependant kinases (cdk) and modulators of glycogen synthase kinase-3 (gsk-3)
EP04743512A EP1651612B9 (en) 2003-07-22 2004-07-22 3,4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinases (cdk) and glycogen synthase kinase-3 (gsk-3) modulators
MXPA06000794A MXPA06000794A (en) 2003-07-22 2004-07-22 3, 4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinases (cdk) and glycogen synthase kinase-3 (gsk-3) modulators.
NZ544756A NZ544756A (en) 2003-07-22 2004-07-22 3,4-Disubstituted 1H-pyrazole compounds and their use as cyclin dependent kinases (CDK) and glycogen synthase kinase-3 (GSK-3) modulators
BRPI0412259-3A BRPI0412259B1 (en) 2003-07-22 2004-07-22 3,4-Disubstituted 1H-pyrazole compounds as cyclin-dependent kinase (CDK) modulators, their uses, process for their preparation and pharmaceutical composition
CN2004800211596A CN1826323B (en) 2003-07-22 2004-07-22 3,4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinase and glycogen synthase kinase-3 modulators
AU2004261459A AU2004261459B2 (en) 2003-07-22 2004-07-22 3, 4-disubstituted 1H-pyrazole compounds and their use as cyclin dependent kinases (CDK) and glycogen synthase kinase-3 (GSK-3) modulators
DK04743512.8T DK1651612T5 (en) 2003-07-22 2004-07-22 3,4-Disubstituted 1H-pyrazole Compounds and Their Use as Cyclin Dependent Kinases (CDK) and Glycogen Synthase Kinase 3- (GSK) Modulators
IL173271A IL173271A (en) 2003-07-22 2006-01-19 4-substituted-1h-pyrazole-3-carboxylic acid amide derivatives, a process for their preparation and use thereof in the manufacture of medicaments
TNP2006000019A TNSN06019A1 (en) 2003-07-22 2006-01-20 Pharmaceutical compounds
US11/336,599 US7385059B2 (en) 2003-07-22 2006-01-20 3,4-disubstituted 1H-pyrazole compounds and their use as cyclin dependent kinase and glycogen synthase kinase-3 modulators
EGNA2006000065 EG27104A (en) 2003-07-22 2006-01-21 Pharmaceutical compounds
IS8310A IS2898B (en) 2003-07-22 2006-02-17 3,4-double-substituted 1H-pyrazolone compounds and their use of cyclin-dependent kinase (CDK) and glycogen synthase kinase-3 (GSK-3) adjusters
NO20060855A NO335069B1 (en) 2003-07-22 2006-02-21 3,4-Disubstituted 1H-Pyrazole Compounds and Their Use as Cyclic Dependent Kinases (CDK) and Glycogen Synthase Kinase-3 (GSK-3) Modulators and Process for Preparing Them
HK06110511.3A HK1090041A1 (en) 2003-07-22 2006-09-21
US11/875,482 US7825140B2 (en) 2003-07-22 2007-10-19 3,4-disubstituted 1H-pyrazole compounds and their use as cyclin dependent kinase and glycogen synthase kinase-3 modulators
US11/875,470 US7745638B2 (en) 2003-07-22 2007-10-19 3,4-disubstituted 1H-pyrazole compounds and their use as cyclin dependent kinase and glycogen synthase kinase-3 modulators
US12/877,499 US8080666B2 (en) 2003-07-22 2010-09-08 3,4-disubstituted 1H-pyrazole compounds and their use as cyclin dependent kinase and glycogen synthase kinase-3 modulators
US13/289,373 US8779147B2 (en) 2003-07-22 2011-11-04 3,4-disubstituted 1H-pyrazole compounds and their use as cyclin dependent kinase and glycogen synthase kinase-3 modulators
US14/281,360 US9051278B2 (en) 2003-07-22 2014-05-19 3,4-disubstituted 1H-pyrazole compounds and their use as cyclin dependent kinase and glycogen synthase kinase-3 modulators

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US48904603P 2003-07-22 2003-07-22
US60/489,046 2003-07-22
GBGB0317127.9A GB0317127D0 (en) 2003-07-22 2003-07-22 Pharmaceutical compounds
GB0317127.9 2003-07-22
US56976304P 2004-05-10 2004-05-10
US60/569,763 2004-05-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/336,599 Continuation US7385059B2 (en) 2003-07-22 2006-01-20 3,4-disubstituted 1H-pyrazole compounds and their use as cyclin dependent kinase and glycogen synthase kinase-3 modulators

Publications (2)

Publication Number Publication Date
WO2005012256A1 true WO2005012256A1 (en) 2005-02-10
WO2005012256A8 WO2005012256A8 (en) 2005-04-07

Family

ID=34119458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2004/003179 WO2005012256A1 (en) 2003-07-22 2004-07-22 3, 4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinases (cdk) and glycogen synthase kinase-3 (gsk-3) modulators

Country Status (20)

Country Link
US (6) US7385059B2 (en)
EP (2) EP2256106B1 (en)
JP (1) JP4681548B2 (en)
KR (1) KR101204247B1 (en)
AU (1) AU2004261459B2 (en)
BR (1) BRPI0412259B1 (en)
CA (1) CA2532965C (en)
CY (2) CY1112903T1 (en)
EC (1) ECSP066298A (en)
EG (1) EG27104A (en)
HK (1) HK1090041A1 (en)
IL (1) IL173271A (en)
IS (1) IS2898B (en)
MA (1) MA27936A1 (en)
MX (1) MXPA06000794A (en)
NO (1) NO335069B1 (en)
NZ (1) NZ544756A (en)
PL (2) PL1651612T3 (en)
TN (1) TNSN06019A1 (en)
WO (1) WO2005012256A1 (en)

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006070202A1 (en) * 2004-12-30 2006-07-06 Astex Therapeutics Limited Pyrazole derivatives having kinase modulating activity
WO2006077425A1 (en) * 2005-01-21 2006-07-27 Astex Therapeutics Limited Combinations of pyrazole kinase inhibitors and further antitumor agents
WO2006077428A1 (en) 2005-01-21 2006-07-27 Astex Therapeutics Limited Pharmaceutical compounds
WO2006077426A2 (en) * 2005-01-21 2006-07-27 Astex Therapeutics Limited 4- (2, 6-DICHLOROBENZOYLAMINO) -lH-PYRAZOLE-3 -CARBOXYLIC ACID PIPERIDIN- 4 -YLAMID ACID ADDITION SALTS AS KINASE INHIBITORS
WO2006077424A1 (en) 2005-01-21 2006-07-27 Astex Therapeutics Limited Pharmaceutical compounds
WO2006085685A1 (en) * 2005-02-09 2006-08-17 Takeda Pharmaceutical Company Limited Pyrazole compound
WO2006136829A2 (en) * 2005-06-21 2006-12-28 Astex Therapeutics Limited Pyrazole derivatives and their use as pka and pkb modulators
WO2007117692A2 (en) 2006-04-11 2007-10-18 Vertex Pharmaceuticals Incorporated Thiazoles, imidazoles, and pyrazoles useful as inhibitors of protein kinases
WO2007129066A1 (en) * 2006-05-05 2007-11-15 Astex Therapeutics Limited 4- (2,6-dichloro-benzoylamino) -1h-pyrazole-3-carboxylic acid (1-methanesulphonyl-piperidin-4-yl) -amide for the treatment of cancer
JP2007302617A (en) * 2006-05-12 2007-11-22 Mitsui Chemicals Inc Heterocyclic derivative and method for using the derivative as insecticide
WO2008001101A2 (en) * 2006-06-29 2008-01-03 Astex Therapeutics Limited Pharmaceutical combinations
WO2008007113A2 (en) * 2006-07-14 2008-01-17 Astex Therapeutics Limited Pharmaceutical combinations
WO2008007122A2 (en) * 2006-07-14 2008-01-17 Astex Therapeutics Limited Combinations of pyrazole derivatives for the inhibition of cdks and gsk's
WO2008007123A2 (en) * 2006-07-14 2008-01-17 Astex Therapeutics Limited Pharmaceutical compounds
WO2008009954A1 (en) * 2006-07-21 2008-01-24 Astex Therapeutics Limited Medical use of cyclin dependent kinases inhibitors
WO2008044041A1 (en) 2006-10-12 2008-04-17 Astex Therapeutics Limited Pharmaceutical combinations
FR2908409A1 (en) * 2006-11-10 2008-05-16 Sanofi Aventis Sa SUBSTITUTED PYRAZOLES, COMPOSITIONS CONTAINING SAME, PROCESS FOR PRODUCTION AND USE
US7524868B2 (en) 2004-02-17 2009-04-28 Laboratorios Del Dr. Esteve, S.A. Substituted pyrazoline compounds, their preparation and use as medicaments
EP2070925A1 (en) 2007-12-10 2009-06-17 Bayer Schering Pharma Aktiengesellschaft New 2-substituted tiazol-4-carboxylic acid derivatives, their manufacture and use as medicine
EP2070924A1 (en) 2007-12-10 2009-06-17 Bayer Schering Pharma Aktiengesellschaft New 2 hetarylthiazol-4-carboxylic acid derivatives, their manufacture and use as medicine
EP2070916A1 (en) 2007-12-10 2009-06-17 Bayer Schering Pharma Aktiengesellschaft 2-Arylthiazol-4-carboxylic acid derivatives, their manufacture and use as medicine
JP2010507653A (en) * 2006-10-27 2010-03-11 コリア リサーチ インスティチュート オブ ケミカル テクノロジイ Aminopyrazole derivative, process for producing the same, and composition for preventing or treating ischemic disease containing the same
WO2010099217A1 (en) 2009-02-25 2010-09-02 Braincells, Inc. Modulation of neurogenesis using d-cycloserine combinations
EP2258358A2 (en) 2005-08-26 2010-12-08 Braincells, Inc. Neurogenesis with acetylcholinesterase inhibitor
EP2275095A2 (en) 2005-08-26 2011-01-19 Braincells, Inc. Neurogenesis by muscarinic receptor modulation
EP2314289A1 (en) 2005-10-31 2011-04-27 Braincells, Inc. Gaba receptor mediated modulation of neurogenesis
WO2011063115A1 (en) 2009-11-19 2011-05-26 Braincells Inc. Combination of nootropic agent with one or more neurogenic or neurogenic sensitizing agents for stimulating or increasing neurogenesis
US7968582B2 (en) 2005-07-15 2011-06-28 Laborotorios Del Dr. Esteve, S.A. 5(S)-substituted pyrazoline compounds, their preparation and use as medicaments
WO2011091033A1 (en) 2010-01-20 2011-07-28 Braincells, Inc. Modulation of neurogenesis by ppar agents
EP2377530A2 (en) 2005-10-21 2011-10-19 Braincells, Inc. Modulation of neurogenesis by PDE inhibition
EP2377531A2 (en) 2006-05-09 2011-10-19 Braincells, Inc. Neurogenesis by modulating angiotensin
US8247576B2 (en) 2003-12-23 2012-08-21 Astex Therapeutics Limited Pyrazole derivatives as protein kinase modulators
US8338460B2 (en) 2006-10-06 2012-12-25 Msd K. K. 2-pyridinecarboxamide derivative having GK-activating effect
US8343953B2 (en) 2005-06-22 2013-01-01 Astex Therapeutics Limited Pharmaceutical compounds
CN101146791B (en) * 2005-01-21 2013-01-09 阿斯泰克斯治疗有限公司 4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxylic acid piperidin-4-ylamid acid addition salts as kinase inhibitors
US8404718B2 (en) 2005-01-21 2013-03-26 Astex Therapeutics Limited Combinations of pyrazole kinase inhibitors
WO2013106432A1 (en) * 2012-01-09 2013-07-18 X-Rx, Inc. Benzhydrol-pyrazole derivatives having kinase inhibitory activity and uses thereof
US8497294B2 (en) 2007-03-14 2013-07-30 Astex Therapeutics Limited Compositions comprising (S)-2-amino-1-(4-chlorophenyl)-1-[4-(1H-pyrazol-4-yl)-phenyl]-ethanol as modulator of protein kinases
WO2013126283A1 (en) 2012-02-20 2013-08-29 E. I. Du Pont De Nemours And Company Fungicidal pyrazoles
US8541461B2 (en) 2005-06-23 2013-09-24 Astex Therapeutics Limited Pharmaceutical combinations comprising pyrazole derivatives as protein kinase modulators
US8642598B2 (en) 2006-10-21 2014-02-04 Abbvie Inc. Heterocyclic compounds and their use as glycogen synthase kinase 3 inhibitors
US8653084B2 (en) 2006-10-12 2014-02-18 Astex Therapeutics Ltd. Hydrobenzamide derivatives as inhibitors of Hsp90
US8816087B2 (en) 2005-04-13 2014-08-26 Astex Therapeutics Limited Hydroxybenzamide derivatives and their use as inhibitors of Hsp90
US8883790B2 (en) 2006-10-12 2014-11-11 Astex Therapeutics Limited Pharmaceutical combinations
FR3011239A1 (en) * 2013-10-01 2015-04-03 Univ Claude Bernard Lyon NOVEL DERIVATIVES COMPRISING A PYRAZOLE GROUP AND AN INDOLE GROUP, USEFUL AS INHIBITORS OF KINASE GSK3
KR20150120966A (en) * 2013-01-08 2015-10-28 차이나 파마슈티칼 유니버시티 Polycyclic substituted pyrazole kinase activity inhibitors and use thereof
US9200008B2 (en) 2010-07-02 2015-12-01 Aska Pharmaceutical Co., Ltd. Heterocyclic compound and p27Kip1 degradation inhibitor
WO2016140501A1 (en) * 2015-03-04 2016-09-09 Kainos Medicine, Inc. Pyridine n-oxide for enhancer of zeste homolog 2 inhibitors
US9540370B2 (en) 2010-12-30 2017-01-10 Abbvie Deutschland Gmbh & Co., Kg. Heterocyclic compounds and their use as glycogen synthase kinase-3 inhibitors
US9730912B2 (en) 2006-10-12 2017-08-15 Astex Therapeutics Limited Pharmaceutical compounds
WO2018039324A1 (en) 2016-08-23 2018-03-01 Eisai R&D Management Co., Ltd. Combination therapies for the treatment of hepatocellular carcinoma
WO2018170447A1 (en) 2017-03-16 2018-09-20 Eisai R&D Management Co., Ltd. Combination therapies for the treatment of breast cancer
US10100048B2 (en) 2010-09-27 2018-10-16 AbbVie Deutschland GmbH & Co. KG Heterocyclic compounds and their use as glycogen synthase kinase-3 inhibitors
EP3268367A4 (en) * 2015-03-12 2018-11-21 Merck Sharp & Dohme Corp. Carboxamide inhibitors of irak4 activity
CN109705090A (en) * 2017-10-25 2019-05-03 上海君实生物医药科技股份有限公司 The tartaric acid addition salt and its crystal form of the disubstituted 1H- pyrazole compound of 3,4-
US10450285B2 (en) 2013-07-31 2019-10-22 University College Cardiff Consultants Limited 2-benzoylaminobenzamide derivatives as Bcl-3 inhibitors
WO2020005807A1 (en) * 2018-06-25 2020-01-02 Dana-Farber Cancer Institute, Inc. Taire family kinase inhibitors and uses thereof
WO2020033413A3 (en) * 2018-08-07 2020-05-07 Tosk, Inc. Modulators of ras gtpase
WO2020150545A1 (en) * 2019-01-17 2020-07-23 Samumed, Llc Pyrazole derivatives as modulators of the wnt/b-catenin signaling pathway
WO2020150552A3 (en) * 2019-01-17 2020-08-27 Samumed, Llc Methods of treating cartilage disorders through inhibition of clk and dyrk
US10870651B2 (en) 2014-12-23 2020-12-22 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
US10906889B2 (en) 2013-10-18 2021-02-02 Dana-Farber Cancer Institute, Inc. Polycyclic inhibitors of cyclin-dependent kinase 7 (CDK7)
US10981903B2 (en) 2011-11-17 2021-04-20 Dana-Farber Cancer Institute, Inc. Inhibitors of c-Jun-N-terminal kinase (JNK)
US11040957B2 (en) 2013-10-18 2021-06-22 Dana-Farber Cancer Institute, Inc. Heteroaromatic compounds useful for the treatment of proliferative diseases
US11142507B2 (en) 2015-09-09 2021-10-12 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
US11220494B2 (en) 2018-04-26 2022-01-11 Pfizer Inc. Cyclin dependent kinase inhibitors
US11325910B2 (en) 2015-03-27 2022-05-10 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
EP3813826A4 (en) * 2018-06-26 2022-07-06 BioSplice Therapeutics, Inc. Methods of treating cancer using a clk inhibitor
US11390626B2 (en) 2019-01-29 2022-07-19 Tosk, Inc. Pyrazolopyrimidine modulators of RAS GTPase
US11548872B2 (en) 2016-04-27 2023-01-10 Biosplice Therapeutics, Inc. Isoquinolin-3-yl carboxamides and preparation and use thereof
US11560378B2 (en) 2015-11-06 2023-01-24 Biosplice Therapeutics, Inc. Treatment of osteoarthritis
US11697649B2 (en) 2012-04-04 2023-07-11 Biosplice Therapeutics, Inc. Indazole inhibitors of the Wnt signal pathway and therapeutic uses thereof
US11826365B2 (en) 2009-12-29 2023-11-28 Dana-Farber Cancer Institute, Inc. Type II raf kinase inhibitors
US12012401B2 (en) 2016-06-01 2024-06-18 Biosplice Therapeutics, Inc. Process for preparing N-(5-(3-(7-(3-fluorophenyl)-3H-imidazo[4,5-c]pyridin-2-yl)-1H-indazol-5-yl)pyridin-3-yl)-3-methylbutanamide

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101204247B1 (en) 2003-07-22 2012-11-22 아스텍스 테라퓨틱스 리미티드 3,4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinases cdk and glycogen synthase kinase-3 gsk-3 modulators
US20080139620A1 (en) * 2005-01-21 2008-06-12 Astex Therapeutics Limited Pyrazole Derivatives For The Inhibition Of Cdk's And Gsk's
AR053662A1 (en) * 2005-01-21 2007-05-16 Astex Therapeutics Ltd PIRAZOL COMPOUNDS INHIBITORS OF THE QUINASA CDK AND GSK ACTIVITY
EP1862478B1 (en) * 2005-03-03 2012-01-25 Mitsubishi Rayon Co., Ltd. Polymer particle, resin composition containing same, and molded body
EP1757587A1 (en) * 2005-07-15 2007-02-28 Laboratorios Del Dr. Esteve, S.A. Substituted pyrazoline compounds, their preparation and use as medicaments
EP1743890A1 (en) * 2005-07-15 2007-01-17 Laboratorios Del Dr. Esteve, S.A. 4,5-Dihydro-1H-pyrazole derivatives, their preparation and use as medicaments
US7897589B2 (en) * 2005-07-15 2011-03-01 Laboratorios Del Dr. Esteve, S.A. Substituted pyrazoline compounds, their preparation and use as medicaments
EP2026805A1 (en) * 2006-05-08 2009-02-25 Astex Therapeutics Limited Pharmaceutical combinations of diazole derivatives for cancer treatment
EP2081891A2 (en) * 2006-10-12 2009-07-29 Astex Therapeutics Limited Pharmaceutical compounds having hsp90 inhibitory or modulating activity
WO2009036022A1 (en) * 2007-09-10 2009-03-19 Board Of Regents, The University Of Texas System Enhancement of polysaccharide-mediated nucleic acid delivery
EP2085397A1 (en) * 2008-01-21 2009-08-05 Esteve Quimica, S.A. Crystalline form of abacavir
GB0806527D0 (en) 2008-04-11 2008-05-14 Astex Therapeutics Ltd Pharmaceutical compounds
EP2151234A1 (en) * 2008-07-28 2010-02-10 Laboratorios Del. Dr. Esteve, S.A. Pharmaceutical formulation comprising a CB1-receptor compound in a solid solution and/or solid dispersion
US9572815B2 (en) 2013-03-15 2017-02-21 St. Jude Children's Research Hospital Methods and compositions of p27KIP1 transcriptional modulators
WO2014165851A1 (en) 2013-04-05 2014-10-09 The Children's Hospital Of Philadelphia Transient up-regulation of myc in b-cell lymphomas
US9830586B2 (en) * 2014-03-31 2017-11-28 Ncr Corporation Electronic payments
JP6902025B2 (en) 2015-06-18 2021-07-14 ティン セラピューティックス エルエルシー Methods and compositions for the prevention and treatment of hearing loss
WO2017059191A1 (en) 2015-09-30 2017-04-06 Quartet Medicine, Inc. Heteroaryl derivatives as sepiapterin reductase inhibitors
WO2020146779A1 (en) * 2019-01-11 2020-07-16 The Regents Of The University Of California mTORC1 INHIBITORS FOR ACTIVATING AUTOPHAGY
US11857551B1 (en) 2020-07-10 2024-01-02 Ting Therapeutics Llc Methods for the prevention and treatment of hearing loss
CN115124527B (en) * 2022-05-31 2024-03-12 武汉智汇农耀科技有限公司 Heterocyclic amide-azaindole compound, preparation method and application thereof, and herbicide

Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666828A (en) 1984-08-15 1987-05-19 The General Hospital Corporation Test for Huntington's disease
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4801531A (en) 1985-04-17 1989-01-31 Biotechnology Research Partners, Ltd. Apo AI/CIII genomic polymorphisms predictive of atherosclerosis
EP0308020A2 (en) 1987-09-18 1989-03-22 Merck & Co. Inc. 5-(aryl and heteroaryl)-6-(aryl and heteroaryl)-1,2-dihydro-2-oxo 3-pyridinecarboxylic acids and derivatives thereof
US5192659A (en) 1989-08-25 1993-03-09 Genetype Ag Intron sequence analysis method for detection of adjacent and remote locus alleles as haplotypes
US5272057A (en) 1988-10-14 1993-12-21 Georgetown University Method of detecting a predisposition to cancer by the use of restriction fragment length polymorphism of the gene for human poly (ADP-ribose) polymerase
US5502068A (en) 1995-01-31 1996-03-26 Synphar Laboratories, Inc. Cyclopropylpyrroloindole-oligopeptide anticancer agents
WO1997003071A1 (en) 1995-07-13 1997-01-30 Knoll Aktiengesellschaft Heterocyclylcarboxamide derivatives and their use as therapeutic agents
WO1997019052A1 (en) 1995-11-22 1997-05-29 Allergan Aryl or heteroaryl amides of tetrahydronaphthalene, chroman, thiochroman and 1,2,3,4-tetrahydroquinoline carboxylic acids having retinoid-like biological activity
WO1997019062A1 (en) 1995-11-22 1997-05-29 Allergan Substituted aryl or heteroarylamides having retinoid-like biological activity
WO1997040017A2 (en) 1996-04-19 1997-10-30 Novo Nordisk A/S Modulators of molecules with phosphotyrosine recognition units
WO1997048672A2 (en) 1996-06-21 1997-12-24 Allergan Sales, Inc. Substituted tetrahydronaphthalene and dihydronaphthalene derivatives having retinoid and/or retinoid antagonist-like biological activity
US5882864A (en) 1995-07-31 1999-03-16 Urocor Inc. Biomarkers and targets for diagnosis, prognosis and management of prostate disease
WO1999021845A2 (en) 1997-10-27 1999-05-06 Agouron Pharmaceuticals, Inc. 4-aminothiazole derivatives, their preparation and their use as inhibitors of cyclin-dependent kinases
WO2000039108A1 (en) 1998-12-23 2000-07-06 Du Pont Pharmaceuticals Company Thrombin or factor xa inhibitors
US6127382A (en) 1999-08-16 2000-10-03 Allergan Sales, Inc. Amines substituted with a tetrahydroquinolinyl group an aryl or heteroaryl group and an alkyl group, having retinoid-like biological activity
WO2000059902A2 (en) 1999-04-02 2000-10-12 Du Pont Pharmaceuticals Company Aryl sulfonyls as factor xa inhibitors
WO2000062778A1 (en) 1999-04-15 2000-10-26 Bristol-Myers Squibb Co. Cyclic protein tyrosine kinase inhibitors
WO2000068191A1 (en) 1999-05-07 2000-11-16 Allergan Sales, Inc. Oxygen, sulfur and nitrogen substituted cyclohexene and cyclohexane derivatives having retinoid-like biological activity
WO2001002385A1 (en) 1999-06-30 2001-01-11 Aventis Cropscience S.A. 1-(quinolin-4-yl)-1h-pyrazole derivatives and their use as fungicides
WO2001002369A2 (en) 1999-07-02 2001-01-11 Agouron Pharmaceuticals, Inc. Indazole compounds and pharmaceutical compositions for inhibiting protein kinases, and methods for their use
WO2001019798A2 (en) 1999-09-17 2001-03-22 Cor Therapeutics Inc. INHIBITORS OF FACTOR Xa
US6218529B1 (en) 1995-07-31 2001-04-17 Urocor, Inc. Biomarkers and targets for diagnosis, prognosis and management of prostate, breast and bladder cancer
WO2001053274A1 (en) 2000-01-21 2001-07-26 Agouron Pharmaceuticals, Inc. Amide compounds for inhibiting protein kinases
WO2001053268A2 (en) 2000-01-18 2001-07-26 Agouron Pharmaceuticals, Inc. Indazole compounds, pharmaceutical compositions, and their use for mediating or inhibiting cell proliferation
WO2001058869A2 (en) 2000-02-11 2001-08-16 Bristol-Myers Squibb Company Cannabinoid receptor modulators, their processes of preparation, and use of cannabinoid receptor modulators in treating respiratory and non-respiratory diseases
WO2001064642A2 (en) 2000-02-29 2001-09-07 Cor Therapeutics, Inc. Benzamides and related inhibitors of factor xa
WO2001070668A2 (en) 2000-03-23 2001-09-27 Allergan, Inc. Amines substituted with a dihydronaphthalenyl, crhomenyl, or thiochromenyl group, an aryl or heteroaryl group and an alkyl group, having retinoid-like biological activity
WO2001072745A1 (en) 2000-03-29 2001-10-04 Cyclacel Limited 2-substituted 4-heteroaryl-pyrimidines and their use in the treatmetn of proliferative disorders
WO2001081348A1 (en) 2000-04-25 2001-11-01 Bristol-Myers Squibb Company USE OF 5-THIO-, SULFINYL- AND SULFONYLPYRAZOLO[3,4-b]-PYRIDINES AS CYCLIN DEPENDENT KINASE INHIBITORS
WO2001098290A2 (en) 2000-06-19 2001-12-27 Pharmacia Italia S.P.A. Thiophene derivatives active as kinase inhibitors, process for their preparation and pharmaceutical compositions comprising them
WO2002000651A2 (en) 2000-06-27 2002-01-03 Bristol-Myers Squibb Pharma Company Factor xa inhibitors
WO2002018346A1 (en) * 2000-08-31 2002-03-07 Pfizer Products Inc. Pyrazole derivatives and their use as protein kinase inhibitors
WO2002022608A1 (en) 2000-09-15 2002-03-21 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
WO2002034721A1 (en) 2000-10-20 2002-05-02 Bristol-Myers Squibb Pharma Company Acylsemicarbazides and their use as cyclin dependent kinase (cdk) inhibitors
US20020091116A1 (en) 1999-09-17 2002-07-11 Bing-Yan Zhu Inhibitors of factor Xa
WO2002062804A1 (en) * 2001-02-02 2002-08-15 Pharmacia Italia S.P.A. Oxazolyl-pyrazole derivatives as kinase inhibitors
WO2002064586A2 (en) 2001-02-09 2002-08-22 Vertex Pharmaceuticals Incorporated Heterocyclic inhibitors of erk2 and uses thereof
WO2002070510A2 (en) 2001-03-07 2002-09-12 Bayer Aktiengesellschaft Amino dicarboxylic acid derivatives with pharmaceutical properties
WO2002083624A1 (en) 2001-04-16 2002-10-24 Schering Corporation 3,4-di-substituted cyclobutene-1,2-diones as cxc-chemokine receptor ligands
WO2003014137A1 (en) 2001-08-08 2003-02-20 Cv Therapeutics, Inc. Adenosine a3 receptor agonists
WO2003020217A2 (en) 2001-08-31 2003-03-13 University Of Connecticut Novel pyrazole analogs acting on cannabinoid receptors
WO2003031440A1 (en) 2001-10-12 2003-04-17 Schering Corporation 3,4-di-substituted maleimide compounds as cxc-chemokine receptor antagonists
WO2003040147A1 (en) 2001-11-08 2003-05-15 Pharmacia & Upjohn Company Azabicyclic-substituted-heteroaryl compounds for the treatment of disease__________________________________________________________________________________________________________________________
EP1348707A1 (en) * 2002-03-28 2003-10-01 Ustav Experimentalni Botaniky AV CR (Institute of Experimental Botany Academy of Sciences of the Czech Republic) Pyrazolo[4,3-d]pyrimidines, processes for their preparation and methods for therapy
WO2004000318A2 (en) 2002-06-21 2003-12-31 Cellular Genomics, Inc. Certain amino-substituted monocycles as kinase modulators
WO2004039795A2 (en) 2002-10-29 2004-05-13 Fujisawa Pharmaceutical Co., Ltd. Amide compounds for the treatment of hyperlipidemia

Family Cites Families (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2917432A (en) 1954-10-05 1959-12-15 Burroughs Wellcome Co Leukemia treatment
US3046301A (en) 1959-10-29 1962-07-24 Burroughs Wellcome Co Method of making chlorambucil
GB1354939A (en) 1971-10-28 1974-06-05 Ici Ltd Process for the manufacture of 1,1,2-triphenylalk-1-enes
US4005063A (en) 1973-10-11 1977-01-25 Abbott Laboratories [Des-gly]10 -GnRH nonapeptide anide analogs in position 6 having ovulation-inducing activity
GB1524747A (en) 1976-05-11 1978-09-13 Ici Ltd Polypeptide
US4282361A (en) * 1978-03-16 1981-08-04 Massachusetts Institute Of Technology Synthesis for 7-alkylamino-3-methylpyrazolo [4,3-d]pyrimidines
DE2845574A1 (en) 1978-10-19 1980-04-24 Deutsches Krebsforsch CCNU SUBSTITUTED ANALOGS BY HETEROCYCLIC RINGS OR ALKYL RESIDUES AND METHOD FOR THE PRODUCTION THEREOF
ATE28864T1 (en) 1982-07-23 1987-08-15 Ici Plc AMIDE DERIVATIVES.
US4978672A (en) 1986-03-07 1990-12-18 Ciba-Geigy Corporation Alpha-heterocyclc substituted tolunitriles
JPS6425763A (en) 1987-04-24 1989-01-27 Mitsubishi Chem Ind Pyrazoles and insecticide and acaricide containing said pyrazoles as active ingredient
US5164196A (en) 1987-05-19 1992-11-17 Ventech Research, Inc. Crotoxin complex as cytotoxic agent
US5002755A (en) 1988-02-18 1991-03-26 Vanderbilt University Method of controlling nephrotoxicity of anti-tumor plaintum compounds
JPH05507480A (en) 1990-05-26 1993-10-28 ビイク グルデン ロンベルク ヒエーミツシエ フアブリーク ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 1,4-dihydropyridine for use in overcoming drug resistance
FR2665898B1 (en) 1990-08-20 1994-03-11 Sanofi DERIVATIVES OF AMIDO-3 PYRAZOLE, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.
IL100110A0 (en) 1990-12-26 1992-08-18 American Cyanamid Co Insecticidal and synergistic miticidal compositions
CA2119155C (en) 1991-10-18 1999-06-15 Dennis Paul Phillion Fungicides for the control of take-all disease of plants
DE69329503T2 (en) 1992-11-13 2001-05-03 Idec Pharma Corp Therapeutic use of chimeric and labeled antibodies directed against a differentiation antigen, the expression of which is restricted to human B lymphocyte, for the treatment of B cell lymphoma
KR0170567B1 (en) 1992-12-17 1999-02-18 알렌 제이. 스피겔 Pyrazoles and pyrazolopyrimidines having crf antagonist activity
JP3156026B2 (en) 1993-12-27 2001-04-16 株式会社大塚製薬工場 Phosphonic acid diester derivatives
US5773001A (en) 1994-06-03 1998-06-30 American Cyanamid Company Conjugates of methyltrithio antitumor agents and intermediates for their synthesis
ES2219670T3 (en) 1994-11-10 2004-12-01 Millennium Pharmaceuticals, Inc. USE OF PIRAZOLA COMPOUNDS FOR THE TREATMENT OF GLOMERULONEFRITIS, CANCER, ATEROSCLEROSIS OR RESTENOSIS.
AU703203B2 (en) * 1996-01-30 1999-03-18 Merck & Co., Inc. Inhibitors of farnesyl-protein transferase
CA2249665A1 (en) 1996-04-03 1997-10-09 Merck & Co., Inc. Inhibitors of farnesyl-protein transferase
AU716381B2 (en) 1996-04-03 2000-02-24 Merck & Co., Inc. Inhibitors of farnesyl-protein transferase
JP2000507956A (en) 1996-04-03 2000-06-27 メルク エンド カンパニー インコーポレーテッド Farnesyl-protein transferase inhibitors
HU224827B1 (en) 1996-05-03 2006-02-28 Abbott Lab Novel antiangiogenic peptides polynucleotides encoding same and methods for inhibiting angiogenesis
EP0923579A1 (en) 1996-08-27 1999-06-23 Novartis AG Herbicidal s-substituted 1,2,4,6-thiatriazines
TW523506B (en) 1996-12-18 2003-03-11 Ono Pharmaceutical Co Sulfonamide or carbamide derivatives and drugs containing the same as active ingredients
US6020357A (en) 1996-12-23 2000-02-01 Dupont Pharmaceuticals Company Nitrogen containing heteroaromatics as factor Xa inhibitors
IL130286A0 (en) 1996-12-23 2000-06-01 Du Pont Pharm Co Nitrogen containing heteroaromatics as factor Xa inhibitors
US6306393B1 (en) 1997-03-24 2001-10-23 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
SK285991B6 (en) * 1997-04-25 2008-01-07 Pfizer Inc. Pyrazolopyrimidinones, process and intermediates for preparing them, their use and pharmaceutical or veterinary compositions based on them
AU7726898A (en) * 1997-05-22 1998-12-11 G.D. Searle & Co. Pyrazole derivatives as p38 kinase inhibitors
WO1998057937A2 (en) 1997-06-19 1998-12-23 The Du Pont Merck Pharmaceutical Company Inhibitors of factor xa with a neutral p1 specificity group
CA2315070A1 (en) 1997-12-17 1999-07-01 Schering Aktiengesellschaft Ortho-anthranilamide derivatives as anti-coagulants
IL136637A0 (en) 1997-12-22 2001-06-14 Du Pont Pharm Co Nitrogen containing heteroaromatics with ortho-substituted pi's as factor xa inhibitors
WO1999067235A1 (en) 1998-06-25 1999-12-29 Sumitomo Pharmaceuticals Co., Ltd. Five-membered ring compounds
EP1100506A4 (en) 1998-07-29 2002-06-26 Merck & Co Inc Integrin receptor antagonists
JP2000186092A (en) 1998-12-22 2000-07-04 Kyowa Hakko Kogyo Co Ltd Production of ucn-01
EP1185512A2 (en) 1999-05-24 2002-03-13 Cor Therapeutics, Inc. INHIBITORS OF FACTOR Xa
US6093838A (en) 1999-08-16 2000-07-25 Allergan Sales, Inc. Amines substituted with a dihydro-benzofuranyl or with a dihydro-isobenzofuranyl group, an aryl or heteroaryl group and an alkyl group, having retinoid-like biological activity
AU6936500A (en) 1999-08-24 2001-03-19 Regents Of The University Of California, The Non-quinoline inhibitors of malaria parasites
WO2001019788A2 (en) 1999-09-17 2001-03-22 Cor Therapeutics, Inc. BENZAMIDES AND RELATED INHIBITORS OF FACTOR Xa
ES2234683T3 (en) 1999-11-05 2005-07-01 Smithkline Beecham Plc ISOQUINOLINE AND QUINAZOLINE DERIVATIVES WITH COMBINED ACTIVITY ON THE 5HT1A, 5HT1B AND 5HT1D RECEPTORS.
AU2001231078A1 (en) 2000-01-25 2001-08-07 Vistaprint Usa, Inc. Managing print jobs
NZ514583A (en) 2000-02-05 2004-05-28 Vertex Pharma Pyrazole compositions useful as inhibitors of ERK
AU2001241128A1 (en) * 2000-03-14 2001-09-24 Fujisawa Pharmaceutical Co. Ltd. Novel amide compounds
MY138097A (en) 2000-03-22 2009-04-30 Du Pont Insecticidal anthranilamides
JP2004501083A (en) * 2000-04-18 2004-01-15 アゴーロン・ファーマシューティカルズ・インコーポレイテッド Pyrazole for inhibiting protein kinases
AU4878601A (en) 2000-04-20 2001-11-07 Mitsubishi Corporation Aromatic amide compounds
AU2001259218A1 (en) 2000-04-27 2001-11-07 Abbott Laboratories Substituted phenyl farnesyltransferase inhibitors
AU2001278508A1 (en) 2000-07-31 2002-02-13 Smithkline Beecham P.L.C. Carboxamide compounds and their use as antagonists of a human 11cby receptor
US6455559B1 (en) 2001-07-19 2002-09-24 Pharmacia Italia S.P.A. Phenylacetamido-pyrazole derivatives, process for their preparation and their use as antitumor agents
KR100909665B1 (en) 2000-12-21 2009-07-29 버텍스 파마슈티칼스 인코포레이티드 Pyrazole Compounds Useful as Protein Kinase Inhibitors and Pharmaceutical Compositions Comprising the Same
DE10064823A1 (en) 2000-12-22 2002-06-27 Knoll Ag New (hetero)aryl-substituted aliphatic carboxylic acid derivatives, useful as integrin receptor ligands for treating, e.g. atherosclerosis, restenosis, rheumatoid arthritis, cancer, osteoporosis or hypertension
US7105682B2 (en) * 2001-01-12 2006-09-12 Amgen Inc. Substituted amine derivatives and methods of use
US6878714B2 (en) 2001-01-12 2005-04-12 Amgen Inc. Substituted alkylamine derivatives and methods of use
US6995162B2 (en) * 2001-01-12 2006-02-07 Amgen Inc. Substituted alkylamine derivatives and methods of use
MXPA03007783A (en) 2001-02-28 2005-08-16 Brian C Giles Method and formula for anti-tumor and anti-matastatic effect.
WO2002070483A1 (en) 2001-03-05 2002-09-12 E. I. Du Pont De Nemours And Company Heterocyclic diamide invertebrate pest control agents
BR0208078A (en) * 2001-03-16 2004-03-02 Pfizer Pyrazol [4,3-d] pyrimidinone compounds as cgmp pde inhibitors
GB0106661D0 (en) * 2001-03-16 2001-05-09 Pfizer Ltd Pharmaceutically active compounds
WO2002074298A1 (en) * 2001-03-21 2002-09-26 Ono Pharmaceutical Co., Ltd. Il-6 production inhibitors
US6905669B2 (en) 2001-04-24 2005-06-14 Supergen, Inc. Compositions and methods for reestablishing gene transcription through inhibition of DNA methylation and histone deacetylase
US6989245B2 (en) 2001-05-11 2006-01-24 The Burnham Institute Screening, diagnostic and therapeutic methods relating to RIZ
WO2002094183A2 (en) 2001-05-18 2002-11-28 Tap Pharmaceutical Products Inc. A method for tumor treatment with fumagillol derivatives
DE60221379T2 (en) 2001-05-21 2008-04-17 E.I. Du Pont De Nemours And Co., Wilmington DIAMIDS THAT CONTAIN A NON-AROMATIC HETEROCYCLUS FOR COMBATING WIRELESS PESTS
WO2002101007A2 (en) 2001-06-13 2002-12-19 Genesoft Pharmaceuticals, Inc Antipathogenic benzamide compounds
WO2003011854A1 (en) 2001-08-03 2003-02-13 Vertex Pharmaceuticals Incorporated Pyrazole-derived kinase inhibitors and uses thereof
WO2003011287A1 (en) 2001-08-03 2003-02-13 Vertex Pharmaceuticals Incorporated Pyrazolon derivatives as inhibitors of gsk-3
AUPR738301A0 (en) 2001-08-30 2001-09-20 Starpharma Limited Chemotherapeutic agents
AU2002327627B2 (en) 2001-09-14 2006-09-14 Methylgene Inc. Inhibitors of histone deacetylase
HN2002000317A (en) * 2001-11-02 2003-05-21 Pfizer PDE9 INHIBITORS FOR TREATMENT OF CARDIOVASCULAR DISORDERS
WO2003048081A2 (en) 2001-12-04 2003-06-12 Bristol-Myers Squibb Company Glycinamides as factor xa inhibitors
US20030166932A1 (en) 2002-01-04 2003-09-04 Beard Richard L. Amines substituted with a dihydronaphthalenyl, chromenyl, or thiochromenyl group, an aryl or heteroaryl group and an alkyl group, having retinoid-like biological activity
GEP20063909B (en) 2002-01-22 2006-08-25 Warner Lambert Co 2-(PYRIDIN-2-YLAMINO)-PYRIDO[2,3d] PYRIMIDIN-7-ONES
US7205307B2 (en) 2002-02-14 2007-04-17 Icagen, Inc. Pyrimidines as novel openers of potassium ion channels
ES2532607T3 (en) 2002-03-04 2015-03-30 Merck Hdac Research, Llc Induction methods of terminal differentiation
CA2478799C (en) 2002-03-12 2009-12-29 Merck & Co., Inc. Di-aryl substituted tetrazole modulators of metabotropic glutamate receptor-5
US6995168B2 (en) 2002-05-31 2006-02-07 Euro-Celtique S.A. Triazaspiro compounds useful for treating or preventing pain
ATE425753T1 (en) 2002-08-02 2009-04-15 Genesoft Pharmaceuticals Inc BIARYL COMPOUNDS WITH ANTI-INFECTIVE ACTION
GB0218625D0 (en) 2002-08-10 2002-09-18 Astex Technology Ltd Pharmaceutical compounds
WO2004026867A2 (en) 2002-09-19 2004-04-01 Schering Corporation Imidazopyridines as cyclin dependent kinase inhibitors
US6737382B1 (en) 2002-10-23 2004-05-18 Nippon Soda Co. Ltd. Insecticidal aminothiazole derivatives
US20050026877A1 (en) 2002-12-03 2005-02-03 Novacea, Inc. Pharmaceutical compositions comprising active vitamin D compounds
US7202257B2 (en) 2003-12-24 2007-04-10 Deciphera Pharmaceuticals, Llc Anti-inflammatory medicaments
US7144911B2 (en) 2002-12-31 2006-12-05 Deciphera Pharmaceuticals Llc Anti-inflammatory medicaments
KR101145252B1 (en) 2003-01-08 2012-05-24 유니버시티 오브 워싱톤 Antibacterial agents
US7169797B2 (en) * 2003-02-14 2007-01-30 Abbott Laboratories Protein-tyrosine phosphatase inhibitors and uses thereof
US7320989B2 (en) 2003-02-28 2008-01-22 Encysive Pharmaceuticals, Inc. Pyridine, pyrimidine, quinoline, quinazoline, and naphthalene urotensin-II receptor antagonists
AR043633A1 (en) 2003-03-20 2005-08-03 Schering Corp CANABINOID RECEIVERS LINKS
PT1618092E (en) 2003-05-01 2010-11-22 Bristol Myers Squibb Co Aryl-substituted pyrazole-amide compounds useful as kinase inhibitors
WO2004099127A1 (en) 2003-05-07 2004-11-18 Novo Nordisk A/S Novel compounds as kinase inhibitors
CA2524352A1 (en) 2003-05-09 2004-11-18 Pharmacia & Upjohn Company Llc Substituted pyrimidine derivatives
WO2005000309A2 (en) 2003-06-27 2005-01-06 Ionix Pharmaceuticals Limited Chemical compounds
WO2005000356A1 (en) 2003-06-27 2005-01-06 Ono Pharmaceutical Co., Ltd. Remedy for urinary tract diseases
TWI372050B (en) * 2003-07-03 2012-09-11 Astex Therapeutics Ltd (morpholin-4-ylmethyl-1h-benzimidazol-2-yl)-1h-pyrazoles
KR101204247B1 (en) 2003-07-22 2012-11-22 아스텍스 테라퓨틱스 리미티드 3,4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinases cdk and glycogen synthase kinase-3 gsk-3 modulators
SE0303396D0 (en) 2003-12-16 2003-12-16 Astrazeneca Ab Chemical compounds
RU2377988C2 (en) 2004-02-20 2010-01-10 Новартис Вэксинес Энд Дайэгностикс, Инк. Modulation of inflammatory and metastatic processes
EP1725528B1 (en) 2004-03-11 2013-05-29 4Sc Ag Sulphonylpyrroles as hdac inhibitors
US20060084691A1 (en) 2004-10-18 2006-04-20 Bilal Piperdi Combined treatment with bortezomib and an epidermal growth factor receptor kinase inhibitor
JP2008528469A (en) 2005-01-21 2008-07-31 アステックス・セラピューティクス・リミテッド Combination of pyrazole kinase inhibitor and further anticancer agent
US8404718B2 (en) 2005-01-21 2013-03-26 Astex Therapeutics Limited Combinations of pyrazole kinase inhibitors
JP5475235B2 (en) 2005-01-21 2014-04-16 アステックス・セラピューティクス・リミテッド Pharmaceutical compounds
AR054425A1 (en) 2005-01-21 2007-06-27 Astex Therapeutics Ltd PIPERIDIN ADDITION SALTS 4-IL-ACID AMID 4- (2,6-DICLORO-BENZOILAMINO) 1H-PIRAZOL-3-CARBOXILICO.
AR053662A1 (en) 2005-01-21 2007-05-16 Astex Therapeutics Ltd PIRAZOL COMPOUNDS INHIBITORS OF THE QUINASA CDK AND GSK ACTIVITY
US20080139620A1 (en) 2005-01-21 2008-06-12 Astex Therapeutics Limited Pyrazole Derivatives For The Inhibition Of Cdk's And Gsk's
WO2008007113A2 (en) 2006-07-14 2008-01-17 Astex Therapeutics Limited Pharmaceutical combinations
WO2006077424A1 (en) 2005-01-21 2006-07-27 Astex Therapeutics Limited Pharmaceutical compounds
AU2007246895A1 (en) 2006-05-05 2007-11-15 Astex Therapeutics Limited 4- (2,6-dichloro-benzoylamino) -1H-pyrazole-3-carboxylic acid (1-methanesulphonyl-piperidin-4-yl) -amide for the treatment of cancer
EP2026805A1 (en) 2006-05-08 2009-02-25 Astex Therapeutics Limited Pharmaceutical combinations of diazole derivatives for cancer treatment
EP2043635A2 (en) 2006-06-29 2009-04-08 Astex Therapeutics Limited Pharmaceutical combinations
JP2009543770A (en) 2006-07-14 2009-12-10 アステックス・セラピューティクス・リミテッド Combinations of pyrazole derivatives for the inhibition of CDK and GSK
US20100004243A1 (en) 2006-07-14 2010-01-07 Astex Therapeutics Limited Pharmaceutical compounds
US20090318430A1 (en) 2006-07-21 2009-12-24 Astex Therapeutics Limited Medical use of cyclin dependent kinases inhibitors
US8916552B2 (en) 2006-10-12 2014-12-23 Astex Therapeutics Limited Pharmaceutical combinations

Patent Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666828A (en) 1984-08-15 1987-05-19 The General Hospital Corporation Test for Huntington's disease
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683202B1 (en) 1985-03-28 1990-11-27 Cetus Corp
US4801531A (en) 1985-04-17 1989-01-31 Biotechnology Research Partners, Ltd. Apo AI/CIII genomic polymorphisms predictive of atherosclerosis
EP0308020A2 (en) 1987-09-18 1989-03-22 Merck & Co. Inc. 5-(aryl and heteroaryl)-6-(aryl and heteroaryl)-1,2-dihydro-2-oxo 3-pyridinecarboxylic acids and derivatives thereof
US5272057A (en) 1988-10-14 1993-12-21 Georgetown University Method of detecting a predisposition to cancer by the use of restriction fragment length polymorphism of the gene for human poly (ADP-ribose) polymerase
US5192659A (en) 1989-08-25 1993-03-09 Genetype Ag Intron sequence analysis method for detection of adjacent and remote locus alleles as haplotypes
US5502068A (en) 1995-01-31 1996-03-26 Synphar Laboratories, Inc. Cyclopropylpyrroloindole-oligopeptide anticancer agents
WO1997003071A1 (en) 1995-07-13 1997-01-30 Knoll Aktiengesellschaft Heterocyclylcarboxamide derivatives and their use as therapeutic agents
US6218529B1 (en) 1995-07-31 2001-04-17 Urocor, Inc. Biomarkers and targets for diagnosis, prognosis and management of prostate, breast and bladder cancer
US5882864A (en) 1995-07-31 1999-03-16 Urocor Inc. Biomarkers and targets for diagnosis, prognosis and management of prostate disease
WO1997019052A1 (en) 1995-11-22 1997-05-29 Allergan Aryl or heteroaryl amides of tetrahydronaphthalene, chroman, thiochroman and 1,2,3,4-tetrahydroquinoline carboxylic acids having retinoid-like biological activity
WO1997019062A1 (en) 1995-11-22 1997-05-29 Allergan Substituted aryl or heteroarylamides having retinoid-like biological activity
WO1997040017A2 (en) 1996-04-19 1997-10-30 Novo Nordisk A/S Modulators of molecules with phosphotyrosine recognition units
WO1997048672A2 (en) 1996-06-21 1997-12-24 Allergan Sales, Inc. Substituted tetrahydronaphthalene and dihydronaphthalene derivatives having retinoid and/or retinoid antagonist-like biological activity
WO1999021845A2 (en) 1997-10-27 1999-05-06 Agouron Pharmaceuticals, Inc. 4-aminothiazole derivatives, their preparation and their use as inhibitors of cyclin-dependent kinases
WO2000039108A1 (en) 1998-12-23 2000-07-06 Du Pont Pharmaceuticals Company Thrombin or factor xa inhibitors
WO2000059902A2 (en) 1999-04-02 2000-10-12 Du Pont Pharmaceuticals Company Aryl sulfonyls as factor xa inhibitors
WO2000062778A1 (en) 1999-04-15 2000-10-26 Bristol-Myers Squibb Co. Cyclic protein tyrosine kinase inhibitors
WO2000068191A1 (en) 1999-05-07 2000-11-16 Allergan Sales, Inc. Oxygen, sulfur and nitrogen substituted cyclohexene and cyclohexane derivatives having retinoid-like biological activity
WO2001002385A1 (en) 1999-06-30 2001-01-11 Aventis Cropscience S.A. 1-(quinolin-4-yl)-1h-pyrazole derivatives and their use as fungicides
WO2001002369A2 (en) 1999-07-02 2001-01-11 Agouron Pharmaceuticals, Inc. Indazole compounds and pharmaceutical compositions for inhibiting protein kinases, and methods for their use
US6127382A (en) 1999-08-16 2000-10-03 Allergan Sales, Inc. Amines substituted with a tetrahydroquinolinyl group an aryl or heteroaryl group and an alkyl group, having retinoid-like biological activity
WO2001019798A2 (en) 1999-09-17 2001-03-22 Cor Therapeutics Inc. INHIBITORS OF FACTOR Xa
US20020091116A1 (en) 1999-09-17 2002-07-11 Bing-Yan Zhu Inhibitors of factor Xa
WO2001053268A2 (en) 2000-01-18 2001-07-26 Agouron Pharmaceuticals, Inc. Indazole compounds, pharmaceutical compositions, and their use for mediating or inhibiting cell proliferation
WO2001053274A1 (en) 2000-01-21 2001-07-26 Agouron Pharmaceuticals, Inc. Amide compounds for inhibiting protein kinases
WO2001058869A2 (en) 2000-02-11 2001-08-16 Bristol-Myers Squibb Company Cannabinoid receptor modulators, their processes of preparation, and use of cannabinoid receptor modulators in treating respiratory and non-respiratory diseases
WO2001064642A2 (en) 2000-02-29 2001-09-07 Cor Therapeutics, Inc. Benzamides and related inhibitors of factor xa
WO2001070668A2 (en) 2000-03-23 2001-09-27 Allergan, Inc. Amines substituted with a dihydronaphthalenyl, crhomenyl, or thiochromenyl group, an aryl or heteroaryl group and an alkyl group, having retinoid-like biological activity
WO2001072745A1 (en) 2000-03-29 2001-10-04 Cyclacel Limited 2-substituted 4-heteroaryl-pyrimidines and their use in the treatmetn of proliferative disorders
WO2001081348A1 (en) 2000-04-25 2001-11-01 Bristol-Myers Squibb Company USE OF 5-THIO-, SULFINYL- AND SULFONYLPYRAZOLO[3,4-b]-PYRIDINES AS CYCLIN DEPENDENT KINASE INHIBITORS
WO2001098290A2 (en) 2000-06-19 2001-12-27 Pharmacia Italia S.P.A. Thiophene derivatives active as kinase inhibitors, process for their preparation and pharmaceutical compositions comprising them
WO2002000651A2 (en) 2000-06-27 2002-01-03 Bristol-Myers Squibb Pharma Company Factor xa inhibitors
WO2002018346A1 (en) * 2000-08-31 2002-03-07 Pfizer Products Inc. Pyrazole derivatives and their use as protein kinase inhibitors
WO2002022608A1 (en) 2000-09-15 2002-03-21 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
WO2002022601A1 (en) 2000-09-15 2002-03-21 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
WO2002022603A1 (en) 2000-09-15 2002-03-21 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
WO2002022605A1 (en) 2000-09-15 2002-03-21 Vertex Pharmaceuticals Incorporated Pyrazole compounds useful as protein kinase inhibitors
WO2002034721A1 (en) 2000-10-20 2002-05-02 Bristol-Myers Squibb Pharma Company Acylsemicarbazides and their use as cyclin dependent kinase (cdk) inhibitors
WO2002062804A1 (en) * 2001-02-02 2002-08-15 Pharmacia Italia S.P.A. Oxazolyl-pyrazole derivatives as kinase inhibitors
WO2002064586A2 (en) 2001-02-09 2002-08-22 Vertex Pharmaceuticals Incorporated Heterocyclic inhibitors of erk2 and uses thereof
WO2002070510A2 (en) 2001-03-07 2002-09-12 Bayer Aktiengesellschaft Amino dicarboxylic acid derivatives with pharmaceutical properties
WO2002083624A1 (en) 2001-04-16 2002-10-24 Schering Corporation 3,4-di-substituted cyclobutene-1,2-diones as cxc-chemokine receptor ligands
WO2003014137A1 (en) 2001-08-08 2003-02-20 Cv Therapeutics, Inc. Adenosine a3 receptor agonists
WO2003020217A2 (en) 2001-08-31 2003-03-13 University Of Connecticut Novel pyrazole analogs acting on cannabinoid receptors
WO2003031440A1 (en) 2001-10-12 2003-04-17 Schering Corporation 3,4-di-substituted maleimide compounds as cxc-chemokine receptor antagonists
WO2003040147A1 (en) 2001-11-08 2003-05-15 Pharmacia & Upjohn Company Azabicyclic-substituted-heteroaryl compounds for the treatment of disease__________________________________________________________________________________________________________________________
EP1348707A1 (en) * 2002-03-28 2003-10-01 Ustav Experimentalni Botaniky AV CR (Institute of Experimental Botany Academy of Sciences of the Czech Republic) Pyrazolo[4,3-d]pyrimidines, processes for their preparation and methods for therapy
WO2004000318A2 (en) 2002-06-21 2003-12-31 Cellular Genomics, Inc. Certain amino-substituted monocycles as kinase modulators
WO2004039795A2 (en) 2002-10-29 2004-05-13 Fujisawa Pharmaceutical Co., Ltd. Amide compounds for the treatment of hyperlipidemia

Non-Patent Citations (45)

* Cited by examiner, † Cited by third party
Title
"Current Protocols in Molecular Biology", 2004, JOHN WILEY & SONS INC
"Current Protocols in Molecular Biology", 2004, JOHN WILEY & SONS INC.
"Fiesers'Reagentsfor Organic Synthesis", vol. 1-17, JOHN WILEY
"Organic Syntheses", vol. 1-8, 1995, JOHN WILEY
"PCR Protocols: a guide to methods and applications", 1990, ACADEMIC PRESS
"Pharmaceutical Salts: Properties, Selection, and Use", August 2002, HARDCOVER, pages: 388
"Remington's Pharmaceutical Sciences", MACK PUBLISHING COMPANY
ANGERER, METH. ENZYMOL., vol. 152, 1987, pages 649
BERGE ET AL.: "Pharmaceutically Acceptable Salts", J. PHARM. SCI., vol. 66, 1977, pages 1 - 19
BROWN ET AL., NAT. CELL BIOL., vol. 1, 1999, pages 438 - 443
CAHN, INGOLD, PRELOG, ANGEW. CHEM. INT. ED. ENGL., vol. 5, 1966, pages 385 - 415
CASTRO ET AL., TETRAHEDRON LETTERS, vol. 31, 1990, pages 205
GARCIA-BUSTOS ET AL., EMBO J, vol. 13, 1994, pages 2352 - 2361
HANKS, S.K., HUNTER, T., FASEB J., vol. 9, 1995, pages 576 - 596
HARDIE, G., HANKS, S.: "The Protein Kinase Facts Book. I and II", 1995, ACADEMIC PRESS, SAN DIEGO, CA
HARWELL ET AL., CANCER RES, vol. 60, 2000, pages 481 - 489
HARWELL RM, MULL BB, PORTER DC, KEYOMARSI K., J BIOL CHEM., vol. 279, no. 13, 26 March 2004 (2004-03-26), pages 12695 - 705
HELLMICH ET AL., FEBS LETT, vol. 356, 1994, pages 317 - 21
HELV. CHIM. ACTA., vol. 41, 1958, pages 306 - 309
HILES ET AL., CELL, vol. 70, 1992, pages 419 - 429
HOWE ET AL., CLIN CHEM., vol. 50, no. 1, January 2004 (2004-01-01), pages 80 - 7
JERRY MARCH: "Advanced Organic Chemistry", 1992, JOHN WILEY & SONS
JERRY MARCH: "Advanced Organic Chemistry", 1992, JOHN WILEY & SONS, pages: 109 - 114
JERRY MARCH: "Advanced Organic Chemistry", 1992, WILEY INTERSCIENCE, pages: 131 - 133
JERRY MARCH: "Advanced Organic Chemistry", WILEY INTERSCIENCE
JOHN M. S. BARTLETT: "Molecular Diagnosis of Cancer, Methods and Protocols", March 2004, article "Fluorescence In Situ Hybridization: Technical Overview", pages: 077 - 088
JONES ET AL., J MOL DIAGN., vol. 6, no. 2, May 2004 (2004-05-01), pages 84 - 9
KNIGHTON ET AL., SCIENCE, vol. 253, 1991, pages 407 - 414
KONIG ET AL., CHEM. BER., vol. 103, no. 708, pages 2024 - 2034
KUNZ ET AL., CELL, vol. 73, 1993, pages 585 - 596
L. A. CARPINO, J. AMER. CHEM. SOC., vol. 115, 1993, pages 4397
L. W. DEADY, SYN. COMM., vol. 7, 1977, pages 509 - 514
LEISTER W, STRAUSS K, WISNOSKI D, ZHAO Z, LINDSLEY C.: "Development of a custom high-throughput preparative liquid chromatography/mass spectrometer platform for the preparative purification and analytical analysis of compound libraries", J COMB CHEM., vol. 5, no. 3, 2003, pages 322 - 9, XP001198955, DOI: doi:10.1021/cc0201041
LOWE, E.D. ET AL., BIOCHEMISTRY, vol. 41, 2002, pages 15625 - 15634
NOCIARI, M. M, SHALEV, A., BENIAS, P., RUSSO, C., JOURNAL OF IMMUNOLOGICAL METHODS, vol. 213, 1998, pages 157 - 167
RAJAGOPALAN ET AL., NATURE, vol. 428, no. 6978, 4 March 2004 (2004-03-04), pages 77 - 81
RAJAGOPALAN H, JALLEPALLI PV, RAGO C, VELCULESCU VE, KINZLER KW, VOGELSTEIN B, LENGAUER C., NATURE, vol. 428, no. 6978, 4 March 2004 (2004-03-04), pages 77 - 81
ROSENTRETER U, HUBER U.: "Optimal fraction collecting in preparative LC/MS", J COMB CHEM., vol. 6, no. 2, 2004, pages 159 - 64
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
SCHMIDT, HELV. CHIM. ACTA., vol. 39, 1956, pages 986 - 991
SHEEHAN ET AL., J. AMER. CHEM SOC., vol. 77, 1955, pages 1067
SHEEHAN ET AL., J. ORG. CHEM., vol. 26, 1961, pages 2525
SPRUCK ET AL., CANCER RES., vol. 62, no. 16, 15 August 2002 (2002-08-15), pages 4535 - 9
T. GREEN, P. WUTS: "Protective Groups in Organic Synthesis", 1999, JOHN WILEY AND SONS
YATABE ET AL., BLOOD, vol. 95, no. 7, 1 April 2000 (2000-04-01), pages 2253 - 61

Cited By (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9283226B2 (en) 2003-12-23 2016-03-15 Astex Therapeutics Limited Pyrazole derivatives as protein kinase modulators
US8691806B2 (en) 2003-12-23 2014-04-08 Astex Therapeutics Limited Pyrazole derivatives as protein kinase modulators
US8247576B2 (en) 2003-12-23 2012-08-21 Astex Therapeutics Limited Pyrazole derivatives as protein kinase modulators
US7524868B2 (en) 2004-02-17 2009-04-28 Laboratorios Del Dr. Esteve, S.A. Substituted pyrazoline compounds, their preparation and use as medicaments
WO2006070202A1 (en) * 2004-12-30 2006-07-06 Astex Therapeutics Limited Pyrazole derivatives having kinase modulating activity
WO2006077424A1 (en) 2005-01-21 2006-07-27 Astex Therapeutics Limited Pharmaceutical compounds
WO2006077426A3 (en) * 2005-01-21 2006-09-28 Astex Therapeutics Ltd 4- (2, 6-DICHLOROBENZOYLAMINO) -lH-PYRAZOLE-3 -CARBOXYLIC ACID PIPERIDIN- 4 -YLAMID ACID ADDITION SALTS AS KINASE INHIBITORS
US8404718B2 (en) 2005-01-21 2013-03-26 Astex Therapeutics Limited Combinations of pyrazole kinase inhibitors
US8013163B2 (en) 2005-01-21 2011-09-06 Astex Therapeutics Limited 4-(2,6-dichloro-benzoylamino)-1H-pyrazole-3-carboxylic acid piperidin-4-ylamide acid addition salts as kinase inhibitors
NO340738B1 (en) * 2005-01-21 2017-06-06 Astex Therapeutics Ltd Pharmaceutical compounds
WO2006077426A2 (en) * 2005-01-21 2006-07-27 Astex Therapeutics Limited 4- (2, 6-DICHLOROBENZOYLAMINO) -lH-PYRAZOLE-3 -CARBOXYLIC ACID PIPERIDIN- 4 -YLAMID ACID ADDITION SALTS AS KINASE INHIBITORS
US8293767B2 (en) 2005-01-21 2012-10-23 Astex Therapeutics Limited 4-(2,6-dichloro-benzoylamino)-1H-pyrazole-3-carboxylic acid piperidin-4-ylamide acid addition salts as kinase inhibitors
WO2006077428A1 (en) 2005-01-21 2006-07-27 Astex Therapeutics Limited Pharmaceutical compounds
CN101146791B (en) * 2005-01-21 2013-01-09 阿斯泰克斯治疗有限公司 4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxylic acid piperidin-4-ylamid acid addition salts as kinase inhibitors
WO2006077425A1 (en) * 2005-01-21 2006-07-27 Astex Therapeutics Limited Combinations of pyrazole kinase inhibitors and further antitumor agents
WO2006085685A1 (en) * 2005-02-09 2006-08-17 Takeda Pharmaceutical Company Limited Pyrazole compound
US9914719B2 (en) 2005-04-13 2018-03-13 Astex Therapeutics Ltd. Hydroxybenzamide derivatives and their use as inhibitors of HSP90
US8816087B2 (en) 2005-04-13 2014-08-26 Astex Therapeutics Limited Hydroxybenzamide derivatives and their use as inhibitors of Hsp90
WO2006136829A2 (en) * 2005-06-21 2006-12-28 Astex Therapeutics Limited Pyrazole derivatives and their use as pka and pkb modulators
WO2006136829A3 (en) * 2005-06-21 2007-02-15 Astex Therapeutics Ltd Pyrazole derivatives and their use as pka and pkb modulators
US8343953B2 (en) 2005-06-22 2013-01-01 Astex Therapeutics Limited Pharmaceutical compounds
US8541461B2 (en) 2005-06-23 2013-09-24 Astex Therapeutics Limited Pharmaceutical combinations comprising pyrazole derivatives as protein kinase modulators
US7968582B2 (en) 2005-07-15 2011-06-28 Laborotorios Del Dr. Esteve, S.A. 5(S)-substituted pyrazoline compounds, their preparation and use as medicaments
EP2258358A2 (en) 2005-08-26 2010-12-08 Braincells, Inc. Neurogenesis with acetylcholinesterase inhibitor
EP2258357A2 (en) 2005-08-26 2010-12-08 Braincells, Inc. Neurogenesis with acetylcholinesterase inhibitor
EP2258359A2 (en) 2005-08-26 2010-12-08 Braincells, Inc. Neurogenesis by muscarinic receptor modulation with sabcomelin
EP2275095A2 (en) 2005-08-26 2011-01-19 Braincells, Inc. Neurogenesis by muscarinic receptor modulation
EP2275096A2 (en) 2005-08-26 2011-01-19 Braincells, Inc. Neurogenesis via modulation of the muscarinic receptors
EP2377530A2 (en) 2005-10-21 2011-10-19 Braincells, Inc. Modulation of neurogenesis by PDE inhibition
EP2314289A1 (en) 2005-10-31 2011-04-27 Braincells, Inc. Gaba receptor mediated modulation of neurogenesis
US7589214B2 (en) 2006-04-11 2009-09-15 Vertex Pharmaceuticals Incorporated Thiazoles, imidazoles, and pyrazoles useful as inhibitors of protein kinases
WO2007117692A2 (en) 2006-04-11 2007-10-18 Vertex Pharmaceuticals Incorporated Thiazoles, imidazoles, and pyrazoles useful as inhibitors of protein kinases
CN101460466B (en) * 2006-04-11 2012-06-13 沃泰克斯药物股份有限公司 Thiazoles, imidazoles, and pyrazoles useful as inhibitors of protein kinases
US8236832B2 (en) 2006-04-11 2012-08-07 Vertex Pharmaceuticals Inc. Thiazoles, imidazoles, and pyrazoles useful as inhibitors of protein kinases
US8865751B2 (en) 2006-04-11 2014-10-21 Vertex Pharmaceuticals Incorporated Thiazoles, imidazoles, and pyrazoles useful as inhibitors of protein kinases
WO2007117692A3 (en) * 2006-04-11 2008-01-10 Vertex Pharma Thiazoles, imidazoles, and pyrazoles useful as inhibitors of protein kinases
AU2007235237B2 (en) * 2006-04-11 2011-08-18 Vertex Pharmaceuticals Incorporated Thiazoles, imidazoles, and pyrazoles useful as inhibitors of protein kinases
WO2007129066A1 (en) * 2006-05-05 2007-11-15 Astex Therapeutics Limited 4- (2,6-dichloro-benzoylamino) -1h-pyrazole-3-carboxylic acid (1-methanesulphonyl-piperidin-4-yl) -amide for the treatment of cancer
EP2377531A2 (en) 2006-05-09 2011-10-19 Braincells, Inc. Neurogenesis by modulating angiotensin
EP2382975A2 (en) 2006-05-09 2011-11-02 Braincells, Inc. Neurogenesis by modulating angiotensin
JP2007302617A (en) * 2006-05-12 2007-11-22 Mitsui Chemicals Inc Heterocyclic derivative and method for using the derivative as insecticide
WO2008001101A3 (en) * 2006-06-29 2008-10-02 Astex Therapeutics Ltd Pharmaceutical combinations
WO2008001101A2 (en) * 2006-06-29 2008-01-03 Astex Therapeutics Limited Pharmaceutical combinations
JP2009542608A (en) * 2006-06-29 2009-12-03 アステックス・セラピューティクス・リミテッド Pharmaceutical combination
WO2008007123A3 (en) * 2006-07-14 2008-02-28 Astex Therapeutics Ltd Pharmaceutical compounds
WO2008007122A2 (en) * 2006-07-14 2008-01-17 Astex Therapeutics Limited Combinations of pyrazole derivatives for the inhibition of cdks and gsk's
WO2008007122A3 (en) * 2006-07-14 2008-03-06 Astex Therapeutics Ltd Combinations of pyrazole derivatives for the inhibition of cdks and gsk's
WO2008007123A2 (en) * 2006-07-14 2008-01-17 Astex Therapeutics Limited Pharmaceutical compounds
WO2008007113A2 (en) * 2006-07-14 2008-01-17 Astex Therapeutics Limited Pharmaceutical combinations
JP2009543768A (en) * 2006-07-14 2009-12-10 アステックス・セラピューティクス・リミテッド Pharmaceutical combination
WO2008007113A3 (en) * 2006-07-14 2008-10-23 Astex Therapeutics Ltd Pharmaceutical combinations
WO2008009954A1 (en) * 2006-07-21 2008-01-24 Astex Therapeutics Limited Medical use of cyclin dependent kinases inhibitors
US8338460B2 (en) 2006-10-06 2012-12-25 Msd K. K. 2-pyridinecarboxamide derivative having GK-activating effect
US8916552B2 (en) * 2006-10-12 2014-12-23 Astex Therapeutics Limited Pharmaceutical combinations
US9730912B2 (en) 2006-10-12 2017-08-15 Astex Therapeutics Limited Pharmaceutical compounds
US8653084B2 (en) 2006-10-12 2014-02-18 Astex Therapeutics Ltd. Hydrobenzamide derivatives as inhibitors of Hsp90
US20100179145A1 (en) * 2006-10-12 2010-07-15 Neil James Gallagher Pharmaceutical combinations
US8883790B2 (en) 2006-10-12 2014-11-11 Astex Therapeutics Limited Pharmaceutical combinations
WO2008044041A1 (en) 2006-10-12 2008-04-17 Astex Therapeutics Limited Pharmaceutical combinations
US9428439B2 (en) 2006-10-12 2016-08-30 Astex Therapeutics Ltd. Hydrobenzamide derivatives as inhibitors of Hsp90
US9856234B2 (en) 2006-10-21 2018-01-02 AbbVie Deutschland GmbH & Co. KG Heterocyclic compounds and their use as glycogen synthase kinase 3 inhibitors
US8642598B2 (en) 2006-10-21 2014-02-04 Abbvie Inc. Heterocyclic compounds and their use as glycogen synthase kinase 3 inhibitors
JP2010507653A (en) * 2006-10-27 2010-03-11 コリア リサーチ インスティチュート オブ ケミカル テクノロジイ Aminopyrazole derivative, process for producing the same, and composition for preventing or treating ischemic disease containing the same
US8420824B2 (en) 2006-11-10 2013-04-16 Sanofi Substituted pyrazoles, compositions containing these, method of production and use
US8410286B2 (en) 2006-11-10 2013-04-02 Sanofi-Aventis Substituted pyrazoles, compositions containing these, method of production and use
FR2908409A1 (en) * 2006-11-10 2008-05-16 Sanofi Aventis Sa SUBSTITUTED PYRAZOLES, COMPOSITIONS CONTAINING SAME, PROCESS FOR PRODUCTION AND USE
WO2008065282A2 (en) 2006-11-10 2008-06-05 Sanofi-Aventis Substituted pyrazoles, compositions containing these, method of production and use
AU2007327423B2 (en) * 2006-11-10 2012-09-06 Sanofi-Aventis Substituted pyrazoles, compositions containing these, method of production and use
WO2008065282A3 (en) * 2006-11-10 2008-07-31 Sanofi Aventis Substituted pyrazoles, compositions containing these, method of production and use
EA019454B1 (en) * 2006-11-10 2014-03-31 Санофи-Авентис Substituted pyrazoles, compositions containing these, method of production and use
US7989439B2 (en) 2006-11-10 2011-08-02 Sanofi-Aventis Substituted pyrazoles, compositions containing these, method of production and use
US8497294B2 (en) 2007-03-14 2013-07-30 Astex Therapeutics Limited Compositions comprising (S)-2-amino-1-(4-chlorophenyl)-1-[4-(1H-pyrazol-4-yl)-phenyl]-ethanol as modulator of protein kinases
EP2070925A1 (en) 2007-12-10 2009-06-17 Bayer Schering Pharma Aktiengesellschaft New 2-substituted tiazol-4-carboxylic acid derivatives, their manufacture and use as medicine
EP2070924A1 (en) 2007-12-10 2009-06-17 Bayer Schering Pharma Aktiengesellschaft New 2 hetarylthiazol-4-carboxylic acid derivatives, their manufacture and use as medicine
EP2070916A1 (en) 2007-12-10 2009-06-17 Bayer Schering Pharma Aktiengesellschaft 2-Arylthiazol-4-carboxylic acid derivatives, their manufacture and use as medicine
WO2010099217A1 (en) 2009-02-25 2010-09-02 Braincells, Inc. Modulation of neurogenesis using d-cycloserine combinations
WO2011063115A1 (en) 2009-11-19 2011-05-26 Braincells Inc. Combination of nootropic agent with one or more neurogenic or neurogenic sensitizing agents for stimulating or increasing neurogenesis
US11826365B2 (en) 2009-12-29 2023-11-28 Dana-Farber Cancer Institute, Inc. Type II raf kinase inhibitors
WO2011091033A1 (en) 2010-01-20 2011-07-28 Braincells, Inc. Modulation of neurogenesis by ppar agents
US9200008B2 (en) 2010-07-02 2015-12-01 Aska Pharmaceutical Co., Ltd. Heterocyclic compound and p27Kip1 degradation inhibitor
US10100048B2 (en) 2010-09-27 2018-10-16 AbbVie Deutschland GmbH & Co. KG Heterocyclic compounds and their use as glycogen synthase kinase-3 inhibitors
US9540370B2 (en) 2010-12-30 2017-01-10 Abbvie Deutschland Gmbh & Co., Kg. Heterocyclic compounds and their use as glycogen synthase kinase-3 inhibitors
US10981903B2 (en) 2011-11-17 2021-04-20 Dana-Farber Cancer Institute, Inc. Inhibitors of c-Jun-N-terminal kinase (JNK)
AU2013208104B2 (en) * 2012-01-09 2017-11-23 X-Chem, Inc. Benzhydrol-pyrazole derivatives having kinase inhibitory activity and uses thereof
AU2018201295B2 (en) * 2012-01-09 2019-11-28 X-Chem, Inc. Benzhydrol-pyrazole derivatives having kinase inhibitory activity and uses thereof
US9394256B2 (en) 2012-01-09 2016-07-19 X-Chem, Inc. Benzhydrol-pyrazole derivatives having kinase inhibitory activity and uses thereof
WO2013106432A1 (en) * 2012-01-09 2013-07-18 X-Rx, Inc. Benzhydrol-pyrazole derivatives having kinase inhibitory activity and uses thereof
CN104302289A (en) * 2012-01-09 2015-01-21 X-Rx公司 Benzhydrol-pyrazole derivatives having kinase inhibitory activity and uses thereof
EP2802324A4 (en) * 2012-01-09 2015-07-15 X Rx Inc Benzhydrol-pyrazole derivatives having kinase inhibitory activity and uses thereof
WO2013126283A1 (en) 2012-02-20 2013-08-29 E. I. Du Pont De Nemours And Company Fungicidal pyrazoles
US11697649B2 (en) 2012-04-04 2023-07-11 Biosplice Therapeutics, Inc. Indazole inhibitors of the Wnt signal pathway and therapeutic uses thereof
KR102136628B1 (en) 2013-01-08 2020-07-23 상하이 포선 파마슈티컬 디벨롭먼트 코., 엘티디. Polycyclic substituted pyrazole kinase activity inhibitors and use thereof
AU2014204633B2 (en) * 2013-01-08 2017-07-27 Shanghai Fosun Pharmaceutical Development Co., Ltd. Polycyclic substituted pyrazole kinase activity inhibitors and use thereof
KR20150120966A (en) * 2013-01-08 2015-10-28 차이나 파마슈티칼 유니버시티 Polycyclic substituted pyrazole kinase activity inhibitors and use thereof
RU2655921C2 (en) * 2013-01-08 2018-05-30 Шанхай Фосунь Фармасьютикал Девелопмент Ко., Лтд. Polycyclic substituted pyrazole kinase activity inhibitors and use thereof
US9550792B2 (en) 2013-01-08 2017-01-24 Shanghai Fosun Pharmaceutical Development Co., Ltd. Polycyclic substituted pyrazole kinase activity inhibitors and use thereof
EP2955185A4 (en) * 2013-01-08 2016-06-08 Shanghai Fosun Pharmaceutical Polycyclic substituted pyrazole kinase activity inhibitors and use thereof
US10450285B2 (en) 2013-07-31 2019-10-22 University College Cardiff Consultants Limited 2-benzoylaminobenzamide derivatives as Bcl-3 inhibitors
FR3011239A1 (en) * 2013-10-01 2015-04-03 Univ Claude Bernard Lyon NOVEL DERIVATIVES COMPRISING A PYRAZOLE GROUP AND AN INDOLE GROUP, USEFUL AS INHIBITORS OF KINASE GSK3
US11040957B2 (en) 2013-10-18 2021-06-22 Dana-Farber Cancer Institute, Inc. Heteroaromatic compounds useful for the treatment of proliferative diseases
US10906889B2 (en) 2013-10-18 2021-02-02 Dana-Farber Cancer Institute, Inc. Polycyclic inhibitors of cyclin-dependent kinase 7 (CDK7)
US10870651B2 (en) 2014-12-23 2020-12-22 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinase 7 (CDK7)
WO2016140501A1 (en) * 2015-03-04 2016-09-09 Kainos Medicine, Inc. Pyridine n-oxide for enhancer of zeste homolog 2 inhibitors
US10155765B2 (en) 2015-03-12 2018-12-18 Merck Sharp & Dohme Corp. Carboxamide inhibitors of IRAK4 activity
EP3268367A4 (en) * 2015-03-12 2018-11-21 Merck Sharp & Dohme Corp. Carboxamide inhibitors of irak4 activity
US12098154B2 (en) 2015-03-27 2024-09-24 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
US11325910B2 (en) 2015-03-27 2022-05-10 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
US11142507B2 (en) 2015-09-09 2021-10-12 Dana-Farber Cancer Institute, Inc. Inhibitors of cyclin-dependent kinases
US11667632B2 (en) 2015-11-06 2023-06-06 Biosplice Therapeutics, Inc. 2-(1H-indazol-3-yl)-3H-imidazo[4,5-C]pyridines and their anti-inflammatory uses thereof
US11560378B2 (en) 2015-11-06 2023-01-24 Biosplice Therapeutics, Inc. Treatment of osteoarthritis
US11548872B2 (en) 2016-04-27 2023-01-10 Biosplice Therapeutics, Inc. Isoquinolin-3-yl carboxamides and preparation and use thereof
US12012401B2 (en) 2016-06-01 2024-06-18 Biosplice Therapeutics, Inc. Process for preparing N-(5-(3-(7-(3-fluorophenyl)-3H-imidazo[4,5-c]pyridin-2-yl)-1H-indazol-5-yl)pyridin-3-yl)-3-methylbutanamide
WO2018039324A1 (en) 2016-08-23 2018-03-01 Eisai R&D Management Co., Ltd. Combination therapies for the treatment of hepatocellular carcinoma
EP4218820A2 (en) 2017-03-16 2023-08-02 Eisai R&D Management Co., Ltd. Combination therapies for the treatment of breast cancer
US11083722B2 (en) 2017-03-16 2021-08-10 Eisai R&D Management Co., Ltd. Combination therapies for the treatment of breast cancer
WO2018170447A1 (en) 2017-03-16 2018-09-20 Eisai R&D Management Co., Ltd. Combination therapies for the treatment of breast cancer
CN109705090B (en) * 2017-10-25 2023-06-20 上海君实生物医药科技股份有限公司 Tartaric acid addition salts of 3, 4-disubstituted 1H-pyrazole compounds and crystalline forms thereof
CN109705090A (en) * 2017-10-25 2019-05-03 上海君实生物医药科技股份有限公司 The tartaric acid addition salt and its crystal form of the disubstituted 1H- pyrazole compound of 3,4-
US11220494B2 (en) 2018-04-26 2022-01-11 Pfizer Inc. Cyclin dependent kinase inhibitors
WO2020005807A1 (en) * 2018-06-25 2020-01-02 Dana-Farber Cancer Institute, Inc. Taire family kinase inhibitors and uses thereof
EP3813826A4 (en) * 2018-06-26 2022-07-06 BioSplice Therapeutics, Inc. Methods of treating cancer using a clk inhibitor
US11945803B2 (en) 2018-08-07 2024-04-02 Tosk, Inc. Modulators of RAS GTPase
WO2020033413A3 (en) * 2018-08-07 2020-05-07 Tosk, Inc. Modulators of ras gtpase
WO2020150545A1 (en) * 2019-01-17 2020-07-23 Samumed, Llc Pyrazole derivatives as modulators of the wnt/b-catenin signaling pathway
WO2020150552A3 (en) * 2019-01-17 2020-08-27 Samumed, Llc Methods of treating cartilage disorders through inhibition of clk and dyrk
US11390626B2 (en) 2019-01-29 2022-07-19 Tosk, Inc. Pyrazolopyrimidine modulators of RAS GTPase

Also Published As

Publication number Publication date
KR101204247B1 (en) 2012-11-22
US20060194843A1 (en) 2006-08-31
IL173271A0 (en) 2006-06-11
IS2898B (en) 2014-09-15
MXPA06000794A (en) 2006-08-23
EP1651612A1 (en) 2006-05-03
PL1651612T3 (en) 2012-09-28
JP2006528163A (en) 2006-12-14
KR20060113637A (en) 2006-11-02
US8779147B2 (en) 2014-07-15
JP4681548B2 (en) 2011-05-11
NO20060855L (en) 2006-04-21
US9051278B2 (en) 2015-06-09
EP1651612B9 (en) 2012-09-05
US20120213791A1 (en) 2012-08-23
NZ544756A (en) 2009-09-25
US20110003799A1 (en) 2011-01-06
CY1116298T1 (en) 2017-02-08
CY1112903T1 (en) 2016-04-13
CA2532965C (en) 2013-05-14
BRPI0412259A (en) 2006-08-22
IS8310A (en) 2006-02-17
CA2532965A1 (en) 2005-02-10
MA27936A1 (en) 2006-06-01
US7745638B2 (en) 2010-06-29
TNSN06019A1 (en) 2007-10-03
PL2256106T3 (en) 2015-08-31
BRPI0412259B1 (en) 2019-08-20
US20140371213A1 (en) 2014-12-18
WO2005012256A8 (en) 2005-04-07
US20080200509A1 (en) 2008-08-21
AU2004261459B2 (en) 2008-06-26
NO335069B1 (en) 2014-09-01
IL173271A (en) 2016-03-31
US7385059B2 (en) 2008-06-10
US8080666B2 (en) 2011-12-20
EP2256106A1 (en) 2010-12-01
EG27104A (en) 2015-06-09
US20080269207A1 (en) 2008-10-30
US7825140B2 (en) 2010-11-02
EP1651612B1 (en) 2012-04-11
AU2004261459A1 (en) 2005-02-10
ECSP066298A (en) 2006-07-28
EP2256106B1 (en) 2015-05-06
HK1090041A1 (en) 2006-12-15

Similar Documents

Publication Publication Date Title
EP1651612B1 (en) 3,4-disubstituted 1h-pyrazole compounds and their use as cyclin dependent kinases (cdk) and glycogen synthase kinase-3 (gsk-3) modulators
US20080306069A1 (en) Pyrazole Derivatives for the Inhibition of CDK&#39;S and GSK&#39;S
US20080167309A1 (en) Pharmaceutical Compounds
DK2256106T3 (en) 3,4-disubstituted 1H-pyrazole compounds and their use as cyclin-dependent kinases (CDK) and glycogen synthase kinase-3 (GSK-3) modulators
KR101190964B1 (en) Benzimidazole derivatives and their use as protein kinases inhibitors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480021159.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 06/2005 UNDER (72, 75) DELETE "NAVARRO, EVA, FIGUEROA ¢ES/GB!; 436 CAMBRIDGE SCIENCE PARK, MILTON ROAD, CAMBRIDGE CB4 0QA (GB)."

WWE Wipo information: entry into national phase

Ref document number: 2004261459

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006/00313

Country of ref document: ZA

Ref document number: 200600313

Country of ref document: ZA

ENP Entry into the national phase

Ref document number: 2532965

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 544756

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1020067001424

Country of ref document: KR

Ref document number: PA/a/2006/000794

Country of ref document: MX

Ref document number: 12006500168

Country of ref document: PH

Ref document number: 11336599

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006520896

Country of ref document: JP

Ref document number: 274/CHENP/2006

Country of ref document: IN

Ref document number: 2004743512

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004261459

Country of ref document: AU

Date of ref document: 20040722

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004261459

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: DZP2006000074

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 2006105338

Country of ref document: RU

Ref document number: 06017702

Country of ref document: CO

WWP Wipo information: published in national office

Ref document number: 2004743512

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0412259

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 11336599

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067001424

Country of ref document: KR