WO2005010846A1 - 分散信号制御システム - Google Patents

分散信号制御システム Download PDF

Info

Publication number
WO2005010846A1
WO2005010846A1 PCT/JP2003/009308 JP0309308W WO2005010846A1 WO 2005010846 A1 WO2005010846 A1 WO 2005010846A1 JP 0309308 W JP0309308 W JP 0309308W WO 2005010846 A1 WO2005010846 A1 WO 2005010846A1
Authority
WO
WIPO (PCT)
Prior art keywords
intersection
cycle
control system
offset
signal
Prior art date
Application number
PCT/JP2003/009308
Other languages
English (en)
French (fr)
Inventor
Hisaji Takeuchi
Tokuki Satake
Mikio Ide
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Mitsubishi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd., Mitsubishi Corporation filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to PCT/JP2003/009308 priority Critical patent/WO2005010846A1/ja
Priority to AU2003252237A priority patent/AU2003252237A1/en
Priority to CNB038268310A priority patent/CN100555356C/zh
Publication of WO2005010846A1 publication Critical patent/WO2005010846A1/ja

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control
    • G08G1/082Controlling the time between beginning of the same phase of a cycle at adjacent intersections
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals

Definitions

  • the present invention relates to a signal control system in which a signal controller at each intersection cooperates with each signal controller at an adjacent intersection to automatically determine an individual cycle, split, and offset.
  • the cycle is the display cycle of the signal display, and indicates the time during which the signal display from east-west to north-south turns. If the traffic volume is large, if the cycle is not made large, unfilled traffic will occur, causing traffic congestion. Conversely, if the cycle is too large, the dead time zone in which vehicles do not pass increases, and the delay time increases.
  • the Split is the percentage of the green hour cycle length. The split also increases the dead time and lag time unless an appropriate green time is given in each direction.
  • the offset is the difference in the blue display start timing between adjacent intersections. The blue time at each intersection is shifted in time with the vehicle so that the vehicle does not wait or useless blue time at the intersection. By turning on the lights, the effect of flowing traffic smoothly can be obtained. If the time setting of the offset and the direction to be taken do not conform to the traffic conditions, not only will there be no effect due to the offset, but it will also impede the flow of traffic and generate a large delay time.
  • the purpose of the signal control system is to optimize these three control parameters and reduce the vehicle delay time.
  • all signal controllers in the control area and all the sensors that measure the traffic volume are connected to the central unit, and the central unit controls each controller based on the measured traffic volume. There is a method of determining and instructing the control parameters over time.
  • the entire control area is first divided into small ranges that are connected as traffic flows.
  • the divided area is It is called a sub-area and operates in a common cycle within the sub-area.
  • the common cycle is determined based on the amount of exchange at a pre-selected important intersection.
  • an intersection that is expected to have heavy traffic such as the intersection of national roads, is selected.
  • splits were determined based on the results of manual traffic surveys. In recent years, splits have been automatically calculated from traffic measurement results. The offset focuses on the main routes in the sub-area and uses several patterns according to the traffic volume.
  • the object of the present invention is to provide each signal controller at an adjacent intersection without a large-scale central unit.
  • the purpose is to provide a distributed signal control system in which the signal controllers at each intersection automatically calculate and control each cycle, split, and offset according to changes in traffic conditions.
  • Another object of the present invention is to automatically calculate control parameters according to changes in traffic conditions, thereby greatly reducing the operation and maintenance costs involved in calculating and reviewing control parameters. It is to provide a control system.
  • the distributed control system according to the present invention is configured such that the signal controllers (2 to 26 ) at each intersection ( ⁇ ) are connected by a communication line, and information can be exchanged with the signal controllers at adjacent intersections.
  • the signal controller (1) is preferably capable of measuring each traffic flow ((! ⁇ ⁇ ⁇ ) from the sensor ( ⁇ ⁇ ⁇ :) installed at each inflow channel (S i S j) of the intersection 2 to be controlled. No.
  • the signal controller (1) controls the first stage (5) of calculating the target values of cycle, split, and offset, and the second stage (5 2 ) of adjusting and changing them within a predetermined range. Preferably.
  • the signal controller (1) calculates its own cycle and offset based on the actually measured traffic flow, and also exchanges information with an adjacent intersection via a communication line to determine whether the cycle should be adjusted or not. It is preferable that the judgment can be made by a predetermined evaluation function.
  • the signal controller (1) can calculate the optimal offset that minimizes the delay time between adjacent intersections when the cycle is matched with the adjacent intersection. It is preferable that the signal controller (1) can suppress the adjustment change performed in the second stage until the calculated cycle, split, and offset target values are reached.
  • a distributed signal control system is provided that calculates and controls the distance, split, and offset. In other words, instead of determining a control area such as a sub-area in advance and applying a common cycle in it, the signal control system automatically forms the control area according to traffic conditions while evaluating the delay time. Is provided.
  • a signal control system in which each signal controller automatically generates an offset in the direction of high traffic volume.
  • a distributed signal control system that can greatly reduce operation and maintenance costs for calculating and reviewing control parameters by automatically calculating control parameters according to changes in traffic conditions is provided. Provided.
  • the present invention aims at global optimization by fitting to the extreme and complicated system problems of the centralized signal control system using the central unit and the extreme values of the distributed signal control system.
  • a distributed signal control system that solves both difficult problems is provided.
  • Figure 1 shows one embodiment of a signal control system according to the present invention
  • Figure 2 is a detailed view of the vicinity of intersection 1.
  • Figure 3 shows the cumulative number curve at one intersection, illustrating the delay time caused by signal control
  • Figure 4 shows the relationship between the two intersections
  • Figures 5A and 5B show the cumulative number curve and the delay time between two intersections;
  • Figure 6 shows the delay time caused by the difference between the offset and the traffic arrival time;
  • Figure 7 shows the offset between the two intersections
  • Figures 8A and 8B show the delay times shown in Figure 6 for each of the two intersections
  • Figure 9 shows the delay time of Figure 8 as a single graph
  • Figure 10 is a diagram to explain the traffic flow at the intersection
  • Figure 11 shows the cumulative number curve and the delay time at two intersections with different offsets.
  • Figure 12 compares the increase and decrease of the delay time when the intersection cycle is used independently and when it is adjusted to the adjacent intersection
  • Figure 13 is a diagram to explain the traffic flow at the upstream intersection
  • FIG. 14 shows a software module constituting the signal controller according to the present invention.
  • each of the cross points 1 to l 6 are each controlled object, signals controller 2 i ⁇ 2 6 is provided.
  • the intersection lile may be generically described as an intersection 1
  • the signal controllers 2 to 26 may be generically described as a signal controller 2.
  • Signal controllers at adjacent intersections are interconnected by communication lines. Immediate Chi, the signal controllers 2 lambda is connected by a communication line with each of the signal control device 2 2 to 2 5, the signal controller 2-5 is connected to the signal controller 2 1 5 2 6. In Fig. 1, the signal lines are shown as communication lines that connect the signal controllers one-to-one. .
  • Signal controllers 2 as shown in FIG. 2, a detector to 4 4 provided in each inlet channel 3 SA, measures the traffic volume qiq come flowing into the intersection 1.
  • These sensors may be of the type currently used, such as ultrasonic type and image type.
  • the location and number of detectors vary depending on the shape of the road at the intersection and the degree of importance.
  • Figure 3 shows that, when the traffic flow from an inflow channel at intersection A has a constant average value of avgM (for Z cars), the red time length in the inflow direction redA (seconds) and the blue time length GreenA (seconds) and the cycle length cycle (seconds) It shows how the cumulative number of passing vehicles changes. Vehicles that were stopped while the traffic sign at intersection A was red were turned to blue, and then passed through intersection A at the saturated traffic flow rate Msat (for Z cars), waiting for a traffic light. If all the stopped vehicles disappear, the incoming traffic flow will be able to pass through intersection A as it is.
  • avgM for Z cars
  • the delay time of this inflow channel at intersection A is the area of the shaded area in Fig. 3 per cycle
  • Fig. 3 the delay time when the incoming traffic flow is constant avgM (total Z) is described. However, the flow is no longer constant because of the signal control at the adjacent intersection. However, in order to determine the cycle length and split corresponding to the traffic flowing into the intersection A, it is practically sufficient to interpret the traffic flow as a constant value based on the time average. Often. Because the flow rate at time t is M (t), and all the flow rate is handled in one cycle of green time green (seconds), if the saturated traffic flow rate is Msat,
  • the cumulative number curve passing through it has a step-like shape with periodicity for each cycle.
  • the cumulative number curve that appears at intersection B after traveling distance L from intersection A is L on the time axis. Only Appears as a shifted cumulative number curve.
  • V is the speed of the vehicle traveling between intersections AB.
  • the vehicle group spreads while traveling the distance L, so the cumulative number curve passing through the intersection A does not become the cumulative number curve flowing into the intersection B in the same form, Basic values such as average flow rate are stored.
  • the cumulative number curve Since the cumulative number curve has periodicity for each cycle, the cumulative number curve for the distance traveled by the time shift amount of 1 cycle, 2 cycles, 3 cycles,... Has the same evening shape. If there is a time shift LZV due to the travel time, the remainder can be obtained by dividing LZV by the cycle, that is, the cumulative number of curves at the same timing as when there is a time shift of LZv mod cycle.
  • Figure 5A shows the cumulative number curve when 5 t (A) is positive, and Fig. 5B when it is negative.
  • the shaded area indicates the total delay time generated at intersection B due to the offset deviating from the optimal value by ⁇ 5 t (A).
  • the horizontal axis is ⁇ 5t (A) and the vertical axis is the delay time per intersection at the intersection B (5t (A)).
  • When ( ⁇ ) is greenB and -redB, the delay time is the maximum value
  • split is the split at intersection B.
  • the flow from intersection A to intersection B has been described.
  • the same equation can be obtained for the flow from intersection B to intersection A. Assuming that the time average flow from intersection B to intersection A is avg m, if 3t (B) is positive, the delay time per unit time in 0 ⁇ (5t (B) greenA is:
  • Figure 7 shows the offset offset (A) when viewing intersection B from intersection A
  • the relationship of the offset offset (B) when viewing the intersection A from the point B is shown.
  • the relationship of 5t (A) and 5t (B) is
  • Figures 8A and 8B graphically represent the delay time (6t (A)) at intersection B and ⁇ t (A), St (B) at intersection A.
  • ⁇ 5t (A) on the horizontal axis and (5t (B) on the vertical axis)
  • the bivariate function that gives delay ((5t (B)) is shown in Fig. 9.
  • the values of the coordinates (6t (A), 5t (B)) on the graph are the diamonds surrounding the point, just like the contour lines.
  • the dotted line indicates the range in which the constraints of 5t (A) and St (B) can be moved.
  • the coordinate position that takes the smallest value on this line is the combination of 3t (A) and ⁇ t (B) that minimizes the delay between intersections AB. From this, the optimal offset (A) and offset (B) The value can be obtained.
  • Fig. 10 if the average traffic flows from intersections B and E adjacent to intersection A to intersection A are avgMba and avgMea, respectively, the number of vehicles flowing in one cycle is avgMbaX cycle and avgMeaX cycle. Need to handle the vehicle at intersection A during the blue hour cvcleXsplit (BE).
  • split (BE) represents a split assigned to intersections B, A, and E. Expressing this requirement in an expression,
  • MsatBE is the saturated traffic flow rate at intersections B, A and E.
  • intersections C, A, and D are
  • split (BE) is the split assigned to intersections B, A, and E
  • M satCD is the saturated traffic flow rate at intersections C, A, and D.
  • the cycle, split (CD), and split (BE) obtained here are the minimum values necessary for the process.
  • the calculated cycle is rounded up to an integral multiple of 2 seconds, for example.
  • the procedure up to this point is the starting point of the cycle and split in the first stage.
  • the signal controllers at intersections B, C, D, and E adjacent to intersection A have the same cycle
  • the signal controller at Intersection A exchanges information on the cycle and split values calculated by each signal controller at the adjacent intersection via the communication line.
  • the intersection A indicates the timing at which the average flow rate to the intersection A among these intersections is the blue display start of the nearest intersection of the dog. Based on, select the optimal offset for intersection A.
  • the selection method uses the two-dimensional delay function shown in Fig. 9.
  • intersection B has the same cycle as intersection A, and that the average flow from intersection B to intersection A is the largest.
  • an offset is taken between intersections A and B.
  • the worst case delay time redXMin (avgMab, avgMba) can do it.
  • Fig. 9 we use Fig. 9 to derive a more accurate delay time.
  • Intersection A will be the nearest cycle closer to its own cycle. Choose, and decide whether to keep your own cycle as the one you found or match it to the nearest cycle.
  • the offset can be selected so that the delay time can be reduced, and the longer cycle increases dead time and delay time at its own intersection. , And the cycle change, and the gain and loss of the portion where the offset effect is lost and the delay time becomes large as a result is compared. As a result of the comparison, it is determined whether the cycle can be changed.
  • a specific example of determining whether a cycle can be changed will be described. In the example of Fig.
  • intersections B to E adjacent to intersection A calculate different cycles, it is determined whether intersection A is longer than its own cycle and matches the cycle of the calculated intersection. .
  • Fig. 12 shows an example of a comparison table for determining whether or not cycle C a of intersection A is aligned with cycle C b of intersection B. This table compares the advantages and disadvantages of the cycle change between all intersections adjacent to intersection A.
  • control parameters (cycle, split, offset) are determined in the first stage. These are passed to the second stage as target values. At the same time, in the first stage, information on the cycle and split with the adjacent intersection is exchanged again, and the above calculations are repeated.
  • the running control parameter is gradually changed to a new target value.
  • the split and offset are adjusted within a certain range in the second stage according to the actual traffic conditions.
  • the control method is to change the control parameters in fixed plus and minus steps, and to determine whether the actual measured delay time can be reduced as a result.
  • the method of determining the cycle and split based on the actual measurement of the average incoming traffic flow would cause a control delay.
  • responsiveness to traffic fluctuations will deteriorate.
  • the linear combination of the traffic flow measured at each inflow channel of the adjacent intersection is treated as the average flow.
  • the following forms are possible.
  • avgM al (t, week) XMl (t) + a2 (t, week) XM2 (t) + a3 (t, week) X 3 (t)
  • Ml (t), M2 (t), and M3 (t) are the measured values of the traffic flow flowing from each inflow road at the adjacent intersection B on the upstream side. Some of these will flow into intersection A.
  • al (t, week), a2 (t, week), a3 (t, week) are the coefficients of the linear combination. Since it differs at time t, weekday, and at each intersection, the average flow rate at each intersection is measured, and the linear coupling coefficient is learned so as to reduce the error from that.
  • ARMA autoregressive model
  • neuro and reinforcement learning may be used as the learning method.
  • FIG. 14 shows an example of a soft module configuration of the signal controller 1 for realizing the signal control system of the present invention.
  • Traffic flow measurement module 6 Measures the traffic volume from the sensor.
  • Communication module 6 line information exchange connected through a communication line with an adjacent intersection la.
  • Cycle Z Split planning module 6 based on the actually measured traffic flow, the cycle of the minimum required length to its intersection as described above, to realize the function of calculating a Supuritsuto.
  • Offset planning module 6 4 calculates an optimum offset between the adjacent intersection as described above. This offset planning module 6 4, combined cycle / split planning module 6 3 described above, the first stage 5.
  • Control execution module 6 5 is a second stage 5 2, match the target value of the control path lame Isseki calculated in the first step is a portion that actually controls the signal lamp device. As described above, once the target value is reached, the split and offset are adjusted and changed according to the traffic conditions at that time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

 共通サイクルを持つ範囲を予め決めることなく,各信号制御機が隣接の交差点の信号制御機と連携を取りながら,個々のサイクル,スプリット,オフセットが最適となるよう自動的に決定していく分散信号制御システムを提供する。 本発明による分散制御システムは,各交差点(11~16)の信号制御機(21~26)を通信回線で接続し,隣接の交差点の信号制御機と情報交換できるようにする。個々の信号制御機は,自身の交差点に流入してくる各流入路の交通流量を計測し,それを基に自身の交差点で最小限必要なサイクル,スプリットを算出する。そして,上記通信回線を介して隣接の交差点と情報交換をし,サイクルを合わせるか,合わせないかを,予め決められた評価関数によって判断する。サイクルを合わせる場合には最適なオフセットも算出する。これらのサイクル,スプリット,オフセットを目標値とし,目標値へ移行後は現状の交通状況に合わせ,スプリット,オフセットを予め決められた範囲内で調整変更できるようにする。

Description

明細書
分散信号制御システム 技術分野
本発明は,各交差点の信号制御機が隣接交差点の各信号制御機と相互に連携し, 個々のサイクル, スプリット, オフセットを自動的に決定する信号制御システム に関する。 背景技術
交通信号の制御パラメ一夕の最適化は,道路交通を円滑にする上で重要である。 制御パラメータは, サイクル, スプリット, オフセットの 3つがある。 サイクル は, 信号表示の表示周期であり, 東西方向から南北方向への信号表示が一周する 時間を示す。 交通量が多くなれば, サイクルを大きくしないと捌け残りが発生し 渋滞の要因となる。 逆に, サイクルが大きすぎれば, 車両が通過しない無駄時間 帯が増えるため, また遅れ時間が増えることになる。
スプリットは, 青時間のサイクル長さに占める割合である。 スプリットも, そ れぞれの方向ごとに適切な青時間を与えなければ, 無駄時間や遅れ時間が増加す る。 オフセットは, 隣接する交差点とのあいだの青表示開始タイミングのずれで あり, 交差点で待ちや無駄な青時間が生じないよう, 車両に走行に合わせ, 時間 をずらせて各交差点の青時間を順番に点灯していくことで, 円滑に交通を流す効 果を得ることができる。 オフセットの時間設定や取るべき方向が, 交通状況に則 していなければ, オフセットによる効果が無いばかりか, 逆に交通の流れを阻害 し,大きな遅れ時間を生む要素になる。これら 3つの制御パラメータを最適化し, 車両の遅れ時間をより小さくしていくことが信号制御システムの目的である。 信号制御システムの一つとして, 制御領域内の全ての信号制御機と, 交通量を 計測する全ての感知器とを中央装置に接続し, 計測された交通量を基に中央装置 が各制御機の制御パラメ一夕を決定し指示する方式がある。
この方式では, 制御パラメータの算出にあたり, まず制御領域全体を, 交通の 流れとして繋がりを持つ小規模な範囲に事前に分割している。 分割された領域は サブエリアと呼ばれ, サブエリア内は共通のサイクルで運用する。 共通サイクル は, あらかじめ選定された重要交差点の交流量を基に求めるのが一般的である。 重要交差点は, 国道が交差するなど, 交通量が多いと想定される交差点が選ばれ る。 スプリットは, 従来は人手による交通量調査結果を基に決めていたが, 近年 は交通量計測結果から, 自動で算出するようになってきている。 オフセットは, サブエリア内の主要路線に着目し, 交通量に合わせていくつかのパターンを切換 えて使用している。 例えば, 西向きの交通量が多い時間帯では東から西へオフセ ットを取ったパターンを, 逆に東向きの交通量が多い時間帯では西から東へオフ セットを取ったパターンを使用する。 スプリットと同様, 近年は交通量計測結果 に基づき, 自動でオフセットパターンを生成する研究がなされている。
サブエリァ内で共通サイクルを適用する上記方式では, 重要交差点以外の交差 点では交通量が少ないにも係わらず, 重要交差点において求めたサイクルが適用 されることになる。 このため, 無馬太な青時間ができ, 遅れ時間が生じている。 ま た, 主要路線に着目して作成したオフセットパターンや, 予め選定したサブエリ ァ, 重要交差点は, 時々刻々の実際の交通状況に則しているとは言えない。 路線 に建つ店舗の移り変わりやイベントの開催等に応じて見直す必要もある。
中央装置が制御を実行する上記方式においても, 交通状況に応じて自動的にサ ブエリァゃ重要交差点を選定し,制御パラメ一タを自動計算することは可能だが, 制御する信号制御機が増えるに従い, 中央装置の計算が膨大且つ複雑になるため 現実には難しい。
また, 他の信号制御システムとして, 各信号制御機が個々に制御を実行する分 散方式の信号制御システムが考えられつつある。 しかしながら, このような分散 方式で, 個々の信号制御機の制御で, 制御領域全体を安定的にかつ最適に制御す ることは難しく, 適切な方法が提案されていないのが現状である。 あくまでも制 御の主体は中央装置とし, 各交差点の信号制御機で実行する制御は, 中央装置が 決定した制御パラメ一夕を, その交差点の交通状況に応じて調整するだけにとど まっている場合が多い。
発明の開示
本発明の目的は, 大規模な中央装置を持たずに, 隣接交差点の各信号制御機と 連絡し, 交通状況の変化に応じて, 各交差点の信号制御機が自動的に偭々のサイ クル, スプリット, オフセットを算出し制御を行う分散信号制御システムを提供 することにある。
本発明の他の目的は, 交通状況の変化に応じた制御パラメ一夕を自動的に算出 することにより, 制御パラメ一夕の算出や見直しにかかる運用費用および保守費 用を大幅に低減できる信号制御システムを提供することにある。
また, 本発明の他の目的は, 集中型, 分散型を問わず, 既存の信号制御システ ムに存在する, 最適な制御パラメータを決定するときに現れる, 複数の最適点の 極値に陥ることなく, 真の最適点を選択する制御アルゴリズムを提供することに ある。
本発明による分散制御システムは, 各交差点 ( 〜 ) の信号制御機 (2 〜2 6) を通信回線で接続し, 隣接の交差点の信号制御機と情報交換できるよう に構成されている。
信号制御器 (1 ) は, 制御対象である交差点 2の各流入路 (S i S j に設 けた感知器 ( 丄〜 ^: から, 各交通流量 ( (! 丄〜 ^ を計測できることが好 ましい。
信号制御機 (1 ) は, サイクル, スプリット, オフセットの目標値を算出する 第一段階(5 と, 予め決められた範囲内でそれらを調整変更する第二段階(5 2) とに分かれた制御ができることが好ましい。
信号制御機 (1 ) は, 実測した交通流量を基に, 自身のサイクルとオフセット を算出するとともに, 通信回線を介して隣接の交差点と情報交換をし, サイクル を合わせるか, 合わせないかを, 予め決められた評価関数によって判断できるこ とが好ましい。
信号制御機 (1 ) は, 隣接の交差点とサイクルを合わせたとき, その交差点間 での遅れ時間が最小となる, 最適なオフセットを算出できることが好ましい。 信号制御機 (1 ) は, 算出したサイクル, スプリット, オフセットの目標値に 到達するまでのあいだは,第二段階で行う調整変更を抑制できることが好ましい。 本発明により, 大規模な中央装置を持たずに, 隣接交差点の各信号制御機と連 絡し, 交通状況の変化に応じて, 各交差点の信号制御機が自動的に個々のサイク ル, スプリット, オフセットを算出し制御を行う分散信号制御システムが提供さ れる。 すなわち, 予めサブエリアなどの制御範囲を決め, その中で共通のサイク ルを適用するのではなく, 遅れ時間を評価しながら, 交通状況に応じて制御範囲 が自動的に形成される信号制御システムが提供される。 さらに, サブエリア内で パターン化されたオフセットを適用するのではなく, 各信号制御機が交通量の多 い方向に, 自動的にオフセットが生成される信号制御システムが提供される。 また, 本発明により, 交通状況の変ィ匕に応じた制御パラメータが自動的に算出 されることにより, 制御パラメータの算出や見直しにかかる運用費用および保守 費用を大幅に低減できる分散信号制御システムが提供される。
また, 本発明により, 中央装置による集中型の信号制御システムがもつ, 膨大 で複雑化するシステムの問題と, 分散型の信号制御システムがもつ, 極値に嵌つ て大局的最適化へ向かっていきにくい問題を, ともに解消する分散信号制御シス テムが提供される。 図面の簡単な説明
図 1は, 本発明による信号制御システムの実施の一形態を示す;
図 2は, 交差点 1の近傍の詳細図である。
図 3は, 一つの交差点での累加台数カーブであり, 信号制御により生ずる遅れ 時間を説明する図である;
図 4は, 2交差点間の関係を示した図である;
図 5 A, 5 Bは, 2交差点間での累加台数カーブと遅れ時間を表す図である; 図 6は, オフセットと交通量到着時刻とのずれによって生じる遅れ時間を表 す;
図 7は, 2交差点間のオフセットを示したものである;
図 8 A, 8 Bは, 図 6で表した遅れ時間を, 2交差点それぞれについて表した ものである;
図 9は, 図 8の遅れ時間を, 一つのグラフで表現した図である;
図 1 0は, 交差点の交通流量を説明するための図である;
図 1 1は, オフセットが異なる 2交差点での累加台数カーブと遅れ時間を表 す;
図 1 2は, 交差点のサイクルを独自に用いる場合と, 隣接の交差点に合わせた 場合の遅れ時間の増減を比較した図である;
図 1 3は, 上流交差点の交通流量を説明するための図である;
図 1 4は,本発明による信号制御機を構成するソフトウエアモジュールを示す。 発明を実施するための最良の形態
以下, 添付図面を参照しながら, 本発明による分散信号制御システムの実施の 一形態を説明する。
本発明による信号制御システムは, 図 1に示すように, 各制御対象である交差 点 1 〜l 6のそれぞれに, 信号制御機 2 i〜2 6が設けられる。 交差点 l i l e は総称して交差点 1と記載されることがあり, 信号制御機 2ェ〜 2 6は総称して 信号制御機 2と記載されることがある。
隣接する交差点の信号制御機は, 通信回線によって相互に接続されている。 即 ち,信号制御機 2 λは信号制御機 2 2〜 2 5のそれぞれと通信回線により接続され, 信号制御機 2 5は信号制御機 2 1 5 2 6と接続されている。 図 1では, 各信号制御 機間を 1対 1に接続する通信回線で示されているが, 通信の形態はこの限りで はなく, 集積装置を用いた形態や無線を利用した形態でも構わない。
信号制御機 2は, 図 2に示すように, 各流入路 3 S Aに感知器 〜4 4を 設け, 交差点 1に流入してくる交通量 q i q を計測する。 これらの感知器は, 超音波式や画像式など, 現状で多用されているもので良い。 感知器の設置位置や 個数は, 交差点の道路形状や重要度等によって変わるものであり, 一方また, 本 発明による信号制御システムの制御方式には特別な感知器条件は存在しないため, ここでは言及しないでおく。
本発明による信号制御システムの制御方式を説明する前に, 本制御方式での基 本原理を説明する。
図 3は, 交差点 Aの, ある流入路から流入する交通流量が, 時間平均で一定値 avgM (台 Z分) の場合に, その流入路方向の赤時間長さ redA (秒), 青時間 長さ greenA (秒), サイクル長さ cycle (秒) によって, その交差点 Aを通 過する車両の累加台数がどのように変わるかを示している。 交差点 Aの信号表示 が赤のあいだ停止させられていた車両は, 信号表示が青に変わった後, 飽和交通 流率 Msat (台 Z分) で順次交差点 Aを通過していき, 信号待ちしていた停止車 両が全て無くなれば, 流入する交通流量がそのまま交差点 Aを通過できるように なる。
結果として, 交差点 Aのこの流入路での遅れ時間は, 1サイクルあたり図 3の斜 線部分の面積,
( 1 / 2 ) X red A X avgM X cycle
となる。 これを単位時間あたりの遅れ時間で表せば,
( 1 / 2 ) XredA XavgM
となる。 本方式の基本原理では, この累加台数の表現を用いて, 信号制御による 遅れ時間を評価する。
図 3では, 流入する交通流量が一定 avgM (合 Z分) であるときの遅れ時間 を説明したが, 実際には隣接交差点での信号制御の影響で, 一定の流れでは無く なっている。 しかしながら, その交差点 Aに流入してくる交通流量にみあうサイ クル長さ, スプリットを決めるためには, 時間平均値でもって一定とする交通流 量と解釈しても, 実用上は十分である場合が多い。 なぜなら, 時刻 t での流量 を M ( t )として, 1サイクルの青時間 green (秒) でその流量全てを捌くために は, 飽和交通流率を Msatとすれば,
cycle
fM(t)dt = avgM - cycle < green - Msat ... ( 1 )
o の関係が成立している。 このことからも判るように, 瞬時毎の交通流量 M ( t )を 知らなくても, 平均流量 avgMがわかっていれば, 必要なサイクル長さ, スプ リットを求めることができる。
図 3に示すように, 交差点 Aの信号制御の影響を受け, そこを通過する累加台 数カーブは,サイクル毎の周期性をもつ階段状になっている。図 4に示すように, 交差点 Aに隣接する交差点を Bとし, その間の距離を Lとしたとき, 交差点 Aか ら距離 Lを走行して交差点 Bに現れる累加台数カーブは, 時間軸上で L だけ シフトした累加台数カーブとして現れる。 ここで, Vは交差点 AB間を走行する 車両の速度である。 現実には, 距離 L を走行するあいだに車群の拡散があるの で, 交差点 Aを通過した累加台数カーブが, そのまま同じ形で交差点 Bへ流入す る累加台数カーブにはならないが, その時間平均流量など基本的な値は保存され ている。
累加台数カーブはサイクル毎の周期性をもつので, 時間シフト量 1 cycle, 2 cycle, 3 cycle, . . . だけ走行した距離での累加台数カーブは, 同じ夕イミ ングの形状になる。 走行時間による時間シフト量 LZVがあったときは, LZV を cycleで割った余り, すなわち LZv mod cycleの時間シフト量があった ときと同じタイミングの累加台数カーブが得られるので, 今後 LZVのかわりに
L/v mod cycleを使うことにする。
交差点 Aの信号表示が赤から青に変わってから, LZV mod cycle の時間が 経過したときに, 交差点 Bでの信号表示がやはり赤から青に変わるとしたら, 車 群は交差点 Bで遮られることなく通過できる。 このときの交差点 Aから見た交差 点、 Bのオフセットを offset (A)で表すと, offset (A) =L/V mod cycle に なっている。 すなわち, L/V mod cycle - offset (A) = 0 であれば, 交差 点 Aから交差点 Bへのオフセットのタイミングが最適にとられていることになる。 次に, LZv mod cycle - off set (A) = (5 t ( A)が, 0で無い場合を考える。 5 t (A)がプラスのときは, 交差点 Aから交差点 Bに向かう車群が, 到着する t (A)時間前に, 交差点 Bの信号表示が赤から青に変わることを意味している。 逆に, <5 t (A)がマイナスのときは, 交差点 Aから交差点 Bへの車群が, 到着 して 5 t (A)時間後に, 交差点 Bの信号表示が赤から青に変わることを意味して いる。
交差点 Aから交差点 Bへの方向について, (5 t (A)がプラスの場合の累加台数 カーブを図 5 Aに, またマイナスの場合のそれを図 5 Bに示す。 それぞれの図に おいて, 斜線部分の面積が, オフセットが最適な値から <5 t (A)ずれたことによ る, 交差点 Bで生じる遅れ時間の合計を表していることになる。
図 5 Aを使って, (5 t (A)がプラスの場合の遅れ時間を評価すると, 0< <5 t (A) く greenBのあいだでは, 単位時間あたりの遅れ時間 delay ( (5 t (A) )は, delay ( δ t (A) ) = δ t (A) XavgMXredB/greenB
になる。 9 66];6く61: )く07016では,
delay ( δ t (A) ) = (cycle- 5t(A)) XavgM
となる。
同じように, 図 5 Bから St(A)がマイナスの場合を評価すると, 0><5t(A) > -redBでの単位時間あたりの遅れ時間 delay ( δ t (A) )は,
delay ( (5 t(A) )= - δ t(A) XavgM
-redB><5t(A)> -cycleでは,
delay ( (5 t (A) ) = (cycle- (- (5 t(A) ) ) X avgM X red B / green B となる。
図 6は, 横軸に <5t(A), 縦軸に交差点 Bでの単位時間あたりの遅れ時間 delay( 5t(A))をとつてグラフに表したものである。 δΐ:(Α)が greenBおよ び- redBの場合に, 遅れ時間は最大値
delay ( δ t(A) )max=cycleX (1一 split) X avgM
を取ることが分かる。 ここで, splitは交差点 Bにおけるスプリットである。 上述した内容は, 交差点 Aから交差点 Bへの流れについて説明したが, 逆に交 差点 Bから交差点 Aへの流れについても同様の式が得られる。 交差点 Bから交差 点 Aへの時間平均流量を avg mとすれば, 3t(B)がプラスの場合, 0<(5t(B) く greenAでの単位時間あたりの遅れ時間は,
delay( δ t (Β) ) = δ t(B) Xavg mXredA/ greenA
greenAく δ t (A)く cycleでは,
delay ( δ t(B) ) : ( cycle- (5 t(B) ) X avg m
で表される。 δΐ:(Β)がマイナスの場合, 0〉6t(B)> -redAでの単位時間あ たりの遅れ時間は,
delay( (5t(B) )= - (5t(B) Xavg m
-redA> δ t(B)> -cycleでは,
delay ( δ t (B) ) = (cycle- δ t(B) ) Xavg mX red A /green A
となる。
図 7は, 交差点 Aから交差点 Bを見たときのオフセット offset(A)と, 交差 点 Bから交差点 Aを見たときのオフセット offset(B)の関係を表している。 こ の図力、ら分力るように, offset (A) + offset (B) = cycle の関係が、ある力、 ら, (5t(A), 5t(B)の関係も,
δ t{A)=L/v mod cycle - offset (A),
ά t(B)=L/v mod cycle - offset(B),
から,
δ t(A) + (5 t(B) = 2 X (L/V mod cycle) - cycle
となる。 この式から, 3セ(&)と(31:(8)とは, 独立して最適な値を選択すること はできないことが分かる。
図 8 A, 8 Bは, 交差点 Bでの遅れ時間 delay ( 6t(A) )と、 交差点 Aでの δ t(A), St(B)をグラフに表したものである。 <5t(A)を横軸に, また (5t(B)を 縦軸に取り,座標 (δ t(A), δ t(B))で ½:, delay ( (5 t (A) ) +delay( (5 t(B) ) を与える二変数関数を図 9に示す。 グラフ上の座標 (6t(A), 5t(B)) の値は, 等高線と同じように, その点を囲う菱形の線が太いほど大きな値を取ることを示 す。 点線で表された線は, (5t(A)と St(B)との制約条件を示すが動くことがで きる値域を示しており, この線上で最も小さな値を取る座標位置が, 交差点 AB 間での delayが最小になる 3t(A), δ t (B)の組み合わせであり, これより offset (A), offset (B)の最適値を求めることが出来る。
図 9から分かるように, 5t(A), dt(B)が点線上を移動していくと, 閧数値 が極小値を取る座標がいくつか出てくる場合があり, 微小な刻み幅で探索する方 法では, このうちの最小値を求めることが現実的には出来なくなる。 従来の単純 な数理計画法を適用するのではなく, まず図 9に基づいて最小値の周辺を求め, 次にその周辺で微小刻みの探索をする, 2段階の探索が必要なことを示している。 以上の基本原理を用いて, 本発明による信号制御システムの制御方式を説明す る。
図 10において、 交差点 Aに隣接する交差点 B, Eから, 交差点 Aに流入して くる平均交通流量をそれぞれ avgMba, avgMeaとすると、 1 cycleのあいだ に流入する車両台数 avgMbaX cycle台, および avgMeaX cycle台の車両 を, 青時間 cvcleXsplit(BE)のあいだに交差点 Aで捌く必要がある。 ここで、 split (BE)は交差点 B, A, E方向に割り当てるスプリットを表す。 この必要 条件を式に表現すると,
MAX (avgMba, avgMea) < split (BE) XMsatBE
となる。 MsatBEは交差点 B, A, E方向の飽和交通流率である。
同様に, 交差点 C, A, D方向での必要条件は、
MAX (avgMca, avgMda) く split (CD) XMsatCD
となる。 split (BE)は交差点 B, A, E方向に割り当てるスプリット, また M satCDは交差点 C, A, D方向の飽和交通流率とする。
交差点 B, A, E方向の青時間は, そのときに歩行者が横断できる歩行者青時 間長さ ped— timeBE を保証する必要があり, 同様に交差点 C, A, D方向の青 時間についても ped— timeCD の時間が必要である。 したがって, 以下の関係式 も必要条件である。
cycle X split (BE) > ped— timeBE
cycle split (CD) > ped—timeCD
さらに, 交差点 B, A, E方向, あるいは交差点 C, A, D方向のいずれにも 割り当てられない損失時間 λがあり, 以上を纏めると, 交差点 Αのサイクル長 さ, およびそのときのスプリットは以下に式で表される。
split (CD) MAX { Max (avgMca, avgMda) /MatCD, ped—timeCDZ cycle }
split (BE) > MAX { Max (avgMba, avgMea) XMsatBE, ped— timeBE cycle }
cycle=A/' (1一 split (CD) - split (BE))
ここで求めた cycle, split (CD), split (BE)は, 求められた経緯からし て必要最小限の値である。 実用上はこれで算出した cycle を, たとえば 2秒の 整数倍の値等に繰り上げて使用する。 そのとき, スプリット split(CD), split(BE)は, cycle=A/ (l - split (CD) - split (BE)) が依然として成 立するように、 元の値から比例配分で増やせば良い。 ここまでの手続きが、 第 1 段階でのサイクル, スプリットの出発点となる。
交差点 Aの隣接交差点 B, C, D, Eの信号制御機でも同様に, サイクル, ス ブリットの計算をしているから, 交差点 Aの信号制御機は, それら隣接交差点の 各信号制御機が算出したサイクルおよびスプリットの値を, 通信回線経由で情報 交換する。 情報交換の結果, 隣接交差点のなかに同じサイクルを算出している交 差点があれば、 交差点 Aは, それらの交差点のうち, 交差点 Aへの平均流量が最 犬の隣接交差点の青表示開始タイミングを基準として, 交差点 Aの最適なオフセ ットを選択する。 選択の方法は図 9の二次元遅れ関数を用いる。
例えば, 交差点 Bが交差点 Aと同じサイクルであり, かつ交差点 Bから交差点 Aへの平均流量が最大であるとする。 そのために, 交差点 A, Bのあいだでオフ セットを取ることを想定する。 交差点 Aから交差点 Bへ平均流量 avgMabが, また 交差点 Bから交差点 Aへ平均流量 avgMba が流れているとした場合, 交 差点 A B間のオフセッ卜に優先オフセットを用いるとすれば, 最悪でも遅れ時間 を redXMin ( avgMab, avgMba)にはできる。 これより正確な遅れ時間を出す ために図 9を使って導出する。
交差点 Aの隣接交差点で, 同じサイクルを算出した交差点であっても, 交差点 Aへの平均流量が最大でない場合にはオフセットは取らない。 交差点 A B間でォ フセットが選択できない場合は, 最大の遅れ時間は,
redX (avgMab + avgMba)
となる。
つぎに, 交差点 Aが算出したサイクルよりも, 長いサイクルを算出した信号制 御機が隣接交差点 B〜 Eのどれかにある場合は, 交差点 Aはそのなかで自身のサ ィクルに近い最寄りのサイクルを選び, 自身のサイクルを, 求めたサイクルにし ておくか、 あるいはその最寄りのサイクルに合わせるかを判定する。
自身のサイクルを最寄りのサイグルに合わせて長くしたときは, オフセットを 選択できるので遅れ時間を小さくできる望ましい部分と, サイクルを長くするこ とで自身の交差点で無駄時間が発生し遅れ時間が大きくなる, およびサイクル変 更によりそれまでのオフセット効果を失い結果的に遅れ時間が大きくなる部分と の, 得失を比較することになる。 比較の結果, サイクル変更の可否を判定する。 サイクル変更の可否を判定する具体例を説明する。 図 1 0の例で, 互いに隣接 する交差点 A, Bのあいだで、 交差点 Aから交差点 Bへは平均流量 avgMabが, また交差点 Bから交差点 Aへは平均流量 avgMbaが流れているとすると, 交差 点 A B間でサイクルが異なるときの遅れ時間は, 図 1 1に示すように,
delay= ( l/2 ) X (redA + redB ) X ( avgMab + avgMba)
で求められる。
一方, 交差点 Aの隣接交差点 B〜 Eが異なつたサイクルを算出しているときに は, 交差点 Aは, 自身のサイクルより長く, かつ最寄りの値を算出した交差点の サイクルに合わせるかどうかを判定する。 その隣接交差点を Bとしたとき, 交差 点 Aのサイクル C aを交差点 Bのサイクル C bに合わせるかどうかを判定するた めの比較表の例を図 1 2に示す。 この表では, 交差点 Aに隣接するすべての交差 点とのあいだで, サイクル変更による遅れの得失を比較している。
以上の結果, 第一段階で制御パラメ一夕(サイクル, スプリツ卜, オフセット) が決定する。 これらが, 目標値として第二段階に渡される。 同時に, 第一段階で はふたたび隣接交差点とサイクル, スプリットを情報交換し, 上記の計算を繰り 返す。
第二段階では, 新しい信号制御パラメ一夕が第一段階から渡されるたびに, 実 行中の制御パラメ一タを新しい目標値にむかつて徐々に変更して行く。
一旦目標値に到達した後は, 現実の交通状況に合わせて, 第二段階でスプリツ ト, オフセットを一定範囲内で調整する。 調整方法は, よく知られているように 制御パラメータをプラス ·マイナス一定刻みで変更し, その結果として遅れ時間 の実測値を小さくできるかどうかを判断基準とする。
ただし, 目標値に達していない時点で, 第二段階での調整を行うと, 逆効果と なって遅れ時間が増える場合も考えられる。 そこで, 本特許では, 目標値への移 行途中では, 第二段階での調整変更を抑制しておく機能を付加する。
それぞれの交差点において, 流入してくる平均交通流量を実測した結果で, サ ィクル, スプリットを決定していく方法では, 制御遅れが発生するであろう。 そ の結果, 交通変動に対する応答性が悪化することになる。 これに対応するため, 隣接交差点の各流入路で実測した交通流量の一次結合を, 平均流量として扱うよ うにする。 例えば, 以下のような形が考えられる。
avgM = al ( t , week ) XMl ( t ) + a2 ( t ,week) XM2 ( t ) + a3(t,week) X 3(t)
Ml(t), M2(t), M3(t)は, 図 13に示すように, 上流の隣接交差点 Bで各流 入路から流入する交通流量の実測値である。 これらのうち, いくらかが交差点 A に流入してくることになる。 al(t,week), a2(t,week), a3(t,week)は一 次結合の係数である。 時刻 tや曜日 week, また交差点ごとに異なるので, 各交 差点の平均流量を実測して, それとの誤差を小さくするように一次結合の係数を 学習させていく。学習の手法は, 例えば ARMA (自己回帰モデル), ニューロ, 強化学習などを用いればよい。
図 14に, 本発明の信号制御システムを実現する, 信号制御機 1のソフトゥェ ァモジュール構成例を示す。
交通流量計測モジュール 6!は, 感知器から交通量を計測する。
通信モジュール 62は, 隣接の交差点と通信回線を介して接続し情報交換を行 ラ。
サイクル Zスプリット計画モジュール 63は, 実測した交通流量を基に, 前述 の説明に従って自身の交差点に最小限必要な長さのサイクル, スプリツトを算出 する機能を実現する。
オフセット計画モジュール 64は, 前述の説明に従って隣接交差点とのあいだ の最適なオフセットを算出する。 このオフセット計画モジュール 64と, 上述の サイクル/スプリット計画モジュール 63を合わせて, 第一段階 5 となる。 制御実行モジュール 65は, 第二段階 52であり, 第一段階で算出した制御パ ラメ一夕の目標値にあわせ, 実際に信号灯器を制御する部分である。 前述したよ うに, 一旦目標値に到達した後は, そのときの交通状況に合わせて, スプリット, オフセットを調整変更する。

Claims

請求の範囲
1 . 複数の信号制御機を制御する交通信号制御において, それぞれの交差点の 各信号制御機が, 自身の信号制御のため計測された交通流量と, 相互に隣接する 交差点の各信号制御機とのあいだで行なう情報交換により, 前記それぞれの交差 点に隣接する交差点の各信号制御機と連携を取りながら, 前記信号制御機が自身 のサイクル, スプリット, オフセットを自動的に決定する
分散信号制御システム。
2 . 請求の範囲第 2項に記載の分散信号制御システムにおいて,
それぞれの交差点の各信号制御機が個々にサイクル, スプリット, オフセッ卜 を決定するとき, 前記信号制御機は, 自身が制御する交差点の流入路ごとの交通 流量の時間平均値と, 前記交差点と隣接する交差点までの距離を使って, サイク ル, スプリット, オフセットを決定する第一段階と, 前記第一段階で決定したサ ィクル, スプリットのうち, スプリット, オフセットを予め決められた範囲内で 調整変更する第二段階とに分かれた制御を行なう
分散信号制御システム。
3 . 請求の範囲第 2項に記載の分散信号制御システムにおいて, ' 各信号制御機が第一段階で決定したサイクルと, 前記信号制御機の交差点に隣 接する交差点の信号制御機が第一段階で決定したサイクルが同じになる場合に, 前記信号制御機と, 前記隣接する交差点の信号制御機が, 第一段階どうしで連携 し, オフセットを決定する機能を有する
分散信号制御システム。
4. 請求の範囲第 2項に記載の分散信号制御システムにおいて,
各信号制御機が第一段階で決定したサイクルと, 前記信号制御機の交差点に隣 接する交差点の信号制御機が第一段階で決定したサイクルが異なる場合に, 前記 信号制御機と, 前記隣接する交差点の信号制御機が, 第一段階どうしで連携し, サイクルを合わせるか, 合わせないかを, 予め決められた評価関数によって判断 する機能を有する
分散信号制御システム。
5 . 請求の範囲第 2項に記載の分散信号制御システムにおいて, 各信号制御機 は, 自身が制御する交差点の流入路ごとの交通流量の時間平均値に, 当該流入路 の上流に位置する交差点での実測交通流量の関数値を適用する
分散信号制御システム。
6 . 請求の範囲第 5項に記載の分散信号制御システムにおいて,
前記関数値において, 各信号制御機は, 自身が制御する交差点の流入路ごとの 実測交通流量の時間平均値との誤差が小さくなるように, 当該関数パラメータを 修正する機能を有する .
分散信号制御システム。
7 . 請求の範囲第 3項に記載の分散信号制御システムにおいて,
各信号制御機が第一段階で決定したサイクルと, 前記信号制御機が制御する交 差点に隣接する交差点の信号制御機の第一段階で決定したサイクルと同じである 場合にオフセッ卜を決定するとき, 前記隣接する交差点との距離 Lを所定の速度 Vで割った, 時間の次元を持つ量 LZVを, さらにサイクル Cで割って余り LZ V mod Cを求め, その(L/V mod C)から, 前記隣接する交差点とのあいだ で, それぞれの交差点からもう一方の交差点を見たときのオフセット O l , 0 2 を引いた値,
δ 1 = X(L V mod C)一 O 1
δ 2 = 2 X(L/V mod C)一〇2
を, それぞれ縦軸, 横軸にとった座標系のうえで表した遅れ時間をもとに, オフ セットを決定する
分散信号制御システム。
8 . 請求の範囲第 2項に記載の分散信号制御システムにおいて,
各信号制御機は, 第一段階で決定したサイクル, スプリット, オフセットの 設定値に向けて移行している途中では, 第二段階のスプリット, オフセットの 調整変更機能が抑制される機能を持つ
分散信号制御システム。
PCT/JP2003/009308 2003-07-23 2003-07-23 分散信号制御システム WO2005010846A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2003/009308 WO2005010846A1 (ja) 2003-07-23 2003-07-23 分散信号制御システム
AU2003252237A AU2003252237A1 (en) 2003-07-23 2003-07-23 Distributed signal control system
CNB038268310A CN100555356C (zh) 2003-07-23 2003-07-23 分散信号控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/009308 WO2005010846A1 (ja) 2003-07-23 2003-07-23 分散信号制御システム

Publications (1)

Publication Number Publication Date
WO2005010846A1 true WO2005010846A1 (ja) 2005-02-03

Family

ID=34090539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009308 WO2005010846A1 (ja) 2003-07-23 2003-07-23 分散信号制御システム

Country Status (3)

Country Link
CN (1) CN100555356C (ja)
AU (1) AU2003252237A1 (ja)
WO (1) WO2005010846A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005124A (zh) * 2010-11-16 2011-04-06 青岛海信网络科技股份有限公司 交叉口交通信号控制方法及装置
KR101059450B1 (ko) 2009-07-06 2011-08-25 서울시립대학교 산학협력단 통행시간 기반 교통 신호 제어 시스템 및 방법
CN103177589A (zh) * 2013-04-22 2013-06-26 福州大学 基于演化博弈的交通信号周期自适应控制方法
CN103400503A (zh) * 2013-08-26 2013-11-20 西华大学 一种基于iic总线的多相位交通信号控制机
WO2014027799A1 (ko) * 2012-08-13 2014-02-20 Lee Heung Soo 교통 관제 센터 서버 및 교통 신호 제어용 방송 신호 생성 방법과 교통 신호 제어 장치 및 방법
CN106910349A (zh) * 2015-12-23 2017-06-30 中国移动通信集团公司 一种交通信号灯控制方法和系统
JP2018055661A (ja) * 2016-09-26 2018-04-05 キーランド テクノロジー シーオー., エルティーディー. クラウド型高度道路交通の制御システム
US10382559B2 (en) 2016-09-26 2019-08-13 Kyland Technology Co., Ltd. Method and equipment for coordinated control in intelligent traffic cloud control system
US10574590B2 (en) 2016-09-26 2020-02-25 Kyland Technology Co., Ltd. Central system in intelligent traffic cloud control system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064040A (zh) * 2013-03-19 2014-09-24 厦门市成利吉智能交通科技有限公司 一种具有协同疏导功能的交通信号控制机
CN112289045B (zh) * 2020-10-19 2021-12-21 智邮开源通信研究院(北京)有限公司 交通信号控制方法、装置、电子设备及可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684094A (ja) * 1992-09-04 1994-03-25 Mitsubishi Electric Corp 信号制御装置
JPH076292A (ja) * 1993-06-17 1995-01-10 Toshiba Corp 信号機制御システム
JPH07152993A (ja) * 1993-11-30 1995-06-16 Mitsubishi Electric Corp 道路交通信号制御装置
JP2609030B2 (ja) * 1991-04-30 1997-05-14 三菱商事株式会社 道路交通信号ローカルコントローラ
JP2002063687A (ja) * 2000-08-15 2002-02-28 Matsushita Electric Ind Co Ltd 信号制御パラメータ設計方法および装置
JP2002245586A (ja) * 2001-02-19 2002-08-30 Mitsubishi Electric Corp 交通信号制御方式
JP2003016581A (ja) * 2001-07-02 2003-01-17 Mitsubishi Heavy Ind Ltd 自律分散型信号制御システム、及びその拡張方法
JP2003067887A (ja) * 2001-08-28 2003-03-07 Mitsubishi Heavy Ind Ltd 自律分散型信号制御システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2609030B2 (ja) * 1991-04-30 1997-05-14 三菱商事株式会社 道路交通信号ローカルコントローラ
JPH0684094A (ja) * 1992-09-04 1994-03-25 Mitsubishi Electric Corp 信号制御装置
JPH076292A (ja) * 1993-06-17 1995-01-10 Toshiba Corp 信号機制御システム
JPH07152993A (ja) * 1993-11-30 1995-06-16 Mitsubishi Electric Corp 道路交通信号制御装置
JP2002063687A (ja) * 2000-08-15 2002-02-28 Matsushita Electric Ind Co Ltd 信号制御パラメータ設計方法および装置
JP2002245586A (ja) * 2001-02-19 2002-08-30 Mitsubishi Electric Corp 交通信号制御方式
JP2003016581A (ja) * 2001-07-02 2003-01-17 Mitsubishi Heavy Ind Ltd 自律分散型信号制御システム、及びその拡張方法
JP2003067887A (ja) * 2001-08-28 2003-03-07 Mitsubishi Heavy Ind Ltd 自律分散型信号制御システム

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101059450B1 (ko) 2009-07-06 2011-08-25 서울시립대학교 산학협력단 통행시간 기반 교통 신호 제어 시스템 및 방법
CN102005124A (zh) * 2010-11-16 2011-04-06 青岛海信网络科技股份有限公司 交叉口交通信号控制方法及装置
CN102005124B (zh) * 2010-11-16 2012-10-10 青岛海信网络科技股份有限公司 交叉口交通信号控制方法及装置
WO2014027799A1 (ko) * 2012-08-13 2014-02-20 Lee Heung Soo 교통 관제 센터 서버 및 교통 신호 제어용 방송 신호 생성 방법과 교통 신호 제어 장치 및 방법
CN103177589A (zh) * 2013-04-22 2013-06-26 福州大学 基于演化博弈的交通信号周期自适应控制方法
CN103400503A (zh) * 2013-08-26 2013-11-20 西华大学 一种基于iic总线的多相位交通信号控制机
CN106910349A (zh) * 2015-12-23 2017-06-30 中国移动通信集团公司 一种交通信号灯控制方法和系统
JP2018055661A (ja) * 2016-09-26 2018-04-05 キーランド テクノロジー シーオー., エルティーディー. クラウド型高度道路交通の制御システム
US10235878B2 (en) 2016-09-26 2019-03-19 Kyland Technology Co., Ltd Intelligent traffic cloud control system
US10382559B2 (en) 2016-09-26 2019-08-13 Kyland Technology Co., Ltd. Method and equipment for coordinated control in intelligent traffic cloud control system
US10574590B2 (en) 2016-09-26 2020-02-25 Kyland Technology Co., Ltd. Central system in intelligent traffic cloud control system

Also Published As

Publication number Publication date
AU2003252237A1 (en) 2005-02-14
CN1802677A (zh) 2006-07-12
CN100555356C (zh) 2009-10-28

Similar Documents

Publication Publication Date Title
CN110136455B (zh) 一种交通信号灯配时方法
WO2005010846A1 (ja) 分散信号制御システム
CN112037507B (zh) 一种过饱和交通状态干线自适应信号协调设计方法与装置
WO2018188177A1 (zh) 一种基于无人驾驶的路径规划的方法、装置及系统
CN102982688A (zh) 一种基于主干道协调优先的区域交通信号控制方法
CN114627647B (zh) 一种基于可变限速与换道结合的混合交通流优化控制方法
CN107564317A (zh) 一种自动驾驶车辆控制系统及方法
CN108734973A (zh) 一种干线双向绿波的相位-信号综合优化方法
CN102867422A (zh) 基于车辆自组网的单点十字交叉口信号灯实时控制方法
CN103794064B (zh) 直观的主干道若干十字路口双向绿波带的实现方法
CN104332062A (zh) 基于感应控制模式的交叉口信号协调控制优化方法
JP5408846B2 (ja) 交通信号制御装置、及び交通信号制御方法
JP2009003698A (ja) 交通信号制御装置、及び流出交通流予測方法
WO2021051213A1 (zh) 交通信号异相波模式控制方法
JP2002245586A (ja) 交通信号制御方式
CN106097734A (zh) 一种用于路口交通信号控制的平面感知检测方法及系统
CN112489457B (zh) 一种自动驾驶环境下交叉口车辆通过引导方法
JP2000231690A (ja) 旅行時間予測装置
JP4115135B2 (ja) 分散信号制御システム
CN104637316A (zh) 相邻分体式路段信号控制人行横道的协调信号控制方法
CN116291519A (zh) 盾构机无人化自主掘进的轴线控制方法
WO2015159251A1 (en) Method and system for adaptive traffic control
JP4808243B2 (ja) 交通信号制御装置及び交通信号制御方法
CN112102628B (zh) 面向双层高速公路瓶颈的匝道协调控制与诱导方法
CN112767717B (zh) 一种面向复杂交通控制环境的区域交通信号协调控制方法及系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 03826831.0

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12006500179

Country of ref document: PH

Ref document number: 1020067001516

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1200600198

Country of ref document: VN

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP