WO2005009651A1 - Fine-grain silver powder and process for producing the same - Google Patents

Fine-grain silver powder and process for producing the same Download PDF

Info

Publication number
WO2005009651A1
WO2005009651A1 PCT/JP2004/010099 JP2004010099W WO2005009651A1 WO 2005009651 A1 WO2005009651 A1 WO 2005009651A1 JP 2004010099 W JP2004010099 W JP 2004010099W WO 2005009651 A1 WO2005009651 A1 WO 2005009651A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver powder
silver
powder
fine silver
reducing agent
Prior art date
Application number
PCT/JP2004/010099
Other languages
French (fr)
Japanese (ja)
Inventor
Takuya Sasaki
Masashi Kato
Katsuhiko Yoshimaru
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Priority to CA002534107A priority Critical patent/CA2534107A1/en
Priority to KR1020067001513A priority patent/KR101132282B1/en
Priority to US10/566,365 priority patent/US20080138238A1/en
Priority to DE112004001399T priority patent/DE112004001399T5/en
Publication of WO2005009651A1 publication Critical patent/WO2005009651A1/en
Priority to HK06112769.8A priority patent/HK1092101A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • Fine silver powder and method for producing the fine silver powder are produced by Fine silver powder and method for producing the fine silver powder
  • the invention according to the present application relates to a fine silver powder and a method for producing the fine silver powder.
  • silver powder has been produced by a wet reduction process in which a silver ammine complex aqueous solution is produced from a silver nitrate solution and aqueous ammonia and an organic reducing agent is added thereto, as described in Patent Document 1.
  • these silver powders have been mainly used for forming electrodes and circuits of chip components, plasma display panels, and the like.
  • Patent Document 1 JP 2001-107101 A
  • the electrodes and circuits are required to be significantly finer in the circuits and electrodes to be formed, and are required to have higher densities and higher precision as well as higher reliability. I have.
  • the average particle size D of the primary particles of the silver powder obtained by the conventional production method usually exceeds 0.6 m, and the particle size is measured by a laser diffraction scattering particle size distribution method.
  • the average particle size D exceeds l.O / z m, and the cohesion degree represented by D ZD exceeds 1.7.
  • the fine silver powder according to the present invention will be described.
  • the major feature of the fine silver powder according to the present invention is that it has the following powder characteristics a.-c.
  • these powder characteristics the characteristics of the fine silver powder according to the present invention most clearly appear among the current powder measurement technologies, and the characteristics that are satisfied at the same time are listed. Hereinafter, each characteristic will be described.
  • the characteristic of a Is that the average particle diameter D of the primary particles obtained by image analysis of a scanning electron microscope image is 0.6 m or less.
  • image analysis of scanning electron microscope image
  • the average particle diameter D of the primary particles obtained by the above is defined by using a scanning electron microscope (SEM).
  • Observed images of silver powder are obtained by image analysis. Mean particle size.
  • the image analysis of the fine silver powder observed using a scanning electron microscope (SEM) in the present specification was performed using an IP-1000PC manufactured by Asahi Engineering Co., Ltd.
  • the circular particle analysis was performed as
  • the average particle size D obtained by image processing the observation image of this fine silver powder is obtained directly from the SEM observation image.
  • Fine silver powder referred to in the present invention D is almost in the range from 0.01 ⁇ m to 0.6 ⁇ m as observed by the present inventors.
  • the fine silver powder according to the present invention has a higher dispersibility than the conventional silver powder, and therefore, "aggregation degree" was used as an index indicating the dispersibility.
  • the agglomeration degree referred to in the present specification means the average particle diameter D of the primary particles and the laser diffraction scatter.
  • D is the weight obtained using the laser diffraction scattering type particle size distribution measuring method.
  • the average particle size is calculated by directly observing the two diameters and treating the aggregated particles as a single particle (agglomerated particles). That is, it is generally considered that the actual silver powder particles are in a state where a plurality of particles are aggregated, unlike the so-called monodispersed powder, in which individual particles are completely separated. As the agglomeration state of the powder particles decreases and approaches monodispersion, the average particle diameter D increases.
  • the D of the fine silver powder used in the present invention is in the range of about 0.25 ⁇ ⁇ -0.80 / zm.
  • the laser diffraction scattering type particle size distribution measuring method is as follows: 0.1 g of fine silver powder is mixed with ion-exchanged water and dispersed with an ultrasonic homogenizer (US-SOOT manufactured by Nippon Seiki Seisakusho) for 5 minutes. Measured using a laser diffraction scattering type particle size distribution analyzer, Micro Trac HRA 9320-X100 (Leeds + Northrup)
  • the "average particle diameter D of primary particles obtained by image analysis of a scanning electron microscope image” refers to an image of a silver powder observed using a scanning electron microscope (SEM).
  • the powder is a monodispersed powder having no aggregation state of the powder particles.
  • the present inventors have determined the correlation between the degree of agglomeration, the viscosity of the fine silver powder paste produced using the fine silver powder of each degree of agglomeration, and the surface smoothness of a conductor obtained by sintering. I checked it. As a result, it was found that an extremely good correlation was obtained. From this fact, it can be concluded that by controlling the degree of aggregation of the fine silver powder as a component, it is possible to freely control the viscosity of the fine silver powder paste produced using the fine silver powder. Also, if the agglomeration degree is set to 1.5 or less, fluctuations in the viscosity of the fine silver powder paste, surface smoothness after sintering, etc.
  • the fine silver powder according to the present invention has the powder characteristics a. To c. Described above, and when the fine silver powder according to the present invention is characterized by the characteristic power of the sintering start temperature, it can be sintered at a low temperature of 240 ° C. or less. This makes it possible to capture it as fine silver powder with binding properties. Although no lower limit is specified for the sintering start temperature, a sintering start temperature lower than 170 ° C can be obtained in consideration of the research conducted by the present inventors and general technical common sense. It is almost impossible, and it is considered to be a temperature corresponding to the lower limit.
  • the tap filling density here is determined by precisely weighing 200 g of fine silver powder, placing it in a 150 cm 3 measuring cylinder, tapping repeatedly 1000 times with a stroke of 40 mm, and measuring the volume of fine silver powder! Measured by the method.
  • the higher the tap filling density the higher the theoretically fine particle size and the higher the dispersibility without aggregation of the particles, the higher the value obtained.
  • the tap filling density of conventional silver powder is less than 4.Og / cm 3
  • the fine silver powder according to the present invention is also very fine and has excellent dispersibility. It becomes.
  • the production method that is effective in the present invention is that a silver nitrate aqueous solution and ammonia water are mixed and reacted to obtain a silver ammine complex aqueous solution, and this is contacted with an organic reducing agent to reduce and precipitate silver particles.
  • the method of producing silver powder by washing and drying is characterized by using an amount of a reducing agent, an amount of silver nitrate, and an amount of aqueous ammonia which become diluted after addition.
  • the reducing agent solution and the silver ammine complex aqueous solution are generally mixed together in a tank, and therefore, in general, to increase the silver concentration to lOgZi or more, a large amount of silver nitrate and reducing Unless the amount of the agent and the amount of aqueous ammonia were added, it was impossible to secure the productivity for the scale of the equipment.
  • the most important feature of the production method according to the present invention is that the concentration of the organic reducing agent after the contact reaction between the aqueous solution of silver ammine complex and the organic reducing agent is low, and the residual silver adsorbed on the surface of the generated silver powder particles. Or the organic reducing material taken into the inside of the powder during the growth of the powder The point is that it can be reduced. Therefore, it is most preferable to maintain the organic reducing agent concentration at lgZl-3 gZl while the silver concentration of the mixed solution is lgZl-6 gZ1.
  • the silver concentration and the reducing agent amount are in a proportional relationship, and it is natural that the higher the silver concentration, the more quantitatively the silver powder can be obtained.
  • the silver concentration here exceeds 6 g / l, the precipitated silver particles tend to be coarse and have a particle size that is no different from that of conventional silver powder. This makes it impossible to obtain fine silver powder with good properties.
  • the silver concentration here is less than lg / 1, very fine silver powder can be obtained, but it becomes too fine and the oil absorption increases, leading to an increase in paste viscosity. It is necessary to increase the amount of the organic vehicle, which tends to lower the film density of the finally formed sintered conductor and increase the electric resistance. It is not enough to satisfy the required industrial productivity.
  • the silver concentration is lgZl-6gZl
  • maintaining the organic reducing agent concentration at lgZl-3gZl is the most suitable condition for obtaining the fine silver powder according to the present invention with high yield.
  • the concentration of the organic reducing agent is set to lgZl to 13gZl is selected as a range most suitable for obtaining fine silver powder in relation to the silver concentration of the silver ammine complex aqueous solution.
  • the concentration of the organic reducing agent exceeds 3 gZl, the amount of the reducing agent added to the aqueous solution of silver ammine complex decreases, but the aggregation of the silver powder particles that are precipitated by reduction begins to become remarkable, and the impurities contained in the powder particles become large.
  • the amount (in this specification, the amount of impurities is regarded as the carbon content) begins to increase sharply.
  • the organic reducing agent is regarded as the carbon content
  • the "organic reducing agent” mentioned here is hydroquinone, ascorbic acid, glucose, or the like. Among them, it is desirable to selectively use hydroquinone as the organic reducing agent.
  • hydroquinone has relatively high reactivity compared to other organic reducing agents, and can be said to have the most suitable reaction rate for obtaining low-crystalline silver powder having a small crystallite diameter S. It is.
  • additives can be used in combination with the organic reducing agent.
  • the additives referred to here are glues such as gelatin, amine-based polymer agents, celluloses, etc., which stabilize the reductive precipitation process of silver powder and simultaneously function as a certain dispersant. Is preferred, and it may be appropriately selected according to the organic reducing agent, the type of the process, and the like.
  • a second flow path b that flows through a certain flow path through which S flows (hereinafter referred to as “first flow path”) and joins in the middle of the first flow path a is provided. Flow the organic reducing agent and optional additive S through the first channel a through the second channel b.
  • the mixing time of the two liquids is completed in the shortest time, and the reaction proceeds in a uniform state in the system, so that powder particles having a uniform shape are formed.
  • the fact that the amount of the organic reducing agent as a whole as a whole after mixing is low means that the amount of the organic reducing agent adsorbed and remaining on the surface of the fine silver powder that is reduced and precipitated is reduced.
  • a silver ammine complex aqueous solution is obtained by contacting and reacting an aqueous silver nitrate solution with aqueous ammonia
  • a silver nitrate concentration of 2.6 gZl to 48 gZl is used, and a silver concentration of 2 g / 1 to 12 g / It is desirable to obtain an aqueous solution of the silver ammine complex.
  • defining the concentration of the silver nitrate aqueous solution is synonymous with defining the liquid volume of the silver nitrate aqueous solution.
  • the silver concentration of the silver ammine complex aqueous solution is 2 gZl-12 gZl, there is The concentration and amount of the ammonia water to be added are inevitably determined.
  • fine silver powder was manufactured using the above-described manufacturing method, and the powder characteristics of the fine silver powder obtained were measured. Further, a silver paste was produced using fine silver powder, a test circuit was formed, and the conductor resistance and the sintering start temperature were measured.
  • this silver ammine complex aqueous solution is introduced into the first flow path a having an inner diameter of 13 mm shown in FIG. 1 at a flow rate of 1500 mlZsec, and the reducing agent is flowed through the second flow path b at a flow rate of 1500 mlZsec, and at the junction point m
  • the temperature was brought to a temperature of ° C, and the fine silver powder was reduced and precipitated.
  • an aqueous solution of hydroquinone in which 21 g of hydroquinone was dissolved in 10 liters of pure water was used. Therefore, the hydroquinone concentration at the end of the mixing is about 1.04 g / l, which is a very dilute concentration.
  • the mixture is filtered using a nutsche, washed with 100 ml of water and 50 ml of methanol, and further dried at 70 ° C for 5 hours. Then, fine silver powder was obtained.
  • Fig. 2 shows a scanning electron micrograph of the obtained fine silver powder.
  • the powder characteristics of the fine silver powder obtained as described above are listed in Table 1 together with the powder characteristics of the silver powder obtained in Example 2 and Comparative Example. Therefore, here we will explain the ones whose measurement method etc. is unknown in the above explanation.
  • the sintering start temperature in Table 1 was determined by precisely weighing 0.5 g of fine silver powder with a balance, pressing it at a pressure of 2 t / cm 2 for 1 minute, Using a TMA ZSS6000, a thermomechanical analyzer (TMA) manufactured by Seiko Instruments, Inc., at an air flow rate of 200 ccZ, a heating rate of 2 ° CZ, and a holding time of 0 min. It was measured in the range up to 900 ° C.
  • the conductor resistances listed in Table 1 were obtained by producing silver paste using each silver powder, laying out circuits on a ceramic substrate, and sintering to the extent that resistance could be measured in a temperature range of 180-250 ° C. It was measured using the lmm width circuit provided.
  • the composition of the silver paste was 85% by weight of fine silver powder, 0.75% by weight of ethyl cellulose, and 14.25% by weight of terbineol.
  • FIB analysis measured the size of the precipitated crystal grains and used it to measure the crystallite diameter.
  • the carbon content is used as a measure of the amount of impurities attached to the silver powder particles.
  • EMIA-320V manufactured by Horiba
  • 0.5 g of fine silver powder, 1.5 g of tungsten powder, and 0 g of tin powder are used. 3 g was mixed, placed in a magnetic crucible, and measured by a combustion infrared absorption method.
  • fine silver powder was manufactured under manufacturing conditions different from those in Example 1, and the powder characteristics of the obtained fine silver powder were measured. Further, a silver paste was produced using the fine silver powder, a test circuit was formed, and the conductor resistance and the sintering start temperature were measured.
  • this silver ammine complex solution is introduced into the first flow path a having an inner diameter of 13 mm shown in FIG. 1 at a flow rate of 1,500 mlZsec, and the reducing agent is flowed through the second flow path b at a flow rate of 1,500 mlZsec.
  • the temperature was brought to a temperature of ° C, and the fine silver powder was reduced and precipitated.
  • the reducing agent used at this time was a hydroquinone aqueous solution in which 21 g of hydroquinone was dissolved in 3.4 liters of pure water. Therefore, the concentration of hydroquinone at the end of mixing is about 3. OgZl, a very dilute concentration.
  • the fine silver powder was produced by the following production method, and the powder characteristics of the obtained fine silver powder were measured. Further, a silver paste was produced using the fine silver powder, a test circuit was formed, and the conductor resistance and the sintering start temperature were measured.
  • fine silver powder was manufactured using the manufacturing method described below, and the powder characteristics of the fine silver powder obtained were measured. Further, a silver paste was produced using the fine silver powder, a test circuit was formed, and the conductor resistance and the sintering start temperature were measured.
  • the silver ammine complex solution was put into a reaction vessel, 3 g of gelatin was added to 200 ml of pure water, and hydroquinone as a reducing agent was dissolved in 700 g of pure water.
  • the aqueous solution was added all at once, and the silver powder was reduced and precipitated by maintaining the liquid temperature at 20 ° C and stirring and reacting.
  • the hydroquinone concentration is approximately 14.5 gZ 1, which is a high concentration.
  • the fine silver powder was manufactured using the following manufacturing method, and the powder characteristics of the obtained fine silver powder were measured. Further, a silver paste was produced using the fine silver powder, a test circuit was formed, and the conductor resistance and the sintering start temperature were measured.
  • the silver-containing nitric acid-based solution is put into a reaction tank, and the above-mentioned reducing solution is added thereto all at once.
  • the liquid temperature is kept at 25 ° C, and the mixture is stirred and reacted, whereby silver powder is reduced and precipitated. I let it.
  • the fine silver powder according to the present invention is composed of fine particles that are hardly considered in conventional silver powder, and has a lower force than conventional silver powder in which the degree of aggregation of the powder is low. Even so, it shows very good dispersibility.
  • the method for producing fine silver powder according to the present invention by employing the method for producing fine silver powder according to the present invention, the amount of residual organic matter in the fine silver powder obtained is reduced, and the fine silver powder acts in combination with the high film density due to the fine silver powder. This contributes to reducing the electrical resistance of the obtained conductor.
  • FIG. 1 is a diagram showing the concept of mixing an aqueous silver ammine complex solution and a reducing agent.
  • FIG. 2 is a scanning electron microscope observation image of the fine silver powder according to the present invention.
  • FIG. 3 is a scanning electron microscope observation image of the fine silver powder according to the present invention.
  • FIG. 5 is a scanning electron microscope observation image of fine silver powder according to a conventional production method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

Fine-grain silver powder that has a grain size of minuteness not known in the prior art, exhibiting dispersion close to monodispersion with reduced grain aggregation. For obtaining the fine-grain silver powder, an aqueous solution of silver ammine complex (S1) is caused to flow through given flow channel (hereinafter referred to as “first flow channel”). Second flow channel (b) is disposed so as to join the middle of the first flow channel (a), and an organic reducing agent optionally together with an additive (S2) is caused to flow through the second flow channel (b). At confluence (m) of the first flow channel (a) and the second flow channel (b), contact and mixing is carried out so as to effect reduction deposition. Thus, there is obtained fine-grain silver powder of such powder characteristics not known in the prior art that the average diameter of primary grain (DIA) obtained by an image analysis of scanning electron microscope images is 0.6 µm or less (a), the crystallite diameter 10 nm or less (b) and the sintering initiation temperature 240°C or below.

Description

明 細 書  Specification
微粒銀粉及びその微粒銀粉の製造方法  Fine silver powder and method for producing the fine silver powder
技術分野  Technical field
[0001] 本件出願に係る発明は、微粒銀粉及びその微粒銀粉の製造方法に関するもので める。  The invention according to the present application relates to a fine silver powder and a method for producing the fine silver powder.
背景技術  Background art
[0002] 従来力 銀粉の製造には、特許文献 1に記載したように硝酸銀溶液とアンモニア水 とで銀アンミン錯体水溶液を製造し、これに有機還元剤を添加する湿式還元プロセ スが採用されてきた。近年、これらの銀粉の主な用途は、チップ部品、プラズマデイス プレイパネル等の電極や回路の形成に用いられて 、る。  [0002] Conventionally, silver powder has been produced by a wet reduction process in which a silver ammine complex aqueous solution is produced from a silver nitrate solution and aqueous ammonia and an organic reducing agent is added thereto, as described in Patent Document 1. Was. In recent years, these silver powders have been mainly used for forming electrodes and circuits of chip components, plasma display panels, and the like.
[0003] 特許文献 1:特開 2001— 107101号公報  [0003] Patent Document 1: JP 2001-107101 A
[0004] 従って、その電極及び回路には、形成する回路及び電極等の大幅なファイン化が 要求され、配線の高密度化、高精度化と同時に高い信頼性が要求されるようになつ てきている。  [0004] Therefore, the electrodes and circuits are required to be significantly finer in the circuits and electrodes to be formed, and are required to have higher densities and higher precision as well as higher reliability. I have.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] し力しながら、この従来の製造方法で得られる銀粉の粉粒は、その一次粒子の平 均粒径 D が通常は 0. 6 mを超え、レーザー回折散乱式粒度分布測定法による平 [0005] While pressing, the average particle size D of the primary particles of the silver powder obtained by the conventional production method usually exceeds 0.6 m, and the particle size is measured by a laser diffraction scattering particle size distribution method. Flat
IA  IA
均粒径 D は l. O /z mを超え、 D ZD で表される凝集度が 1. 7を超えるのが実情  The average particle size D exceeds l.O / z m, and the cohesion degree represented by D ZD exceeds 1.7.
50 50 IA  50 50 IA
であった。そのため、近年のファインピッチ化した回路形成等には不向きであり、製品 歩留まりの大きな低下要因となっていた。  Met. Therefore, it is unsuitable for forming a circuit with a fine pitch in recent years, and has been a major cause of a decrease in product yield.
[0006] 一方、銀粉の使用方法からみると、次のような問題点が生じていた。従来から、銀べ 一ストを用いた回路形成においては、加熱温度が 300°C以下という非焼成若しくは 低温焼結型の用途が多ぐ低温での高い焼結性能を得るためには、低結晶性の銀 粉が好ましいとされてきた。しかし、低結晶性の銀粉を得るためには、製造条件上、 還元の速い反応系を採用せざるを得ず、その結果、結晶性は低いものの、凝集の著 LV、銀粉し力得られな力つた。 [0007] これらのことから、巿場では、従来にない微粒の銀粉であって、しかも粉粒の凝集の 少ない単分散により近い分散性を備え、且つ、低温焼結性に優れた銀粉の供給が 求められてきたのである。 [0006] On the other hand, the following problems have arisen from the viewpoint of using silver powder. Conventionally, in the circuit formation using a silver base, the non-fired or low-temperature sintering type with a heating temperature of 300 ° C or less has been used in many cases. Silver powder has been favored. However, in order to obtain silver powder with low crystallinity, it is necessary to adopt a reaction system with fast reduction due to the production conditions.As a result, although the crystallinity is low, it is not possible to obtain an extremely agglomerated LV and silver powder. Helped. [0007] From these facts, in the field, the supply of silver powder that is unprecedented fine powder, has a dispersibility closer to monodispersion with less aggregation of powder, and is excellent in low-temperature sinterability. Has been required.
課題を解決するための手段  Means for solving the problem
[0008] そこで、本件発明者等は、従来の硝酸銀水溶液とアンモニア水とを混合して反応さ せ銀アンミン錯体水溶液を得て、これに還元剤を添加することにより銀粒子を還元析 出させ、濾過、洗浄、乾燥させるという製造方法を基本として、その製造方法に創意 を凝らすことで、鋭意研究を行った。その結果、従来の製造方法では得ることのでき ないレベルの微粒銀粉を得ることができるようになり、更に、その微粒銀粉を歩留まり よぐ安定的に得ることのできる製造方法に想到したのである。以下、本件発明に関 して、「微粒銀粉」と「製造方法」とに分けて説明する。 [0008] Accordingly, the present inventors mixed and reacted a conventional silver nitrate aqueous solution and aqueous ammonia to obtain a silver ammine complex aqueous solution, and added a reducing agent to the silver ammine complex aqueous solution to reduce and precipitate silver particles. Based on the manufacturing method of filtration, washing, and drying, the inventor devoted himself to the manufacturing method and conducted intensive research. As a result, it has become possible to obtain a fine silver powder at a level that cannot be obtained by the conventional manufacturing method, and has further conceived a manufacturing method capable of stably obtaining the fine silver powder at a high yield. Hereinafter, the present invention will be described by dividing into “fine silver powder” and “production method”.
[0009] <微粒銀粉 > [0009] <fine silver powder>
最初に、本件発明にかかる微粒銀粉に関して説明する。本件発明にかかる微粒 銀粉は、以下の a.— c.の粉体特性を備えることが大きな特徴である。これらの粉体 特性は、現在の粉体測定技術のうち、本件発明にかかる微粒銀粉の特徴が最も顕 著に現れ、且つ、同時に成立する特性を列挙したのである。以下、各特性ごとに説明 する。  First, the fine silver powder according to the present invention will be described. The major feature of the fine silver powder according to the present invention is that it has the following powder characteristics a.-c. Among these powder characteristics, the characteristics of the fine silver powder according to the present invention most clearly appear among the current powder measurement technologies, and the characteristics that are satisfied at the same time are listed. Hereinafter, each characteristic will be described.
[0010] a.の特性は、走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒 径 D が 0. 6 m以下というものである。ここで、「走査型電子顕微鏡像の画像解析 [0010] The characteristic of a. Is that the average particle diameter D of the primary particles obtained by image analysis of a scanning electron microscope image is 0.6 m or less. Here, "Image analysis of scanning electron microscope image
IA IA
により得られる一次粒子の平均粒径 D 」とは、走査型電子顕微鏡 (SEM)を用いて  The average particle diameter D of the primary particles obtained by the above is defined by using a scanning electron microscope (SEM).
IA  IA
観察される銀粉の観察像 (本件発明に力かる微粒銀粉の場合には倍率 10000倍、 従来の銀粉の場合は倍率 3000— 5000倍で観察するのが好ましい。 )を画像解析 することにより得られる平均粒径のことである。なお、本件明細書における走査型電 子顕微鏡 (SEM)を用いて観察される微粒銀粉の画像解析は、旭エンジニアリング 株式会社製の IP-1000PCを用いて、円度しきい値 10、重なり度 20として円形粒子 解析を行い、平均粒径 D  Observed images of silver powder (observed at a magnification of 10,000 times in the case of fine silver powder which is useful in the present invention, and preferably at a magnification of 3000 to 5000 times in the case of conventional silver powder) are obtained by image analysis. Mean particle size. The image analysis of the fine silver powder observed using a scanning electron microscope (SEM) in the present specification was performed using an IP-1000PC manufactured by Asahi Engineering Co., Ltd. The circular particle analysis was performed as
IAを求めたものである。この微粒銀粉の観察像を画像処理 することにより得られる平均粒径 D は、 SEM観察像から直接得るものであるため、  IA was requested. The average particle size D obtained by image processing the observation image of this fine silver powder is obtained directly from the SEM observation image.
IA  IA
一次粒子の平均粒径が確実に捉えられていることになる。本件発明で言う微粒銀粉 の D は、本件発明者らが観察する限り 0. 01 μ m— 0. 6 μ mの範囲に殆どが入ってThis means that the average particle size of the primary particles is reliably captured. Fine silver powder referred to in the present invention D is almost in the range from 0.01 μm to 0.6 μm as observed by the present inventors.
IA IA
くるが、現実には更に微細な粒径のものが確認できる場合もあり、下限値を敢えて明 記していないのである。  However, in reality, even finer particles can be confirmed in some cases, and the lower limit is not explicitly specified.
[0011] b.の特性は、本件発明にかかる微粒銀粉が、従来の銀粉に無いほど高い分散性 を示すことから、この分散性を示す指標として「凝集度」を用いたのである。  [0011] In the characteristic b., The fine silver powder according to the present invention has a higher dispersibility than the conventional silver powder, and therefore, "aggregation degree" was used as an index indicating the dispersibility.
[0012] 本件明細書で言う凝集度とは、前記一次粒子の平均粒径 D と、レーザー回折散  [0012] The agglomeration degree referred to in the present specification means the average particle diameter D of the primary particles and the laser diffraction scatter.
IA  IA
乱式粒度分布測定法による平均粒径 D とを用いて D /Ό で表される値のことで  A value expressed as D / Ό using the average particle size D obtained by random particle size distribution measurement.
50 50 IA  50 50 IA
ある。ここで、 D とは、レーザー回折散乱式粒度分布測定法を用いて得られる重量  is there. Here, D is the weight obtained using the laser diffraction scattering type particle size distribution measuring method.
50  50
累積 50%における粒径のことであり、この平均粒径 D の値は、真に粉粒の一つ一  This is the particle size at 50% of the cumulative value.
50  50
つの径を直接観察したものではなぐ凝集した粉粒を一個の粒子 (凝集粒子)として 捉えて、平均粒径を算出していると言えるのである。即ち、現実の銀粉の粉粒は、個 々の粒子が完全に分離した、いわゆる単分散粉ではなぐ複数個の粉粒が凝集した 状態になっているのが通常と考えられるからである。し力しながら、粉粒の凝集状態 が少なぐ単分散に近いほど、平均粒径 D の のが  It can be said that the average particle size is calculated by directly observing the two diameters and treating the aggregated particles as a single particle (agglomerated particles). That is, it is generally considered that the actual silver powder particles are in a state where a plurality of particles are aggregated, unlike the so-called monodispersed powder, in which individual particles are completely separated. As the agglomeration state of the powder particles decreases and approaches monodispersion, the average particle diameter D increases.
50 値は小さなものとなる 通常である。 本件発明で用いる微粒銀粉の D は、 0. 25 ^ πι-0. 80 /z m程度の範囲となり、従  50 values are usually small. The D of the fine silver powder used in the present invention is in the range of about 0.25 ^ πι-0.80 / zm.
50  50
来の製造方法では全く得られな力つた範囲の平均粒径 D を持つ微粒銀粉となるの  With the conventional manufacturing method, it becomes a fine silver powder having an average particle size
50  50
である。なお、本件明細書における、レーザー回折散乱式粒度分布測定法は、微粒 銀粉 0. lgをイオン交換水と混合し、超音波ホモジナイザ(日本精機製作所製 US- SOOT)で 5分間分散させた後、レーザー回折散乱式粒度分布測定装置 Micro T rac HRA 9320— X100型(Leeds +Northrup社製)を用いて測定したものである  It is. In the present specification, the laser diffraction scattering type particle size distribution measuring method is as follows: 0.1 g of fine silver powder is mixed with ion-exchanged water and dispersed with an ultrasonic homogenizer (US-SOOT manufactured by Nippon Seiki Seisakusho) for 5 minutes. Measured using a laser diffraction scattering type particle size distribution analyzer, Micro Trac HRA 9320-X100 (Leeds + Northrup)
[0013] これに対し、「走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒 径 D 」とは、走査型電子顕微鏡 (SEM)を用いて観察される銀粉の観察像を画像解[0013] In contrast, the "average particle diameter D of primary particles obtained by image analysis of a scanning electron microscope image" refers to an image of a silver powder observed using a scanning electron microscope (SEM).
IA IA
析することにより得られる平均粒径のことであり、凝集状態を考慮することなく一次粒 子の平均粒径が確実に捉えられて 、るものである。  This is the average particle size obtained by precipitation, and the average particle size of the primary particles can be reliably grasped without considering the aggregation state.
[0014] この結果、本件発明者等は、レーザー回折散乱式粒度分布測定法の平均粒径 D  [0014] As a result, the present inventors found that the average particle diameter D of the laser diffraction scattering
50 と画像解析により得られる平均粒径 D とを用いて、 D ZD で算出される値を凝集  Aggregate the value calculated by D ZD using 50 and the average particle size D obtained by image analysis.
IA 50 IA  IA 50 IA
度として捉えることとしたのである。即ち、同一ロットの微粒銀粉において D と D との 値が同一精度で測定できるものと仮定して、上述した理論で考えると、凝集状態のあ ることを測定値に反映させる D の値は、 D の値よりも大きな値になると考えられる。 I decided to take it as a degree. That is, in the fine silver powder of the same lot, Assuming that the values can be measured with the same precision, the above-mentioned theory suggests that the value of D, which reflects the presence of aggregation in the measured value, will be larger than the value of D.
50 IA  50 IA
このとき、 D の値は、微粒銀粉の粉粒の凝集状態がなくなるほど、限りなく D の値  At this time, the value of D is infinitely large as the agglomerated state of the fine silver powder particles disappears.
50 IA に近づいてゆき、凝集度である D ZD の値は、 1に近づくことになる。凝集度が 1と  As it approaches 50 IA, the value of the cohesion, D ZD, will approach 1. Cohesion degree is 1
50 IA  50 IA
なった段階で、粉粒の凝集状態が全く無くない単分散粉と言えるのである。  At this stage, it can be said that the powder is a monodispersed powder having no aggregation state of the powder particles.
[0015] そこで、本件発明者等は、凝集度と各凝集度の微粒銀粉を用いて製造した微粒銀 粉ペーストの粘度、焼結加工して得られる導体の表面平滑性等との相関関係を調べ てみた。その結果、極めて良好な相関関係が得られる事がわかったのである。このこ とから分力るように、微粒銀粉の持つ凝集度をコントロールしてやれば、その微粒銀 粉を用いて製造する微粒銀粉ペーストの粘度の自由なコントロールが可能となると判 断できるのである。し力も、凝集度を 1. 5以下にしておけば、微粒銀粉ペーストの粘 度、焼結加工後の表面平滑性等の変動を極めて狭 、領域に納めることが可能となる ことが分力つたのである。また、凝集状態が解消されていればいるほど、その微粒酸 化銀粉を用いて焼結させて得られる導体の膜密度が向上し、結果として形成した焼 結導体の電気的抵抗を低くすることが可能となるのである。  [0015] The present inventors have determined the correlation between the degree of agglomeration, the viscosity of the fine silver powder paste produced using the fine silver powder of each degree of agglomeration, and the surface smoothness of a conductor obtained by sintering. I checked it. As a result, it was found that an extremely good correlation was obtained. From this fact, it can be concluded that by controlling the degree of aggregation of the fine silver powder as a component, it is possible to freely control the viscosity of the fine silver powder paste produced using the fine silver powder. Also, if the agglomeration degree is set to 1.5 or less, fluctuations in the viscosity of the fine silver powder paste, surface smoothness after sintering, etc. will be extremely narrow, and it will be possible to fit in the range. It is. In addition, the more the cohesion state is eliminated, the higher the film density of the conductor obtained by sintering using the fine silver oxide powder, and the lower the electrical resistance of the resulting sintered conductor. It becomes possible.
[0016] また、現実に凝集度を算出してみると、 1未満の値を示す場合もある。これは、凝集 度の算出に用いる D を真球と仮定しているからと考えられ、理論的には 1未満の値  [0016] In addition, when actually calculating the cohesion degree, it may show a value less than 1. This is thought to be due to the assumption that D used for calculating the degree of agglomeration is a true sphere.
IA  IA
にはならないのであるが、現実には、真球ではないがために 1未満の凝集度の値が 得られるようである。  In reality, however, it seems that a cohesion value of less than 1 can be obtained because it is not a true sphere.
[0017] cの特性は結晶子径が lOnm以下というものであり、この結晶子径と焼結開始温 度とは、非常に密接な関係を有するものである。即ち、平均粒径が同等の銀粉同士 で対比すれば、結晶子径が小さなものであるほど、低温での焼結が可能となるので ある。従って、本件発明に力かる微粒銀粉のように微粒であるが故に表面エネルギー が大きぐし力も、 lOnm以下という小さな結晶子径を備えることで、焼結開始温度を 低温ィ匕することができるのである。ここで、結晶子径に関して下限値を設けていない 力 測定装置、測定条件等により一定の測定誤差が生じるためである。また、結晶子 径が lOnmを下回る範囲での測定値に高い信頼性を求めることが困難であり、教え て下限値を定めるとしたならば、本件発明者らの研究の結果得られた 2nm程度であ ると考える。 The characteristic of c is that the crystallite diameter is lOnm or less, and the crystallite diameter and the sintering start temperature have a very close relationship. In other words, when silver powders having the same average particle diameter are compared, the smaller the crystallite diameter, the lower the sintering temperature. Therefore, the sintering start temperature can be reduced by using a small crystallite diameter of lOnm or less, because the surface energy is large because the particles are fine particles like the fine silver powder that works in the present invention. . This is because a certain measurement error occurs depending on a force measuring device, a measurement condition, and the like for which a lower limit is not provided for the crystallite diameter. In addition, it is difficult to obtain high reliability for the measured values in the range where the crystallite diameter is less than lOnm, and if the lower limit is determined, it is about 2 nm obtained as a result of the research by the present inventors. In I think that.
[0018] 本件発明に係る微粒銀粉は、上述してきた a.— c.の粉体特性を備え、本件発明 にかかる微粒銀粉を焼結開始温度という特性力も見ると、 240°C以下という低温焼結 性を備える微粒銀粉としてとらえることが可能となるのである。また、この焼結開始温 度に関しても下限値を特に規定していないが、本件発明者らの行った研究及び一般 的な技術常識を考慮すれば、 170°Cを下回る焼結開始温度を得ることは殆ど不可能 であり、下限値に相当する温度であると考えている。  The fine silver powder according to the present invention has the powder characteristics a. To c. Described above, and when the fine silver powder according to the present invention is characterized by the characteristic power of the sintering start temperature, it can be sintered at a low temperature of 240 ° C. or less. This makes it possible to capture it as fine silver powder with binding properties. Although no lower limit is specified for the sintering start temperature, a sintering start temperature lower than 170 ° C can be obtained in consideration of the research conducted by the present inventors and general technical common sense. It is almost impossible, and it is considered to be a temperature corresponding to the lower limit.
[0019] 更に、上記してきた粉体特性を備える効果として、本件発明に力かる微粒銀粉のタ ップ充填密度は 4. OgZcm3以上という高いものとなるのである。ここで言うタップ充 填密度は、微粒銀粉 200gを精秤し、 150cm3のメスシリンダーに入れ、ストローク 40 mmで 1000回の落下を繰り返しタッピングした後、微粒銀粉の容積を測定すると!/、う 方法で測定したものである。このタップ充填密度は、理論的に微細な粒径を持ち、粉 粒同士の凝集の無い分散性の高い状態であるほど、高い値が得られることになる。 従来の銀粉のタップ充填密度が 4. Og/cm3未満であることを考慮すれば、本件発 明にかかる微粒銀粉は、非常に微細で且つ分散性に優れたものであるとの裏付けに もなるのである。 [0019] Furthermore, as an effect with the to have powder characteristics, power strips packing density of the force mowing fine silver powder to the present invention will become one as high as 4. OgZcm 3 or more. The tap filling density here is determined by precisely weighing 200 g of fine silver powder, placing it in a 150 cm 3 measuring cylinder, tapping repeatedly 1000 times with a stroke of 40 mm, and measuring the volume of fine silver powder! Measured by the method. The higher the tap filling density, the higher the theoretically fine particle size and the higher the dispersibility without aggregation of the particles, the higher the value obtained. Considering that the tap filling density of conventional silver powder is less than 4.Og / cm 3 , the fine silver powder according to the present invention is also very fine and has excellent dispersibility. It becomes.
[0020] <微粒銀粉の製造方法 >  <Production method of fine silver powder>
本件発明に力かる製造方法は、硝酸銀水溶液とアンモニア水とを混合して反応さ せ銀アンミン錯体水溶液を得て、これと有機還元剤とを接触反応させて銀粒子を還 元析出させ、濾過、洗浄、乾燥させて銀粉を製造する方法において、添加後におい て希薄な濃度となる還元剤量、硝酸銀量、アンモニア水量を用いるという点が大きな 特徴である。従来、還元剤溶液と銀アンミン錯体水溶液とは槽内で一括して混合され るのが一般的であり、そのため一般的に銀濃度を lOgZi以上の濃度とするため、多 くの硝酸銀量、還元剤量及びアンモニア水量を添加しなければ、設備の規模に対す る生産性を確保することが出来な力つたのである。  The production method that is effective in the present invention is that a silver nitrate aqueous solution and ammonia water are mixed and reacted to obtain a silver ammine complex aqueous solution, and this is contacted with an organic reducing agent to reduce and precipitate silver particles. The method of producing silver powder by washing and drying is characterized by using an amount of a reducing agent, an amount of silver nitrate, and an amount of aqueous ammonia which become diluted after addition. Conventionally, the reducing agent solution and the silver ammine complex aqueous solution are generally mixed together in a tank, and therefore, in general, to increase the silver concentration to lOgZi or more, a large amount of silver nitrate and reducing Unless the amount of the agent and the amount of aqueous ammonia were added, it was impossible to secure the productivity for the scale of the equipment.
[0021] 本件発明にかかる製造方法において最も重要な特徴は、銀アンミン錯体水溶液と 有機還元剤とを接触反応させた後の有機還元剤濃度が低く、生成した銀粉の粉粒 表面に吸着残留したり、粉粒の成長過程で粉粒内部に取り込まれる有機還元材料を 低減ィ匕できる点にある。従って、この混合後の溶液において、銀濃度が lgZl一 6gZ 1としたのに対して、有機還元剤濃度を lgZl— 3gZlに維持することが、最も好ましい のである。 [0021] The most important feature of the production method according to the present invention is that the concentration of the organic reducing agent after the contact reaction between the aqueous solution of silver ammine complex and the organic reducing agent is low, and the residual silver adsorbed on the surface of the generated silver powder particles. Or the organic reducing material taken into the inside of the powder during the growth of the powder The point is that it can be reduced. Therefore, it is most preferable to maintain the organic reducing agent concentration at lgZl-3 gZl while the silver concentration of the mixed solution is lgZl-6 gZ1.
[0022] ここで、銀濃度と還元剤量とは比例的な関係にあり、銀濃度が高いほど量的に多く の銀粉を得ることが可能となるのは当然である。しかし、ここでの銀濃度が 6g/lを超 えるものとすると、析出する銀粒子が粗粒ィ匕する傾向があり、何ら従来の銀粉と変わ らない粒径となり、本件発明で言う高分散性を備えた微細銀粉を得ることができなく なるのである。これに対し、ここでの銀濃度が lg/1未満となると、微粒銀粉としてきわ めて細かなものが得られるものの、微細になりすぎて吸油量が増大し、ペースト粘度 の上昇を招くため、有機ビヒクル量を増カロさせる必要が生じ、最終的に形成した焼結 導体の膜密度が低ぐ電気抵抗が上昇する傾向が生じるのである。カロえて、必要とな る工業的生産性を満足しないものとなるのである。  Here, the silver concentration and the reducing agent amount are in a proportional relationship, and it is natural that the higher the silver concentration, the more quantitatively the silver powder can be obtained. However, if the silver concentration here exceeds 6 g / l, the precipitated silver particles tend to be coarse and have a particle size that is no different from that of conventional silver powder. This makes it impossible to obtain fine silver powder with good properties. On the other hand, if the silver concentration here is less than lg / 1, very fine silver powder can be obtained, but it becomes too fine and the oil absorption increases, leading to an increase in paste viscosity. It is necessary to increase the amount of the organic vehicle, which tends to lower the film density of the finally formed sintered conductor and increase the electric resistance. It is not enough to satisfy the required industrial productivity.
[0023] そして、上記銀濃度が lgZl— 6gZlとしたのに対して、有機還元剤濃度を lgZl— 3gZlに維持することが、本件発明にかかる微粒銀粉を歩留まり良く得るには最も適 した条件となる。ここで、有機還元剤濃度を lgZl一 3gZlとしているのは、銀アンミン 錯体水溶液の銀濃度との関係にお ヽて微粒の銀粉を得るのに最も適した範囲として 選択するのである。有機還元剤濃度が 3gZlを超えると、銀アンミン錯体水溶液に対 し添加する還元剤液量は少なくなるが、還元析出する銀粉の粉粒の凝集の進行が 著しくなり始め、粉粒に含まれる不純物量 (本件明細書では、不純物量を炭素含有 量として捉えている。)が急激に多くなり始めるのである。一方、有機還元剤濃度を lg [0023] While the silver concentration is lgZl-6gZl, maintaining the organic reducing agent concentration at lgZl-3gZl is the most suitable condition for obtaining the fine silver powder according to the present invention with high yield. Become. Here, the reason why the concentration of the organic reducing agent is set to lgZl to 13gZl is selected as a range most suitable for obtaining fine silver powder in relation to the silver concentration of the silver ammine complex aqueous solution. When the concentration of the organic reducing agent exceeds 3 gZl, the amount of the reducing agent added to the aqueous solution of silver ammine complex decreases, but the aggregation of the silver powder particles that are precipitated by reduction begins to become remarkable, and the impurities contained in the powder particles become large. The amount (in this specification, the amount of impurities is regarded as the carbon content) begins to increase sharply. On the other hand, the organic reducing agent
Zi未満とすると、使用する還元剤のトータル液量が増大し、廃水処理量も大きくなり 、工業的経済性を満足しないものとなるのである。 If it is less than Zi, the total amount of the reducing agent used increases, the wastewater treatment amount also increases, and the industrial economic efficiency is not satisfied.
[0024] ここで言う「有機還元剤」とは、ヒドロキノン、ァスコルビン酸、グルコース等である。中 でも、有機還元剤にはヒドロキノンを選択的に使用することが望ましい。本件発明に おいてヒドロキノンは、他の有機還元剤と比べて比較的に反応性に優れ、結晶子径 力 S小さな低結晶性の銀粉を得るために最も適した反応速度を備えるものと言えるの である。  [0024] The "organic reducing agent" mentioned here is hydroquinone, ascorbic acid, glucose, or the like. Among them, it is desirable to selectively use hydroquinone as the organic reducing agent. In the present invention, hydroquinone has relatively high reactivity compared to other organic reducing agents, and can be said to have the most suitable reaction rate for obtaining low-crystalline silver powder having a small crystallite diameter S. It is.
[0025] そして、前記有機還元剤と組み合わせて他の添加剤を用いることも可能である。こ こで言う添加剤とは、ゼラチン等の膠類、アミン系高分子剤、セルロース類等であり銀 粉の還元析出プロセスを安定化させ、同時に一定の分散剤としての機能を果たすも のであることが望ましいのであり、有機還元剤、工程の種類等に応じて適宜選択的に 使用すれば良いのである。 [0025] Other additives can be used in combination with the organic reducing agent. This The additives referred to here are glues such as gelatin, amine-based polymer agents, celluloses, etc., which stabilize the reductive precipitation process of silver powder and simultaneously function as a certain dispersant. Is preferred, and it may be appropriately selected according to the organic reducing agent, the type of the process, and the like.
[0026] そして、以上のようにして得た銀アンミン錯体水溶液と還元剤とを接触反応させ微 粒銀粉を還元析出させる方法において、本件発明では、図 1に示すように、銀アンミ ン錯体水溶液 Sが流れる一定の流路(以上及び以下にお!、て「第一流路」と称して いる。)を流れ、その第一流路 aの途中に合流する第二流路 bを設け、この第二流路 b を通じて有機還元剤及び必要に応じた添加剤 Sを第一流路 a内に流し、第一流路 a  [0026] In the method of contacting and reacting the aqueous silver ammine complex solution obtained as described above with a reducing agent to reduce and precipitate fine silver powder, in the present invention, as shown in FIG. A second flow path b that flows through a certain flow path through which S flows (hereinafter referred to as “first flow path”) and joins in the middle of the first flow path a is provided. Flow the organic reducing agent and optional additive S through the first channel a through the second channel b.
2  2
と第二流路 bとの合流点 mで接触混合して、銀粒子を還元析出させる方法 (以下、こ の方法を「合流混合方式」と称することとする。)を採用することが望まし 、のである。  It is desirable to employ a method in which silver particles are reduced and precipitated by contact mixing at the confluence m of the flow path and the second flow path b (hereinafter, this method will be referred to as a “merge-mixing method”). ,
[0027] このような合流混合方式を採用することにより、 2つの液の混合時間が最短で完了 し、系内が均一な状態で反応が進行するため、均一な形状の粉粒が形成される。ま た、混合後の溶液全体としてみたときの有機還元剤量が低いということは、還元析出 する微粒銀粉の粉粒表面へ吸着残留する有機還元剤量が少なくなる。結果として、 濾過して乾燥して得られる微粒銀粉の付着不純物量を低減ィ匕することが可能となる のである。この微粒銀粉の付着不純物量の低下により、銀ペーストを経て形成される 焼結導体の電気抵抗の低減化も図れることになるのである。 [0027] By adopting such a combined mixing method, the mixing time of the two liquids is completed in the shortest time, and the reaction proceeds in a uniform state in the system, so that powder particles having a uniform shape are formed. . In addition, the fact that the amount of the organic reducing agent as a whole as a whole after mixing is low means that the amount of the organic reducing agent adsorbed and remaining on the surface of the fine silver powder that is reduced and precipitated is reduced. As a result, it becomes possible to reduce the amount of impurities adhering to the fine silver powder obtained by filtering and drying. Due to the reduction in the amount of impurities adhering to the fine silver powder, the electrical resistance of the sintered conductor formed via the silver paste can be reduced.
[0028] 更に、硝酸銀水溶液とアンモニア水とを接触反応させて、銀アンミン錯体水溶液を 得る際に、硝酸銀濃度が 2. 6gZl— 48gZlの硝酸銀水溶液を用いて、銀濃度が 2g /1一 12g/lの銀アンミン錯体水溶液を得ることが望ましいのである。ここで、硝酸銀 水溶液の濃度を規定すると言うことは、硝酸銀水溶液の液量を規定しているのと同義 であり、銀アンミン錯体水溶液の銀濃度が 2gZl— 12gZlとすることを考えるに、そこ に添加するアンモニア水の濃度及び液量が必然的に定まることになるのである。現 段階において、明確な技術的な理由は判明していないが、ここで言う硝酸銀濃度が 2. 6gZl— 48gZlの硝酸銀水溶液を用いることにより、最も良好な製造安定性を示 し品質的に安定した微粒銀粉を得ることが出来るのである。  Further, when a silver ammine complex aqueous solution is obtained by contacting and reacting an aqueous silver nitrate solution with aqueous ammonia, a silver nitrate concentration of 2.6 gZl to 48 gZl is used, and a silver concentration of 2 g / 1 to 12 g / It is desirable to obtain an aqueous solution of the silver ammine complex. Here, defining the concentration of the silver nitrate aqueous solution is synonymous with defining the liquid volume of the silver nitrate aqueous solution.Considering that the silver concentration of the silver ammine complex aqueous solution is 2 gZl-12 gZl, there is The concentration and amount of the ammonia water to be added are inevitably determined. At this stage, a clear technical reason has not been clarified, but the use of an aqueous solution of silver nitrate with a silver nitrate concentration of 2.6 gZl-48 gZl indicates the best production stability and stable quality. Fine silver powder can be obtained.
発明の効果 [0029] 本件発明に係る微粒銀粉は従来に無いほど微細なものであり、分散性が高ぐ従 来の銀粉には存在しない微粒粉であることが分力るのである。また、以上に述べた製 造方法を採用することで、本件発明に係る微粒銀粉を効率よく得ることが可能となる のである。 The invention's effect [0029] The fine silver powder according to the present invention is finer than ever before, and it is a component that the fine silver powder that does not exist in the conventional silver powder having high dispersibility is present. Further, by employing the above-described production method, the fine silver powder according to the present invention can be efficiently obtained.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、本件発明の最良の実施の形態を、比較例と対比しつつ、詳細に説明するこ ととする。 Hereinafter, the best mode of the present invention will be described in detail while comparing with a comparative example.
実施例 1  Example 1
[0031] 本実施例では、上述した製造方法を用いて微粒銀粉を製造し得られた微粒銀粉の 粉体特性を測定した。そして、更に、微粒銀粉を用いて銀ペーストを製造し、試験回 路を形成し、導体抵抗及び焼結開始温度の測定を行った。  In this example, fine silver powder was manufactured using the above-described manufacturing method, and the powder characteristics of the fine silver powder obtained were measured. Further, a silver paste was produced using fine silver powder, a test circuit was formed, and the conductor resistance and the sintering start temperature were measured.
[0032] 最初に 63. 3gの硝酸銀を 9. 7リットルの純水に溶解させ硝酸銀水溶液を調製し、 これに 235mlの 25wt%濃度アンモニア水を一括で添カ卩して攪拌することにより銀ァ ンミン錯体水溶液を得たのである。  First, 63.3 g of silver nitrate is dissolved in 9.7 liters of pure water to prepare an aqueous silver nitrate solution, and 235 ml of 25 wt% ammonia water is added thereto all at once, followed by stirring and stirring. Thus, an aqueous amine complex solution was obtained.
[0033] そして、この銀アンミン錯体水溶液を、図 1に示した内径 13mmの第一流路 aに流 量 1500mlZsecで導入し、第二流路 bから還元剤を流量 1500mlZsecで流し合流 点 mで 20°Cの温度になるようにして接触させ、微粒銀粉を還元析出させた。このとき に用いた還元剤には、 21gのヒドロキノンを 10リットルの純水に溶解させたヒドロキノン 水溶液を用いた。従って、混合が終了した時点でのヒドロキノン濃度は、約 1. 04g/l であり、非常に希薄な濃度である。  Then, this silver ammine complex aqueous solution is introduced into the first flow path a having an inner diameter of 13 mm shown in FIG. 1 at a flow rate of 1500 mlZsec, and the reducing agent is flowed through the second flow path b at a flow rate of 1500 mlZsec, and at the junction point m The temperature was brought to a temperature of ° C, and the fine silver powder was reduced and precipitated. As the reducing agent used at this time, an aqueous solution of hydroquinone in which 21 g of hydroquinone was dissolved in 10 liters of pure water was used. Therefore, the hydroquinone concentration at the end of the mixing is about 1.04 g / l, which is a very dilute concentration.
[0034] 以上のようにして得られた微粒銀粉を分取するため、ヌッチェを用いて濾過し、 100 mlの水と 50mlのメタノールとを用いて洗浄し、更に 70°C X 5時間の乾燥を行い微粒 銀粉を得たのである。この得られた微粒銀粉の走査型電子顕微鏡写真を図 2に示し ている。  [0034] In order to separate the fine silver powder obtained as described above, the mixture is filtered using a nutsche, washed with 100 ml of water and 50 ml of methanol, and further dried at 70 ° C for 5 hours. Then, fine silver powder was obtained. Fig. 2 shows a scanning electron micrograph of the obtained fine silver powder.
[0035] 以上のようにして得られた微粒銀粉の粉体特性は、表 1に実施例 2及び比較例で 得られた銀粉の粉体特性と共に掲載している。従って、ここでは以上に述べてきた説 明で測定方法等が不明なものについて説明しておくこととする。表 1の焼結開始温度 は、微粒銀粉 0. 5gを天秤で精秤し、これを 2t/cm2の圧力で 1分間プレスしペレット 状にし、セイコーインスツルメンッ社製の熱機械分析装置 (TMA装置)である TMA ZSS6000を用いて、空気流量 200ccZ分、昇温速度 2°CZ分、保持時間 0分の条 件で、常温一 900°Cまでの範囲で測定した。表 1に記載した導体抵抗は、各銀粉を 用いて銀ペーストを製造し、セラミック基板上に回路を引き回し、 180— 250°Cの温 度範囲で抵抗測定可能な程度に焼結加工して得られた lmm幅回路を用いて測定 したものである。なお、銀ペーストの組成は、微粒銀粉 85wt%、ェチルセルロース 0 . 75wt%、タービネオール 14. 25wt%としたのである。 FIB分析は析出結晶粒の大 きさを測定し、結晶子径の測定に用いたのである。炭素含有量は、銀粉の粉粒に付 着した不純物量の目安とするためのものであり、堀場製作所製 EMIA— 320Vを用 いて、微粒銀粉 0. 5g、タングステン粉 1. 5g、スズ粉 0. 3gを混合し、これを磁性るつ ぼ内に入れ、燃焼 赤外吸収法により測定したものである。 The powder characteristics of the fine silver powder obtained as described above are listed in Table 1 together with the powder characteristics of the silver powder obtained in Example 2 and Comparative Example. Therefore, here we will explain the ones whose measurement method etc. is unknown in the above explanation. The sintering start temperature in Table 1 was determined by precisely weighing 0.5 g of fine silver powder with a balance, pressing it at a pressure of 2 t / cm 2 for 1 minute, Using a TMA ZSS6000, a thermomechanical analyzer (TMA) manufactured by Seiko Instruments, Inc., at an air flow rate of 200 ccZ, a heating rate of 2 ° CZ, and a holding time of 0 min. It was measured in the range up to 900 ° C. The conductor resistances listed in Table 1 were obtained by producing silver paste using each silver powder, laying out circuits on a ceramic substrate, and sintering to the extent that resistance could be measured in a temperature range of 180-250 ° C. It was measured using the lmm width circuit provided. The composition of the silver paste was 85% by weight of fine silver powder, 0.75% by weight of ethyl cellulose, and 14.25% by weight of terbineol. FIB analysis measured the size of the precipitated crystal grains and used it to measure the crystallite diameter. The carbon content is used as a measure of the amount of impurities attached to the silver powder particles. Using EMIA-320V manufactured by Horiba, 0.5 g of fine silver powder, 1.5 g of tungsten powder, and 0 g of tin powder are used. 3 g was mixed, placed in a magnetic crucible, and measured by a combustion infrared absorption method.
実施例 2  Example 2
[0036] 本実施例では、実施例 1と異なる製造条件を用 ヽて微粒銀粉を製造し得られた微 粒銀粉の粉体特性を測定した。そして、更に、微粒銀粉を用いて銀ペーストを製造し 、試験回路を形成し、導体抵抗及び焼結開始温度の測定を行った。  In the present example, fine silver powder was manufactured under manufacturing conditions different from those in Example 1, and the powder characteristics of the obtained fine silver powder were measured. Further, a silver paste was produced using the fine silver powder, a test circuit was formed, and the conductor resistance and the sintering start temperature were measured.
[0037] 最初に 63. 3gの硝酸銀を 3. 1リットルの純水に溶解させ硝酸銀水溶液を調製し、 これに 235mlの 25wt%濃度アンモニア水を一括で添カ卩して攪拌することにより銀ァ ンミン錯体水溶液を得たのである。  First, 63.3 g of silver nitrate was dissolved in 3.1 liter of pure water to prepare an aqueous silver nitrate solution, and 235 ml of 25 wt% aqueous ammonia was added thereto all at once, followed by stirring and stirring. Thus, an aqueous amine complex solution was obtained.
[0038] そして、この銀アンミン錯体溶液を、図 1に示した内径 13mmの第一流路 aに流量 1 500mlZsecで導入し、第二流路 bから還元剤を流量 1500mlZsecで流し合流点 m で 20°Cの温度になるようにして接触させ、微粒銀粉を還元析出させた。このときに用 いた還元剤には、 21gのヒドロキノンを 3. 4リットルの純水に溶解させたヒドロキノン水 溶液を用いた。従って、混合が終了した時点でのヒドロキノン濃度は、約 3. OgZlで あり、非常に希薄な濃度である。  Then, this silver ammine complex solution is introduced into the first flow path a having an inner diameter of 13 mm shown in FIG. 1 at a flow rate of 1,500 mlZsec, and the reducing agent is flowed through the second flow path b at a flow rate of 1,500 mlZsec. The temperature was brought to a temperature of ° C, and the fine silver powder was reduced and precipitated. The reducing agent used at this time was a hydroquinone aqueous solution in which 21 g of hydroquinone was dissolved in 3.4 liters of pure water. Therefore, the concentration of hydroquinone at the end of mixing is about 3. OgZl, a very dilute concentration.
[0039] 以上のようにして得られた微粒銀粉を実施例 1と同様にして、ヌッチヱを用いて濾過 し、 100mlの水と 50mlのメタノールとを用いて洗浄し、更に 70°C X 5時間の乾燥を 行 ヽ微粒銀粉を得たのである。この得られた微粒銀粉の走査型電子顕微鏡写真を 図 3に示している。そして、以上のようにして得られた微粒銀粉の粉体特性は、表 1〖こ 実施例 1及び比較例で得られた銀粉の粉体特性と共に掲載している。 比較例 1 [0039] The fine silver powder obtained as described above was filtered using Nutch II in the same manner as in Example 1, washed with 100 ml of water and 50 ml of methanol, and further treated at 70 ° C for 5 hours. After drying, fine silver powder was obtained. Fig. 3 shows a scanning electron micrograph of the obtained fine silver powder. The powder characteristics of the fine silver powder obtained as described above are shown in Table 1. It is shown together with the powder characteristics of the silver powder obtained in Example 1 and Comparative Example. Comparative Example 1
[0040] 本比較例では、以下に示す製造方法を用いて微粒銀粉を製造し得られた微粒銀 粉の粉体特性を測定した。そして、更に、微粒銀粉を用いて銀ペーストを製造し、試 験回路を形成し、導体抵抗及び焼結開始温度の測定を行った。  In this comparative example, the fine silver powder was produced by the following production method, and the powder characteristics of the obtained fine silver powder were measured. Further, a silver paste was produced using the fine silver powder, a test circuit was formed, and the conductor resistance and the sintering start temperature were measured.
[0041] 最初に 63. 3gの硝酸銀を 1. 0リットルの純水に溶解させ硝酸銀水溶液を調製し、 これに 235mlの 25wt%濃度アンモニア水を一括で添カ卩して攪拌することにより銀ァ ンミン錯体水溶液を得たのである。  First, 63.3 g of silver nitrate was dissolved in 1.0 liter of pure water to prepare an aqueous silver nitrate solution, and 235 ml of 25 wt% ammonia water was added thereto all at once and stirred, followed by stirring. Thus, an aqueous amine complex solution was obtained.
[0042] そして、この銀アンミン錯体溶液を反応槽に入れ、ここに還元剤として 21gのヒドロキ ノンを 1. 3リットルの純水に溶解させたヒドロキノン水溶液を一括で添カ卩して、液温を 20°Cに維持して攪拌し反応させることで銀粉を還元析出させた。この混合が終了し た時点でのヒドロキノン濃度は、約 8. 23gZlであり、高濃度なものとなっている。  [0042] Then, the silver ammine complex solution was put into a reaction vessel, and a hydroquinone aqueous solution in which 21 g of hydroquinone was dissolved as a reducing agent in 1.3 liter of pure water was added thereto all at once. The silver powder was reduced and precipitated by maintaining the temperature at 20 ° C. and stirring and reacting. The hydroquinone concentration at the end of this mixing is approximately 8.23 gZl, which is a high concentration.
[0043] 以上のようにして得られた微粒銀粉を実施例 1と同様にして、ヌッチヱを用いて濾過 し、 100mlの水と 50mlのメタノールとを用いて洗浄し、更に 70°C X 5時間の乾燥を 行 ヽ微粒銀粉を得たのである。この得られた銀粉の走査型電子顕微鏡写真を図 4に 示している。そして、以上のようにして得られた微粒銀粉の粉体特性は、表 1に上記 実施例及び第 2比較例で得られた銀粉の粉体特性と共に掲載している。  [0043] The fine silver powder obtained as described above was filtered using Nutch II in the same manner as in Example 1, washed with 100 ml of water and 50 ml of methanol, and further treated at 70 ° C for 5 hours. After drying, fine silver powder was obtained. Fig. 4 shows a scanning electron micrograph of the obtained silver powder. The powder characteristics of the fine silver powder obtained as described above are listed in Table 1 together with the powder characteristics of the silver powder obtained in the above Examples and the second comparative example.
比較例 2  Comparative Example 2
[0044] 本比較例では、以下に示す製造方法を用いて微粒銀粉を製造し得られた微粒銀 粉の粉体特性を測定した。そして、更に、微粒銀粉を用いて銀ペーストを製造し、試 験回路を形成し、導体抵抗及び焼結開始温度の測定を行った。  [0044] In this comparative example, fine silver powder was manufactured using the manufacturing method described below, and the powder characteristics of the fine silver powder obtained were measured. Further, a silver paste was produced using the fine silver powder, a test circuit was formed, and the conductor resistance and the sintering start temperature were measured.
[0045] 最初〖こ 63. 3gの硝酸銀を 300mlの純水に溶解させ硝酸銀水溶液を調製し、これ に 235mlの 25wt%濃度アンモニア水を一括で添カ卩して攪拌することにより銀アンミ ン錯体水溶液を得たのである。  First, 63.3 g of silver nitrate was dissolved in 300 ml of pure water to prepare an aqueous silver nitrate solution, and 235 ml of 25 wt% aqueous ammonia was added thereto all at once, followed by stirring and stirring. An aqueous solution was obtained.
[0046] そして、この銀アンミン錯体溶液を反応槽に入れ、ここに 3gのゼラチンを 200mlの 純水に添カ卩し、更に還元剤として 21gのヒドロキノンを 700mlの純水に溶解させたヒド ロキノン水溶液を一括で添加して、液温を 20°Cに維持して攪拌し反応させることで銀 粉を還元析出させた。この混合が終了した時点でのヒドロキノン濃度は、約 14. 5gZ 1であり、高濃度なものとなっている。 [0046] Then, the silver ammine complex solution was put into a reaction vessel, 3 g of gelatin was added to 200 ml of pure water, and hydroquinone as a reducing agent was dissolved in 700 g of pure water. The aqueous solution was added all at once, and the silver powder was reduced and precipitated by maintaining the liquid temperature at 20 ° C and stirring and reacting. At the end of this mixing, the hydroquinone concentration is approximately 14.5 gZ 1, which is a high concentration.
[0047] 以上のようにして得られた微粒銀粉を実施例 1と同様にして、ヌッチヱを用いて濾過 し、 100mlの水と 50mlのメタノールとを用いて洗浄し、更に 70°C X 5時間の乾燥を 行い微粒銀粉を得たのである。この得られた銀粉の走査型電子顕微鏡写真を図 5に 示している。そして、以上のようにして得られた微粒銀粉の粉体特性は、表 1に上記 実施例及び第 2比較例で得られた銀粉の粉体特性と共に掲載している。 [0047] The fine silver powder obtained as described above was filtered using Nutch II in the same manner as in Example 1, washed with 100 ml of water and 50 ml of methanol, and further treated at 70 ° C for 5 hours. After drying, fine silver powder was obtained. Fig. 5 shows a scanning electron micrograph of the obtained silver powder. The powder characteristics of the fine silver powder obtained as described above are listed in Table 1 together with the powder characteristics of the silver powder obtained in the above Examples and the second comparative example.
比較例 3  Comparative Example 3
[0048] 本比較例では、以下に示す製造方法を用いて微粒銀粉を製造し得られた微粒銀 粉の粉体特性を測定した。そして、更に、微粒銀粉を用いて銀ペーストを製造し、試 験回路を形成し、導体抵抗及び焼結開始温度の測定を行った。  [0048] In this comparative example, the fine silver powder was manufactured using the following manufacturing method, and the powder characteristics of the obtained fine silver powder were measured. Further, a silver paste was produced using the fine silver powder, a test circuit was formed, and the conductor resistance and the sintering start temperature were measured.
[0049] 最初に 260mlの純水に 20gのポリビュルピロリドンを溶解させ、更に 50gの硝酸銀 を溶解させ硝酸銀水溶液を調製し、これに 25gの硝酸を一括で添加して攪拌するこ とにより銀含有硝酸系溶液を得たのである。この混合が終了した時点でのァスコルビ ン酸濃度は、約 36. OgZlとなっている。  [0049] First, 20 g of polybutylpyrrolidone is dissolved in 260 ml of pure water, and further, 50 g of silver nitrate is dissolved to prepare an aqueous silver nitrate solution. A nitric acid solution was obtained. At the end of this mixing, the ascorbic acid concentration is approximately 36. OgZl.
[0050] 一方、還元剤として 35. 8gのァスコルビン酸を 500mlの純水に添カ卩し溶解させ還 元溶液を調製した。  On the other hand, as a reducing agent, 35.8 g of ascorbic acid was added to 500 ml of pure water and dissolved to prepare a reducing solution.
[0051] そして、この銀含有硝酸系溶液を反応槽に入れ、ここに上記還元溶液を一括で添 カロして、液温を 25°Cに維持して攪拌し反応させることで銀粉を還元析出させた。  [0051] Then, the silver-containing nitric acid-based solution is put into a reaction tank, and the above-mentioned reducing solution is added thereto all at once. The liquid temperature is kept at 25 ° C, and the mixture is stirred and reacted, whereby silver powder is reduced and precipitated. I let it.
[0052] 以上のようにして得られた微粒銀粉を実施例 1と同様にして、ヌッチェを用いて濾過 し、 100mlの水と 50mlのメタノールとを用いて洗浄し、更に 70°C X 5時間の乾燥を 行い微粒銀粉を得たのである。そして、以上のようにして得られた微粒銀粉の粉体特 性は、表 1に上記実施例及び比較例で得られた銀粉の粉体特性と共に掲載して!/ヽる  [0052] The fine silver powder obtained as described above was filtered using Nutsche, washed with 100 ml of water and 50 ml of methanol in the same manner as in Example 1, and further treated at 70 ° C for 5 hours. After drying, fine silver powder was obtained. The powder properties of the fine silver powder obtained as described above are listed in Table 1 together with the powder properties of the silver powder obtained in the above Examples and Comparative Examples!
[0053] <実施例と比較例との対比検討 > 上述の各実施例と比較例とを表 1を参照しつつ 対比することとする。また、図 2—図 5に示した走査型電子顕微鏡写真を見れば、粉 粒の一次粒子の粒径が明瞭に理解できると考える。 <Examination of Comparison between Example and Comparative Example> The above-described examples and the comparative example will be compared with reference to Table 1. From the scanning electron micrographs shown in Figs. 2 to 5, it is considered that the particle size of the primary particles can be clearly understood.
[0054] [表 1] 粉 体 特 性 焼結導体特性 試 料 S S A タップ D D , D S。Z D , A 結晶 炭素含有量 導体抵抗 焼 結 開 始 充填密度 子径 皿 £κ. m Vg g / c m 3 μ m n in % Μ Ω ■ c m °C 実施例 1 2 .5 4 4 .2 0 .3 1 0 .3 0 1 .0 3 7 0 .2 8 4 .6 1 6 0 実施例 2 1 .6 8 4 .7 0 .5 5 0 . 9 1 .1 2 7 0 .3 2 5 .9 1 9 0 比較例 1 1 .1 8 4 .3 1 .7 8 1 .0 2 1 .7 5 9 0 .8 8 測定不能 2 5 0 比較例 2 0 .5 5 4 .0 3 .9 0 2 .2 0 1 .7 7 δ 0 .8 9 測定不能 2 5 0 比較例 3 0 .6 2 4 .0 3 .0 3 1 .2 0 2 .5 3 3 8 0 .3 0 測定不能 3 5 0 [Table 1] Powder characteristics sintered conductor properties specimen SSA tap DD, D S. ZD, A crystal Carbon content Conductor resistance Sintering Starting packing density Dish size £ κ.m Vg g / cm 3 μmn in% ΜΩ cm cm ° C Example 1 2.5 4 4 .2 0.3 10 0.3 0 1 .0 3 7 0 .2 8 4 .6 1 .6 0 Example 2 1.6 .8 4 .7 0 .5 5 0 .9 1 .1 .2 7 0 .3 2 5 .9 1 9 0 Comparative example 1 1 .1 8 4 .3 1 .7 8 1 .0 2 1 .7 .5 9 0 .8 8 Unmeasurable 2 5 0 Comparative example 2 .5 5 4 .0 3 .9 0 2. 2 0 1 .77 7 δ 0.89 Unmeasurable 2 5 0 Comparative example 3 0.6 2 4 .0 3.0 3 1 .2 0 2 .5 3 3 8 0 .3 0 Unmeasurable 3 5 0
[0055] この表 1から明らかなように、粉体特性値の各々を比較しても、従来の製造方法を 用いて製造した銀粉に比べ、上記実施例で得られた微粒銀粉は極めて微細なもの であり、分散性が高ぐ従来の銀粉には存在しない微粒粉であることが分力るのであ る。また、焼結導体特性に関しても、本件発明にかかる微粒銀粉を用いて回路形成 した場合の膜密度は高ぐ電気抵抗も低くなつている。各比較例の場合には、導体抵 抗が高く測定不能となることが分力るのである。 [0055] As is clear from Table 1, even when comparing each of the powder characteristic values, the fine silver powder obtained in the above example is extremely fine compared to the silver powder manufactured using the conventional manufacturing method. It is a fine powder that does not exist in conventional silver powder, which has high dispersibility. Regarding the characteristics of the sintered conductor, when a circuit is formed using the fine silver powder according to the present invention, the film density is high and the electric resistance is low. In the case of each comparative example, it is a component that the conductor resistance is high and measurement becomes impossible.
産業上の利用可能性  Industrial applicability
[0056] 本件発明に係る微粒銀粉は、従来の銀粉では考えられな ヽほどの微細な粉粒で 構成されたものであり、し力も、その粉粒の凝集度合いが低ぐ従来の銀粉と対比し ても、非常に優れた分散性を示すものである。また、本件発明にかかる微粒銀粉の 製造方法を採用することで、得られる微粒銀粉への残留有機物が少なくなり、微粒銀 粉であるが故の膜密度の高さと重畳して作用し、結果として得られる導体の電気抵抗 の低減ィ匕を可能とするのであるに資するのである。  [0056] The fine silver powder according to the present invention is composed of fine particles that are hardly considered in conventional silver powder, and has a lower force than conventional silver powder in which the degree of aggregation of the powder is low. Even so, it shows very good dispersibility. In addition, by employing the method for producing fine silver powder according to the present invention, the amount of residual organic matter in the fine silver powder obtained is reduced, and the fine silver powder acts in combination with the high film density due to the fine silver powder. This contributes to reducing the electrical resistance of the obtained conductor.
図面の簡単な説明  Brief Description of Drawings
[0057] [図 1]銀アンミン錯体水溶液と還元剤との混合概念を表した図。  FIG. 1 is a diagram showing the concept of mixing an aqueous silver ammine complex solution and a reducing agent.
[図 2]本件発明にかかる微粒銀粉の走査電子顕微鏡観察像。  FIG. 2 is a scanning electron microscope observation image of the fine silver powder according to the present invention.
[図 3]本件発明にかかる微粒銀粉の走査電子顕微鏡観察像。  FIG. 3 is a scanning electron microscope observation image of the fine silver powder according to the present invention.
[図 4]従来の製造方法に力かる微粒銀粉の走査電子顕微鏡観察像。  [Fig. 4] Scanning electron microscope observation image of fine silver powder that works in a conventional manufacturing method.
[図 5]従来の製造方法にかかる微粒銀粉の走査電子顕微鏡観察像。  FIG. 5 is a scanning electron microscope observation image of fine silver powder according to a conventional production method.

Claims

請求の範囲 The scope of the claims
[1] 粉粒の凝集性の低い微粒の銀粉であって、以下の a. — の粉体特性を備えること を特徴とした微粒銀粉。  [1] A fine silver powder, which is a fine silver powder having a low cohesiveness of the powder and which has the following powder characteristics of a.
a. 走査型電子顕微鏡像の画像解析により得られる一次粒子の平均粒径 D 力 SO  a. Average particle size of primary particles obtained by image analysis of scanning electron microscope images D Force SO
IA  IA
• 6 μ m以 "h o  • 6 μm or less "ho
b. 前記一次粒子の平均粒径 D と、レーザー回折散乱式粒度分布測定法による  b. The average particle diameter D of the primary particles and the laser diffraction scattering type particle size distribution measurement method
IA  IA
平均粒径 D とを用いて D /Ό で表される凝集度が 1. 5以下。  The cohesion degree represented by D / Ό using the average particle diameter D is 1.5 or less.
50 50 IA  50 50 IA
c. 結晶子径が 10nm以下。  c. Crystallite diameter is 10nm or less.
[2] 焼結開始温度 240°C以下である請求項 1に記載の微粒銀粉。  [2] The fine silver powder according to claim 1, wherein the sintering temperature is 240 ° C or lower.
[3] 硝酸銀水溶液とアンモニア水とを混合して反応させ銀アンミン錯体水溶液を得て、こ れに還元剤を添加することにより銀粒子を還元析出させ、濾過、洗浄、乾燥させて得 られる微粒銀粉の製造方法にぉ ヽて、  [3] An aqueous silver nitrate solution and aqueous ammonia are mixed and reacted to obtain an aqueous silver ammine complex solution, and a reducing agent is added thereto to precipitate and precipitate silver particles, which is filtered, washed and dried to obtain fine particles. Regarding the production method of silver powder,
前記銀アンミン錯体水溶液に有機還元剤を接触混合させ、且つ、混合後の溶液中 で銀濃度が lgZl— 6gZl、有機還元剤濃度を lgZl— 3gZlに維持して銀粒子を還 元析出させることを特徴とした微粒銀粉の製造方法。  Contacting and mixing an organic reducing agent with the aqueous solution of silver ammine complex, and reducing and precipitating silver particles while maintaining a silver concentration of lgZl-6 gZl and an organic reducing agent concentration of lgZl-3 gZl in the mixed solution. A unique method of producing fine silver powder.
[4] 請求項 3に記載の微粒銀粉の製造方法にぉ 、て、 [4] The method for producing fine silver powder according to claim 3,
前記銀アンミン錯体水溶液に有機還元剤を接触混合させる際に、前記銀アンミン 錯体水溶液が一定の流路 (以下、「第一流路」と称する。)を流れ、その第一流路の 途中に合流する第二流路を設け、この第二流路を通じて有機還元剤を流し、第一流 路と第二流路との合流点で接触混合させることを特徴とした微粒銀粉の製造方法。  When an organic reducing agent is brought into contact with and mixed with the aqueous silver ammine complex solution, the aqueous silver ammine complex solution flows through a certain flow path (hereinafter, referred to as a “first flow path”) and joins the middle of the first flow path. A method for producing fine silver powder, comprising: providing a second flow path, flowing an organic reducing agent through the second flow path, and contacting and mixing the organic reducing agent at a junction of the first flow path and the second flow path.
[5] 請求項 3又は請求項 4に記載の微粒銀粉の製造方法にお 、て、 [5] In the method for producing fine silver powder according to claim 3 or claim 4,
硝酸銀濃度が 2. 6gZl— 48gZlの硝酸銀水溶液とアンモニア水とを混合し反応さ せた、銀濃度が 2— 12g/lの銀アンミン錯体水溶液を用いることを特徴とした微粒銀 粉の製造方法。  A method for producing fine silver powder, characterized by using a silver ammine complex aqueous solution having a silver concentration of 2 to 12 g / l, which is obtained by mixing and reacting an aqueous solution of silver nitrate having a silver nitrate concentration of 2.6 gZl to 48 gZl and aqueous ammonia.
[6] 請求項 3—請求項 5の 、ずれかに記載の微粒銀粉の製造方法にお!、て、  [6] The method for producing fine silver powder according to claim 3-claim 5, wherein
使用する有機還元剤に分散剤を含ませておくものである微粒銀粉の製造方法。  A method for producing fine silver powder in which a dispersant is contained in an organic reducing agent to be used.
[7] 請求項 3—請求項 6の 、ずれかに記載の微粒銀粉の製造方法にお!、て、  [7] The method for producing fine silver powder according to claim 3 or claim 6, wherein
有機還元剤は、ヒドロキノンを用いるものである微粒銀粉の製造方法。  A method for producing fine silver powder, wherein the organic reducing agent uses hydroquinone.
PCT/JP2004/010099 2003-07-29 2004-07-15 Fine-grain silver powder and process for producing the same WO2005009651A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002534107A CA2534107A1 (en) 2003-07-29 2004-07-15 Fine-grain silver powder and process for producing the same
KR1020067001513A KR101132282B1 (en) 2003-07-29 2004-07-15 Process For Producing Fine-Grain Silver Powder
US10/566,365 US20080138238A1 (en) 2003-07-29 2004-07-15 Fine Particulate Silver Powder and Production Method Thereof
DE112004001399T DE112004001399T5 (en) 2003-07-29 2004-07-15 Fine particulate silver powder and process for its preparation
HK06112769.8A HK1092101A1 (en) 2003-07-29 2006-11-21 Fine-grain silver powder and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-281659 2003-07-29
JP2003281659A JP4489388B2 (en) 2003-07-29 2003-07-29 Method for producing fine silver powder

Publications (1)

Publication Number Publication Date
WO2005009651A1 true WO2005009651A1 (en) 2005-02-03

Family

ID=34100959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010099 WO2005009651A1 (en) 2003-07-29 2004-07-15 Fine-grain silver powder and process for producing the same

Country Status (9)

Country Link
US (1) US20080138238A1 (en)
JP (1) JP4489388B2 (en)
KR (1) KR101132282B1 (en)
CN (1) CN100455382C (en)
CA (1) CA2534107A1 (en)
DE (1) DE112004001399T5 (en)
HK (1) HK1092101A1 (en)
TW (1) TW200504166A (en)
WO (1) WO2005009651A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102133635A (en) * 2011-05-02 2011-07-27 杨荣春 Silver powder and manufacturing method thereof

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4347381B2 (en) * 2005-05-25 2009-10-21 ニホンハンダ株式会社 Paste silver composition for adhesion of metal-based adherend, method for producing the same, and method for bonding metal-based adherend
TWI441924B (en) 2006-07-28 2014-06-21 Mitsubishi Materials Corp Silver particles, method for producing the same and apparatus for producing the same
KR20090128380A (en) * 2007-03-30 2009-12-15 미쓰비시 마테리알 가부시키가이샤 Fine silver particle, process for producing fine silver particle, and apparatus for producing fine silver particle
JP5212364B2 (en) 2008-01-17 2013-06-19 日亜化学工業株式会社 Manufacturing method of conductive material, conductive material obtained by the method, electronic device including the conductive material, light emitting device, and method of manufacturing light emitting device
JP5355007B2 (en) * 2008-09-17 2013-11-27 Dowaエレクトロニクス株式会社 Method for producing spherical silver powder
JP5370372B2 (en) 2009-01-23 2013-12-18 日亜化学工業株式会社 Semiconductor device and manufacturing method thereof
CN102292835B (en) 2009-01-23 2015-03-25 日亚化学工业株式会社 Semiconductor device and method for manufacturing same
US8836130B2 (en) 2009-01-23 2014-09-16 Nichia Corporation Light emitting semiconductor element bonded to a base by a silver coating
US8231704B2 (en) * 2009-05-01 2012-07-31 E I Du Pont De Nemours And Company Silver particles and processes for making them
TW201043359A (en) * 2009-05-01 2010-12-16 Du Pont Silver particles and a process for making them
US9011728B2 (en) 2009-07-21 2015-04-21 Nichia Corporation Method for producing conductive material, conductive material obtained by the method, electronic device containing the conductive material, and light-emitting device
TW201108249A (en) * 2009-08-25 2011-03-01 Du Pont Silver thick film paste compositions and their use in conductors for photovoltaic cells
JP2011080094A (en) * 2009-10-02 2011-04-21 Toda Kogyo Corp Fine silver particle, method for producing same, conductive paste containing the fine silver particles, conductive film, and electronic device
JP5659495B2 (en) * 2010-01-26 2015-01-28 三菱マテリアル株式会社 Method for forming electrode or wiring pattern
US8366799B2 (en) 2010-08-30 2013-02-05 E I Du Pont De Nemours And Company Silver particles and a process for making them
EP2638990B1 (en) * 2010-11-08 2019-05-08 Namics Corporation Manufacturing method for metal particles
US8574338B2 (en) 2010-11-17 2013-11-05 E I Du Pont De Nemours And Company Reactor and continuous process for producing silver powders
CN103702786B (en) * 2011-07-29 2015-07-29 户田工业株式会社 Silver microparticle and the conductive paste containing this silver-colored microparticle, conductive film and electronic device
JP5354041B2 (en) * 2012-02-24 2013-11-27 住友金属鉱山株式会社 Silver powder manufacturing method
US10369667B2 (en) * 2012-03-05 2019-08-06 Namics Corporation Sintered body made from silver fine particles
JP5510531B1 (en) * 2012-11-29 2014-06-04 住友金属鉱山株式会社 Silver powder and silver paste
TWI508799B (en) * 2012-12-06 2015-11-21 China Steel Corp A Method for Synthesis of Silver Powder with Adjustable Particle Size
JP6115405B2 (en) * 2013-08-28 2017-04-19 住友金属鉱山株式会社 Silver powder manufacturing method
JP6086145B2 (en) * 2015-12-22 2017-03-01 住友金属鉱山株式会社 Silver powder manufacturing method
KR102033545B1 (en) * 2017-06-05 2019-10-17 대주전자재료 주식회사 Silver particle and method of manufacture thereof
CN107520460A (en) * 2017-07-26 2017-12-29 华南理工大学 A kind of superfine nano gold/nano-cellulose composite solution and preparation method thereof
KR20220106128A (en) 2019-11-28 2022-07-28 엠. 테크닉 가부시키가이샤 Method for producing fine silver particles
CN114682792B (en) * 2022-04-14 2024-02-13 宁夏中色新材料有限公司 Spherical silver powder with high specific surface area and preparation method thereof
JP2023164097A (en) * 2022-04-28 2023-11-10 Dowaエレクトロニクス株式会社 Spherical silver powder, method for producing spherical silver powder, apparatus for producing spherical silver powder, and conductive paste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107101A (en) * 1999-10-12 2001-04-17 Mitsui Mining & Smelting Co Ltd High dispersibility spherical silver powder and its producing method
JP2003034802A (en) * 2001-07-25 2003-02-07 Mitsui Mining & Smelting Co Ltd Copper powder, manufacturing method therefor, copper paste using the copper powder, and printed circuit board using the copper paste
JP2003129106A (en) * 2001-10-25 2003-05-08 Murata Mfg Co Ltd Method for manufacturing nickel powder, nickel powder, nickel paste, and laminated ceramic electronic component
JP2004100013A (en) * 2002-09-12 2004-04-02 Mitsui Mining & Smelting Co Ltd Low aggregative silver powder and its manufacturing method, and conductive paste using low aggregative silver powder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287210A (en) * 1988-05-12 1989-11-17 Tanaka Kikinzoku Kogyo Kk Manufacture of silver fine particle
US4979985A (en) * 1990-02-06 1990-12-25 E. I. Du Pont De Nemours And Company Process for making finely divided particles of silver metal
JPH04333504A (en) * 1991-05-10 1992-11-20 Sumitomo Metal Mining Co Ltd Continuous production of monodisperse fine silver powder
CN1174827C (en) * 2001-08-17 2004-11-10 中国科学院过程工程研究所 Preparation of hexagonal plate silver powder by chemical reduction process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107101A (en) * 1999-10-12 2001-04-17 Mitsui Mining & Smelting Co Ltd High dispersibility spherical silver powder and its producing method
JP2003034802A (en) * 2001-07-25 2003-02-07 Mitsui Mining & Smelting Co Ltd Copper powder, manufacturing method therefor, copper paste using the copper powder, and printed circuit board using the copper paste
JP2003129106A (en) * 2001-10-25 2003-05-08 Murata Mfg Co Ltd Method for manufacturing nickel powder, nickel powder, nickel paste, and laminated ceramic electronic component
JP2004100013A (en) * 2002-09-12 2004-04-02 Mitsui Mining & Smelting Co Ltd Low aggregative silver powder and its manufacturing method, and conductive paste using low aggregative silver powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102133635A (en) * 2011-05-02 2011-07-27 杨荣春 Silver powder and manufacturing method thereof

Also Published As

Publication number Publication date
TW200504166A (en) 2005-02-01
CA2534107A1 (en) 2005-02-03
CN100455382C (en) 2009-01-28
TWI304832B (en) 2009-01-01
KR101132282B1 (en) 2012-04-02
JP4489388B2 (en) 2010-06-23
KR20060035781A (en) 2006-04-26
US20080138238A1 (en) 2008-06-12
JP2005048236A (en) 2005-02-24
HK1092101A1 (en) 2007-02-02
CN1826197A (en) 2006-08-30
DE112004001399T5 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
WO2005009651A1 (en) Fine-grain silver powder and process for producing the same
WO2005009652A1 (en) Fine-grain silver powder and process for producing the same
JP4047304B2 (en) Fine silver particle-attached silver powder and method for producing the fine silver particle-attached silver powder
TWI277469B (en) Silver particle powder and its production method
JP4344001B2 (en) Composition containing fine silver particles, method for producing the same, method for producing fine silver particles, and paste having fine silver particles
TWI389750B (en) A fine particle dispersion liquid, and a method for producing a fine particle dispersion liquid
JP2007270312A (en) Method for manufacturing silver powder, and silver powder
JP6168837B2 (en) Copper fine particles and method for producing the same
JP5074837B2 (en) Method for producing flat silver powder, flat silver powder, and conductive paste
WO2010001496A1 (en) Metal microparticle containing composition and process for production of the same
JP5622127B2 (en) Reduction precipitation type spherical NiP fine particles and method for producing the same
JP4879762B2 (en) Silver powder manufacturing method and silver powder
JP2009062570A (en) Method for producing dispersion of high concentration of metal nanoparticle
JP4947509B2 (en) Nickel slurry, method for producing the same, and nickel paste or nickel ink using the nickel slurry
JP4606012B2 (en) Silver paste
JP4433743B2 (en) Method for producing copper fine particles
JP2008069457A (en) Drop-shaped copper powder, method for producing drop-shaped copper powder, and electrically conductive paste
JP2010225574A (en) Silver paste
JP4942090B2 (en) Method for producing spherical nickel fine particles and method for producing conductive particles for anisotropic conductive film
JP7065676B2 (en) A silver-coated metal powder and a method for producing the same, a conductive paste containing the silver-coated metal powder, and a method for producing a conductive film using the conductive paste.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480020987.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067001513

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2534107

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10566365

Country of ref document: US

122 Ep: pct application non-entry in european phase