WO2005008749A1 - セラミック接合体、セラミック接合体の製造方法、セラミック温調器およびセラミック温調ユニット - Google Patents

セラミック接合体、セラミック接合体の製造方法、セラミック温調器およびセラミック温調ユニット Download PDF

Info

Publication number
WO2005008749A1
WO2005008749A1 PCT/JP2003/009026 JP0309026W WO2005008749A1 WO 2005008749 A1 WO2005008749 A1 WO 2005008749A1 JP 0309026 W JP0309026 W JP 0309026W WO 2005008749 A1 WO2005008749 A1 WO 2005008749A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
ceramic substrate
external terminal
heating element
resistance heating
Prior art date
Application number
PCT/JP2003/009026
Other languages
English (en)
French (fr)
Inventor
Yasutaka Ito
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to PCT/JP2003/009026 priority Critical patent/WO2005008749A1/ja
Publication of WO2005008749A1 publication Critical patent/WO2005008749A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • H05B3/143Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds applied to semiconductors, e.g. wafers heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction

Definitions

  • Ceramic joint manufacturing method of ceramic joint, ceramic temperature controller and ceramic temperature controller
  • the present invention is used for a hot plate (ceramic heater), an electrostatic chuck, a susceptor, and the like, and has a ceramic joined body provided with a conductor on the surface or inside thereof, a method of manufacturing the same, mainly a semiconductor manufacturing and an inspection apparatus. And ceramic temperature controllers (ceramic heaters, hot plates) and ceramic temperature units used in the optical field. Background art
  • a hot plate has been proposed in which a body and a through hole made of tungsten carbide are formed, and tungsten is brazed as an external terminal to these.
  • Such a hot plate uses an aluminum nitride substrate having high mechanical strength even at a high temperature, so that the thickness of the aluminum nitride substrate can be reduced to reduce the heat capacity.
  • the temperature of the aluminum-nitride substrate can be made to quickly follow changes in the current and the amount of current.
  • such a hot plate has a cylindrical shape, such as a ceramic bonded body described in Japanese Patent No. 2783980 / Japanese Unexamined Patent Application Publication No. 2002-146770.
  • a solution containing a sintering aid to the ceramic joint surface and heating it by contacting it with the disc-shaped ceramic, the ceramic particles at the interface are on both sides of the interface. Measures were taken to grow the grains so as to extend them, join the cylindrical ceramic and the disc-shaped ceramic, and protect the wiring such as external terminals from the reactive gas and halogen gas used in the semiconductor manufacturing process. .
  • Japanese Patent Application Laid-Open No. 11-43030 discloses that a nitride ceramic or a carbide ceramic having a high thermal conductivity and a high strength is used, and metal particles are formed on the surface of a ceramic substrate made of these ceramics.
  • a ceramic heater having a resistance heating element formed by sintering In such a ceramic heater, an external terminal is adhered to the end of the resistance heating body by using solder, and a socket or the like to which a wiring is connected is inserted into the external terminal, thereby connecting to a power supply.
  • the inclusion of carbon in the ceramic substrate is indispensable from the viewpoint of electrode concealment and the use of black body radiation, and furthermore, it is necessary to suppress a decrease in volume resistivity and a decrease in thermal conductivity of the ceramic substrate at high temperatures. Therefore, it is practically difficult to manufacture a ceramic joined body using a carbon-free ceramic substrate. Therefore, a carbon-containing ceramic joined body has been conventionally used.
  • the carbon contained in the ceramic substrate is evenly distributed throughout the ceramic substrate, the ceramic body and the ceramic substrate are brought into contact and heated, and the sintering aid in the ceramic substrate is heated. If an attempt is made to join the two by utilizing the diffusion or diffusion of the same material as the applied sintering aid, carbon present near the surface of the ceramic substrate becomes an impurity, and the ceramic at the interface between the two becomes an impurity. In some cases, grain growth and the like were hindered, resulting in insufficient bonding.
  • the present invention has been made in order to solve the above-mentioned problems, and is intended for use in a case where the substrate is continuously exposed to a reactive gas or a halogen gas for a long period of time or a case where the temperature is repeatedly increased and decreased.
  • the purpose is to realize a ceramic joined body that has high joint strength with the body and excellent durability.
  • the present invention provides a ceramic temperature controller excellent in durability that can reliably connect a circuit and a wiring without disconnecting wiring from an external terminal or a source even when used for a long time.
  • Ceramic heaters, hot plates and ceramic temperature control units (ceramic heater units, hot plates) that can securely connect circuits and wiring and that are unlikely to degrade even when exposed to corrosive gases.
  • Platinum unit a ceramic temperature controller excellent in durability that can reliably connect a circuit and a wiring without disconnecting wiring from an external terminal or a source even when used for a long time.
  • a first aspect of the present invention is a ceramic joined body in which a ceramic body is joined to a ceramic substrate provided with a conductor on the surface or inside thereof,
  • the ceramic substrate contains carbon,
  • a ceramic joined body characterized in that the concentration of carbon near the surface of the ceramic substrate is lower than the concentration of carbon inside the ceramic substrate.
  • the concentration of the carbon contained in the ceramic substrate near the surface of the ceramic substrate is lower than the concentration inside the ceramic substrate.
  • the ceramic body is brought into contact with the ceramic substrate and heated, and bonding is performed using the diffusion of the sintering aid applied to the ceramic body, or bonding is performed using the concentration difference between the ceramic body and the ceramic substrate. If you go Then, at the interface, the ceramic particles are grown so as to extend to both sides of the interface, so that the ceramic substrate and the ceramic body can be firmly joined.
  • the carbon concentration is low only in the vicinity of the surface of the ceramic substrate, and the inside of the ceramic substrate has a sufficient carbon concentration.
  • the vicinity of the surface of the ceramic substrate means a region from the surface of the ceramic substrate to 10% of the thickness of the ceramic substrate. It means a region excluding the vicinity of the surface.
  • the conductor is a resistance heating element, and the ceramic joined body of the first aspect of the present invention desirably functions as a hot plate. This is because it is particularly desirable that the ceramic joined body of the first invention be used at a high temperature.
  • the resistance heating element may be formed in a layer shape, or may be formed in a striated body.
  • the conductor is an electrostatic electrode
  • the ceramic joined body of the first aspect of the present invention desirably functions as an electrostatic chuck. This is because the electrostatic chuck is often used in a corrosive atmosphere, and by using the ceramic joined body of the first aspect of the present invention as the electrostatic chuck, the electrostatic chuck can be suitably protected from corrosive gas. .
  • a ceramic substrate containing ceramic powder and carbon or a carbon raw material is fired to produce a ceramic substrate containing carbon at a substantially uniform concentration.
  • a method of manufacturing a ceramic joined body comprising: performing a carbon non-uniformity treatment under a normal pressure, 1800 to 2000 ° C, and an N 2 gas atmosphere, and then joining the ceramic substrate and the ceramic body. At this time, a reaction as shown in the following chemical formulas (1) and (2) occurs, and the carbon on the surface of the ceramic substrate is removed.
  • oxides of yttria and ytterbium are added to the ceramic substrate as a sintering aid, but these sintering aids have the property of moving to the vicinity of the surface of the ceramic substrate during sintering.
  • carbon in the vicinity of the surface of the ceramic substrate is oxidized by oxygen in the sintering aid, and the carbon becomes a gas such as carbon dioxide or carbon dioxide, and escapes from the surface of the ceramic substrate. As a result, it is considered that the carbon concentration near the surface of the ceramic substrate decreases.
  • a small amount of oxygen is introduced in addition to the N 2 gas to oxidize carbon near the surface of the ceramic substrate. Is further promoted, and the carbon concentration near the surface of the ceramic substrate can be further reduced.
  • the above-mentioned carbon nonuniformization step can be performed relatively easily, because it can be performed only by heating the ceramic substrate under certain conditions without requiring any special steps or equipment. .
  • the ceramic body is brought into contact with the ceramic substrate and heated, and bonding utilizing the diffusion of the sintering aid applied to the ceramic body and utilizing the concentration difference of the sintering aid between the ceramic body and the ceramic substrate are performed.
  • bonding utilizing the diffusion of the sintering aid applied to the ceramic body and utilizing the concentration difference of the sintering aid between the ceramic body and the ceramic substrate are performed.
  • bonding or the like the ceramic substrate and the ceramic body are firmly bonded.
  • the joining method is not limited to the above method.
  • the ceramic temperature controller according to the third aspect of the present invention is a ceramic temperature controller in which a circuit for temperature control is formed on or in a ceramic substrate, and an external terminal is connected to an end of the circuit.
  • the external terminal has a thread groove, which can be The wire and the external terminal are electrically connected, and the external terminal is screwed and fixed in a screw hole provided at an end of the circuit, whereby the wiring is connected to the wiring via the external terminal. It is characterized in that it is connected to a circuit.
  • the wiring from the power supply and the external terminal are electrically connected, and the external terminal is screwed into the screw hole provided at the end of the circuit and fixed. Therefore, the connection between the wiring and the circuit can be reliably performed for a long period of time.
  • the external terminals are physically fixed by being screwed into the screw holes, so they do not come off even after long-term use. It becomes a temperature controller.
  • the ceramic temperature controller of the fourth invention is a ceramic temperature controller of the third invention, a joining member for accommodating wirings, and a bottom surface of the ceramic temperature controller.
  • the ceramic temperature controller constituting the ceramic temperature controller is composed of the above-described ceramic temperature controller of the third aspect of the present invention. Even when used, the wiring from the external terminals and the power supply does not come off, and the connection between the circuit and the wiring can be made securely.
  • a protective member is installed on the bottom surface of the ceramic temperature controller, and the wiring is accommodated inside the protective member, and the wiring is accommodated inside the joint member. Because it is isolated from the surroundings, the wiring does not corrode even when exposed to corrosive gas, etc., and it becomes a ceramic temperature control unit with excellent durability and reliability.
  • a ceramic temperature controller is a ceramic temperature controller in which a circuit for temperature control is formed on or in a ceramic substrate, and an external terminal is connected to an end of the circuit.
  • a screw groove is formed in the external terminal and a through hole is formed in the external terminal.
  • a screw hole is provided at the bottom of the mic substrate to make electrical contact with the circuit, and the external terminal is screwed into the screw hole with the wiring from the power supply passing through the through hole of the external terminal. In this way, the connection between the wiring and the circuit is achieved via the external terminal.
  • the external terminal in the state where the wiring from the power supply passes through the through-hole of the external terminal, the external terminal is inserted into the screw hole which makes electrical contact with the ceramic substrate surface or the internal circuit. Since the cable is screwed and fixed, the connection between the wiring and the circuit can be reliably performed for a long period of time.
  • the external terminals are physically fixed by being screwed into the screw holes, the external terminals do not come off even when used for a long period of time, and are excellent in durability and reliability. It becomes a temperature controller.
  • a ceramic temperature controller includes the ceramic temperature controller of the fifth aspect of the present invention, a joining member for housing wiring, a circuit on the bottom surface of the ceramic temperature controller, and external terminals.
  • the ceramic temperature controller constituting the ceramic temperature controller of the present invention comprises the above-described ceramic temperature controller of the fifth aspect of the present invention, it can be used for a long time. Even when used, the wiring from the external terminals and the power supply does not come off, and the connection between the circuit and the wiring can be made securely.
  • a protective member is provided, and the wiring is accommodated therein, and the wiring is accommodated inside the joining member. Since the inside of the member is isolated from the surroundings, the wiring does not corrode even when exposed to corrosive gas, etc., and the ceramic temperature control unit has excellent durability and reliability.
  • FIG. 1 schematically shows a hot plate, which is an example of the ceramic joint of the first invention.
  • FIG. 1 schematically shows a hot plate, which is an example of the ceramic joint of the first invention.
  • FIG. 2 is a plan view of the hot plate shown in FIG.
  • FIG. 3 is a cross-sectional view schematically showing a distribution state of carbon in the hot plate shown in FIG.
  • FIG. 4 is a cross-sectional view schematically showing a hot plate as an example of the ceramic joined body of the first present invention.
  • FIG. 5 is a plan view of a ceramic substrate on which a resistance heating element constituting the hot plate shown in FIG. 4 is formed.
  • FIG. 6 is a cross-sectional view schematically showing an electrostatic chuck as another example of the ceramic joined body of the first present invention.
  • FIG. 7 is a horizontal cross-sectional view schematically showing one example of an electrostatic electrode embedded in a ceramic substrate constituting the electrostatic chuck according to the first present invention.
  • FIG. 8 is a horizontal sectional view schematically showing another example of the electrostatic electrode embedded in the ceramic substrate constituting the electrostatic chuck according to the first invention.
  • FIG. 9 is a horizontal cross-sectional view schematically showing still another example of the electrostatic electrode embedded in the ceramic substrate constituting the electrostatic chuck according to the first invention.
  • FIG. 10 is a plan view schematically showing another example of the hot plate according to the first invention.
  • FIG. 11 is a partially enlarged cross-sectional view schematically showing the hot plate shown in FIG.
  • FIGS. 12A to 12D are cross-sectional views schematically showing an example of a method for manufacturing a hot plate as an example of the ceramic joined body of the first invention.
  • FIGS. 13A to 13D are cross-sectional views schematically showing an example of a method for manufacturing a hot plate as another example of the ceramic joined body of the first invention.
  • FIG. 14 is a bottom view schematically showing an example of the third ceramic heater according to the present invention.
  • FIG. 15 is a partially enlarged cross-sectional view schematically showing a part of the ceramic heater shown in FIG.
  • FIG. 16 schematically shows an example of the hot plate unit according to the fourth invention. It is sectional drawing.
  • FIG. 17 is a bottom view schematically showing an example of the fifth ceramic heater according to the present invention.
  • FIG. 18 (a) is a partially enlarged sectional view of the ceramic heater shown in FIG. 17, and (b) is a partially enlarged sectional view schematically showing another example of the fifth ceramic heater of the present invention. It is.
  • FIG. 19 is a cross-sectional view schematically showing a hot plate unit according to the sixth invention.
  • 20 (a) to 20 (d) are cross-sectional views schematically showing a part of an example of a manufacturing process of the ceramic heater according to the third invention and the hot plate unit according to the fourth invention. .
  • FIGS. 21 (a) to (d) are cross-sectional views schematically showing a part of an example of a manufacturing process of the ceramic heater according to the fifth invention and the hot plate unit according to the sixth invention. It is. Explanation of symbols
  • a ceramic bonded body according to a first aspect of the present invention is a ceramic bonded body in which a ceramic body is bonded to a ceramic substrate provided with a conductor on the surface or inside thereof, wherein the ceramic substrate contains carbon, Near the surface of the substrate The carbon concentration is lower than the carbon concentration inside the ceramic substrate.
  • FIG. 1 is a plan view schematically showing a hot plate which is an example of the ceramic joined body of the first present invention
  • FIG. 2 is a plan view schematically showing the hot plate shown in FIG.
  • FIG. 3 is a cross-sectional view schematically showing a distribution state of carbon in the entire ceramic substrate.
  • a cylindrical ceramic body 17 is directly bonded to the vicinity of the center of the bottom surface 11 b of the disc-shaped ceramic substrate 11.
  • the cylindrical ceramic body 17 has the inside and outside of the ceramic body 17 separated from each other.
  • FIG. 3 a region having a high carbon concentration in the ceramic substrate 11 is enlarged, and a region outside the dark portion has a low carbon concentration.
  • the tone and the tone are shown differently between the portion having a high carbon concentration and the portion having a low carbon concentration.
  • the carbon concentration is the lowest near the surface of the ceramic substrate 11. It gradually increases as it goes inside, and when it reaches a certain depth, it has a nearly constant concentration.
  • the ceramic body 17 is brought into contact with the bottom surface 1 1b of the ceramic substrate 11 and heated so that the ceramic body 17 can be bonded by utilizing the diffusion of a sintering aid applied to the ceramic body, or the sintering of the ceramic body and the ceramic substrate can be performed.
  • the joining is performed using the difference in the concentration of the auxiliary agent, the carbon concentration is low near the joining surface of the ceramic substrate 11 and the ceramic body 17.
  • the relative concentration of the ceramic particles increases, so that the ceramic particles grow in a form in which sintering progresses, and the ceramic particles grow. Since the particles have a structure in which they penetrate each other beyond the bonding interface, the ceramic substrate 11 and the ceramic body 17 can be bonded firmly.
  • the carbon concentration is almost constant except for the vicinity of the surface of the ceramic substrate 11. As described above, since a sufficient carbon concentration is ensured inside the ceramic substrate 11, there is no influence on advantages of carbon addition such as concealment of an electrode portion and use of blackbody radiation. A hot plate 10 having excellent heating characteristics can be obtained.
  • a conductor circuit 18 extending toward the center of the ceramic substrate 11 is formed between the resistance heating element 12 and the bottom surface 11b, The body end 12 a and one end of the conductor circuit 18 are connected through a via hole 16.
  • This conductor circuit 18 is formed to extend the end portion 12 of the resistance heating element to the center, and extends inside the ceramic substrate 11 to the vicinity of the inside of the ceramic body 17. Immediately below the other end of the conductor circuit 18, a snow hole 13 'is formed.
  • the through hole 13 is formed directly at the end of the resistance heating element because no via hole or conductor circuit is required.
  • a screw hole having an opening at the bottom surface is formed in each of the through holes 13 and 13 ′, and an external terminal 23 having a screw at the tip is screwed into the screw hole.
  • a socket 31 having a conductive wire 230 is attached to these external terminals 23, and the conductive wire 230 is connected to a power source or the like (not shown).
  • a temperature measuring element 21 such as a thermocouple having a lead wire 210 is inserted into a bottomed hole 14 formed in the bottom surface 1 1b of the ceramic substrate 11, and is made of a heat-resistant resin, ceramic (silica gel). Etc.). The lead wire 210 is drawn out.
  • a through hole 15 for passing the rib terpin 8 is provided in a portion near the center of the ceramic substrate 11.
  • the lifter pins 8 are provided so that an object to be processed, such as a silicon wafer, can be placed on the lifter pins 8 so that the silicon wafer 9 can be moved up and down.
  • an object to be processed such as a silicon wafer
  • the recon wafer 9 is placed on the heating surface 11 a of the ceramic substrate 11, and is supported at a distance of 10 to 200 ⁇ m from the heating surface 11 a so that heating can be performed. I'm wearing
  • a convex portion is provided on the ceramic substrate 11 by embossing or the like, and the silicon wafer is supported by the convex portion, so that heating is performed with a distance of 10 to 200 // // m from the heating surface 1 la. is there.
  • a resistance heating element 1 which is an arc pattern repeatedly formed on the outermost periphery of the ceramic substrate 11 so as to draw a part of a concentric circle, is formed.
  • 2a to l2d are arranged therein, and the resistance heating elements 12e to l2h, which are concentric circular patterns partially cut away, are arranged therein.
  • the outermost resistive heating element 12a is formed by repeating arc-shaped patterns obtained by dividing a concentric circle into four parts in the circumferential direction, and the ends of adjacent arcs are connected by bending lines to form a series of circuits. ing. Then, four circuits of the resistive heating elements 12a to 12d having the same pattern are formed close to each other so as to surround the outer periphery, thereby forming an overall annular pattern.
  • the ends of the resistance heating elements 12a to l2d are formed on the ⁇ side of the annular pattern, and therefore, the ends of the outer circuit extend inward.
  • a via hole 16 is formed directly below the end of each of the resistance heating elements 12a to 12d, and a conductor circuit 18 extending from the via hole 16 to the vicinity of the center is formed.
  • resistive heating elements 12e to l2h composed of a concentric pattern circuit with a very small part cut off. ing.
  • a series of circuits is formed by connecting the ends of adjacent concentric circles sequentially with a resistance heating element formed of a straight line.
  • a belt-shaped (annular) heating element non-forming area is provided between the resistance heating elements 12a to 12d, 12e, 12f, 12g, and 12h.
  • the center part also has a circular A heat non-formation area is provided.
  • the annular resistance heating element forming area and the heating element non-forming area are alternately formed from the outside to the inside, and these areas are formed by the size (diameter) of the ceramic substrate or the like.
  • FIG. 4 is a cross-sectional view schematically showing a hot plate which is an example of the ceramic joined body of the first embodiment of the present invention.
  • FIG. 5 is a resistance heating element constituting the hot plate I ⁇ shown in FIG.
  • FIG. 4 is a plan view of a ceramic substrate on which is formed.
  • the ceramic substrate 51 is formed in a disk shape, and the ceramic body 57 is joined to the ceramic substrate 51 near the outer periphery of the bottom surface 51b.
  • the carbon concentration is higher at a part of the ceramic substrate 51, but near the surface of the ceramic substrate 51, the ceramic substrate 5 The concentration is lower than inside 1.
  • the ceramic body 57 is brought into contact with the bottom surface 51 of the ceramic substrate 51 and heated, so that bonding utilizing the diffusion of the sintering aid applied to the ceramic body and sintering between the ceramic body and the ceramic substrate are performed.
  • the carbon concentration is low near the joining surface of the ceramic substrate 51 and the ceramic body 57.
  • the relative concentration of the ceramic particles is increased, whereby the ceramic particles grow well, and the ceramic particles penetrate each other beyond the bonding interface. Therefore, the ceramic substrate 51 and the ceramic body 57 can be firmly joined.
  • resistance heating elements 52 a to 52 d which are arc patterns repeatedly formed so as to draw a part of a concentric circle. They are arranged so that they match each other, and are designed so that the temperature on the heating surface 5 la is uniform by combining these circuits. And the end of the resistance heating element 52 is It is provided near the outer peripheral portion of the ceramic substrate 51, and accordingly, the external terminal 63 is also formed near the outer peripheral portion of the ceramic substrate 51.
  • a metal coating layer 52 is formed on the resistance heating element 52 in order to prevent oxidation or the like.
  • An external terminal 63 is brazed to the end of the resistance heating element 52, and a conductive wire 6300 is connected to the external terminal 63 via a socket 31. .
  • a bottomed hole 54 for inserting a temperature measuring element is formed in the bottom surface 51 b of the ceramic substrate 51, and a temperature measuring element 2 1 such as a thermocouple is formed inside the bottomed hole 54. Is to be buried.
  • a through hole 55 for passing the rod-shaped lifter pin 8 is provided in a portion near the center (see FIG. 5).
  • the description of the lifter pins 8 and the temperature measuring elements 21 constituting the hot plate 50 is the same as that of the hot plate 10, and thus the description thereof is omitted.
  • all the resistance heating elements 52, external terminals 63, and sockets 31 formed on the bottom surface of the ceramic substrate 51 are provided on the hot plate 50.
  • the ceramic body 57 is joined so that the conductive wire 630 is included inside the ceramic body 57, and the inside of the ceramic body 57 is isolated from the ⁇ H rule.
  • the hot plate 10 described above is a device in which only a resistance heating element is provided inside the ceramic substrate 11, and the hot plate 50 is a device in which only the resistance heating element is provided on the surface of the ceramic substrate 51. is there.
  • an object to be processed such as a silicon wafer can be placed on or separated from the surface of a ceramic substrate, and can be heated to a predetermined temperature, cleaned, and the like.
  • the ceramic body 1757 also has a function of firmly supporting the ceramic substrate 11, even when the ceramic substrates 11 and 51 are heated to a high temperature, they warp due to their own weight. As a result, the object to be processed such as a silicon wafer can be prevented from being damaged, and the object to be processed can be heated to a uniform temperature.
  • FIG. 10 shows another example of the hot plate (ceramic bonded body) according to the first invention.
  • FIG. 11 is a plan view schematically showing an example, and FIG. 11 is a cross-sectional view taken along line A--A of the hot plate shown in FIG. 10.
  • the ceramic body 117 may be joined to the side surface of the ceramic substrate 111.
  • a resistance heating element 112a formed of a repeated pattern of a bending line is formed on the outermost periphery, and a resistance heating element 112c and a resistance heating element 112 of a concentric pattern are formed inside the resistance heating element 112a.
  • the through holes 115 are formed at regular intervals, and a plurality of through holes 115 are formed to pass through the lifter pins 116.
  • a ceramic body 117 having a rectangular cross section and a cavity formed therein is joined, and a bottomed hole 114 for inserting the temperature measuring element 21 is formed. It is formed parallel to the heating surface 1 1 1a.
  • Conductor circuits 1 1 8a, 1 1 8b, 1 1 8c are connected to the ends of the resistance heating elements 1 1 2a, 1 1 2b, 1 1 2c via holes 127. However, these conductor circuits 118a and 118b. 118c extend to near the side face to which the ceramic body 117 is joined, and are connected to through holes 113 provided on the side face.
  • a screw hole is formed in the through hole 1 13, and an external terminal 123 having a screw portion at its tip is screwed into the screw hole, and the external terminal 123 has a socket 1 having a conductive wire 330. 31 is attached and connected to the power line.
  • the ceramic body 117 has a curved surface such that one end face is exactly fitted to the side face of the ceramic substrate 111, and the end face of this ceramic body 117 is brought into contact with the side face of the ceramic substrate 111.
  • the ceramic body 117 is heated by contact with it, and the diffusion of the sintering aid applied to the ceramic body 117 is used, or the ceramic body 117 and the ceramic substrate 111 are joined using the concentration difference of the sintering aid. By doing so, the person can be strongly bonded.
  • the electrodes on the ceramic substrate constituting the hot plate according to the first aspect of the present invention are hidden. Carbon is contained for the purpose of utilizing black-body radiation, and its concentration is higher inside the ceramic substrate than near the surface of the ceramic substrate.
  • the vicinity of the surface of the ceramic substrate refers to a region from the surface of the ceramic substrate to 10% of the thickness of the ceramic substrate, and the inside of the ceramic substrate means the ceramic substrate of the entire ceramic substrate. Area except the vicinity of the surface.
  • the carbon concentration near the surface is the smallest, and the carbon concentration gradually increases toward the inside of the ceramic substrate, rather than the difference in concentration near the surface of the ceramic substrate and the region other than the surface. When it reaches a certain depth, it becomes almost constant.
  • the region where the concentration is almost constant is a region 30 to 70% of the thickness of the ceramic substrate from the surface of the ceramic substrate.
  • the concentration of carbon in the vicinity of the surface of the ceramic substrate is desirably not more than 80% of the concentration inside the ceramic substrate. If the concentration of carbon exceeds 80% of the concentration of a part of the ceramic substrate, the effect of the present invention of firmly joining the ceramic substrate and the ceramic body cannot be sufficiently exhibited.
  • the concentration of carbon in the portion having a substantially constant concentration inside the ceramic substrate is 200 to 500 ppm. If it is less than 200 ppm, it cannot be said to be black, and the lightness will exceed N6.On the other hand, if the addition amount exceeds 500 ppm, the sinterability of the ceramic particles constituting the ceramic substrate will decrease. This is because.
  • Amorphous carbon can suppress a decrease in volume resistivity at high temperature of the substrate. Since the decrease in the thermal conductivity of the substrate at a high temperature can be suppressed, the type of carbon can be appropriately selected according to the purpose of the substrate to be manufactured.
  • Amorphous carbon can be obtained, for example, by calcining a hydrocarbon composed of only C, H, and O, preferably saccharides, in the air, and crystalline carbon such as graphite powder. Can be used.
  • carbon can be obtained by thermally decomposing the acrylic resin under an inert gas atmosphere and then heating and pressurizing.
  • the acid value of the acrylic resin it is possible to obtain a crystalline (non-crystalline) resin. Gender) can be adjusted.
  • an acryl resin having an acid value of 5 to 17 KOHmgZg is mixed with a ceramic raw material, molded, then thermally decomposed at a temperature of 350 ° C or more in an inert gas atmosphere (nitriding gas, argon gas) and carbonized. Let it. Then, after these acrylic resins are thermally decomposed, they are heated and pressed to form a sintered body. It is not clear why crystallinity is reduced by using such an acrylic resin.However, acrylic resins with an acid value of 5 to 17 KOHmgZg are difficult to thermally decompose and are difficult to carbonize. It is speculated that carbonization may proceed with the amorphous skeleton remaining.
  • the acrylic resin having an acid value of 5 to 17 KOHmgZg is difficult to be thermally decomposed, so that the blending amount is desirably adjusted to 2.5 to 8% by weight / 0 with respect to the raw material powder.
  • the acrylic resin having an acid value of 5 to 17 KOH mg / g preferably has a Tg point of 130 ° C to 110 ° C.
  • the weight average molecular weight is desirably from 10,000 to 50,000.
  • OKOHmgZg is mixed with a ceramic raw material, molded, and then heated to 350 ° C or more under an inert gas atmosphere (nitriding gas, argon gas).
  • an inert gas atmosphere nitriding gas, argon gas.
  • acrylic resins having an acid value of 0.3 to 1.0 KO HmgZg are not available.
  • the acrylic resin having an acid value of 0.3 to 1.
  • OKOHm gZg is easily thermally decomposed, it is desirable to adjust the blending amount to 8 to 20% by weight based on the raw material powder.
  • the above acid value is from 0.3 to: L.
  • OKOHmg The acrylic resin desirably has a Tg point of 40 ° C to 60 ° C.
  • the weight average molecular weight is desirably from 10,000 to 50,000.
  • the acrylic resin is preferably a copolymer comprising acrylic acid, at least one of acrylic acid ester / ester, and Z or at least one of methacrylic acid and methacrylic acid ester.
  • acryl-based resins Commercial products of such acryl-based resins include KC160 series manufactured by Kyoeisha. This series is available with an acid value of 10-17 KOH mg / g. There is also an SA-545 series manufactured by Mitsui Chemicals, Inc., and this series has an acid value of 0.5 to 1.0 KOHmgZg.
  • the brightness of the ceramic substrate 11 be N 6 or less, based on the provisions of JIS Z8721. This is because a material having such brightness is excellent in radiant heat and concealability.
  • a hot plate composed of such a ceramic substrate can accurately measure the surface temperature by using a thermoviewer.
  • the lightness N is set to 0 for the ideal black lightness and 10 for the ideal white lightness, and between these black lightness and white lightness, the brightness of the color is calculated.
  • Each color is divided into 10 so that the perception is at the same rate, and displayed by the symbols N0 to N10.
  • the actual measurement is performed by comparing with color patches corresponding to N0 to N10.
  • the first decimal place is 0 or 5.
  • the ceramic substrate 11 having such characteristics can be obtained by including carbon in the substrate at 200 to 500 ppm.
  • the ceramic forming the ceramic substrate is preferably, for example, a nitride ceramic, a carbide ceramic, or an oxide ceramic.
  • Nitride ceramics, carbide ceramics, and oxide ceramics have a lower coefficient of thermal expansion than metals and have significantly higher mechanical strength than metals, so even if the thickness of the ceramic substrate is reduced, it warps due to heating. Or distorted. Therefore, the ceramic substrate can be made thin and light.
  • the thermal conductivity of the ceramic substrate is high and the ceramic substrate itself is thin, the surface temperature of the ceramic substrate quickly follows the temperature change of the resistance heating element. That is, by changing the voltage and current values, By changing the temperature of the ceramic substrate, the surface temperature of the ceramic substrate can be controlled.
  • nitride ceramic examples include aluminum nitride, silicon nitride, boron nitride, and titanium nitride. These may be used alone or in combination of two or more.
  • carbide ceramic examples include silicon carbide, zirconium carbide, titanium carbide, tantalum carbide, and tungsten carbide. These may be used alone or in combination of two or more.
  • oxide ceramic examples include alumina, zirconia, cordierite, and mullite. These may be used alone or in combination of two or more.
  • the ceramic substrate may contain a sintering aid.
  • the sintering aid include alkali metal oxides, alkaline earth metal oxides, and rare earth oxides.
  • C a O, Y 2 0 3, N a 2 0, L i 2 0, R b 2 0 is preferable.
  • the content of these is preferably 0.1 to 20% by weight. Further, it may contain alumina.
  • the shape of the ceramic substrate 11 is preferably a disk shape as shown in FIG. 2, and its diameter is preferably 20 mm or more, and most preferably 250 mm or more.
  • the disc-shaped ceramic substrate 11 is required to have uniform temperature, but the larger the diameter of the substrate, the more likely the temperature becomes non-uniform.
  • the thickness of the ceramic substrate is preferably 5 Omm or less. Further, in a hot plate having a resistance heating element formed inside a ceramic substrate (hereinafter also referred to as an inner layer heater), the thickness is preferably 10 to 2 Omm, and a hot plate having a resistance heating element formed on the bottom surface of the ceramic substrate is preferred. For a plate (hereinafter also referred to as an outer layer heater), 1 to 5 mm is more preferable.
  • the porosity of the ceramic substrate 11 is preferably 0 or 5% or less. The porosity is measured by the Archimedes method.
  • the pattern of the resistance heating elements 1 and 2 consists of the concentric pattern shown in Fig. 2 and the arc-shaped pattern obtained by dividing the concentric shape, but the force ⁇ spiral shape, eccentric shape, concentric shape and bending A combination with a linear shape can be given. Further, the thickness of the resistance heating element 12 is desirably 1 to 50 ⁇ m. For the inner layer heater, 10 to 30 ⁇ is more preferable, and for the outer layer heater, 3 to 10 ⁇ is more preferable.
  • the resistance value can be changed by changing the thickness or width of the resistance heating element 12, but this range is the most practical.
  • the resistance value of the resistance heating element 12 increases as its thickness decreases and its width decreases.
  • the resistance heating element 12 may have a cross section of any one of a square, an ellipse, a spindle, and a camber, but is preferably flat. This is because the flattened surface tends to radiate heat toward the heated surface, so that the amount of heat propagation to the heated surface can be increased, and the temperature distribution on the heated surface is difficult to achieve.
  • the resistance heating element 12 may have a spiral shape.
  • the number of circuits composed of the resistance heating elements 12 is not less than 1 and is not particularly limited. However, in order to uniformly heat the heating surface, it is preferable that a plurality of circuits are formed. .
  • the formation position is not particularly limited, but at least one layer is formed at a position from the bottom surface of the ceramic substrate 11 to 60% of its thickness. It is preferred that This is because the heat diffuses while the heat propagates to the heated surface, and the temperature on the heated surface tends to be uniform.
  • the resistance heating element 12 When forming the resistance heating element 12 inside the ceramic substrate 11, it is preferable to use a conductor paste made of metal or conductive ceramic.
  • the conductive paste is not particularly limited, but contains metal particles or conductive ceramics to secure conductivity, and also contains resins, solvents, thickeners, and the like. Are preferred.
  • metal particles for example, noble metals (gold, silver, platinum, palladium), lead, tungsten, molybdenum, nickel and the like are preferable. These may be used alone or in combination of two or more. This is because these metals are relatively hard to oxidize and have a sufficient resistance value to generate heat.
  • the conductive ceramic examples include carbides of tungsten and molybdenum. These may be used alone or in combination of two or more.
  • the metal particles or the conductive ceramic particles preferably have a particle size of 0.1 to 10 m. If it is too fine, less than 0.1 m, it is liable to be oxidized, while if it exceeds ⁇ / in, sintering becomes difficult and the resistance value becomes large.
  • the shape of the metal particles may be spherical or scaly. When these metal particles are used, they may be a mixture of the sphere and the flakes. When the metal particles are flakes or a mixture of spheres and flakes, the metal oxide between the metal particles is easily held, and the resistance heating element 12 and the ceramic substrate 11 This is advantageous because the adhesion of the metal can be ensured and the resistance value can be increased.
  • Examples of the resin used for the conductor paste include an epoxy resin and a phenol resin.
  • Examples of the solvent include isopropyl alcohol.
  • Examples of the thickener include cellulose and the like.
  • the through holes 13, 13 ′ and the via holes 16 are made of a metal such as tungsten or molybdenum, or a carbide thereof, and have a diameter of 0.1 to 10 mm. This is because cracks and distortion can be prevented while preventing disconnection.
  • the material of the external terminals 23 is not particularly limited, and examples thereof include metals such as nickel and Kovar.
  • the size is not particularly limited because it is appropriately adjusted depending on the size of the ceramic substrate 11 to be used, the size of the resistance heating element 12 and the like, but the diameter of the shaft portion is 0.5 to 5 mm, The length of the portion is desirably about 1 to 10 mm.
  • a socket having a conductive wire is attached to such an external terminal 23,
  • This conductive line is connected to a power supply or the like.
  • a temperature measuring element such as a thermocouple having a lead wire is inserted into the bottomed hole 14 and sealed with a heat-resistant resin, ceramic (silica gel or the like), or the like.
  • the temperature of the resistance heating element 12 is measured by a temperature measuring element such as the thermocouple, and the temperature and the amount of current are changed based on the data to control the temperature of the hot plate 10 according to the present invention. This is because that.
  • the size of the junction part of the lead wire of the thermocouple is preferably equal to or larger than the element diameter of each lead wire and 0.5 mm or less.
  • thermocouples examples include K-type, R-type, B-type, E-type, J-type, and T-type thermocouples as described in JIS-C-162 (1980). Can be
  • examples of the temperature measuring means of the hot plate 10 according to the first invention include a temperature measuring element such as a platinum temperature measuring resistor and a thermistor; Temperature measuring means using optical means is also included.
  • thermopure the temperature of the heated surface of the ceramic substrate 11 can be measured, and the temperature of the surface of the object to be heated such as a silicon wafer can be directly measured. The accuracy of temperature control of objects is improved.
  • the horizontal cross-sectional shape of the ceramic body in the hot plate according to the first aspect of the present invention is not particularly limited, and examples thereof include an annular shape, an elliptical annular shape, and a polygonal shape. Of these, an annular shape is desirable. If the cross-sectional shape of the ceramic body is an annular shape, there is no corner at the outer periphery, so that stress concentration due to heat or impact is unlikely to occur, and usually, since the shape of the ceramic substrate is a disk shape, This is because the ceramic substrate can be stably supported.
  • the ceramic body may have a cylindrical shape, a polygonal shape, or the like. That is, the ceramic body does not need to have a cavity formed therein, and may be filled with ceramic.
  • the conductive ceramics By forming a through hole formed inside, the resistance heating element formed on the ceramic substrate and the power supply can be electrically connected.
  • the joining surface between the ceramic body and the ceramic substrate can be increased, so that they can be more firmly joined.
  • the ceramic body may have a shape having a plurality of through-holes for passing external terminals, wiring for connecting the external terminals to a power supply, and the like to a cylindrical or polygonal column-shaped member. Good.
  • the ceramic body has a cylindrical shape or a cross-sectional shape is an annular shape, its outer diameter is preferably 33 mm or more.
  • the inner diameter is preferably 30 mm or more.
  • the thickness is less than 3 O mm, it is difficult to firmly support the ceramic substrate, and when the ceramic substrate is heated to a high temperature, the ceramic substrate may be warped by its own weight.
  • the thickness of the ceramic body is desirably 5 to 2 Omm. If the thickness is less than 5 mm, the thickness of the ceramic body becomes too thin, resulting in poor mechanical strength, and the ceramic body may be damaged by repeated heating and cooling, and 2 O If it exceeds mm, the thickness of the ceramic body is too large, so that the heat capacity is increased and the rate of temperature rise may be reduced.
  • the same ceramic as the above-mentioned ceramic substrate can be used.
  • the ceramic substrate When the conductor formed inside the ceramic substrate is an electrostatic electrode, the ceramic substrate functions as an electrostatic chuck.
  • FIG. 6 is a vertical sectional view schematically showing such an electrostatic chuck
  • FIG. 7 is a horizontal sectional view schematically showing the vicinity of an electrostatic electrode formed on a substrate constituting an electrostatic chuck.
  • semi-circular chuck positive and negative electrostatic layers 72a and 72b are disposed so as to face each other, and a ceramic is placed on these electrostatic electrodes.
  • a dielectric film 74 is formed inside the ceramic substrate 71 so that an object to be processed such as a silicon wafer can be heated.
  • an RF electrode may be embedded in the ceramic substrate 71 if necessary.
  • a cylindrical ceramic body 77 is joined near the center of the bottom surface of the ceramic substrate 71.
  • the concentration of carbon is high inside the ceramic substrate 71, but near the surface of the ceramic substrate 71, the ceramic substrate 7 The concentration is lower than inside 1.
  • the ceramic body 77 is brought into contact with the ceramic substrate 71 and heated to join by utilizing diffusion of a sintering aid applied to the ceramic body or the like, or to sinter the ceramic body and the ceramic substrate.
  • the carbon concentration is low near the joining surface of the ceramic substrate 71 and the ceramic body 77. This increases the relative concentration of the ceramic particles at the bonding interface between the ceramic substrate 71 and the ceramic body 77, so that the ceramic particles grow well and the ceramic particles penetrate each other beyond the bonding interface. Due to the structure, the ceramic substrate 71 and the ceramic body 77 can be firmly joined.
  • the electrostatic electrode is preferably made of a conductive metal such as a noble metal (gold, silver, platinum, palladium), a metal such as lead, tungsten, molybdenum or nickel, or a carbide of tungsten or molybdenum. These may be used alone or in combination of two or more.
  • a conductive metal such as a noble metal (gold, silver, platinum, palladium), a metal such as lead, tungsten, molybdenum or nickel, or a carbide of tungsten or molybdenum.
  • the electrostatic chuck 70 has electrostatic electrodes 72 a and 72 b formed in a ceramic substrate 71, and ends of the electrostatic electrodes 72 a and 72.
  • the configuration is the same as that of the hot plate 10 described above, except that a through hole 73 is formed immediately below the ceramic plate and a ceramic dielectric film 4 is formed on the electrostatic electrode 72.
  • through holes 73, 730 are formed above the inside of the ceramic body 770, and these through holes 733, 730 are formed by the electrostatic electrodes 72a, 72b,
  • a socket having a conductive wire 731 at one end of the external terminal 760 connected to the resistance heating element 720 and to the external terminal 760 inserted into the blind hole 790. 750 is connected.
  • the conductive wire 731 is drawn out from a through hole (not shown).
  • a voltage is applied to each of the resistance heating element 720 and the electrostatic electrode 72.
  • the silicon wafer placed on the electrostatic chuck 70 is heated to a predetermined temperature and is electrostatically attracted to the ceramic substrate 71.
  • the electrostatic chuck does not necessarily have to include the resistance heating element 720.
  • FIG. 8 is a horizontal cross-sectional view schematically showing an electrostatic electrode formed on a substrate of another electrostatic chuck.
  • a chuck positive electrode electrostatic layer 82 composed of a semi-circular portion 82a and a comb tooth portion 82b on a portion of the substrate 81, and a semi-circular portion 83a and a comb tooth portion 83b similarly.
  • the negative electrode electrostatic layer 83 is disposed so as to face each other so as to intersect the comb teeth portions 82 b and 83 b.
  • FIG. 9 is a horizontal sectional view schematically showing an electrostatic electrode formed on a substrate of still another electrostatic chuck.
  • chuck positive electrostatic layers 92 a and 92 b and chuck negative electrostatic layers 93 a and 93 b each having a shape obtained by dividing a circle into four are formed inside a substrate 91.
  • the two chuck positive electrode electrostatic layers 92a and 92b and the two chuck negative electrode electrostatic layers 93a and 93b are formed to intersect, respectively.
  • the number of divisions is not particularly limited, may be five or more, and the shape is not limited to a sector.
  • a ceramic joined body of the first invention is, for example, described in a second book described later. It can be manufactured by the method for manufacturing a ceramic joined body of the invention.
  • the method for producing a ceramic joined body according to the second aspect of the present invention comprises the steps of: sintering a ceramic molded body containing ceramic powder and carbon or a carbon raw material to produce a ceramic substrate containing carbon in substantially uniform concentration. Then, the obtained ceramic substrate is subjected to a carbon non-uniformity treatment under a normal pressure, 180 ° C. to 200 ° C., and an N 2 gas atmosphere, and then the ceramic substrate and the ceramic body are joined. It is characterized by the following.
  • a normal pressure 180 ° C. to 200 ° C., and an N 2 gas atmosphere
  • 12 (a) to 12 (d) are cross-sectional views schematically showing a part of a method for manufacturing a hot plate having a resistance heating element inside a ceramic substrate.
  • a paste is prepared by mixing ceramic powder and yttria with a pinda, a solvent, and the like, and a green sheet is produced using the paste.
  • crystalline or amorphous carbon is added to the green sheet.
  • a method of adding crystalline carbon include a method of directly adding graphite powder or the like, and a method of adding amorphous carbon include a method of thermally decomposing an acrylic resin or the like. .
  • C a 0, N a 2 0, L i 2 0, may be included R b 2 0 3 and the like. This is because these compounds also suitably work as a sintering aid.
  • the binder at least one selected from the group consisting of an atalinole-based binder, ethylcellulose, a sorbet having a butyl ester, and polyvinyl alcohol is preferable.
  • the solvent is preferably at least one selected from ⁇ -terbineol and glycol.
  • a paste obtained by mixing these is formed into a sheet by a doctor blade method to produce a Darin sheet 110.
  • the thickness of the green sheet 110 is preferably 0.1 to 5 mm.
  • the through holes may be filled with the above-mentioned paste to which carbon has been added. This is because the carbon in the green sheet reacts with the tantalum-molybdenum filled in the through holes to form these carbides.
  • a paste filling layer (130, 130 ') and a conductive paste layer (160) for the via hole (16) are formed.
  • These conductor pastes contain metal particles such as tungsten particles and molybdenum particles or conductive ceramic particles such as tungsten carpite particles.
  • the average particle size of the metal particles, such as tundastene particles or molybdenum particles, is preferably from 0.1 to L 0 ⁇ m. If the average particle diameter is less than 0, or if it exceeds ⁇ ⁇ ⁇ , it is difficult to print the conductor paste.
  • Examples of such a conductive paste include: 85 to 87 parts by weight of metal particles or conductive ceramic particles; at least one kind of binder selected from atarinole-based, ethylcellulose, butylaceose sorb, and poly alcohol; 10 parts by weight; and a composition (paste) obtained by mixing 1.5 to 10 parts by weight of at least one solvent selected from ⁇ -terbineol and daricol.
  • a plurality of green sheets 110 on which no conductor paste is printed are laminated on and under the green sheet on which the conductor paste layer 120 is printed (FIG. 12 (a)).
  • the number of the green sheets 110 to be laminated on the upper side of the green sheet on which the conductive paste layer 120 is printed is larger than the number of the green sheets 110 to be laminated on the lower side, and the formation position of the resistance heating element to be manufactured is heated. 6 in the thickness direction from the surface opposite to the surface Eccentric to a position of 0 ° / 0 or less.
  • the number of stacked green sheets 110 on the upper side is preferably 20 to 50, and the number of stacked green sheets 110 on the lower side is preferably 5 to 50.
  • the green sheet laminate is heated to sinter the green sheet 110 and the internal conductor paste to form through holes 13, 13 'and via holes 16 (FIG. 12 (b)).
  • the firing of the green sheet laminate is performed in a mixed atmosphere composed of CO and N 2 .
  • the heating temperature at this time is preferably from 1000 to 2000 ° C. Heating is performed in an inert gas atmosphere.
  • the inert gas for example, argon, nitrogen, or the like can be used.
  • the concentration of carbon in the sintered body is uniform throughout.
  • a through hole for a lifter pin for inserting a lifter pin 8 for supporting a silicon wafer 9 and a bottomed hole for embedding a temperature measuring element such as a thermocouple are formed in the obtained sintered body.
  • the step of forming the through hole and the bottomed hole described above may be performed on the Darin sheet laminate, but is preferably performed on the sintered body. This is because during the sintering process, there is a possibility of deformation.
  • screw holes 19 were formed in the bottom surfaces of the through holes 13 and 13 'formed in the ceramic substrate 11 by drilling.
  • the concentration of carbon in the ceramic substrate 11 is generally uniform.
  • the ceramic substrate 11 is subjected to a carbon non-uniformity treatment.
  • the ceramic substrate 11 obtained in the step (4) is heated to 1800 to 2000 ° C. under normal pressure and N 2 gas atmosphere.
  • carbon in the ceramic substrate is more likely to be oxidized than when heating is performed under pressure, and the proportion of carbon that escapes as a gas increases.
  • the heating temperature is lower than 180 ° C., the carbon is hardly oxidized, and the concentration of carbon near the surface is hardly reduced.
  • the heating temperature exceeds 200 ° C. is made of carbon in the ceramic substrate tends to react with Y 2 O 3 or the like is sintering aid, reduced Upsilon 2 0 sintering aid such as 3 to escape, in the vicinity of the surface of the sintering aid The concentration decreases. Therefore, when joining with a ceramic body, the joining strength is reduced.
  • the carbon nonuniformization step it is desirable to add a small amount of oxygen in addition to the second gas. This is because the oxidation of carbon near the surface of the ceramic substrate 11 is further promoted, and the carbon concentration near the surface of the ceramic substrate can be further reduced.
  • a ceramic powder such as aluminum nitride is put into a cylindrical mold and molded, and cut if necessary. This is sintered at a heating temperature of 1000 to 2000 ° C. and normal pressure to produce a cylindrical ceramic body 17 made of ceramic.
  • the sintering is performed in an inert gas atmosphere.
  • the inert gas for example, argon, nitrogen and the like can be used.
  • the ceramic powder does not contain a sintering aid.
  • the size of the ceramic body 17 is adjusted so that the through holes 13 and 13 ′ formed inside the ceramic substrate are accommodated inside. Next, the end face of the ceramic body 17 is polished and flattened.
  • the ceramic body 17 is brought into contact with the vicinity of the center of the bottom surface 11 b of the ceramic substrate 11, the ceramic body 11 and the ceramic body 17 are heated and joined in this state. At this time, the ceramic body 17 is joined to the bottom surface 11 b of the ceramic substrate 11 so that the through holes 13, 13 ′ in the ceramic substrate 11 fit inside the inner diameter of the ceramic body 17 (see FIG. 1 2 (c)).
  • a ceramic body may be bonded to the side surface of the ceramic substrate.
  • a method of applying an adhesive containing a component of a joining aid to the end face of the ceramic body 17 and joining the ceramic body 17 to a ceramic body 17 containing no sintering aid and a ceramic containing the sintering aid It is possible to use a method in which the ceramic substrate 11 is bonded to the ceramic body 17 by heating the substrate 11 in contact with the bonding surface thereof and utilizing the difference in the concentration of the sintering aid component.
  • a method of joining the ceramic substrate 11 and the ceramic body 17 a method of brazing using a gold solder, a silver solder, or the like, a method of joining using an adhesive such as an oxide glass, or the like may be used.
  • Such a bonding method is a bonding utilizing a difference in the concentration of a bonding aid between the ceramic substrate 11 and the ceramic body 17.
  • the sintering aid material moves from the higher concentration ceramic substrate side to the lower concentration ceramic body side, so that the ceramic particles present at the bonding interface also grow so as to extend to both sides of the interface.
  • the ceramic substrate 11 and the ceramic body 17 can be firmly joined.
  • the ceramic body 17 is pressed against the ceramic substrate 11 at a pressure of 0.5 to 10 kPa (5 to: L 00 g / cm 2 ). It is desirable to join by heating in a state. This is because, by joining in such a pressed state, the gap generated between the ceramic substrate 11 and the ceramic body 17 can be reduced, and the two can be joined more firmly. .
  • connection between the external terminal 23 and the through holes 13 and 13 ' is made by connecting the external terminal 23 having a T-shaped cross section to the through holes 13 and 13' by using a method such as soldering or brazing. Is also good.
  • the external terminal 23 is connected to a conductive wire 230 connected to a power supply via a socket 31. Further, a ceramic substrate 11 having a resistance heating element 12 therein was provided by inserting a temperature measuring element 21 into the formed bottomed hole 14 and sealing it with a heat-resistant resin or the like.
  • the hot plate 10 can be manufactured.
  • a semiconductor wafer such as a silicon wafer is placed on a ceramic substrate, or a projection is provided by embossing the ceramic substrate, and the silicon wafer is supported by the projection. Cleaning and other operations can be performed while heating and cooling the silicon wafer and the like.
  • an electrostatic chuck When manufacturing the hot plate, an electrostatic chuck can be manufactured by providing an electrostatic electrode inside the ceramic substrate. However, in this case, it is necessary to form a through hole for connecting the electrostatic electrode and the external terminal, but it is not necessary to perform embossing to form a convex portion for supporting the semiconductor wafer.
  • a conductive paste layer serving as an electrostatic electrode may be formed on the surface of the green sheet in the same manner as when a resistance heating element is formed.
  • FIGS. 13 (a) to 13 (d) are cross-sectional views schematically showing a part of a method for manufacturing a hot plate having a resistance heating element on the bottom surface of a ceramic substrate.
  • Sintering aids 4 C such yttria (Y 2 0 3) and B as needed to ceramic powders such as nitrides such as aluminum nitride or silicon carbide as described above, N a, compounds containing C a,
  • the slurry is granulated by a method such as a spray drier, and the granules are placed in a mold and pressed to form a plate or the like. Is prepared.
  • crystalline or amorphous carbon is added to the above-mentioned formed form.
  • a method for adding crystalline carbon include a method for directly adding graphite powder or the like, and a method for adding amorphous carbon include a method for thermally decomposing an acrylic resin or the like.
  • the formed body is heated, fired and sintered to produce a ceramic plate.
  • the ceramic substrate 51 is manufactured by performing a predetermined shape processing.
  • the shape may be such that it can be used as it is after firing.
  • the heating and sintering may be performed at a temperature equal to or higher than the sintering temperature. In the case of oxide ceramics, the temperature is 150 ° C. to 200 ° C.
  • thermocouples and thermocouples 5 The part which becomes 4 is formed. (See Figure 13 (a)). At the stage where the green forming (green) firing step has been completed, the concentration of carbon in the ceramic substrate 51 is generally uniform.
  • the concentration near the surface of the ceramic substrate 51 is made non-uniform carbon treatment on the ceramic substrate 51. Is applied.
  • the ceramic substrate 51 obtained in the step (1) is heated to 180 to 200 ° C. under normal pressure and N 2 gas atmosphere.
  • the heating temperature exceeds 2000 ° C.
  • the carbon in the ceramic substrate is easily oxidized, and the ratio of carbon that becomes a gas and escapes increases.
  • the conductor paste is generally a high-viscosity fluid composed of metal particles, resin, and a solvent. This conductor paste is printed on a portion where the resistance heating element 52 is to be provided by screen printing or the like, thereby forming a conductor paste layer.
  • the conductor paste layer is desirably formed such that the cross section of the resistance heating element 52 after firing has a rectangular and flat shape.
  • a high melting point metal such as tungsten or molybdenum for the conductive paste.
  • the conductor paste layer printed on the bottom surface of the ceramic substrate 51 is heated and baked to remove the resin and the solvent, and the metal particles are sintered and baked on the bottom surface of the ceramic substrate 51 to form the resistance heating element 52.
  • the heating and firing temperature is preferably from 500 to 100 ° C.
  • the metal particles, the ceramic substrate and the oxide are sintered and integrated, so that the adhesion between the resistance heating element 52 and the ceramic substrate 51 is improved. I do.
  • the metal coating layer 520 is formed by electroplating, electroless plating, or the like. However, considering mass productivity, electroless plating is optimal (see FIG. 13 (b)).
  • a ceramic powder such as aluminum nitride is put into a cylindrical mold and molded, and cut if necessary. This is sintered at a heating temperature of 1000 to 200 ° C. and normal pressure to produce a cylindrical ceramic body 57 made of ceramic.
  • the sintering is performed in an inert gas atmosphere.
  • the inert gas for example, argon, nitrogen and the like can be used.
  • the ceramic powder may contain a sintering aid, but its concentration is desirably lower than the concentration of the sintering aid in the ceramic substrate.
  • the sintering aid is not contained in the powder of the sack.
  • the size of the ceramic body 57 is adjusted so that all the resistance heating elements formed on the bottom surface of the ceramic substrate 51 fit inside. Next, the end face of the ceramic body 57 is polished and flattened.
  • a ceramic body 57 is brought into contact with the vicinity of the center of the bottom surface 51 b of the ceramic substrate 51, and in this state, the ceramic substrate 51 and the ceramic body 57 are heated and joined. At this time, the ceramic body 57 is joined to the bottom surface 51b of the ceramic substrate 51 so that all the resistance heating elements are accommodated inside the inner diameter of the ceramic body 57 (FIG. 13 (c)).
  • a method of applying an adhesive containing a component of a bonding aid to the end face of the ceramic body 57 to bond the ceramic body 57 to a ceramic body 17 containing no sintering aid A method can be used in which the ceramic substrate 11 and the ceramic body 17 are joined by heating the substrate 11 in contact with the bonding surface thereof and utilizing the difference in the concentration of the sintering aid component.
  • a method of joining the ceramic substrate 51 and the ceramic body 57 a method of brazing using gold brazing, silver brazing or the like, a method of joining using an adhesive such as oxide glass, or the like may be used. Good.
  • Such a bonding method is a bonding utilizing a difference in the concentration of a bonding aid between the ceramic substrate 51 and the ceramic body 57. That is, by moving the sintering aid substance from the higher concentration ceramic substrate side to the lower concentration ceramic body side, the ceramic substrate 51 and the ceramic body 57 can be firmly joined.
  • the ceramic body 57 is pressed against the ceramic substrate 51 with a pressure of 0.5 to 10 kPa (5 to 100 gcm 2 ). It is desirable to join by heating in that state. By joining in such a pressed state, it is possible to reduce the gap generated between the ceramic substrate 51 and the ceramic body 57, so that both can be joined more firmly. It is. (8) Installation of terminals, etc.
  • External terminals 63 for connection to the power supply are attached to the end of the pattern of the resistance heating element 52 with solder or brazing material.
  • thermocouple (not shown) is fixed to the bottomed hole 54 with silver brazing, gold brazing, or the like, sealed with a heat-resistant resin such as polyimide, and the production of the hot plate 50 is completed (FIG. 13). (See (d)).
  • the ceramic temperature controller and the ceramic temperature controller of the present invention will be described.
  • the ceramic temperature controller is a ceramic heater and the ceramic temperature control unit is a hot plate unit will be described.
  • the ceramic heater according to the third aspect of the present invention is a ceramic heater in which a circuit composed of a resistance heating element is formed on or inside a ceramic substrate, and an external terminal is connected to a terminal of the circuit.
  • a screw groove is formed in the external terminal so that a wiring from a power supply is electrically connected to the external terminal, and the external terminal is screwed into a screw hole provided at an end of the circuit.
  • the circuit is characterized in that the wiring and the circuit are connected via the external terminal.
  • the hot plate unit includes the ceramic heater according to the third aspect of the present invention, a joining member for accommodating wirings, a resistance heating element at the bottom of the ceramic heater, and an external component.
  • a protection member provided in a region including the terminal, wherein a wire from a power source is accommodated in a part of the protection member, and the bonding member is adhered to a bottom surface via the protection member. It is characterized by storing the rooster line from the power supply.
  • FIG. 14 is a bottom view schematically showing an example of the third ceramic heater of the present invention
  • FIG. 15 is a partially enlarged sectional view of the ceramic heater shown in FIG.
  • FIG. 16 is a cross-sectional view schematically showing an example of the fourth hot plate unit according to the present invention.
  • the ceramic substrate 101 is formed in a disk shape, and a plurality of concentric circular resistors are provided on the bottom surface 101 of the ceramic substrate 101.
  • a heating element 101 is formed. These resistance heating elements 101 2 are formed such that double concentric circles close to each other form a single line as a set of circuits, and these circuits are combined to form a heating surface 1 O ila.
  • the temperature is designed to be uniform.
  • the external terminal 1 is provided with a screw hole 101 6 a and a screw hole 10 13 a and a through hole 10 13 b by penetrating and shaving off a part of the ceramic substrate 101. With the wiring 1 0 1 7 passing through the through hole 1 0 1 3 b, the external terminal 1 0 1 3 is screwed into the screw hole 1 0 1 6 and the annular enlarged part is inserted. The lower part is in firm contact with the resistance heating element 101.
  • the wiring 107 is pressed against the ceramic substrate 101 by the upper end surface of the external terminal 101 and is in firm contact with the external terminal 103, and the other end (not shown) is connected to the power supply.
  • the connection between the resistance heating element 101 and the power supply is achieved.
  • a bottomed hole 104 for inserting a temperature measuring element is formed on the bottom surface 101b of the ceramic substrate 1011, and inside the bottomed hole 104.
  • a temperature measuring element 110 18 such as a thermocouple is embedded.
  • three through holes 110 through which rod-shaped lifter pins 108 pass through are provided near the center (see FIG. 14).
  • the lifter pins 1008 can be placed on the silicon wafer 1009 so that the silicon wafer 100 can be moved up and down.
  • the wafer can be transferred or received from the transfer device, and the silicon wafer 109 can be placed on the heating surface 1 Oila of the ceramic substrate 101 and heated.
  • On the heating surface a convex portion is formed by embossing or the like, and the silicon wafer 1009 is moved from the heating surface 101a by the convex portion. 10 to 2000; supported in a state of being separated by m, and can be heated.
  • the wiring 11017 from the power supply is inserted into the through-holes 1013b of the external terminals 103, and the external terminals 101-3 are connected to the circuit. It is screwed into the screw hole 11016 provided at the end and fixed, whereby the connection between the wiring 11017 and the resistance heating element 101 through the external terminal 103 is achieved. I have.
  • connection between the wiring 1017 and the resistance heating element 101 can be reliably performed over a long period of time, and the external terminal 101 is screwed into the screw hole 11016, thereby providing a physical connection. Since it is fixed to the ceramic heater, the external terminal 101 does not come off even when used for a long time, and the ceramic heater has excellent durability and reliability.
  • a guide tube 1028 communicating with the through hole 101 is provided below a portion of the ceramic substrate 1011, where the through hole 101 is formed.
  • Lifter pins 1008 are passed through the through-holes 1015 so that the silicon wafer 1009 can be supported while being separated from the surface of the ceramic substrate 1011.
  • a resistance heating element 110 12 is formed, and a bottomed hole 104 is formed. Embedded therein is a temperature measuring element 1018 to which a lead wire 1018a is connected.
  • the external terminal 1013 is screwed into the screw hole 1016 provided at the end of the circuit including the resistance heating element 1012, and the wiring 1017 is led out.
  • a protection member 109 is provided in a region including the resistance heating element 101 and the external terminal 103.
  • the protection member 110 19 has a recess 110 19 a for accommodating the resistance heating element 110 2 and the external terminal 103, and a through hole 110 19 b. , 03 009026
  • the wiring 107 is passed through the through hole 109b.
  • the protective member 109 is adhered to the bottom surface of the ceramic substrate 101 by an inorganic or organic adhesive or solder, or is formed in close contact with the bottom surface. Is isolated from the outside atmosphere.
  • the recessed portion 109a provided for accommodating the resistance heating element 101 and the external terminal 11013 is shown in Fig. 16 so that it can be accommodated with a margin.
  • the resistance heating element 110 and the external terminal 101 may be larger than the resistance heating element 101 and the external terminal 101, so that the resistance heating element 101 and the external terminal 101 can be fitted exactly.
  • the size may be substantially the same as the size of the resistance heating element 101 or the external terminal 101.
  • a through hole for inserting the wiring 107 is used to house the wiring 1.017 inside a joining member 10029 described later. May be bent toward the center so as to concentrate near the center of the ceramic substrate 101.
  • the external terminals 101 are mounted near the center of the ceramic substrate 101, they are formed linearly in a direction perpendicular to the main surface of the ceramic substrate 101. Is also good.
  • the material of the protective member 109 is not particularly limited, and examples thereof include a resin, a metal, and a ceramic. Of these, a material having durability against a corrosive gas such as a fluoride gas is preferable. . Further, the protection member 110 19 may be formed by applying a liquid resin to the bottom surface 110 1 and then curing the resin.
  • the protection member 110 19 is provided on almost the entire bottom surface 101 b. This is because when it is necessary to dispose the external terminal 103 near the outer periphery of the ceramic substrate 101, the external terminal 101 and the wiring 107 are connected to corrosive gas or the like. This is because it is necessary to install a protective member 109 almost all over the bottom surface 101b in order to ensure protection.
  • the protection member 110 19 may be provided near the center on the bottom surface.
  • a cylindrical joining member 10029 is joined to the protection member 11019, and the wiring 107 drawn out of the protection member 109 is connected to a part of the joining member 10029. It is stored and led out of the hotplate unit 110. Also, since the joining member 102 is arranged via an adhesive or solder so as to be in close contact with the protective member 109, the inside and the outside of the joining member 109 are completely separated. It is isolated.
  • the joining member 10029 also has a function of firmly supporting the ceramic substrate 1011, even when the ceramic substrate 1011 is heated to a high temperature, it does not warp due to its own weight. As a result, the object to be processed such as the silicon wafer 109 can be prevented from being damaged, and the object can be heated to a uniform temperature.
  • the hot plate unit 110 of the fourth invention has the ceramic heater 110 of the third invention, even when used for a long time, the wiring from the external terminals 110 and the power supply can be maintained.
  • the connection between the resistance heating element 101 and the wiring 110 17 can be reliably performed without disconnection.
  • a protection member 109 is provided on the bottom surface of the ceramic heater 110, a wiring 110 17 is accommodated therein, and a wiring 101 is provided inside the joining member 100. 7 is housed, so even if it is exposed to corrosive gas etc., the external terminals 101 and the wiring 107 do not corrode, and have excellent durability and reliability. .
  • the material, shape, and the like of the third ceramic heater of the present invention will be described in more detail.
  • the shape of the external terminal is not particularly limited as long as the external terminal has a thread groove. It is desirable to have the shape which has.
  • the material of the external terminals is not particularly limited as long as it is a material having good electrical conductivity, and examples thereof include metals such as nickel and Kovar.
  • the diameter of the ceramic substrate is 200 mm or more is desirable. This is because the configuration of the present invention functions more effectively as the ceramic heater having a larger diameter tends to have a nonuniform semiconductor wafer temperature during heating. In addition, a substrate having such a large diameter can accommodate a large-diameter semiconductor wafer.
  • the diameter of the ceramic substrate be at least 12 inches (300 mm). This is because it will become the mainstream of next-generation semiconductor wafers.
  • the thickness of the ceramic substrate constituting the ceramic heater according to the fourth aspect of the present invention is desirably 5 Omm or less. This is because if the thickness of the ceramic substrate exceeds 50 mm, the temperature following ability is reduced. It is desirable that the thickness be 0.5 mm or more. If the thickness is less than 0.5 mm, the strength of the ceramic substrate itself is reduced and the substrate is easily damaged.
  • the resistance heating element is formed on the surface of the ceramic substrate (in the case of the outer layer heater), the thickness is preferably 1 to 5 mm.
  • the resistance heating element is formed inside the ceramic substrate (in the case of the inner layer). In the case of a heater, it is desirable to be 10 to 2 Omm. Within this range, the heat transfer property and the heating efficiency are excellent, and the heat propagating in the ceramic substrate is sufficiently diffused, so that the temperature variation on the heated surface is unlikely to occur. Further, the ceramic substrate has sufficient strength.
  • the ceramic substrate 101 1 is provided with a bottomed hole 1014 from the side opposite to the heating surface 1 Oila where the object to be heated is placed toward the heating surface 101 1 a.
  • the bottom of the bottomed hole 1014 is formed closer to the heating surface 1 Oila than the resistance heating element 1012, and a thermocouple or other temperature measuring element (not shown) is provided in the bottomed hole 1014. Is desirable.
  • the distance between the bottom of the bottomed hole 1014 and the heating surface 1011a is preferably 0.1 mm to 1/2 of the thickness of the ceramic substrate.
  • the distance between the bottom of the bottomed hole 1014 and the heating surface 101 1a is less than 0.1 mm, heat will be radiated, and a temperature distribution will be formed on the heating surface 1 O ila. Being easily affected by the temperature of the heating element, temperature control becomes impossible, and heating This is because a temperature distribution is formed on the surface 101 1a.
  • the diameter of the bottomed hole 1014 is 0.3 mn! Desirably, it is about 5 mm. This is because if it is too large, the heat dissipation will increase, and if it is too small, the workability will decrease and the distance to the heating surface 101 1a will not be uniform.
  • a plurality of the bottomed holes 1014 are arranged symmetrically with respect to the center of the ceramic substrate 1011 and form a cross as shown in FIG. This is because the temperature of the entire heated surface can be measured.
  • thermocouple examples include a thermocouple, a platinum resistance temperature detector, and a thermistor.
  • thermocouples examples include K-type, R-type, B-type, S-type, E-type, J-type, and T-type thermocouples as listed in JIS-C-1602 (1980). However, among these, a K-type thermocouple is preferable.
  • the size of the junction of the thermocouple is the same as or larger than the diameter of the strand, and is desirably 0.5 mm or less. This is because when the junction is large, the heat capacity increases and the response decreases. It is difficult to make the diameter smaller than the diameter of the strand.
  • the above temperature measuring element may be adhered to the bottom of the bottomed hole 1014 using gold brazing, silver brazing, or the like, or may be sealed in a heat resistant resin after entering the bottomed hole 1014. Both may be used in combination.
  • thermosetting resin particularly an epoxy resin, a polyimide resin, and a bismaleimide-triazine resin. These lusters may be used alone or in combination of two or more.
  • the ceramic constituting the ceramic heater of the third aspect of the present invention is desirably a nitride ceramic, a carbide ceramic, or an oxide ceramic.
  • Nitride ceramics, carbide ceramics, and oxide ceramics have a lower coefficient of thermal expansion than metals and have much higher mechanical strength than metals, so even if the thickness of the ceramic substrate is reduced, heating Does not warp or warp. Therefore, the ceramic substrate can be made thin and light. Furthermore, since the thermal conductivity of the ceramic substrate is high and the ceramic substrate itself is thin, the surface temperature of the ceramic substrate quickly follows the temperature change of the resistance heating element. That is, the surface temperature of the ceramic substrate can be controlled by changing the temperature of the resistance heating element by changing the voltage and current values.
  • nitride ceramic examples include aluminum nitride, silicon nitride, boron nitride, and titanium nitride. These may be used alone or in combination of two or more.
  • carbide ceramic examples include silicon carbide, diaconium carbide, titanium carbide, tantalum carbide, and tungsten carbide. These may be used alone or in combination of two or more.
  • oxide ceramic examples include metal oxide ceramics such as alumina, zirconia, cordierite, and mullite.
  • These ceramics may be used alone or in combination of two or more. Of these, aluminum nitride is most preferred. This is because it has the highest thermal conductivity of 18 O W / ra- ⁇ : and is excellent in temperature tracking.
  • an insulating layer may be formed as necessary.
  • Nitride ceramics have a tendency to decrease in volume resistance at high temperatures due to oxygen solid solution, etc.
  • Carbide ceramics have conductivity unless particularly highly purified.By forming an insulating layer, high temperature or impurities This is because, even if it contains, a short circuit between the circuits can be prevented and the temperature controllability can be ensured.
  • an oxide ceramic is desirable, and specifically, silica, alumina, mullite, cordierite, beryllia, or the like can be used.
  • a sol solution obtained by hydrolyzing and polymerizing an alkoxide is spin-coated on a ceramic substrate and dried and baked, or sputtering, CV It may be formed of D or the like. Further, the surface of the ceramic substrate may be oxidized to form an oxide layer.
  • the insulating layer desirably has a thickness of 0.1 to: L 0 00 / ⁇ ⁇ . If the thickness is less than 0.1 ⁇ m, the insulating property cannot be ensured.
  • the volume resistivity of the insulating layer is desirably 10 times or more (same measurement temperature) as the volume resistivity of the ceramic substrate. If it is less than 10 times, a short circuit cannot be prevented.
  • the third ceramic substrate of the present invention contains carbon, and its content is desirably 200 to 500 ppm. This is because the electrodes can be concealed, and the use of blackbody radiation makes the electrodes cheerful.
  • the above-mentioned ceramic substrate has a brightness of N6 or less as a value based on the provision of JISZ8721. This is because a material having such a lightness is excellent in radiant heat and concealing property.
  • the lightness N is set to 0 for the ideal black lightness and 10 for the ideal white lightness, and between these black lightness and white lightness, the brightness of the color is calculated.
  • Each color is divided into 10 so that the perception is at the same rate, and displayed by the symbols N0 to N10.
  • the actual measurement is performed by comparing the color chart corresponding to ⁇ ⁇ to ⁇ 10. In this case, the first decimal place is 0 or 5.
  • the heating surface is desirably opposite to the surface on which the resistance heating element is formed. This is because the ceramic substrate plays a role of thermal diffusion, so that the temperature uniformity of the heated surface can be improved.
  • a conductor paste containing metal particles is applied to the surface of the ceramic substrate to form a conductor paste layer having a predetermined pattern, which is then baked, and the metal particles are baked on the surface of the ceramic substrate.
  • sintered metals, ceramic and metal particles with each other Contact Yopi metal particles it is sufficient that are fused.
  • the thickness of the resistance heating element is preferably 1 to 30 ⁇ m, and more preferably 3 to L 0 ⁇ . Further, the width of the resistance heating element is preferably from 0.1 to 20 mm, more preferably from 0.3 to 15 mm.
  • the resistance heating element can vary its resistance value depending on its width and thickness, but the above range is the most practical.
  • the resistance value increases as the resistance decreases and the resistance decreases.
  • the formation position of the resistance heating element By setting the formation position of the resistance heating element in this way, the heat generated from the resistance heating element is diffused throughout the ceramic substrate as it propagates, and the temperature of the surface that heats the object to be heated (semiconductor wafer). The distribution is made uniform, and as a result, the temperature in each part of the object to be heated is made uniform.
  • the pattern of the resistance heating element in the ceramic heater according to the third aspect of the present invention is not limited to the pattern shown in FIG. 14, but may be, for example, a spiral pattern, an eccentric pattern, or a repeated pattern of bent lines. Etc. can also be used. These may be used in combination.
  • the resistive heating element pattern formed on the outermost periphery into a pattern divided in the circumferential direction, it is possible to perform fine temperature control on the outermost periphery of the ceramic heater, whose temperature tends to decrease, It is possible to suppress the temperature variation of the ceramic heater.
  • the pattern of the resistance heating element divided in the circumferential direction may be formed not only on the outermost periphery of the ceramic substrate but also on the inside thereof.
  • the resistance heating element may have a rectangular or elliptical cross section, but is preferably flat. This is because the flat surface is more likely to dissipate heat toward the heating surface, making it difficult to achieve a temperature distribution on the heating surface.
  • the aspect ratio of the cross section (the width of the resistance heating element and the thickness of the resistance heating element) is preferably in the range of 10 to 500.
  • the resistance value of the resistance heating element can be increased, and the uniformity of the temperature of the heating surface can be ensured.
  • the aspect ratio of the cross section is preferably 10-500.
  • the aspect ratio is desirably set to 10 to 200.
  • the conductive paste used to form the resistance heating element is not particularly limited, but contains metal particles or conductive ceramics for ensuring conductivity, as well as resins, solvents, and thickeners. Is preferred.
  • noble metals gold, silver, platinum, palladium
  • lead, tungsten, molybdenum, nickel and the like are preferable, and among them, noble metals (gold, silver, platinum, palladium) are more preferable.
  • noble metals gold, silver, platinum, palladium
  • these may be used alone, but it is preferable to use two or more of them. This is because these metals are relatively difficult to oxidize and have a resistance value sufficient to generate heat.
  • the conductive ceramic examples include tungsten and carbide of molybdenum. These may be used alone or in combination of two or more.
  • the metal particles or conductive ceramic particles preferably have a particle size of 0.1 to 10; zm. If it is too fine, less than 0.1, it is liable to be oxidized, while if it exceeds lO / zm, sintering becomes difficult and the resistance value becomes large.
  • the shape of the metal particles may be spherical or scaly. When these metal particles are used, they may be a mixture of the sphere and the flakes. When the metal particles are flakes or a mixture of spheres and flakes, the metal oxide between the metal particles is easily retained, and the adhesion between the resistance heating element and the nitride ceramic or the like is improved. This is advantageous because the resistance can be increased and the resistance value can be increased.
  • the resin used for the conductor paste include an epoxy resin and a phenol resin.
  • the solvent include isopropyl alcohol.
  • the thickener include cellulose.
  • the conductor paste is formed by adding a metal oxide to metal particles and sintering the metal particles and the metal oxide as a resistance heat generator.
  • a metal oxide to metal particles
  • the metal oxide as a resistance heat generator.
  • the metal oxide for example, lead oxide, dumbbell, silica, boron oxide (B 2 0 3), alumina, least one selected from the group consisting of yttria and Chitayua are preferred.
  • the adhesion to nitride ceramics can be particularly improved.
  • the amount of the metal oxide added to the metal particles is preferably from 0.1% by weight to less than 10% by weight.
  • metal foil / metal wire can be used as the resistance heating element.
  • metal foil it is desirable to use a nickel foil or a stainless steel foil which is patterned by etching or the like to form a resistance heating element.
  • the patterned metal foils may be bonded together with a resin film or the like.
  • the metal wire include a tungsten wire and a molybdenum wire.
  • the area resistivity when the resistance heating element is formed is preferably from 0.1 ⁇ to 10 ⁇ . If the sheet resistivity is less than 0. ⁇ ⁇ / port, to secure heat generation, The width of the anti-heating element pattern must be very thin, about 0.1 to 1 mm, which may cause disconnection due to slight chipping of the pattern, fluctuate resistance, and area resistivity. If the resistance exceeds 1 ⁇ , the heating value cannot be secured unless the width of the resistive heating element pattern is increased, resulting in a lower degree of freedom in pattern design and a uniform heating surface temperature. This is because it becomes difficult.
  • a metal coating layer be provided on the surface of the resistance heating element. This is to prevent the resistance value from changing due to oxidation of the internal metal sintered body.
  • the thickness of the metal coating layer to be formed is preferably from 0.1 to: L 0 ⁇ m.
  • the metal used in forming the metal coating layer is not particularly limited as long as it is a non-oxidizing metal, and specific examples include gold, silver, palladium, platinum, and nickel. These may be used alone or in combination of two or more. Of these, nickel is preferred.
  • the protection member constituting the hot plate cut of the fourth invention is made of ceramic, metal, heat resistant resin or the like.
  • the ceramic examples include nitride ceramics, carbide ceramics, and oxide ceramics as in the case of the ceramic substrate.
  • a thermosetting resin or a thermoplastic resin is used. be able to.
  • the thermosetting resin for example, at least one selected from an epoxy resin, a polyimide resin, a bismaleimide-triazine resin, and a phenol resin can be used.
  • the thermoplastic resin at least one selected from polyethersulfone, polysulfone, polyetheretherketone, polysulfide, and fluororesin can be used.
  • those having corrosion resistance having durability against corrosive gas such as fluoride gas are preferable.
  • the protective member is not particularly limited as long as it can protect the resistance heating element, the external terminals, the wiring, and the like.
  • the protective member has a circular shape in plan view. Is preferred. This is because, by adopting a shape similar to that of the ceramic substrate, it is possible to reduce the risk of temperature variations occurring on the heating surface of the ceramic substrate.
  • the thickness of the protective member is desirably 0.5 to 10 mm.
  • the protective member If it is less than 0.5 mm, the protective member is too thin to sufficiently protect the resistance heating element, external terminals, wiring, etc.If it exceeds 1 Omm, the heat capacity increases and the rate of temperature rise decreases. This is because there is a risk of doing so.
  • the joining member constituting the hot plate unit of the fourth invention is made of ceramic, heat resistant resin or the like.
  • the ceramic and the heat-resistant resin for example, those similar to the ceramic substrate described above can be used.
  • the shape of the joining member is preferably a column, particularly a cylinder, and the inner diameter thereof is desirably 30 mm or more. If the thickness is less than 3 O mm, it becomes difficult to firmly fix the ceramic substrate, and when the ceramic substrate is heated to a high temperature, the ceramic substrate may be warped by its own weight.
  • the thickness of the joining member is 1 to 1 Omm. If the thickness is less than 1 mm, the thickness of the joining member is too small, resulting in poor mechanical strength, and the above-mentioned joining member may be damaged by repeated heating and cooling. If the thickness is too large, the heat capacity may increase, and the heating rate may decrease.
  • the protective member 110 19 is provided on the bottom surface 110 b of the ceramic heater 110 10, and the external terminals 110 13 and the wiring 110 17 are accommodated therein.
  • the wiring member 107 is housed inside the joining member 102, and the external terminals 103 are isolated from the outside, so that even if exposed to corrosive gas, etc.
  • the terminal 113 and the wiring 107 are not corroded, and the hot plate unit 110100 has excellent durability and reliability.
  • a circuit formed of a resistance heating element is formed on or inside a ceramic substrate, and an external terminal is provided at an end of the circuit.
  • the external terminal is screwed into the screw hole and fixed while the wiring from the power supply passes through the through hole of the external terminal, thereby connecting the wiring to the circuit via the external terminal.
  • a hot plate unit includes the ceramic heater according to the fifth aspect of the invention, a joining member for accommodating wiring, a resistance heating element on a bottom surface of the ceramic heater, and ⁇ a protection member installed in a region including the external terminal, a wiring from a power supply is housed inside the protection member, and a bonding member is bonded via the protection member, and It is characterized in that the wiring from the power supply is stored in the power supply.
  • FIG. 17 is a bottom view schematically showing an example of the fifth ceramic heater of the present invention
  • FIG. 18 (a) is a partially enlarged sectional view of the ceramic heater shown in FIG.
  • FIG. 18 (b) is a partially enlarged cross-sectional view schematically showing another example of the fifth ceramic heater of the present invention.
  • a resistance heating element 1032 composed of a plurality of circuits is embedded inside a disc-shaped ceramic substrate 1031, and the resistance heating element 1032 is a ceramic substrate 1031.
  • a resistive heating element 1 032 a to 103 2 h consisting of a repeating pattern of bent lines divided in the circumferential direction is formed on the outermost circumference of 1, and a similar repeated pattern of bent lines is formed on the inner circumference.
  • Resistance heating elements 1032i to 10321 are formed.
  • concentric resistance heating elements 1032m to 1032p are formed on the inner periphery thereof.
  • a through hole 1040 is provided directly below the end of the resistance heating element 1032 formed inside the ceramic substrate 1031, and a screw hole 1036 is formed in the bottom of the through hole 10040. Is formed.
  • the wiring 1 0 17 is passed through the through hole 1 03 3 b of the external terminal 103 3 b having the screw groove 103 3 a and the through hole 103 3 b. External terminal 1 03 3 is screwed into 036 The
  • the wiring 110 17 is connected to the power supply, the connection between the resistance heating element 103 and the power supply is established through the through hole 104.
  • a bottomed hole 104 for receiving a temperature measuring element is formed in the bottom surface 103b of the ceramic substrate 1031, and the bottomed hole 1034 is formed in the bottom surface 103b.
  • a temperature measuring element (not shown) such as a thermocouple is embedded inside.
  • a through-hole 135 is provided for passing a rod-shaped lifter pin.
  • the external terminal 103 is connected to the external terminal 103 through the through hole 103 of the external terminal 103 as described above. It is screwed into and fixed to the screw hole 10036 of the through-hole 1400 provided directly below the end of the circuit.
  • the connection between the wiring 110 17 and the resistance heating element 103 is established.
  • connection between the wiring 110 17 and the resistance heating element 103 can be reliably performed over a long period of time, and the external terminal 103 can be screwed into the screw hole 110 36. Since it is physically fixed, even if it is used for a long time, the external terminals 1
  • FIG. 18 (b) is a partially enlarged cross-sectional view schematically showing another example of the fifth ceramic heater of the present invention.
  • a screw hole 104 through which a resistance heating element 104 formed inside the ceramic substrate 104 is formed is formed on the bottom surface of the ceramic substrate 104.
  • the external terminals 1043 have screw grooves 1043a and through holes
  • the connection between the resistance heating element 1042 and the power supply can be achieved.
  • connection between the wiring 1047 and the resistance heating element 1042 can be reliably performed over a long period, and the external terminal 1043 is screwed into the screw hole 104 As a result, since they are physically fixed, the external terminals 104 do not come off even when used for a long period of time, resulting in a ceramic heater having excellent durability and reliability.
  • FIG. 19 is a cross-sectional view schematically showing a hot plate unit according to the sixth aspect of the present invention.
  • a ceramic heater 130 having the configuration shown in FIGS. 17 and 18 (a) is used.
  • the external terminal 103 is screwed into the screw hole 11036 of the through hole 10040 provided at the end of the circuit including the resistance heating element 103, although the wiring 101 is led out, a protection member 109 is provided in an area including the resistance heating element 103 and the external terminal 103, and the protection member 109 is provided. Inside, the wiring 107 is accommodated.
  • the protection member 103 has a recess 109a for accommodating the external terminal 103, and a through hole 11039 for passing the wiring 107. b is formed.
  • the protective member 103 is bonded to the bottom surface of the ceramic substrate 103 with an inorganic or organic adhesive or solder, or is formed in close contact with the surface. Is isolated from the outside atmosphere.
  • the recess 103 a provided for accommodating the external terminal 103 is provided with the external terminal 103 as shown in FIG. It may be larger, and may be approximately the same size as the external terminal 103 so that the external terminal 103 can be fitted exactly.
  • the through hole 10039 b through which the wiring 107 passes is used to accommodate the wiring 107 inside the joining member 10029, as shown in FIG. It may be formed so as to be bent toward the center so that 0 17 is concentrated near the center of the ceramic substrate 103. Also, when the external terminals 103 are mounted near the center of the ceramic substrate 1031, they are formed linearly in a direction perpendicular to the main surface of the ceramic substrate 103. Is also good.
  • the protective member 103 is installed near the center of the bottom surface 103b, but the protective member 103 is installed almost entirely on the bottom surface 103b. May If it is necessary to arrange the external terminal 103 near the outer periphery of the ceramic substrate 103, if the external terminal 103 is required to protect the external terminal 103 and the wiring 107, the bottom surface 103 This is because it is necessary to install the protective member 103 almost all over 1b.
  • a cylindrical joining member 10029 is joined to the protection member 103, and the wiring 10017 partially accommodated inside the protection member 103 is joined to the joining member 1109. It is housed inside 0 2 9. In addition, in the joining member 102, the inside and the outside of the joining member 109 are isolated.
  • joining member may be joined to the side surface of the ceramic substrate, and the wiring housed inside the protection member may be drawn out from the side surface and housed inside the joining member joined to the side surface.
  • the protection member 1039 is installed on the bottom surface 103b of the ceramic heater 103, and the external terminals 103 and the wiring 107 are accommodated therein.
  • the wiring 107 is housed inside the joining member 102 and the external terminals 103 are isolated from the outside, even if exposed to corrosive gas, etc. The terminal 103 and the wiring 107 do not corrode, resulting in a hot plate unit 1200 having excellent durability and reliability.
  • the other parts of the hot plate unit 1200 have the same configuration as that of the hot plate unit 110, and thus the description thereof is omitted.
  • the shape of the external terminal is not particularly limited as long as the external terminal has a through hole and a screw groove, and has a T-shaped cross section as shown in FIG.
  • the shaft has a shape having a through hole. This is because the external terminals can be fixed to the ceramic substrate, and by increasing the contact area between the external terminals and the through holes, they can be reliably connected.
  • the through-hole is not necessarily required to be formed, and it is sufficient that the external terminal penetrates the internal circuit or contacts the internal circuit. That is, it is only necessary that the circuit and the power supply be electrically connected.
  • the material of the external terminals is not particularly limited as long as it is a material having good electrical conductivity, and examples thereof include metals such as nickel and Kovar.
  • the resistance heating element When a resistance heating element is formed inside a ceramic substrate, the resistance heating element must be ] It is desirable to be formed at a position of 60% or less in the thickness direction from the surface opposite to the hot surface. If it exceeds 60%, the heat propagating in the ceramic substrate will not be sufficiently diffused because the temperature is too close to the heating surface, and temperature variation will occur on the heating surface.
  • a resistance heating element When a resistance heating element is formed inside a ceramic substrate, a plurality of resistance heating element formation layers may be provided. In this case, it is desirable that the resistance heating element is formed in some layer so as to complement each other and that the pattern is formed in any region when viewed from above the heating surface. As such a structure, for example, a structure in which staggered patterns are arranged with respect to each other can be cited.
  • the resistance heating element may be provided inside the ceramic substrate, and the resistance heating element may be partially exposed.
  • the thickness of the resistance heating element is preferably 1 to 50 ⁇ , and the width of the resistance heating element is 5 to 20 mm. I like it.
  • the resistance heating element can vary its resistance value depending on its width and thickness, but the above range is the most practical.
  • the resistance value increases as the resistance decreases and the resistance decreases.
  • the thickness and width of the resistance heating element when formed inside the ceramic substrate are larger, but when the resistance heating element is provided inside, the distance between the heating surface and the resistance heating element becomes shorter, and the surface It is necessary to increase the width of the resistance heating element itself because the temperature uniformity decreases, and there is no need to consider adhesion to nitride ceramics etc. to provide the resistance heating element inside.
  • High melting point metal such as tungsten, molybdenum, and carbide such as tungsten and molybdenum can be used, and the resistance value can be increased.Thickness itself can be increased to prevent disconnection. . Therefore, it is desirable that the resistance heating element has the above-described thickness and width.
  • the resistive heating element has an aspect ratio of 200 to 500.
  • the aspect ratio is better. This is because, when a resistance heating element is provided inside, the distance between the heating surface and the resistance heating element is shortened and the temperature uniformity on the surface is reduced, so the resistance heating element itself must be flattened. Because there is.
  • the resistance heating element When the resistance heating element is formed inside the ceramic substrate, no coating is required since the surface of the resistance heating element is not oxidized. When the resistance heating element is formed inside the ceramic substrate, a part of the resistance heating element may be exposed on the surface, and a through hole for connecting the resistance heating element is provided in the terminal portion. Terminals may be connected and fixed to the holes.
  • the shape, material, and the like of the ceramic heater of the fifth invention other than the above are the same as those of the ceramic heater of the third invention, the description thereof will be omitted.
  • the protective member constituting the hot plate cut of the sixth aspect of the present invention is preferably made of ceramic, metal, heat resistant resin or the like, similarly to the hot plate unit of the fourth aspect of the present invention. It is preferable to be made of a material having
  • the protective member is not particularly limited as long as it can protect external terminals, wiring, and the like, but is preferably circular in plan view, like the ceramic substrate. This is because, by adopting a shape similar to that of the ceramic substrate, it is possible to reduce the risk of temperature variations occurring on the heating surface of the ceramic substrate.
  • the thickness of the protective member is desirably 0.1 to 10 mm.
  • the thickness is less than 0.1 mm, the protective member is too thin to protect the external terminals, wiring, etc. sufficiently. If the thickness exceeds 10 mm, the heat capacity increases and the heating rate may decrease. Because there is.
  • the resistance heating element when a resistance heating element is formed inside a ceramic substrate, the resistance heating element is formed inside the ceramic substrate, unlike the case where a resistance heating element is formed on the surface of the ceramic substrate. It is not necessary to form a recess for protecting the resistance heating element.
  • the hot plate unit according to the sixth aspect of the present invention relates to the shape, material, and the like. Then, since it is the same as the hot plate unit of the fourth aspect of the present invention, its description is omitted.
  • Sintering aids 4 C such yttria (Y 2 0 3) and B as needed to ceramic powders such as nitrides such as nitride Aruminiumu Ya silicon carbide mentioned above, N a, compounds containing C a,
  • the slurry is granulated by a method such as a spray drier, and the granules are placed in a mold and pressed to form a plate or the like. Is prepared.
  • the formed body is heated, fired and sintered to produce a ceramic plate.
  • the ceramic substrate 101 is manufactured by processing into a predetermined shape, but may be formed into a shape that can be used as it is after firing. By performing heating and firing while applying pressure, it becomes possible to manufacture a ceramic substrate 1011 having no pores. Heating and firing may be performed at a temperature equal to or higher than the sintering temperature, but in the case of nitride ceramics and carbide ceramics, it is 100 to 250. C. In the case of oxide ceramics, the temperature is 1500 to 2000 ° C.
  • drilling is performed to form a bottomed hole 110 14 for embedding a temperature measuring element such as a thermocouple and a through hole 110 15 for inserting a lifter pin. (See Figure 20 (a)).
  • the conductor paste is generally a high-viscosity fluid composed of metal particles, a resin, and a solvent. This conductor paste is printed on a portion where the resistance heating element 11012 is to be provided by screen printing or the like to form a conductor paste layer.
  • the conductor paste layer is desirably formed such that the cross section of the resistance heating element 11012 after firing is rectangular and flat.
  • the conductor paste layer printed on the bottom surface of the ceramic substrate 101 is heated and fired to remove the resin and solvent, and the metal particles are sintered. Baking is performed on the bottom surface to form a resistance heating element 1012 (see FIG. 20 (b)).
  • the temperature of the heating and sintering is preferably 500 to: L 000 ° C.
  • the metal particles and the ceramic substrate oxide are sintered and integrated, so that the resistance heating element 1012 and the ceramic substrate 101 1 The adhesion is improved.
  • a metal coating layer (not shown) is formed on the surface of the resistance heating element 1012.
  • the metal coating layer can be formed by electroplating, electroless plating, or the like. However, in consideration of mass productivity, electroless plating and early plating are optimal.
  • a screw hole 1016 for fixing the external terminal 1013 is formed on the bottom surface of the ceramic substrate 1011 (see FIG. 15).
  • the screw hole 1016 can be formed by forming a bottomed hole by drilling or the like and then providing a screw groove on the wall surface of the bottomed hole.
  • the screw hole 1016 may be formed at a position where the resistance heating element and the external terminal can be electrically connected when the external terminal is screwed in. It is preferable that both ends of the body 1012 are formed so as to penetrate the resistance heating element 1012. This is because the external terminal 1013 and the resistance heating element 1012 can be more reliably connected.
  • a protection member 1019 for protecting the resistance heating element 1012, the external terminal 103, and the wiring 1017 formed on the ceramic substrate 1011 is manufactured.
  • a ceramic material a material obtained by molding ceramic powder such as aluminum nitride is sintered at a heating temperature of 1000 to 2000 ° C at room temperature to produce a plate-like body, and then the plate-like body is formed.
  • a recess is formed to protect the resistance heating element 1012 and the external terminal 1013 by blasting of sand blast etc., and a through hole is formed through the wiring 1017 by drilling etc. I do.
  • a pipe-shaped ceramic member whose both ends are closed is embedded and fired, and then the plate-like body is communicated with the both ends.
  • a through hole such as the protection member 1019 shown in FIG. 16 can be formed.
  • the wiring from the external terminal 1013 disposed near the outer peripheral portion of the ceramic substrate 1011 can be accommodated inside the joining member 1029.
  • the plate-like body can also be manufactured by molding a heat-resistant resin such as a fluororesin.
  • a resin layer may be formed by applying a liquid resin on the bottom surface or the like, and the protective layer 1019 may be formed by curing the resin layer. In this case, no adhesive is required.
  • a bonding member 1029 for protecting the wiring 1017 is manufactured, and the bonding member 1029 is bonded to the protection member 1019 formed in the step (6) using an inorganic adhesive or the like.
  • the joining member 1029 is formed by putting a ceramic powder such as aluminum nitride into a cylindrical mold and molding it, and cutting it as necessary. This is sintered at a heating temperature of 1000 to 2000 ° C. at room temperature to produce a ceramic joining member 1029.
  • the joining member 1029 can also be manufactured by molding a heat-resistant resin.
  • the wiring 1017 connected to the external power supply is inserted into the through-hole formed in the protective member 1019 and also through the through-hole 1013 b provided in the external terminal 1013, and then the external terminal 1013 is connected. Is screwed into a screw hole 1016 formed at the end of the pattern of the resistance heating element 1012 to attach the external terminal 1013 to the ceramic substrate 1011. As a result, the external terminal 1013 and the resistance heating element 10 12 are electrically connected.
  • the above adhesive is silica sol, aluminum This is performed by using an inorganic adhesive such as Nasol, a heat-resistant adhesive made of a silicone resin, a polyimide resin, or the like. Also, the ceramic substrate 101 and the protective member 101
  • the protective member 100 19 made of heat-resistant resin is directly connected to the ceramic substrate 1 by potting or the like. It may be formed directly on the bottom surface 101b of 0111. In this case, it is desirable that the thickness of the protective member 109 is uniform.
  • the ceramic heater which is a part of the hot plate unit of the fourth aspect of the present invention, includes a resistance heating element on the surface or inside the ceramic substrate, and an electrostatic electrode inside the ceramic substrate. By providing them, an electrostatic chuck can be obtained. Further, by providing a chuck top conductor layer on the surface and providing a guard electrode and a ground electrode inside, a chuck top plate used for a wafer prober can be obtained.
  • a paste is prepared by mixing a ceramic powder such as a nitride ceramic with a binder, a solvent, and the like, and a green sheet 130 is manufactured using the paste.
  • nitride aluminum nitride or the like
  • a sintering aid such as yttria, a compound containing Na or Ca, or the like may be added.
  • the binder at least one selected from acryl-based pinda, ethyl / rese / rerose, butylserum solvent, and polyvinyl alcohol is desirable.
  • the solvent may be at least one selected from ⁇ -terbineol and glycol. Also, one kind is desirable.
  • the paste obtained by mixing these is shaped into a sheet by a doctor blade method to produce a green sheet.
  • the thickness of the green sheet is preferably 0.1 to 5 mm.
  • a conductive paste containing a metal paste or conductive ceramic for forming the resistive heating element 1302 is printed on the green sheet 1300, forming a conductive paste layer 1320 and a through hole. Then, a conductive paste filling layer 1400 for a through hole 1400 is formed.
  • These conductive pastes contain metal particles such as tungsten particles and molybdenum particles or conductive ceramic particles such as tungsten carbide particles.
  • the average particle diameter of the tungsten particles or molybdenum particles is preferably from 0.1 to 10 ⁇ m. If the average particle size is less than 0.1, the conductor paste is difficult to print.
  • a conductive paste for example, 85 to 87 parts by weight of metal particles or conductive ceramic particles; at least one binder selected from acryl-based, ethylcellulose, butyl cellulose sorb, and polyvinyl alcohol 1. 5 to 10 parts by weight; and a composition (paste) obtained by mixing 1.5 to 10 parts by weight of at least one solvent selected from ct-terbineol and glycol.
  • Laminate the green sheet 130 on which the conductor paste is not printed on the upper side of the green sheet 130 on which the conductor paste is printed (see Fig. 21 (a)).
  • the lamination is performed so that the daline sheet 130 on which the conductive paste is printed is positioned 60% or less from the bottom surface with respect to the thickness of the lane sheet.
  • the number of stacked green sheets on the upper side is preferably 20 to 50 sheets.
  • the green sheet laminate is heated and pressed to sinter the green sheet and the internal conductor paste.
  • the heating temperature is preferably 100 to 200 ° C.
  • the pressurizing pressure is 100 to 100 ° C. 2 OMPa is preferred.
  • Heating is performed in an inert gas atmosphere.
  • the inert gas for example, argon, nitrogen and the like can be used.
  • thermocouple a temperature measuring element such as a thermocouple into the obtained sintered body was prepared.
  • the step of forming the bottomed hole 1034 and the through hole 1035 described above may be performed on the green sheet laminate, but is preferably performed on the sintered body. This is because during the sintering process, it may be deformed.
  • the bottomed hole 1034 and the through hole 1035 can be formed by drilling or the like after surface polishing.
  • a screw hole 1036 for fixing the external terminal 1033 is formed on the bottom of the through hole 1040 (see FIG. 21C).
  • the screw hole 1036 can be formed by forming a bottomed hole in the bottom surface of the through hole 1040 by drilling or the like, and then cutting a thread groove on the wall surface of the bottomed hole.
  • a protective member 1039 for protecting the external terminal 1033 and the wiring 1017 provided on the ceramic substrate 1031 is manufactured.
  • the method of manufacturing the protection member is substantially the same as that of the third and fourth aspects of the present invention, and the description is omitted here.
  • a bonding member 1029 for protecting the wiring 1017 is manufactured, and the bonding member 1029 is bonded to the protection member 1039 formed in the step (6) using an inorganic adhesive or the like.
  • joining member 1029 has the same configuration as that described in the third and fourth aspects of the present invention, a detailed description thereof will be omitted here.
  • a ceramic powder such as aluminum nitride is put into a cylindrical mold and molded, and cut if necessary. This is sintered at room temperature at a heating temperature of 1000 to 2000 ° C to produce a ceramic joining member 1029.
  • the joining member 1029 is It can also be produced by molding a thermal resin.
  • the external terminal 1033 After passing the wiring 1017 connected to the external power supply through the through-hole formed in the protective member 1039 and the through-hole 1033 b provided in the external terminal 1033, the external terminal 1033 is passed through the through-hole 1040.
  • the external terminals 1033 are attached to the ceramic substrate 1031 by screwing into the screw holes 1036 formed on the bottom surface of the substrate. As a result, the external terminal 1033 is connected to the resistance heating element 1032 via the through hole 1040.
  • the protection member 1039 to which the joining member 1029 is attached is bonded to the ceramic substrate 1031 (see FIG. 21D).
  • the bonding is performed by using an inorganic adhesive such as silica sol or alumina sol, a heat-resistant adhesive made of a silicone resin, a polyimide resin, or the like.
  • an inorganic adhesive such as silica sol or alumina sol, a heat-resistant adhesive made of a silicone resin, a polyimide resin, or the like.
  • a protection member 1039 made of a heat-resistant resin may be directly installed on the bottom surface 1031b of the ceramic substrate 1031 by using a potting process or the like. . In this case, it is desirable that the thickness of the protective member 1039 be uniform.
  • Aluminum nitride powder (Tokuyama, average particle size 1.1 ⁇ ) 100 weight The amount unit, yttrium oxide (Y 2 0 3: yttria, average particle diameter 0. 4 / xm) 4 parts by weight, Atariru based resin moon effect binder (manufactured by Kyoeisha trade name KC 600 acid number 1 0KOH mg / g) 1 1 Using a paste obtained by mixing 5 parts by weight, 0.5 part by weight of a dispersant, and 53 parts by weight of alcohol composed of 1-butanol and ethanol, the mixture was molded by the doctor blade method to a thickness of 0. A green sheet 110 having a size of 47 mm and a side of 42 OmmX42Omm was produced.
  • This conductor paste was printed by screen printing on a green sheet on which a portion 160 to be a via hole was formed, to form a conductor paste layer 120 for a resistance heating element.
  • the printing pattern was a pattern combining the concentric circle shape shown in Fig. 2 and the arc shape divided in the circumferential direction.
  • the width of the conductor paste layer 120 was 1 Omm, and its thickness was 12 ⁇ m. .
  • a conductor paste was printed by screen printing on a daline sheet having portions 130 formed as through holes, thereby forming a conductor paste layer 180 for conductor circuits.
  • the shape of the printing was band-like.
  • the conductive paste was filled into the portions 160 to be via holes and the portions 130 and 130 ′ to be through holes.
  • the obtained laminate was degreased in nitrogen gas at 600 ° C for 5 hours. Hot pressing was performed at 0 ° C and a pressure of 15 MPa for 10 hours to obtain a 12 mm-thick aluminum nitride plate.
  • the ceramic substrate 11 obtained in (4) was polished with a diamond grindstone, and then heated at 180 ° C. and normal pressure for 1 hour in N 2 gas.
  • Aluminum nitride powder (manufactured by Tokuyama Corporation, average particle size 1.1 ⁇ 1 ⁇ ) 100 parts by weight, ataryl-based resin piner 11.5 parts by weight, dispersant 0.5 parts by weight 1-butanol
  • a composition obtained by mixing 53 parts by weight of alcohol consisting of ethanol and ethanol granules are produced by a spray-drying method, and the granules are placed in a cylindrical mold and fired at normal pressure at 1890. Then, a ceramic body 17 having a length of 20 Omm, an outer diameter of 45 mm, and an inner diameter of 35 mm was produced.
  • thermocouple for temperature control is inserted into the bottomed hole 14, filled with silica sol, cured at 190 for 2 hours, and gelled, so that a resistance heating element
  • a cylindrical ceramic body was bonded to the bottom surface of the ceramic substrate provided with the conductor circuit, the via hole and the through hole, and a ceramic bonded body in which the ceramic substrate functioned as a hot plate was manufactured.
  • Aluminum nitride powder (average particle size: 0.6 ⁇ m) 100 parts by weight, yttria (average particle size: 0.4 ⁇ ) 4 parts by weight, acrylic binder (manufactured by Kyoeisha, product name SA—545 Acid value 0 (5.5 KOHmg / g) A composition consisting of 12 parts by weight and alcohol was spray-dried to produce a granular powder.
  • a disk having a diameter of 230 mm was cut out from the plate to obtain a ceramic plate (ceramic substrate 51).
  • the ceramic substrate 51 obtained in (3) was heated at 1800 ° C. and normal pressure for 5 hours in N 2 gas.
  • a conductor paste layer was formed on the ceramic substrate 51 obtained in the above (5) by screen printing.
  • the printing pattern was an arc pattern repeatedly formed so as to draw a part of a concentric circle as shown in FIG.
  • the conductive paste has a composition comprising 100 parts by weight of tungsten particles having an average particle diameter of 3 jum, 1.9 parts by weight of an acrylic binder, 3.7 parts by weight of an ⁇ -terbineol solvent, and 0.2 parts by weight of a dispersant. used.
  • the ceramic substrate 51 is heated and baked at 780 ° C. to sinter the tungsten particles in the conductor paste and to bake the ceramic paste on the ceramic substrate 51, A heating element 52 was formed.
  • the resistance heating element 52 had a thickness of 5 ⁇ m, a width of 2.4 mm, and a sheet resistivity of 7.7 mQ / D.
  • Aluminum nitride powder (manufactured by Tokuyama Corporation, average particle size: 1.1 jam) 100 parts by weight, 11.5 parts by weight of acrylic resin binder, 0.5 parts by weight of dispersant, and 1 part of ethanol and ethanol Granules are produced by spray drying using a composition containing 53 parts by weight of alcohol, and the granules are placed in a cylindrical mold and sintered at normal pressure, nitrogen atmosphere, 1890 ° C, length 20 A ceramic body 57 having an Omm diameter of 21 Omm and a diameter of 190 mm was manufactured.
  • an external terminal 63 made of Kovar was placed on the solder layer, heated and reflowed at 420 ° C., and the external terminal 63 was attached to the surface of the resistance heating element 52 (see FIG. 13D).
  • thermocouple (not shown) for controlling the gap between the ceramic body 57 and the resistance heating element 52 was sealed with polyimide to obtain a hot plate 50.
  • a green sheet provided with a through hole for a via hole and a green sheet provided with a through hole for a through hole for connecting an electrostatic electrode and an external terminal were produced.
  • a conductor paste was printed by a screen printing method on the surface of the green sheet provided with the through holes for via holes, and a conductor paste layer serving as a resistance heating element was printed.
  • the conductive paste is printed by a screen printing method on a surface of a green sheet having a through hole for connecting a conductor circuit and an external terminal, thereby forming a conductor best layer serving as a conductor circuit.
  • a conductor paste layer consisting of an electrostatic electrode pattern having the shape shown in Fig. 7 was formed on a Darin sheet that had not been subjected to any processing.
  • a conductive paste was filled into the through-hole for via-hole for connecting the resistance heating element and the conductor circuit and the through-hole for through-hole for connecting the external terminal.
  • the green sheet on which the conductive paste layer serving as a resistance heating element is printed First, on the upper side (heating surface side) of the green sheet on which the conductive paste layer serving as a resistance heating element is printed, three or four green sheets having only a portion to become the through hole 73 are laminated, and immediately below the green sheet.
  • a green sheet on which a conductor paste layer to be a conductor circuit is printed is laminated (on the bottom side), and a green sheet is formed on the lower side of which is a portion to be a through hole 73, 70, 70 '. Were laminated.
  • a green sheet on which a conductor paste layer composed of an electrostatic electrode pattern is printed is laminated, and two unprocessed green sheets are further laminated thereon.
  • the obtained laminate is degreased in an inert gas at 600 ° C for 5 hours, and then hot-pressed at 189 ° C and a pressure of 15 MPa for 3 hours. And thickness 18 mm 3009026
  • a ceramic substrate 71 was obtained.
  • This is cut out into a disk shape with a diameter of 23 Omm, and inside it, a resistive heating element 720 with a thickness of 5 ⁇ and a width of 2.4 mm, a conductor circuit 780 with a thickness of 20 ⁇ m and a width of 1 Onim and a thickness of 1 Onim
  • a mask is placed, and a bottomed hole 700 for a thermocouple is provided on the surface by a plasting process using glass beads.
  • a blind hole 790 was formed by digging the portion where the through holes 73 and 73 'were formed.
  • Nitani Aluminum powder manufactured by Tokuyama Co., average particle size: 1. l / xm
  • ataryl resin binder 11.5 parts by weight
  • dispersant 0.5 part by weight
  • a composition obtained by mixing 53 parts by weight of alcohol consisting of butanol and ethanol granules are produced by a spray-drying method, and the granules are put into a pipe-shaped mold and sintered at normal pressure at 1890 ° C.
  • a ceramic body 77 having a length of 20 Omm, an outer diameter of 45 mm, and an inner diameter of 35 mm was manufactured.
  • thermocouple for temperature control is inserted into the bottomed hole 700, filled with silica sol, cured at 190 ° C for 2 hours, and gelled.
  • a cylindrical ceramic body is joined to the bottom surface of the ceramic substrate provided with the resistance heating element, the conductor circuit, the via hole and the through hole, and the ceramic substrate is connected to the electrostatic chip.
  • a ceramic joined body functioning as a jack was manufactured.
  • a hot plate was manufactured in the same manner as in Example 1 except that the heating time was changed to 30 minutes in the step (5) of Example 1.
  • Example 1 After a ceramic substrate was manufactured by performing the steps (1) to (4) of Example 1, the obtained ceramic substrate was subjected to the same procedure except that the carbon nonuniformization step (5) was not performed. A hot plate was manufactured in the same manner as in Example 1.
  • a ceramic substrate was manufactured by performing the steps (1) to (3) of Example 2, and the obtained ceramic substrate was subjected to the same procedure except that the carbon nonuniformization step (4) was not performed.
  • a hot plate was manufactured in the same manner as in Example 2.
  • Example 3 After the ceramic substrate was manufactured by performing the steps (1) to (5) of Example 3, the obtained ceramic substrate was subjected to the same procedure except that the carbon nonuniformization step (5) was not performed. An electrostatic chuck was manufactured in the same manner as in Example 3.
  • a sample piece collected from near and inside the surface of the ceramic substrate is crushed, and when it is heated at 500 to 800 ° C, the CO x gas generated is collected to collect Pom concentration was measured. Specifically, the carbon concentration was measured based on JISZ 2615.
  • the brightness of the ceramic conjugate was measured from a Munsell color chart.
  • the wafer After placing the wafer on the ceramic joined body at a distance of 200 jtm from the surface of the ceramic substrate via the support pins, the wafer is heated in a vacuum at 400 ° C to set the temperature of the wafer to a thermocouple. Was measured.
  • a bending strength test was performed to measure the rupture strength of the joint surface between the ceramic body and the ceramic substrate.
  • Example 1 The ceramic joined body according to the comparative example is provided so that a container capable of introducing a corrosive gas is provided, and the inside of the ceramic body constituting the ceramic joined body is in an airtight state. After the temperature was increased to 300 in a CF 4 gas atmosphere, the corrosion state of the wiring and the like of the ceramic joined body was visually observed.
  • the ceramic bonded bodies according to Examples 1 to 6 have sufficiently large bonding strength in both the fracture strength test and the heat cycle test. Further, the wirings and the like provided inside the ceramic bodies of these ceramic joined bodies were not corroded by the CF 4 gas. This is comparable to the past.
  • the brightness is as low as 6 or less, and it is excellent in concealment.
  • radiant heat can be used.
  • the concentration of carbon contained in the ceramic substrate near the surface of the ceramic substrate (800 ppm or less) is lower than the concentration inside the ceramic substrate. Therefore, the diffusion of the sintering aid is not hindered by the presence of carbon at the joining surface between the ceramic body and the ceramic substrate, and the ceramic particles are favorably grown at the interface between the two. Since the sintering aid can sufficiently maintain its function as an aid, the ceramic substrate and the ceramic body can be firmly joined. It was thought to be possible.
  • Aluminum nitride powder (average particle size: 0.6 ⁇ ) 100 parts by weight, yttria (average particle size: 0.4 zm) 4 parts by weight, acrylic binder 12 parts by weight Alcohol The composition was spray-dried to produce a granular powder.
  • the formed body was hot-pressed at 1800 ° C. and a pressure of 2 OMPa to obtain an aluminum nitride plate having a thickness of 3 mm.
  • a disk having a diameter of 23 Omm was cut out from the plate to obtain a ceramic plate (ceramic substrate 101).
  • This ceramic substrate 101 was drilled to form a bottomed hole 104 for embedding a thermocouple and a through hole for passing a lifter pin (see Fig. 20 (a)). ).
  • a conductor paste layer was formed on the ceramic substrate 101 obtained in (3) by screen printing.
  • the printing pattern was a pattern in which a plurality of concentric resistance heating elements were formed as shown in FIG.
  • the conductor paste was an Ag—Pt paste, and the silver particles had a mean particle size of 4. and were scaly.
  • the Pt particles were spherical with an average particle diameter of 0.5 ⁇ .
  • the ceramic substrate 101 is heated and fired at 780 C to sinter Ag and Pt in the conductor paste, It was baked on the substrate 101 to form a resistance heating element 11012.
  • the resistance heating element 1102 had a thickness of 5111, a width of 2.4 mm, and a sheet resistivity of 7.7 ⁇ .
  • An electroless nickel plating bath consisting of an aqueous solution of nickel sulfate 801, sodium hypophosphite 24 g / 1, sodium acetate 12 g / 1, boric acid 8 g / 1, and ammonium chloride 6 g / 1.
  • the ceramic substrate 1011, prepared in (5) above, was immersed, and a 1 / xm-thick metal coating layer (two layers) was deposited on the surface of the silver-lead lead resistance heating element 1012.
  • a bottomed hole with a diameter of 5 mm and a depth of 5 mm was provided to connect the external terminal 1013, and a thread groove for fixing the external terminal 1013 was formed on the wall surface of the bottomed hole (Fig. 20 ( c)).
  • the screw holes 1016 were formed at both ends of the resistance heating element 1012 so as to penetrate the resistance heating element 1012.
  • recesses for accommodating the resistance heating element 1012 and the external terminals 1013 were formed by NC grinding using a resin bond grindstone.
  • the formed recesses were slightly larger than the resistance heating elements 1012 and the external terminals 1013.
  • through holes are drilled from the upper surface side and the lower surface side of the disc body so as to communicate with both ends of the aluminum nitride member, and through holes for passing the wiring 1017 as shown in FIG. 16 are formed.
  • the protection member was 1019.
  • the protective member 1019 was formed so as to protect almost the entire bottom surface 1011b of the ceramic substrate 1011.
  • the bonding member 1029 was bonded to the protective member 1019 manufactured in the step (8) using a ceramic adhesive (Alon ceramic manufactured by Toa Gosei Co., Ltd.).
  • a ceramic adhesive (a ceramic manufactured by Toa Gosei Co., Ltd.) is applied to the joint surface of the protective member 10 19 to join the ceramic substrate 10 11 with the protective member 10 19 on which the joint member 1029 is formed.
  • the production of the hot plate unit 1100 was completed.
  • Aluminum nitride powder (manufactured by Tokuyama, average particle size 0.6 ⁇ 0 ⁇ ) 100 parts by weight, alumina 4 parts by weight, acrylic resin piner 11.5 parts by weight, dispersant 0.
  • This conductor paste was printed on a green sheet by screen printing to form a conductor paste layer 1320 for a resistance heating element.
  • the printing pattern was a pattern as shown in Fig.17.
  • a conductive paste was filled into a portion to be a through hole 1040 for connecting the external terminal 1033, thereby forming a filling layer 1400.
  • the conductor paste is not printed on the green sheet after the above process.
  • 40 green sheets were laminated on the upper side (heating surface) and pressed at 130 ° C and a pressure of 8 MPa to form a laminate (see Fig. 21 (a)).
  • Hot pressing was performed at 0 and a pressure of 15 MPa for 10 hours to obtain a ceramic plate having a thickness of 15 mni. This was cut into a disk shape of 23 Omm, and a ceramic plate having a 6 mm thick, 10 mm wide resistance heating element 1032 and a through hole 1040 was formed at the bottom.
  • a bottomed hole with a diameter of 5 mm and a depth of 5 mm is formed on the bottom surface of the through hole 1040 by plasting, and a thread groove is cut into the inner wall surface of the bottomed hole to form a through hole.
  • a thread groove was formed on the bottom of the hole 1040 (see Fig. 21 (c)).
  • the green compact is molded and then hot pressed at 1800 ° C and 2 OMPa to obtain a diameter of 8 Omm and a thickness of 8 mm.
  • a 15 mm disc was produced.
  • a pipe-shaped aluminum nitride member whose both ends were closed during molding was embedded.
  • a concave portion for receiving the external terminal 1033 was formed by NC grinding using a resin pond whetstone.
  • through holes are formed by drilling from the upper surface side and the lower surface side of the disc body so as to communicate with both ends of the aluminum nitride member, and a through hole for passing the wiring 1017 as shown in FIG. 19 is formed. Then, the protective member was 1039.
  • the protective member 1039 does not protect almost the entire bottom surface 1031 b of the ceramic substrate 1031, but has a shape that can protect the external terminal 1013 disposed near the center of the ceramic substrate 1031.
  • the bonding member 1029 is added to the protection member 1039 manufactured in the process (7).
  • a ceramic adhesive Aron Ceramic manufactured by Toa Gosei Co., Ltd.
  • a ceramic adhesive (a ceramic manufactured by Toa Gosei Co., Ltd.) is applied to the joint surface of the protective member 103 and the protective member 1 on which the ceramic substrate 103 and the joint member 109 are formed. Then, the production of the hot plate unit 1200 was completed.
  • the wiring 110 7 connected to the external power supply is inserted into the through hole 101 3b provided in the external terminal 103.
  • the external terminal 103 was screwed into the screw hole 106, and the external terminal 103 was fixed to the ceramic substrate 101.
  • a resin for preventing resin outflow made of polytetrafluoroethylene was placed on the bottom surface of the ceramic substrate 101.
  • a polyamic acid was dissolved in a solvent.
  • a protective member made of a polyimide resin was formed on the bottom surface of the ceramic substrate 101 by pouring the liquid and drying it at 400 ° C. Then, after removing the resin outflow preventing member, a joining member made of a polyimide resin was joined to this protective member with a heat-resistant adhesive containing polyamic acid as a main component to produce a hot plate unit.
  • the wiring 107 connected to the external power supply is inserted into the through-hole 103b provided in the external terminal 103.
  • the external terminal 103 was screwed into the screw hole 103, and the external terminal 103 was fixed to the ceramic substrate 103.
  • a resin outflow prevention member made of polytetrafluoroethylene was placed, and then, a polyamic acid was dissolved in a solvent inside the member.
  • a protective member made of a polyimide resin was formed on the bottom surface of the ceramic substrate 103. Then, after removing the resin outflow preventing member, a joining member made of polyimide resin was joined to this protective member with a heat-resistant adhesive containing polyamic acid as a main component to produce a hot plate unit.
  • silver-lead solder paste manufactured by Tanaka Kikinzoku Co., Ltd. was printed by screen printing on the portion where the external terminals of the resistance heating element were to be attached. A solder layer was formed.
  • an external terminal made of Kovar is placed on the solder layer in a T-shaped cross-sectional view, heated and reflowed at 420 ° C, and the external terminal is attached to the surface of the resistance heating element, thereby forming the ceramic substrate.
  • a hot plate unit with a resistance heating element formed on the bottom was manufactured.
  • the bottom surface of the through-hole was heated and reblowed at 700 ° C. using a Ni—Au brazing filler to obtain a T-shaped cross section.
  • a hot plate unit with a resistance heating element formed on one side of a ceramic substrate was manufactured by attaching an external terminal made of Kopar in shape.
  • a voltage was applied to the hot plate units according to the examples and the comparative examples, the temperature was raised to 800 ° C., and the heat cycle test in which the temperature was lowered to room temperature was repeated 100 times, and the resistance heating element was The connection with the external terminal was checked.
  • the hot plate unit according to the embodiment and the comparative example is provided so that a container capable of introducing a corrosive gas is provided and the inside of the ceramic body constituting the hot plate unit is airtight.
  • the concentration of carbon contained in the ceramic substrate in the vicinity of the surface of the ceramic substrate is lower than the concentration in a part of the ceramic substrate. Therefore, the ceramic body is brought into contact with the ceramic substrate and heated, so that bonding using the diffusion of the sintering aid applied to the ceramic body and the difference in the concentration of the sintering aid between the ceramic body and the ceramic substrate are used.
  • the bonding is performed, the relative concentration of the ceramic particles on the bonding surface of the ceramic body and the ceramic substrate increases, so that the ceramic particles grow well at the interface between them. The ceramic substrate and the ceramic body can be firmly joined.
  • the second method for manufacturing a ceramic joined body of the present invention is as described above, the carbon concentration inside the ceramic substrate is reduced without greatly changing only the carbon concentration near the surface of the ceramic substrate. Accordingly, a ceramic joined body having excellent corrosion resistance and durability can be manufactured.
  • the connection from the power supply to the circuit is achieved through the external terminal, and the screw hole provided with the external terminal at the end of the circuit is provided. Since it is screwed and fixed to the wiring, the connection between the wiring and the circuit can be reliably performed for a long period of time.
  • the external terminals are physically fixed by being screwed into the screw holes, the external terminals do not come off even when used for a long period of time, and are excellent in durability and reliability. It becomes a temperature controller.
  • the ceramic temperature control unit of the fourth and sixth aspects of the present invention even when the ceramic temperature control unit is used for a long time, the wiring from the external terminals and the power supply does not come off, and the connection between the circuit and the wiring is reliably performed. be able to.
  • a protective member is installed on the bottom surface of the ceramic temperature controller, and the wiring is housed inside the protective member, and the wiring is housed inside the joining member, so that it is exposed to corrosive gas etc. Even if it does, the wiring does not corrode, resulting in a ceramic temperature control unit with excellent durability and reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)

Abstract

 本発明は、セラミック基板とセラミック体との接合強度が高く、耐久性に優れるセラミック接合体を実現することを目的とする。 本発明は、その表面または内部に導電体が設けられたセラミック基板にセラミック体が接合されたセラミック接合体であって、上記セラミック基板は、カーボンを含有し、上記セラミック基板の表面近傍におけるカーボンの濃度は、上記セラミック基板の内部におけるカーボンの濃度よりも低いことを特徴とするセラミック接合体である。

Description

明細書
セラミック接合体、 セラミック接合体の製造方法、 セラミック温調器およぴセラ ミック温調ュニット 技術分野
本発明は、 ホットプレート (セラミックヒータ) 、 静電チャック、 サセプタな どに用いられ、 その表面または内部に導電体が設けられたセラミック接合体、 そ の製造方法、 主に、 半導体製造、 検査装置、 光分野等において使用されるセラミ ック温調器 (セラミックヒータ、 ホットプレート) およびセラミック温調ュニッ トに関する。 背景技術
エッチング装置や、 化学的気相成長装置等を含む半導体製造 ·検査装置等にお いては、 従来、 ステンレス鋼やアルミユウム合金などの金属製基材を用いたヒー タゃ静電チャック等が用いられてきたが、 このような金属製のヒータは、 腐食性 ガスに対する耐蝕性が悪い等の問題があった。
そこで、 半導体製造'検査装置等におけるヒータ等の基板として、 耐蝕性に優 れ、 熱伝導率が高く、 強度も大きい非酸化物セラミックである窒化アルミニウム を使用し、 この窒化アルミニウム基板中に抵抗発熱体とタングステンカーバイド からなるスルーホールとが形成され、 これらに外部端子としてタングステンがろ う付けされたホットプレートが提案されている。
このようなホットプレートでは、 高温においても機械的な強度の大きい窒化ァ ルミユウム基板を用いているため、 窒化アルミニウム基板の厚さを薄くして熱容 量を小さくすることができ、 その結果、 電圧や電流量の変化に対して窒化アルミ -ゥム基板の温度を迅速に追従させることができる。
また、 このようなホットプレートでは、 特許第 2 7 8 3 9 8 0号公報ゃ特開 2 0 0 2—1 4 6 7 7 0号公報に記載されたセラミック接合体のように、 円筒状の セラミックの接合面に焼結助剤を含む溶液を塗布し、 円板状のセラミックに接触 させて加熱することにより、 その界面において、 セラミック粒子が界面の両側に 延びるように粒成長させ、 円筒状のセラミックと円板状のセラミックとを接合し、 半導体製造工程に用いる反応性ガスやハロゲンガス等から外部端子等の配線を保 護する手段がとられていた。
更に、 特開平 1 1—4 0 3 3 0号公報等では、 熱伝導率が高く、 強度も大きい 窒化物セラミックや炭化物セラミックを使用し、 これらのセラミックからなるセ ラミック基板の表面に、 金属粒子を焼結して形成した抵抗発熱体を有するセラミ ックヒータが開示されている。 このようなセラミックヒータでは、 抵抗癸熱体の 端部に半田を用いて外部端子を接着し、 外部端子に配線が接続されたソケット等 を差し込むことにより、 電源との接続を行なっていた。
また、 このようなヒータでは、 セラミック基板を構成するセラミック自体の強 度が高いため、 加熱の際に熱膨張しても、 セラミック基板に反りや歪み等は発生 しにくく、 セラミック基板を薄くすることができるため、 印加電圧や電流量の変 化に対する温度追従性も良好であった。 発明の要約
また、 セラミック基板にカーボンを含有させることは、 電極隠蔽や黒体輻射の 利用等の観点から必要不可欠であり、 さらにセラミック基板の高温における体積 抵抗率の低下や熱伝導率の低下を抑制することができるため、 カーボンを含有し ないセラミック基板を使用して、 セラミック接合体を製造することは、 実用上困 難であり、 従って、 従来からカーボン含有のセラミック接合体が用いられている。
しかしながら、 セラミック基板中に配合されているカーボンが、 セラミック基 板の全体に均一に分布しているため、 セラミック体とセラミック基板とを接触さ せて加熱し、 セラミック基板中の焼結助剤の拡散や塗布された焼結助剤と同じ物 質の拡散を利用して両者を接合する方法をとろうとすると、 セラミック基板の表 面近傍に存在するカーボンが不純物となって、 両者の界面におけるセラミック粒 子の粒成長等が阻害され、 接合が不充分となる場合があつた。
この原因について鋭意研究したところ、 カーボンの存在により、 焼結助剤の拡 散が妨げられたり、 焼結助剤がカーボンにより還元され、 焼結助剤として機能し ないことに起因して、 接合が不充分となることを見出した。 また、 上記のような構成のセラミックヒータでは、 加熱 ·冷却が長期間にわた つて繰り返された際、 ろう材ゃ半田等の接合材の熱膨張 ·収縮等に起因して接合 材の機械的な強度の低下や、 化学的な劣化が発生し、 外部端子が抵抗発熱体より 外れて落下する等の事故が発生しやすいという問題があった。
更に、 上述したような外部端子が露出したセラミックヒータを備えたホットプ レートユニットでは、 C F 4等の腐食性ガスに晒されると、 外部端子やろう材ゃ 半田等の接合材が腐食されやすく、 これに起因して、 腐食性ガス雰囲気下に使用 した場合、 やはり外部端子が外れて落下してしまうという問題があった。
本発明は、 上記課題を解決するためになされたものであり、 長期間反応性ガス やハロゲンガスに曝され続けるような場合や、 昇降温を繰り返すような場合であ つても、 セラミック基板とセラミック体との接合強度が高く、 耐久性に優れるセ ラミック接合体を実現することを目的とする。
また、 本発明は、 長期間使用した場合でも、 外部端子や 源からの配線が外れ ることがなく、 回路と配線との接続を確実に行うことができ、 耐久性に優れるセ ラミック温調器 (セラミックヒータ、 ホットプレート) 、 および、 回路と配線と の接続を確実に行うことができるとともに、 腐食性ガス等に晒されても劣化の発 生しにくいセラミック温調ユニット (セラミックヒータユニット、 ホットプレー トユニット) を提供することを目的とする。
即ち、 第一の本発明は、 その表面または内部に導電体が設けられたセラミック 基板にセラミック体が接合されたセラミック接合体であって、
上記セラミック基板は、 カーボンを含有し、
上記セラミック基板の表面近傍におけるカーボンの濃度は、 上記セラミック基 板の内部におけるカーボンの濃度よりも低いことを特徴とするセラミック接合体 である。
第一の本発明のセラミック接合体によれば、 セラミック基板中に含有される力 一ボンのセラミック基板の表面近傍における濃度が、 セラミック基板の内部にお ける濃度と比較して低いものであるため、 セラミック体をセラミック基板と接触 させて加熱し、 セラミック体に塗布された焼結助剤の拡散を利用した接合や、 セ ラミック体とセラミック基板との焼結助剤の濃度差を利用した接合を行った場合 には、 その界面において、 セラミック粒子を界面の両側に延びるように粒成長さ せて、 上記セラミック基板と上記セラミック体とを強固に接合することができる。 また、 第一の本 明のセラミック接合体では、 セラミック基板の表面近傍にお いてのみ、 カーボン濃度が低くなつており、 セラミック基板の内部に関しては、 充分なカーボン濃度が確保されているため、 電極部分の隠蔽や黒体輻射の利用と いったカーボン添加による利点に関しては、 全く影響がなく、 加熱特性に優れた セラミック接合体とすることができる。
ここで、 上記セラミック基板の表面近傍とは、 セラミック基板の表面からセラ ミック基板の厚さの 10%までの領域のことをいい、 セラミック基板の内部とは、 セラミック基板全体のうち、 セラミック基板の表面近傍を除く領域のことをいう。 上記導電体は、 抵抗発熱体であり、 第一の本発明のセラミック接合体は、 ホッ トプレートとして機能することが望ましい。 第一の本発明のセラミック接合体は、 高温で使用されることが特に望ましいからである。 上記抵抗発熱体は、 層状に形 成されていてもよく、 線条体で形成されていてもよい。
また、 上記導電体は、 静電電極であり、 第一の本発明のセラミック接合体は、 静電チャックとして機能することが望ましい。 静電チャックは、 腐食性の雰囲気 で使用されることが多く、 第一の本発明のセラミック接合体を静電チャックとし て用いることにより、 好適に腐食性ガスから保護することができるからである。 また、 第二の本発明は、 セラミック粉末とカーボンまたはカーボン原料となる ものとを含むセラミック成形体を焼成してカーボンをほぼ均一濃度で含むセラミ ック基板を作製し、 得られたセラミック基板を常圧、 1800〜 2000 °C、 N 2ガス雰囲気下でカーボン不均一化処理を行った後、 上記セラミック基板と上記 セラミック体とを接合することを特徴とするセラミック接合体の製造方法である。 このとき、 下記化学式 (1) および (2) に示したような反応が生じてセラミ ック基板表面の力一ボンが除去される。
A 1 N + 3 C+N2 + Y203→A 1 N+3CO T + 2YN - · ■ (1) 2 YN + A 1203→Y203+ 2 A 1 N · · - (2)
窒化アルミニゥム等のセラミック粉末とアタリル系樹脂等のカーボン原料とな るものとを含む成形体を、 通常の方法を用いて焼成した場合、 セラミック基板中 で力一ボンが拡散し、 セラミック基板全体のカーボン濃度がほぼ均一なものとな るが、 得られたセラミック基板を、 さらに常圧、 1 8 0 0〜2 0 0 0で、 N 2ガ ス雰囲気下で処理することにより、 セラミック基板内部のカーボン濃度について は、 大きく変化させることなく、 セラミック基板の表面近傍のカーボン濃度のみ を低下させることができる。
また、 セラミック基板には、 焼結助剤として、 イットリアやイッテルビウムの 酸化物等が添加されているが、 これらの焼結助剤は焼結に伴いセラミック基板の 表面近傍へ移動する性質を有するため、 セラミック基板表面の近傍において焼結 助剤中の酸素によりセラミック基板の表面近傍のカーボンが酸化され、 力 ボン がー酸化炭素や二酸化炭素等の気体となって、 セラミック基板の表面から逃散し、 その結果、 セラミック基板の表面近傍のカーボン濃度が低下するためであると考 えられる。
また、 上記のような条件で加熱を行う工程 (以下、 カーボン不均一化処理とも いう) において、 N 2ガスの他に、 微量の酸素を導入することにより、 セラミツ ク基板表面近傍におけるカーボンの酸化がより一層促進され、 セラミック基板表 面近傍のカーボン濃度をさらに低下させることができる。
また、 上記カーボン不均一化工程は、 特殊な工程や装置を必要とせず、 セラミ ック基板を一定条件下で加熱することのみによって行うことが可能であるため、 比較的容易に行うことができる。
この後、 セラミック体をセラミック基板と接触させて加熱し、 セラミック体に 塗布された焼結助剤の拡散を利用した接合や、 セラミック体とセラミック基板と の焼結助剤の濃度差を利用した接合等を行うことより上記セラミック基板と上記 セラミック体とが強固に接合される。 なお、 接合方法は、 上記方法に限定される ものではない。
なお、 このようなカーボン不均一化処理に関する説明については、 第二の本発 明のセラミック接合体の製造方法の記載中において詳しく説明することとする。 また、 第三の本発明のセラミック温調器は、 セラミック基板の表面または内部 に温度調節のための回路が形成され、 上記回路の端部に外部端子が接続されたセ ラミック温調器であって、 上記外部端子には、 ネジ溝が形成され、 電源からの配 線と上記外部端子とが電気的に接続されるとともに、 上記外部端子が上記回路の 端部に設けられたネジ穴にねじ込まれて固定され、 これにより、 上記外部端子を 介して上記配線と上記回路との接続が図られていることを特徴とする。
第三の本発明のセラミック温調器によれば、 電源からの配線と外部端子とが電 気的に接続されるとともに、 外部端子が回路端部に設けられたネジ穴にねじ込ま れて固定されているので、 長期間にわたって配線と回路との接続を確実に行うこ とができる。
また、 外部端子は、 ネジ穴にねじ込まれることにより、 物理的に固定されてい るため、 長期間使用した場合にも上記外部端子が外れることはなく、 耐久性およ び信頼性に優れたセラミック温調器となる。
また、 第四の本発明のセラミック温調ュ -ットは、 上記第三の本発明のセラミ ック温調器と、 配線類を収納するための接合部材と、 上記セラミック温調器底面 の回路および外部端子を含む領域に設置された保護部材とからなり、 上記保護部 材の内部に電源からの配線が収容されるとともに、 上記保護部材を介して底面に 上記接合部材が接着され、 上記接合部材の内部に電源からの配線が収納されてい ることを特徴とする。
第四の本発明のセラミック温調ュエツトによれば、 このセラミック温調ュ-ッ トを構成するセラミジク温調器は、 上記した第三の本発明のセラミック温調器よ りなるので、 長期間使用した場合でも、 外部端子や電源からの配線が外れること がなく、 回路と配線との接続を確実に行うことができる。
また、 セラミック温調器の底面には、 保護部材が設置され、 その内部に配線が 収容されるとともに、 接合部材の内部に配線が収納されており、 上記保護部材の 内部や接合部材の内部は周囲から隔離されているため、 腐食性ガス等に晒された 場合であつても配線が腐食することはなく、 耐久性および信頼性に優れたセラミ ック温調ユエットとなる。
第五の本発明のセラミック温調器は、 セラミック基板の表面または内部に温度 調節のための回路が形成され、 上記回路の端部に外部端子が接続されたセラミツ ク温調器であって、
上記外部端子には、 ネジ溝が形成されるとともに貫通孔が形成され、 上記セラ ミック基板の底部には、 上記回路と電気的に接触するネジ穴が設けられ、 電源か らの配線が上記外部端子の貫通孔を揷通した状態で、 上記外部端子が上記ネジ穴 にねじ込まれて固定され、 これにより、 上記外部端子を介して上記配線と上記回 路との接続が図られていることを特徴とする。
第五の本楽明のセラミック温調器によれば、 電源からの配線が外部端子の貫通 孔を揷通した状態で、 セラミック基板表面または内部の回路と電気的に接触する ネジ穴に外部端子がねじ込まれて固定されているので、 長期間にわたって配線と 回路との接続を確実に行うことができる。
また、 外部端子は、 ネジ穴にねじ込まれることにより、 物理的に固定されてい るため、 長期間使用した場合にも上記外部端子が外れることはなく、 耐久性およ ぴ信頼性に優れたセラミック温調器となる。
第六の本笼明のセラミック温調ュニットは、 上記第五の本発明のセラミック温 調器と、 配線類を収納するための接合部材と、 上記セラミック温調器底面の回路 および外部端子を含む領域に設置された保護部材とからなり、 上記保護部材の内 部に電源からの配線が収容されるとともに、 上記保護部材を介して接合部材が接 着され、 上記接合部材の内部に電源からの配線が収納されていることを特徴とす る。
第六の本発明のセラミック温調ュニットによれば、 このセラミック温調ュ-ッ トを構成するセラミック温調器は、 上記した第五の本発明のセラミック温調器よ りなるので、 長期間使用した場合でも、 外部端子や電源からの配線が外れること がなく、 回路と配線との接続を確実に行うことができる。
また、 第六の本発明のセラミック温調器には保護部材が設置され、 その内部に 配線が収容されるとともに、 接合部材の内部に配線が収納されており、 上記保護 部林の内部や接合部材の内部は、 周囲から隔離されているため、 腐食性ガス等に 晒された場合であっても配線が腐食することはなく、 耐久性および信頼性に優れ たセラミック温調ュニットとなる。 図面の簡単な説明
図 1は、 第一の本 明のセラミック接合体の一例であるホットプレートを模式 的に示す断面図である。
図 2は、 図 1に示したホットプレートの平面図である。
図 3は、 図 1に示したホットプレートにおけるカーボンの分布状態を模式的に 示した断面図である。
図 4は、 第一の本発明のセラミック接合体の一例であるホットプレートを模式 的に示す断面図である。
図 5は、 図 4に示したホットプレートを構成する抵抗発熱体が形成されたセラ ミック基板の平面図である。
図 6は、 第一の本発明のセラミック接合体の別の一例である静電チヤックを模 式的に示す断面図である。
図 7は、 第一の本発明に係る静電チャックを構成するセラミック基板に埋設さ れている静電電極の一例を模式的に示す水平断面図である。
図 8は、 第一の本発明に係る静電チャックを構成するセラミック基板に埋設さ れている静電電極の別の一例を模式的に示す水平断面図である。
図 9は、 第一の本発明に係る静電チャックを構成するセラミック基板に埋設さ れている静電電極のさらに別の一例を模式的に示す水平断面図である。
図 1 0は、 第一の本麂明に係るホットプレ トの別の一例を模式的に示す平面 図である。
図 1 1は、 図 1 0に示したホットプレートを模式的に示す部分拡大断面図であ る。
図 1 2 ( a ) 〜 (d ) は、 第一の本発明のセラミック接合体の一例であるホッ トプレートの製造方法の一例を模式的に示す断面図である。
図 1 3 ( a ) 〜 (d ) は、 第一の本発明のセラミック接合体の別の一例である ホットプレートの製造方法の一例を模式的に示す断面図である。
図 1 4は、 第三の本発明に係るセラミックヒータの一例を模式的に示す底面図 である。
図 1 5は、 図 1 4に示したセラミックヒータの一部を模式的に示す部分拡大断 面図である。
図 1 6は、 第四の本発明に係るホットプレートュニットの一例を模式的に示す 断面図である。
図 1 7は、 第五の本発明に係るセラミックヒータの一例を模式的に示す底面図 である。
図 1 8 (a) は、 図 1 7に示すセラミックヒータの部分拡大断面図であり、 ( b) は、 第五の本発明のセラミックヒータの別の一例を模式的に示す部分拡大断 面図である。
図 1 9は、 第六の本発明に係るホットプレートュニットを模式的に示した断面 図である。
図 20 (a) 〜 (d) は、 第三の本発明に係るセラミックヒータおよび第四の 本発明に係るホットプレートュニットの製造工程の一例の一部を模式的に示す断 面図である。
図 2 1 (a) 〜 (d) は、 第五の本発明に係るセラミックヒータおよび第六の 本宪明に係るホットプレートュニットの製造工程の一例の一部を模式的に示す断 面図である。 符号の説明
8、 1 008 リフターピン
9、 1 00 9 シリ コンウェハ
1 0 50、 1 00 ホットプレート
5 1、 7 1、 1 1 1、 1 0 1 1 1 0 3 1 セラミック基板
1 2 1 1 2 (1 1 2 a〜 1 1 2 c) 5 2、 720 抵抗発熱体
1 3 1 3' 7 3、 7 3' 、 1 1 3、 040 スノレーホ一ノレ
14 54、 1 0 1 4、 1 0 34 有底孔
1 5 5 5、 7 50、 1 1 5 貫通孔
1 0 3 b、 1 0 3 3 b、 1 0 1 5、 1 0 3 5 貫通孔
1 6, 7 9 バイァホール
1 7、 5 7、 7 7、 1 1 7 セラミック体
1 8、 1 1 8 (1 1 8 a〜 1 1 8 c:) 、 780 導体回路
1 9、 1 0 1 6、 1 0 3 6 ネジ穴 5 20 金属被覆層
70 静電チャック
790 袋孔
1 0 1 0、 1 030 セラミックヒータ
1 0 1 1 a、 1 0 3 1 a 加熱面
1 0 1 1 b、 1 0 3 1 b 底面
1 0 1 2、 10 3 2 (10 3 2 a~ 1 0 3 2 p) 抵抗発熱体
1 0 1 3、 1 0 3 3 外部端子
1 0 1 3 a、 1 0 3 3 a ねじ溝
1 01 7、 1 03 7 配線
1 0 1 8、 1 0 3 8 測温素子
1 0 1 9、 1 0 3 9 保護部材
1 0 2 1 外枠部
1 02 2 底板
1 0 23 中底板
1 024 断熱リング
1 0 2 5 ポルト
1 0 26 固定用金具
1 02 7 冷媒導入管
1 028 ガイ ド管
1 0 2 9 接合部材 発明の詳細な開示
以下、 本発明を実施の形態に則して説明する。 なお、 本発明は、 この記載に限 定されることはない。
まず、 第一の本発明のセラミック接合体について説明する。
第一の本発明のセラミック接合体は、 その表面または内部に導電体が設けられ たセラミック基板にセラミック体が接合されたセラミック接合体であって、 上記 セラミック基板は、 カーボンを含有し、 上記セラミック基板の表面近傍における カーボンの濃度は、 上記セラミック基板の内部におけるカーボンの濃度よりも低 いことを特徴とするものである。
以下、 図面に基づいて説明する。
図 1は、 第一の本発明のセラミック接合体の一例であるホットプレートを模式 的に示す平面図であり、 図 2は、 図 1に示したホットプレートを模式的に示す平 面図である。 また、 図 3は、 セラミック基板の全体におけるカーボンの分布状態 を模式的に示す断面図である。
図 1に示すように、 このホットプレート 1 0では、 円板形状のセラミック基板 1 1の底面 1 1 bの中央付近に直接筒状のセラミック体 1 7が接合されている。 また、 筒状のセラミック体 1 7は、 セラミック体 1 7の内側と外側とが隔離さ れている。
また、 図 3では、 セラミック基板 1 1内において、 カーボン濃度が高い領域を 喑くしており、 この暗い部分の外側の領域については、 カーボン濃度が低いもの となっている。 図 3では、 カーボン濃度の高い部分と低い部分とではつきりとト —ンを変えて示しているが、 実際には、 カーボンの濃度はセラミック基板 1 1の 表面近傍で一番濃度が低く、 内部にいくに従って次第に高くなつており、 一定の 深さに到達するとほぼ一定濃度となっているのである。
従って、 セラミック体 1 7をセラミック基板 1 1の底面 1 1 bと接触させて加 熱し、 セラミック体に塗布された焼結助剤の拡散を利用した接合や、 セラミック 体とセラミック基板との焼結助剤の濃度差を利用した接合を行う際、 セラミック 基板 1 1のセラミック体 1 7との接合面付近については、 カーボンの濃度が低い ものとなる。
このため、 セラミック基板 1 1とセラミック体 1 7との接合界面において、 セ ラミック粒子の相対濃度が高くなることで、 焼結が進行するような形態でセラミ ック粒子の粒成長が起こり、 セラミック粒子が接合界面を越えて互いに侵入した 構造となるため、 セラミック基板 1 1とセラミック体 1 7とを強固に接合するこ とができる。
また、 セラミック基板 1 1の表面近傍を除いた部分では、 カーボンの濃度がほ ぼ一定となっている。 このように、 セラミック基板 1 1の内部に関しては、 充分なカーボン濃度が確 保されているため、 電極部分の隠蔽や黒体輻射の利用といったカーボン添加によ る利点に関しては、 全く影響がなく、 加熱特性に優れたホットプレート 1 0とす ることができる。
また、 図 1に示すように、 抵抗発熱体 1 2と底面 1 1 bとの間には、 セラミツ ク基板 1 1の中心方向に向かって延びる導体回路 1 8が形成されており、 抵抗発 熱体端部 1 2 aと導体回路 1 8の一端とはバイァホール 1 6を介して接続されて いる。
この導体回路 1 8は、 抵抗発熱体端部 1 2を中央部に延設するために形成され たものであり、 セラミック基板 1 1の内部において、 セラミック体 1 7の内側の 近傍にまで延びた導体回路 1 8の他端の直下にはスノレ一ホール 1 3 ' が形成され ている。
また、 抵抗発熱体端部 1 2がセラミック体 1 7の内側にある場合には、 バイァ ホールや導体回路は必要がないので、 抵抗発熱体の端部に直接スルーホール 1 3 が形成されている。
さらに、 スルーホール 1 3、 1 3 ' には、 その底面に開口部を有するネジ穴が 形成されており、 このネジ穴に、 先端部にネジ部を有する外部端子 2 3がねじ込 まれている。
そして、 これらの外部端子 2 3には導電線 2 3 0を有するソケット 3 1が取り 付けられ、 この導電線 2 3 0は電源等 (図示せず) と接続されている。
一方、 セラミック基板 1 1の底面 1 1 bに形成された有底孔 1 4には、 リード 線 2 1 0を有する熱電対等の測温素子 2 1が揷入され、 耐熱性樹脂、 セラミック (シリカゲル等) 等を用いて封止されている。 このリード線 2 1 0は外部に引き 出されている。
さらに、 セラミック基板 1 1の中央に近い部分には、 リブターピン 8を揷通す るための貫通孔 1 5が設けられている。
リフターピン 8は、 その上にシリコンウェハ等の被処理物を载置して上下させ ることができるようになつており、 これにより、 シリコンウェハ 9を図示しない 搬送機に渡したり、 搬送機からシリコンウェハを受け取ったりするとともに、 シ リコンウェハ 9をセラミック基板 1 1の加熱面 1 1 aに载置して加熱面 1 1 a力 ら 1 0〜2 0 0 0 μ m離間させた状態で支持し、 加熱することができるようにな つている。
すなわち、 セラミック基板 1 1にエンボス加工等により凸部を設け、 凸部でシ リコンウェハを支持することにより、 加熱面 1 l aから 1 0〜 2 0 0 0 // m離間 させた状態で加熱するのである。
また、 セラミック基板 1 1の内部には、 図 2に示すような、 セラミック基板 1 1の最外周に、 同心円の一部を描くようにして繰り返して形成された円弧パター ンである抵抗発熱体 1 2 a〜l 2 dが配置され、 その内部に一部が切断された同 心円パターンである抵抗発熱体 1 2 e ~ l 2 hが配置されている。
最外周の抵抗発熱体 1 2 aは、 同心円を円周方向に 4分割した円弧状のパター ンが繰り返して形成され、 隣り合う円弧の端部は、 屈曲線により接続され一連の 回路を構成している。 そして、 これと同パターンである抵抗発熱体 1 2 a〜 1 2 dの 4つの回路が、 外周を取り囲むように近接して形成され、 全体的に円環状の パターンを構成している。
また、 抵抗発熱体 1 2 a〜l 2 dの端部は、 円環状パターンの內側に形成され ており、 そのため、 外側の回路の端部は内側の方に向かって延設されている。 そ して、 この抵抗発熱体 1 2 a〜 1 2 dの端部の直下にバイァホール 1 6が形成さ れるとともに、 バイァホール 1 6から中心付近に延びる導体回路 1 8が形成され ている。
最外周に形成された抵抗発熱体 1 2 a〜l 2 dの内側には、 そのごく一部が切 断された同心円パターンの回路からなる抵抗宪熱体 1 2 e〜l 2 hが形成されて いる。 この抵抗発熱体 1 2 e〜l 2 hでは、 隣り合う同心円の端部が、 順次直線 からなる抵抗発熱体で接続されることにより一連の回路が構成されており、 その 端部が筒状のセラミック体 1 7の内部に相当する部分に位置しない場合には、 そ の直下にパイァホール 1 6が形成されるとともに、 バイァホール 1 6から中心付 近に延びる導体回路 1 8が形成されている。
また、 抵抗発熱体 1 2 a〜1 2 d、 1 2 e、 1 2 f 、 1 2 g、 1 2 hの間には、 帯状 (円環状) の発熱体非形成領域が設けられており、 中心部分にも、 円形の発 熱体非形成領域が設けられている。
従って、 全体的に見ると、 円環状の抵抗発熱体形成領域と発熱体非形成領域と が、 外側から内側に交互に形成されており、 これらの領域をセラミック基板の大 きさ (口径) や厚さ等を考慮して、 適当に設定することにより、 加熱面の温度を 均一にすることができるようになつている。
次に、 第一の本発明に係る別の実施形態のホットプレートについて説明する。 図 4は、 第一の本発明のセラミック接合体の一例であるホットプレートを模式 的に示す断面図であり、 図 5は、 図 4に示したホットプ I ^一トを構成する抵抗発 熱体が形成されたセラミック基板の平面図である。
ホットプレート 5 0では、 セラミック基板 5 1は、 円板状に形成されており、 セラミック基板 5 1の底面 5 1 bの外周付近にセラミック体 5 7が接合されてい る。
ホットプレート 5 0においても、 図 1に示したホットプレート 1 0と同様に、 カーボンの濃度がセラミック基板 5 1の內部で高くなつているが、 セラミック基 板 5 1の表面近傍では、 セラミック基板 5 1の内部と比較して濃度が低いものと なっている。
従って、 セラミック体 5 7をセラミック基板 5 1の底面 5 1 と接触させて加 熱し、 セラミック体に塗布された焼結助剤の拡散を利用した接合や、 セラミック 体とセラミック基板との焼結助剤の濃度差を利用した接合を行う際、 セラミック 基板 5 1のセラミック体 5 7との接合面付近については、 カーボンの濃度が低い ものとなる。
セラミック基板 5 1とセラミック体 5 7との接合界面において、 セラミック粒 子の相対濃度が高くなることで、 良好にセラミック粒子の粒成長が起こり、 セラ ミック粒子が接合界面を越えて互いに侵入した構造となるため、 セラミック基板 5 1とセラミック体 5 7とを強固に接合することができる。
このセラミック基板 5 1の底面 5 1 bには、 図 5に示すように、 同心円の一部 を描くようにして繰り返して形成された円弧パターンである抵抗発熱体 5 2 a〜 5 2 dが隣り合うように配置され、 これらの回路を組み合わせて、 加熱面 5 l a での温度が均一になるように設計されている。 そして、 抵抗発熱体 5 2の端部は セラミック基板 5 1の外周部付近に設けられており、 これに伴い、 外部端子 6 3 も、 セラミック基板 5 1の外周部付近に形成されている。
また、 抵抗 熱体 5 2には、 酸化等を防止するために、 金属被覆層 5 2 0が形 成されている。
そして、 抵抗発熱体 5 2の端部には、 外部端子 6 3がろう付けされており、 さ らに外部端子 6 3には、 ソケット 3 1を介して導電線 6 3 0が接続されている。 また、 セラミック基板 5 1の底面 5 1 bには、 測温素子を揷入するための有底 孔 5 4が形成され、 この有底孔 5 4の内部に、 熱電対等の測温素子 2 1が埋設さ れるようになっている。 また、 中央に近い部分には、 棒状のリフターピン 8を揷 通するための貫通孔 5 5が設けられている (図 5参照) 。
なお、 ホットプレート 5 0を構成するリフターピン 8、 測温素子 2 1等の説明 については、 ホットプレート 1 0と同様であるため、 その説明を省略することと する。
また、 ホットプレート 5 0では、 リフターピン 8およぴ測温素子 2 1に加えて、 セラミック基板 5 1の底面に形成された全ての抵抗努熱体 5 2、 外部端子 6 3、 ソケット 3 1および導電線 6 3 0がセラミック体 5 7の内側に含まれるようにセ ラミック体 5 7が接合されており、 セラミック体 5 7の内側と^ H則とが隔離され ていることとなる。
上述したホットプレート 1 0は、 セラミック基板 1 1の内部に抵抗発熱体のみ が設けられた装置であり、 ホットプレート 5 0は、 セラミック基板 5 1の表面に 抵抗発熱体のみが設けられた装置である。 これらの装置では、 シリコンウェハ等 の被処理物をセラミック基板の表面に载置または離間させて保持し、 所定の温度 に加熱したり、 洗浄等を行うことができる。
さらに、 セラミック体 1 7 5 7は、 セラミック基板 1 1をしつかりと支持す る働きも有しているので、 セラミック基板 1 1、 5 1が高温に加熱された際にも、 自重により反るのを防止することができ、 その結果、 シリコンウェハ等の被処理 物の破損を防止するとともに、 該被処理物を均一な温度になるように加熱するこ ともできる。
図 1 0は、 第一の本発明に係るホットプレート (セラミック接合体) の別の一 例を模式的に示す平面図であり、 図 1 1は、 図 1 0に示したホットプレートの A —A線断面図であるが、 これらの図に示すように、 本発明のホットプレート (セ ラミック接合体) では、 セラミック体 1 1 7がセラミック基板 1 1 1の側面に接 合されていてもよい。
このホットプレート 1 00では、 最外周に屈曲線の操り返しパターンからなる 抵抗発熱体 1 1 2 aが形成され、 その内側に同心円パターンからなる抵抗発熱体 1 1 2 b、 1 1 2 c力 S、 一定の間隔をおいて形成され、 また、 リフタピン 1 1 6 を揷通するために複数の貫通孔 1 1 5が形成されている。
セラミック基板 1 1 1の側面には、 断面が矩形で内部に空洞が形成されたセラ ミック体 1 1 7が接合されるとともに、 測温素子 2 1を揷入するための有底孔 1 14が加熱面 1 1 1 aに平行に形成されている。
抵抗発熱体 1 1 2 a、 1 1 2 b、 1 1 2 cの端部には、 バイァホール 1 27を 介して導体回路 1 1 8 a、 1 1 8 b、 1 1 8 cが接続されているが、 これら導体 回路 1 1 8 a、 1 18 b. 1 18 cはセラミック体 1 1 7が接合された側面近く まで延ぴ、 側面に設けられたスルーホール 1 1 3と接続されている。
スルーホール 1 1 3にはネジ穴が形成され、 このネジ穴に先端部にネジ部を有 する外部端子 1 23がねじ込まれており、 外部端子 1 23には導電線 3 30を有 するソケット 1 3 1が取り付けられ、 電¾ ^と接続されている。
セラミック体 1 1 7は、 一方の端面がセラミック基板 1 1 1の側面とぴったり と合うように曲面が形成されており、 このセラミック体 1 1 7の端面をセラミツ ク基板 1 1 1の側面に当接させて加熱し、 セラミック体 1 1 7に塗布された焼結 助剤の拡散を利用したり、 セラミック体 1 17とセラミック基板 1 1 1との焼結 助剤の濃度差を利用して接合することにより、 两者を強固に接合することができ る。
このようなホットプレート 100では、 配線は、 側面から引き出されるため、 底面に配線等を一配設する必要がなく、 装置自体を薄くすることができる。
次に、 第一の本発明のセラミック接合体の一形態であるホットプレートを構成 する部材について説明することとする。
第一の本発明に係るホットプレートを構成するセラミック基板には、 電極の隠 蔽ゃ黒体輻射の利用を目的として、 カーボンが含有されており、 その濃度は、 セ ラミック基板の表面近傍よりも、 セラミック基板の内部の方が高濃度となってい る。
ここで、 セラミック基板の表面近傍とは、 セラミック基板の表面からセラミツ ク基板の厚さの 1 0 %までの領域のことをいい、 セラミック基板の内部とは、 セ ラミック基板全体のうち、 セラミック基板の表面近傍を除く領域をいう。 ただし、 上述したように、 セラミック基板の表面近傍とそれを除く領域とではつきりとし た濃度の差があるというよりも、 表面近傍のカーボン濃度が一番小さく、 内部に いくに従って次第にカーボン濃度が高くなり、 一定の深さに到達するとほぼ一定 の濃度となるのである。 ほぼ一定の濃度となる領域は、 セラミック基板表面から セラミック基板の厚さの 3 0〜7 0 %の領域である。
セラミック基板の表面近傍におけるカーボンの濃度は、 セラミック基板の内部 の濃度の 8 0 %以下であることが望ましい。 カーボンの濃度がセラミック基板の 內部の濃度の 8 0 %を超えると、 セラミック基板とセラミック体とを強固に接合 させるという本発明の効果を充分に発揮することができないからである。
具体的には、 8 0 0 p 以下であることが望ましい。 8 0 0 p p mを超える と、 表面近傍に存在するカーボンが不純物となって、 両者の界面におけるセラミ ック粒子の粒成長等が阻害され、 セラミック体との接合が不充分となることがあ る。
また、 上記セラミック基板内部のほぼ一定濃度となった部分におけるカーボン の濃度は、 2 0 0〜5 0 0 0 p p mであることが望ましい。 2 0 0 p p m未満で は、 黒色とは言えず、 明度が N 6を超えるものとなり、 一方、 添加量が 5 0 0 0 p p mを超えると、 セラミック基板を構成するセラミック粒子の焼結性が低下す るからである。
なお、 カーボン濃度の単位である!)!) mは、 質量百万分率を意味する。
また、 カーボンには、 非晶質のものと結晶質のものとがあり、 非晶質のカーボ ンは、 基板の高温における体積抵抗率の低下を抑制することでき、 結晶質のカー ボンは、 基板の高温における熱伝導率の低下を抑制することができるため、 その 製造する基板の目的等に応じて適宜カーボンの種類を選択することができる。 非晶質のカーボンは、 例えば、 C、 H、 Oだけからなる炭化水素、 好ましくは、 糖類を、 空気中で焼成することにより得ることができ、 結晶質のカーボンとして は、 グラフアイト粉末等を用いることができる。
また、 アクリル系樹脂を不活性ガス雰囲気下で熱分解させた後、 加熱加圧する ことによりカーボンを得ることができるが、 このアクリル系樹脂の酸価を変化さ せることにより、 結晶性 (非晶性) の程度を調整することもできる。
つまり、 酸価が 5〜17KOHmgZgのァクリル系樹脂をセラミック原料と 混合し、 これを成形した後、 不活性ガス雰囲気 (窒化ガス、 アルゴンガス) 下で 350°C以上の温度で熱分解させるとともに炭化させる。 そして、 これらのァク リル樹脂を熱分解させた後、 加熱加圧して焼結体とするのである。 このようなァ クリル系樹脂を使用することにより、 結晶性が低くなる理由は定かではないが、 酸価が 5~17KOHmgZgのアクリル系樹脂は、 熱分解しにくく、 カーボン 化しにくいため、 アクリル系樹脂の非晶質な骨格を残存させたまま炭化が進行す るのではないかと推定している。 さらに、 酸価が 5〜17KOHmgZgのァク リル系樹脂は、 熱分解しにくいために配合量を原料粉体に対して 2. 5〜8重量 °/0に調整することが望ましい。 上記酸価が 5〜17KOHmg//gのアクリル系 樹脂は、 一 30°C〜一 10°Cの T g点を持つことが望ましい。 また重量平均分子 量は 1〜 5万であることが望ましい。
また、 これ以外に、 酸価が 0. 3〜1. OKOHmgZgのアクリル系樹脂を セラミック原料と混合し、 これを成形した後、 不活性ガス雰囲気 (窒化ガス、 ァ ルゴンガス) 下で 350°C以上の熱温度で分解させるとともに炭化させる方法も ある。 そして、 アクリル樹脂を熱分解させた後、 加熱加圧して焼結体とするので ある。 このようなアクリル系樹脂を使用することにより、 結晶性と非晶質性を合 わせ持つカーボンが得られる理由は定かではないが、 酸価が 0. 3〜1. 0KO HmgZgのアクリル系樹脂は、 熱分解しやすく、 カーボン化しやすいため、 ァ クリル系樹脂の非晶質な骨格を切断しながら炭化が進行するため結晶性が高くな りやすいのではないかと推定している。 さらに、 酸価が 0. 3〜1. OKOHm gZgのァクリル系樹脂は、 熱分解しやすいために配合量を原料粉体に対して 8 〜 20重量%に調整することが望ましい。 上記酸価が 0. 3〜: L. OKOHmg のアクリル系樹脂は、 4 0 °C〜6 0 °Cの T g点を持つことが望ましい。 また 重量平均分子量は 1〜 5万であることが望ましい。
さらに、 アクリル系榭脂は、 アクリル酸、 アクリル酸のエステ/レのいずれか一 種以上および Zまたは、 メタクリル酸、 メタクリル酸のエステルのいずれか一種 以上からなる共重合体が望ましい。
このようなァクリル系樹脂の市販品としては、 共栄社製 K C一 6 0 0シリー ズがある。 このシリーズは酸価が 1 0〜1 7 K OHm g / gのものが揃っている。 また、 三井化学社製 S A— 5 4 5シリーズもあり、 このシリ一ズは酸価が 0 . 5〜; 1 . 0 K O Hm g Z gのものが揃っている。
セラミック基板 1 1は、 明度が J I S Z 8 7 2 1の規定に基づく値で N 6 以下のものであることが望ましい。 このような明度を有するものが輻射熱量、 隠 蔽性に優れるからである。 また、 このようなセラミック基板から構成されるホッ トプレートは、 サーモビユアにより、 正確な表面温度測定が可能となる。
ここで、 明度の Nは、 理想的な黒の明度を 0とし、 理想的な白の明度を 1 0と し、 これらの黒の明度と白の明度との間で、 その色の明るさの知覚が等歩度とな るように各色を 1 0分割し、 N 0〜N 1 0の記号で表示したものである。
そして、 実際の測定は、 N 0〜N 1 0に对応する色票と比較して行う。 この場 合の小数点 1位は 0または 5とする。
このような特性を有するセラミック基板 1 1は、 基板中にカーボンを 2 0 0〜 5 0 0 0 p p m含有させることにより得られる。
第一の本発明のセラミック接合体において、 セラミック基板を形成するセラミ ックとしては、 例えば、 窒化物セラミック、 炭化物セラミック、 酸化物セラミッ クが望ましい。
窒化物セラミック、 炭化物セラミック、 酸化物セラミックは、 熱膨張係数が金 属よりも小さく、 機械的な強度が金属に比べて格段に高いため、 セラミック基板 の厚さを薄くしても、 加熱により反ったり、 歪んだりしない。 そのため、 セラミ ック基板を薄くて軽いものとすることができる。 さらに、 セラミック基板の熱伝 導率が高く、 セラミック基板自体が薄いため、 セラミック基板の表面温度が、 抵 抗発熱体の温度変化に迅速に追従する。 即ち、 電圧、 電流値を変えて抵抗発熱体 の温度を変化させることにより、 セラミック基板の表面温度を制御することがで きるのである。
上記窒化物セラミックとしては、 例えば、 窒化アルミニウム、 窒化ケィ素、 窒 化ホウ素、 窒化チタン等が挙げられる。 これらは、 単独で用いてもよく、 2種以 上を併用してもよい。
また、 上記炭化物セラミックとしては、 例えば、 炭化ケィ素、 炭化ジルコニゥ ム、 炭化チタン、 炭化タンタル、 炭化タングステン等が挙げられる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい。
さらに、 上記酸化物セラミックとしては、 例えば、 アルミナ、 ジルコユア、 コ ージユライト、 ムライト等が挙げられる。 これらは、 単独で用いてもよく、 2種 以上を併用してもよい。
これらのなかでは、 窒化物セラミックである窒化アルミニウムが最も好ましい。 熱伝導率が 1 8 O W/m * Kと最も高く、 温度追従性に優れるからである。 また、 上記セラミック基板は、 焼結助剤を含有していてもよい。 上記焼結助剤 としては、 例えば、 アルカリ金属酸化物、 アルカリ土類金属酸化物、 希土類酸化 物等が挙げられる。 これらの焼結助剤のなかでは、 C a O、 Y 203、 N a 20、 L i 20、 R b 20が好ましい。 これらの含有量としては、 0 . 1〜2 0重量% が好ましい。 また、 アルミナを含有していてもよい。
セラミック基板 1 1の形状は、 図 2に示したような円板形状が好ましく、 その 直径は、 2 0 O mm以上が好ましく、 2 5 0 mm以上が最適である。
円板形状のセラミック基板 1 1は、 温度の均一性が要求されるが、 直径の大き な基板ほど温度が不均一になりやすいからである。
セラミック基板の厚さは、 5 O mm以下が好ましい。 また、 セラミック基板の 内部に抵抗発熱体が形成されたホットプレート (以下、 内層ヒータともいう) で は 1 0〜2 O mmがより好ましく、 セラミック基板の底面に抵抗発熱体か形成さ れたホットプレート (以下、 外層ヒータともいう) では 1〜 5 mmがより好まし い。
上記厚さが薄すぎると、 高温で加熱する際に反りが発生しやすく、 一方、 厚過 ぎると熱容量が大きくなりすぎて昇温降温特性が低下するからである。 また、 セラミック基板 1 1の気孔率は、 0または 5 %以下が好ましい。 上記気 孔率はアルキメデス法により測定する。
高温での熱伝導率の低下、 反りの発生を抑制することができるからである。 抵抗発熱体 1 2のパターンとしては、 図 2に示した同心円形状のパターンと同 心円形状を分割した円弧状パターンとからなるもののほ力 \ 渦卷き形状、 偏心円 形状、 同心円形状と屈曲線形状との組み合わせなどを挙げることができる。 また、 抵抗発熱体 1 2の厚さは、 1〜 5 0 μ mが望ましい。 上記内層ヒータでは 1 0〜 3 0 μ πιがより望ましく、 外層ヒータでは 3 ~ 1 0 μ πιがより望ましい。
抵抗 熱体 1 2の厚さや幅を変化させることにより、 その抵抗値を変化させる ことができるが、 この範囲が最も実用的だからである。 抵抗宪熱体 1 2の抵抗値 は、 その厚さが薄く、 また、 その幅が狭くなるほど大きくなる。
抵抗究熱体 1 2は、 断面が方形、 楕円形、 紡錘形、 蒲鋅形状のいずれでもよい が、 偏平なものであることが望ましい。 偏平の方が加熱面に向かって放熱しやす いため、 加熱面への熱伝搬量を多くすることができ、 加熱面の温度分布ができに くいからである。 なお、 抵抗発熱体 1 2は螺旋形状でもよい。
ホットプレート 1 0において、 抵抗発熱体 1 2からなる回路の数は 1以上であ れぱ特に限定されないが、 加熱面を均一に加熱するためには、 複数の回路が形成 されていることが望ましい。
抵抗発熱体 1 2を、 セラミック基板 1 1の内部に形成する際、 その形成位置は 特に限定されないが、 セラミック基板 1 1の底面からその厚さの 6 0 %までの位 置に少なくとも 1層形成されていることが好ましい。 加熱面まで熱が伝搬する間 に拡散し、 加熱面での温度が均一になりやすいからである。
セラミック基板 1 1の内部に抵抗発熱体 1 2を形成する際には、 金属や導電性 セラミックからなる導体ペーストを用いることが好ましい。
即ち、 セラミック基板 1 1の内部に抵抗発熱体 1 2を形成する際には、 グリー ンシート上に導体ペース ト層を形成した後、 グリーンシートを積層、 焼成するこ とにより、 内部に抵抗発熱体 1 2を作製する。
上記導体ペーストとしては特に限定されないが、 導電性を確保するため金属粒 子または導電性セラミックが含有されているほか、 樹脂、 溶剤、 増粘剤などを含 むものが好ましい。
上記金属粒子としては、 例えば、 貴金属 (金、 銀、 白金、 パラジウム) 、 鉛、 タングステン、 モリプデン、 ニッケル等が好ましい。 これらは、 単独で用いても よく、 2種以上を併用してもよい。 これらの金属は、 比較的酸化しにくく、 発熱 するに充分な抵抗値を有するからである。
上記導電性セラミックとしては、 例えば、 タングステン、 モリブデンの炭化物 などが挙げられる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい。 これら金属粒子または導電性セラミック粒子の粒径は、 0 . 1〜 1 0 mが好ま しい。 0 . 1 m未満と微細すぎると、 酸化されやすく、 一方、 Ι Ο /i inを超え ると、 焼結しにくくなり、 抵抗値が大きくなるからである。
上記金属粒子の形状は、 球状であっても、 リン片状であってもよい。 これらの 金属粒子を用いる場合、 上記球状物と上記リン片状物との混合物であってよい。 上記金属粒子がリン片状物、 または、 球状物とリン片状物との混合物の場合は、 金属粒子間の金属酸化物を保持しやすくなり、 抵抗宪熱体 1 2とセラミック基板 1 1との密着性を確実にし、 かつ、 抵抗値を大きくすることができるため有利で ある。
導体ペーストに使用される樹脂としては、 例えば、 エポキシ樹脂、 フエノール 樹脂等が挙げられる。 また、 溶剤としては、 例えば、 イソプロピルアルコール等 が挙げられる。 増粘剤としては、 セルロース等が挙げられる。
スルーホール 1 3、 1 3 ' およびパイァホール 1 6は、 タングステン、 モリプ デン等の金属、 または、 これらの炭化物等からなり、 その直径は 0 . l〜1 0 m mが望ましい。 断線を防止しつつ、 クラックや歪みを防止することができるから である。
外部端子 2 3の材料としては特に限定されず、 例えば、 ニッケル、 コバール等 の金属を挙げることができる。
また、 その大きさは、 使用するセラミック基板 1 1の大きさ、 抵抗発熱体 1 2 の大きさ等によって適宜調整されるため特に限定されないが、 軸部分の直径は 0 . 5〜5 mm、 軸部分の長さは 1〜1 0 mm程度であることが望ましい。
そして、 このような外部端子 2 3には導電線を有するソケットが取り付けられ、 この導電線は電源等と接続されている。
また、 有底孔 1 4には、 リード線を有する熱電対等の測温素子が揷入され、 耐 熱性樹脂、 セラミック (シリカゲル等) 等を用いて封止されている。 上記熱電対 等の測温素子により抵抗発熱体 1 2の温度を測定し、 そのデータをもとに電圧、 電流量を変えて、 本発明に係るホットプレート 1 0の温度を制御することができ るからである。
上記熱電対のリ一ド線の接合部位の大きさは、 各リード線の素線径と同一か、 もしくは、 それよりも大きく、 かつ、 0 . 5 mm以下がよい。 このような構成に よって、 接合部分の熱容量が小さくなり、 温度が正確に、 また、 迅速に電流値に 変換されるのである。 このため、 温度制御性が向上してウェハの加熱面 1 1 aの 温度分布が小さくなるのである。
上記熱電対としては、 例えば、 J I S— C一 1 6 0 2 ( 1 9 8 0 ) に挙げられ るように、 K型、 R型、 B型、 E型、 J型、 T型熱電対が挙げられる。
上記熱電対の他に、 第一の本発明に係るホットプレート 1 0の測温手段として は、 例えば、 白金測温抵抗体、 サーミスタ等の測温素子が挙げられるほ力、、 サー モビユア等の光学的な手段を用いた測温手段も挙げられる。
上記サーモピュアを用いた場合には、 セラミック基板 1 1の加熱面の温度を測 定することができるほか、 シリコンウェハ等の被加熱物表面の温度を直接測定す ることができるため、 被加熱物の温度制御の精度が向上する。
第一の本発明に係るホットプレートにおけるセラミック体の水平断面形状とし ては、 特に限定されず、 円環形状、 楕円環形状、 多角形状等を挙げることができ る。 これらの中では、 円環形状が望ましい。 セラミック体の断面形状が円環形状 であると、 その外周に角部がないため、 熱や衝撃による応力集中が発生しにくく、 また、 通常、 セラミック基板の形状は、 円板形状であるため、 上記セラミック基 板を安定して支持することができるからである。
また、 上記セラミック体は、 円柱形状や多角柱形状等からなるものであっても よい。 すなわち、 セラミック体は、 内部に空洞が形成されていなくてもよく、 内 部がセラミックで充填されていてもよい。
このようなセラミック体を使用する場合、 導電性セラミックゃ高融点金属等か らなるスルーホールを内部に形成することにより、 セラミック基板に形成された 抵抗発熱体と電源とを電気的に接続することができる。 上記のようなセラミック 体では、 セラミック体とセラミック基板との接合面を大きくすることが可能とな るため、 これらをより強固に接合することができる。
さらに、 上記セラミック体は、 円柱形状や多角柱形状の部材に外部端子や、 外 部端子と電源とを接続する配線等を揷通するための複数の貫通孔を有するような 形状であってもよい。
セラミック体が円柱形状である場合や、 断面形状が円環形状である場合は、 そ の外径は、 3 3 mm以上であることが望ましい。
また、 セラミック体の断面形状が円環形状である場合、 その内径は、 3 0 mm 以上であることが望ましい。
3 O mm未満であると、 セラミック基板をしつかりと支持することが困難にな り、 セラミック基板が高温に加熱された際、 セラミック基板が自重によって反つ てしまうおそれがあるからである。
また、 セラミック体の断面形状が円環形状である場合、 上記セラミック体の厚 さは、 5〜 2 O mmであることが望ましい。 5 mm未満であると、 セラミック体 の厚さが薄す'ぎるため、 機械的強度が乏しくなり、 昇温と降温とを繰り返すこと によって、 上記セラミック体が破損してしまうおそれがあり、 2 O mmを超える と、 セラミック体の厚さが厚すぎるため、 熱容量が大きくなり、 昇温速度が低下 するおそれがあるからである。
上記セラミック体を形成するセラミックとしては、 例えば、 上述したセラミツ ク基板と同様のもの等を用いることができる。
なお、 上記セラミック体と上記セラミック基板とを接合する方法については、 後で詳述することにする。
上記セラミック基板の内部に形成された導電体が静電電極である場合には、 上 記セラミック基板は、 静電チャックとして機能する。
図 6は、 このような静電チャックを模式的に示す縦断面図であり、 図 7は、 静 電チヤックを構成する基板に形成された静電電極付近を模式的に示す水平断面図 である。 この静電チャック 7 0を構成するセラミック基板 7 1の内部には、 半円形状の チャック正負極静電層 7 2 a、 7 2 bが対向して配設され、 これらの静電電極上 にセラミック誘電体膜 7 4が形成されている。 また、 セラミック基板 7 1の内部 には、 抵抗発熱体 7 2 0が設けられ、 シリコンウェハ等の被処理物を加熱するこ とができるようになつている。 なお、 セラミック基板 7 1には、 必要に応じて、 R F電極が埋設されていてもよい。
また、 セラミック基板 7 1の底面の中央付近には筒状のセラミック体 7 7が接 合されている。 静電チャック 7 0においても、 図 1に示したホットプレート 1 0 と同様に、 カーボンの濃度がセラミック基板 7 1の内部で高くなつているが、 セ ラミック基板 7 1の表面近傍では、 セラミック基板 7 1の内部と比較して濃度が 低いものとなっている。
従って、 セラミック体 7 7をセラミック基板 7 1と接触させて加熱し、 セラミ ック体等に塗布された焼結助剤の拡散を利用した接合や、 セラミック体とセラミ ック基板との焼結助剤の濃度差を利用した接合を行う際、 セラミック基板 7 1の セラミック体 7 7との接合面付近については、 カーボンの濃度が低いものとなる。 これにより、 セラミック基板 7 1とセラミック体 7 7との接合界面において、 セラミック粒子の相対濃度が高くなることで、 良好にセラミック粒子の粒成長が 起こり、 セラミック粒子が接合界面を越えて互いに侵入した構造となるため、 セ ラミック基板 7 1とセラミック体 7 7とを強固に接合することができる。
上記静電電極は、 貴金属 (金、 銀、 白金、 パラジウム) 、 鉛、 タングステン、 モリブデン、 ニッケル等の金属、 または、 タングステン、 モリプデンの炭化物等 の導電性セラミックからなるものであることが好ましい。 また、 これらは、 単独 で用いてもよく、 2種以上を併用してもよい。
この静電チャック 7 0は、 図 6、 図 7に示した通り、 セラミック基板 7 1中に 静電電極 7 2 a、 7 2 bが形成され、 静電電極 7 2 a、 7 2 の端部の直下にス ルーホール 7 3が形成され、 静電電極 7 2上にセラミック誘電体膜 4が形成さ れている以外は、 上述したホットプレート 1 0と同様に構成されている。
また、 セラミック体 7 7の内側の上方には、 スルーホール 7 3、 7 3 0が形成 されており、 これらのスルーホール 7 3、 7 3 0は、 静電電極 7 2 a、 7 2 b , 抵抗発熱体 7 2 0に接続されるとともに、 袋孔 7 9 0に揷入された外部端子 7 6 0に接続され、 この外部端子 7 6 0の一端には、 導電線 7 3 1を有するソケット 7 5 0が接続されている。 そして、 この導電線 7 3 1が貫通孔 (図示せず) より 外部に引き出されている。
また、 セラミック体 7 7の外側に端部を有する抵抗突熱体 7 2 0の場合には、 図 1に示したホットプレート 1 0の場合と同様に、 バイァホール 7 9、 導体回路 7 8 0およびスルーホール 7 3 0 を形成することより、 抵抗発熱体 7 2 0の端 部をセラミック体 7 7の内側に延設している (図 6参照) 。 従って、 スルーホー ル 7 3 0 ' を露出させる袋孔 7 9 0に外部端子 7 6 0を挿入して接続することに より、 セラミック体 7 7の内側に外部端子 7 6 0を格納することができる。 このような静電チャック 7 0を作動させる場合には、 抵抗発熱体 7 2 0および 静電電極 7 2に、 それぞれ電圧を印加する。 これにより、 静電チャック 7 0上に 載置されたシリコンウェハが所定温度に加熱されるとともに、 静電的にセラミッ ク基板 7 1に吸着されることになる。 なお、 この静電チャックは、 必ずしも、 抵 抗発熱体 7 2 0を備えていなくてもよい。
図 8は、 他の静電チヤックの基板に形成された静電電極を模式的に示した水平 断面図である。 基板 8 1の內部に半円弧状部 8 2 aと櫛歯部 8 2 bとからなるチ ャック正極静電層 8 2と、 同じく半円弧状部 8 3 aと櫛歯部 8 3 bとからなるチ ャック負極静電層 8 3とが、 互いに櫛歯部 8 2 b、 8 3 bを交差するように対向 して配置されている。
また、 図 9は、 更に別の静電チヤックの基板に形成された静電電極を模式的に 示した水平断面図である。 この静電チャックでは、 基板 9 1の内部に円を 4分割 した形状のチャック正極静電層 9 2 a、 9 2 bとチャック負極静電層 9 3 a、 9 3 bが形成されている。 また、 2枚のチャック正極静電層 9 2 a、 9 2 bおよび 2枚のチャック負極静電層 9 3 a、 9 3 bは、 それぞれ交差するように形成され ている。
なお、 円形等の電極が分割された形態の電極を形成する場合、 その分割数は特 に限定されず、 5分割以上であってもよく、 その形状も扇形に限定されない。 このような、 第一の本宪明のセラミック接合体は、 例えば、 後述する第二の本 発明のセラミック接合体の製造方法により製造することができる。
次に、 第二の本発明であるセラミック接合体の製造方法について説明する。 なお、 第二の本発明であるセラミック接合体の製造方法は、 セラミック粉末と カーボンまたはカーボン原料となるものとを含むセラミック成形体を焼成して力 一ボンをほぼ均一濃度で含むセラミック基板を作製し、 得られたセラミック基板 を常圧、 1 8 0 0 ~ 2 0 0 0 °C、 N 2ガス雰囲気下でカーボン不均一化処理を行 つた後、 上記セラミック基板と上記セラミック体とを接合することを特徴とする。 以下に第二の本発明であるセラミック接合体の製造方法の一例について、 上記 製造方法に基づき、 図 1 2を参照しながら説明することとする。
図 1 2 ( a ) 〜 (d ) は、 セラミック基板の内部に抵抗発熱体を有するホット プレートの製造方法の一部を模式的に示した断面図である。
( 1 ) グリーンシートの作製工程
まず、 セラミック粉末およびイットリアをパインダ、 溶剤等と共に混合してぺ ーストを調製し、 これを用いてグリーンシートを作製する。
なお、 上記グリーンシートには結晶質や非晶質のカーボンを添加する。 結晶質 のカーボンを添加する方法としては、 グラフアイ ト粉末等を直接添加する方法が 挙げられ、 非晶質のカーボンを添加する方法としては、 アクリル系樹脂等を熱分 解させる方法が挙げられる。
また、 上記ダリ一ンシート中にはィットリアが 0 . 1〜 1 0重量%程度含まれ ていることが望ましい。
さらに、 上記グリーンシート中には、 上記イットリアのほかに、 例えば、 C a 0、 N a 20、 L i 20、 R b 20 3等が含まれていてもよい。 これらの化合物も 焼結助剤として好適に働くからである。
また、 パインダとしては、 アタリノレ系バインダ、 ェチルセルロース、 プチルセ 口ソルプ、 ポリビニルアルコールから選ばれる少なくとも 1種が望ましい。 さらに溶媒としては、 α—テルビネオール、 グリコールから選ばれる少なくと も 1種が望ましい。
これらを混合して得られるペーストをドクタープレード法でシート状に成形し てダリ一ンシート 1 1 0を作製する。 グリーンシート 1 10の厚さは、 0. 1〜 5mmが好ましい。
次に、 抵抗発熱体の端部と導体回路とを接続するためのバイァホールとなる部 分 160を形成したグリーンシートと、 導体回路と外部端子とを接続するための スルーホールとなる部分 1 30、 130' を形成したグリーンシートを作製する。 なお、 スルーホールとなる部分には、 上記ペース ト中にカーボンを加えておい たものを充填してもよい。 グリーンシート中のカーボンは、 スルーホール中に充 填されたタンダステンゃモリブデンと反応し、 これらの炭化物が形成されるから である。
(2) グリーンシート上に導体ペーストを印刷する工程
抵抗発熱体 12および導体回路 18を形成するための金属ペーストまたは導電 性セラミックを含む導体ペーストを印刷し、 導体ペースト層 120、 180を形 成し、 貫通孔にスルーホール 13、 13' 用の導体ペースト充填層 130, 13 0' およびバイァホール 16用の導体ペースト層 160を形成する。
これらの導体ペースト中には、 タングステン粒子、 モリプデン粒子等の金属粒 子またはタングステンカーパイト粒子等の導電性セラミック粒子が含まれている。 上記金属粒子であるタンダステン粒子またはモリプデン粒子等の平均粒径は、 0. 1〜: L 0 μ mが好ましい。 平均粒径が 0. 未満である力、、 Ι Ο μΐηを 超えると、 導体ペース トを印刷しにくいからである。
このような導体ペーストとしては、 例えば、 金属粒子または導電性セラミック 粒子 85〜 87重量部;アタリノレ系、 ェチルセルロース、 ブチノレセ口ソルプ、 ポ リビュルアルコールから選ばれる少なくとも 1種のバインダ 1. 5〜 10重量部 ;および、 α—テルビネオール、 ダリコールから選ばれる少なくとも 1種の溶媒 を 1. 5〜 10重量部混合した組成物 (ペース ト) が挙げられる。
(3) グリーンシートの積層工程
導体ペースト層 1 20を印刷したグリーンシート上下に、 導体ペーストを印刷 していないグリーンシート 1 10を複数積層する (図 1 2 (a) ) 。
このとき、 導体ペースト層 120を印刷したグリーンシートの上側に積層する グリーンシート 1 10の数を下側に積層するグリーンシート 110の数よりも多 くして、 製造する抵抗発熱体の形成位置を加熱面の反対側の面から厚さ方向に 6 0 °/0以下の位置に偏芯させる。
具体的には、 上側のグリーンシート 110の積層数は 20〜50枚が、 下側の グリーンシート 1 10の積層数は 5〜 50枚が好ましい。
(4) グリーンシート積層体の焼成工程
グリーンシート積層体の加熱を行い、 グリーンシート 1 10および内部の導体 ペーストを焼結させ、 スルーホール 13、 13' 、 バイァホール 16を形成する (図 12 (b) ) 。
ここで、 上記グリーンシート積層体の焼成は COと N2とからなる混合雰囲気 中で行う。 このときの加熱温度は、 1000〜 2000 °Cが好ましい。 加熱は、 不活性ガス雰囲気中で行う。 不活性ガスとしては、 例えば、 アルゴン、 窒素など を使用することができる。
なお、 このグリーンシート焼成工程を終えた段階では、 焼結体内におけるカー ボンの濃度は全体に均一となっている。
次に、 得られた焼結体に、 シリコンウェハ 9を支持するためのリフターピン 8 を揷入するリフターピン用貫通孔、 熱電対などの測温素子を埋め込むための有底 孔等を形成する。
上述の貫通孔および有底孔を形成する工程は、 上記ダリ一ンシート積層体に対 して行ってもよいが、 上記焼結体に対して行うことが望ましい。 焼結過程におい て、 変形するおそれがあるからである。
次に、 セラミック基板 11に形成されたスルーホール 13、 13' の底面に、 ドリル加工によりネジ穴 1 9形成した。
なお、 このグリーンシート焼成工程を終えた段階では、 セラミック基板 11内 におけるカーボンの濃度は全体的に均一となっている。
(5) カーボン不均一処理工程
次に、 セラミック基板 11に含まれるカーボンの濃度を、 セラミック基板 1 1 内部と比較してセラミック基板 11表面近傍の濃度を低くすることを目的として、 セラミック基板 1 1にカーボン不均一化処理を施す。
具体的には、 (4) の工程で得られたセラミック基板 1 1を常圧、 N2ガス雰 囲気で 1800〜2000°Cに加熱する。 なお、 常圧で加熱することで、 加圧下で加熱を行う場合と比較して、 セラミツ ク基板中のカーボンが酸化されやすくなり、 カーボンが気体となって逃散する割 合が多くなる。 また、 加熱温度が 1 8 0 0 °C未満であると、 カーボンが酸化され にくくなり、 表面付近のカーボンの濃度が低下しにくく、 一方、 加熱温度が 2 0 0 0 °Cを超えた場合には、 セラミック基板中のカーボンが焼結助剤である Y 2 O 3等と反応しやすくなり、 還元された Υ 2 0 3等の焼結助剤が逃散し、 表面付近の 焼結助剤の濃度が低下する。 従って、 セラミック体との接合を行うと接合強度が 低下する。
なお、 上記カーボン不均一化工程においては、 Ν 2ガスのほかに、 微量の酸素 を添加することが望ましい。 セラミック基板 1 1の表面近傍におけるカーボンの 酸化がさらに促進され、 セラミック基板の表面近傍の力一ボン濃度をより低下さ せることができるからである。
( 6 ) セラミック体の製造
窒化アルミニウム等のセラミック粉末を筒状成形型に入れて成形し、 必要に応 じて切断加工する。 これを加熱温度 1 0 0 0〜2 0 0 0 °C、 常圧で焼結させて、 セラミック製で筒状のセラミック体 1 7を製造する。 上記焼結は、 不活性ガス雰 囲気中で行う。 不活性ガスとしては、 例えば、 アルゴン、 窒素等を使用すること ができる。
ここで、 上記セラミックの粉末には、 焼結助剤が含まれていないことが望まし い。 なお、 セラミック体 1 7の大きさは、 セラミック基板の内部に形成されたス ルーホール 1 3、 1 3 ' がその内側に収まるように調整する。 次いで、 セラミツ ク体 1 7の端面を研磨して平坦化する。
( 7 ) セラミック基板とセラミック体との接合工程
そして、 セラミック基板 1 1の底面 1 1 bの中央部付近に、 セラミック体 1 7 を接触させた後、 この状態でセラミック基板 1 1とセラミック体 1 7と加熱して これらを接合する。 このとき、 セラミック体 1 7の内径の内側にセラミック基板 1 1内のスルーホール 1 3、 1 3 ' が収まるようにセラミック体 1 7をセラミツ ク基板 1 1の底面 1 1 bに接合する (図 1 2 ( c ) ) 。 なお、 図 1 0等に示した ように、 セラミック基板の側面にセラミック体を接合してもよい。 具体的には、 例えば、 接合助剤の成分を含んだ接着剤をセラミック体 17の端 面に塗布して接合する方法、 焼結助剤を含まないセラミック体 17を焼結助剤を 含むセラミック基板 1 1の接合面に接触させて加熱し、 焼結助剤成分の濃度差を 利用することによりセラミック基板 1 1とのセラミック体 17とを接合する方法 等を用いることができる。 セラミック基板 11とセラミック体 17とを接合する 方法として、 金ろう、 銀ろう等を用いてろう付けする方法、 酸化物系ガラス等の 接着剤を用いて接合する方法等を用いてもよい。
なお、 セラミック基板 1 1とセラミック体 17とを接合する際には、 1000 〜2000°Cで加熱することが望ましい。
このような接合方法は、 セラミック基板 1 1とセラミック体 1 7との結合助剤 の濃度差を利用した接合である。 すなわち、 より高濃度のセラミック基板側から 低濃度のセラミック体側へ、 焼結助剤物質が移動することによって、 その接合界 面に存在するセラミック粒子も界面の両側に延びるように粒成長し、 これにより、 セラミック基板 1 1とセラミック体 17とを強固に接合することができる。 さらに、 セラミック基板 11とセラミック体 17の接合においては、 0. 5〜 10 k P a (5〜: L 00 g/cm2) の圧力でセラミック体 1 7をセラミック基 板 1 1に押し付け、 その状態で加熱することにより接合することが望ましい。 このように押圧した状態で接合することにより、 セラミック基板 11とセラミ ック体 17との間に生ずる隙間を少なくすることが可能となるため、 より強固に 両者を接合することができるからである。
(8) 端子等の取り付け
セラミック基板 11のスルーホール 13、 13' の底面に形成したネジ穴 1 9 に、 先端部にネジ部を有する外部端子 23をねじ込み、 外部端子 23をスルーホ ール 1 3、 1 3' に接続する (図 1 2 (d) ) 。
なお、 外部端子 23とスルーホール 13、 13' との接続は、 断面視が丁字形 状の外部端子 23を半田やろう付け等の方法を用いることにより、 スルーホール 13、 13' に接続してもよい。
次に、 この外部端子 23にソケット 31を介して電源に接続される導電線 23 0に接続する。 更に、 測温素子 2 1を、 形成した有底孔 1 4に揷入し、 耐熱性樹脂等で封止す ることで、 その内部に抵抗発熱体 1 2を有するセラミック基板 1 1を備えたホッ トプレート 1 0を製造することができる。
このホットプレートでは、 セラミック基板上にシリコンウェハ等の半導体ゥェ ハを载置するか、 または、 セラミック基板にエンボス加工等を施すことにより凸 部を設け、 凸部でシリコンウェハを支持することによりシリコンウェハ等の加熱 や冷却を行いながら、 洗浄等の操作を行うことができる。
上記ホットプレートを製造する際に、 セラミック基板の内部に静電電極を設け ることにより静電チャックを製造することができる。 ただし、 この場合は、 静電 電極と外部端子とを接続するためのスルーホールを形成する必要があるが、 半導 体ウェハを支持する凸部を形成するためにエンボス加工を行う必要はない。 セラミック基板の内部に電極を設ける場合には、 抵抗発熱体を形成する場合と 同様にグリーンシートの表面に静電電極となる導体ペースト層を形成すればよレ、。 次に、 第二の本発明であるセラミック接合体の製造方法の別の一例について、 上記製造方法に基づき、 図 1 3を参照しながら説明することとする。
図 1 3 ( a ) 〜 (d ) は、 セラミック基板の底面に抵抗発熱体を有するホット プレートの製造方法の一部を模式的に示した断面図である。
( 1 ) セラミック基板の作製工程
上述した窒化アルミニウムや炭化珪素などの窒化物等のセラミックの粉末に必 要に応じてイットリア (Y 20 3) や B 4 C等の焼結助剤、 N a、 C aを含む化合 物、 バインダ等を配合してスラリーを調製した後、 このスラリーをスプレードラ ィ等の方法で顆粒状にし、 この顆粒を金型に入れて加圧することにより板状など に成形し、 生成形体 (グリーン) を作製する。
なお、 上記生成形体には結晶質や非晶質のカーボンを添加する。 結晶質のカー ボンを添加する方法としては、 グラフアイト粉末等を直接添加する方法が挙げら れ、 非晶質のカーボンを添加する方法としては、 アクリル系樹脂等を熱分解させ る方法が挙げられる。
次に、 この生成形体を加熱、 焼成して焼結させ、 セラミック製の板状体を製造 する。 この後、 所定の形状【こ加工することにより、 セラミック基板 5 1を作製す るが、 焼成後にそのまま使用することができる形状としてもよい。 加圧しながら 加熱、 焼成を行うことにより、 気孔のないセラミック基板 5 1を製造すること力 S 可能となる。 加熱、 焼成は、 焼結温度以上であればよいが、 窒化物セラミックや 炭化物セラミックでは、 1 0 0 0〜2 5 0 0でである。 また、 酸化物セラミック では、 1 5 0 0 °C〜2 0 0 0 °Cである。
さらに、 ドリル加工を実施し、 シリコンウェハ 9を搬送、 支持するためのリフ ターピン 8を揷入するリフターピン用貫通孔 5 5となる部分や熱電対などの測温 素子を埋め込むための有底孔 5 4となる部分を形成する。 (図 1 3 ( a ) 参照) 。 なお、 この生形成体 (グリーン) 焼成工程を終えた段階では、 セラミック基板 5 1内におけるカーボンの濃度は全体的に均一となっている。
( 2 ) カーボン不均一処理工程
次に、 セラミック基板 5 1に含まれるカーボンの濃度を、 セラミック基板 5 1 内部と比較してセラミック基板 5 1表面近傍の濃度を低くすることを目的として、 セラミック基板 5 1にカーボン不均一化処理を施す。
具体的には、 (1 ) の工程で得られたセラミック基板 5 1を常圧、 N 2ガス雰 囲気で 1 8 0 0〜2 0 0 0 °Cに加熱する。
なお、 常圧で加熱することで、 加圧下で加熱を行う場合と比較して、 セラミツ ク基板中のカーボンが酸化されやすくなり、 カーボンが気体となって逃散する割 合が多くなる。 加熱温度が 1 8 0 0 °C未満であると、 カーボンが酸化されにくく、 表面付近のカーボンの濃度が低下しにくくなり、 一方、 加熱温度が 2 0 0 0 °Cを 超えた場合にも、 セラミック基板中のカーボンが焼結助剤である Y 2 O 3等と反 応しゃすくなり、 還元された Υ 2 Ο 3等の焼結助剤が逃散し、 表面付近の焼結助 剤の濃度が低下する。 従って、 セラミック体との接合を行うと接合強度が低下す る。
加熱温度が 2 0 0 0 °Cを超える場合も、 セラミック基板中のカーボンが酸化さ れやすくなり、 カーボンが気体となって逃散する割合が多くなる。
なお、 上記カーボン不均一化工程においては、 N 2ガスのほかに、 微量の酸素 を添加することが望ましい。 セラミック基板 5 1の表面近傍におけるカーボンの 酸化がさらに促進され、 セラミック基板の表面近傍のカーボン濃度をより低下さ せることができるからである。
( 3 ) セラミック基板に導体ペーストを印刷する工程
導体ペース トは、 一般に、 金属粒子、 樹脂、 溶剤からなる粘度の高い流動物で ある。 この導体ペーストをスクリーン印刷などを用い、 抵抗発熱体 5 2を設けよ うとする部分に印刷を行うことにより、 導体ペース ト層を形成する。
導体ペースト層は、 焼成後の抵抗 ϋ熱体 5 2の断面が、 方形で、 偏平な形状と なるように形成することが望ましい。
また、 導体ペーストには、 タングステン、 モリブデン等の高融点金属を用いる ことが望ましい。
( 4 ) 導体ペース トの焼成
セラミック基板 5 1の底面に印刷した導体ペースト層を加熱焼成して、 樹脂、 溶剤を除去するとともに、 金属粒子を焼結させ、 セラミック基板 5 1の底面に焼 き付け、 抵抗発熱体 5 2を形成する。 加熱焼成の温度は、 5 0 0〜1 0 0 0 °Cが 好ましい。
導体ペースト中に上述した酸化物を添加しておくと、 金属粒子、 セラミック基 板および酸化物が焼結して一体化するため、 抵抗発熱体 5 2とセラミック基板 5 1 との密着性が向上する。
( 5 ) 金属被覆層の形成
次に、 抵抗発熱体 5 2表面に、 金属被覆層 5 2 0を形成する。 金属被覆層 5 2 0は、 電解めつき、 無電解めつき等により形成することができるが、 量産性を考 慮すると、 無電解めつきが最適である (図 1 3 ( b ) 参照) 。
( 6 ) セラミック体の製造
窒化アルミニウム等のセラミック粉末を筒状成形型に入れて成形し、 必要に応 じて切断加工する。 これを加熱温度 1 0 0 0〜 2 0 0 0 °C、 常圧で焼結させて、 セラミック製で筒状のセラミック体 5 7を製造する。 上記焼結は、 不活性ガス雰 囲気中で行う。 不活性ガスとしては、 例えば、 アルゴン、 窒素などを使用するこ とができる。
ここで、 上記セラミックの粉末には、 焼結助剤が含まれていてもよいが、 その 濃度がセラミック基板中の焼結助剤の濃度より低いことが望ましい。 上記セラミ ックの粉末には、 焼結助剤が含まれていないことがより望ましい。 なお、 セラミ ック体 5 7の大きさは、 セラミック基板 5 1の底面に形成された抵抗発熱体が全 てその内側に収まるように調整する。 次いで、 セラミック体 5 7の端面を研磨し て平坦化する。
( 7 ) セラミック基板とセラミック体との接合工程
そして、 セラミック基板 5 1の底面 5 1 bの中央部付近に、 セラミック体 5 7 を接触させた後、 この状態でセラミック基板 5 1とセラミック体 5 7とを加熱し てこれらを接合する。 このとき、 セラミック体 5 7の内径の内側に抵抗発熱体が 全て収まるようにセラミック体 5 7をセラミック基板 5 1の底面 5 1 bに接合す る (図 1 3 ( c ) ) 。
具体的には、 接合助剤の成分を含んだ接着剤をセラミック体 5 7の端面に塗布 して接合する方法、 焼結助剤を含まないセラミック体 1 7を焼結助剤を含むセラ ミック基板 1 1の接合面に接触させて加熱し、 焼結助剤成分の濃度差を利用する ことによりセラミック基板 1 1とのセラミック体 1 7とを接合する方法等を用い ることができる。 セラミック基板 5 1とセラミック体 5 7とを接合する方法とし て、 金ろう、 銀ろう等を用いてろう付けする方法、 酸化物系ガラス等の接着剤を 用いて接合する方法等を用いてもよい。
なお、 セラミック基板 5 1とセラミック体 5 7とを接合する際には、 1 0 0 0 〜2 0 0 0 °Cで加熱することが望ましい。
このような接合方法は、 セラミック基板 5 1とセラミック体 5 7との結合助剤 の濃度差を利用した接合である。 すなわち、 より高濃度のセラミック基板側から 低濃度のセラミック体側へ、 焼結助剤物質が移動することによって、 セラミック 基板 5 1とセラミック体 5 7とを強固に接合することができる。
さらに、 セラミック基板 5 1とセラミック体 5 7の接合においては、 0 . 5〜 1 0 k P a ( 5〜 1 0 0 g c m 2 ) の圧力でセラミック体 5 7をセラミック基 板 5 1に押し付け、 その状態で加熱することにより接合することが望ましい。 このように押圧した状態で接合することにより、 セラミック基板 5 1とセラミ ック体 5 7との間に生ずる隙間を少なくすることが可能となるため、 より強固に 両者を接合することができるからである。 ( 8 ) 端子等の取り付け
抵抗発熱体 5 2のパターンの端部に電源との接続のための外部端子 6 3を半田 やろう材で取り付ける。
また、 有底孔 5 4に銀ろう、 金ろうなどで熱電対 (図示せず) を固定し、 ポリ ィミド等の耐熱樹脂で封止し、 ホットプレート 5 0の製造を終了する (図 1 3 ( d ) 参照) 。
次に、 本発明のセラミック温調器、 及び、 セラミック温調ュュットについて説 明する。 なお、 本実施の形態では、 一例として、 セラミック温調器はセラミック ヒータ、 セラミック温調ュニットはホットプレートュニットである場合を説明す る。
すなわち、 実施の形態に係る第三の本発明のセラミックヒータは、 セラミック 基板の表面または内部に抵抗発熱体からなる回路が形成され、 上記回路の端都に 外部端子が接続されたセラミックヒータであって、 上記外部端子には、 ネジ溝が 形成され、 電源からの配線と上記外部端子とが電気的に接続されるとともに、 上 記外部端子が上記回路の端部に設けられたネジ穴にねじ込まれて固定され、 これ により、 上記外部端子を介して上記配線と上記回路との接続が図られていること を特徴とする。
また、 実施の形態に係る第四の本発明のホットプレートユニットは、 上記第三 の本発明のセラミックヒータと、 配線類を収納するための接合部材と、 上記セラ ミックヒータ底面の抵抗発熱体および外部端子を含む領域に設置された保護部材 とからなり、 上記保護部材の內部に電源からの配線が収容されるとともに、 上記 保護部材を介して底面に上記接合部材が接着され、 上記接合部材の内部に電源か らの酉己線が収納されていることを特徴とする。
第三の本発明のセラミックヒータおよび第四の本発明のホットプ I ^一トュニッ トの実施の形態について、 図面に基づいて説明する。
図 1 4は、 第三の本発明のセラミックヒータの一例を模式的に示す底面図であ り、 図 1 5は、 図 1 4に示すセラミックヒータの部分拡大断面図である。 また、 図 1 6は、 第四の本発明に係るホットプレートュニットの一例を模式的に示した 断面図である。 まず、 セラミックヒータについて説明する。
図 1 4、 1 5に示すように、 セラミック基板 1 0 1 1は、 円板状に形成されて おり、 このセラミック基板 1 0 1 1の底面 1 O i l bには、 同心円形状からなる 複数の抵抗発熱体 1 0 1 2が形成されている。 これら抵抗発熱体 1 0 1 2は、 互 いに近い二重の同心円同士が一組の回路として、 一本の線になるように形成され、 これらの回路を組み合わせて、 加熱面 1 O i l aでの温度が均一になるように設 計されている。
また、 図示はしないが、 抵抗発熱体 1 0 1 2には、 酸化等を防止するために、 必要により金属被覆層が形成され、 その回路の両端部分には、 抵抗発熱体 1 0 1 2を貫通するとともに、 セラミック基板 1 0 1 1の一部を削り取ることにより、 ネジ穴 1 0 1 6が設けられており、 ネジ溝 1 0 1 3 aおよび貫通孔 1 0 1 3 bを 有する外部端子 1 0 1 3の貫通孔 1 0 1 3 bに配線 1 0 1 7が揷通された状態で、 このネジ穴 1 0 1 6に外部端子 1 0 1 3がねじ込まれ、 円環状の拡径部を有する 下部は抵抗発熱体 1 0 1 2としっかり接触している。
また、 配線 1 0 1 7も外部端子 1 0 1 3の上端面によりセラミック基板 1 0 1 1に押しつけられて外部端子 1 0 1 3としっかり接触しており、 図示しない他端 は電源と接続され、 これにより、 抵抗発熱体 1 0 1 2と電源との接続が図られて いる。
また、 セラミック基板 1 0 1 1の底面 1 0 1 1 bには、 測温素子を揷入するた めの有底孔 1 0 1 4が形成され、 この有底孔 1 0 1 4の内部に、 熱電対等の測温 素子 1 0 1 8が埋設されるようになっている。 また、 中央に近い部分には、 棒状 のリフターピン 1 0 0 8を揷通するための貫通孔 1 0 1 5が 3個設けられている (図 1 4参照) 。
リフターピン 1 0 0 8は、 その上にシリコンウェハ 1 0 0 9を載置して上下さ せることができるようになつており、 これにより、 シリコンウェハ 1 0 0 9を図 示しない搬送機に渡したり、 搬送機からシリコンウェハ 1 0 0 9を受け取ったり することができるとともに、 シリコンウェハ 1 0 0 9をセラミック基板 1 0 1 1 の加熱面 1 O i l aに載置して加熱する。 加熱表面は、 エンボス加工等により凸 部が形成され、 この凸部によりシリコンウェハ 1 0 0 9を加熱面 1 0 1 1 aから 1 0〜2000 ; m離間させた状態で支持し、 加熱することができるようになつ ている。
このセラミックヒータ 10 1 0では、 上記のように電源からの配線 1 01 7が 外部端子 1 0 1 3の貫通孔 1 0 1 3 bを挿通した状態で、 外部端子 1 0 1 3が回 路の端部に設けられたネジ穴 1 01 6にねじ込まれて固定され、 これにより、 外 部端子 1 0 1 3を介して配線 1 01 7と抵抗発熱体 1 0 1 2との接続が図られて いる。
従って、 長期間にわたって配線 101 7と抵抗発熱体 1 0 1 2との接続を確実 に行うことができ、 また、 外部端子 1 0 1 3は、 ネジ穴 1 01 6にねじ込まれる ことにより、 物理的に固定されているため、 長期間使用した場合にも外部端子 1 0 1 3が外れることはなく、 耐久性および信頼性に優れたセラミックヒータとな る。
次に、 このようなセラミックヒータを用いた第四の本発明のホットプレートュ ニットについて説明する。
このホットプレートュニット 1 100では、 セラミック基板 1 01 1の貫通孔 1 0 1 5が形成された部分の下には、 貫通孔 1 0 1 5に連通するガイド管 1 02 8が設けられ、 この貫通孔 1 0 1 5にリフターピン 1008が揷通され、 シリコ ンウェハ 1 00 9をセラミック基板 10 1 1の表面から離間させた状態で支持す ることができるようになつている。
セラミックヒータ 1010を構成するセラミック基板 1 0 1 1の底部には、 抵 抗楽熱体 1 0 1 2が形成されるとともに、 有底孔 1 0 1 4が形成され、 この有底 孔 1 0 14には、 リード線 10 1 8 aが接続された測温素子 101 8が埋め込ま れている。
また、 上述したように、 抵抗発熱体 1 0 1 2からなる回路の端部に設けられた ネジ穴 1 0 1 6には、 外部端子 101 3がねじ込まれ、 配線 10 1 7が導出され ているが、 この抵抗発熱体 1 0 1 2および外部端子 10 1 3を含む領域に保護部 材 1 0 1 9が設置されている。
この保護部材 1 0 1 9には、 抵抗発熱体 1 01 2や外部端子 1 01 3を収容す るための凹部 1 0 1 9 aが形成されるとともに、 貫通孔 1 0 1 9 bが形成され、 03 009026
39
この貫通孔 1 0 1 9 bに配線 1 0 1 7が揷通されている。 また、 保護部材 1 0 1 9は、 無機系または有機系の接着剤または半田等によりセラミック基板 1 0 1 1 の底面に接着されるか、 または、 底面に密着して形成されており、 その內部は、 外部雰囲気から隔離されている。
なお、 抵抗発熱体 1 0 1 2、 外部端子 1 0 1 3を収容するために設けられた凹 部 1 0 1 9 aは、 余裕を持って収納することができるように、 図 1 6に示すよう に、 抵抗発熱体 1 0 1 2や外部端子 1 0 1 3より大きいものであってもよく、 抵 抗発熱体 1 0 1 2や外部端子 1 0 1 3をぴったりと納めることができるように、 抵抗発熱体 1 0 1 2や外部端子 1 0 1 3の大きさと略同じ大きさであってもよい。 配線 1 0 1 7を挿通するための貫通孔は、 配線 1. 0 1 7を後述する接合部材 1 0 2 9の内部に収納するために、 図 1 6に示すように、 配線 1 0 1 7がセラミツ ク基板 1 0 1 1の中心部付近に集中するように中心部分に向け、 屈曲して形成さ れていてもよい。 また、 外部端子 1 0 1 3がセラミック基板 1 0 1 1の中央部付 近に取り付けられている場合には、 セラミック基板 1 0 1 1の主面と垂直な方向 に直線的に形成されていてもよい。
保護部材 1 0 1 9の材料は、 特に限定されず、 例えば、 樹脂、 金属、 セラミツ ク等が挙げられるが、 これらのなかでも、 フッ化物ガス等の腐 性ガスに対する 耐久性を有するものが好ましい。 また、 保護部材 1 0 1 9は、 底面 1 0 1 1わに 液状の樹脂を塗布した後、 硬化させることにより形成してもよい。
図 1 6では、 底面 1 0 1 1 bのほぼ全体に保護部材 1 0 1 9が設置されている。 これは、 セラミック基板 1 0 1 1の外周部分の近傍に外部端子 1 0 1 3を配設す る必要がある場合には、 外部端子 1 0 1 3や配線 1 0 1 7を腐食性ガス等から確 実に保護するため、 底面 1 0 1 1 bのほぼ全体に、 保護部材 1 0 1 9を設置する 必要があるからである。
なお、 中央部付近のみに外部端子 1 0 1 3が存在する場合には、 底面の中央部 付近に保護部材 1 0 1 9が設置されていてもよい。
保護部材 1 0 1 9には、 円筒形状の接合部材 1 0 2 9が接合されており、 保護 部材 1 0 1 9から引き出された配線 1 0 1 7は、 接合部材 1 0 2 9の內部に収納 され、 ホットプレートュニット 1 1 0 0の外に導出されている。 また、 接合部材 1 0 2 9は、 保護部材 1 0 1 9に密着するように接着剤や半田 等を介して配設されているため、 接合部材 1 0 2 9の内側と外側とは完全に隔離 されている。
さらに、 接合部材 1 0 2 9の内部に不活性ガス等をゆつくり流し込んで、 反応 性ガスやハロゲンガス等が接合部材 1 0 2 9の内部に流れ込まないようにするこ とにより、 一層確実に配線 1 0 1 7等の腐食を防止することができる。
接合部材 1 0 2 9は、 セラミック基板 1 0 1 1をしつかりと支持する働きも有 しているので、 セラミック基板 1 0 1 1が高温に加熱された際にも、 自重により 反るのを防止することができ、 その結果、 シリコンウェハ 1 0 0 9等の被処理物 の破損を防止するとともに、 該被処理物を均一な温度になるように加熱すること もできる。
第四の本発明のホットプレートユニット 1 1 0 0は、 第三の本発明のセラミッ クヒータ 1 0 1 0を有するため、 長期間使用した場合でも、 外部端子 1 0 1 3や 電源からの配線が外れることがなく、 抵抗発熱体 1 0 1 2と配線 1 0 1 7との接 続を確実に行うことができる。
また、 セラミックヒータ 1 0 1 0の底面には、 保護部材 1 0 1 9が設置され、 その内部に配線 1 0 1 7が収容されるとともに、 接合部材 1 0 2 9の内部に配線 1 0 1 7が収納されているため、 腐食性ガス等に晒された場合であっても外部端 子 1 0 1 3や配線 1 0 1 7が腐食することはなく、 耐久性およぴ信頼性に優れる。 次に、 第三の本発明のセラミックヒータの材質や形状等について、 さらに詳し く説明する。
第三の本発明のセラミックヒータにおいて、 上記外部端子の形状は、 ネジ溝を 有するものであれば、 特に限定されないが、 図 1 5に示すような断面視 T字形状 で軸部分に貫通孔を有する形状であることが望ましい。
上記外部端子をセラミック基板に固定できるとともに、 外部端子と抵抗発熱体 との接続を確実に行うことができるからである。
さらに、 上記外部端子の材質についても、 良電性の材質であれば特に限定され ず、 例えば、 ニッケル、 コバール等の金属が挙げられる。
第三の本発明のセラミックヒータにおける、 セラミック基板の直径は、 2 0 0 mm以上が望ましい。 大きな直径を持つセラミックヒータほど、 加熱時に半導体 ウェハの温度が不均一化しやすいため、 本発明の構成が有効に機能するからであ る。 また、 このような大きな直径を持つ基板は、 大口径の半導体ウェハを载置す ることができるからである。
セラミック基板の直径は、 特に 12インチ (300mm) 以上であることが望 ましい。 次世代の半導体ウェハの主流となるからである。
また、 第四の本発明のセラミックヒータを構成するセラミック基板の厚さは、 5 Omm以下であることが望ましい。 上記セラミック基板の厚さが 50mmを超 えると温度追従性が低下するからである。 また、 その厚さは、 0. 5 mm以上で あることが望ましい。 0. 5mmより薄いと、 セラミック基板の強度自体が低下 するため破損しやすくなる。 また、 抵抗発熱体がセラミック基板の表面に形成さ れている場合 (外層ヒータの場合) は 1〜 5mmであることが望ましく、 抵抗宪 熱体がセラミック基板の内部に形成されている場合 (内層ヒータの場合) は 10 〜 2 Ommであることが望ましい。 この範囲であれば、 熱の伝搬性および加熱効 率に優れ、 また、 セラミック基板中を伝搬する熱が充分に拡散し、 加熱面に温度 ばらつきが発生しにくい。 さらに、 セラミック基板が充分な強度を有することと なる。
第三の本発明のセラミックヒータ 1010において、 セラミック基板 101 1 には、 被加熱物を载置する加熱面 1 O i l aの反対側から加熱面 101 1 aに向 けて有底孔 1014を設けるとともに、 有底孔 1014の底を抵抗宪熱体 101 2よりも相対的に加熱面 1 O i l aに近く形成し、 この有底孔 1014に熱電対 等の測温素子 (図示せず) を設けることが望ましい。
また、 有底孔 1014の底と加熱面 1011 aとの距離は、 0. 1 mm〜セラ ミック基板の厚さの 1/2であることが望ましい。
これにより、 測温場所が抵抗発熱体 1012よりも加熱面 1011 aに近くな り、 より正確な半導体ウェハの温度の測定が可能となるからである。
有底孔 1014の底と加熱面 101 1 aとの距離が 0. 1 mm未満では、 放熱 してしまい、 加熱面 1 O i l aに温度分布が形成され、 厚さの 1 2を超えると、 抵抗発熱体の温度の影響を受けやすくなり、 温度制御できなくなり、 やはり加熱 面 101 1 aに温度分布が形成されてしまうからである。
有底孔 1014の直径は、 0. 3 mn!〜 5 mmであることが望ましい。 これは、 大きすぎると放熱性が大きくなり、 また小さすぎると加工性が低下して加熱面 1 01 1 aとの距離を均等にすることができなくなるからである。
有底孔 1014は、 図 14に示したように、 セラミック基板 1011の中心に 対して対称で、 かつ、 十字を形成するように複数配列することが望ましい。 これ は、 加熱面全体の温度を測定することができるからである。
上記測温素子としては、 例えば、 熱電対、 白金測温抵抗体、 サーミスタ等が挙 げられる。
また、 上記熱電対としては、 例えば、 J I S— C— 1602 (1980) に挙 げられるように、 K型、 R型、 B型、 S型、 E型、 J型、 T型熱電対等が挙げら れるが、 これらのなかでは、 K型熱電対が好ましい。
上記熱電対の接合部の大きさは、 素線の径と同じが、 または、 それよりも大き く、 0. 5 mm以下であることが望ましい。 これは、 接合部が大きい場合は、 熱 容量が大きくなつて応答性が低下してしまうからである。 なお、 素線の径より小 さくすることは困難である。
上記測温素子は、 金ろう、 銀ろうなどを使用して、 有底孔 1014の底に接着 してもよく、 有底孔 1014に揷入した後、 耐熱性樹脂で封止してもよく、 両者 を併用してもよい。
上記耐熱性樹脂としては、 例えば、 熱硬化性樹脂、 特にはエポキシ樹脂、 ポリ ィミド樹脂、 ビスマレイミドートリァジン樹脂などが挙げられる。 これらの樹月旨 は、 単独で用いてもよく、 2種以上を併用してもよい。
上記金ろうとしては、 37〜80. 5重量%Au— 63〜: L 9. 5重量0 /oCu 合金、 81. 5〜 82. 5重量%: Au— 18. 5〜: 1 7. 5重量%: N i合金 から選ばれる少なくとも 1種が望ましい。 これらは、 溶融温度が、 900°C以上 であり、 高温領域でも溶融しにくいためである。
銀ろうとしては、 例えば、 A g— Cu系のものを使用することができる。 第三の本発明のセラミックヒータを構成する材料であるセラミックは、 窒化物 セラミック、 炭化物セラミックまたは酸化物セラミックであることが望ましい„ 窒化物セラミック、 炭化物セラミックおよぴ酸化物セラミックは、 熱膨張係数 が金属よりも小さく、 機械的な強度が金属に比べて格段に高いため、 セラミック 基板の厚さを薄くしても、 加熱により反ったり、 歪んだりしない。 そのため、 セ ラミック基板を薄くて軽いものとすることができる。 さらに、 セラミック基板の 熱伝導率が高く、 セラミック基板自体が薄いため、 セラミック基板の表面温度が、 抵抗発熱体の温度変化に迅速に追従する。 即ち、 電圧、 電流値を変えて抵抗発熱 体の温度を変化させることにより、 セラミック基板の表面温度を制御することが できるのである。
上記窒化物セラミックとしては、 例えば、 窒化アルミニウム、 窒化ケィ素、 窒 化ホウ素、 窒化チタン等が挙げられる。 これらは、 単独で用いてもよく、 2種以 上を併用してもよい。
また、 炭化物セラミックとしては、 例えば、 炭化ケィ素、 炭化ジ コニゥム、 炭化チタン、 炭化タンタル、 炭化タングステン等が挙げられる。 これらは、 単独 で用いてもよく、 2種以上を併用してもよい。
さらに、 酸化物セラミックとしては、 金属酸化物セラミック、 例えば、 アルミ ナ、 ジルコユア、 コージュライト、 ムライ ト等が挙げられる。
これらのセラミックは単独で用いてもよく、 2種以上を併用してもよい。 これらのなかでは、 窒化アルミニウムが最も好ましい。 熱伝導率が 1 8 O W/ ra - Κ:と最も高く、 温度追従性に優れるからである。
なお、 第三の本発明のセラミックヒータにおいて、 セラミック基板として窒化 物セラミック、 炭化物セラミックまたは酸化物セラミック等を使用する際、 必要 により、 絶縁層を形成してもよい。 窒化物セラミックは酸素固溶等により、 高温 で体積抵抗値が低下しやすく、 また炭化物セラミックは特に高純度化しない限り 導電性を有しており、 絶縁層を形成することにより、 高温時あるいは不純物を含 有していても回路間の短絡を防止して温度制御性を確保できるからである。 上記絶縁層としては、 酸化物セラミックが望ましく、 具体的には、 シリカ、 ァ ルミナ、 ムライ ト、 コージェライ ト、 ベリリア等を使用することができる。 このような絶縁層としては、 アルコキシドを加水分解重合させたゾル溶液をセ ラミック基板にスピンコートして乾燥、 焼成を行ったり、 スパッタリング、 C V D等で形成してもよい。 また、 セラミック基板表面を酸化処理して酸化物層を設 けてもよい。
上記絶縁層は、 0 . 1〜: L 0 0 0 /ζ ιηであることが望ましい。 0 . 1 μ m未満 では、 絶縁性を確保できず、 1 0 0 0 mを超えると抵抗発熱体からセラミック 基板への熱伝導性を阻害してしまうからである。
さらに、 上記絶縁層の体積抵抗率は、 上記セラミック基板の体積抵抗率の 1 0 倍以上 (同一測定温度) であることが望ましい。 1 0倍未満では、 回路の短絡を 防止できないからである。
また、 第三の本発明のセラミック基板は、 カーボンを含有し、 その含有量は、 2 0 0〜5 0 0 0 p p mであることが望ましい。 電極を隠蔽することができ、 ま た黒体輻射を利用しゃすくなるからである。
なお、 上記セラミック基板は、 明度が J I S Z 8 7 2 1の規定に基づく値 で N 6以下のものであることが望ましい。 この程度の明度を有するものが輻射熱 量、 隠蔽性に優れるからである。
ここで、 明度の Nは、 理想的な黒の明度を 0とし、 理想的な白の明度を 1 0と し、 これらの黒の明度と白の明度との間で、 その色の明るさの知覚が等歩度とな るように各色を 1 0分割し、 N 0〜N 1 0の記号で表示したものである。
そして、 実際の測定は、 Ν Ο〜Ν 1 0に対応する色票と比較して行う。 この場 合の小数点 1位は 0または 5とする。
また、 セラミック基板の表面に抵抗発熱体を設ける場合は、 加熱面は抵抗発熱 体形成面の反対側であることが望ましい。 セラミック基板が熱拡散の役割を果た すため、 加熱面の温度均一性を向上させることができるからである。
第三の本発明のセラミックヒータにおいては、 金属粒子を含む導体ペーストを セラミック基板の表面に塗布して所定パターンの導体ペースト層を形成した後、 これを焼き付け、 セラミック基板の表面で金属粒子を焼結させる方法が好ましい c なお、 金属の焼結は、 金属粒子同士おょぴ金属粒子とセラミックとが融着してい れば充分である。
セラミック基板の表面に抵抗発熱体を形成する場合、 抵抗発熱体の厚さは、 1 〜3 0 ;u mが好ましく、 3〜: L 0 μ πιがより好ましい。 さらに、 抵抗発熱体の幅は、 0 . l ~ 2 0 mmが好ましく、 0 . 3〜 1 5 mm がより好ましい。
抵抗発熱体は、 その幅や厚さにより抵抗値に変化を持たせることができるが、 上記した範囲が最も実用的である。 抵抗値は、 薄く、 また、 細くなる程大きくな る。
抵抗発熱体の形成位置をこのように設定することにより、 抵抗発熱体から発生 した熱が伝搬していく うちに、 セラミック基板全体に拡散し、 被加熱物 (半導体 ウェハ) を加熱する面の温度分布が均一化され、 その結果、 被加熱物の各部分に おける温度が均一化される。
また、 第三の本発明のセラミックヒータにおける抵抗発熱体のパターンとして は、 図 1 4に示したパターンに限らず、 例えば、 渦卷き状のパターン、 偏心円状 のパターン、 屈曲線の繰り返しパターン等も用いることができる。 また、 これら は併用してもよい。
また、 最外周に形成された抵抗発熱体パターンを、 円周方向に分割されたパタ ーンとすることで、 温度が低下しやすいセラミックヒータの最外周で細かい温度 制御を行うことが可能となり、 セラミックヒータの温度のばらつきを抑えること が可能である。 さらに、 円周方向に分割された抵抗発熱体のパターンは、 セラミ ック基板の最外周に限らず、 その内部にも形成してもよい。
抵抗発熱体は、 断面が矩形であっても楕円であってもよいが、 偏平であること が望ましい。 偏平の方が加熱面に向かって放熱しやすいため、 加熱面の温度分布 ができにくいからである。
断面のァスぺクト比 (抵抗発熱体の幅 抵抗焭熱体の厚さ) は、 1 0〜5 0 0 0であることが望ましい。
この範囲に調整することにより、 抵抗発熱体の抵抗値を大きくすることができ るとともに、 加熱面の温度の均一性を確保することができるからである。
抵抗発熱体の厚さを一定とした場合、 ァスぺクト比が上記範囲より小さいと、 セラミック基板の加熱面方向への熱の伝搬量が小さくなり、 抵抗発熱体のパター ンに近似した熱分布が加熱面に発生してしまい、 逆にァスぺク ト比が大きすぎる と抵抗発熱体の中央の直上部分が高温となってしまい、 結局、 抵抗発熱体のパタ ーンに近似した熱分布が加熱面に発生してしまう。 従って、 温度分布を考慮する と、 断面のァスぺク ト比は、 1 0 - 5 0 0 0であることが好ましいのである。 第三の本宪明のセラミックヒータにおいては、 ァスぺクト比を 1 0〜2 0 0と することが望ましい。
また、 抵抗発熱体を形成する際に用いる、 導体ペーストとしては特に限定され ないが、 導電性を確保するための金属粒子または導電性セラミックが含有されて いるほか、 樹脂、 溶剤、 増粘剤などを含むものが好ましい。
上記金属粒子としては、 例えば、 貴金属 (金、 銀、 白金、 パラジウム) 、 鉛、 タングステン、 モリブデン、 ニッケルなどが好ましく、 中でも、 貴金属 (金、 銀、 白金、 パラジウム) がより好ましい。 また、 これらは、 単独で用いてもよいが、 2種以上を併用することが望ましい。 これらの金属は、 比較的酸ィ匕しにくく、 発 熱するに充分な抵抗値を有するからである。
上記導電性セラミックとしては、 例えば、 タングステン、 モリプデンの炭化物 などが挙げられる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい。 これら金属粒子または導電性セラミック粒子の粒径は、 0 . l〜1 0 ;z mが好 ましい。 0 . 1 未満と微細すぎると、 酸化されやすく、 一方、 l O /z mを超 えると、 焼結しにくくなり、 抵抗値が大きくなるからである。
上記金属粒子の形状は、 球状であっても、 リン片状であってもよい。 これらの 金属粒子を用いる場合、 上記球状物と上記リン片状物との混合物であってよい。 上記金属粒子がリン片状物、 または、 球状物とリン片状物との混合物の場合は、 金属粒子間の金属酸化物を保持しやすくなり、 抵抗発熱体と窒化物セラミック等 との密着性を確実にし、 かつ、 抵抗値を大きくすることができるため有利である。 導体ペーストに使用される樹脂としては、 例えば、 エポキシ樹脂、 フエノール 樹脂などが挙げられる。 また、 溶剤としては、 例えば、 イソプロピルアルコール などが挙げられる。 増粘剤としては、 セルロースなどが挙げられる。
導体ペース トには、 上記したように、 金属粒子に金属酸化物を添加し、 抵抗発 熱体を金属粒子およぴ金属酸化物を焼結させたものとすることが望ましい。 この ように、 金属酸化物を金属粒子とともに焼結させることにより、 セラミック基板 である窒化物セラミックまたは炭化物セラミックと金属粒子とを密着させること ができる。
金属酸化物を混合することにより、 窒化物セラミックまたは炭化物セラミック と密着性が改善される理由は明確ではないが、 金属粒子表面や窒化物セラミック、 炭化物セラミックの表面は、 わずかに酸化されて酸化膜が形成されており、 この 酸化膜同士が金属酸化物を介して焼結して一体化し、 金属粒子と窒化物セラミツ クまたは炭化物セラミックとが密着するのではないかと考えられる。
上記金属酸化物としては、 例えば、 酸化鉛、 酸化亜鈴、 シリカ、 酸化ホウ素 ( B 20 3) 、 アルミナ、 イットリアおよびチタユアからなる群から選ばれる少な くとも 1種が好ましい。
これらの酸化物は、 抵抗発熱体の抵抗値を大きくすることなく、 金属粒子と窒 化物セラミックまたは炭化物セラミックとの密着性を改善することができるから である。
上記酸化鉛、 酸化亜鉛、 シリカ、 酸化ホウ素 (B 2 0 3 ) 、 アルミナ、 イット リア、 チタニアの割合は、 金属酸化物の全量を 1 0 0重量部とした場合、 重量比 で、 酸化鉛が 1〜1 0、 シリカが 1〜 3 0、 酸化ホゥ素が 5〜 5 0、 酸化亜鉛が 2 0〜7 0、 ァ /レミナカ S 1〜: L O、 イットリアが 1〜5 0、 チタユアが 1〜5 0 であって、 その合計が 1 0 0重量部を超えない範囲で調整されていることが望ま しい。
これらの範囲で、 これらの酸化物の量を調整することにより、 特に窒化物セラ ミックとの密着性を改善することができる。
上記金属酸化物の金属粒子に対する添加量は、 0 . 1重量%以上 1 0重量%未 満が好ましい。
また、 抵抗発熱体として金属箔ゃ金属線を使用することもできる。 上記金属箔 としては、 ニッケル箔、 ステンレス箔をエッチング等でパターン形成して抵抗発 熱体としたものが望ましい。 パターン化した金属箔は、 樹脂フィルム等ではり合 わせてもよい。 金属線としては、 例えば、 タングステン線、 モリプデン線等が挙 げられる。
また、 抵抗発熱体を形成した際の面積抵抗率は、 0 . 1 ιη Ω〜1 0 Ωノロが好 ましい。 面積抵抗率が 0 . Ι πι Ω /口未満の場合、 発熱量を確保するために、 抵 抗発熱体パターンの幅を 0 . l〜l mm程度と非常に細くしなければならず、 こ のため、 パターンのわずかな欠け等で断線したり、 抵抗値が変動し、 また、 面積 抵抗率が 1 Ο ΩΖ口を超えると、 抵抗発熱体パターンの幅を大きく しなければ、 発熱量を確保できず、 その結果、 パターン設計の自由度が低下し、 加熱面の温度 を均一にすることが困難となるからである。
セラミック基板の表面に抵抗発熱体を形成する場合は、 抵抗発熱体の表面部分 に、 金属被覆層が設置されていることが望ましい。 内部の金属焼結体が酸化され て抵抗値が変化するのを防止するためである。 形成する金属被覆層の厚さは、 0 . 1〜: L 0 μ mが好ましい。
金属被覆層を形成する際に使用される金属は、 非酸化性の金属であれば特に限 定されないが、 具体的には、 例えば、 金、 銀、 パラジウム、 白金、 ニッケルなど が挙げられる。 これらは、 単独で用いてもよく、 2種以上を併用してもよい。 こ れらのなかでは、 ニッケルが好ましい。
次に、 第四の本宪明を構成するホットプレートュ-ットの材質や形状等につい て説明することとする。
第四の本発明のホットプレートュ-ットを構成する保護部材は、 セラミック、 金属、 耐熱性樹脂等からなることが望ましい。
上記セラミックとしては、 例えば、 上記セラミック基板と同様に、 窒化物セラ ミック、 炭化物セラミック、 酸化物セラミック等が挙げられ、 上記耐熱性樹脂と しては、 熱硬化性樹脂、 熱可塑性樹脂を使用することができる。 上記熱硬化性樹 月旨としては、 例えば、 エポキシ樹脂、 ポリイミ ド樹脂、 ビスマレイミドートリァ ジン樹脂、 フエノール樹脂から選ばれる少なくとも 1種を使用することができる。 また、 熱可塑性樹脂としては、 ポリエーテルスルフォン、 ポリスルフォン、 ポリ エーテーエーテルケトン、 ポリスルフィド、 フッ素樹脂から選ばれる少なくとも 1種を利用することができる。
これらのなかで、 フッ化物ガス等の腐食性ガスに対して耐久性を有する耐食性 のものが好ましい。
また、 上記保護部材は、 抵抗発熱体、 外部端子、 配線等を保護できる形状であ れば特に限定されないが、 上記セラミック基板と同様に、 平面視が円形であるこ とが好ましい。 セラミック基板と同様の形状とすることにより、 セラミック基板 の加熱面に温度のばらつきが発生するおそれ少なくすることができるからである。 さらに、 上記保護部材の厚さは、 0 . 5 ~ 1 0 mmが望ましい。
0 . 5 mm未満では、 保護部材が薄すぎるため、 抵抗発熱体、 外部端子、 配線 等を充分に保護することができず、 1 O mmを超えると、 熱容量が大きくなり、 昇温速度が低下するおそれがあるからである。
また、 第四の本発明のホットプレートユニットを構成する接合部材は、 セラミ ック、 耐熱性樹脂等からなることが望ましい。
上記セラミックおよぴ上記耐熱性樹脂としては、 例えば、 上記したセラミック 基板と同様のものを用いることができる。
上記接合部材の形状は、 柱状、 特に円筒が望ましく、 その内径は、 3 O mm以 上であることが望ましい。 3 O mm未満であると、 セラミック基板をしつかりと 固定とすることが困難となり、 セラミック基板が高温に加熱された際、 セラミツ ク基板が自重によって反ってしまうおそれがあるからである。
また、 上記接合部材の厚さは、 1〜1 O mmであることが望ましい。 1 mm未 満では、 接合部材の厚さが薄すぎるため、 機械的強度が乏しくなり、 昇温と降温 を繰り返すことによって、 上記接合部材が破損してしまうおそれがあり、 1 0 m mを超えると、 厚すぎるため、 熱容量が大きくなり、 昇温速度が低下するおそれ があるからである。
このように、 セラミックヒータ 1 0 1 0の底面 1 0 1 1 bには保護部材 1 0 1 9が設置され、 その内部に外部端子 1 0 1 3や配線 1 0 1 7が収容されるととも に、 接合部材 1 0 2 9の内部に配線 1 0 1 7が収納され、 外部端子 1 0 1 3等が 外部から隔離されているため、 腐食性ガス等に晒された場合であっても外部端子 1 0 1 3や配線 1 0 1 7が腐食することはなく、 耐久性および信頼性に優れたホ ットプレートユニット 1 1 0 0となる。
次に、 実施の形態に係る第五の本発明のセラミックヒータおよび第六の本発明 のホットプレートュニッ卜の実施の形態について、 図面に基づいて説明する。 実施の形態に係る第五の本発明のセラミックヒータは、 セラミック基板の表面 または内部に抵抗努熱体からなる回路が形成され、 上記回路の端部に外部端子が 接続されたセラミックヒータであって、 上記外部端子には、 ネジ溝が形成される とともに貫通孔が形成され、 上記セラミック基板の底部には、 上記回路と電気的 に接触するネジ穴が設けられ、 電源からの配線が上記外部端子の貫通孔を揷通し た状態で、 上記外部端子が上記ネジ穴にねじ込まれて固定され、 これにより、 上 記外部端子を介して上記配線と上記回路との接続が図られていることを特徴とす る。
実施の形態に係る第六の本発明のホットプレートュニットは、 上記第五の本発 明のセラミックヒータと、 配線類を収納するための接合部材と、 上記セラミック ヒータ底面の抵抗発熱体およぴ外部端子を含む領域に設置された保護部材とから なり、 上記保護部材の内部に電源からの配線が収容されるとともに、 上記保護部 材を介して接合部材が接着され、 上記接合部材の內部に電源からの配線が収納さ れていることを特徴とする。
図 1 7は、 第五の本発明のセラミックヒータの一例を模式的に示す底面図であ り、 図 1 8 (a) は、 図 1 7に示すセラミックヒータの部分拡大断面図である。 また、 図 1 8 (b) は、 第五の本発明のセラミックヒータの別の一例を模式的 に示す部分拡大断面図である。
図 1 7に示すように、 円板状のセラミック基板 1 03 1の内部には、 複数の回 路からなる抵抗発熱体 1032が埋設されており、 抵抗宪熱体 103 2は、 セラ ミック基板 10 3 1の最外周に、 円周方向に分割された屈曲線の繰り返しパター ンからなる抵抗発熱体 1 032 a〜 103 2 hが形成され、 その内周に、 同様の 屈曲線の繰り返しパターンからなる抵抗発熱体 1 03 2 i〜 1 03 2 1が形成さ れている。
さらに、 その内周に、 同心円形状からなる抵抗発熱体 1 032m〜1 0 3 2 p が形成されている。
また、 セラミック基板 1 03 1の内部に形成された抵抗発熱体 10 32の端部 の直下には、 スルーホール 1040が配設されるとともに、 スルーホール 1 04 0には、 その底部にネジ穴 1036が形成されており、 ネジ溝 1 03 3 aおよび 貫通孔 103 3 bを有する外部端子 1 03 3の貫通孔 1 03 3 bに配線 1 0 1 7 が揷通された状態で、 このネジ穴 1 036に外部端子 1 03 3がねじ込まれてい る。
この配線 1 0 1 7は電源と接続されているため、 これにより、 スルーホール 1 0 4 0を介して、 抵抗努熱体 1 0 3 2と電源との接続が図られるようになってい る。
また、 セラミック基板 1 0 3 1の底面 1 0 3 1 bには、 測温素子を揷入するた めの有底孔 1 0 3 4が形成されており、 この有底孔 1 0 3 4の内部に、 熱電対等 の測温素子 (図示せず) が埋設されるようになっている。 また、 中央に近い部分 には、 棒状のリフターピンを揷通するための貫通孔 1 0 3 5が設けられている。 このセラミックヒータ 1 0 3 0では、 上記のように電源からの配線 1 0 1 7カ 外部端子 1 0 3 3の貫通孔 1 0 3 3 bを揷通した状態で、 外部端子 1 0 3 3が回 路の端部の直下に設けられたスルーホール 1 0 4 0のネジ穴 1 0 3 6にねじ込ま れて固定され、 これにより、 外部端子 1 0 3 3およびスルーホール 1 0 4 0を介 して配線 1 0 1 7と抵抗発熱体 1 0 3 2との接続が図られている。
従って、 長期間にわたって配線 1 0 1 7と抵抗発熱体 1 0 3 2との接続を確実 に行うことができ、 また、 外部端子 1 0 3 3は、 ネジ穴 1 0 3 6にねじ込まれる ことにより、 物理的に固定されているため、 長期間使用した場合にも外部端子 1
0 3 3が外れることはなく、 耐久性およぴ信頼性に優れたセラミックヒータとな る。
図 1 8 ( b ) は、 第五の本発明のセラミックヒータの別の一例を模式的に示す 部分拡大断面図である。
このセラミックヒータでは、 セラミック基板 1 0 4 1の底面に、 セラミック基 板 1 0 4 1の内部に形成された抵抗努熱体 1 0 4 2を貫通するネジ穴 1 0 4 6力 S 形成されている。 また、 外部端子 1 0 4 3には、 ネジ溝 1 0 4 3 aおよび貫通孔
1 0 4 3 bが設けられており、 貫通孔 1 0 4 3 bに配線 1 0 4 7が揷通された状 態で、 ネジ穴 1 0 4 6に外部端子 1 0 4 3がねじ込まれている。
配線 1 0 4 7は電源と接続されているため、 これにより、 抵抗発熱体 1 0 4 2 と電源との接続が図られるようになつている。
従って、 長期間にわたって配線 1 0 4 7と抵抗発熱体 1 0 4 2との接続を確実 に行うことができ、 また、 外部端子 1 0 4 3は、 ネジ穴 1 0 4 6にねじ込まれる ことにより、 物理的に固定されているため、 長期間使用した場合にも外部端子 1 0 4 3が外れることはなく、 耐久性およぴ信頼性に優れたセラミックヒータとな る。
図 1 9は、 第六の本 明に係るホットプレートュニットを模式的に示した断面 図である。
このホットプレートユニット 1 2 0 0では、 図 1 7、 1 8 ( a ) に示した構成 のセラミックヒータ 1 0 3 0を用いたものである。
また、 上述したように、 抵抗発熱体 1 0 3 2からなる回路の端部に設けられた スルーホール 1 0 4 0のネジ穴 1 0 3 6には、 外部端子 1 0 3 3がねじ込まれ、 配線 1 0 1 7が導出されているが、 この抵抗楽熱体 1 0 3 2および外部端子 1 0 3 3を含む領域には、 保護部材 1 0 9が設置され、 保護部材 1 0 3 9の内部に は、 配線 1 0 1 7が収容されている。 保護部材 1 0 3 9には、 外部端子 1 0 3 3 を収納するため凹部 1 0 3 9 aが形成されており、 さらに、 配線 1 0 1 7を揷通 させるための貫通孔 1 0 3 9 bが形成されている。 また、 保護部材 1 0 3 9は、 無機系または有機系の接着剤または半田等によりセラミック基板 1 0 3 1の底面 に接着されているか、 または、 表面に密着して形成されており、 その内部は、 外 部の雰囲気から隔離されている。
なお、 外部端子 1 0 3 3を収容するために設けられた凹部 1 0 3 9 aは、 余裕 を持って収納することができるように、 図 1 9に示すように、 外部端子 1 0 3 3 より大きいものであってもよく、 外部端子 1 0 3 3をぴったりと納めることがで きるように、 外部端子 1 0 3 3の大きさと略同じ大きさであってもよい。
配線 1 0 1 7を揷通するための貫通孔 1 0 3 9 bは、 配線 1 0 1 7を接合部材 1 0 2 9の内部に収納するために、 図 1 9に示すように、 配線 1 0 1 7がセラミ ック基板 1 0 3 1の中心部付近に集中するように、 中心部に向けて屈曲して形成 されていてもよい。 また、 外部端子 1 0 3 3がセラミック基板 1 0 3 1の中央部 付近に取り付けられている場合には、 セラミック基板 1 0 3 1の主面と垂直な方 向に直線的に形成されていてもよい。
図 1 9では、 底面 1 0 3 1 bの中央部付近に保護部材 1 0 3 9が設置されてい るが、 底面 1 0 3 1 bのほぼ全体に、 保護部材 1 0 3 9が設置されていてもよい セラミック基板 1 0 3 1の外周部分の近傍に外部端子 1 0 3 3を配設する必要 がある場合には、 外部端子 1 0 3 3や配線 1 0 1 7を保護するため、 底面 1 0 3 1 bのほぼ全体に、 保護部材 1 0 3 9を設置する必要があるからである。
保護部材 1 0 3 9には、 円筒形状の接合部材 1 0 2 9が接合されており、 保護 部材 1 0 3 9の内部にその一部が収容された配線 1 0 1 7が、 接合部材 1 0 2 9 の内部に収納されている。 また、 接合部材 1 0 2 9では、 接合部材 1 0 2 9の內 側と外側とは隔離されている。
なお、 接合部材がセラミック基板の側面に接合され、 保護部材の内部に収容さ れた配線が側面から引き出され、 側面に接合された接合部材の内部に収納されて いてもよい。
このように、 セラミックヒータ 1 0 3 0の底面 1 0 3 1 bには保護部材 1 0 3 9が設置され、 その内部に外部端子 1 0 3 3や配線 1 0 1 7が収容されるととも に、 接合部材 1 0 2 9の内部に配線 1 0 1 7が収納され、 外部端子 1 0 3 3等が 外部から隔離されているため、 腐食性ガス等に晒された場合であっても外部端子 1 0 3 3や配線 1 0 1 7が腐食することはなく、 耐久性および信頼性に優れたホ ットプレートュニット 1 2 0 0となる。
なお、 ホットプレートユニット 1 2 0 0のその他の部分については、 ホットプ レートユニット 1 1 0 0と同様の構成であるため、 その説明を省略する。
次に、 第五の本発明を構成するセラミックヒータの材質や形状等について、 さ らに詳しく説明する。
第五の本発明のセラミックヒータにおいて、 上記外部端子の形状は、 貫通孔を 有するとともに、 ネジ溝を有するものであれば、 特に限定されないが、 図 1 8に 示すような断面視 T字型で軸部分に貫通孔を有する形状であることが望ましい。 上記外部端子をセラミック基板に固定できるとともに、 外部端子とスルーホー ルとの接触面積を大きくすることにより、 これらを確実に接続することが可能と なるからである。
また、 スルーホールは必ずしも形成されていなくてもよく、 上記外部端子が、 内部の回路を貫通するか、 または、 内部の回路に接触していればよい。 すなわち、 上記回路と電源とが電気的に接続していればよい。 さらに、 上記外部端子の材質についても、 良電性の材質であれば特に限定され ず、 例えば、 ニッケル、 コバール等の金属が挙げられる。
また、 セラミック基板の内部に抵抗発熱体を形成する場合、 抵抗発熱体は、 力!] 熱面の反対側の面から厚さ方向に 6 0 %以下の位置に形成されていることが望ま しい。 6 0 %を超えると、 加熱面に近すぎるため、 上記セラミック基板内を伝搬 する熱が充分に拡散されず、 加熱面に温度ばらつきが発生してしまうからである。 また、 セラミック基板の内部に抵抗発熱体を形成する場合、 抵抗発熱体形成層 を複数層設けてもよい。 この場合は、 各層のパターンは、 相互に補完するように どこかの層に抵抗発熱体が形成され、 加熱面の上方から見ると、 どの領域にもパ ターンが形成されている状態が望ましい。 このような構造としては、 例えば、 互 いに千鳥の配置になっている構造が挙げられる。
なお、 抵抗発熱体をセラミック基板の内部に設け、 かつ、 その抵抗発熱体を一 部露出させてもよい。
また、 セラミック基板の内部に抵抗楽熱体が形成されている場合は、 抵抗発熱 体の厚さは、 1〜5 0 μ πιが好ましく、 抵抗宪熱体の幅は、 5〜2 0 mmが好ま しい。
抵抗発熱体は、 その幅や厚さにより抵抗値に変化を持たせることができるが、 上記した範囲が最も実用的である。 抵抗値は、 薄く、 また、 細くなる程大きくな る。 抵抗発熱体は、 セラミック基板の内部に形成した場合の方が、 厚み、 幅とも 大きくなるが、 抵抗宪熱体を内部に設けると、 加熱面と抵抗発熱体との距離が短 くなり、 表面の温度の均一性が低下するため、 抵抗発熱体自体の幅を広げる必要 があること、 内部に抵抗発熱体を設けるために、 窒化物セラミック等との密着性 を考慮する必要性がないため、 タングステン、 モリプデンなどの高融点金属ゃタ ングステン、 モリブデンなどの炭化物を使用することができ、 抵抗値を高くする ことが可能となるため、 断線等を防止する目的で厚み自体を厚くしてもよい。 そ のため、 抵抗発熱体は、 上記した厚みや幅とすることが望ましい。
また、 上記抵抗発熱体のァスぺクト比は 2 0 0〜 5 0 0 0とすることが望まし い。
抵抗亮熱体は、 セラミック基板の内部に形成した場合の方が、 アスペク ト比が 大きくなるが、 これは、 抵抗発熱体を内部に設けると、 加熱面と抵抗発熱体との 距離が短くなり、 表面の温度均一性が低下するため、 抵抗発熱体自体を偏平にす る必要があるからである。
なお、 抵抗発熱体をセラミック基板の内部に形成する場合には、 抵抗発熱体表 面が酸化されることがないため、 被覆は不要である。 抵抗発熱体をセラミック基 板内部に形成する場合、 抵抗宪熱体の一部が表面に露出していてもよく、 抵抗発 熱体を接続するためのスルーホールが端子部分に設けられ、 このスルーホールに 端子が接続、 固定されていてもよい。
なお、 上記以外の第五の本発明のセラミックヒータの形状、 材質等に関しては、 第三の本発明のセラミックヒータと同様であるため、 その説明を省略することと する。
次に、 第六の本発明を構成するホットプ I ^一トュニットの材質や形状等につい て説明することとする。
第六の本発明のホットプレートュ-ットを構成する保護部材は、 第四の本発明 のホットプレートユニットと同様に、 セラミック、 金属、 耐熱性樹脂等からなる ことが望ましく、 特に、 耐食性を有する材料からなることが好ましい。
また、 上記保護部材は、 外部端子、 配線等を保護できる形状であれば特に限定 されないが、 上記セラミック基板と同様に、 平面視が円形であることが好ましい。 セラミック基板と同様の形状とすることにより、 セラミック基板の加熱面に温度 のばらつきが発生するおそれ少なくすることができるからである。
さらに、 上記保護部材の厚さは、 0 . l〜1 0 mmが望ましい。
0 . 1 mm未満では、 保護部材が薄すぎるため、 外部端子、 配線等を充分に保 護することができず、 1 0 mmを超えると、 熱容量が大きくなり、 昇温速度が低 下するおそれがある,からである。
なお、 セラミック基板の内部に抵抗榮熱体を形成する場合、 保護部材において は、 セラミック基板の表面に抵抗発熱体を形成する場合と異なり、 抵抗発熱体が セラミック基板の内部に形成されているため、 抵抗発熱体を保護するための凹部 を形成する必要がない。
なお、 上記以外の第六の本発明のホットプレートユニッ トの形状、 材質等に関 しては、 第四の本発明のホットプレートユニットと同様であるため、 その説明を 省略することとする。
次に、 第三の本発明のセラミックヒータおよび第四の本発明のホットプレート ュニットの製造方法の一例について図 2 0に基づいて説明する。
( 1 ) セラミック基板の作製工程
上述した窒化アルミニゥムゃ炭化珪素などの窒化物等のセラミックの粉末に必 要に応じてイットリア (Y 203) や B 4 C等の焼結助剤、 N a、 C aを含む化合 物、 バインダ等を配合してスラリーを調製した後、 このスラリーをスプレードラ ィ等の方法で顆粒状にし、 この顆粒を金型に入れて加圧することにより板状など に成形し、 生成形体 (グリーン) を作製する。
次に、 この生成形体を加熱、 焼成して焼結させ、 セラミック製の板状体を製造 する。 この後、 所定の形状に加工することにより、 セラミック基板 1 0 1 1を作 製するが、 焼成後にそのまま使用することができる形状としてもよい。 加圧しな がら加熱、 焼成を行うことにより、 気孔のないセラミック基板 1 0 1 1を製造す ることが可能となる。 加熱、 焼成は、 焼結温度以上であればよいが、 窒化物セラ ミックゃ炭化物セラミックでは、 1 0 0 0〜 2 5 0 0。Cである。 また、 酸化物セ ラミックでは、 1 5 0 0〜2 0 0 0 °Cである。
さらに、 ドリル加工を実施し、 熱電対などの測温素子を埋め込むための有底孔 1 0 1 4、 リフターピンを挿通するための貫通孔 1 0 1 5を形成する。 (図 2 0 ( a ) 参照) 。
( 2 ) セラミック基板に導体ペース トを印刷する工程
導体ペーストは、 一般に、 金属粒子、 樹脂、 溶剤からなる粘度の高い流動物で ある。 この導体ペーストをスクリーン印刷などを用い、 抵抗発熱体 1 0 1 2を設 けようとする部分に印刷を行うことにより、 導体ペースト層を形成する。
導体ペースト層は、 焼成後の抵抗発熱体 1 0 1 2の断面が、 方形で、 偏平な形 状となるように形成することが望ましい。
( 3 ) 導体ペース トの焼成
セラミック基板 1 0 1 1の底面に印刷した導体ペースト層を加熱焼成して、 樹 脂、 溶剤を除去するとともに、 金属粒子を焼結させ、 セラミック基板 1 0 1 1の 底面に焼き付け、 抵抗発熱体 1012を形成する (図 20 (b) 参照) 。 加熱焼 成の温度は、 500〜: L 000°Cが好ましい。
導体ペースト中に上述した酸ィ匕物を添加しておくと、 金属粒子、 セラミック基 板おょぴ酸化物が焼結して一体化するため、 抵抗発熱体 1012とセラミック基 板 101 1との密着性が向上する。
(4) 金属被覆層の形成
次に、 抵抗発熱体 1012表面に、 金属被覆層 (図示せず) を形成する。 金属 被覆層は、 電解めつき、 無電解めつき等により形成することができるが、 量産性 を考慮すると、 無電 ί¾早めつきが最適である。
(5) ネジ穴の形成
次に、 セラミック基板 101 1の底面に、 外部端子 1013を固定するための ネジ穴 1016を形成する (図 15参照) 。 ネジ穴 1016は、 ドリル加ェ等に より有底孔を形成した後、 有底孔の內壁面にネジ溝を設けることにより形成する ことができる。
なお、 ネジ穴 1016は、 外部端子をねじ込んだ場合に、 抵抗発熱体と外部端 子とが電気的接続を図れるような位置に形成されていればよいが、 図 15に示す ように、 抵抗発熱体 1012の両端部に抵抗発熱体 1012を貫通するように形 成されていることが望ましい。 より確実に、 外部端子 1013と抵抗発熱体 10 1 2とを接続することができるからである。
(6) 保護部材の製造
次に、 セラミック基板 1011に形成される抵抗発熱体 1012、 外部端子 1 01 3および配線 101 7を保護するための保護部材 1019を製造する。 保護部材 1019としてセラミック製のものを用いる場合、 窒化アルミニウム 等のセラミック粉末等を成形したものを加熱温度 1000〜 2000 °C、 常温で 焼結させ、 板状体を製造した後、 上記板状体に、 サンドプラスト等のブラスト処 理等により抵抗発熱体 1012、 外部端子 1013を保護するための凹部を形成 し、 ドリル加工等により、 配線 1017を揷通するための貫通孔を形成すること により製造する。 なお、 上記板状体の成形時に、 両端部が閉塞したパイプ状のセ ラミック製部材を埋め込み、 焼成した後、 この両端部と連通するように、 板状体 の上面側およぴ下面側からドリル加ェ等により穿孔することで、 図 16に示す保 護部材 101 9のような貫通孔を形成することができる。
このような貫通孔を形成することにより、 セラミック基板 101 1の外周部分 の近傍に配設された外部端子 1013からの配線を接合部材 1029の内部に収 容することができる。
また、 上記板状体は、 フッ素樹脂等の耐熱性樹脂を成形することによつても製 造することができる。 さらに、 セラミック基板に外部端子等を設置した後、 液状 の樹脂を底面に塗布等することにより樹脂の層を形成し、 これを硬化させること により保護部材 1019を形成してもよい。 この場合には、 接着剤等を必要とし ない。
(7) 接合部材の製造、 取り付け
そして、 配線 1017を保護するための接合部材 1029を製造し、 (6) の 工程で形成された保護部材 1019に接合部材 1029を無機接着剤等を用いて 接合する。
接合部材 1029は、 窒化アルミニウム等のセラミック粉末を筒状成形型に入 れて成形し、 必要に応じて切断加工する。 これを加熱温度 1000-2000°C. 常温で焼結させてセラミック製の接合部材 1029を製造する。 なお、 上記接合 部材 1029は、 耐熱性樹脂を成形することによつても製造することができる。
(8) 外部端子等の取り付け
次に、 外部電源と接続されている配線 1017を、 保護部材 1019に形成さ れた貫通孔に挿通するとともに、 外部端子 1013に設けられた貫通孔 1013 bにも揷通した後、 外部端子 1013を抵抗発熱体 1012のパターンの端部に 形成されたネジ穴 1016にねじ込むことにより、 外部端子 1013をセラミツ ク基板 1011に取り付ける。 これにより、 外部端子 1013と抵抗発熱体 10 1 2とが電気的に接続される。
(9) 保護部材の設置
次に、 接合部材 1029が取り付けられた保護部材 1019をセラミック基板 101 1の底面に接着することにより、 セラミック基板 101 1の底部に保護部 材 1019を設置する (図 20 (d) 参照) 。 上記接着は、 シリカゾル、 アルミ ナゾル等の無機接着剤、 シリコーン樹脂、 ポリイミド樹脂等からなる耐熱性接着 剤等を用いることにより行う。 また、 セラミック基板 1 0 1 1と保護部材 1 0 1
9との接着においては、 一定の圧力でセラミック基板 1 0 1 1に押しつけること により接着することが望ましい。
このように押圧した状態で接着することにより、 セラミック基板 1 0 1 1と保 護部材 1 0 1 9との間に生ずる隙間を少なくすることが可能となるため、 より強 固に両者を接着することができるからである。
また、 セラミック基板 1 0 1 1に外部端子 1 0 1 3、 配線 1 0 1 7を取り付け た後、 ポッティング処理等を用いて、 耐熱性樹脂からなる保護部材 1 0 1 9を直 接セラミック基板 1 0 1 1の底面 1 0 1 1 bに直接形成してもよい。 この場合、 上記保護部材 1 0 1 9の厚さは、 均一な厚さとすることが望ましい。
このような工程を経てホットプレートュ-ット 1 1 0 0の製造を完了する。 以上、 ホットプレートユニットについて説明したが、 第四の本発明のホットプ レートュニットの一部であるセラミックヒータは、 セラミック基板の表面または 内部に抵抗発熱体を設けるとともに、 セラミック基板の内部に静電電極を設ける ことにより静電チャックとすることができる。 また、 表面にチャックトップ導体 層を設け、 内部にガード電極やグランド電極を設けることにより、 ウェハプロ一 バに使用されるチャック トップ板とすることができる。
次に、 第五の本努明のセラミックヒータおよび第六の本発明のホットプレート ュニットの製造方法の一例について図 2 1に基づいて説明することとする。
( 1 ) セラミック基板の作製工程
まず、 窒化物セラミック等のセラミックの粉末をバインダ、 溶剤等と混合して ペーストを調製し、 これを用いてグリーンシート 1 3 0 0を作製する。
上述した窒化物等のセラミック粉末としては、 窒化アルミニウム等を使用する こと力 Sでき、 必要に応じて、 イットリア等の焼結助剤、 N a、 C aを含む化合物 等を加えてもよい。
また、 バインダとしては、 ァクリル系パインダ、 ェチ /レセ /レロース、 プチルセ 口ソルブ、 ポリビニルアルコールから選ばれる少なくとも 1種が望ましい。 さらに溶媒としては、 α—テルビネオール、 グリコールから選ばれる少なくと も 1種が望ましい。
これらを混合して得られるペーストをドクターブレード法でシート状に成形し てグリーンシートを作製する。
グリーンシートの厚さは、 0. 1〜 5 mmが好ましい。
( 2 ) グリーンシート上に導体ペーストを印刷する工程
グリ一ンシート 1 3 0 0上に、 抵抗発熱体 1 0 3 2を形成するための金属ぺー ストまたは導電性セラミックを含む導体ペーストを印刷し、 導体ペースト層 1 3 2 0を形成し、 貫通孔にスルーホール 1 0 4 0用の導体ペースト充填層 1 4 0 0 を形成する。
これらの導電ペースト中には、 タングステン粒子、 モリプデン粒子等の金属粒 子またはタングステンカーバイト粒子等の導電性セラミック粒子が含まれている。 タングステン粒子またはモリプデン粒子の平均粒子径は、 0. 1〜 1 0 μ mが 好ましい。 平均粒子が 0. 未満である力、、 を超えると、 導体ぺー ストを印刷しにくいからである。
このような導体ペーストとしては、 例えば、 金属粒子または導電性セラミック 粒子 8 5 ~ 8 7重量部;ァクリル系、 ェチルセルロース、 ブチルセ口ソルプ、 ポ リビニルアルコールから選ばれる少なくとも 1種のバインダ 1. 5〜1 0重量部 ;および、 ct—テルビネオール、 グリコールから選ばれる少なくとも 1種の溶媒 を 1. 5〜1 0重量部混合した組成物 (ペース ト) が挙げられる。
( 3) グリーンシートの積層工程
導体ペーストを印刷していないグリーンシート 1 3 0 0を、 導体ペーストを印 刷したグリーンシート 1 3 0 0の上側に積層する (図 2 1 ( a ) 参照) 。
このとき、 導体ペーストを印刷したダリーンシート 1 3 0 0が積層したダリー ンシートの厚さに対して、 底面から 6 0 %以下の位置になるように積層する。 具体的には、 上側のグリーンシートの積層数は 2 0〜 5 0枚が好ましい。
(4) グリーンシート積層体の焼成工程
グリーンシート積層体の加熱、 加圧を行い、 グリーンシートおよび内部の導体 ペーストを焼結させる。
また、 加熱温度は、 1 0 0 0〜 2 0 0 0°Cが好ましく、 加圧の圧力は、 1 0〜 2 OMP aが好ましい。 加熱は、 不活性ガス雰囲気中で行う。 不活性ガスとして は、 例えば、 アルゴン、 窒素などを使用することができる。
次に、 得られた焼結体に、 熱電対などの測温素子を埋め込むための有底孔 10
34、 リフターピンを揷通するための貫通孔 1035、 抵抗発熱体 1032を外 部端子 1033と接続するためのスルーホール 1040等を形成する。 (図 21
(b) 参照)
上述の有底孔 1034や貫通孔 1035を形成する工程は、 上記グリーンシー ト積層体に対して行ってもよいが、 上記焼結体に対して行うことが望ましい。 焼 結過程において、 変形するおそれがあるからである。
なお、 有底孔 1034、 貫通孔 1035は、 表面研磨後に、 ドリル加工等によ り形成することができる。
(5) ネジ穴の形成
次に、 スルーホール 1040の底面に、 外部端子 1033を固定するためのネ ジ穴 1036を形成する (図 21 (c) 参照) 。 ネジ穴 1036は、 ドリル加工 等により、 スルーホール 1040の底面に有底孔を形成した後、 この有底孔の壁 面にネジ溝を切ることにより、 形成することができる。
(6) 保護部材の製造
次に、 セラミック基板 1031に配設される外部端子 1033、 配線 1017 を保護するための保護部材 1039を製造する。 保護部材の製造方法は、 第三、 第四の本発明の場合とほぼ同様であるため、 ここではその説明を省略する。
(7) 接合部材の製造、 取り付け
そして、 配線 1017を保護するための接合部材 1029を製造し、 (6) の 工程で形成された保護部材 1039に接合部材 1029を、 無機接着剤等を用い て接合する。
接合部材 1029は、 第三、 第四の本発明で説明したものと同様に構成されて いるため、 ここではその詳しい説明を省略する。
窒化アルミニウム等のセラミック粉末を筒状成形型に入れて成形し、 必要に応 じて切断加工する。 これを加熱温度 1000〜 2000°C、 常温で焼結させてセ ラミック製の接合部材 1029を製造する。 なお、 上記接合部材 1029は、 耐 熱性樹脂を成形することによつても製造することができる。
(8) 外部端子等の取り付け
外部電源と接続されている配線 1017を保護部材 1039に形成された貫通 孔に揷通するとともに、 外部端子 1033に設けられた貫通孔 1033 bにも揷 通した後、 外部端子 1033をスルーホール 1040の底面に形成されたネジ穴 1036にねじ込むことにより、 外部端子 1033をセラミック基板 1031に 取り付ける。 これにより、 外部端子 1033がスルーホール 1040を介して、 抵抗発熱体 1032と接続されることとなる。
(9) 保護部材の設置
次に、 接合部材 1029が取り付けられた保護部材 1039をセラミック基板 1031に接着する (図 21 (d) 参照) 。 上記接着は、 シリカゾル、 アルミナ ゾル等の無機接着剤、 シリコーン樹脂、 ポリイミ ド樹脂等からなる耐熱性接着剤 等を用いることにより行う。 また、 セラミック基板 1031と保護部材 1039 との接着においては、 一定の圧力でセラミック基板 1031に押し付け、 その状 態で接着することが望ましい。
このように押圧した状態で接合することにより、 セラミック基板 1031と保 護部材 1039との間に生ずる隙間を少なくすることが可能となるため、 より強 固に両者を接合することができるからである。
また、 セラミック基板 1031に、 外部端子 1033、 配線 1017を取り付 けた後、 ポッティング処理等を用いて、 耐熱性樹脂からなる保護部材 1039を 直接セラミック基板 1031の底面 1031 bに直接設置してもよい。 この場合、 上記保護部材 1039の厚さは、 均一な厚さとすることが望ましい。
このような工程を経てホットプレートュニット 1 200の製造を完了する。 発明を実施するための最良の形態
以下に実施例を掲げて本発明を更に詳しく説明するが、 本発明はこれら実施例 のみに限定されるものではない。
(実施例 1) ホットプレートの製造 (図 1、 2および図 12参照)
(1) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径 1. 1 μπι) 100重 量部、 酸化イットリウム (Y203:イットリア、 平均粒径 0. 4 /xm) 4重量 部、 アタリル系樹月旨バインダ (共栄社製 商品名 KC— 600 酸価 1 0KOH mg/g) 1 1. 5重量部、 分散剤 0. 5重量部および 1—プタノールとェタノ ールとからなるアルコール 5 3重量部を混合したペーストを用い、 ドクターブレ ード法により成形を行って、 厚さ 0. 47mm、 辺が 42 OmmX 4 2 Ommの グリーンシート 1 1 0を作製した。
(2) 次に、 このグリーンシート 1 10を 80 Cで 5時間乾燥させた後、 図 1 に示すようなシリコンウェハを運搬等するためのリフターピンを揷入するための 貫通孔 1 5となる部分、 バイァホールとなる部分 1 60、 および、 スルーホール となる部分 1 30、 1 3 0' をパンチングまたはドリル加工により形成した。
(3) 平均粒径 1 At mのタングステンカーバイト粒子 100重量部、 アクリル 系バインダ 3. 0重量部、 α—テルピネオール溶媒 3. 5重量部および分散剤 0. 3重量部を混合して導体ペーストを調整した。
この導体ペーストをパイァホールとなる部分 1 60を形成したグリーンシート 上にスクリーン印刷で印刷し、 抵抗楽熱体用の導体ペースト層 120を形成した。 印刷パターンは、 図 2に示したような同心円状と円周方向に分割した円弧状とを 組み合わせたパターンとし、 導体ペースト層 1 20の幅を 1 Omm、 その厚さを 1 2 μ mとした。
続いて、 導体ペーストをスルーホールとなる部分 1 30, を形成したダリーン シート上にスクリーン印刷で印刷し、 導体回路用の導体ペースト層 180を形成 した。 印刷の形状は帯状とした。
また、 導体ペーストを、 バイァホールとなる部分 1 60およびスルーホールと なる部分 1 30、 1 30' に充填した。
上記処理の終わった導体ペースト層 1 20を印刷したグリーンシートの上に、 導体ペーストを印刷していないグリーンシートを 24枚重ね、 その下に、 導体べ 一スト層 1 80を印刷したグリーンシートを重ねた後、 更にその下に、 導体ぺー ストを印刷していないグリーンシートを 8枚重ねて、 1 30°C、 8 MP aの圧力 で積層した。
(4) 次に、 得られた積層体を窒素ガス中、 600°Cで 5時間脱脂し、 1 8 9 0°C、 圧力 1 5MP aで 1 0時間ホットプレスし、 厚さ 1 2mmの窒化アルミ二 ゥム板状体を得た。
これを 3 3 Ommの円板状に切り出し、 内部に厚さ 6 μπι、 幅 1 0mmの抵抗 発熱体 1 2、 厚さ 20 /zm、 幅 1 Ommの導体回路 1 8、 バイァホール 1 6およ ぴスルーホール 1 3、 1 3' を有するセラミック基板 1 1とした。
(5) 次に、 (4) で得られたセラミック基板 1 1を、 ダイヤモンド砥石で研 磨した後、 N2ガス中、 1 8 0 0°C、 常圧で 1時間加熱した。
(6) ドリル加工により熱電対のための有底孔 1 4を設けた。
そして、 セラミック基板 1 1に形成されたスルーホール 1 3、 1 3' の底面に ドリル加工により有底孔を形成した後、 この有底孔にネジ溝を設けて、 ネジ穴 1 9を形成した。
(7) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径 1. 1 μχη) 1 0 0重 量部、 アタリル系樹脂パインダ 1 1. 5重量部、 分散剤 0. 5重量部おょぴ 1一 プタノールとェタノ一ルとからなるアルコール 5 3重量部を混合した組成物を用 い、 スプレードライ法により顆粒を製造し、 この顆粒を円筒状の金型に入れ、 常 圧、 1 8 90でで焼結させ、 長さ 20 Omm、 外径 4 5mm, 内径 3 5mmのセ ラミック体 1 7を製造した。
(8) セラミック基板 1 1の底面 1 1 bであって、 袋孔 1 9がその内径の内側 に収まるような位置に、 セラミック体 1 7の端面を接触させ、 1 8 9 0°Cに加熱 することで、 セラミック基板 1 1とセラミック体 1 7とを接合した。
(9) 次に、 スルーホール 1 3、 1 3' に形成したネジ穴 1 9に、 先^部にネ ジ溝が形成された外部端子 2 3をねじ込んだ後、 外部端子 2 3にソケット 3 1を 介して導電線 2 3 0を接続した。
( 1 0 ) そして、 温度制御のための熱電対を有底孔 1 4に挿入し、 シリカゾル を充填し、 1 9 0でで 2時間硬化、 ゲル化させることで、 その内部に抵抗発熱体、 導体回路、 バイァホールおよびスルーホールが設けられたセラミック基板の底面 に、 筒状のセラミック体が接合され、 上記セラミック基板がホットプレートとし て機能するセラミック接合体を製造した。
(実施例 2) ホットプレートの製造 (図 4、 5および図 1 3参照) JP2003/009026
65
( 1 ) 窒化アルミニウム粉末 (平均粒径: 0. 6 ^m) 100重量部、 イット リア (平均粒径: 0. 4 μηι) 4重量部、 アクリルバインダ (共栄社製 商品名 SA— 545 酸価 0. 5 KOHmg/g) 12重量部およびアルコールからな る組成物のスプレードライを行い、 顆粒状の粉末を作製した。
(2) 次に、 この顆粒状の粉末を金型に入れ、 平板状に成形して生成形体 (グ リーン) を得た。
(3) 次に、 この生成形体を 1800。C、 圧力: 2 OMP aでホットプレスし、 厚さが 3 mmの窒化アルミニゥム板状体を得た。
次に、 この板状体から直径 230mmの円板体を切り出し、 セラミック製の板 状体 (セラミック基板 5 1) とした。
(4) そして、 (3) で得られたセラミック基板 5 1を N2ガス中、 1800 °C、 常圧で 5時間加熱した。
(5) 次に、 このセラミック基板 51にドリル加工を施し、 シリコンウェハの リフターピン 8を挿入するリフターピン用貫通孔 55、 熱電対を埋め込むための 有底孔 54を形成した。 (図 1 3 (a) 参照)
(6) 上記 (5) で得たセラミック基板 51に、 スクリーン印刷にて導体ぺー スト層を形成した。 印刷パターンは、 図 6に示したような同心円の一部を描くよ うにして繰り返して形成された円弧パターンとした。
上記導体ペーストとしては、 平均粒子径 3 jumのタングステン粒子 100重量 部、 アクリル系バインダ 1. 9重量部、 α—テルビネオール溶媒 3. 7重量部、 分散剤 0. 2重量部からなる組成のものを使用した。
(7) さらに、 発熱体パターンの導体ペースト層を形成した後、 セラミック基 板 51を 780°Cで加熱、 焼成して、 導体ペースト中のタングステン粒子を焼結 させるとともにセラミック基板 51に焼き付け、 抵抗発熱体 52を形成した。 抵 抗楽熱体 52は、 厚さが 5 ^m、 幅が 2. 4mm, 面積抵抗率が 7. 7mQ/D であった。
(8) 硫酸ニッケル 80 g/ 1、 次亜リン酸ナトリゥム 24 gZl、 酢酸ナト リウム 12 g/1、 ほう酸 8 g/K 塩化アンモニゥム 6 gZlの濃度の水溶液 からなる無電解ニッケルめっき浴に上記 (7) で作製したセラミック基板 51を 浸漬し、 銀一鉛の抵抗発熱体 52の表面に厚さ 1 imの金属被覆層 (ニッケル層 ) 520を析出させた (図 13 (b) 参照) 。
(9) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径 1. 1 jam) 100重 量部、 アクリル系樹脂バインダ 11. 5重量部、 分散剤 0. 5重量部および 1一 プタノールとエタノールとからなるアルコール 53重量部を混合した組成物を用 い、 スプレードライ法により顆粒を製造し、 この顆粒を円筒状の金型に入れ、 常 圧、 窒素雰囲気、 1890°Cで焼結させ、 長さ 20 Omm、 外径 21 Omm, 內 径 1 90 mmのセラミック体 57を製造した。
(10) セラミック基板 51の底面 51 bであって、 全ての抵抗発熱体 52が、 その内径の内側に収まるような位置に、 セラミック体 57の端面を接触させ、 1
890°Cに加熱することで、 セラミック基板 51とセラミック体 57とを接合し た (図 13 (c) 参照) 。
(11) 次に、 電源との接続を確保するための外部端子 63を取り付ける部分 に、 スクリーン印刷により、 銀一鉛半田ペースト (田中貴金属社製) を印刷して 半田層 (図示せず) を形成した。
次いで、 半田層の上にコバール製の外部端子 63を载置して、 420°Cで加熱 リフローし、 外部端子 63を抵抗発熱体 52の表面に取り付けた (図 13 (d) 参照) 。
(12) そして、 セラミック体 57と抵抗発熱体 52との間の隙間おょぴ温度 制御のための熱電対 (図示せず) をポリイミドで封止し、 ホットプレート 50を 得た。
(実施例 3) 静電チャックの製造 (図 6参照)
(1) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径 1. 1 im) 100重 量部、 酸化イットリウム (平均粒径 0. 4 μιη) 4重量部、 アクリル系樹脂バイ ンダ 12 (共栄社製 商品名 KC一 600 酸価 16 KLOHmg/g) 重量部、 分散剤 0. 5重量部および 1ーブタノールとエタノールとからなるアルコール 5 3重量部を混合した組成物を用い、 ドクターブレード法を用いて成形することに より厚さ 0. 47 mmのグリーンシートを得た。
(2) 次に、 このグリーンシートを 80°Cで 5時間乾燥した後、 何も加工を施 していないグリーンシートと、 パンチングまたはドリル加工を行い、 抵抗突熱体 と導体回路とを接続するためのバイァホール用貫通孔を設けたダリ一ンシートと、 導体回路と外部端子とを接続するためのバイァホール用貫通孔を設けたグリーン シートと、 静電電極と外部端子とを接続するためのスルーホール用貫通孔を設け たグリ一ンシートとを作製した。
( 3 ) 平均粒子径 1 μ πιのタングステンカーバイド粒子 1 0 0重量部、 アタリ ル系パインダ 3 . 0重量部、 一テルビネオール溶媒 3 . 5重量部、 分散剤 0 . 3重量部を混合して導体ペーストを調製した。
( 4 ) バイァホール用貫通孔を設けたグリーンシートの表面に、 導体ペースト をスクリーン印刷法により印刷し、 抵抗発熱体となる導体ペースト層を印刷した。 また、 導体回路と外部端子とを接続するためのスルーホール用貫通孔を設けたグ リーンシートの表面に、 上記導電性ペーストをスクリーン印刷法により印刷し、 導体回路となる導体べ一スト層を印刷した。 更に、 何も加工を施していないダリ ーンシートに図 7に示した形状の静電電極パターンからなる導体ペースト層を形 成した。
更に、 抵抗発熱体と導体回路とを接続するためのバイァホール用貫通孔と外部 端子を接続するためのスルーホール用貫通孔に導体ペーストを充填した。
次に、 上記処理の終わった各グリーンシートを積層した。
まず、 抵抗発熱体となる導体ペースト層が印刷されたグリーンシートの上側 ( 加熱面側) に、 スルーホール 7 3となる部分のみが形成されたグリーンシートを 3 4枚積層し、 そのすぐ下側 (底面側) に導体回路となる導体ペースト層が印刷 されたグリーンシートを積層し、 さらに、 その下側にスルーホール 7 3、 7 3 0、 7 3 0 ' となる部分が形成されたグリーンシートを 1 2枚積層した。
このように積層したグリーンシートの最上部に、 静電電極パターンからなる導 体ペースト層を印刷したグリーンシートを積層し、 さらにその上に何の加工もし ていないグリーンシートを 2枚積層し、 これらを 1 3 0 °C、 8 MP aの圧力で圧 着して積層体を形成した。
( 5 ) 次に、 得られた積層体を不活性ガス中、 6 0 0 °Cで 5時間脱脂し、 その 後、 1 8 9 0 °C、 圧力 1 5 MP aの条件で 3時間ホットプレスし、 厚さ 1 8 mm 3009026
68
のセラミック基板 7 1を得た。
これを直径 23 Ommの円板状に切り出し、 内部に、 厚さが 5 μπι、 幅が 2 · 4mmの抵抗発熱体 720、 厚さが 20 μ m、 幅が 1 Onimの導体回路 780お よび厚さ 6 μΐηのチャック正極静電層 72 a、 チャック負極静電層 72 bを有す るセラミック基板 71とした。
(6) 次に、 (5) で得られたセラミック基板 71を N2ガス中、 1 800°C、 常圧で 3時間加熱した。
(7) 次に、 セラミック基板 71を、 ダイヤモンド砥石で研磨した後、 マスク を载置し、 ガラスビーズによるプラスト処理で表面に熱電対のための有底孔 70 0を設け、 セラミック基板 71の底面 71 bで、 スルーホール 73、 73' が形 成されている部分をえぐりとって袋孔 790を形成した。
(8) 窒ィ匕アルミニウム粉末 (トクャマ社製、 平均粒径 1. l /xm) 100重 量部、 アタリル系樹脂バインダ 1 1. 5重量部、 分散剤 0. 5重量部おょぴ 1一 プタノールとエタノールとからなるアルコール 53重量部を混合した組成物を用 い、 スプレードライ法により顆粒を製造し、 この顆粒をパイプ状の金型に入れ、 常圧、 1890°Cで焼結させ、 長さ 20 Omm、 外径 45mm、 内径 35 mmの セラミック体 77を製造した。
(9) セラミック基板 71の底面 71 bであって、 袋孔 79がその内径の内側 に収まるような位置に、 端面に酸化イットリウム (Y2O3) を含む接着剤を塗 布したセラミック体 77の上記端面を接触させ、 1890°Cに加熱することで、 セラミック基板 71とセラミック体 77とを接合した。
(10) 次に、 セラミック体 77の内部の袋孔 790に、 銀ろう (Ag : 40 重量%、 Cu : 30重量%、 Z n : 28重量%、 N i : 1. 8重量%、 残部:そ の他の元素、 リフロー温度: 800°C) を用いて、 外部端子 760を取り付けた。 そして、 外部端子 760にソケット 750を介して導電線 731を接続した。
(1 1) そして、 温度制御のための熱電対を有底孔 700に揷入し、 シリカゾ ルを充填し、 190°Cで 2時間硬化、 ゲル化させることで、 その内部に静電電極、 抵抗発熱体、 導体回路、 バイァホールおよびスルーホールが設けられたセラミツ ク基板の底面に、 筒状のセラミック体が接合され、 上記セラミック基板が静電チ 09026
69
ャックとして機能するセラミック接合体を製造した。
(実施例 4 )
実施例 1の ( 5 ) の工程で、 加熱時間を 30分とした以外は、 実施例 1と同様 にして、 ホットプレートを製造した。
(実施例 5 )
実施例 1の (1) の工程で混合するアクリル樹脂バインダを 3. 1重量部とし、 (5) の工程での加熱時間を 30分とした以外は、 実施例 1と同様にして、 ホッ トプレートを製造した。
(実施例 6 )
実施例 1の (1) の工程で混合するアクリル樹脂バインダを 80. 5重量部と し、 ( 5 ) の工程での加熱時間を 6時間とした以外は、 実施例 1と同様にして、 ホットプレートを製造した。
(比較例 1 )
実施例 1の (1) 〜 (4) の工程を行うことにより、 セラミック基板を製造し た後、 得られたセラミック基板について、 (5) のカーボン不均一化工程を行わ なかった以外は、 実施例 1と同様にして、 ホットプレートを製造した。
(比較例 2 )
実施例 2の (1) 〜 (3) の工程を行うことにより、 セラミック基板を製造し た後、 得られたセラミック基板について、 (4) のカーボン不均一化工程を行わ なかった以外は、 実施例 2と同様にして、 ホットプレートを製造した。
(比較例 3 )
実施例 3の (1) 〜 (5) の工程を行うことにより、 セラミック基板を製造し た後、 得られたセラミック基板について、 (5) のカーボン不均一化工程を行わ なかった以外は、 実施例 3と同様にして、 静電チャックを製造した。
実施例 1〜6および比較例 1〜3に係るセラミック接合体について、 以下の評 価試験を行った。 その結果を下記の表 1に示す。
(1) カーボン濃度の測定
セラミック基板の表面近傍および内部から採取した試料片を粉砕し、 これを 5 00〜800°Cで加熱した際に、 発生する COx ガスを捕集することによりカー ポン濃度を測定した。 具体的には、 J I S Z 2615に基づき、 カーボン濃 度を測定した。
(2) 明度の測定
J I S Z 8721の規定に基づき、 マンセル色調票のチャートより、 セラ ミック接合体の明度を測定した。
(3) ウェハ温度の測定
ウェハをセラミック接合体上に、 支持ピンを介してセラミック基板表面から 2 00 jt m離間した状態となるように载置した後、 真空中、 400°C設定で加熱し、 ウェハの温度を熱電対で測定した。
(4) 破壌強度の測定
曲げ強度試験を行い、 セラミック体とセラミック基板との接合面の破壌強度を 測定した。
(5) ヒートサイクル試験
25 °Cに保持した後、 450°Cに加熱する過程を繰り返すヒートサイクル試験 を 500回行い、 セラミック体とセラミック基板との接合部におけるクラックの 発生の有無を確認した。
(6) 配線等の腐食の有無
実施例おょぴ比較例に係るセラミック接合体を、 腐食性ガスの導入が可能な容 器を備え、 かつ、 上記セラミック接合体を構成するセラミック体の内部が気密状 態となるように設置することが可能な装置に設置し、 CF4ガス雰囲気で 300 まで昇温した後における、 セラミック接合体の配線等の腐食状態を目視により 観察した。
なお、 セラミック体の内部には、 不活性ガスとして、 N2ガスを導入した。 表 1
Figure imgf000072_0001
上記表 1に示した結果より明らかなように、 実施例 1〜6に係るセラミック接 合体では、 破壊強度試験おょぴヒートサイクル試験のいずれの場合においても、 充分に大きな接合強度を有し、 また、 これらのセラミック接合体のセラミック体 内部に配設された配線等は、 C F 4ガスにより腐食されることはなかった。 これ は従来と遜色がない。
また、 明度も 6以下と低く、 隠蔽性にすぐれている。 さらに、 輻射熱も利用で きる。
これは、 実施例 1〜6に係るセラミックヒータでは、 セラミック基板中に含有 されるカーボンのセラミック基板の表面近傍における濃度 (8 0 0 p p m以下) が、 セラミック基板の内部における濃度と比較して低いものであるため、 セラミ ック体およびセラミック基板の接合面において、 焼結助剤の拡散がカーボンの存 在により妨げられることがなく、 両者の界面において良好にセラミック粒子の粒 成長が起こるとともに、 焼結助剤が助剤としての作用を充分に維持することがで きるため、 上記セラミック基板と上記セラミック体とを強固に接合することがで きるものと考えられた。
(実施例 7) ホットプレートユニット (図 14、 1 6および図 20参照) の製 造
(1) 窒化アルミニウム粉末 (平均粒径: 0. 6 μτη) 1 00重量部、 イット リア (平均粒径: 0. 4 zm) 4重量部、 アクリルバインダ 1 2重量部おょぴァ ルコールからなる組成物のスプレードライを行い、 顆粒状の粉末を作製した。
(2) 次に、 この顆粒状の粉末を金型に入れ、 平板状に成形して生成形体 (グ リーン) を得た。
(3) 次に、 この生成形体を 1 800°C、 圧力: 2 OMP aでホットプレスし、 厚さが 3 mmの窒化アルミニウム板状体を得た。
次に、 この板状体から直径 2 3 Ommの円板体を切り出し、 セラミック製の板 状体 (セラミック基板 1 0 1 1) とした。 このセラミック基板 1 0 1 1にドリル 加工を施し、 熱電対を埋め込むための有底孔 1 0 1 4およぴリフターピンを揷通 するための貫通孔を形成した (図 2 0 (a ) 参照) 。
(4) 上記 (3) で得たセラミック基板 1 0 1 1に、 スクリーン印刷にて導体 ペースト層を形成した。 印刷パターンは、 図 1 4に示したような、 同心円形状か らなる抵抗発熱体が複数形成されているパターンとした。
上記導体ペーストとしては、 A g 4 8重量0 /0、 P t 2 1重量0 /0、 S i O 21.
0重量%、 B 2032. 2重量%、 Z ηθ 4. 1重量%、 P b O 3. 4重量%、 酢酸ェチル 3. 4重量%、 プチルカルビトール 1 7. 9重量0 /0からなる組成のも のを使用した。
この導体ペーストは、 Ag— P tペーストであり、 銀粒子は、 平均粒径が 4. で、 リン片状のものであった。 また、 P t粒子は、 平均粒子径 0. 5 μπι の球状であった。
(5) さらに、 発熱体パターンの導体ペースト層を形成した後、 セラミック基 板 1 0 1 1を 7 80 Cで加熱、 焼成して、 導体ペースト中の Ag、 P tを焼結さ せるとともにセラミック基板 1 0 1 1に焼き付け、 抵抗発熱体 1 0 1 2を形成し た。 (図 20 (b) 参照) 抵抗発熱体 1 0 1 2は、 厚さが 5 111、 幅が 2. 4m m、 面積抵抗率が 7. 7ηιΩΖ口であった。 (6) 硫酸ニッケル 80 1、 次亜リン酸ナトリウム 24 g/ 1、 酢酸ナト リウム 12 g/ 1、 ほう酸 8 g/1、 塩化アンモニゥム 6 g/ 1の濃度の水溶液 からなる無電解ニッケルめっき浴に上記 (5) で作製したセラミック基板 101 1を浸漬し、 銀一鉛の抵抗発熱体 1012の表面に厚さ 1 /xmの金属被覆層 (二 ッケノレ層) を析出させた。
(7) 次に、 電源との接続を確保するための外部端子 101 3を取り付ける部 分に、
ドリル加工により、 外部端子 1013を接続するため直径 5mm、 深さ 5 mm の有底孔を設けた後、 有底孔の壁面に外部端子 1013を固定するためのネジ溝 を形成した (図 20 (c) 参照) 。 なお、 ネジ穴 1016は、 抵抗努熱体 101 2の両端部に、 抵抗発熱体 10 1 2を貫通するように形成した。
(8) 次に、 (1) の工程で使用したものと同様の粉末を使用して、 生成形体 を成形した後、 1800°C、 2 OMP aでホットプレスし、 セラミック基板 10 1 1の底面に取り付けるための円板体 (直径 210mm、 厚さ 15 mm) を製造 した。 なお、 成形時に両端部が閉鎖したパイプ状の窒化アルミニウム製部材を、 円板体の中心に近い部分に埋め込んだ。
そして、 この円板体をダイヤモンド砥石で研磨した後、 レジンボンド砥石によ る NC研削により、 抵抗発熱体 1012および外部端子 1013を納めるための 凹部を形成した。 なお、 形成された凹部は、 抵抗発熱体 1012および外部端子 101 3の大きさよりもわずかに大きいものであった。
また、 上記窒化アルミニウム製部材の両端部と連通するように、 円板体の上面 側および下面側からドリル加工により穿孔し、 図 16に示すような配線 101 7 を通すための貫通孔を形成し、 保護部材 1019とした。
なお、 この保護部材 1019は、 セラミック基板 1011の底面 1011 bの ほぼ全体を保護できるような形状とした。
(9) この後、 窒素化アルミニウム粉末 (平均粒径: 0. 6 / m) 100重量 部、 アクリルパインダ 12重量部およびアルコールからなる組成物のスプレード ライを行い、 顆粒状の粉末を作製した。 上記粉末をパイプ状の金型に入れ、 常圧、 1890°Cで焼結させ、 長さ 1 5 Omm、 Omm, 内径 45 mmの窒化ァ ルミニゥム製の接合部材 1 0 2 9を製造した。
その後、 (8) の工程で製造した保護部材 10 1 9に、 この接合部材 1 029 をセラミック接着剤 (東亜合成社製 ァロンセラミック) を用いて接合した。
(1 0) 次に、 保護部材 1 0 1 9に形成された貫通孔および外部端子 1 0 1 3 に設けられた貫通孔 101 3 bに外部電源と接続された配線 1 0 1 7を揷通した 後、 外部端子 1 0 1 3をネジ穴 1 0 1 6にねじ込み、 外部端子 1 0 1 3をセラミ ック基板 1 0 1 1に固定した。
そして、 保護部材 10 1 9の接合面にセラミック接着剤 (東亜合成社製 ァ口 ンセラミック) を塗布し、 セラミック基板 10 1 1と接合部材 1029が形成さ れた保護部材 10 1 9とを接合し、 ホットプレートュニット 1 100の製造を完 了した。
(実施例 8) ホットプレートユニット (図 1 7、 1 9およぴ図 21参照) の製 造
(1) 窒化アルミニウム粉末 (トクャマ社製、 平均粒径 0. 6 μΐη) 1 00重 量部、 アルミナ 4重量部、 アクリル系樹脂パインダ 1 1. 5重量部、 分散剤 0.
5重量部おょぴ 1—ブタノールとエタノールとからなるアルコール 53重量部を 混合したペーストを用い、 ドクターブレード法により成形を行って、 厚さ 0. 4 7 mmのグリーンシートを作製した。
(2) 次に、 このグリーンシートを 80°Cで 5時間乾燥させた後、 スルーホー ル 1 040となる部分をパンチングまたはドリル加工により形成した。
(3) 平均粒径 1 /zinのタングステンカーパイト粒子 1 00重量部、 アクリル 系バインダ 3. 0重量部、 α—テルビネオール溶媒 3. 5重量部および分散剤 0. 3重量部を混合して導体ペーストを調整した。
この導体ペーストをグリーンシート上にスクリーン印刷で印刷し、 抵抗発熱体 用の導体ペースト層 1 3 20を形成した。 印刷パターンは、 図 1 7に示すような パターンとした。
さらに、 外部端子 1033を接続するためのスルーホール 1 040となる部分 に導体ペーストを充填し、 充填層 1400を形成した。
上記処理の終わったグリーンシートに、 さらに、 導体ペーストを印刷していな いグリーンシートを上側 (加熱面) に 40枚積層し、 130°C、 8MP aの圧力 で圧着して積層体を形成した (図 21 (a) 参照) 。
(4) 次に、 得られた積層体を窒素ガス中、 600°Cで 5時間脱脂し、 189
0 、 圧力 15MP aで 10時間ホットプレスし、 厚さ 15mniのセラミック板 状体を得た。 これを 23 Ommの円板状に切り出し、 內部に厚さ 6 ^m、 幅 10 mmの抵抗発熱体 1032を有するとともに、 スルーホール 1040を有するセ ラミック板状体とした。
( 5 ) 次に、 ドリル加ェにより測温素子を揷通するための有底孔 1034およ びリフターピンを揷通させるための貫通孔 1035を設けた (図 21 (b) 参照 ) 。
(6) 次に、 スルーホール 1040の底面に、 プラスト処理により、 直径 5 m m、 深さ 5 mmの有底孔を形成した後、 この有底孔の内壁面にネジ溝を切ること により、 スルーホール 1040の底面にネジ溝を形成した (図 21 (c) 参照) 。
(7) 次に、 (1) の工程で使用したものと同様の粉末を使用して、 生成形体 を成形した後、 1800°C、 2 OMP aでホットプレスし、 直径 8 Omm、 厚さ
15 mmの円板体を製造した。 なお、 成形時に両端部が閉塞したパイプ状の窒化 アルミニウム製部材を埋め込んだ。
そして、 この円板体をダイヤモンド砲石で研磨した後、 レジンポンド砥石によ る NC研削により、 外部端子 1033を納めるための凹部を形成した。
また、 上記窒化アルミニウム製部材の両端部と連通するように、 円板体の上面 側および下面側からドリル加工により穿孔し、 図 19に示すような、 配線 101 7を通すための貫通孔を形成し、 保護部材 1039とした。
なお、 この保護部材 1039は、 セラミック基板 1031の底面 1031 bの ほぼ全体を保護するものではなく、 セラミック基板 1031の中心部付近に配設 された外部端子 101 3を保護できるような形状とした。
(8) そして、 (1) の工程で使用したものと同様の粉末をパイプ状の金型に 入れ、 常圧、 1890°Cで焼結させ、 長さ 15 Omm、 外径 5 Omm、 内径 45 mmの窒化アルミニウム製の接合部材 1029を製造した。
その後、 (7) の工程で製造した保護部材 1039に、 この接合部材 1029 をセラミック接着剤 (東亜合成社製 ァロンセラミック) を用いて接合した。
( 9 ) 次に、 保護部材 1 0 3 9に形成された貫通孔および外部端子 1 0 3 3に 設けられた貫通孔 1 0 3 3 bに外部電源と接続された配線 1 0 1 7を揷通した後、 外部端子 1 0 3 3をネジ穴 1 0 3 6にねじ込み、 外部端子 1 0 3 3をセラミック 基板 1 0 3 1に固定した。
そして、 保護部材 1 0 3 9の接合面にセラミック接着剤 (東亜合成社製 ァ口 ンセラミック) を塗布し、 セラミック基板 1 0 3 1と接合部材 1 0 2 9が形成さ れた保護部材 1 0 3 9とを接合し、 ホットプレートユニット 1 2 0 0の製造を完 了した。
(実施例 9 )
実施例 7の (1 ) 〜 (7 ) の工程を行った後、 外部端子 1 0 1 3に設けられた 貫通孔 1 0 1 3 bに外部電源と接続された配線 1 0 1 7を挿通し、 外部端子 1 0 1 3をネジ穴 1 0 1 6にねじ込み、 外部端子 1 0 1 3をセラミック基板 1 0 1 1 に固定した。
セラミック基板 1 0 1 1の底面で、 保護部材を形成する領域の外側に、 ポリテ トラフルォロエチレン製の樹脂流出防止用部材を載置した後、 その内側に、 ポリ ァミック酸を溶剤に溶かした液体を流し込み、 4 0 0 °Cで乾燥することにより、 セラミック基板 1 0 1 1の底面に、 ポリイミド樹脂からなる保護部材を形成した。 そして、 樹脂流出防止用部材を取り除いた後、 この保護部材にポリイミド樹脂 製の接合部材をポリアミック酸を主成分とする耐熱性接着剤により接合し、 ホッ トプレートユニットを製造した。 '
(実施例 1 0 )
実施例 8の (1 ) 〜 (6 ) の工程を行った後、 外部端子 1 0 3 3に設けられた 貫通孔 1 0 3 3 bに外部電源と接続された配線 1 0 1 7を挿通し、 外部端子 1 0 3 3をネジ穴 1 0 3 6にねじ込み、 外部端子 1 0 3 3をセラミック基板 1 0 3 1 に固定した。
セラミック基板 1 0 3 1の底面で、 保護部材を形成する領域の外側に、 ポリテ トラフルォロエチレン製の樹脂流出防止用部材を载置した後、 その内側に、 ポリ ァミック酸を溶剤に溶かした液体を流し込み、 4 0 0 °Cで乾燥することにより、 セラミック基板 1 0 3 1の底面に、 ポリイミド樹脂からなる保護部材を形成した。 そして、 樹脂流出防止用部材を取り除いた後、 この保護部材にポリイミ ド樹脂 製の接合部材をポリアミック酸を主成分とする耐熱性接着剤により接合し、 ホッ トプレートュニットを製造した。
(比較例 4 )
実施例 7の (1 ) 〜 (6 ) の工程を行った後、 抵抗発熱体の外部端子を取り付 ける部分に、 スクリーン印刷により、 銀一鉛半田ペースト (田中貴金属社製) を 印刷して半田層を形成した。
次いで、 半田層の上に断面視 T字形状でコバール製の外部端子を載置して、 4 2 0 °Cで加熱リフローし、 外部端子を抵抗発熱体の表面に取り付けることにより、 セラミック基板の底面に抵抗発熱体が形成されたホットプレートュニットを製造 した。
(比較例 5 )
実施例 8の (1 ) 〜 (5 ) の工程を行った後、 スルーホールの底面に N i— A uからなる金ろうを用い、 7 0 0 °Cで加熱リブローして、 断面視 T字形状でコパ ール製の外部端子を取り付けることにより、 セラミック基板の內部に抵抗発熱体 が形成されたホットプレートュニットを製造した。
実施例 7〜1 0および比較例 4、 5に係るホットプレートュニットについて、 以下の評価試験を行った。
( 1 ) ヒートサイクル試験後の接続の有無
実施例および比較例に係るホットプレートユニットに、 電圧を印加し、 8 0 0 °Cまで昇温した後、 室温まで降温させるヒートサイクル試験を 1 0 0 0回繰り返 し行い、 抵抗発熱体と外部端子との接続の有無を確認した。
また、 上記ヒートサイクル試験を行った後の外部端子付近の状態を目視にて観 察した。
( 2 ) 配線等の腐食状態
実施例おょぴ比較例に係るホットプレートュニットを、 腐食性ガスの導入が可 能な容器を備え、 かつ、 上記ホットプレートユニットを構成するセラミック体の 内部が気密状態となるように設置することが可能な装置に設置し、 1 0 0 O Wで プラズマ化した C F 4ガス雰囲気下に 2時間放置し、 酉線、 外部端子等の腐食状 態を調べた。
なお、 実施例 7〜1 0に係るホットプレートユニットについては、 上記試験の 際に、 接合部材の内部に窒素ガスを導入した。
その結果、 実施例 7〜 1 0に係るホットプレートュニットでは、 抵抗発熱体と 外部端子や配線との接続は確実に行われており、 外部端子付近の状態にも異常は 見られなかった。
また、 腐食性ガス雰囲気下に放置した場合であっても、 ホットプレートュ-ッ トを構成する外部端子、 配線等に腐食は見られなかった。
一方、 比較例 4、 5に係るホットプレートユニットでは、 外部端子と抵抗発熱 体やスルーホールとを接続するろう材が劣化し、 ヒートサイクル試験の途中で、 外部端子の脱落が見られた。
また、 腐食性ガス雰囲気下に放置した場合には、 外部端子、 配線の一部に C F 4ガスにより腐食している部分が観察された。 産業上の利用可能性
以上説明したように、 第一の本宪明のセラミック接合体は、 セラミック基板中 に含有されるカーボンのセラミック基板の表面近傍における濃度が、 セラミック 基板の內部における濃度と比較して低いものであるため、 セラミック体をセラミ ック基板と接触させて加熱し、 セラミック体に塗布された焼結助剤の拡散を利用 した接合や、 セラミック体とセラミック基板との焼結助剤の濃度差を利用した接 合を行った際、 セラミック体おょぴセラミック基板の接合面におけるセラミック 粒子の相対的な濃度が高くなることに起因して、 両者の界面において良好にセラ ミック粒子の粒成長が起こるため、 上記セラミック基板と上記セラミック体とを 強固に接合することができる。
また、 第二の本発明のセラミック接合体の製造方法は、 上述した通りであるの で、 セラミック基板内部のカーボン濃度については、 大きく変化させることなく、 セラミック基板の表面近傍のカーボン濃度のみを低下させることができるため、 耐腐食性および耐久性に優れるセラミック接合体を製造することができる。 また、 第三および第五の本発明のセラミック温調器によれば、 外部端子を介し て、 電源からの配線と回路との接続が図られ、 外部端子が回路端部に設けられた ネジ穴にねじ込まれて固定されているので、 長期間にわたって配線と回路との接 続を確実に行なうことができる。
また、 外部端子は、 ネジ穴にねじ込まれることにより、 物理的に固定されてい るため、 長期間使用した場合にも上記外部端子が外れることはなく、 耐久性およ ぴ信頼性に優れたセラミック温調器となる。
また、 第四および第六の本発明のセラミック温調ユニットによれば、 長期間使 用した場合でも、 外部端子や電源からの配線が外れることがなく、 回路と配線と の接続を確実に行うことができる。
また、 セラミック温調器の底面には、 保護部材が設置され、 その内部に配線が 収容されるとともに、 接合部材の内部に配線が収納されているため、 腐食性ガス 等に晒された場合であっても配線が腐食することはなく、 耐久性およぴ信頼性に 優れたセラミック温調ユニットとなる。

Claims

請求の範囲
1 . その表面または内部に導電体が設けられたセラミック基板にセラミック体 が接合されたセラミック接合体であって、
前記セラミック基板は、 カーボンを含有し、
前記セラミック基板の表面近傍におけるカーボンの濃度は、 前記セラミック基 板の内部におけるカーボンの濃度よりも低いことを特徴とするセラミック接合体。
2 . 前記導電体は、 抵抗発熱体であり、 ホットプレートとして機能する請求の 範囲 1に記載のセラミック接合体。
3 . 前記導電体は、 静電電極であり、 静電チャックとして機能する請求の範囲 1に記載のセラミック接合体。
4 . セラミック粉末とカーボンまたはカーボン原料となるものとを含むセラミ ック成形体を焼成してカーボンをほぼ均一濃度で含むセラミック基板を作製し、 得られたセラミック基板を常圧、 1 8 0 0〜2 0 0 0 °Ό、 Ν 2ガス雰囲気下で カーボン不均一化処理を行った後、
前記セラミック基板と前記セラミック体とを接合することを特徴とするセラミ ック接合体の製造方法。
5 . セラミック基板の表面または內部に温度調節のための回路が形成され、 前 記回路の端部に外部端子が接続されたセラミック温調器であって、
前記外部端子には、 ネジ溝が形成され、
電源からの配線と前記外部端子とが電気的に接続されるとともに、
前記外部端子が前記回路の端部に設けられたネジ穴にねじ込まれて固定され、 これにより、 前記外部端子を介して前記配線と前記回路との接続が図られてい ることを特徴とするセラミック温調器。
6 . 請求の範囲 5に記載のセラミック温調器と、 配線類を収納するための接合 部材と、 前記セラミック温調器底面の回路おょぴ外部端子を含む領域に設置され た保護部材とからなり、
前記保護部材の内部に電源からの配線が収容されるとともに、 前記保護部材を 介して底面に前記接合部材が接着され、
前記接合部材の内部に電源からの配線が収納されていることを特徴とするセラ ミック温調ュニット。
7 . セラミック基板の表面または内部に温度調節のための回路が形成され、 前 記回路の端部に外部端子が接続されたセラミック温調器であって、
前記外部端子には、 ネジ溝が形成されるとともに貫通孔が形成され、 前記セラミック基板の底部には、 前記回路と電気的に接触するネジ穴が設けら れ、
電源からの配線が前記外部端子の貫通孔を揷通した状態で、 前記外部端子が前 記ネジ穴にねじ込まれて固定され、
これにより、 前記外部端子を介して前記配線と前記回路との接続が図られてい ることを特徴とするセラミック温調器。
8 . 請求の範囲 7に記載のセラミック温調器と、 配線類を収納するための接合 部材と、 前記セラミック温調器底面の回路おょぴ外部端子を含む領域に設置され た保護部材とからなり、
前記保護部材の内部に電源からの配線が収容されるとともに、 前記保護部材を 介して接合部材が接着され、
前記接合部材の内部に電源からの配線が収納されていることを特徴とするセラ ミック温調ユニット。
PCT/JP2003/009026 2003-07-16 2003-07-16 セラミック接合体、セラミック接合体の製造方法、セラミック温調器およびセラミック温調ユニット WO2005008749A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/009026 WO2005008749A1 (ja) 2003-07-16 2003-07-16 セラミック接合体、セラミック接合体の製造方法、セラミック温調器およびセラミック温調ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/009026 WO2005008749A1 (ja) 2003-07-16 2003-07-16 セラミック接合体、セラミック接合体の製造方法、セラミック温調器およびセラミック温調ユニット

Publications (1)

Publication Number Publication Date
WO2005008749A1 true WO2005008749A1 (ja) 2005-01-27

Family

ID=34074099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009026 WO2005008749A1 (ja) 2003-07-16 2003-07-16 セラミック接合体、セラミック接合体の製造方法、セラミック温調器およびセラミック温調ユニット

Country Status (1)

Country Link
WO (1) WO2005008749A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1892756A3 (en) * 2006-08-22 2011-06-01 NGK Insulators, Ltd. Electrostatic chuck with heater and manufacturing method thereof
WO2017069977A1 (en) * 2015-10-19 2017-04-27 Watlow Electric Manufacturing Company Composite device with cylindrical anisotropic thermal conductivity
US20180261486A1 (en) * 2014-12-10 2018-09-13 Toto Ltd. Electrostatic chuck and wafer processing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296485A (ja) * 1991-03-26 1992-10-20 Ngk Insulators Ltd セラミックスヒーター
JPH0982786A (ja) * 1995-09-19 1997-03-28 Ngk Insulators Ltd 半導体処理装置およびその製造方法
JP2001223256A (ja) * 2000-02-08 2001-08-17 Ibiden Co Ltd 半導体製造・検査装置用セラミック基板
JP2002003277A (ja) * 2000-06-21 2002-01-09 Toshiba Ceramics Co Ltd 窒化アルミニウム焼結体の製造方法
JP2003077781A (ja) * 2001-08-31 2003-03-14 Ibiden Co Ltd 半導体製造・検査装置用セラミックヒータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04296485A (ja) * 1991-03-26 1992-10-20 Ngk Insulators Ltd セラミックスヒーター
JPH0982786A (ja) * 1995-09-19 1997-03-28 Ngk Insulators Ltd 半導体処理装置およびその製造方法
JP2001223256A (ja) * 2000-02-08 2001-08-17 Ibiden Co Ltd 半導体製造・検査装置用セラミック基板
JP2002003277A (ja) * 2000-06-21 2002-01-09 Toshiba Ceramics Co Ltd 窒化アルミニウム焼結体の製造方法
JP2003077781A (ja) * 2001-08-31 2003-03-14 Ibiden Co Ltd 半導体製造・検査装置用セラミックヒータ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1892756A3 (en) * 2006-08-22 2011-06-01 NGK Insulators, Ltd. Electrostatic chuck with heater and manufacturing method thereof
US8136820B2 (en) 2006-08-22 2012-03-20 Ngk Insulators, Ltd. Electrostatic chuck with heater and manufacturing method thereof
US20180261486A1 (en) * 2014-12-10 2018-09-13 Toto Ltd. Electrostatic chuck and wafer processing apparatus
US10373853B2 (en) * 2014-12-10 2019-08-06 Toto Ltd. Electrostatic chuck and wafer processing apparatus
WO2017069977A1 (en) * 2015-10-19 2017-04-27 Watlow Electric Manufacturing Company Composite device with cylindrical anisotropic thermal conductivity
US10154542B2 (en) 2015-10-19 2018-12-11 Watlow Electric Manufacturing Company Composite device with cylindrical anisotropic thermal conductivity

Similar Documents

Publication Publication Date Title
US6921881B2 (en) Ceramic joint body
US6849938B2 (en) Ceramic substrate for semiconductor production and inspection
KR20030072324A (ko) 세라믹 히터 및 세라믹 접합체
JP2001244320A (ja) セラミック基板およびその製造方法
WO2001013679A1 (fr) Dispositif de chauffage en ceramique
WO2001097264A1 (fr) Plaque chauffante
JP3565496B2 (ja) セラミックヒータ、静電チャックおよびウエハプローバ
WO2002045138A1 (fr) Dispositif ceramique chauffant permettant la production de semi-conducteurs et dispositifs d'inspection
JP2002329567A (ja) セラミック基板および接合体の製造方法
WO2001078455A1 (fr) Plaque ceramique
WO2001045160A1 (fr) Dispositif de chauffe en ceramique et broche de support
WO2002091458A1 (fr) Procede relatif a l'elaboration de mandrins electrostatiques et procede relatif a l'elaboration d'elements chauffants en ceramique
JP2003059789A (ja) 接続構造体および半導体製造・検査装置
WO2005008749A1 (ja) セラミック接合体、セラミック接合体の製造方法、セラミック温調器およびセラミック温調ユニット
JP2003300785A (ja) セラミック接合体およびセラミック接合体の製造方法
JP2003300784A (ja) セラミック接合体
JP2003297531A (ja) セラミック温調器およびセラミック温調ユニット
JP2004253799A (ja) 半導体製造・検査装置
JP2002260829A (ja) ホットプレートユニット
JP2005026585A (ja) セラミック接合体
JP2001345370A (ja) 半導体製造・検査装置
JP2003297535A (ja) セラミックヒータ
JP2001358205A (ja) 半導体製造・検査装置
JP2003059628A (ja) 半導体製造・検査装置用セラミックヒータ
JP2005050820A (ja) ホットプレート

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase