WO2005005799A1 - Dispositif refroidi destine au dosage d'agent reducteur dans les gaz d'echappement d'un moteur a combustion interne - Google Patents

Dispositif refroidi destine au dosage d'agent reducteur dans les gaz d'echappement d'un moteur a combustion interne Download PDF

Info

Publication number
WO2005005799A1
WO2005005799A1 PCT/DE2004/001256 DE2004001256W WO2005005799A1 WO 2005005799 A1 WO2005005799 A1 WO 2005005799A1 DE 2004001256 W DE2004001256 W DE 2004001256W WO 2005005799 A1 WO2005005799 A1 WO 2005005799A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
injector
pressure
exhaust gas
control valve
Prior art date
Application number
PCT/DE2004/001256
Other languages
German (de)
English (en)
Inventor
Bernhard Bonse
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2005005799A1 publication Critical patent/WO2005005799A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • F01N2260/024Exhaust treating devices having provisions not otherwise provided for for cooling the device using a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1453Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • F01N2610/1473Overflow or return means for the substances, e.g. conduits or valves for the return path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a device for metering the reducing agent to the exhaust gas of an internal combustion engine, with an injector, the reducing agent is supplied from a storage tank via an inlet, the injector 'a sealing seat, and a movable piston comprises the at
  • Lifting off the sealing seat releases a flow of reducing agent to the exhaust gas.
  • the metering of a reducing agent into the exhaust gas of the internal combustion engine is required for various exhaust gas aftertreatment systems.
  • exhaust gas aftertreatment systems are soot particle filters and DeNOX catalysts.
  • the reducing agent is usually metered in via a metering module which is electrically controlled.
  • a metering module which is electrically controlled.
  • the injector When the injector is installed, there are no impermissibly high temperatures. If certain temperature threshold values are exceeded, the functionality of the valve could be damaged by impairing its seals and / or the insulation and contacting of its coils.
  • the metering module could become blocked due to solid deposits, which could impair the function of the metering module or even make it inoperable. The solids are deposited because the contact of the injection valve with the exhaust gas results in comparatively large heat inputs into the injection valve, which allow the liquid components of the reducing agent to evaporate.
  • an injection valve in which a nozzle needle, actuated electromagnetically, lifts off a sealing seat and releases a flow cross section. Reducing agent is metered to the exhaust gas via the flow cross section.
  • the supply of reducing agent should take place at a distance from the injection opening, so that it must be directed inside the injection valve in the direction of the injection opening. This should provide a large area for heat transfer.
  • deposits occur cannot be reliably excluded during the generally long operating times.
  • the object of the invention is to provide an inexpensive device which can be operated in a long-term stable manner with a further reduced formation of deposits.
  • Such pressure-controlled injection valves generally have a comparatively large internal volume which is filled with the liquid to be injected.
  • An increase in pressure in this volume acts on the piston via a pressure cone, which is generally conical in shape, and is usually pressed onto a sealing seat by spring force.
  • a pressure cone which is generally conical in shape, and is usually pressed onto a sealing seat by spring force.
  • Throttle pin nozzles are particularly well suited for this purpose because their internal fluid-absorbing volume (the pressure chamber) is relatively large and is close to the end face of the injection valve. As a result, the thermally particularly stressed end face of the injection valve is cooled particularly well by the reducing agent flowing through the pressure chamber.
  • a particularly preferred embodiment is characterized in that the injector is a throttle pin nozzle, as is used in swirl chamber diesel engines.
  • Throttle pin nozzles are characterized by the fact that the flow rate is directly dependent on the piston stroke.
  • Throttle pin nozzles are the standard injection nozzles for Wirbelka merdieselmotoren. Due to the number of pieces manufactured with sophisticated methods for this purpose, these injection nozzles, which have been tried and tested over many years, are available inexpensively on the market. When using such nozzles, the adaptation to the new purpose can be limited to an adaptation of the closing force of the elastic element to the changed pressure conditions (1 to 2 orders of magnitude lower opening pressure). However, perforated nozzles are also possible, as are generally used in diesel engines with direct injection. Both nozzles are presented, for example, in the Automotive Paperback, 22nd edition, pages 524 to 529. It is also preferred that the pressure of the reducing agent in the throttle pin nozzle is determined by an opening cross section of a flow control valve which is arranged in the inlet.
  • This configuration has the advantage that the control of the device can be spatially separated from the injection valve, so that the thermal and mechanical loads on the flow control valve can be reduced.
  • the injector additionally has a return line via which the reducing agent is returned to the storage tank.
  • This configuration has the particular advantage that reducing agent flows through the internal volume, that is to say the pressure chamber, even when the injection valve is closed, and is therefore cooled particularly reliably and uniformly. Another advantage is that this
  • the piston has a pressure shoulder and movably seals a pressure chamber which is hydraulically connected to the inlet and to the return.
  • the pressure in the pressure chamber is determined by an inlet pressure, a throttle arranged in the return and an opening cross section of a flow control valve, via which a flow of reducing agent in the circuit from the inlet, injector and return to the storage tank is controlled.
  • the dimensioning of the throttle allows the flow of liquid through the internal volume to be matched to the inlet pressure provided by a pump so that the pressure-controlled injection valve is open
  • Flow control valve closes and opens when the pressure increases, which results from the opening cross-section being closed.
  • Low pressure pump used, which delivers a pressure in the order of 1 to 10 bar.
  • a throttle is alternatively or additionally arranged in the inlet.
  • Such an additional throttle allows an even better coordination of the fuel flow to the injection valve required for sufficient cooling and for generating sufficient pressure differences. On its own, such a throttle completely takes over the adjustment of the fuel flow and thus enables a configuration without a return.
  • Another preferred embodiment is characterized by a flow control valve arranged in the return.
  • the flow control valve is arranged in the flow direction behind the pressure chamber and in front of the throttle. It is further preferred that the flow control valve, if present, can be actuated electromagnetically. It is particularly preferred that the flow control valve is open when de-energized.
  • Electromagnetic actuation is reliable and inexpensive.
  • the arrangement mentioned ensures that the injection valve is cooled even when the flow control valve is defective.
  • the result of the arrangement is that the pressure in the pressure chamber rises when the flow control valve is closed and decreases when the injection valve is open. If a flow control valve that is open when de-energized is used, then in the event of a defect if the flow control valve no longer closes, it is ensured that a cooling flow is not interrupted. In the less likely case of a defective closed flow control valve, the injection valve is cooled by a permanent injection.
  • a part of the injector protruding into the exhaust gas is at least partially covered by a shield that is thermally insulating against the exhaust gas flow.
  • the injector is arranged such that an injection direction of the reducing agent largely coincides with the flow direction of the exhaust gases.
  • This configuration ensures good mixing of the reducing agent with the exhaust gas and thus good further transport of the reducing agent within the exhaust gas aftertreatment system.
  • Fig. 1 shows schematically a first embodiment of the invention
  • Fig. 2 shows a second embodiment of the invention.
  • the number 10 denotes the entirety of an internal combustion engine 12 with an exhaust gas aftertreatment system 14.
  • the exhaust gas aftertreatment system 14 shown in FIG. 1 has one Particle filter 16 with an upstream oxidation catalytic converter and an SCR catalytic converter 18, which is arranged in the flow direction of the exhaust gases behind the particle filter 16 with an upstream oxidation catalytic converter.
  • CRT Continuously Regenerating Trap
  • Such a CRT system is a typical representative of exhaust gas aftertreatment systems in which a reducing agent is metered into the exhaust gas.
  • the invention is not limited to an application in CRT systems, but can be used in all exhaust gas aftertreatment systems in which a reducing agent is metered into the exhaust gas.
  • the function of such a CRT system is briefly explained below in order to clarify the need for metering reducing agents into the exhaust gas.
  • the particle filter 16 has a porous structure in which soot particles from the exhaust gas are deposited. In order to avoid an inadmissibly high exhaust gas back pressure due to particle residues, the particle filter 16 must be regenerated. The regeneration takes place within the framework of the CRT system from particle filter 16 with an upstream oxidation catalyst in that the
  • Oxidation catalyst first converts nitrogen monoxide from the exhaust gas of the internal combustion engine 12 with oxygen to nitrogen dioxide and that the carbon present in the form of soot particles in the subsequent particle filter 16 there with the nitrogen dioxide to form CO 2 and Nitrogen monoxide is converted, both of which are discharged from the particle filter with the remaining exhaust gas. Through these reactions, the particle filter 16 is continuously regenerated during normal operation of the internal combustion engine 12.
  • the nitrogen monoxide formed during the regeneration of the particle filter 16 is reduced in the subsequent SCR catalytic converter 18 together with raw nitrogen oxide emissions from the internal combustion engine 12 by the eponymous selective catalytic reduction to molecular nitrogen.
  • a directly reducing substance such as ammonia or a preliminary product is added to the exhaust gas, which only releases reducing substances in the exhaust gas.
  • a urea-water solution can be used as a preliminary product.
  • hydrocarbons and thus fuel can also be used as reducing agents. It is also known to operate SCR catalysts without an upstream CRT system in order to convert engine-generated nitrogen oxides.
  • the reducing agent is dosed to the exhaust gas by an injector 22, which is arranged in the exhaust pipe section 20 between the particle filter 16 and the SCR catalytic converter 18.
  • the injector 22 has a sealing seat 24, onto which a piston 26 is pressed by an elastic element 28, for example a steel spring.
  • the injector 22 has a pressure chamber 30 in its interior, which is supplied with reducing agent via an inlet 32.
  • the reducing agent is conveyed by a pump 34 from a storage tank 35 via a throttle 36 and a flow control valve 38 to the inlet 32.
  • the pump 34 is, for example, an electrically driven one or a mechanical one from the internal combustion engine 12 driven low-pressure pump that pumps the reducing agent at a pressure of a few bar.
  • the flow control valve 38 is controlled by a control unit 40, which is preferably the control unit of the internal combustion engine 12, which also controls the other functions of the internal combustion engine 12.
  • the reducing agent requirement of the exhaust gas aftertreatment system 14 depends on the operating states of the internal combustion engine 12.
  • the controller 40 controls the flow through the flow control valve 38 in accordance with the
  • Reducing agent requirement of the exhaust gas aftertreatment system 14 which can be determined in the control unit 40, for example, from the operating parameters present there by modeling.
  • Flow control valve 38 sets a reducing agent pressure 30 in the inlet 32 and thus also in the pressure chamber 30, as is structurally predetermined by the reducing agent pressure provided by the pump 34 and the dimensions of the throttle 36.
  • the injector 22 is a throttle pin nozzle, as is used in swirl chamber diesel engines for injecting fuel into combustion chambers of the internal combustion engine.
  • throttle pin nozzles When using such throttle pin nozzles for dosing reducing agent to the exhaust gas, only the closing force of the elastic element 28 has to be adapted to the reduced pressures.
  • a characteristic of a throttle pin nozzle is the control of the outflow cross section, that is to say the flow rate, in a direct dependence on the stroke of the piston 26. Throttle pin nozzles show a very flat cross-sectional profile in the area of small piston strokes.
  • the throttle pin or throttle pin 46 ie a pin-shaped extension of the piston 26, still remains in the spray hole 44. Only the small annular area between the somewhat larger spray hole 44 and the throttle pin 46 is available as the flow cross section. With large piston stroke values, the throttle pin 46 completely clears the spray hole 44 and the flow cross section increases significantly.
  • Pressure-controlled injectors 22 in general and throttle pin nozzles in particular are characterized in that the pressure chamber 30 is arranged very close to the exhaust-side end 48 (end face) of the injector 22.
  • the heat which is introduced into the injector 22 by the exhaust gas via the end face 48 can be absorbed particularly well by the reducing agent in the pressure chamber 30.
  • Another advantage can be seen in the fact that heat, which is introduced into the piston 26 via the throttle pin 46 and the sealing seat 24, is also released very close to the exhaust-side end of the injector 22 via the wide pressure shoulder 42 to the reducing agent in the pressure chamber 30 can.
  • the heated reducing agent in the pressure chamber 30 is injected into the exhaust gas when the injector 22 is opened, which takes place by lifting the piston 26 from the sealing seat 24, and by flowing, cooler
  • Injector 22 that is, from the amount of reducing agent metered via injector 22.
  • the larger this amount the better the cooling effect.
  • the embodiment according to FIG. 1 also has the disadvantage that after a certain time, when the injector 22 is closed
  • the reducing agent does not cause any further cooling until the next injection.
  • this can be tolerable in some applications because the operating points of the internal combustion engine 12 with a low reducing agent requirement of the exhaust gas aftertreatment system 14 are generally characterized by low exhaust gas temperatures and thus by a reduced cooling power requirement.
  • the cooling power requirement can be further reduced by a thermally insulating cladding 50 of the exhaust-side end 40 of the injector 22.
  • the thermal insulation 50 can have the shape of a cup, for example, which has an opening 52 in its base through which the reducing agent can get into the exhaust gas.
  • FIG. 2 shows a particularly preferred embodiment of the invention, which is characterized by a further improved cooling effect.
  • the subject of FIG. 2 differs from the subject of FIG. 1 in particular by an additional return 54, via which the reducing agent supply from the storage tank 35 to the pressure chamber 30 is expanded to form a closed circuit.
  • the particular advantage of this embodiment is that when the flow control valve 38 is open, there is a flow of reducing agent through the pressure chamber 30 even when the injector 22 is closed. In this way, the reducing agent can also remove heat from the injector 22, in particular from its exhaust-side end 48, even when the injector 22 is closed.
  • the additional return 54 can be produced in conventional throttle pin nozzles in a simple manner by one or more additional holes.
  • Flow control valve 38 arranged on the return side of the injector 22 and designed as a normally open, electromagnetically actuated valve. In the open state, there is a flow in the circuit from the storage tank 35, pump 34, inlet 32,
  • Pressure chamber 30, return 54 and flow control valve 38 as specified by the flow resistances of the circuit and the pressure generated by the pump 34.
  • the flow resistances are preferably set with a throttle 56 arranged on the return side and, if appropriate, with an additional throttle 36 which is provided with an inlet soap.
  • a reducing agent pressure is thus established in the pressure chamber 30, which pressure is in any case lower than the maximum pressure provided by the pump 34.
  • the exemplary embodiment according to FIG. 2 is also equipped with thermal insulation of the exhaust-side end 48 of the injector 22. It can be advantageous here
  • the bevel which is also shown in the form of the bevels 58 of the thermal insulation 50, can be adapted to the contour of the pressure chamber 30. In this way, the heat-absorbing area of the injector 22 exposed to the exhaust gas is reduced. By adapting to the contour of the pressure chamber 30, the reduction takes place without an inadmissible reduction in the remaining wall thickness between the pressure chamber 30 and the exhaust gas.
  • Such a bevel is possible in particular because the pressure-controlled injectors 22 as injection nozzles for diesel engines are generally designed for significantly higher injection pressures and thus for significantly higher mechanical loads.
  • the injector can be arranged such that an injection direction of the reducing agent largely corresponds to the flow direction of the exhaust gases. This can be brought about by an oblique arrangement of the injector which deviates from the right-angled arrangement according to FIGS. 1 and 2 and / or by an arrangement of the injector on a bend (a knee or kink) of the exhaust pipe. 1 and 2, the exhaust pipe 20 could for example, bend down below the injector 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

L'invention concerne un dispositif destiné au dosage d'agent réducteur dans les gaz d'échappement d'un moteur à combustion interne (12), comportant un injecteur (22) recevant un agent réducteur provenant d'un réservoir (35) par l'intermédiaire d'une conduite d'alimentation (32). Ledit injecteur (22) comporte un siège d'étanchéité (24) et un piston mobile (26) qui, lorsqu'il est soulevé par rapport au siège d'étanchéité, libère le passage d'agent réducteur vers les gaz d'échappement. Le dispositif selon l'invention est caractérisé en ce que le piston (26) est soulevé par rapport au siège d'étanchéité (24) sous l'effet d'une pression exercée par l'agent réducteur.
PCT/DE2004/001256 2003-07-09 2004-06-17 Dispositif refroidi destine au dosage d'agent reducteur dans les gaz d'echappement d'un moteur a combustion interne WO2005005799A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10332114A DE10332114A1 (de) 2003-07-09 2003-07-09 Gekühlte Vorrichtung zur Dosierung von Reduktionsmittel zum Abgas eines Verbrennungsmotors
DE10332114.4 2003-07-09

Publications (1)

Publication Number Publication Date
WO2005005799A1 true WO2005005799A1 (fr) 2005-01-20

Family

ID=33547021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/001256 WO2005005799A1 (fr) 2003-07-09 2004-06-17 Dispositif refroidi destine au dosage d'agent reducteur dans les gaz d'echappement d'un moteur a combustion interne

Country Status (2)

Country Link
DE (1) DE10332114A1 (fr)
WO (1) WO2005005799A1 (fr)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2886670A1 (fr) * 2005-06-07 2006-12-08 Renault Sas Dispositif de depollution de gaz d'echappement
WO2007036272A1 (fr) * 2005-09-27 2007-04-05 Daimler Ag Dispositif de dosage de carburant d'un systeme d'echappement d'un moteur a combustion interne
EP1797290A1 (fr) * 2004-10-02 2007-06-20 Robert Bosch Gmbh Systeme de dosage pour diminuer les substances nuisibles dans les gaz d'echappement de vehicules a moteur
WO2007078662A1 (fr) * 2005-12-29 2007-07-12 Caterpillar Inc. Ensemble buse
EP1878887A1 (fr) * 2006-07-12 2008-01-16 Delphi Technologies, Inc. Dispositif de dosage de fluide
WO2008079191A1 (fr) * 2006-12-22 2008-07-03 Caterpillar Inc. Ensemble buse refroidi pour injection d'urée/d'eau
WO2008080693A1 (fr) * 2006-12-28 2008-07-10 Robert Bosch Gmbh Dispositif de dosage de carburant dans le système de gaz d'échappement d'un moteur à combustion interne
FR2925612A1 (fr) * 2007-12-19 2009-06-26 Renault Sas Dispositif de protection thermique d'un injecteur
EP2151559A1 (fr) * 2008-08-08 2010-02-10 Magneti Marelli Powertrain S.p.A. Dispositif d'injection pour l'injection d'une substance réductrice dans un système d'échappement d'un moteur à combustion interne
EP2175108A1 (fr) * 2008-10-13 2010-04-14 Eaton Corporation Injecteur pour système d'injection de fluide
EP2184455A1 (fr) * 2007-09-04 2010-05-12 Hino Motors, Ltd. Structure de montage d'injecteur
EP2187011A1 (fr) * 2007-09-21 2010-05-19 Toyota Jidosha Kabushiki Kaisha Dispositif de purification d'échappement pour moteur à combustion interne
WO2010144115A1 (fr) * 2009-06-11 2010-12-16 Stanadyne Corporation Pompe intégrée et injecteur pour échappement après traitement
WO2010149411A1 (fr) * 2009-06-25 2010-12-29 Robert Bosch Gmbh Unité d'étanchéité
WO2011067370A1 (fr) * 2009-12-04 2011-06-09 Emitec Gesellschaft Für Emissionstechnologie Mbh Dispositif de refoulement servant à refouler un agent réducteur
WO2011160898A1 (fr) * 2010-06-22 2011-12-29 Robert Bosch Gmbh Dispositif et procédé de dosage d'un liquide dans une ligne d'échappement d'un moteur à combustion interne
WO2013092829A1 (fr) * 2011-12-23 2013-06-27 Emitec Gesellschaft Für Emissionstechnologie Mbh Dispositif de retraitement des gaz d'échappement avec une unité de dosage pour un produit de retraitement des gaz d'échappement
CN103930659A (zh) * 2011-11-16 2014-07-16 排放技术有限公司 用于将液体添加剂从储罐输出的输送装置及其方法
RU2587800C2 (ru) * 2011-11-16 2016-06-27 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Подающее устройство для подачи жидкой добавки из бака и способ для этого
EP3293377A1 (fr) 2016-09-07 2018-03-14 Scania CV AB Agencement d'injection pour l'injection d'un agent de réduction dans une ligne d'échappement d'un moteur à combustion
CN108479347A (zh) * 2018-04-13 2018-09-04 宁波清智环保科技有限公司 环保气体净化装置
CN109718749A (zh) * 2019-01-11 2019-05-07 南京大学盐城环保技术与工程研究院 阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用
US10309280B2 (en) * 2015-11-13 2019-06-04 Continental Powertrain USA, LLC Gas introduction for urea solution freeze protection
EP3543494A1 (fr) * 2018-03-23 2019-09-25 Continental Powertrain USA, LLC Écran thermique et joint d'étanchéité pour unité de distribution d'agent réducteur
CN117839370A (zh) * 2023-12-26 2024-04-09 安徽碳鑫科技有限公司 一种醋酸甲酯生产废气的回收设备及其使用方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004035119C5 (de) * 2004-07-20 2017-02-23 Cummins Ltd. Zerstäubungseinrichtung für Abgasnachbehandlungsvorrichtungen von Dieselmotoren
DE102004050022B4 (de) * 2004-10-13 2012-01-05 L'orange Gmbh Einrichtung zur Kühlung einer Düse für die dosierte Einspritzung eines Reduktionsmittels in den Abgastrakt einer Brennkraftmaschine
DE102004062603B3 (de) * 2004-12-24 2006-07-27 Eichenauer Heizelemente Gmbh & Co. Kg Harnstoff-Dosiersystem für einen Abgasreinigungskatalysator eines Kfz und Ringheizung für ein solches Harnstoff-Dosiersystem
DE112006001140B4 (de) 2005-06-04 2014-06-05 Eichenauer Heizelemente Gmbh & Co. Kg Harnstoffversorgungssystem für einen Abgasreinigungskatalysator und hierfür geeigneter Heizeinsatz
ATE536469T1 (de) 2005-06-22 2011-12-15 Eichenauer Heizelemente Gmbh Reduktionsmittelversorgungssystem für einen abgasreinigungskatalysator und heizeinrichtung hierfür
DE102005037150A1 (de) * 2005-08-06 2007-02-08 Purem Abgassysteme Gmbh & Co. Kg Vorrichtung zur Dosierung eines Reduktionsmittels
DE102006020439A1 (de) 2006-05-03 2007-11-08 Purem Abgassysteme Gmbh & Co. Kg Verfahren und Vorrichtung zum Dosieren eines Reduktionsmittels in ein Abgassystem einer Brennkraftmaschine
DE102006053558A1 (de) * 2006-11-14 2008-05-15 Purem Abgassysteme Gmbh & Co. Kg Vorrichtung zum Dosieren von Reduktionsmittel und Injektor in einer Vorrichtung zum Dosieren von Reduktionsmittel
DE102007058240A1 (de) 2007-12-04 2009-06-10 Robert Bosch Gmbh Vorrichtung zur Kraftstoffeinspritzung bei einer Brennkraftmaschine
DE102007062704A1 (de) 2007-12-27 2009-07-02 Robert Bosch Gmbh Vorrichtung und Verfahren zur Abgasnachbehandlung
JP4867923B2 (ja) * 2008-01-28 2012-02-01 株式会社デンソー 噴射弁の搭載構造
DE102009017759A1 (de) 2009-04-16 2010-10-21 Daimler Ag Einspritzanlage und zugehöriges Betriebsverfahren
DE102011075381A1 (de) 2011-05-06 2012-11-08 Robert Bosch Gmbh Injektor zur Dosierung von Reduktionsmittel zum Abgas einer Brennkraftmaschine
DE102013211684A1 (de) * 2013-06-20 2014-12-24 Robert Bosch Gmbh Kühlkörper für Einspritzventil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645804A (en) * 1991-06-28 1997-07-08 Kabushiki Kaisha Riken Method for cleaning exhaust gas containing nitrogen oxides
DE19743302C1 (de) * 1997-09-30 1999-02-04 Siemens Ag Verfahren und Vorrichtung zum Ausstoßen und Zumessen von elektrisch leitfähigem, flüssigem Reduktionsmittel
US5976475A (en) * 1997-04-02 1999-11-02 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
US6203770B1 (en) * 1997-05-12 2001-03-20 Clean Diesel Technologies, Inc. Urea pyrolysis chamber and process for reducing lean-burn engine NOx emissions by selective catalytic reduction
US20020001554A1 (en) * 1998-10-01 2002-01-03 Czarnik Richard J. Method of reducing NOx emissions using a fluid-cooled injector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5645804A (en) * 1991-06-28 1997-07-08 Kabushiki Kaisha Riken Method for cleaning exhaust gas containing nitrogen oxides
US5976475A (en) * 1997-04-02 1999-11-02 Clean Diesel Technologies, Inc. Reducing NOx emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
US6203770B1 (en) * 1997-05-12 2001-03-20 Clean Diesel Technologies, Inc. Urea pyrolysis chamber and process for reducing lean-burn engine NOx emissions by selective catalytic reduction
DE19743302C1 (de) * 1997-09-30 1999-02-04 Siemens Ag Verfahren und Vorrichtung zum Ausstoßen und Zumessen von elektrisch leitfähigem, flüssigem Reduktionsmittel
US20020001554A1 (en) * 1998-10-01 2002-01-03 Czarnik Richard J. Method of reducing NOx emissions using a fluid-cooled injector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAUER H: "injector", KRAFTFAHRTECHNISCHES TASCHENBUCH BOSCH, DÜSSELDORF, BOSCH GMBH, DE, 1995, pages 524 - 529, XP002300281 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1797290B1 (fr) * 2004-10-02 2010-06-16 Robert Bosch Gmbh Systeme de dosage pour diminuer les substances nuisibles dans les gaz d'echappement de vehicules a moteur
EP1797290A1 (fr) * 2004-10-02 2007-06-20 Robert Bosch Gmbh Systeme de dosage pour diminuer les substances nuisibles dans les gaz d'echappement de vehicules a moteur
EP1731728A1 (fr) * 2005-06-07 2006-12-13 Renault Dispositif de dépollution de gaz d'échappement
FR2886670A1 (fr) * 2005-06-07 2006-12-08 Renault Sas Dispositif de depollution de gaz d'echappement
WO2007036272A1 (fr) * 2005-09-27 2007-04-05 Daimler Ag Dispositif de dosage de carburant d'un systeme d'echappement d'un moteur a combustion interne
WO2007078662A1 (fr) * 2005-12-29 2007-07-12 Caterpillar Inc. Ensemble buse
EP1878887A1 (fr) * 2006-07-12 2008-01-16 Delphi Technologies, Inc. Dispositif de dosage de fluide
WO2008079191A1 (fr) * 2006-12-22 2008-07-03 Caterpillar Inc. Ensemble buse refroidi pour injection d'urée/d'eau
WO2008080693A1 (fr) * 2006-12-28 2008-07-10 Robert Bosch Gmbh Dispositif de dosage de carburant dans le système de gaz d'échappement d'un moteur à combustion interne
CN101568704B (zh) * 2006-12-28 2011-12-14 罗伯特·博世有限公司 用于向内燃机的排气系统计量燃料的装置
US8402752B2 (en) 2007-09-04 2013-03-26 Hino Motors, Ltd. Injector mounting structure
EP2184455A1 (fr) * 2007-09-04 2010-05-12 Hino Motors, Ltd. Structure de montage d'injecteur
EP2184455A4 (fr) * 2007-09-04 2011-06-22 Hino Motors Ltd Structure de montage d'injecteur
EP2187011A1 (fr) * 2007-09-21 2010-05-19 Toyota Jidosha Kabushiki Kaisha Dispositif de purification d'échappement pour moteur à combustion interne
US8333064B2 (en) 2007-09-21 2012-12-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
EP2187011A4 (fr) * 2007-09-21 2011-06-29 Toyota Motor Co Ltd Dispositif de purification d'échappement pour moteur à combustion interne
FR2925612A1 (fr) * 2007-12-19 2009-06-26 Renault Sas Dispositif de protection thermique d'un injecteur
EP2151559A1 (fr) * 2008-08-08 2010-02-10 Magneti Marelli Powertrain S.p.A. Dispositif d'injection pour l'injection d'une substance réductrice dans un système d'échappement d'un moteur à combustion interne
EP2175108A1 (fr) * 2008-10-13 2010-04-14 Eaton Corporation Injecteur pour système d'injection de fluide
US7980483B2 (en) 2008-10-13 2011-07-19 Eaton Corporation Injector for a fluid injection system
WO2010144115A1 (fr) * 2009-06-11 2010-12-16 Stanadyne Corporation Pompe intégrée et injecteur pour échappement après traitement
US8225602B2 (en) 2009-06-11 2012-07-24 Stanadyne Corporation Integrated pump and injector for exhaust after treatment
CN102459836A (zh) * 2009-06-25 2012-05-16 罗伯特·博世有限公司 密封单元
WO2010149411A1 (fr) * 2009-06-25 2010-12-29 Robert Bosch Gmbh Unité d'étanchéité
WO2011067370A1 (fr) * 2009-12-04 2011-06-09 Emitec Gesellschaft Für Emissionstechnologie Mbh Dispositif de refoulement servant à refouler un agent réducteur
US10519831B2 (en) 2009-12-04 2019-12-31 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Delivery device for delivering a reducing agent and motor vehicle having a delivery device
US9556768B2 (en) 2010-06-22 2017-01-31 Robert Bosch Gmbh Device and method for metering a liquid into the exhaust tract of an internal combustion engine
CN102947564A (zh) * 2010-06-22 2013-02-27 罗伯特·博世有限公司 将液体计量分配到内燃机的排气线路中的装置和方法
US20130081377A1 (en) * 2010-06-22 2013-04-04 Robert Bosch Gmbh Device and method for metering a liquid into the exhaust tract of an internal combustion engine
WO2011160898A1 (fr) * 2010-06-22 2011-12-29 Robert Bosch Gmbh Dispositif et procédé de dosage d'un liquide dans une ligne d'échappement d'un moteur à combustion interne
CN103930659A (zh) * 2011-11-16 2014-07-16 排放技术有限公司 用于将液体添加剂从储罐输出的输送装置及其方法
US20140245723A1 (en) * 2011-11-16 2014-09-04 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Delivery device for delivering a liquid additive out of a tank, method therefor and motor vehicle having a delivery device
RU2587800C2 (ru) * 2011-11-16 2016-06-27 Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх Подающее устройство для подачи жидкой добавки из бака и способ для этого
WO2013092829A1 (fr) * 2011-12-23 2013-06-27 Emitec Gesellschaft Für Emissionstechnologie Mbh Dispositif de retraitement des gaz d'échappement avec une unité de dosage pour un produit de retraitement des gaz d'échappement
US9261000B2 (en) 2011-12-23 2016-02-16 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Device for exhaust-gas aftertreatment having a dosing unit for an exhaust-gas aftertreatment agent and motor vehicle having the device
US10309280B2 (en) * 2015-11-13 2019-06-04 Continental Powertrain USA, LLC Gas introduction for urea solution freeze protection
EP3293377A1 (fr) 2016-09-07 2018-03-14 Scania CV AB Agencement d'injection pour l'injection d'un agent de réduction dans une ligne d'échappement d'un moteur à combustion
EP3543494A1 (fr) * 2018-03-23 2019-09-25 Continental Powertrain USA, LLC Écran thermique et joint d'étanchéité pour unité de distribution d'agent réducteur
CN110295977A (zh) * 2018-03-23 2019-10-01 欧陆动力系统美国有限责任公司 用于还原剂输送单元的热防护件和垫片
US10677138B2 (en) 2018-03-23 2020-06-09 Vitesco Technologies USA, LLC Heat shield and gasket for reductant delivery unit
CN108479347A (zh) * 2018-04-13 2018-09-04 宁波清智环保科技有限公司 环保气体净化装置
CN108479347B (zh) * 2018-04-13 2020-05-05 宁波清智环保科技有限公司 环保气体净化装置
CN109718749A (zh) * 2019-01-11 2019-05-07 南京大学盐城环保技术与工程研究院 阶梯式梯度升温煅烧法制备臭氧催化剂的方法及应用
CN117839370A (zh) * 2023-12-26 2024-04-09 安徽碳鑫科技有限公司 一种醋酸甲酯生产废气的回收设备及其使用方法

Also Published As

Publication number Publication date
DE10332114A1 (de) 2005-01-27

Similar Documents

Publication Publication Date Title
WO2005005799A1 (fr) Dispositif refroidi destine au dosage d'agent reducteur dans les gaz d'echappement d'un moteur a combustion interne
DE112007002155B4 (de) Abgasbehandlungs-Aufnahmevorrichtung, -System und -Verfahren
EP2106496B1 (fr) Dispositif de dosage de carburant dans le système de gaz d'échappement d'un moteur à combustion interne
EP3408528B1 (fr) Système d'émulsification et procédé d'émulsification
DE102009053491A1 (de) Abgasreinigungsvorrichtung
EP4150201A1 (fr) Soupape de mesure de gaz pour moteurs à combustion interne
DE102008057895A1 (de) Abgasreinigungsvorrichtung für Verbrennungsmotor
DE102015108896A1 (de) Abgasnachbehandlungssystem und zugehöriges Betriebsverfahren
EP2029866B1 (fr) Procédés et dispositifs de nettoyage de soupapes
EP3325782B1 (fr) Soupape d'injection et système de post-traitement des gaz d'échappement
EP2839154A1 (fr) Dispositif de dosage
AT500207B1 (de) Steuervorrichtung für den abgasaustritt an verbrennungs- und wärmekraftmaschinen
WO2008092530A1 (fr) Dispositif de dosage
WO2010079012A1 (fr) Soupape d'injection et système de dosage pour un système de post-traitement de gaz d'échappement
EP2825740B1 (fr) Dispositif de dosage
DE102015015029A1 (de) Abgasunterstütztes Zersetzungsreaktorrohr
DE102020101106A1 (de) Motorsystem und betriebsstrategie für selektive in-situ- und ex-situ-begrenzung der nox-produktion
DE102017209520A1 (de) Spritzlochscheibe für Einspritzvorrichtung
WO2014086518A1 (fr) Dispositif de dosage
DE102011006103A1 (de) System zum Dosieren eines Fluids von einem Tank an eine Dosiereinheit
DE102015201185B4 (de) Externer Turbinen-Bypass für schnelles Aufheizen des Katalysators
WO2002044554A1 (fr) Procede permettant de projeter du carburant hors du volume d'une soupape d'injection de carburant
DE10353312A1 (de) Vorrichtung und Verfahren zur Plasma-unterstützen Abgasreinigung
DE102017005162A1 (de) Injektor zum Einbringen von Kraftstoff in eine Verbrennungskraftmaschine, insbesondere eines Kraftfahrzeugs
EP0971103A1 (fr) Moteur à allumage par compression avec un dispositif de traitement du gaz d'échappement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase