WO2005003825A1 - Blue color filter and organic electroluminescence device including the same - Google Patents

Blue color filter and organic electroluminescence device including the same Download PDF

Info

Publication number
WO2005003825A1
WO2005003825A1 PCT/JP2003/008279 JP0308279W WO2005003825A1 WO 2005003825 A1 WO2005003825 A1 WO 2005003825A1 JP 0308279 W JP0308279 W JP 0308279W WO 2005003825 A1 WO2005003825 A1 WO 2005003825A1
Authority
WO
WIPO (PCT)
Prior art keywords
color filter
structural formula
organic
dye
blue color
Prior art date
Application number
PCT/JP2003/008279
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Kawaguchi
Ryoji Kobayashi
Kenya Sakurai
Original Assignee
Fuji Electric Holdings Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Co., Ltd. filed Critical Fuji Electric Holdings Co., Ltd.
Priority to DE10393386T priority Critical patent/DE10393386T5/en
Priority to CNB038235129A priority patent/CN100388017C/en
Priority to PCT/JP2003/008279 priority patent/WO2005003825A1/en
Priority to AU2003246147A priority patent/AU2003246147A1/en
Priority to GB0427182A priority patent/GB2409205B/en
Publication of WO2005003825A1 publication Critical patent/WO2005003825A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments

Definitions

  • the present invention relates to a blue color filter used for a display device of a portable terminal or an industrial measuring instrument, and an organic electroluminescent (hereinafter abbreviated as organic EL) device using the same.
  • organic EL organic electroluminescent
  • a color conversion method using a fluorescent material that absorbs light in an emission region of an organic luminous body and emits fluorescence in a visible light region as a filter is disclosed in Japanese Unexamined Patent Publication No. These are disclosed in, for example, JP-A-152897 and JP-A-5-258860.
  • the emission color of the organic light-emitting body is not limited to white, so that a higher-luminance organic light-emitting body can be applied to the light source.
  • using a blue-emitting organic light-emitting body blue light is converted to green light or red light.
  • a color conversion method for wavelength conversion is described in JP-A-3-52897, JP-A-8-286033, and JP-A-9-208944. If a fluorescent conversion film containing such a fluorescent dye is patterned on a transparent support substrate with high definition, a full-color image can be obtained even when using low-energy light such as near-ultraviolet light or visible light of an organic luminous body.
  • a light emitting display can be constructed.
  • Organic EL devices using a color filter, a color conversion filter, and a color conversion method that includes an organic light-emitting element as components For those requiring weather resistance and high-definition images, color filters prepared by the pigment dispersion method are mainly used, and red, blue or green pigments are added to the photosensitive resin solution. After applying a finely dispersed material with a particle size of 1 ⁇ or less on a glass substrate, The pixels are formed in a desired pattern by the luffy (see Japanese Patent Publication No. 4-37987, Japanese Patent Publication No. 4-39041, etc.).
  • ⁇ -type copper phthalocyanine-based blue having ⁇ -type, ⁇ -type and ⁇ -type crystal forms is widely used (see Color Material Engineering Handbook, edited by the Color Material Association, ⁇ 333).
  • ⁇ -type copper phthalocyanine blue is used alone in a color filter, its coloring power is low, and a large amount of pigment must be mixed with the photosensitive resin to achieve the desired saturation.
  • heat-resistant discoloration after the formation and adhesion to the glass substrate and the amount of transmitted light having a power wavelength of 600 nm or more is large, and the color purity is reduced.
  • An object of the present invention is to provide a blue color filter having a high blue transmittance and a low green transmittance, a good blue purity, and an organic electroluminescent device. Disclosure of the invention
  • a blue color filter contains a first dye represented by a structural formula (1) and a binder resin, and emits fluorescence of the first dye. It contains a second colorant that absorbs and does not have a fluorescence maximum in the visible wavelength region.
  • Ri Re represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group which may be independently substituted
  • R 7 is a chain unsaturated hydrocarbon having 1 to 6 carbon atoms. Represents a group.
  • I-, B r-, C 1- , F -, C 10 3 -, B r 0 3 _, I 0 3 -, C 10 4 -, BF have PF 4 -, S b F 4 -, B r 0 4 —and represents an anion selected from the group of organic anions]
  • the first dye represented by the structural formula (1) as the blue dye of the blue color filter as described above, the light transmittance of 500 nm to 600 nm can be suppressed to improve the blue purity, It enables a blue color filter with high transmission.
  • the first dye is The resulting dye of 600 nm to 700 nm is absorbed by the second dye to prevent a decrease in blue purity.
  • the blue color filter contains the first dye represented by the structural formula (1) and a binder resin, and also contains the second dye represented by the structural formula (2) .
  • ⁇ ⁇ ⁇ 6 each independently represent a an optionally substituted hydrogen atom, an alkyl group, Ariru group or a heterocyclic group,
  • R 7 is not chain having 1 to 6 carbon atoms Represents a saturated hydrocarbon group.
  • X- is ⁇ , B r-, CI-, F-, C 1 0 3 B r 0 3 one,
  • I 0 3 -, C 1 0 4 -, BF 4 -, PF 4 - represents a Ayuon selected from the group of organic Anion] -, S b F, B r 0 4
  • [In the structural formula (2) represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group.
  • X- is ⁇ , B r -, C 1-, F-, C 1 0 3 -, B r 0 3 -, I 0 3 one, C 1 O 4 -, BF 4 -, PF 4 -, S b F 4 —, Br 0 4 — and anion selected from the group of organic anions.
  • Y represents an O atom or an S atom.
  • a represents an integer of 1 to 6.
  • the blue color filter of the present invention may contain a quencher anion for quenching the fluorescence of the first or second color element.
  • the organic electroluminescent device uses the blue color filter as at least a part of the color filter.
  • FIG. 1 is a schematic cross-sectional view of an organic EL device having a blue color according to the present invention.
  • the organic EL device 100 of the present example has a blue color filter 20, an organic protective layer 30, an inorganic oxide film 40, a transparent anode 50, and a positive electrode on a transparent support substrate 10.
  • a hole injection layer 51, a hole transport layer 52, a light emitting layer 53, an electron injection layer 54, and a cathode 55 are sequentially formed to constitute an organic EL device 100 as a whole.
  • the blue color filter of the present invention contains a cyanine dye represented by the structural formula (1) as a first dye.
  • the dye represented by the structural formula (1) may be used alone or in combination of two or more. Since the cyanine dye represented by the structural formula (1) has high chemical and thermal stability itself, the heat resistance of the blue color filter is high even without using the pigment dispersion method. Further, another blue pigment such as a copper phthalocyanine-based pigment may be mixed with the first pigment.
  • the mixing ratio of the cyanine dye represented by the structural formula (1) to the binder resin is preferably 0.1 to 40 parts by weight. As a result, it is possible to suppress transmission of light in the range of 500 to 550 nm, and to improve color purity.
  • the cyanine dye represented by the structural formula (1) can be used after being pigmented, and a known method can be used as a method for producing a blue pigment dispersion.
  • a copper phthalocyanine-based blue and a cyanine-based colorant represented by the structural formula (1) are mixed with an organic solvent, a pigment derivative (added as necessary) for dispersing stability and a dispersant, and a dispersing machine such as a sand mill.
  • a blue pigment dispersion containing copper phthalocyanine blue and a cyanine dye represented by the structural formula (1) is also excellent.
  • a dye that absorbs the fluorescence (600 nm to 700 nm) of the first dye and has no fluorescence in the visible wavelength range (750 nm or less) is added as the second dye.
  • the mixing ratio of the second dye to the binder-resin is preferably from 0 :! to 40 parts by weight.
  • a dye that does not absorb light in the blue wavelength region is desirable. Specifically, any dye can be used as long as it has a transmittance of 60% or more at 450 nm when added to a filter.
  • Examples are 1, 1-Diethyl-4,4-carbocyanine Iodide (uryptocyanine), 1, 1-Diethyl—2,2, —dicarbocyanine Iodide (DDI), 3,3′—
  • HITCI Hexamethylindotricarbocyanine Iodide
  • IR125 from Lambda Phisik
  • 1,1'-Diethyl-4,4'-carbocyanine Iodide Cheptocyanine
  • IR144 from Lambda Phisik
  • 3, 3'-Diethyl-9,11- neopentylenethiatricarbocyanine Iodide DNTTCI
  • Indotricarbocyanine Iodide HDITCI
  • 1,2′-Diethyl-4, 4′-dicarbocyanine Iodide DDCI-4
  • a cyanine dye represented by the structural formula (2) may be used as the second dye.
  • DTTCI 3,3′-Diethylthiatricarbocyanine Iodide
  • DDTTCI 3,3, -Diethyl-4, 4 '5,5'-dibenzothiatricarbocyanine Iodide
  • X- is,, B r-, C l F- , C 1 O 3 -, B r 0 3 -, I 0 3 primary,
  • C 1 0 4 -, BF 4 -, PF, S b F 4 - represents a ⁇ two on selected from the group consisting of and organic Anion -, B r 0 4.
  • Y represents an O atom or an S atom.
  • a represents an integer of 1 to 6.
  • the quencher may be, for example, an ionic singlet oxygen quencher.
  • transition metal chelates, bisimidium salts and the like disclosed in JP-A-59-57979, JP-A-60-234892, etc. are used. it can.
  • the binder resin used in the blue color filter of the present invention may be any resin that has visible light transmittance and good adhesion to a substrate, and may be a known thermoplastic resin, thermosetting resin, or photocurable resin. Etc. can be used. A resin having photosensitivity is particularly preferable because a fine pattern of the filter can be easily prepared.
  • the blue color filter layer 20 is formed by applying a blue image forming material composed of each of the above-mentioned materials on the transparent support substrate 10 in a desired pattern.
  • the coating method is not particularly limited, and a usual spin coating method, roll coating method, casting method, screen printing method, ink jet method and the like can be used.
  • the curing method There is no particular limitation on the curing method, and heat curing (preferably curing at a temperature of about 150 ° C. in consideration of deterioration of the fluorescent material), moisture curing, chemical curing, and light curing (inferiority of the fluorescent material) It is desirable to cure with visible light in consideration of the dangling.) Furthermore, the dangling method combining these can be used.
  • a multicolor filter Before or after forming a blue pixel, a multicolor filter can be formed by forming a red or / and green color filter using a red or / and green pixel forming material as needed. Can be made. Further, a multicolor organic EL device can be manufactured by laminating an organic light emitting element 500 on this color filter via an organic protective layer 30 and an inorganic oxide film 40. As a method of laminating the organic luminescent material 500, a transparent anode 50, a hole injection layer 51, a hole transport layer 52, a light emitting layer 53, an electron injection layer 54, and a cathode are provided on the upper surface of the color filter.
  • a method of sequentially forming 55, a method of bonding an organic light-emitting body 500 formed on another substrate to an inorganic oxide film 40, and the like can be given.
  • the organic EL device 100 manufactured in this manner can be applied to a passively driven organic EL display and an actively driven organic EL display.
  • the transparent support substrate 10 is used to remove the blue color filter 20 from the end.
  • a black mask was provided for the purpose of making the part invisible.
  • a black mask coating solution (CK8400L, manufactured by Fuji Film ARCH) is applied to the entire surface of the transparent support substrate 10 made of glass by spin coating, dried by heating at 80 ° C, and then dried by photolithography.
  • a striped black mask pattern with a pitch of 13 mm and a gap of 0.1 Omm was obtained.
  • a transparent photopolymerizable resin (259 PAP5, manufactured by Nippon Steel Chemical Co., Ltd.) as a binder
  • a dye represented by the structural formula (3) as a blue dye based on 100 parts by weight of the solid content of the transparent photopolymerizable resin. was added, and 1 part by weight of a second dye represented by Structural Formula (4) (HDITCI manufactured by Lambda Physik) was added to obtain a coating solution for a blue color filter.
  • Structural Formula (4) (HDITCI manufactured by Lambda Physik)
  • This blue color filter coating liquid is applied on a transparent support substrate 10 by spin coating, heated and dried at 80 ° C., and then subjected to photolithography to obtain a 0.13 mm pitch.
  • a blue color filter pattern having a stripe shape with a gap of 0.01 mm was formed.
  • the organic luminous body 500 was formed to produce an organic EL device 100.
  • the organic luminescent layer 500 is composed of six layers including a transparent anode 50 Z hole injection layer 51 / hole transport layer 52, a light emitting layer 53, an electron injection layer 54, and a cathode 55. The specific fabrication procedure will be described below. .
  • a transparent photopolymer resin (259 PAP5, manufactured by Nippon Steel Chemical Co., Ltd.) is applied on the transparent support substrate 10 on which the blue color filter 20 is formed, and dried to form a blue color filter 20.
  • a layer made of ITO was similarly formed on the entire surface of the inorganic oxide layer 40 by sputtering, and the transparent anode 50 was obtained by performing the following patterning.
  • this substrate was mounted in a resistance heating evaporation apparatus, and a hole injection layer 51, a hole transport layer 52, a light emitting layer 53, an electron injection layer 54, and a cathode 55 were formed in this order without breaking vacuum. .
  • the pressure in the vacuum chamber during film formation was reduced to 1 ⁇ 10 ” 4 Pa.
  • the hole injection layer 51 was a 100 nm thick copper phthalocyanine (CuPc) layer
  • the hole transport layer 52 is a 20 nm thick 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (-NPD) layer
  • the light emitting layer 53 is a 30 nm thick 4,4'-bis (2
  • the electron injection layer 54 was a 20 nm-thick tris (8-hydroxyxinoline) aluminum complex (Alq) layer
  • the cathode had a thickness of 20 nm.
  • Mg / Ag consisting of Onm (weight ratio 1:10) was formed into a stripe pattern with a pitch of 0.33 mm and a gap of 0.05 mm perpendicular to the anode line by mask evaporation.
  • the organic EL element 100 was taken out of the vapor deposition apparatus, and sealed under a nitrogen atmosphere using a sealing glass and a UV adhesive so that the element was not directly exposed to the atmosphere. (Not shown).
  • the manufactured organic EL device 100 emits blue light having a peak at a wavelength of 47 Onm.
  • Example 1 In forming the blue color filter in Example 1, the dye represented by Structural Formula (5) was used as the second dye instead of the second dye used in Example 1, and a transparent photopolymerizable resin solid content of 100 parts by weight was used.
  • An organic EL device was produced in the same manner as in Example 1 except that 1 part by weight of the organic EL device was added.
  • Example 2 In the formation of the blue color filter in Example 2, Example 2 was repeated except that the nickel complex represented by the structural formula (6) was added as a quencher in a ratio of 0.3 mol to 1 mol of the first dye.
  • a coating solution for a blue color filter was prepared in the same manner as described above, and an organic EL device was similarly obtained.
  • Example 1 A coating material for a blue color filter was prepared in the same manner as in Example 1, except that the phthalocyanine blue was used as the pigment instead of the first dye and the second dye used in Example 1. The amount of the pigment added was adjusted so that the light transmittance at a wavelength of 470 nm was the same as that in Example 1 when the blue color filter was formed in the same thickness as in Example 1.
  • Table 1 shows the evaluation results.
  • the CIE chromaticity was evaluated by making the manufactured device emit light.
  • a chromaticity meter (MCPD-1000, Otsuka Electronics Co., Ltd.) was used for the measurement.
  • the contrast was compared when the display surface of the device was irradiated with fluorescent light (100000) from an oblique angle of 45 °.
  • the values in the table are relative values with the result of the comparative example as 1 ⁇ 0. If the value is 1.0 or more, the contrast is improved.
  • the transmittance was measured using a spectrophotometer (Shimadzu UV-210 PC), and the light transmittance at wavelengths of 470 nm and 510 nm was compared. .
  • the light transmittance at 510 nm when the films were formed with the same light transmittance at 470 nm was higher in the example than in the comparative example.
  • the color filter of the example has a higher light-shielding property in a wavelength range that reduces the purity of blue than the color filter of the comparative example.
  • the color filter of the comparative example in which the pigment is dispersed in the binder, scattering is liable to occur in the color filter and at the interface.
  • the color filter of Example shows a value in which the dye is completely dissolved in the binder, the transparency is high, and the contrast is high.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A blue color filter comprising a first dye represented by the structural formula (1) in the description and a binder resin and further comprising a second dye capable of absorbing fluorescence from the first dye and not exhibiting any fluorescence maximum in the visible wavelength region. This blue color filter realizes high blue color purity and transmission factor, being excellent in contrast and is suitable for use in an organic EL display. There is further provided an organic EL device including the same.

Description

青色カラーフィルター及びこれを用いた有機エレクトロルミネッセンス素子 技術分野 Blue color filter and organic electroluminescence device using the same
本発明は、 携帯端末機や産業用計測器の表示機器に用いられる青色カラーフィ ルターおよびこれを用いた有機エレクト口ルミネッセンス (以下、 有機 E Lと略 記する。 ) 素子に関する。 背景技術  The present invention relates to a blue color filter used for a display device of a portable terminal or an industrial measuring instrument, and an organic electroluminescent (hereinafter abbreviated as organic EL) device using the same. Background art
有機 E Lディスプレイのマルチカラーまたはフルカラー化の方法の 1つとして、 有機発光体の発光域の光を吸収し、 可視光域の蛍光を発光する蛍光材料をフィル ターに用いる色変換方式が特開平 3-152897号公報、 特開平 5-258860号公報等に 開示されている。 この方式によれば有機発光体の発光色は白色に限定されないた め、 より輝度の高い有機発光体を光源に適用でき、 例えば青色発光の有機発光体 を用いて青色光を緑色光や赤色光に波長変換する色変換方式が特開平 3-152897 号公報、 特開平 8- 286033号公報、 特開平 9- 208944に記載されている。 そして、 このような蛍光色素を含む蛍光変換膜を高精細に透明な支持基板上にパターニン グすれば、 有機発光体の近紫外光ないし可視光のような低いエネルギーの光を用 いてもフルカラーの発光型ディスプレイが構築できる。  As one of the methods for producing a multi-color or full-color organic EL display, a color conversion method using a fluorescent material that absorbs light in an emission region of an organic luminous body and emits fluorescence in a visible light region as a filter is disclosed in Japanese Unexamined Patent Publication No. These are disclosed in, for example, JP-A-152897 and JP-A-5-258860. According to this method, the emission color of the organic light-emitting body is not limited to white, so that a higher-luminance organic light-emitting body can be applied to the light source. For example, using a blue-emitting organic light-emitting body, blue light is converted to green light or red light. A color conversion method for wavelength conversion is described in JP-A-3-52897, JP-A-8-286033, and JP-A-9-208944. If a fluorescent conversion film containing such a fluorescent dye is patterned on a transparent support substrate with high definition, a full-color image can be obtained even when using low-energy light such as near-ultraviolet light or visible light of an organic luminous body. A light emitting display can be constructed.
カラーフィルタ一およぴ色変換フィルターと有機発光体を構成要素とする色変 換方式を用いた有機 E L素子において、 カラーディスプレイの製造工程で要求さ れる耐熱性や、 ディスプレイとして使用される際の耐候性、 ならびに高精細度の 画像が要求されるものについては、 顔料分散法で作成されたカラーフィルターを 用いるのが主流となっており、 感光性樹脂溶液中に赤色、 青色または緑色の顔料 を粒径 1 μ ηι以下に微分散したものをガラス基板上に塗布した後、 フォトリソグ ラフィ一により所望のパタ一ンで画素を形成している (特公平 4-37987号公報、 特公平 4- 39041号公報等参照) 。 Organic EL devices using a color filter, a color conversion filter, and a color conversion method that includes an organic light-emitting element as components. For those requiring weather resistance and high-definition images, color filters prepared by the pigment dispersion method are mainly used, and red, blue or green pigments are added to the photosensitive resin solution. After applying a finely dispersed material with a particle size of 1 μηι or less on a glass substrate, The pixels are formed in a desired pattern by the luffy (see Japanese Patent Publication No. 4-37987, Japanese Patent Publication No. 4-39041, etc.).
カラーフィルターの色純度、 彩度、 光透過量の向上が求められており、 従来は、 光透過量の向上を目的として、 画像形成用材料中の感光性樹脂に対する着色顔料 の含有量を減らすか、 もしくは画像形成用材料により形成される画素の形成膜厚 を薄くするというような方法が採られてきた。  Improvements in color purity, saturation, and light transmission of color filters have been demanded.In the past, to improve the light transmission, it was necessary to reduce the content of the coloring pigment in the photosensitive resin in the image forming material. Alternatively, a method of reducing the thickness of a pixel formed by an image forming material has been adopted.
し力 しながら、 これらの方法ではカラーフィルター自身の彩度が低下し、 ディ スプレイ全体が白っぽくなって表示に必要な色の鮮やかさが犠牲となってしまい、 逆に彩度を優先して着色顔料含有量をあげるとディスプレイ全体が暗くなり、 明 るさを確保するためにパックライトの光量を大きくしなければならず、 ディスプ レイの消費電力増大を招いてしまうという問題がある。  However, in these methods, the saturation of the color filter itself decreases, the entire display becomes whitish, and the vividness of the colors required for display is sacrificed. Increasing the pigment content causes the entire display to become darker, and the amount of light from the packlight must be increased in order to ensure brightness, resulting in an increase in the power consumption of the display.
これに対して、 光透過量の向上を目的として、 顔料粒子の粒径をその呈色波長 の 1 / 2以下にまで微分散する方法が知られている (橋爪清、 色材協会誌、 1967 年 12月、 P608参照) 力 青色顔料は他の赤色、 緑色顔料に比較して呈色波長が 短いため、 この場合にはさらなる微分散を必要として、 コストアップならびに分 散後の安定ィヒが問題となる。 On the other hand, there is known a method for finely dispersing the particle size of pigment particles to 1/2 or less of the coloration wavelength in order to improve the light transmission amount (Kiyoshi Hashizume, Journal of the Color Materials Association, 1967 December, see P 608) force blue pigment other red, for color wavelength as compared to the green pigment is short, require additional finely dispersed in this case, stable inhibit the cost and amount Chinochi Is a problem.
さらに、 青色顔料としては、 α型、 型、 ε型の結晶形態を有する銅フタロシ ァニン系ブルーが広く用いられているが (色材工学ハンドブック、 色材協会編集、 ρ 333参照) 、 青色顔料として α型の銅フタロシアニンブルーを単独でカラーフ ィルターに用いた場合には、 その着色力が低く、 目的の彩度を呈するには感光性 樹脂に対して多くの顔料を混合せねばならず、 カラーフィルターを形成した後の その耐熱変色、 ならびにガラス基板との密着性に課題が残り、 そればかり力 波 長 600nm以上の透過光量が多く、 色純度が低下してしまうという問題がある。 一方、 ε型の銅フタロシアニンプル一を青色顔料として単独で用いた場合には、 その優れた着色力から感光性榭脂に対する添加量を少なくすることが可能ではあ るが、 目的の彩度を得るまで顔料の混合量を増加してゆくと、 感光性樹脂の硬化 波長である 365nraの遮光性が高まり、 光硬化感度が低下して現像時の膜へり、 パターン流れをおこすという問題がある。 Further, as a blue pigment, copper phthalocyanine-based blue having α-type, ε-type and ε-type crystal forms is widely used (see Color Material Engineering Handbook, edited by the Color Material Association, ρ333). When α-type copper phthalocyanine blue is used alone in a color filter, its coloring power is low, and a large amount of pigment must be mixed with the photosensitive resin to achieve the desired saturation. However, there remains a problem in heat-resistant discoloration after the formation and adhesion to the glass substrate, and the amount of transmitted light having a power wavelength of 600 nm or more is large, and the color purity is reduced. On the other hand, when ε-type copper phthalocyanine pull is used alone as a blue pigment, it is possible to reduce the amount of addition to the photosensitive resin due to its excellent coloring power, but the desired saturation is reduced. Increasing the mixing amount of the pigment until it is obtained will cure the photosensitive resin There is a problem that the light-shielding property of 365nra, which is the wavelength, is increased, the photocuring sensitivity is reduced, and the film is peeled during development and the pattern flows.
また、 /3型の銅フタロシアユン系ブルーは、 緑味のある青色であるために、 こ れを青色顔料として単独で使用すると、 目標とする NT S C色相からのずれが大 きくなつてしまうという問題がある。  Also, since / 3 type copper phthalocyanine blue is a greenish blue, using it alone as a blue pigment will result in a large deviation from the target NTSC hue. There is.
また、 銅フタロシアニン系ブルーにジォキサジン系バイオレツト混合した顔料 をカラーフィルターに用いることも知られており (特公平 6-95211号公報、 特 開平 1-200353号公報、 特公平 4-37987号公報等参照) 、 前記 3種類の銅フタ口 シァニンブルーのいずれか 1種とジォキサジン系バイオレットである I . c . ピ グメントバイオレツト 2 3との混色を利用すると、 500〜550nmの光透過を抑え られ、 色純度を向上させることができるが、 目的とする青色領域 420〜500nmの 光透過が抑えられて、 ディスプレイとしたときの明るさが低下するという問題が ある。 さらに、 ディスプレイとした時に、 偏光板によって青色領域の光透過率は 他の色の領域に比較して 70〜80%に抑えられてしまうため、 青色フィルターの 光透過量の向上が求められている。  It is also known to use a pigment obtained by mixing a copper phthalocyanine blue and a dioxazine biolet for a color filter (see Japanese Patent Publication No. 6-95211, Japanese Patent Publication No. 1-200353, Japanese Patent Publication No. 4-37987, etc.). Using the color mixture of any one of the above three types of copper lid mouth cyanine blue and dioxazine-based violet pigment violet 23, light transmission of 500 to 550 nm can be suppressed and color purity can be reduced. However, there is a problem in that light transmission in the target blue region of 420 to 500 nm is suppressed, and the brightness of a display is reduced. Furthermore, when used as a display, the light transmittance in the blue region is suppressed to 70 to 80% by the polarizing plate compared to the other color regions, so there is a need to improve the light transmittance of the blue filter. .
本発明は、 青色の透過率が高く、 さらに緑色の透過率の低い青色カラーフィル タ一およぴ青色純度の良レ、有機ェレクトロルミネッセンス素子を提供することを 目的とする。 発明の開示  An object of the present invention is to provide a blue color filter having a high blue transmittance and a low green transmittance, a good blue purity, and an organic electroluminescent device. Disclosure of the invention
上記の目的を達成するために、 本発明においては、 青色カラーフィルターが、 構造式 ( 1 ) で示される第 1の色素と、 ノ インダー樹脂とを含有するとともに、 前記第 1の色素の蛍光を吸収し、 かつ可視波長域に蛍光極大を有しない第 2の色 素を含有するものとする。  In order to achieve the above object, in the present invention, a blue color filter contains a first dye represented by a structural formula (1) and a binder resin, and emits fluorescence of the first dye. It contains a second colorant that absorbs and does not have a fluorescence maximum in the visible wavelength region.
[構造式 ( 1 ) ]
Figure imgf000006_0001
[Structural formula (1)]
Figure imgf000006_0001
[構造式( 1 )において、 Ri Reはそれぞれ独立に置換されてもよい水素原子、 アルキル基、 ァリール基、 あるいは複素環基を表し、 R7は炭素数 1〜6の鎖式 不飽和炭化水素基を表す。 ΧΊま、 I—、 B r―、 C 1—、 F -、 C 103—、 B r 03_、 I 03—、 C 104—、 B Fい P F4—、 S b F4—、 B r 04—および有機系ァニオンの群 から選ばれるァニオンを表す] [In the structural formula (1), Ri Re represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group which may be independently substituted, and R 7 is a chain unsaturated hydrocarbon having 1 to 6 carbon atoms. Represents a group. ΧΊ Also, I-, B r-, C 1- , F -, C 10 3 -, B r 0 3 _, I 0 3 -, C 10 4 -, BF have PF 4 -, S b F 4 -, B r 0 4 —and represents an anion selected from the group of organic anions]
上記のように構造式 (1) で示される第 1の色素を青色カラーフィルターの青 色染料として用いることにより、 500 nm〜600 nmの光透過率を抑えて青 色純度を向上させるとともに、 光透過量の高い青色カラーフィルターとすること を可能にする。 また、 第 1の色素とともに、 第 1の色素の蛍光を吸収し、 かつ可 視波長域である 750 nm以下に蛍光極大を有しない第 2の色素を含有させるこ とにより、 第 1の色素が生ずる 600 n m〜700 n mの蛍光を第 2の色素が吸 収して青色純度の低下を防ぐ。  By using the first dye represented by the structural formula (1) as the blue dye of the blue color filter as described above, the light transmittance of 500 nm to 600 nm can be suppressed to improve the blue purity, It enables a blue color filter with high transmission. In addition, by incorporating a second dye that absorbs the fluorescence of the first dye and does not have a fluorescence maximum in the visible wavelength range of 750 nm or less together with the first dye, the first dye is The resulting dye of 600 nm to 700 nm is absorbed by the second dye to prevent a decrease in blue purity.
本発明はまた、 青色カラーフィルターが、 構造式 (1) で示される第 1の色素 と、 バインダー樹脂とを含有するとともに、 構造式 (2) で示される第 2の色素 を含有するものとする。  The present invention also provides that the blue color filter contains the first dye represented by the structural formula (1) and a binder resin, and also contains the second dye represented by the structural formula (2) .
[構造式 (1) ]  [Structural formula (1)]
Figure imgf000006_0002
[構造式(1 )において、 Ι^〜Ι 6はそれぞれ独立に置換されてもよい水素原子、 アルキル基、 ァリール基、 あるいは複素環基を表し、 R7は炭素数 1〜6の鎖式 不飽和炭化水素基を表す。 X—は、 厂、 B r―、 C I—、 F―、 C 1 03 B r 03一、
Figure imgf000006_0002
In Structural Formula (1), Ι ^ ~Ι 6 each independently represent a an optionally substituted hydrogen atom, an alkyl group, Ariru group or a heterocyclic group,, R 7 is not chain having 1 to 6 carbon atoms Represents a saturated hydrocarbon group. X- is厂, B r-, CI-, F-, C 1 0 3 B r 0 3 one,
I 03-、 C 1 04—、 B F4—、 P F4—、 S b F 、 B r 04—および有機系ァニオンの群 から選ばれるァユオンを表す] I 0 3 -, C 1 0 4 -, BF 4 -, PF 4 - represents a Ayuon selected from the group of organic Anion] -, S b F, B r 0 4
[構造式 ( 2 ) ]  [Structural formula (2)]
Figure imgf000007_0001
Figure imgf000007_0001
[構造式 ( 2 ) において、 は水素原子、 アルキル基、 ァリール基、 あるいは 複素環基を表す。 X—は、 厂、 B r -、 C 1—、 F―、 C 1 03—、 B r 03—、 I 03一、 C 1 O4—、 B F 4—、 P F4—、 S b F4—、 B r 04—および有機系ァニオンの群から選ば れるァ二オンを表す。 Yは O原子または S原子を表す。 aは 1〜6の整数を表 す。 ] [In the structural formula (2), represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group. X- is厂, B r -, C 1-, F-, C 1 0 3 -, B r 0 3 -, I 0 3 one, C 1 O 4 -, BF 4 -, PF 4 -, S b F 4 —, Br 0 4 — and anion selected from the group of organic anions. Y represents an O atom or an S atom. a represents an integer of 1 to 6. ]
またさらに、 本発明の青色カラーフィルターには、 前記の第 1または第 2の色 素の蛍光を消光させるクェンチヤーァニオンを含有することとしてもよい。  Still further, the blue color filter of the present invention may contain a quencher anion for quenching the fluorescence of the first or second color element.
また、 本発明による有機エレクト口ルミネッセンス素子は、 カラーフィルター の少なくとも一部に上記の青色カラーフィルターを用いたものとする。 図面の簡単な説明  The organic electroluminescent device according to the present invention uses the blue color filter as at least a part of the color filter. Brief Description of Drawings
図 1は本発明の青色カラ 一を備えた有機 E L素子の断面概略図であ る。  FIG. 1 is a schematic cross-sectional view of an organic EL device having a blue color according to the present invention.
(符号の説明)  (Explanation of symbols)
1 0 0 有機 E L素子  1 0 0 Organic EL device
1 0 透明支持基板 2 0 青色カラーフィルタ、 1 0 Transparent support substrate 2 0 Blue color filter,
3 0  3 0
4 0 無機酸化膜  4 0 Inorganic oxide film
5 0 0 有機発光体  500 organic light emitter
5 0  5 0
5 1 正孔注入層  5 1 Hole injection layer
5 2 正孔輸送層  5 2 Hole transport layer
5 3  5 3
5 4 電子注入層  5 4 Electron injection layer
5 5 発明を実施するための最良の形態  5 5 BEST MODE FOR CARRYING OUT THE INVENTION
図 1に示すように、 本実施例の有機 E L素子 1 0 0は、 透明支持基板 1 0上に 青色カラーフィルター 2 0、 有機保護層 3 0、 無機酸化膜 4 0、 透明陽極 5 0、 正孔注入層 5 1、 正孔輸送層 5 2、 発光層 5 3、 電子注入層 5 4、 およぴ陰極 5 5が順次形成されて全体として有機 E L素子 1 0 0を構成している。  As shown in FIG. 1, the organic EL device 100 of the present example has a blue color filter 20, an organic protective layer 30, an inorganic oxide film 40, a transparent anode 50, and a positive electrode on a transparent support substrate 10. A hole injection layer 51, a hole transport layer 52, a light emitting layer 53, an electron injection layer 54, and a cathode 55 are sequentially formed to constitute an organic EL device 100 as a whole.
次に、 本発明の青色カラーフィルター 2 0を形成するための青色画像形成用材 料の調整に用いられる各材料について説明する。  Next, each material used for adjusting the blue image forming material for forming the blue color filter 20 of the present invention will be described.
[第 1の色素]  [First dye]
本発明の青色カラーフィルタ一は、 構造式 ( 1 ) で示されるシァニン系色素を 第 1の色素として含有する。 構造式 ( 1 ) で示される色素は一種のみを用いても 良いし、 その複数種類を組み合わせても良い。 構造式 ( 1 ) で示されるシァニン 系色素はそれ自体の化学的および熱的安定性が高いので、 顔料分散法によらなく ても青色カラーフィルターの耐熱性は高い。 さらに、 第 1の色素に、 銅フタロシ ァニン系等の他の青色顔料を混合して用いることもできる。 本発明の青色画像形成用材料を得るにあたって、 構造式 ( 1 ) で示されるシァ ニン系色素のパインダ一樹脂に対する混合比は、 好ましくは 0 . 1〜 4 0重量部 である。 これにより、 5 0 0〜 5 5 0 n mの光透過を抑え、 色純度を向上するこ とができる。 また、 構造式 ( 1 ) で示されるシァニン系色素は顔料ィ匕して用いる こともでき、 青色顔料分散体の製造法としては公知の方法を利用することができ る。 例えば、 銅フタロシアニン系ブルーと構造式 ( 1 ) で示されるシァニン系色 素とを、 有機溶剤、 分散安定ィ匕を図る顔料誘導体 (必要に応じて添加) および分 散剤とともに、 サンドミル等の分散機を用いて顔料の微分散 ·安定化を行うこと により、 銅フタロシアニン系ブルーと構造式 ( 1 ) で示されるシァニン系色素と を含む青色顔料分散体としても良レ、。 The blue color filter of the present invention contains a cyanine dye represented by the structural formula (1) as a first dye. The dye represented by the structural formula (1) may be used alone or in combination of two or more. Since the cyanine dye represented by the structural formula (1) has high chemical and thermal stability itself, the heat resistance of the blue color filter is high even without using the pigment dispersion method. Further, another blue pigment such as a copper phthalocyanine-based pigment may be mixed with the first pigment. In obtaining the blue image forming material of the present invention, the mixing ratio of the cyanine dye represented by the structural formula (1) to the binder resin is preferably 0.1 to 40 parts by weight. As a result, it is possible to suppress transmission of light in the range of 500 to 550 nm, and to improve color purity. Further, the cyanine dye represented by the structural formula (1) can be used after being pigmented, and a known method can be used as a method for producing a blue pigment dispersion. For example, a copper phthalocyanine-based blue and a cyanine-based colorant represented by the structural formula (1) are mixed with an organic solvent, a pigment derivative (added as necessary) for dispersing stability and a dispersant, and a dispersing machine such as a sand mill. By finely dispersing and stabilizing the pigment using, a blue pigment dispersion containing copper phthalocyanine blue and a cyanine dye represented by the structural formula (1) is also excellent.
[第 2の色素]  [Second dye]
第 1の色素の蛍光 (6 0 0 n m〜 7 0 0 n m) を吸収し、 且つ可視波長域 ( 7 5 0 n m以下) に蛍光を有しない色素を第 2の色素として添加する。 第 2の色素 のパインダ一樹脂に対する混合比は、 好ましくは、 0 . :!〜 4 0重量部である。 また、 青色カラーフィルタ一として機能するためには、 青色波長域には吸収を持 たない色素が望ましい。 具体的にはフィルターへ添加した際に、 4 5 0 n mにお ける透過率が 6 0 %以上である色素であれば使用できる。  A dye that absorbs the fluorescence (600 nm to 700 nm) of the first dye and has no fluorescence in the visible wavelength range (750 nm or less) is added as the second dye. The mixing ratio of the second dye to the binder-resin is preferably from 0 :! to 40 parts by weight. In order to function as a blue color filter, a dye that does not absorb light in the blue wavelength region is desirable. Specifically, any dye can be used as long as it has a transmittance of 60% or more at 450 nm when added to a filter.
例 は、 1, 1 -Diethyl- 4, 4 -carbocyanine Iodide (uryptocyanine) 、 1, 1 - Diethyl— 2, 2,— dicarbocyanine Iodide (DDI) 、 3, 3'—  Examples are 1, 1-Diethyl-4,4-carbocyanine Iodide (uryptocyanine), 1, 1-Diethyl—2,2, —dicarbocyanine Iodide (DDI), 3,3′—
Diraethyloxatri carbocyanine Iodide (Methyl D0TCI) 、 1, , 3, 3, 3,, 3' -Diraethyloxatri carbocyanine Iodide (Methyl D0TCI), 1,, 3, 3, 3, 3, 3 '-
Hexamethylindotricarbocyanine Iodide (HITCI) 、 IR125 (Lambda Phisik製) 、 1, 1' -Diethyl - 4, 4' -carbocyanine Iodide (Cryptocyanine)、 IR144 (Lambda Phisik製) 、 3, 3' - Diethyl - 9, 11- neopentylenethiatricarbocyanine Iodide (DNTTCI) 、 1, 1', 3, 3, 3', 3' -Hexamethyl-4, 4' 5, 5'一 dibenzo— 2, 2'一 Hexamethylindotricarbocyanine Iodide (HITCI), IR125 (from Lambda Phisik), 1,1'-Diethyl-4,4'-carbocyanine Iodide (Cryptocyanine), IR144 (from Lambda Phisik), 3, 3'-Diethyl-9,11- neopentylenethiatricarbocyanine Iodide (DNTTCI), 1, 1 ', 3, 3, 3', 3'-Hexamethyl-4, 4 '5, 5' dibenzo— 2, 2 'one
indotricarbocyanine Iodide (HDITCI) 、 1, 2' -Diethyl-4, 4' -dicarbocyanine Iodide (DDCI-4) 等が挙げられる。 または、 第 2の色素として構造式 ( 2 ) で示されるシァニン系色素を用いても 良く、 具体的には、 例えば 3,3' - Diethylthiatricarbocyanine Iodide (DTTCI) , 3, 3, - Diethyl - 4, 4' 5, 5' -dibenzothiatricarbocyanine Iodide (DDTTCI) 等が挙 げられる。 Indotricarbocyanine Iodide (HDITCI), 1,2′-Diethyl-4, 4′-dicarbocyanine Iodide (DDCI-4) and the like. Alternatively, a cyanine dye represented by the structural formula (2) may be used as the second dye. Specifically, for example, 3,3′-Diethylthiatricarbocyanine Iodide (DTTCI), 3,3, -Diethyl-4, 4 '5,5'-dibenzothiatricarbocyanine Iodide (DDTTCI).
[構造式 (2 ) ] [Structural formula (2)]
Figure imgf000010_0001
Figure imgf000010_0001
[構造式 (2 ) において、 は水素原子、 アルキル基、 ァリール基、 あるいは 複素環基を表す。 X—は、 、 B r―、 C l F―、 C 1 O3—、 B r 03—、 I 03一、[In the structural formula (2), represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group. X- is,, B r-, C l F- , C 1 O 3 -, B r 0 3 -, I 0 3 primary,
C 1 04-、 B F4-、 P F 、 S b F4—、 B r 04—および有機系ァニオンの群から選ば れるァ二オンを表す。 Yは O原子または S原子を表す。 aは 1〜6の整数を表 す。 ] C 1 0 4 -, BF 4 -, PF, S b F 4 - represents a § two on selected from the group consisting of and organic Anion -, B r 0 4. Y represents an O atom or an S atom. a represents an integer of 1 to 6. ]
[タエンチヤー]  [Taengya]
用いる色素がカチオン系色素であるため、 クェンチヤ一としては例えばァ-ォ ン系の一重項酸素クェンチヤ一が使用できる。 具体的には、 特開昭 5 9— 5 5 7 9 5号、 特開昭 6 0 - 2 3 4 8 9 2号等に開示されている遷移金属キレート、 ビ スイミ-ゥム塩等が使用できる。  Since the dye to be used is a cationic dye, the quencher may be, for example, an ionic singlet oxygen quencher. Specifically, transition metal chelates, bisimidium salts and the like disclosed in JP-A-59-57979, JP-A-60-234892, etc. are used. it can.
レィンダ一]  Layender]
本発明の青色カラーフィルターに用いるバインダー樹脂は、 可視光透過性を有 し、 基板との密着性が良好であるものであれば良く、 公知の熱可塑樹脂、 熱硬ィ匕 樹脂、 光硬化樹脂等が使用できる。 感光性を有する樹脂は、 フィルターのフアイ ンパターンを簡便に作製できるため、 特に好ましい。  The binder resin used in the blue color filter of the present invention may be any resin that has visible light transmittance and good adhesion to a substrate, and may be a known thermoplastic resin, thermosetting resin, or photocurable resin. Etc. can be used. A resin having photosensitivity is particularly preferable because a fine pattern of the filter can be easily prepared.
[青色力ラーフィルタ一及び有機 E L素子の製作] 上述の各材料からなる青色画像形成用材料を透明支持基板 1 0上に所望のパタ ーンで塗布することにより青色カラーフィルタ一層 2 0が形成される。 塗布方法 には特に制限はなく、 通常のスピンコート法、 ロールコート法、 キャスト法、 ス クリーン印刷法、 インクジェット法などが使用できる。 硬化方法にも特に制限は なく、 熱硬化 (蛍光材料の劣化を考慮し 1 5 0 °C程度までの温度で硬化すること が望ましい) 、 湿気硬化、 化学硬化、 光硬化 (蛍光材料の劣ィ匕を考慮し, 可視光 にて硬化することが望ましい) さらにはこれらを組み合わせた硬ィ匕法等が使用で さる。 [Production of blue color filter and organic EL device] The blue color filter layer 20 is formed by applying a blue image forming material composed of each of the above-mentioned materials on the transparent support substrate 10 in a desired pattern. The coating method is not particularly limited, and a usual spin coating method, roll coating method, casting method, screen printing method, ink jet method and the like can be used. There is no particular limitation on the curing method, and heat curing (preferably curing at a temperature of about 150 ° C. in consideration of deterioration of the fluorescent material), moisture curing, chemical curing, and light curing (inferiority of the fluorescent material) It is desirable to cure with visible light in consideration of the dangling.) Furthermore, the dangling method combining these can be used.
青色画素を形成する前、 またはその後に、 必要に応じて赤色または/およぴ緑 色の画素形成材料を用いて赤色または/およぴ緑色力ラーフィルターを形成する ことによって多色カラーフィルターを作製することができる。 さらに、 このカラ 一フィルター上に有機保護層 3 0および無機酸化膜 4 0を介して有機発光体 5 0 0を積層することによつて多色の有機 E L素子を作製することができる。 有機発 光体 5 0 0の積層方法としては、 カラーフィルター上面へ透明陽極 5 0、 正孔注 入層 5 1、 正孔輸送層 5 2、 発光層 5 3、 電子注入層 5 4、 および陰極 5 5を逐 次形成していく方法や、 別基板上へ形成した有機発光体 5 0 0を無機酸化膜 4 0 上に貼り合わせる方法などが挙げられる。 このようにして作製された有機 E L素 子 1 0 0は、 パッシプ駆動方式の有機 E Lディスプレイにもァクティブ駆動方式 の有機 E Lディスプレイにも適用可能である。  Before or after forming a blue pixel, a multicolor filter can be formed by forming a red or / and green color filter using a red or / and green pixel forming material as needed. Can be made. Further, a multicolor organic EL device can be manufactured by laminating an organic light emitting element 500 on this color filter via an organic protective layer 30 and an inorganic oxide film 40. As a method of laminating the organic luminescent material 500, a transparent anode 50, a hole injection layer 51, a hole transport layer 52, a light emitting layer 53, an electron injection layer 54, and a cathode are provided on the upper surface of the color filter. A method of sequentially forming 55, a method of bonding an organic light-emitting body 500 formed on another substrate to an inorganic oxide film 40, and the like can be given. The organic EL device 100 manufactured in this manner can be applied to a passively driven organic EL display and an actively driven organic EL display.
以下に、 実施例について述べる。  Hereinafter, examples will be described.
(実施例 1 )  (Example 1)
[ブラックマスクの作製]  [Production of black mask]
図 1には示していないが、 コントラスト評価時の青色カラーフィルター 2 0や 透明電極 5 0端部における反射光の影響を排除するために、 透明支持基板 1 0面 力 ら青色カラーフィルター 2 0端部を不可視ィ匕することを目的として、 まずブラ ックマスクを配設した。 ガラス製の透明支持基板 10上にブラックマスク塗液 (CK8400 L、 富士 フィルム ARCH製) をスピンコート法にて全面に塗布し、 80°Cにて加熱乾燥 後、 フォトリソグラフ法を用いて、 0. 13 mmピッチ、 0. 1 Ommギャップの ストライプ状のブラックマスクパターンを得た。 Although not shown in FIG. 1, in order to eliminate the influence of the reflected light at the end of the blue color filter 20 and the transparent electrode 50 at the time of the contrast evaluation, the transparent support substrate 10 is used to remove the blue color filter 20 from the end. First, a black mask was provided for the purpose of making the part invisible. A black mask coating solution (CK8400L, manufactured by Fuji Film ARCH) is applied to the entire surface of the transparent support substrate 10 made of glass by spin coating, dried by heating at 80 ° C, and then dried by photolithography. A striped black mask pattern with a pitch of 13 mm and a gap of 0.1 Omm was obtained.
[青色カラーフィルターの作製]  [Production of blue color filter]
バインダーとして透明性光重合性樹脂 (新日鉄化学 (株) 製、 259 PAP 5) を用い、 透明性光重合性樹脂固形分 100重量部に対して青色染料として構 造式 (3) で示される色素を 2重量部添加し、 更に、 構造式(4)で示される第 2 の色素 (Lambda Physik社製 HDITCI ) を 1重量部添加して青色力ラーフィルタ 用塗液とした。  Using a transparent photopolymerizable resin (259 PAP5, manufactured by Nippon Steel Chemical Co., Ltd.) as a binder, and a dye represented by the structural formula (3) as a blue dye based on 100 parts by weight of the solid content of the transparent photopolymerizable resin. Was added, and 1 part by weight of a second dye represented by Structural Formula (4) (HDITCI manufactured by Lambda Physik) was added to obtain a coating solution for a blue color filter.
[構造式 (3) ] [Structural formula (3)]
ti 3ti 3
Figure imgf000012_0001
Figure imgf000012_0001
[構造式 (4) ] [Structural formula (4)]
Figure imgf000012_0002
この青色カラーフィルター用塗液を透明支持基板 10上にスピンコートにより 塗膜し、 80°Cにて加熱乾燥後、 フォトリソグラフ法により、 0. 13 mmピッ チ、 0. 0 1 mmギャップのストライプ状の青色カラーフィルターパターンを形 成した。
Figure imgf000012_0002
This blue color filter coating liquid is applied on a transparent support substrate 10 by spin coating, heated and dried at 80 ° C., and then subjected to photolithography to obtain a 0.13 mm pitch. A blue color filter pattern having a stripe shape with a gap of 0.01 mm was formed.
[有機 EL素子の作製]  [Production of organic EL device]
上述の方法によりガラス製の透明支持基板 1の一方の主面に青色カラーフィル ター 20を形成した後、 この上面に有機保護層 30および無機酸化層 40を順次 製膜し、 さらに、 その上に有機発光体 500を形成して有機 EL素子 1 00を作 製した。 有機発光体層 500は、 透明陽極 50 Z正孔注入層 5 1 /正孔輸送層 5 2ノ発光層 53ノ電子注入層 54 陰極 55からなる 6層で構成されている。 以 下に具体的な作製手順を説明する。 .  After forming a blue color filter 20 on one main surface of the transparent support substrate 1 made of glass by the above-described method, an organic protective layer 30 and an inorganic oxide layer 40 are sequentially formed on this blue upper surface, and further thereon. The organic luminous body 500 was formed to produce an organic EL device 100. The organic luminescent layer 500 is composed of six layers including a transparent anode 50 Z hole injection layer 51 / hole transport layer 52, a light emitting layer 53, an electron injection layer 54, and a cathode 55. The specific fabrication procedure will be described below. .
前記青色力ラーフィルター 20が形成された透明支持基板 1 0上に透明性光重 合性樹脂 (新日鉄化学 (株) 製、 259 PAP 5) を塗布、 乾燥させて、 青色力 ラーフィルター 20上における厚さが 5 μπιである有機保護層 30を形成し、 そ の上にスパッタにより S i 02からなる厚さ 1 00 nmの無機酸化層 40を形成 した。 続いて同じくスパッタにより I TOからなる層を前記無機酸化層 40上全 面に成膜し、 次に述べるパターユングを行うことにより透明陽極 50を得た。 す なわち、 前記 I TO膜上にレジスト剤 (東京応化 (株) 製、 0FRP- 800) を膜厚 1 O O nmに塗布した後、 フォトリソグラフにより、 0. 1 3 mm ラインピッチ、 0. 0 1mmギャップのストライプパターンの透明陽極 50とした。 A transparent photopolymer resin (259 PAP5, manufactured by Nippon Steel Chemical Co., Ltd.) is applied on the transparent support substrate 10 on which the blue color filter 20 is formed, and dried to form a blue color filter 20. An organic protective layer 30 having a thickness of 5 μπι was formed, and an inorganic oxide layer 40 made of SiO 2 having a thickness of 100 nm was formed thereon by sputtering. Subsequently, a layer made of ITO was similarly formed on the entire surface of the inorganic oxide layer 40 by sputtering, and the transparent anode 50 was obtained by performing the following patterning. That is, after applying a resist agent (0FRP-800, manufactured by Tokyo Ohka Co., Ltd.) to a thickness of 100 nm on the ITO film, a 0.113 mm line pitch, 0.03 mm A transparent anode 50 having a stripe pattern of 1 mm gap was used.
次いで、 この基板を抵抗加熱蒸着装置内に装着し、 正孔注入層 5 1、 正孔輸送 層 52、 発光層 53、 電子注入層 54およぴ陰極 55の順に真空を破らずに成膜 した。 成膜時の真空槽内圧は 1 X 1 0"4 Paまで減圧した。 具体的には、 正孔注 入層 5 1は厚さ 1 00 nmの銅フタロシアニン (CuPc) 層とし、 正孔輸送層 52 は厚さ 20 n mの 4, 4' - ビス [N - (1-ナフチル) -N- フェニルァミノ] ビフエニル (-NPD) 層、 発光層 53は厚さ 30 nm の 4, 4' - ビス (2, 2 -ジフエ二ルビ二 ノレ) ビフエニル (DPVBi ) 層、 電子注入層 54は厚さ 20 nm のトリス(8— ヒ ドロキシノリン) アルミニウム錯体 (Alq ) 層とした。 そして、 陰極は厚さ 20 Onmからなる Mg/Ag (重量比 1 : 10) とし、 マスク蒸着により、 陽極ライ ンと垂直な、 0. 33mmピッチ、 0. 05 mmギャップのストライプパターン とした。 Next, this substrate was mounted in a resistance heating evaporation apparatus, and a hole injection layer 51, a hole transport layer 52, a light emitting layer 53, an electron injection layer 54, and a cathode 55 were formed in this order without breaking vacuum. . The pressure in the vacuum chamber during film formation was reduced to 1 × 10 ” 4 Pa. Specifically, the hole injection layer 51 was a 100 nm thick copper phthalocyanine (CuPc) layer, and the hole transport layer 52 is a 20 nm thick 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (-NPD) layer, and the light emitting layer 53 is a 30 nm thick 4,4'-bis (2 The biphenyl (DPVBi) layer, the electron injection layer 54 was a 20 nm-thick tris (8-hydroxyxinoline) aluminum complex (Alq) layer, and the cathode had a thickness of 20 nm. Mg / Ag consisting of Onm (weight ratio 1:10) was formed into a stripe pattern with a pitch of 0.33 mm and a gap of 0.05 mm perpendicular to the anode line by mask evaporation.
前記各層の製膜終了後、 有機 E L素子 100を蒸着装置より取り出し、 窒素雰 囲気下にて、 封止ガラスおょぴ UV接着剤を用いて、 素子が直接大気に触れない ように封止した (図示せず) 。 作製した有機 EL素子 100は、 波長 47 Onm にピークをもつ青色光を発光する。  After the formation of each layer, the organic EL element 100 was taken out of the vapor deposition apparatus, and sealed under a nitrogen atmosphere using a sealing glass and a UV adhesive so that the element was not directly exposed to the atmosphere. (Not shown). The manufactured organic EL device 100 emits blue light having a peak at a wavelength of 47 Onm.
(実施例 2)  (Example 2)
実施例 1における青色カラーフィルターの形成において、 実施例 1で用いた第 2の色素に替えて構造式 (5) に示す色素を第 2の色素として、 透明性光重合性 樹脂固形分 100重量部に対して 1重量部添加した以外は、 実施例 1と同様にし て有機 EL素子を作製した。  In forming the blue color filter in Example 1, the dye represented by Structural Formula (5) was used as the second dye instead of the second dye used in Example 1, and a transparent photopolymerizable resin solid content of 100 parts by weight was used. An organic EL device was produced in the same manner as in Example 1 except that 1 part by weight of the organic EL device was added.
[構造式 (5) ]
Figure imgf000014_0001
[Structural formula (5)]
Figure imgf000014_0001
(実施例 3)  (Example 3)
実施例 2における青色カラーフィルターの形成において、 第 1の色素 1モルに 対し 0. 3モルの比率で構造式 (6) で示されるニッケル錯体をクェンチヤ一と して添加した以外は、 実施例 2と同様にして青色カラーフィルター用塗液を調製 し、 同様に有機 EL素子を得た。  In the formation of the blue color filter in Example 2, Example 2 was repeated except that the nickel complex represented by the structural formula (6) was added as a quencher in a ratio of 0.3 mol to 1 mol of the first dye. A coating solution for a blue color filter was prepared in the same manner as described above, and an organic EL device was similarly obtained.
[構造式 (6) ]
Figure imgf000014_0002
[Structural formula (6)]
Figure imgf000014_0002
(比較例 1 ) 実施例 1で用いた第 1の色素及び第 2の色素に替えて、 顔料として鲖フタ口シ ァニン系ブルーを用いた以外は、 実施例 1と同様にして青色カラーフィルター用 塗料を調製した。 なお、 顔料の添加量は、 青色カラーフィルターを実施例 1と同 膜厚に形成した際に、 波長 4 7 0 n mの光透過率が実施例 1と同じになるように 調製した。 (Comparative Example 1) A coating material for a blue color filter was prepared in the same manner as in Example 1, except that the phthalocyanine blue was used as the pigment instead of the first dye and the second dye used in Example 1. The amount of the pigment added was adjusted so that the light transmittance at a wavelength of 470 nm was the same as that in Example 1 when the blue color filter was formed in the same thickness as in Example 1.
(評価)  (Evaluation)
作製した試料について、 下記の評価を行った。 評価結果を表 1に示す。 ここで、 C I E色度は、 作製した素子を発光させて色度を評価した。 測定には色度計 (大 塚電子製、 MCPD-1000) を用いた。 コントラストは、 素子の表示面に対し蛍光灯 光 (lOOOlx) を斜め 4 5 ° から照射した際のコントラストを比較した。 表中の値 は、 比較例の結果を 1 · 0とした相対値であり、 値が 1. 0以上であれば、 コント ラストが向上している。 透過率は、 吸光光度計 (島津製作所製 U V- 2 1 0 0 PC) を用いて吸光スぺク トルを取得し、 波長 4 7 0 n mおよび 5 1 0 n mの光透 過率を比較した。  The following evaluation was performed about the produced sample. Table 1 shows the evaluation results. Here, the CIE chromaticity was evaluated by making the manufactured device emit light. A chromaticity meter (MCPD-1000, Otsuka Electronics Co., Ltd.) was used for the measurement. The contrast was compared when the display surface of the device was irradiated with fluorescent light (100000) from an oblique angle of 45 °. The values in the table are relative values with the result of the comparative example as 1 · 0. If the value is 1.0 or more, the contrast is improved. The transmittance was measured using a spectrophotometer (Shimadzu UV-210 PC), and the light transmittance at wavelengths of 470 nm and 510 nm was compared. .
[表 1 ]  [table 1 ]
Figure imgf000015_0001
表 1に示すとおり、 4 7 0 n mにおける光透過率を揃えて膜を形成したときの 5 1 0 n mにおける光透過率が、 実施例では比較例よりも高い。 これは、 実施例 のカラーフィルタ一は、 青色の純度を低下させる波長域における遮光性が、 比較 例のカラーフィルターに較べて高いことを意味する。 また、 パインダ一に顔料を 分散させた比較例のカラーフィルタ一は、 カラーフィルタ一中およぴ界面におけ る散乱が発生し易い。 これに対し、 実施例のカラーフィルタ一は、 バインダーに 色素が完全に溶解して透明性が高く、 コントラストが高い値を示すと考えられる。 産業上の利用可能性
Figure imgf000015_0001
As shown in Table 1, the light transmittance at 510 nm when the films were formed with the same light transmittance at 470 nm was higher in the example than in the comparative example. This means that the color filter of the example has a higher light-shielding property in a wavelength range that reduces the purity of blue than the color filter of the comparative example. Further, in the color filter of the comparative example in which the pigment is dispersed in the binder, scattering is liable to occur in the color filter and at the interface. On the other hand, it is considered that the color filter of Example shows a value in which the dye is completely dissolved in the binder, the transparency is high, and the contrast is high. Industrial applicability
本発明によれば、 青色の純度および透過率が高く、 さらにコントラストも良好 な、 有機 E Lディスプレイに適した青色力ラーフィルターおよびこれを用いた有 機 E L素子を提供できる。  According to the present invention, it is possible to provide a blue color filter suitable for an organic EL display, which has high purity and transmittance of blue and has good contrast, and an organic EL element using the same.

Claims

請求の範囲 The scope of the claims
1. 構造式 (1) で示される第 1の色素と、 バインダー樹脂とを含有するとと もに、 前記第 1の色素の蛍光を吸収し、 力つ可視波長域に蛍光極大を有しない第 2の色素を含有することを特徴とする青色カラーフィルター。  1. A second dye that contains the first dye represented by the structural formula (1) and a binder resin, absorbs the fluorescence of the first dye, and does not have a fluorescence maximum in the visible wavelength region. A blue color filter, characterized by containing the following dyes.
[構造式 (1) ]  [Structural formula (1)]
Figure imgf000017_0001
Figure imgf000017_0001
[構造式(1)において、
Figure imgf000017_0002
はそれぞれ独立に置換されてもよい水素原子、 アルキル基、 ァリール基、 あるいは複素環基を表し、 R7は炭素数 1〜6の鎖式 不飽和炭化水素基を表す。 X-は、 I—、 B r―、 C I—、 F―、 C 103—、 B r 03\ I 03—、 C 104—、 B F4—、 P F4—、 S b F4—、 B r O および有機系ァ-オンの群 から選ばれるァニオンを表す]
[In the structural formula (1),
Figure imgf000017_0002
Represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group which may be independently substituted, and R 7 represents a chain unsaturated hydrocarbon group having 1 to 6 carbon atoms. X- is, I-, B r-, CI-, F-, C 10 3 -, B r 0 3 \ I 0 3 -, C 10 4 -, BF 4 -, PF 4 -, S b F 4 - , Br O and anion selected from the group of organic aions]
2. 構造式 (1) で示される第 1の色素と、 バインダー榭脂とを含有するとと もに、 構造式 (2) で示される第 2の色素を含有することを特徴とする青色カラ 一フィルター。 2. A blue color containing a first dye represented by Structural Formula (1), a binder resin, and a second dye represented by Structural Formula (2). filter.
[構造式 (1) ]  [Structural formula (1)]
Figure imgf000017_0003
[構造式( 1 )において、 1^〜1 6はそれぞれ独立に置換されてもよい水素原子、 アルキル基、 ァリール基、 あるいは複素環基を表し、 R7は炭素数 1〜6の鎖式 不飽和炭化水素基を表す。 X—は、 I _、 B r―、 C I—、 F一、 C 1 03-、 B r 03一、
Figure imgf000017_0003
[In the structural formula (1), 1 ^ to 16 each independently represent a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group which may be substituted, and R 7 represents a chain of 1 to 6 carbon atoms. Represents a saturated hydrocarbon group. X- is, I _, B r-, CI- , F one, C 1 0 3 -, B r 0 3 one,
I O3—、 C 1 O4—、 B F4—、 P F4-、 S b Fい B r 04—および有機系ァニオンの群 から選ばれるァニオンを表す] IO 3 —, C 1 O 4 —, BF 4 —, PF 4 —, S b F or Br 0 4 — and an anion selected from the group of organic anions]
[構造式 ( 2 ) ]  [Structural formula (2)]
Figure imgf000018_0001
Figure imgf000018_0001
[構造式 (2 ) において、 は水素原子、 アルキル基、 ァリール基、 あるいは 複素環基を表す。 X—は、 I—、 B r -、 C 、 F -、 C 1 03—、 B r 03 I 03 C 1 04-、 B Fい P F4—、 S b F4—、 B r 04—および有機系ァニオンの群から選ば れるァ二オンを表す。 Yは O原子または S原子を表す。 aは 1〜6の整数を表 す。 ] [In the structural formula (2), represents a hydrogen atom, an alkyl group, an aryl group, or a heterocyclic group. X- is, I-, B r -, C , F -, C 1 0 3 -, B r 0 3 I 0 3 C 1 0 4 -, BF have PF 4 -, S b F 4 -, B r 0 4 — and represents anion selected from the group of organic anions. Y represents an O atom or an S atom. a represents an integer of 1 to 6. ]
3. 前記第 1または第 2の色素の蛍光を消光させるクェンチヤーァニオンを含 有するこ.とを特徴とする請求の範囲第 1項または第 2項に記載の青色カラーフィ ノレター。 3. The blue color filter according to claim 1, further comprising a quencher anion for quenching the fluorescence of the first or second dye.
4 . 有機発光体とカラーフィルタ一とが積層された有機エレクトロノレミネッセ ンス素子において、 前記カラーフィルターの少なくとも一部が請求の範囲第 1項 から第 3項レ、ずれか 1項に記載の青色力ラーフィルターであることを特 ί敷とする 有機エレクトロルミネッセンス素子。 4. In an organic electroluminescence element in which an organic luminous body and a color filter are laminated, at least a part of the color filter is described in any one of claims 1 to 3 and claim 1. An organic electroluminescent element characterized by being a blue color filter.
PCT/JP2003/008279 2003-06-30 2003-06-30 Blue color filter and organic electroluminescence device including the same WO2005003825A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE10393386T DE10393386T5 (en) 2003-06-30 2003-06-30 Blue color filter and organic electroluminescent device with such a filter
CNB038235129A CN100388017C (en) 2003-06-30 2003-06-30 Blue color filter and organic electroluminescent device including the same
PCT/JP2003/008279 WO2005003825A1 (en) 2003-06-30 2003-06-30 Blue color filter and organic electroluminescence device including the same
AU2003246147A AU2003246147A1 (en) 2003-06-30 2003-06-30 Blue color filter and organic electroluminescence device including the same
GB0427182A GB2409205B (en) 2003-06-30 2003-06-30 Blue colour filter, and organic electroluminescent device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/008279 WO2005003825A1 (en) 2003-06-30 2003-06-30 Blue color filter and organic electroluminescence device including the same

Publications (1)

Publication Number Publication Date
WO2005003825A1 true WO2005003825A1 (en) 2005-01-13

Family

ID=33562068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008279 WO2005003825A1 (en) 2003-06-30 2003-06-30 Blue color filter and organic electroluminescence device including the same

Country Status (5)

Country Link
CN (1) CN100388017C (en)
AU (1) AU2003246147A1 (en)
DE (1) DE10393386T5 (en)
GB (1) GB2409205B (en)
WO (1) WO2005003825A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006009217A1 (en) * 2006-02-28 2007-08-30 Osram Opto Semiconductors Gmbh Electroluminescent device and method for its production
JP5463616B2 (en) * 2007-11-29 2014-04-09 大日本印刷株式会社 Organic EL element, organic EL display and color filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2349388A (en) * 1999-04-26 2000-11-01 Fuji Electric Co Ltd Blue colour filter and electroluminescent device
EP1125987A2 (en) * 2000-02-10 2001-08-22 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Cyanine dyes
JP2002022935A (en) * 2000-07-06 2002-01-23 Fuji Photo Film Co Ltd Optical filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69725607T2 (en) * 1996-12-20 2004-08-05 Ciba Speciality Chemicals Holding Inc. POLYMETHINE COMPLEX DYES AND THEIR USE
US6667087B2 (en) * 2001-11-30 2003-12-23 Cmc Magnetics Corporation Optical information recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2349388A (en) * 1999-04-26 2000-11-01 Fuji Electric Co Ltd Blue colour filter and electroluminescent device
EP1125987A2 (en) * 2000-02-10 2001-08-22 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Cyanine dyes
JP2002022935A (en) * 2000-07-06 2002-01-23 Fuji Photo Film Co Ltd Optical filter

Also Published As

Publication number Publication date
GB2409205A (en) 2005-06-22
DE10393386T5 (en) 2005-08-25
AU2003246147A1 (en) 2005-01-21
GB2409205B (en) 2005-12-14
CN1685251A (en) 2005-10-19
CN100388017C (en) 2008-05-14
GB0427182D0 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
JP3224237B2 (en) Organic electroluminescence display device
JP5236732B2 (en) Color conversion film and multicolor light emitting organic EL device including the color conversion film
US6653778B1 (en) Fluorescent color conversion film, fluorescent color conversion filter using the conversion film, and organic light-emitting device equipped with the conversion filter
JP5609878B2 (en) Organic EL display device, color filter substrate, and organic EL display device manufacturing method
JP2009265641A (en) Color filter
JP2014026228A (en) Green coloring composition for organic el display device, color filter, and organic el display device
JP3491158B2 (en) Blue color filter and organic electroluminescent device using the same
JP5034220B2 (en) Color filter substrate for organic electroluminescence device
JP2010146760A (en) Color conversion filter panel, panel type organic el emission portion, and color organic el display
WO2006077808A1 (en) Color filter substrate for organic electroluminescent device
US20060163989A1 (en) Blue color filter, and organic electroluminescent device using the same
JP5194353B2 (en) Color filter substrate for organic electroluminescence device
WO2005003825A1 (en) Blue color filter and organic electroluminescence device including the same
JP6286916B2 (en) Color filter for organic electroluminescence display device and organic electroluminescence display device
JP5450738B2 (en) Color conversion film and organic EL device including the color conversion film
JP4699249B2 (en) Color filter substrate for organic electroluminescence device
JP2002151262A (en) Color conversion filter and manufacturing method
JP2008305730A (en) Manufacturing method for multicolor light-emitting device
JP2005050597A (en) Organic electroluminescent image display device
JPH1154273A (en) Color conversion filter and manufacture thereof
JP4802536B2 (en) Organic electroluminescent image display device
JP3456638B2 (en) Fluorescent color conversion film, fluorescent color conversion film filter using the fluorescent color conversion film, and organic light emitting device including the fluorescent color conversion film filter
JP2010072106A (en) Color filter for organic electroluminescence display device and the organic electroluminescence display device
JP2010060938A (en) Color filter for organic electroluminescent display device, and organic electroluminescent display device
KR20060036032A (en) Blue color filter, and organic electroluminescent device using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 0427182

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20030815

WWE Wipo information: entry into national phase

Ref document number: 1020057000523

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038235129

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006163989

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10519448

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057000523

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10519448

Country of ref document: US

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607