WO2005003194A1 - 固相転移現象を示す結晶性ポリマー、およびその応用 - Google Patents

固相転移現象を示す結晶性ポリマー、およびその応用 Download PDF

Info

Publication number
WO2005003194A1
WO2005003194A1 PCT/JP2004/009653 JP2004009653W WO2005003194A1 WO 2005003194 A1 WO2005003194 A1 WO 2005003194A1 JP 2004009653 W JP2004009653 W JP 2004009653W WO 2005003194 A1 WO2005003194 A1 WO 2005003194A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystalline polymer
crystal transition
temperature
thermally responsive
trans
Prior art date
Application number
PCT/JP2004/009653
Other languages
English (en)
French (fr)
Inventor
Ryo Konishi
Yoichi Okubo
Kenji Fukunaga
Tadatoshi Aridomi
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to JP2005511394A priority Critical patent/JP4508109B2/ja
Priority to EP04747122A priority patent/EP1642912A4/en
Priority to US10/563,041 priority patent/US20060155088A1/en
Publication of WO2005003194A1 publication Critical patent/WO2005003194A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/04Oxidation
    • C08C19/06Epoxidation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/028Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient consisting of organic substances

Definitions

  • the present invention relates to a crystalline polymer having novel physical properties and undergoing a crystal transition in a solid state, and an application thereof.
  • Trans-1,4-polybutadiene is well known as a crystalline polymer that undergoes reversible crystal transition in a solid state.
  • trans-1,4-polybutadiene may be referred to as TPB.
  • Japanese Patent Application Laid-Open No. 2000-230103 by the present applicant discloses a mixture containing trans-1,4-polybutadiene, a thermoplastic resin and a main component, and application to a heat storage material.
  • Japanese Patent Application Laid-Open No. 2001-81135 by the present applicant discloses trans-1,4-polybutadiene having a specific structure and physical properties and exhibiting a reversible phase transition.
  • the material according to the prior art disclosed in the above-mentioned document has a crystal transition enthalpy.
  • the heat storage performance itself deteriorates due to repeated use, and improvements have been required.
  • Japanese Patent Application Laid-Open No. 9-268208 by the present applicant discloses that trans-1,4-polybutadiene having a trans bond content of 95 mol% or more, a weight average molecular weight of 1,000,000 or less, and an A Htr of 70 jZg or more.
  • a heat storage material using the same is disclosed, and in particular, a polymer having a number average molecular weight of 800,000 and a relatively high phase transition heat of 92 jZg at a crystal transition temperature of 60 ° C is disclosed.
  • this conventional technology an improvement was required because the crystal transition temperature was high, or when the crystal transition temperature was low, the improvement was required because the molecular weight was as high as 800,000 and the workability was low. .
  • a report by Antipov et al. (Macromol. Chem. Phys. Vol. 202, p82_89 (2001)) states that the ratio of 1,4-trans bond to 1,2-bul bond in polybutadiene is controlled and trans A crystalline polybutadiene having a lower crystal transition temperature (minimum 40 ° C) by reducing the bonding ratio to 98% or less is disclosed (however, the quantified phase transition enthalpy change is disclosed). Absent).
  • the melting point decreases as the crystal transition temperature decreases, so that the function manifestation temperature and the flow temperature of the polymer are close to each other. Therefore, improvement was demanded because the ambient temperature that could be used as a heat storage material was restricted due to the cancellation.
  • thermally responsive switch utilizing the thermal expansion of a polymer
  • an electrical connection between a pair of metal member electrodes described in Japanese Patent Application Laid-Open No. 7-85756 is used.
  • a switch that opens and closes based on the difference in the coefficient of thermal expansion between the two is known. It is disclosed that such a switch can be used in place of a metal switch for the purpose of controlling the temperature of a heater or the like.
  • the opening and closing temperature of the switch depends on its mechanical structure and resin. It is difficult to design the operating temperature, and there is a danger that the operating temperature will change due to deformation due to pressure, etc. Good was sought.
  • a PTC element described in JP-A-2003-45704 based on a volume change of a phase transition polymer crystal in a composite material is known. Such an element can also be used in place of a metal-type switch for the purpose of controlling the temperature of a heater or the like.
  • a PTC element in which such a conductive material is dispersed in a crystalline polymer has a large influence on the mass production scale because its conductivity is affected by the dispersion state of conductive particles such as carbon black. It is difficult to make the dispersion state of these conductive particles constant, and there is a problem that the dispersion of characteristics is large.
  • a crystalline polymer that generates a reversible crystal transition in the solid state can be applied to functional materials such as heat storage materials and PTC elements by utilizing the heat transfer and volume change phenomenon accompanying the crystal transition (for example, see Japanese Patent Application Laid-Open No. 2000-23942 by the present applicant).
  • the crystal transition temperature at the time of temperature rise measured by DSC is equivalent to the temperature at which functions such as the heat absorption temperature when used as a heat storage material and the electric resistance jump temperature when used as a PTC, and
  • the crystal transition enthalpy affects the magnitude of functions such as heat storage.
  • the crystalline polymer according to the prior art has a sufficiently high heat of phase transition, in which case the crystal transition temperature is high, and the temperature for exhibiting the function is limited.
  • the heat of phase transition is remarkably reduced, or the function such as heat storage is inferior. There are restrictions. For this reason, improvement of physical properties has been required in any aspect.
  • the present invention when used as a material for a heat storage medium or the like, not only is the balance of the three requirements of low phase transition temperature, high heat of phase transition, and high workability (low molecular weight) improved. , A polymer having the required high melting point is provided. Further, according to the present invention, a thermally responsive switch, a PTC element, and a heat storage medium using a polymer having such physical properties are provided.
  • the polymer according to the present invention has the following formula (1)
  • ⁇ Htr indicates endothermic (jZg) accompanying the crystal transition
  • Ttr indicates the crystal transition temperature (° C).
  • a crystalline polymer satisfying the above conditions is particularly preferable. Since the crystalline polymer according to the present invention has a low phase transition temperature, a high heat of phase transition, and a high melting point, it can be used particularly as a heat storage material used near an ambient temperature (20 ° C to 50 ° C). Is high.
  • the heat responsive plate according to the present invention is a heat responsive plate comprising a flexible substrate and a layer of a material which is provided on one surface thereof and which exhibits a reversible crystal transition accompanied by a volume change.
  • a material which is provided on one surface thereof and which exhibits a reversible crystal transition accompanied by a volume change.
  • the above-mentioned crystalline polymer which undergoes a crystal transition in a solid state is particularly preferably used.
  • This thermally responsive plate can be used as a thermally responsive switch or PTC element.
  • FIG. 1 is a graph showing a crystal transition point between the crystalline polymer according to Example 1 of the present invention and the crystalline polymer of Comparative Example 1.
  • FIG. 2 is a graph showing a change in an expansion coefficient in a uniaxial direction with a rise in temperature of the crystalline polymers according to Examples 1 and 2 of the present invention and the crystalline polymer of Comparative Example 1.
  • FIG. 3 (a) is a schematic view showing a configuration of a thermally responsive plate according to the present invention as an overheating prevention element, showing a normal state of the element.
  • FIG. 3 (b) is a schematic view showing a configuration of a heat responsive plate according to the present invention as an element for preventing overheating, showing a state of the element when the temperature is overheating.
  • FIG. 4 is a perspective view of a thermally responsive switch according to the present invention.
  • FIG. 5 is a cross-sectional view showing a configuration when a thermally responsive switch is in an ON state.
  • FIG. 6 is a cross-sectional view showing the configuration when the thermally responsive switch force S is in an OFF state.
  • FIG. 7 shows a model test using the crystalline polymer according to the present invention as a heat storage material.
  • 5 is a graph showing the relationship between the heat release time and the water temperature.
  • the polymer according to the present invention has the following formula (1)
  • ⁇ Htr indicates endothermic Ci / g accompanying the crystal transition
  • Ttr indicates the crystal transition temperature (° C).
  • This is a crystalline polymer which can satisfy the relationship defined in (2) and undergoes crystal transition in the solid state.
  • the crystalline polymer which undergoes crystal transition in the solid state of the present invention preferably has a weight average molecular weight of 30,600,000, preferably 50,000 to 500,000, particularly preferably 81,400,000.
  • the temperature (Ttr) is 67 ° C or less, preferably 65 ° C or less, particularly preferably 20 ° C to 60 ° C, and the following formula (2)
  • ⁇ Htr indicates endothermic Ci / g accompanying the crystal transition
  • Ttr indicates the crystal transition temperature (° C). This is a crystalline polymer that satisfies the conditions specified in ()).
  • crystalline polymer examples include trans-1,4-polybutadiene, a copolymer of butadiene and olefin, and a modified product of trans-1,4-polybutadiene.
  • ethylene or propylene is used as olefin.
  • ethylene is preferable.
  • the harm of the butadiene unit and the refining unit is preferably 92: 8—60: 40 force S, particularly preferably 90: 10—70: 30 is preferred.
  • the crystalline polymer is a trans-1,4-polybutadiene modified product
  • the polymer before modification is
  • the content of trans 1,4 structure is 97 mol% or more, preferably 98 mol% or more.
  • the modified product since the epoxy modified products are preferred instrument low crystal transition temperature of the material is obtained, the epoxidation ratio of 1 mol% one 60 mole 0/0, especially 2 mol 0/0 - 55 mole 0 / 0 things preferred ,.
  • MCPBA m-chloroperbenzoic acid
  • the melting point (Tm) of the crystalline polymer is preferably 100 ° C or higher, particularly preferably 110 to 140 ° C.
  • the heat of crystal fusion (A Hm) l / g) of the crystalline polymer is preferably 35-60 s, more preferably 40-55 s.
  • the weight average molecular weight (Mw) is 30,600,000, more preferably 50,500,000, and particularly preferably 80,400,000.
  • the weight-average molecular weight is determined by gel permeation chromatography (GPC) using styrene as a standard substance and o-dichlorobenzene as a solvent.
  • the number average molecular weight (Mn) is 200,000 or less, preferably 11,100,000.
  • the molecular weight distribution (Mw / Mn) is preferably 1-125 S, and particularly preferably 2-22.
  • the trans-1,4 polybutadiene of the present invention can be produced by polymerization using a catalyst comprising (A) a vanadium compound and (B) alkylaluminum chloride.
  • Examples of the (A) vanadium compound catalyst include vanadium compounds such as vanadium triacetyl acetonate, vanadium trichloride THF complex, vanadium trichloride, vanadium naphthenate, and vanadium alkoxide. Of these, vanadium trioxychloride (VOC1) is preferred.
  • vanadium trioxychloride VOC1
  • alkylaluminum chloride examples include dimethylaluminum chloride, dimethylaluminum chloride, diisobutylaluminum chloride, and methylaluminum dichloride. And ethyl ethyl sesqui-mouth ride and ethyl aluminum dichloride. Among them, getyl aluminum chloride (DEAC) is preferable.
  • the ratio of the component (A) to the component (B) is preferably 1: 300 to 10: 1 in terms of mol ratio.
  • solvents that can be used in solution polymerization include, for example, aliphatic hydrocarbons such as pentane, hexane, heptane, and cyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; chromate form; methylene chloride; dichloroethane; Halogenated hydrocarbons such as benzene and mineral oils.
  • hypolefin may be added only at the beginning of polymerization or may be continuously supplied.
  • the polymerization time is 1 minute to 12 hours, preferably 5 minutes to 12 hours, and the polymerization temperature is -10 to 60 ° C, preferably 0 to 40 ° C. it can.
  • a thermally responsive plate composed of a flexible substrate and a layer disposed on one surface of the substrate and made of a material that undergoes a reversible crystal transition accompanied by a volume change.
  • the material which undergoes a reversible crystal transition accompanied by a change in volume include trans-1,4-polybutadiene described in JP-A-2001-81135 and transformers _1, 4_ described in JP-A-9-268208.
  • Polybutadiene, and further, the crystalline polymer that undergoes a crystal transition in the solid state according to the present invention can be used.
  • the flexible substrate is not particularly limited as long as the material exhibits flexibility, but a substrate made of metal such as A1 or copper or a substrate made of various resins such as PET or polyimide is preferably used. Is done. It is preferable that the substrate surface has been subjected to a surface roughening treatment or has a porous structure in order to improve the peel strength.
  • the method is not particularly limited.
  • the reversible crystal transition accompanied by a volume change is provided.
  • a method is available. From the viewpoint of workability and the like, the latter method of applying and drying the solution is preferable.
  • a solution of a material that undergoes a reversible crystal transition with a change in volume for example, a solution of trans-1,4-polybutadiene is adjusted using a solvent having a solubility parameter of preferably about 14 to 30 MPa 1/2. can do.
  • Solubility parameter is Macromol. Chem. Phys. Vol. 202,
  • Specific examples of usable solvents include hexane, cyclohexane, toluene, tetrahydrofuran, methylethylketone, chloroform, dimethylformamide, and dimethylacetamide. it can. Among them, tetrahydrofuran, chloroform, toluene and the like are preferable.
  • the polymer concentration can be increased to approximately 0.01% by weight and approximately 30% by weight.
  • a solution suitable for producing the thermally responsive plate according to (1) is obtained.
  • the dried film is undesirably fragmented into small pieces.
  • the fluidity of the solution is impaired, making it difficult to apply the solution.
  • the polymer concentration is
  • a method of applying the solution a method of casting the solution on the surface of the substrate by a bar coater or the like, a method of spin coating, or the like can be used.
  • the solvent is volatile, and from this viewpoint, a highly volatile solvent such as tetrahydrofuran, chlorophonolem, and toluene is preferably used. .
  • a reversible crystal transition accompanied by a volume change prepared in a temperature range higher than the crystal transition temperature occurs. Even when a solution of a material such as trans-1,4-polybutadiene is cooled to a temperature lower than the above temperature, remarkable precipitation of trans-1,4-polybutadiene does not immediately occur. For this reason, the step of applying the solution on the substrate may be performed at a high temperature equal to or higher than the crystal transition temperature, or may be performed at a lower temperature range such as room temperature than the above temperature range.
  • the film of the semi-crystalline polymer material formed on the substrate as described above may be a uniform dense film, but may be a porous or net-like structure. .
  • a porous film is formed.
  • a trans-1,4-polybutadiene film formed from a polar solvent that is volatile in the atmosphere often exhibits a porous structure.
  • the above-mentioned porous structure causes the polymer to crystallize in the solution film during drying, causing the solution to become non-uniform, and water vapor in the air to condense due to the cooling of the film due to the latent heat of solvent evaporation. It is considered that this is caused by the non-uniformity of the solution caused by the treatment.
  • the layer A expands in volume at the crystal transition temperature (Ttr) of a material that undergoes a reversible crystal transition accompanied by a volume change, a sharp displacement occurs at the temperature Ttr. It operates and can be used as a thermoresponsive plate.
  • the thermally responsive plate is a rectangle having a length of 1 and a width of w
  • the thickness of the layer A of the material causing the crystal transition accompanied by the volume change is h
  • the thickness of the substrate B is h
  • is a linear strain generated in the longitudinal direction of the thermally responsive plate. If the layer ⁇ is isotropic, the following equation (5)
  • the thickness of the thermally responsive plate be small in order to cause a large displacement operation in the manufactured thermally responsive plate. From this surface, a thin film can be easily formed using a solution process or the like.
  • a material that can be produced and undergoes a reversible crystal transition with a change in volume for example, a semi-crystalline polymer material such as trans 1,4-polybutadiene is suitably used as the layer.
  • the layer A that is laminated may be easily peeled off in some cases, so that the materials that can be used are limited.
  • the materials that can be used are limited.
  • trans-1,4 polybutadiene is used as A and an A1 plate is used as B
  • layer A is easily separated from substrate B due to the strain generated at the crystal transition point.
  • Substrate having a roughened surface on which an anchor effect can be expected to suppress peeling And a porous substrate are preferably used.
  • the material A that causes a volume change can penetrate into the pores of the substrate, so that the apparent value of h can be increased, and the porous structure can be further increased.
  • the elastic modulus E of the substrate is smaller than the elastic modulus E of the substrate material B.
  • the quality substrate it is easy to satisfy the above-mentioned conditional expression (6) that gives a large displacement while using a rigid substrate material B having excellent shape stability, and is preferably used in the present invention. .
  • an overheating prevention element can be manufactured using the thermally responsive plate according to the present invention.
  • a silver paste is used on the surface of the thermally responsive plate having the above-described structure on the surface opposite to the surface on which the layer made of a material that undergoes a reversible crystal transition accompanied by a volume change is disposed.
  • the conductive film By forming the conductive film by using this method, it is possible to manufacture an excessive temperature rise prevention element.
  • the film shape changes rapidly around the temperature exceeding the crystal transition temperature Ttr of the crystalline polymer used, and the contact opening (resistance ⁇ ) occurs.
  • the overheating prevention element according to the present invention can be used as an overheating prevention element that causes reversible and sharp contact opening and contact formation near the temperature Ttr of the crystalline polymer used.
  • a conductive film C such as a metal is formed on the surface of the substrate, and the conductive film C comes into contact with the contact D by the displacement operation of the thermally responsive plate at the crystal transition temperature Ttr.
  • the conductive film C can be formed by various methods such as application of a conductive paste, deposition of a metal film, and metal plating.
  • a pair of electrodes, and an insulating member made of a crystalline polymer and a member made of a conductive substance of the present invention, which undergoes a crystal transition in a solid state are disposed between the electrodes.
  • a thermally responsive switch wherein the crystalline polymer undergoes a transition in a solid state and a volume expansion coefficient in a transition temperature range opens and closes an electrical connection between a pair of electrodes. Is done. The operation of this switch will be described with reference to FIGS. 4, 5, and 6.
  • FIG. 4 is a perspective explanatory view showing an outline of the switch of the present invention.
  • FIG. 5 is a partial longitudinal sectional view when the switch shown in FIG. 4 is in a closed (ON) state.
  • FIG. 6 is a perspective view showing the switch shown in FIG. FIG. 4 is a partial vertical sectional view in an open (OFF) state.
  • the switch 10 shown in FIG. 5 uses a crystalline polymer member 12 having a plurality of through holes lla and l ib, and each of the through holes l la and l ib has a member 13a made of a conductive material. 13b is arranged so as to be in contact with the pair of electrodes 14a and 14b at room temperature.
  • the polymer member 12 is formed so as to be pressed against the electrodes 14a and 14b.
  • the shape of the through-hole 11 constituting the switch is not limited to a true circular cross section, but may be an elliptical shape, a strip shape, or the like in consideration of workability and the strength of the molded body.
  • the size of the through hole may be uniform or not uniform in the vertical direction in the member, but the members 13a and 13b made of a conductive material are fixed anywhere in the member. It is preferable to make such a selection.
  • the number of through holes can be selected according to the required resistance value and processing conditions.
  • the positions of the through holes 11 in the polymer member 12 can be arbitrarily selected. However, it is preferable that the through holes 11 be uniformly distributed in consideration of the operation stability.
  • the through holes 11 are used so that the members 13a and 13b made of the conductive material do not appear on the side surfaces of the switch for the purpose of holding the members 13a and 13b made of the conductive material and maintaining the insulation of the side surfaces of the switch. If the insulating property of the side surface is not required, the through hole 11 may be formed by forming a part of the side surface of the polymer member 12. Further, when the members 13a and 13b made of a conductive substance are held by other means, the polymer member 12 and the conductive member 13 are simply arranged between the pair of electrodes 14a and 14b without using the through hole 11. It may be.
  • the material of the polymer member 12 constituting the switch is a crystalline polymer that undergoes crystal transition in the solid state according to the present invention, and has a volume expansion coefficient in a transition temperature range and a thermal expansion coefficient in a temperature outside the transition temperature range. Is preferably large. Also, it is preferable that the change in volume in the transition temperature range is sharp.
  • the polymer member 12 undergoes a crystal transition in a solid state, and has a volume expansion coefficient exceeding the thermal expansion coefficient outside the transition temperature range due to a transition temperature range and an insulating material such as another polymer or inorganic material. It can be made of a composite material mixed with an insulating material, or it can have a laminated structure with other insulating materials.
  • a heat storage material and a heat storage medium comprising a crystalline polymer which undergoes a crystal transition in a solid state according to the present invention are provided.
  • the heat storage material or the heat storage medium may be formed from a crystalline polymer that undergoes a crystal transition in a solid state according to the present invention, and formed into a desired shape.
  • the molding method is not particularly limited, but a molding method usually used for molding a resin, such as compression molding, injection molding, or extrusion molding, may be employed.
  • the size, shape, and the like may be appropriately selected depending on the application. Of course, it may be manufactured in a form stored in a case depending on the use.
  • the heat storage material or heat storage medium according to the present invention stores heat at the crystal transition temperature, and when placed in a low-temperature environment, exhibits a heat-dissipating effect at the crystal transition temperature at the time of temperature drop, and exhibits heat dissipation near the same temperature. It shows the characteristic that time is significantly extended.
  • the crystalline polymer of the present invention can be formed into a lamination with a pellet, a thin plate, a metal plate, a hollow fiber, a structure, a cast film, or the like. It is used in contact with a heat medium as pellets or molded articles. Further, it may be used by mixing with another polymer which does not show a phase transition phenomenon. Moreover, you may mix and use with solid materials other than a polymer. It can also be used as a PTC element by mixing with conductive particles.
  • Weight average molecular weight was determined as follows. Gel permeation chromatography (GPC) using Waters 150C type (2 columns of Showa Denko Shodex HT-806M and Shodex HT_800Pl as pre-column) using styrene as a standard substance, solvent 0-dichlorobenzene, column temperature 135 ° C , Measure standard polystyrene under the same conditions, create a calibration curve, and calibrate It shows the value obtained from the GPC curve obtained from the above.
  • GPC Gel permeation chromatography
  • the “content of trans_1,4 bond” and “content of olefin” were calculated from the intensity ratio of each peak in a 13 C-NMR spectrum measured using EX-400 manufactured by JEOL Ltd.
  • Crystal phase transition point and “crystal phase transition heat” were determined as follows. Using a differential scanning calorimeter (DSC) of SSC5200 manufactured by Seiko Instruments Inc., seal about 5 mg of the sample in an aluminum sample pan and heat it at 200 ° C for 10 minutes in a nitrogen atmosphere. After complete melting, the temperature was lowered to -30 ° C in -5 ° CZ and recrystallized. The temperature of this polymer is raised by 10 ° CZ, and the temperature at which the endothermic peak accompanying the crystal transition is maximized is defined as the crystal transition temperature (Ttr). (A Htr). The temperature at which the endothermic peak due to crystal melting was maximum was defined as the melting point (Tm), and the total amount of endothermic amount due to crystal melting per unit polymer amount was defined as the heat of fusion ( ⁇ Hm).
  • DSC differential scanning calorimeter
  • TMA Thermal Analyzer and 943 Thermomechanical Analyzer
  • VOC1 vanadium oxytrichloride
  • Example 2 The same operation as in Example 1 was repeated, except that the reaction time was changed.
  • the reaction time in Example 2 was 10 minutes, and the reaction time in Example 3 was 5 minutes.
  • Example 4 Using 0.8 ml of formic acid and 5 ml of 30% hydrogen peroxide solution as reaction reagent volumes, the reaction time in Example 4 was 5 minutes, the reaction time in Example 5 was 10 minutes, and the reaction time in Example 6 was Was repeated for 20 minutes, and the reaction time in Example 7 was changed to 30 minutes, and the same operation as in Example 1 was repeated.
  • trans-1,4-polybutadiene lg and toluene 49g in a 100ml eggplant-shaped flask and dissolve the transpolybutadiene in a water bath at 60 ° C under a nitrogen atmosphere. 0.5 ml of water was injected, and then the reaction was performed in a closed system for 30 minutes. The reaction was stopped by precipitating it in a large amount of ethanol, followed by filtration, washing with ethanol and drying.
  • Example 9 The same operation as in Example 8 was repeated, except that the amount of the reaction reagent was changed to the amount described below.
  • 0.35 ml of formic acid and 0.25 ml of 30% hydrogen peroxide solution were used in Example 9, and in Example 10, 0.35 ml of formic acid and 0.5 ml of 30% hydrogen peroxide solution were used.
  • Example 11 0.7 ml of formic acid and 0.25 ml of 30% hydrogen peroxide solution were used, and in Example 12, 2. lml of formic acid and 1.25 ml of 30% hydrogen peroxide solution were used.
  • Trans-1,4-polybutadiene lg and 49 g of toluene are placed in a 100 ml eggplant-shaped flask, and the transpolybutadiene is dissolved in a water bath under a nitrogen atmosphere at 60 ° C., and then formic acid 1.4 ml, 30% hydrogen peroxide solution is added. 1. 25 ml was injected, and after the injection was completed, the reaction was performed in a closed system for 60 minutes. After the reaction was stopped by precipitating into a large amount of ethanol, the reaction mixture was filtered, washed with ethanol, and dried.
  • Example 13 The same operation as in Example 13 was repeated, except that the formic acid amount was changed to 0.7 ml of the reaction reagent amount.
  • trans-1,4-polybutadiene and 57 Og of toluene were placed in a 1000 ml eggplant-shaped flask, and the transpolybutadiene was dissolved in a water bath at 60 ° C under a nitrogen atmosphere, followed by lml of formic acid and 30% peroxide. 68.8 ml of hydrogen water was injected, and after the injection was completed, the reaction was performed in a closed system for 60 minutes. The reaction was stopped by precipitating into a large amount of ethanol, followed by filtration, washing with ethanol and drying.
  • trans-1,4-polybutadiene and 900 g of toluene are put into a 2000 ml eggplant-shaped flask, and transpolybutadiene is dissolved in a water bath at 60 ° C. under a nitrogen atmosphere. Then, formic acid 21 ml, 30% hydrogen peroxide solution 42 2 ml was injected, and then the reaction was performed in a closed system for 90 minutes. After the reaction was stopped by precipitating into a large amount of ethanol, the reaction mixture was filtered, washed with ethanol, and dried.
  • the amounts of the raw materials used, the reaction conditions, the crystal transition temperature (Ttr), the heat of transition ( ⁇ Htr), the melting point (Tm), and the heat of crystal fusion ( ⁇ Hm) of the obtained polymer for these examples are as follows. And shown in Table 1.
  • Example 1 1 ⁇ 71.2 1 17.0 130.8 56.1 0.0
  • Example 1 2.0 0.0 98.0 1 13.0 0.4 0.3 2.5 3.0 60.0 30.0 41.5 70.8 122.5 55.3 12.0
  • Example 2 2.0 0.0 9B.0 113.0 0.4 0.3 2.5 3.0 60.0 5.0 64.7 108.0 128.5 56.6 2.0
  • Example 3 2.0 0.0 98.0 1 13.0 0.4 0.3 2.5 3.0 60.0 10.0 59.7 101 .0 127.5 57.0 4.0
  • Example 4 2.0 0.0 98.0 1 13.0 ⁇ . ⁇ 0.6 5.0 5.9 60.0 5.0 61.9 105.0 128.0 56.4 3.2
  • Example 5 2.0 0.0 98.0 1 13.0 0.8 0.6 5.0 5.9 60.0 10.0 50.3 90.1 24.9 56.6 8.2
  • Example 6 2.0 0.0 98.0 1 13.0 0.8 0.6 5.0 5.9
  • Example 1 1.0 0.0 49.0 56.5 0.7 1.0 0.5 1.2 60.0 30.0 35.8 58.0 118.5 51.4 16.4
  • Example 9 1.0 0.0 49.0 56.5 0.4 0.5 0.3 0.6 60.0 30.0 52.9 88.9 125.0 51 .0 7.0
  • Example 10 1.0 0.0 49.0 56.5 0.4 0.5 0.5 1.2 60.0 30.0 47.0 78.0 122.9 51.4 9.6
  • Example 1 1
  • Example 1 1.0 0.0 49.0 56.5 0.7 1.0 0.3 0.6 60.0 30.0 58.9 94.1 126.2 52.7 4.5
  • Example 1 2 1.0 0.0 49.0 56.5 2.1 3.0 ⁇ .3 3.0 60.0 30.0 23.0 22.4 91.0 32J 35.4
  • Example 1 1.0 0.0 49.0 56.5 1.4 2.0 1.3 3.0 60.0 60.0 12.B 10.6 81.3 24.2 50,8
  • Example 1 4 1.0 0.0 49.0 56.5 0.7 1.0 1.3 3.0 60.0 60.0 19.3 16.1
  • FIG. 1 shows a DSC thermogram of the crystalline polymer obtained in Example 1 and the polymer obtained in Comparative Example 1 in the process of raising the temperature. From this data, it has become clear that the crystalline polymer according to the present application exhibits a crystal transition phenomenon at a relatively low temperature as compared with a conventionally known crystalline polymer.
  • FIG. 8 shows the temperature dependence of the spacing between the polymer obtained from Example 1 and the polymer obtained from Comparative Example 1 obtained from the diffraction peak position, obtained from wide-angle X-ray diffraction measurement. . From this result, it was clarified that the discontinuous volume change of the crystalline polymer according to the present invention was caused by expansion of the crystal lattice due to crystal transition.
  • FIG. 2 shows the uniaxial expansion coefficients of the crystalline polymers obtained in Examples 1 and 2 and the polymer obtained in Comparative Example 1. Based on these results, the crystalline polymer according to the present invention shows a discontinuous volume change in a low temperature range of 30 ° C to 60 ° C, and therefore, the switching element in a low temperature range closer to the living environment temperature. It is clear that it has desired characteristics as
  • Trans-1,4 polybutadiene having a trans-1,4 bond content of 99% prepared in the same manner as in Comparative Example 1, was used as a material which caused a crystal transition accompanied by a volume change.
  • the trans-1,4-polybutadiene had a polystyrene-equivalent weight average molecular weight (Mw) of 210,000 and a number average molecular weight (Mn) of 29,000.
  • Mw polystyrene-equivalent weight average molecular weight
  • Mn number average molecular weight
  • the crystal transition temperature was 70.8 ° C and the heat of transition was 118j / g. Further, the melting point was 130.3 degrees and the heat of fusion was 56.7 j / g.
  • the trans 1,4-polybutadiene was dissolved in tetrahydrofuran at a polymer content of 5% by weight.
  • the solution was cloudy at room temperature, but became almost uniform by heating to 70 ° C.
  • a 25-m-thick polyolefin porous membrane (Upore, manufactured by Ube Industries, Ltd.) cut out to a length of 5 cm and a width of 1 cm was used. A heated solution of butadiene was applied and the solution was dried in air.
  • the dried film had a greatly curved shape toward the trans-1,4_polybutadiene layer due to the modification accompanying the drying of the trans-1,4_polybutadiene solution.
  • the above film is used as a seat heater The heating was performed in a room temperature power atmosphere.
  • the shape of the film hardly changed until around the crystal transition temperature (Ttr), but the film shape changed rapidly around the temperature above the crystal transition temperature (Ttr).
  • Ttr crystal transition temperature
  • Ttr crystal transition temperature
  • Example 17 Using the thermally responsive plate obtained in Example 17, a silver paste (Aremco's Bond 525 manufactured by Aremco) was applied to the polyimide porous membrane substrate 2 on the side opposite to the side on which the trans-1,4-polybutadiene layer 1 was formed.
  • the conductive coating 3 is formed by applying and drying in advance, and the contacts 4 electrically connected to the conductive coating and the terminals 5 and 6 used to connect the external circuit are formed. It was fabricated (Fig. 3 (a)).
  • the device showed a resistance of 20 ⁇ at room temperature.
  • the resistance of the above device hardly changed up to around the crystal transition temperature (Ttr), but around the crystal transition temperature (Ttr).
  • the film shape changed rapidly, and contact opening (resistance ⁇ ) occurred (Fig. 3 (b)).
  • this element was cooled, the resistance returned to its initial value at temperatures below Ttr. In other words, this element operated as an over-temperature protection element that causes a reversible steep contact opening and short circuit at the temperature Ttr.
  • Excessive temperature rise prevention element was produced in the same manner as in Example 18, except that the length of the thermally responsive plate was lcm, the width was 0.2 mm, and the conductive film was formed by vacuum deposition of A1.
  • the above element showed conduction at room temperature.
  • this element was heated on a sheet heater from room temperature to the atmosphere, the resistance of the above element hardly changed up to the vicinity of the crystal transition temperature (Ttr), but the film exceeded the crystal transition temperature (Ttr). The shape changed abruptly and the contacts opened.
  • this device was cooled, a short circuit occurred when the temperature went around Ttr.
  • this element operated as a temperature overheat prevention element that causes a reversible steep contact opening and short circuit at the temperature Ttr.
  • Example 16 Except for using the epoxidized trans 1,4-polybutadiene of Example 16 The same operation as in Example 17 was repeated. Displacement was observed as the temperature changed.
  • the trans-1,4-polybutadiene of Example 16 to which 0.3% by weight of an antioxidant (Ilganox 1076 manufactured by Ciba Geigy Co., Ltd.) was added was used as a press machine (compression molding machine S-37.5, manufactured by Shinto Metal Works), 160 using a cylinder diameter of 150 mm and a maximum pressure of 21 MPa (210 kgfZcm 2 )).
  • C was compression-molded to produce a 10 ⁇ 10 ⁇ 0.5 mm polymer plate.
  • the switching element thus fabricated was placed in an electric furnace, and the element resistance at room temperature and 61 ° C was measured by a four-wire resistance measurement method using a multimeter (Model 2700 manufactured by Keithley). .
  • the resistance at room temperature was 11.1 ⁇
  • the resistance at 61 ° C was 1.2 ⁇ 10 8 ⁇ (measurement limit of the device) or more.
  • the temperature returned to the initial resistance value of 11.1 ⁇ at 44 ° C.
  • Figure 9 shows the displacement situation as a function of temperature.
  • Example 16 The polymer of Example 16 (transition temperature: 39 ° C at the time of temperature rise, 30 ° C at the time of temperature decrease) was pressed into a press machine (compression molding machine S-37.5, manufactured by Shindo Kinzoku Seisakusho, cylinder diameter 150 mm, maximum pressure 21 MPa ( Using 210 kgf / cm 2 )), compression molding was performed at 140 ° C. to produce two 40 ⁇ 60 ⁇ 5 mm plates. The total weight of the board was 17.8 g. The two plates were placed in a paper cup containing 100 g of hot water at 45 ° C or higher, and kept in a thermostat at 15 ° C to continuously measure the water temperature at the bottom of the cup. Figure 7 shows the relationship between the heat release time and the water temperature. (Comparative Example 2)
  • Example 22 The same operation as in Example 22 was repeated, except that a plate (18.3 g in total) manufactured using LDPE resin (Umeri 1540F manufactured by Ube Industries, Ltd.) was used instead of Epoxy Dani TPB. .
  • LDPE resin Umeri 1540F manufactured by Ube Industries, Ltd.
  • Example 22 The same operation as that of Example 22 was repeated, except that 18.Og of hot water was added to the epoxidized TPB and a total of 118.Og of hot water was used. The results are shown in FIG.
  • Example 22 As is clear from the data obtained in Example 22, when part of water was replaced with epoxidized TPB having the same weight and almost the same volume, the drop in water temperature near 30 ° C. was delayed. It was shown that. This indicates that when the crystalline polymer according to the present invention was used, latent heat storage occurred, and the heat accumulated at the crystal transition temperature at the time of cooling was released.
  • Example 15 The polymer of Example 15 was compression-molded at 160 ° C using a press machine (compression molding machine S-37.5, manufactured by Shinto Metal Works, cylinder diameter 150 mm, maximum pressure 21 MPa (210 kgf / cm 2 )). , 40 X 60 X 1 mm plate was made. It was placed in this microwave oven (RE-4100 manufactured by Sharp Corporation, output 1100 W) and heated for a predetermined time. The temperature rise due to microwave irradiation was confirmed. Table 2 shows the irradiation time and the surface temperature of the polymer plate after irradiation.
  • compression molding machine S-37.5 manufactured by Shinto Metal Works, cylinder diameter 150 mm, maximum pressure 21 MPa (210 kgf / cm 2 )
  • 40 X 60 X 1 mm plate was made. It was placed in this microwave oven (RE-4100 manufactured by Sharp Corporation, output 1100 W) and heated for a predetermined time. The temperature rise due to microwave irradiation was confirmed. Table 2 shows the irradiation time and the
  • Example 23 The same operation as in Example 23 was repeated, except that the TPB of Comparative Example 1 was used. The results are shown in Table 2.
  • Example 23 the surface temperature of the sample plate was increased to 98 ° C by irradiation for 120 seconds. At this time, the temperature of the rotating dish at the bottom of the range was slightly increased. When the sample plate heated by microwave irradiation for 60 seconds or more was left at room temperature, heat dissipation at the time of cooling was observed, and it took about 8 minutes for the surface temperature to drop to 31 ° C to 25 ° C. did.
  • Comparative Example 4 the force at which the temperature rose to 42 ° C in the case of irradiation for 180 seconds was caused by the propagation of the temperature rise at the bottom of the range, and the temperature was increased compared to the polymer of the present invention The effect is significantly lower. In addition, it took only 2.5 minutes to reduce the surface temperature from 31 ° C to 25 ° C at room temperature, and it became clear that the material did not function as a heat storage material near 30 ° C due to the high transition temperature. Was.
  • the crystalline polymer of the present invention is a novel crystalline polymer which exhibits a solid phase transition phenomenon, is easy to mold, and has a large amount of heat exchange due to crystal transition at a low crystal transition temperature.
  • the crystalline polymer of the present invention is useful as a material for a thermally responsive plate, an overheat prevention element using the thermally responsive plate, and a thermally responsive switch.
  • it has a low phase transition temperature and a high heat of phase transition, and is therefore useful as a heat storage material and heat storage medium.
  • it has high additivity, and is therefore highly industrially applicable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thermally Actuated Switches (AREA)

Abstract

 本発明に係るポリマーは、式 150>ΔHtr>1.6Ttr−3.5 (1) (式中、ΔHtrは結晶転移に伴う吸熱(J/g)、Ttrは結晶転移温度(°C)を示す。)で規定される関係を満足しうる、固相状態で結晶転移する結晶性ポリマーである。上記の結晶ポリマーは、重量平均分子量が60万以下であり、結晶転移温度(Ttr)が、67°C以下である。本発明に係る結晶性ポリマーは、低い相転移温度、高い相転移熱量、および高融点を有することから、スイッチング素子や、生活環境温度(20°C~50°C)近くで使用する蓄熱材料として利用可能性が高い。

Description

明 細 書
固相転移現象を示す結晶性ポリマー、およびその応用
技術分野
[0001] 本発明は、新規な物性を持つ固相状態で結晶転移する結晶性ポリマー、およびそ の応用に関する。
^景技術
[0002] 固相状態で可逆的な結晶転移する結晶性ポリマーとして、トランス一 1 , 4一ポリブタ ジェンがよく知られている。
[0003] 例えば、 Finterらによる報文(Makromol. Chem. Vol.182 pl859_1874 (1981) )には、 ブタジエンユニットのミクロ構造がトランス 100%であり、結晶転移温度 83°C、結晶転 移熱量 7. 79kj/mol (140j/g)のトランス _1 , 4一ポリブタジエンが開示されている 。 Bautzらによる報文(Colloid and Polymer Scienece Vol.259 No.7 p714- 723 (1981) ) には、結晶転移温度 68°C (341K)、結晶転移熱量 98j/gのトランス一 1 , 4一ポリブタ ジェンが記載されている。なお、本明細書においては、トランス一 1 , 4一ポリブタジエン を TPBと称することがある。
[0004] 本出願人による特開 2000—230103号公報には、トランス- 1, 4-ポリブタジエンと 熱可塑性樹脂と主成分とする混合物および蓄熱材料への応用が開示されている。同 じく本出願人による特開 2001-81135号公報には、特定の構造と物性をもち可逆的 な相転移を示すトランス— 1 , 4一ポリブタジエンが開示されてレ、る。
[0005] し力、しながら、上記の文献に開示されている従来技術に係る材料は、結晶転移温 度が 68°C以上に限定されるため、例えば蓄熱材として利用する場合、必要とされる 熱源温度が高くなり、改良が求められていた。
[0006] Bermudezらによる報文(European Polymer Journal Vol.8 p575_583 (1972) )には、 結晶転移温度 50— 52°C、結晶転移熱量 48— 57. 2j/gのトランス一 1 , 4一ポリブタ ジェンが記載されている。なお、本明細書においては、結晶転移熱量を、結晶転移 ェンタルピー変化量( Δ Htr)と称することがある。
[0007] し力しながら、上記の文献に開示の従来技術に係る材料は、結晶転移ェンタルピ 一変化の低下が著しぐ例えば蓄熱材として利用する場合、反復使用により、蓄熱性 能そのものが低下し、改良が求められていた。
[0008] 本出願人による特開平 9-268208号公報には、トランス結合含有量が 95mol%以 上、重量平均分子量 100万以下、 A Htrが 70jZg以上のトランス— 1, 4_ポリブタジ ェンおよびそれを用いた蓄熱材が開示されており、特に、結晶転移温度 60°Cにおい て比較的高い相転移熱量 92jZgを有する数平均分子量 80万のポリマーが開示さ れている。し力 ながら、この従来技術では、結晶転移温度が高いため改良が求めら れるか、あるいは結晶転移温度が低い場合には分子量が 80万と高いために加工性 が低ぐ改良が求められていた。
[0009] Antipovらによる報文(Macromol.Chem.Phys. Vol.202, p82_89 (2001) )には、ポリブ タジェンの 1 , 4_トランス結合と 1, 2—ビュル結合の比を制御し、トランス結合の比率 を 98%以下とすることにより、結晶転移温度を低下 (最低 40°C)させた結晶性ポリブ タジェンが開示されている(ただし、数値化された相転移ェンタルピー変化量は開示 されていない)。し力 ながら、上記報文に開示の技術では、結晶転移温度の低下と ともに融点が低下するため、機能発現温度とポリマーの流動温度が近くなり、密閉を 必要としないという固体蓄熱材としての特徴が打消され、また蓄熱材として使用可能 な環境温度にも制約を生じるため、改良が求められていた。
[0010] すなわち、上述した何れの従来技術でも、結晶転移に伴う発熱量、結晶転移温度、 融点、成形性などの諸性質が用途によって満足できない場合があり、改良が求めら れていた。
[0011] ポリマーの熱膨張を利用した熱応動スィッチとしては、特開平 7— 85756号公報に 記載の、一対の金属部材電極間の電気的接続を、合成樹脂からなる接合部材と金 属部材電極との熱膨張率の差に基づいて開閉するスィッチが知られる。このようなス イッチは、ヒータの温度制御等の目的で、ノ ィメタル式スィッチ等に替えて用いること できることが開示されている。し力 ながら、このような熱応動スィッチは、接合部材と して、使用範囲の全領域においてほぼ一定の熱膨張率を持つ樹脂を用いるため、ス イッチの開閉温度は、その機械的構造と樹脂の特性の双方に依存し、動作温度の設 計が困難である上、圧力等による変形によって動作温度が変化する危険があり、改 善が求められていた。
[0012] 他方、ポリマーの固相転移現象を応用した素子として、特開 2003— 45704号公報 に記載の、複合材料中における相転移ポリマー結晶の体積変化に基づいた PTC素 子が知られる。このような素子もまた、ヒータの温度制御等の目的で、ノ メタル式ス イッチに替えて用いることが可能である。し力 ながら、このような導電性材料を結晶 性ポリマー中に分散させてなる PTC素子は、その導電性がカーボンブラック等の導 電性粒子の分散状態によって影響を受けることから、量産規模において、これらの導 電性粒子の分散状態を一定にすることは困難であり特性のばらつきが大きいという問 題点を有していた。
[0013] 固相状態で可逆的な結晶転移を生じる結晶性ポリマーは、結晶転移に伴う熱授受 や体積変化現象を利用して、蓄熱材や PTC素子といった機能材料への応用が可能 である(例えば、本出願人による特開 2000—23942号公報参照)。 DSCで測定され る昇温時の結晶転移温度は、蓄熱材として利用した場合における熱吸収温度や PT Cに利用した場合の電気抵抗ジャンプ温度のような機能発現温度に相当するもので あり、また結晶転移ェンタルピーは、蓄熱量等の機能の大きさに影響する。しかし、 従来技術による結晶性ポリマーは、相転移熱量が十分高レ、場合は結晶転移温度が 高ぐ機能発現の温度が限定される。また逆に結晶性ポリマーで結晶転移温度が低 い場合には、相転移熱量の低下が著しく蓄熱等の機能が劣るか、分子量が高くて加 ェ性が悪ぐあるいは融点が低くて使用条件に制約がある。このため、いずれかの面 で物性の改良が求められていた。
発明の開示
[0014] 本発明によれば、低い相転移温度、高い相転移熱量、高い加工性 (低い分子量) の 3要件のバランスが改善されただけでなぐ蓄熱媒体用材料などとして使用するに 際して、要求される高い融点を有するポリマーが提供される。さらに、本発明によれば 、この様な物性を有するポリマーを用いた熱応動スィッチ、 PTC素子、および蓄熱媒 体が提供される。
[0015] 本発明に係るポリマーは、下式(1)
150 > A Htr> l . 6Ttr^3. 5 (1) (式中、 Δ Htrは結晶転移に伴う吸熱 Ci/g)、 Ttrは結晶転移温度(°C)を示す。)で 規定される関係を満足しうる、固相状態で結晶転移する結晶性ポリマーである。上記 の結晶ポリマーは、重量平均分子量が 3万一 60万、好ましくは 5万一 50万、特に好 ましくは 8万一 40万であり、結晶転移温度 (Ttr)力 67°C以下、好ましくは、 65°C以 下、特に好ましくは、 20°C 60°Cである。なお、式(2)
150 > A Htr> l . 6Ttr^l5 (2)
(式中、 Δ Htrは結晶転移に伴う吸熱 (jZg)、 Ttrは結晶転移温度 (°C)を示す。)を 満足する結晶性ポリマーが特に好ましい。本発明に係る結晶性ポリマーは、低い相 転移温度、高い相転移熱量、および高融点を有することから、特に、環境温度(20°C 一 50°C)近くで使用する蓄熱材料として利用可能性が高い。
[0016] 本発明に係る熱応動板は、可撓性基板と、その一方の表面に配設された体積変化 を伴う可逆的な結晶転移を示す材料の層とからなる熱応動板である。体積変化を伴 う可逆的な結晶転移を示す材料としては、上記の固相状態で結晶転移する結晶性 ポリマーが、特に好適に使用される。この熱応動板は、熱応動スィッチ、 PTC素子と して、利用可能である。
図面の簡単な説明
[0017] [図 1]本発明の実施例 1に係る結晶性ポリマーと比較例 1の結晶性ポリマーとの結晶 転移点を示すグラフである。
[図 2]本発明の実施例 1および 2に係る結晶性ポリマーと比較例 1の結晶性ポリマー の昇温に伴う一軸方向の膨張率の変化を示すグラフである。
[図 3(a)]本発明に係る熱応動板の温度過昇温防止素子としての構成を示す模式図 であり、正常状態の素子の状態を示す。
[図 3(b)]本発明に係る熱応動板の温度過昇温防止素子としての構成を示す模式図 であり、温度が過昇温した状態での素子の状態を示す。
[図 4]本発明に係る熱応動スィッチの斜視図を示す。
[図 5]熱応動スィッチが、 ONの状態にあるときの構成を示す断面図である。
[図 6]熱応動スィッチ力 S、 OFFの状態にあるときの構成を示す断面図である。
[図 7]本発明に係る結晶性ポリマーを蓄熱材として使用したときのモデル試験におけ る、放熱時間と水温との関係をグラフである。
園 8]実施例 1のポリマーと比較例 1のポリマーの面間隔の温度依存性を示すグラフ である。
園 9]本発明に係る熱応動スィッチ素子の抵抗値の温度依存性を示すグラフである。 発明を実施するための最良の形態
[0018] 本発明に係るポリマーは、下式(1)
150 > A Htr> l . 6Ttr^3. 5 (1)
(式中、 Δ Htrは結晶転移に伴う吸熱 Ci/g)、 Ttrは結晶転移温度(°C)を示す。)で 規定される関係を満足しうる、固相状態で結晶転移する結晶性ポリマーである。この 本発明の固相状態で結晶転移する結晶性ポリマーは、好ましくは、重量平均分子量 が 3万一 60万、好ましくは 5万一 50万、特に好ましくは 8万一 40万であり、結晶転移 温度 (Ttr)が 67°C以下、好ましくは 65°C以下、特に好ましくは 20°C— 60°Cであり、 かつ、下式(2)
150 > A Htr> l . 6Ttr^l5 (2)
(式中、 Δ Htrは結晶転移に伴う吸熱 Ci/g)、 Ttrは結晶転移温度(°C)を示す。)で 規定される条件を満足する結晶性ポリマーである。
[0019] 結晶性ポリマーの具体例としては、トランス一 1, 4_ポリブタジエン、ブタジエンとォレ フィンの共重合体、および、トランス— 1 , 4一ポリブタジエン変性物などが挙げられる。
[0020] ブタジエンユニットのミクロ構造は、トランス—: L , 4結合の含量力 Rスペクトル、ある いは1 H— NMR、 13C—NMR等スペクトルからの算出で、トランス— 1 , 4構造含量が、 9 7モル0 /0以上、好ましくは 98モル0 /0以上である。
[0021] ブタジエンとォレフィンの共重合体の場合はォレフインとして、エチレン、プロピレン
、ブテンなどが挙げられる。中でも、エチレンが好ましい。
[0022] 該結晶性ポリマーがブタジエンとォレフィンの共重合体である場合のブタジエンュ ニッ卜と才レフィンユニットの害 ij合は、 92 : 8— 60 : 40力 S好ましく、特に 90 : 10— 70 : 30 が好ましい。
[0023] 該結晶性ポリマーがトランス一 1, 4一ポリブタジエン変性物である場合、変性前のブ
-ニットのミクロ構造は、トランス一 1, 4結合の含量が IRスペクトル、あるいは1 H— NMR、 13C—NMR等スペクトルからの算出で、トランス 1 , 4構造含量が、 97モ ル%以上、好ましくは 98モル%以上である。なお、変性物としては、エポキシ変性物 が好ましぐ低い結晶転移温度の物質が得られることから、エポキシ化率が 1モル% 一 60モル0 /0、 特に 2モル0 /0— 55モル0 /0のものが好ましレ、。エポキシ基の導入方法と しては、 m-クロ口過安息香酸(MCPBA)を利用した方法などが、広く知られているが( 例えば、 F.C.Schillingら、 Macromolecules 16, p808_816 (1983) )、副反応である、ェ ポキシ基の開列を防ぐ為、分子鎖中に均一にエポキシ基を導入する為、よりマイルド な条件で、かつ、反応系内で過酸を生成させるため、取り扱いが比較的簡便である in situ過酸法(Y. Kurokiら、 Polymer Journal 26 (10) , pi 163-1169 (1994) )などを用い て行うことが望ましい。
[0024] 結晶性ポリマーの融点(Tm)は 100°C以上が好ましぐ特に 110— 140°Cが好まし レ、。
[0025] 結晶性ポリマーの結晶融解熱(A Hm) l/g)は、 35— 60力 S好ましく、 40— 55力 S 好ましい。
[0026] 重量平均分子量 (Mw)は、 3万一 60万、さらに好ましくは 5万一 50万、特に好まし くは 8万一 40万である。ここで重量平均分子量とは、スチレンを標準物質としゲル浸 透クロマトグラフィー(GPC)により、溶媒として o—ジクロロベンゼンを用いて求めたも のである。
[0027] 数平均分子量 (Mn)が 20万以下、好ましくは 1万一 10万である。
[0028] 分子量分布(Mw/Mn)は、 1一 25力 S好ましく、 2— 22が特に好ましい。
[0029] 本発明のトランス— 1 , 4 ポリブタジエンは、(A)バナジウム化合物、(B)塩化アルキ ルアルミニウムからなる触媒を用いる重合によって製造することができる。
[0030] (A)バナジウム化合物触媒としては、バナジウムトリァセチルァセトナート、三塩化 バナジウム THF錯体、ォキシ三塩化バナジウム、ナフテン酸バナジウム、バナジウム ォキシアルコキシドなどのバナジウム化合物などが挙げられる。中でも、ォキシ三塩 化バナジウム(VOC1 )が好ましレ、。
[0031] (B)塩化アルキルアルミニウムとしては、ジメチルアルミニウムクロライド、ジェチルァ ルミニゥムクロライド、ジイソブチルアルミニウムクロライド、メチルアルミニウムジクロラ イド、ェチルアルミニウムセスキク口ライド、ェチルアルミニウムジクロライドなどが挙げ られる。中でも、ジェチルアルミニウムクロライド(DEAC)が好ましい。
[0032] (A)成分と(B)成分の割合は、 mol比で、 1: 300— 10 : 1が好ましい。
[0033] 重合法として溶媒を用いて行う溶液重合、触媒を担体に担持して用いる気相重合、 ブタジエンモノマーを媒体とするバルタ重合など採用できる。溶液重合で使用できる 溶媒としては例えば、ペンタン、へキサン、ヘプタン、シクロへキサンなどの脂肪族炭 化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、クロ口ホルム、メチレン クロライド、ジクロロェタン、クロ口ベンゼンなどのハロゲン化炭化水素、ミネラルオイル などが挙げられる。 ひ—ォレフインとの共重合である場合、 ひ—ォレフィンは重合初期 のみに添加しても、連続的に供給してもよい。
[0034] 各々の重合方法においては、通常、重合時間が 1分一 12時間、好ましくは 5分一 2 時間、重合温度が— 10— 60°C、好ましくは 0— 40°Cで行うことができる。
[0035] 本発明によれば、可撓性基板と、同基板一方の表面に配設された体積変化を伴う 可逆的な結晶転移をする材料からなる層から構成される熱応動板が提供される。体 積変化を伴う可逆的な結晶転移をする材料としては、特開 2001-81135号公報に 記載のトランス- 1, 4-ポリブタジエンや、特開平 9-268208号公報に記載のトランス _1, 4_ポリブタジエン、さらには、本発明に係る固相状態で結晶転移する結晶性ポ リマーが使用可能である。可撓性基板としては、可撓性を発揮する材料であれば、特 に制限はないが、 A1や銅等の金属製の基板や PET、ポリイミド、等の各種樹脂製の 基板が好適に使用される。基板表面は、粗面化処理されたものや多孔質構造を有す るものが、剥離強度を向上させるためには好ましい。
[0036] 体積変化を伴う可逆的な結晶転移をする材料からなる層を基板上に配設させるに は、特に、その方法は限定されないが、例えば、該体積変化を伴う可逆的な結晶転 移をする材料からなる層を基板と積層して熱プレスする等の方法や体積変化を伴う 可逆的な結晶転移をする材料の溶液を調製し、前記溶液を基板上に塗布した後、乾 燥させる方法が使用可能である。作業性などの観点から、後者の溶液を塗布、乾燥 させる方法が好ましい。
[0037] 特に、小型で厚みが薄く変位量の大きな熱応動板を形成するためには前記の溶液 を用レ、た方法が好適に用レ、られる。
[0038] 体積変化を伴う可逆的な結晶転移をする材料の溶液、例えば、トランス一 1 , 4一ポリ ブタジエンの溶液は、溶解度パラメータが好ましくは概略 14一 30MPa1/2の溶媒を用 いて調整することができる。溶解度パラメータは Macromol. Chem. Phys. Vol.202,
P82-89 (2001)などに記載されてレ、る値を用いてもょレ、。
[0039] 溶媒として使用可能なものの具体的な例としては、へキサン、シクロへキサン、トル ェン、テトラヒドロフラン、メチルェチルケトン、クロ口ホルム、ジメチルホルムアミド、ジメ チルァセトアミドなどの溶媒を挙げることができる。中でも、テトラヒドロフラン、クロロホ ルム、トルエンなどが好ましい。
[0040] 用いる溶媒の溶解度パラメータが 30MPa1/2を超えると、トランス一 1, 4—ポリブタジ ェンがほとんど溶解しなくなるので適当でない。
[0041] 上記溶媒に室温にて体積変化を伴う可逆的な結晶転移をする材料、例えば、トラン スー 1 , 4一ポリブタジエンを溶解させようとすると、ポリマー濃度が増えると共にポリマ 一固形分が多く析出した懸濁液がしばしば得られる。
[0042] 特に、概略結晶転移温度以上の温度領域、例えば、 60— 80°Cに加熱することによ つて、ポリマー濃度が概略 0. 01重量%力 概略 30重量%にわたる広い濃度範囲で 本発明に係る熱応動板の製造に好適な溶液が得られる。
[0043] ポリマー濃度が概略 0. 01重量%より少なくなると、乾燥後の膜が孤立した小片化 してしまうので好ましくない。
[0044] —方、ポリマーの分子量にもよる力 ポリマー濃度が概略 30重量%より大きくなると
、溶液の流動性が損なわれ溶液の塗布が困難になる。特に好適にはポリマー濃度が
0. 1重量%から 10重量%の溶液が用いられる。
[0045] 溶液を塗布する方法は、基板の表面に溶液をバーコ一ターなどにより流延する方 法、スピンコートする方法などを用いることができる。
[0046] さらに溶液塗布によりポリマー材料の膜を形成するためには、溶媒が揮発性である ことが好適であり、この点からテトラヒドロフラン、クロロホノレム、トルエンなどの高揮発 性の溶媒が好適に用いられる。
[0047] 結晶転移温度以上の温度領域で調製した体積変化を伴う可逆的な結晶転移をす る材料の溶液、例えば、トランス一 1, 4一ポリブタジエンの溶液は、上記の温度より低 い温度に冷却しても、直ちにはトランス— 1 , 4一ポリブタジエンの顕著な析出は生じな レ、。このため、基板上に溶液を塗布する工程は、結晶転移温度以上の高温で行って もよいが、室温など前記温度範囲に比較して低い温度領域で実施してもよい。
[0048] 上記のようにして基板上に形成される半結晶性のポリマー材料の膜は、均一な緻 密膜であってもよいが、多孔質であったり、網状の構造であってもよい。
[0049] 塗布条件によっては多孔質の膜が形成される。例えば大気中で揮発性の極性溶 媒から形成したトランス— 1 , 4一ポリブタジエンの膜はしばしば多孔質構造を示す。
[0050] 前記の多孔質構造は乾燥中の溶液膜中で、ポリマーが結晶化することによる溶液 の不均一化や、大気中の水蒸気が溶媒蒸発の潜熱による膜の冷却のために結露し 混入することで生じる溶液の不均一化などによるため生じると考えられる。
[0051] ポリマーが上記のように多孔質構造や網状構造を取っている場合にも、結晶転移 に伴う膜のサイズ変化が生じるため、本発明の熱応動板に使用することが可能である
[0052] 上記のようにして製造された積層体は、体積変化を伴う可逆的な結晶転移をする材 料の結晶転移温度 (Ttr)で層 Aが体積膨張するため、温度 Ttrで急峻な変位動作を 起し、熱応動板として利用できる。
[0053] 熱応動板が長さ 1、幅 wの長方形であるとし、体積変化を伴う結晶転移を起す材料 の層 Aの厚みを h、基板 Bの厚みを hとし、その比を n=h /hで表す。層 A、層 Bの
1 2 2 1
弾性率をそれぞれ E、 Eとし、その比を m=E /Eで表す。結晶転移温度 (Ttr)で
1 2 2 1
層 Aの体積が変化する割合を δとすると、温度 Ttrで該熱応動板に生じる変位量 Dは 、下式 (3)
[0054] [数 1] k 1
D = ( 3 )
h
[0055] ただし、 kは、下式(4)
[0056] [数 2] 3 ε
k = (4)
1 + n3m
3 + + mn (1 +n)
[0057] ここで εは熱応動板の長手方向に生じる線歪であり、層 Αが等方的であれば、体積 変化の割合 δから、およそ、下式 (5)
[0058] [数 3]
δ (5)
[0059] と求められる。
[0060] 式(3)より、製造した熱応動板に大きな変位動作を生じせしめるために、熱応動板 の厚みが薄レ、ことが望ましく、この面からも溶液プロセスなどを用いて薄膜を容易に 作製可能な体積変化を伴う可逆的な結晶転移をする材料、例えば、トランス 1, 4- ポリブタジエンなどの半結晶性のポリマー材料が層 Αとして好適に用いられる。
[0061] 式(3)—(4)より Dは、 mn =1で最大値となるため、 E h
2 2 Vh 2の値が層 Aの弾性 1
率 Eに近いことが好ましい
1
[0062] すなわち、下式(6)
[0063] [数 4]
E2h2' = E,h,2 (6)
[0064] で示される関係が成立することとなる。
[0065] 基板 Bとして、表面の平滑な基板を用いた場合、場合によっては積層した層 Aが容 易に剥離しやすくなるため、使用できる材料が限られてくる。例えば Aとしてトランス- 1, 4 ポリブタジエンを用い、 Bとして A1板を用いた場合、層 Aは結晶転移点で生じる 歪のために基板 Bから容易に剥離してしまう。
[0066] 剥離を抑制するためにアンカー効果が期待できる粗面化された表面を有する基板 や多孔質基板などが好適に用いられる。
[0067] 基板 Bとして多孔質基板を用いると、基板の空孔中へ体積変化を生じる材料 Aを侵 入させることができるため、見かけ上 hの値を大きくとることができ、さらに多孔質構造
1
の故に基板の E 、基板材料 Bのバルタの弾性率 Eより小さくなる。このような多孔
2 B
質基板は、形状安定性に優れた剛直な基板材料 Bを用いながら、先に挙げた大きな 変位量を与える条件式(6)を満足することを容易ならしめ、好適に本発明に用いられ る。
[0068] さらに、本発明による熱応動板を用いて、温度過昇防止素子を製造することができ る。例えば、上記のような構成からなる熱応動板の基板の体積変化を伴う可逆的な結 晶転移をする材料からなる層が配設された面とは反対側の面に、銀ペーストを使用し て導電被膜を形成することにより、温度過昇防止素子を製造することが可能である。 このように構成された温度過昇防止素子は、使用された結晶性ポリマーの結晶転移 温度 Ttrを超える辺りで、膜形状が急激に変化し、接点開放 (抵抗∞)が起こる。この 素子を冷却すると、 Ttrを 5— 15°C程度下まわった温度で、抵抗は初期の値に復帰 する。すなわち、本発明に係る温度過昇防止素子は、使用された結晶性ポリマーの 温度 Ttr近傍で可逆的に急峻な接点開放、接点形成を生じる温度過昇防止素子とし て使用可能である。
[0069] 基板が絶縁性の材料からなる場合、基板表面に金属などの導電被膜 Cを形成し、 結晶転移温度 Ttrで熱応動板の変位動作により、該導電被膜 Cが接点 Dと接触ある いは離脱することを用いて、該導電被膜 Cと接点 Dに接続された外部回路に流れる 電流を制御することが可能になる。
[0070] 導電被膜 Cの形成は、導電ペーストの塗布、金属膜の蒸着、金属メツキなど種々の 方法で実施することができる。
[0071] さらに、本発明によれば、一対の電極と、本発明の固相状態で結晶転移する結晶 性ポリマーからなる絶縁性部材と導電性物質からなる部材とが電極間に配設された 構造物であって、該結晶性ポリマーが固体状態での転移を起し、転移温度範囲にお ける体積膨張率により、一対の電極の電気的な接続の開閉が行われる熱応動スイツ チが提供される。 [0072] このスィッチの作用を図 4、図 5、図 6に基づいて説明する。図 4はこの発明のスイツ チの概要を示す斜視説明図であり、図 5は図 4に示すスィッチが閉(ON)状態にある 場合の部分縦断説明図、図 6は図 4に示すスィッチが開(OFF)状態にある場合の部 分縦断説明図である。図 5に示すスィッチ 10は、複数の貫通孔 l l a、 l ibを有する結 晶性ポリマー部材 12を用レ、、各々の貫通孔 l la、 l ibには、導電性物質からなる部 材 13a、 13bが、常温では一対の電極 14a、 14b接触するように、配置されている。な お、ポリマー部材 12は、電極 14a、 14bと圧着するように成形されている。
[0073] したがって、常温では、電極 14aと電極 14bの間に電圧をかけた場合、導電性物質 力 なる部材 13a、 13bを介して電流が流れ、スィッチが閉(〇N)状態となる。しかし、 雰囲気の温度上昇により、結晶性ポリマーの相転移温度までポリマー部材 12が加熱 された場合、結晶性ポリマーの体積変化により、電極 14aと電極 14bの間の距離が広 がり、導電性物質からなる部材 13a、 13bと、電極 14aおよび電極 14bとの接触が失 われ、結果として電流が遮断される。すなわち、スィッチ開(OFF)状態になる。
[0074] このスィッチを構成する貫通孔 11の形状は、横断面が真円形に限らず、加工性や 成形体の強度を考慮して、楕円形、短冊形等の形状をとることができる。また、貫通 孔の大きさは、部材内の鉛直方向に対して均一であっても、均一でなくともよいが、 部材内のいずれかの場所において導電性物質からなる部材 13a、 13bを固定するよ うに選定することが好ましい。また、貫通孔の数は、必要な抵抗値、加工条件に応じ て選択すること力できる。また、貫通孔 11の、ポリマー部材 12における位置は任意に 選択することができるが、動作の安定性を考慮すると均等に分布することが好ましレ、
[0075] この貫通孔 11は、導電性物質からなる部材 13a、 13bの保持およびスィッチ側面の 絶縁性を保持する目的で、導電性物質からなる部材 13a、 13bがスィッチ側面に現 れないよう用いられるものであって、側面の絶縁性が要求されない場合は、貫通孔 1 1は、ポリマー部材 12の側面の一部をなす刻みであってもよレ、。また、さらに導電性 物質からなる部材 13a、 13bが他の手段により保持される場合は、貫通孔 11を用い ず、単に一対の電極 14a、 14bの間にポリマー部材 12と導電性部材 13が並んでい てもよい。 [0076] このスィッチを構成するポリマー部材 12の材料は、本発明の固相状態で結晶転移 する結晶性ポリマーであり、転移温度範囲における体積膨張率と、転移温度範囲以 外における熱膨張率との差は大きいことが好ましい。また、転移温度範囲における体 積変化は急激である方が好ましレ、。
[0077] また、ポリマー部材 12は、固体状態での結晶転移を生じ、転移温度範囲による体 積膨張率が転移温度範囲以外における熱膨張率を上回るポリマーと、他のポリマー あるいは無機材等の絶縁性材料とを混合した複合材料よりなってもよぐまた他の絶 縁性材料との積層構造をとつてレ、てもよレヽ。
[0078] 本発明によれば、本発明に係る固相状態で結晶転移する結晶性ポリマーからなる 蓄熱材及び蓄熱媒体が提供される。蓄熱材、または、蓄熱媒体は、本発明に係る固 相状態で結晶転移する結晶性ポリマーを材料として、所望とする形状に成形力卩ェす ればよい。成形加工方法は特に制限されないが、通常、樹脂に成形に使用される、 圧縮成形、射出成形、押出成形等の成形方法を採用すればよい。大きさ、形状等は 、その用途との関係で適宜選択すればよい。勿論、用途によっては、ケースに収納し た形で製造してもよい。特に、本発明に係わる蓄熱材又は蓄熱媒体においては、結 晶転移温度において蓄熱し、低温環境におかれた場合、降温時の結晶転移温度に おいて放熱作用を示して同温度付近における降熱時間が著しく延長されるという特 質を示す。
[0079] 本発明の結晶性ポリマーは、ペレット、薄板、金属板とのラミネーシヨン、中空糸、構 造体、キャストフィルム等への成形力卩ェが可能である。ペレット、あるいは成形体等と して熱媒体と接触させて使用される。また、相転移現象を示さない他のポリマーと混 合して使用してもよい。また、ポリマー以外の固体材料と混合して使用してもよい。ま た、導電性粒子と混合することで PTC素子として応用することも可能である。
実施例
[0080] 「重量平均分子量」は以下のように求めた。スチレンを標準物質とし Waters製 150C 型(カラムは昭和電工製 ShodexHT-806M2本、プレカラムとして ShodexHT_800Pl本 を使用)のゲル浸透クロマトグラフィー(GPC)により、溶媒 0—ジクロロベンゼン、カラ ム温度 135°Cで、同一条件で標準ポリスチレンの測定を行い校正曲線を作成し校正 して求めた GPC曲線より求めたものを示す。
[0081] 「トランス _1, 4結合の含量」および「ォレフイン含有量」は、 日本電子製 EX— 400を 用いて測定した13 C— NMRスペクトルにおける各ピークの強度比から算出した。
[0082] 「結晶相転移点」、「結晶相転移熱」は以下のように求めた。セイコーインスツルメン ッ株式会社製 SSC5200の示差走查型熱量計 (DSC)を用い、アルミ製サンプルパ ンに試料約 5mgを入れシ-ルしたものを、窒素雰囲気下、 200°C10分加熱すること により完全に融解させた後、 _5°CZ分で- 30°Cまで降温し再結晶化した。このポリマ 一を 10°CZ分で昇温し、結晶転移に伴う吸熱ピークの最大値を示す温度を結晶転 移温度 (Ttr)、結晶転移による吸熱量の単位ポリマー量当りの総量を結晶転移熱量 ( A Htr)とした。また、結晶融解に伴う吸熱ピークの最大値を示す温度を融点 (Tm) 、結晶融解に伴う吸熱量の単位ポリマー量当りの総量を融解熱量( Δ Hm)とした。
[0083] 昇温に伴う膨張率は、以下の条件により測定した。
Du Pontインスツルメンッ製 990Thermal Analyzerおよび 943Thermomechanical Analyzer (TMA)を用い、石英ガラス製のセル内に厚さ 200 /i m、 2mm角の試料をセ ットし、大気下で、昇温速度 10°C/分で所定温度(DSCにて測定した結晶転移温度 (Ttr) + 30°C)まで昇温し、その後、室温付近まで放冷し、再度この試料を昇温速度 10°C/分で所定温度まで昇温したときのフィルムの厚さ方向の膨張率を測定した。
[0084] また、結晶面間隔は、理学社製広角 X線回折装置 RINT2500を用いて、管電圧 40k V、管電流 130mA、測定範囲 2 Θ = 3— 40° 、温度 25— 100°Cの間での昇温過程 で測定した。得られた TPBに特徴的な(200)面の回折ピーク位置から、ブラック式より 、測定各温度における結晶面間隔を算出した。
[0085] (比較例 1)
十分に窒素置換した内容積 100Lの反応容器にトルエン 35. 75Lを入れ、ブタジ ェン 12. 5Lを加えた後、触媒としてバナジウムォキシトリクロリド (VOC1 )を 250ミリモ
3
ノレ、助触媒としてジェチルアルミニウムクロリド(DEAC) 1250ミリモルを順次添カロし、 重合を開始した。重合は窒素雰囲気下、初期温度 - 8°C、最終温度 60°Cで 30分間 行った。ポリマーを含む反応液は、同容積のエタノール (老化防止剤としてチバガイ ギ一社製ィルガノックス 1076を添カロ)中に加えてポリマーを再沈させ、回収した。この とき得られたポリマーは、トランス結合含有率 99%、重量平均分子量 (Mw)は 21万、 数平均分子量(Mn)は 2. 9万であった。このポリマーの熱物性は、表 1に示す。
[0086] (実施例 1)
内容積 200mlのナス型フラスコに比較例 1のトランス— 1 , 4一ポリブタジエン 2g、トル ェン 98gを入れ、窒素雰囲気下水バス中で 60°Cにて、トランスポリブタジエンを溶解 後、ギ酸 0. 4ml、 30%過酸化水素水 2. 5ml注入し、その後、 30分間、密閉系にて 反応を行った。大量のエタノール中へ析出させることにより、反応を停止した後、ろ過 、さらにエタノールで洗浄後、乾燥させた。
[0087] (実施例 2、 3)
反応時間を変えた以外は、実施例 1と同様の操作を繰り返した。実施例 2での反応 時間は、 10分間、そして、実施例 3での反応時間は、 5分間とした。
[0088] (実施例 4、 5、 6、 7)
反応試薬量として、ギ酸 0. 8ml、 30%過酸化水素水 5mlを用い、実施例 4での反 応時間を 5分間、実施例 5での反応時間を 10分間、実施例 6での反応時間を 20分 間、および、実施例 7での反応時間を 30分間とした以外は、実施例 1と同様の操作を 繰り返した。
[0089] (実施例 8)
内容積 100mlのナス型フラスコにトランス— 1 , 4一ポリブタジエン lg、トルエン 49gを 入れ、窒素雰囲気下水バス中で 60°Cにて、トランスポリブタジエンを溶解後、ギ酸 0. 7ml、 30%過酸化水素水 0. 5ml注入し、その後、 30分間、密閉系にて反応を行つ た。大量のエタノール中へ析出させることにより、反応を停止した後、ろ過、さらにエタ ノールで洗浄後、乾燥させた。
[0090] (実施例 9、 10、 11、 12)
反応試薬量が以下に記載する量としたこと以外は、実施例 8と同様の操作を繰り返 した。なお、反応試薬量は、実施例 9では、ギ酸 0. 35ml, 30%過酸化水素水 0. 25 mlを、実施例 10では、ギ酸 0. 35ml, 30%過酸化水素水 0. 5mlを、実施例 11では 、ギ酸 0. 7ml、 30%過酸化水素水 0. 25mlを、実施例 12では、ギ酸 2. lml, 30% 過酸化水素水 1. 25mlをそれぞれ使用した。 [0091] (実施例 13)
内容積 100mlのナス型フラスコにトランス— 1 , 4 ポリブタジエン lg、トルエン 49gを 入れ、窒素雰囲気下水バス中で 60°Cにて、トランスポリブタジエンを溶解後、ギ酸 1. 4ml, 30%過酸化水素水 1. 25ml注入し、注入終了後、 60分間、密閉系にて反応 を行った。大量のエタノール中へ析出させることにより、反応を停止した後、ろ過、さら にエタノールで洗浄後、乾燥させた。
[0092] (実施例 14)
反応試薬量のうち、ギ酸量を 0. 7mlとした以外は、実施例 13と同様の操作を繰り 返した。
[0093] (実施例 15)
内容積 1000mlのナス型フラスコにトランス— 1, 4—ポリブタジエン 55g、トルエン 57 Ogを入れ、窒素雰囲気下水バス中で 60°Cにて、トランスポリブタジエンを溶解後、ギ 酸 l lml、 30%過酸化水素水 68. 8mlを注入し、注入終了後、 60分間、密閉系にて 反応を行った。大量のエタノール中へ析出させることにより、反応を停止した後、ろ過 、さらにエタノールで洗浄後、乾燥させた。
[0094] (実施例 16)
内容積 2000mlのナス型フラスコにトランス— 1, 4 ポリブタジエン 100g、トルエン 9 00gを入れ、窒素雰囲気下水バス中で 60°Cにて、トランスポリブタジエンを溶解後、 ギ酸 21ml、 30%過酸化水素水 42. 2mlを注入し、その後、 90分間、密閉系にて反 応を行った。大量のエタノール中へ析出させることにより、反応を停止した後、ろ過、 さらにエタノールで洗浄後、乾燥させた。
これらの実施例に関する各原材料の使用量、反応条件、得られたポリマーの結晶 転移温度 (Ttr)、転移熱量( Δ Htr)、融点 (Tm)、および結晶融解熱( Δ Hm)につ いては、表 1に示す。
[0095] [表 1] 仕込量 Heating
epoxvts name TPB トルエン チ醋量 Η202里 反応温度反応時間 Ttr A tr Tm lHm
導人卓 (%)
(g) (mol) (g) (ml) (ml) (Ν) (ml) (Ν) (°C) (min) (°C) (J/g) (°C) (J/g) 比較例 1 一 ― 71.2 1 17.0 130.8 56.1 0.0 実施例 1 2.0 0.0 98.0 1 13.0 0.4 0.3 2.5 3.0 60.0 30.0 41.5 70.8 122.5 55.3 12.0 実施例 2 2.0 0.0 9B.0 113.0 0.4 0.3 2.5 3.0 60.0 5.0 64.7 108.0 128.5 56.6 2.0 実施例 3 2.0 0.0 98.0 1 13.0 0.4 0.3 2.5 3.0 60.0 10.0 59.7 101 .0 127.5 57.0 4.0 実施例 4 2.0 0.0 98.0 1 13.0 Ο.β 0.6 5.0 5.9 60.0 5.0 61.9 105.0 128.0 56.4 3.2 実施例 5 2.0 0.0 98.0 1 13.0 0.8 0.6 5.0 5.9 60.0 10.0 50.3 90.1 24.9 56.6 8.2 実施例 6 2.0 0.0 98.0 1 13.0 0.8 0.6 5.0 5.9 60.0 20.0 38.9 67.6 1 21.7 55.4 14.4 実施例 7 2.0 0.0 98.0 1 13.0 0.8 0.6 5.0 5.9 60.0 30.0 34.9 55.0 1 1 9.6 55.0 20.3
1.0 0.0 49.0 56.5 0.7 1.0 0.5 1.2 60.0 30.0 35.8 58.0 118.5 51.4 16.4 実施例 9 1.0 0.0 49.0 56.5 0.4 0.5 0.3 0.6 60.0 30.0 52.9 88.9 125.0 51 .0 7.0 実施例 10 1.0 0.0 49.0 56.5 0.4 0.5 0.5 1.2 60.0 30.0 47.0 78.0 122.9 51.4 9.6 実施例 1 1 1.0 0.0 49.0 56.5 0.7 1.0 0.3 0.6 60.0 30.0 58.9 94.1 126.2 52.7 4.5 実施例 1 2 1.0 0.0 49.0 56.5 2.1 3.0 ΐ.3 3.0 60.0 30.0 23.0 22.4 91.0 32J 35.4 実施例 1 3 1.0 0.0 49.0 56.5 1.4 2.0 1.3 3.0 60.0 60.0 12.B 10.6 81.3 24.2 50,8 実施例 1 4 1.0 0.0 49.0 56.5 0.7 1.0 1.3 3.0 60.0 60.0 19.3 16.1 1 10.0 39.6 51.1 実施例 1 5 55.0 1.0 570.9 658.5 11 .0 0.3 68.Β 3.0 60.0 30.0 32.7 48.1 1 1 7.4 51.1 24.2 実施例 1 6 100.0 1.9 900.0 1038.1 20.9 0.3 42.2 1.0 60.0 90.0 38.6 59.1 121.7 50.3 15.5
[0096] 図 1に、実施例 1で得られた結晶性ポリマーと比較例 1で得られたポリマーとの昇温 過程の DSCサーモグラムを示す。このデータから、本願に係る結晶性ポリマーは、従 来から知られている結晶性ポリマーに比べ、比較的低い温度で結晶転移現象を示す ことが明らかとなった。
[0097] 図 8に実施例 1から得られたポリマーと比較例 1から得られたポリマーとの、広角 X線 回折測定から得られた、回折ピーク位置から求めた面間隔の温度依存性を示す。こ の結果から、本発明に係る結晶性ポリマーの不連続な体積変化は、結晶転移による 、結晶格子の膨張によるものであることが明らかになった。
[0098] 図 2に、実施例 1と 2で得られた結晶性ポリマーと比較例 1で得られたポリマーとの一 軸方向の膨張率を示す。この結果からみて、本発明に係る結晶性ポリマーは、 30°C 一 60°Cの低温の温度領域で、不連続な体積変化を示すことから、より生活環境温度 に近い低温領域でのスイッチング素子として要望な特質を有することが明らかである
[0099] (熱応動板)
(実施例 17)
体積変化を伴う結晶転移を起す材料として、比較例 1と同様に調製したトランス- 1 , 4結合含量 99%のトランス— 1 , 4 ポリブタジエンを用いた。このトランス— 1 , 4_ポリ ブタジエンのポリスチレン換算の重量平均分子量 (Mw)は 21万、数平均分子量 (M n)は 2. 9万であった。また、結晶転移温度は 70. 8°C、転移熱量は 118j/gであつ た。さらに融点は 130. 3度であり、融解熱は 56. 7j/gであった。
前記トランス 1, 4_ポリブタジエンをテトラヒドロフランにポリマー含量 5重量%の割 合で溶解させた。前記溶液は室温では白濁していたが、 70°Cまで加温することにより ほぼ均一な溶液となった。
基板として、長さ 5cm、幅 lcmに切り出した厚さ 25 z mのポリオレフイン多孔膜 (宇 部興産製ユーポア)を用レ、、室温に保った該基板の片面に、前記トランス— 1 , 4一ポリ ブタジエンの加温溶液を塗布し、大気中で該溶液を乾燥させた。
[0100] 乾燥後の膜はトランス一 1 , 4_ポリブタジエン溶液の乾燥に伴う修飾により、トランス -1, 4_ポリブタジエン層側に大きく湾曲した形状をしていた。上記膜を、シートヒータ 一上で室温力 大気中で加熱した。結晶転移温度 (Ttr)付近まで、上記膜の形状は ほとんど変化しなかったが、結晶転移温度 (Ttr)を超える辺りで、膜形状が急激に変 化した。膜の片端を固定しておいた場合に、他端が変異する量 Dは概略で 2cm以上 であった。この膜を冷却すると、温度が Ttr以下で膜は初期の形状に復帰した。すな わちこの膜は温度 Ttrで可逆的に急峻な変位を生じる熱応動板として動作した。
[0101] (実施例 18)
実施例 17で得られた熱応動板を用いて、ポリイミド多孔膜基板 2のトランス一 1, 4- ポリブタジエン層 1を形成した側とは反対側に、銀ペースト(ァレムコ製ァレムコ 'ボン ド 525)を予め塗布乾燥させることにより導電被膜 3を形成し、導電被膜と電気的に接 続された接点 4と外部回路との連結に使用される端子 5と 6を形成し、温度過昇防止 素子を作製した(図 3 (a) )。
上記素子は室温では 20 Ωの抵抗を示した。この素子を、シートヒーター上で室温 力 大気中で加熱したところ、結晶転移温度 (Ttr)付近まで、上記素子の抵抗はほと んど変化しなかったが、結晶転移温度 (Ttr)を超える辺りで、膜形状が急激に変化し 、接点開放 (抵抗∞)が起こった(図 3 (b) )。この素子を冷却すると、温度が Ttr以下 で抵抗は初期の値に復帰した。すなわちこの素子は温度 Ttrで可逆的に急峻な接点 開放'短絡を生じる温度過昇防止素子として動作した。
[0102] (実施例 19)
熱応動板の長さを lcm、幅を 0. 2mmにし、導電被膜を A1の真空蒸着により形成し た以外は実施例 18と同様にして温度過昇防止素子を作製した。
上記素子は室温では導通を示した。この素子を、シートヒーター上で室温から大気 中で加熱したところ、結晶転移温度 (Ttr)付近まで、上記素子の抵抗はほとんど変化 しなかったが、結晶転移温度 (Ttr)を超える辺りで、膜形状が急激に変化し、接点開 放が起こった。この素子を冷却すると、温度が Ttrをしたまわった時点で、回路短絡を 起した。すなわち、この素子は温度 Ttrで可逆的に急峻な接点開放 ·短絡を生じる温 度過昇防止素子として動作した。
[0103] (実施例 20)
実施例 16のエポキシ化されたトランス一 1, 4一ポリブタジエンを用いたことを以外は 、実施例 17と同様の操作を繰り返した。温度の変化に応じて、変位が観測された。
[0104] (熱応動スィッチ)
(実施例 21)
実施例 16のトランス— 1 , 4一ポリブタジエンに 0. 3wt%の抗酸化剤(チバガイギー 社製ィルガノックス 1076)を添加したものを、プレス機 (神藤金属工作所製圧縮成形 機 S—37. 5、シリンダー径 150mm、最大圧力 21MPa (210kgfZcm2) )を用いて 1 60。Cで圧縮成形を行い、 10 X 10 X 0. 5mmのポリマー板を作製した。この板に、き りを用いて直径 0. 7mmの貫通孔を 16個均等にあけ、貫通孔のそれぞれに、直径 0 . 7mmの金属球(千手金属工業社製 M705)を配置した。次に、このポリマー板を、 厚み 70 μ mの銅箔電極 (福田金属箔社製電解銅箔 CF— T9—70)で両側からはさみ 、厚さ 0. 50mmの形枠内を用レ、、プレス機により加圧圧着してスィッチを作製した。 プレスは、 160°Cに予め昇温したプレス機内に、約 5分保った後、 1分間、プレス機の 表示圧が 10MPa (100kgf/cm2)を越える状態で行レ、、その後、圧をかけずに冷却 した。
[0105] このようにして作製したスイッチング素子を電気炉内におき、マルチメーター(ケース レー社製モデル 2700)を用いて四線抵抗測定法により、室温および 61°Cにおける素 子抵抗を測定した。測定結果、室温における抵抗値は 11. 1 Ωであり、 61°Cにおけ る抵抗値は 1. 2 Χ 108 Ω (装置の測定限界)以上であった。また、電気炉から取り出し 、素子温度を降下させたところ、 44°Cで、初期抵抗値である 11. 1 Ωまで復帰した。 温度の変化に応じた示された、変位の状況は、図 9に示す。
[0106] (蓄熱材)
(実施例 22)
実施例 16のポリマー(転移温度:昇温時 39°C、降温時 30°C)を、プレス機 (神藤金 属工作所製圧縮成形器 S - 37. 5、シリンダー径 150mm、最大圧力 21MPa (210k gf/cm2) )を用いて 140°Cで圧縮成形し、 40 X 60 X 5mmの板 2枚を作製した。板 の合計重量は、 17. 8gであった。 45°C以上の温水 100gを入れた紙製のコップ状容 器に、この 2枚の板を入れ、 15°Cの恒温槽中に保持して、コップ底部の水温を連続 的に測定した。放熱時間と水温との関係を図 7に示す。 [0107] (比較例 2)
エポキシィ匕 TPBに変えて、 LDPE樹脂(宇部興産株式会社製ュメリット 1540F)を 用いて作製した板 (合計 18. 3g)を用いたことを除いて、実施例 22と同様の操作を繰 り返した。結果は図 7に示す。
[0108] (比較例 3)
エポキシ化 TPBに変えて、温水 18. Ogを追カロして合計 118. Ogの温水を用いたこ とを除いて、実施例 22と同様の操作を繰り返した。結果は図 7に示す。
[0109] 実施例 22で得られたデータから明らかなように、水の一部を同重量かつほぼ同体 積のエポキシ化 TPBに置き換えた場合には、 30°C近傍における水温の低下が遅く なったことが示された。これは、本発明に係る結晶性ポリマーを使用した場合には、 潜熱蓄熱が生じ、降温時の結晶転移温度において蓄積された熱が放出されたことを 示す。
[0110] (実施例 23)
実施例 15のポリマーを、プレス機 (神藤金属工作所製圧縮成形器 S - 37. 5、シリン ダ一径 150mm、最大圧力 21MPa (210kgf/cm2) )を用いて 160°Cで圧縮成形し , 40 X 60 X 1mmの板を作成した。この電子レンジ(シャープ株式会社製 RE— 4100 、出力 1100W)に入れ、所定時間加熱操作を行った。マイクロ波照射による昇温が 確認された。表 2に、照射時間と、照射後のポリマー板の表面温度を示す。
[0111] (比較例 4)
比較例 1の TPBを用いたことを除いて、実施例 23と同様の操作を繰り返した。結果 は、表 2に示す。
[0112] [表 2] «. I 1ド Β个 ? FSili l r D
照 37狩间 £1達戯 k g| :曰
リ達/皿
广
S し
i薩 n u 0 C 0O . 0 L
20 32. 1
40 33. 6
60 55. 5
60 58. 2
120 97. 6
180 42. 1
* エポキシ化率 24. 2%, 乾燥処理済
[0113] 実施例 23においては、 120秒の照射により、試料板の表面温度は 98°Cにまで上 昇した。また、このとき、レンジ底部の回転皿の昇温はわずかであった。 60秒以上の マイクロ波照射により昇温した試料板を室温に放置したところ、降温時の放熱が見ら れ、 31°C 25°Cへと表面温度が低下するのに、約 8分を要した。一方、比較例 4に おいては、 180秒の照射の場合 42°Cまでの温度上昇が生じた力 これはレンジ底部 の温度上昇の伝播によるもので、本発明のポリマーと比較して昇温効果は著しく低い 。また、室温における 31°C 25°Cへの表面温度低下には、わずかに 2. 5分しか掛 力 ず、転移温度が高いために 30°C付近では蓄熱材として機能しないことが明らか となった。
産業上の利用可能性
[0114] 本発明の結晶性ポリマーは、固相転移現象を示し、成形加工が容易で、低い結晶 転移温度において、結晶転移による大きな熱授受量を有する新規な結晶性ポリマー である。本発明の結晶性ポリマーは、熱応動板、同熱応動板を利用した温度過昇防 止素子、および熱応動スィッチ用の素材として有用である。また、低い相転移温度と 高い相転移熱量を有することから蓄熱材、蓄熱媒体としても有用である。特に高い加 ェ性を有することから、産業上の利用可能性は高い。

Claims

請求の範囲
[I] 結晶性ポリマーであって、 67°C >Ttr>0°Cで固相状態の可逆結晶転移現象を示 し、下式(1)
150 > A Htr> l . 6Ttr^3. 5 (1)
(式中、 A Htrは結晶転移に伴う吸熱 (jZg)、Ttrは結晶転移温度 (°C)を示す。)で 規定される関係を満足する結晶性ポリマー。
[2] 結晶性ポリマーであって、 67°C >Ttr>0°Cで固相状態の可逆結晶転移現象を示 し、重量平均分子量が 60万以下であり、かつ、下式(2)
150 > A Htr> l . 6Ttr^l5 (2)
で規定される関係を満足する結晶性ポリマー。
[3] 該結晶性ポリマーがブタジエンとォレフィンの共重合体である請求項 1または 2に記 載の結晶性ポリマー。
[4] 該結晶性ポリマーがポリブタジエン変生物である請求項 1一 3の何れか 1項に記載 の結晶性ポリマー。
[5] 該変性物の原料ポリマーがトランス一 1 , 4構造含量が 97モル%以上である請求項 1一 4の何れか 1項に記載の結晶性ポリマー。
[6] 該結晶性ポリマーの融点(Tm)が 100°C以上である請求項 1一 3の何れ力、 1項に記 載の結晶性ポリマー。
[7] 可撓性基板と、同基板の一方の表面に配設された体積変化を伴う可逆的な結晶転 移を有する材料の層からなる熱応動板。
[8] 体積変化を伴う可逆的な結晶転移を起す材料が、トランス一 1, 4結合を 90%以上 有するトランス— 1, 4一ポリブタジエンであること請求項 7に記載の熱応動板。
[9] 体積変化を伴う可逆的な結晶転移を起す材料が、請求項 1一 6の何れ力、 1項に記 載の結晶性ポリマーである請求項 7に記載の熱応動板。
[10] 体積変化を伴う可逆的な結晶転移を起す材料が、トランス一 1, 4一ポリブタジエンの 均一溶液を基板の一方の表面に塗布、製膜して製造されたものである請求項 8に記 載の熱応動板。
[II] 体積変化を伴う可逆的な結晶転移を起す材料が、請求項 1一 6の何れ力 1項に記 載の結晶性ポリマーの均一溶液を基板の一方の表面に塗布、製膜して製造されたも のである請求項 9に記載の熱応動板。
[12] 表面が多孔質構造を有する基板である請求項 7、 8、および 10の何れか 1項に記載 の熱応動板。
[13] 請求項 7— 12の何れ力、 1項に記載の熱応動板からなる温度過昇防止素子。
[14] 一対の電極と、固相状態で結晶転移する結晶性ポリマーからなる絶縁性部材と導 電性物質力 なる部材とが電極間に配設された構造物であって、
かつ、一対の電極の電気的な接続の開閉が、該結晶性ポリマーが固体状態での転 移を起し、転移温度範囲近傍における体積膨張率の変化により行われる熱応動スィ ツチ。
[15] 結晶性ポリマーが請求項 1一 6の何れ力、 1項に記載の結晶性ポリマーである請求項 14に記載の熱応動スィッチ。
[16] 導電性物質からなる部材が、金属であることを特徴とする請求項 14に記載の熱応 動スィッチ。
[17] 請求項 1一 6の何れ力 1項に記載の結晶性ポリマーからなる蓄熱材及び蓄熱媒体。
[18] マイクロ波を用いることを特徴とする、請求項 17に記載の蓄熱材及び蓄熱媒体の 加温方法。
PCT/JP2004/009653 2003-07-07 2004-07-07 固相転移現象を示す結晶性ポリマー、およびその応用 WO2005003194A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005511394A JP4508109B2 (ja) 2003-07-07 2004-07-07 固相転移現象を示す結晶性ポリマー、およびその応用
EP04747122A EP1642912A4 (en) 2003-07-07 2004-07-07 CRYSTALLINE POLYMER WITH SOLID PHASE TRANSITION PHENOMENON AND USE THEREOF
US10/563,041 US20060155088A1 (en) 2003-07-07 2004-07-07 Crystalline polymer exhibiting solid phase transition phenomenon and use thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003192830 2003-07-07
JP2003-192830 2003-07-07
JP2003-396527 2003-11-27
JP2003396527 2003-11-27
JP2004168842 2004-06-07
JP2004-168842 2004-06-07

Publications (1)

Publication Number Publication Date
WO2005003194A1 true WO2005003194A1 (ja) 2005-01-13

Family

ID=33568354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009653 WO2005003194A1 (ja) 2003-07-07 2004-07-07 固相転移現象を示す結晶性ポリマー、およびその応用

Country Status (4)

Country Link
US (1) US20060155088A1 (ja)
EP (1) EP1642912A4 (ja)
JP (1) JP4508109B2 (ja)
WO (1) WO2005003194A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11098229B2 (en) * 2016-07-29 2021-08-24 Sumitomo Chemical Company, Limited Resin composition and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960256U (ja) * 1972-09-04 1974-05-27
JPH1077305A (ja) * 1996-07-11 1998-03-24 Daicel Chem Ind Ltd エポキシ化ポリエン
JPH10316715A (ja) * 1997-05-20 1998-12-02 Jsr Corp エポキシ変性重合体の水性分散液
JP2001213917A (ja) * 2000-02-03 2001-08-07 Ube Ind Ltd トランス−1,4−ポリブタジエン及びその製造方法
WO2001057889A1 (fr) * 2000-02-01 2001-08-09 Ube Industries, Ltd. Composition polymère conductrice et élément ptc
JP2002124172A (ja) * 2000-10-13 2002-04-26 Uchiya Thermostat Kk サーマルプロテクタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2286150A1 (fr) * 1974-09-27 1976-04-23 Inst Francais Du Petrole Procede d'epoxydation de polybutadienes 1-2 amorphes, nouveaux produits obtenus et leurs applications
JP3709613B2 (ja) * 1996-01-31 2005-10-26 宇部興産株式会社 蓄熱材
WO1997048749A1 (fr) * 1996-06-17 1997-12-24 Daicel Chemical Industries, Ltd. Polyene epoxyde, composition de resine epoxy et produit resultant de son durcissement, et materiau de revetement pulverulent
US5993698A (en) * 1997-11-06 1999-11-30 Acheson Industries, Inc. Electrical device containing positive temperature coefficient resistor composition and method of manufacturing the device
JP2001081135A (ja) * 1999-07-12 2001-03-27 Ube Ind Ltd トランス−1,4−ポリブタジエン、および、その製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4960256U (ja) * 1972-09-04 1974-05-27
JPH1077305A (ja) * 1996-07-11 1998-03-24 Daicel Chem Ind Ltd エポキシ化ポリエン
JPH10316715A (ja) * 1997-05-20 1998-12-02 Jsr Corp エポキシ変性重合体の水性分散液
WO2001057889A1 (fr) * 2000-02-01 2001-08-09 Ube Industries, Ltd. Composition polymère conductrice et élément ptc
JP2001213917A (ja) * 2000-02-03 2001-08-07 Ube Ind Ltd トランス−1,4−ポリブタジエン及びその製造方法
JP2002124172A (ja) * 2000-10-13 2002-04-26 Uchiya Thermostat Kk サーマルプロテクタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1642912A4 *

Also Published As

Publication number Publication date
EP1642912A1 (en) 2006-04-05
JP4508109B2 (ja) 2010-07-21
US20060155088A1 (en) 2006-07-13
JPWO2005003194A1 (ja) 2007-11-01
EP1642912A4 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
KR100974007B1 (ko) 프리프레그 및 인쇄배선기판용 전도성 적층 기판
KR101670087B1 (ko) 열경화성 수지, 이를 포함한 수지 조성물, 및 이를 이용하여 제조된 인쇄회로기판
CN108047978B (zh) 绝缘包覆材料及其制造方法、绝缘缆线及其制造方法
KR20220112248A (ko) 경화성 조성물 및 그 경화체
Huang et al. Studied on mechanical, thermal and dielectric properties of BPh/PEN-OH copolymer
TWI772946B (zh) 聚醯亞胺薄膜之製造方法、由該方法製得的聚醯亞胺薄膜、及包含其的多層薄膜、可撓性金屬箔層壓板和電子部件
Wang et al. Thermoreversible cross-linking of ethylene/propylene copolymer rubbers
KR20230065929A (ko) 조성물 및 그 경화체
TW201620977A (zh) 芳香族四官能乙烯苄基樹脂組成物及其應用
US20230002613A1 (en) Low-dielectric-constant polyimide composite powder, and method for producing same
Shi et al. Design and synthesis of low dielectric poly (aryl ether ketone) from incorporation bulky fluorene groups and regular hydroquinone structure
CA2835199A1 (en) Halogen free thermoset resin system for low dielectric loss at high frequency applications
WO2005003194A1 (ja) 固相転移現象を示す結晶性ポリマー、およびその応用
Ma et al. High performance polyimide films containing benzimidazole moieties for thin film solar cells
Yang et al. Super engineering plastics and forms
CN116194512A (zh) 低介电聚酰亚胺膜及其制造方法
CN102532543A (zh) 共聚型可热封接聚酰亚胺及其制备方法与应用
Darie-Nita et al. Micro-and macrostructure of polyimide blends and composites: Methods of investigations
JP7570901B2 (ja) 組成物及びその硬化物
KR102644738B1 (ko) 폴리이미드 분말의 제조 방법
KR102230494B1 (ko) 마이크로파를 이용한 폴리이미드 필름의 제조방법
TWI755133B (zh) 聚醯亞胺薄膜之製造方法、由該方法製得的聚醯亞胺薄膜、及包含其的多層薄膜、可撓性金屬箔層壓板和電子部件
JP5125317B2 (ja) 重合性組成物、架橋性樹脂および架橋体
JP6661878B2 (ja) 環状オレフィン系共重合体およびその製造方法
JP2024074136A (ja) ブロック共重合体、硬化物、電子回路基板材料、樹脂フィルム、プリプレグ、積層体、及び半導体チップパッケージ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005511394

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006155088

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10563041

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004747122

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004747122

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10563041

Country of ref document: US