WO2005002550A1 - Nanopartículas de derivados polioxietilenados - Google Patents

Nanopartículas de derivados polioxietilenados Download PDF

Info

Publication number
WO2005002550A1
WO2005002550A1 PCT/ES2004/000282 ES2004000282W WO2005002550A1 WO 2005002550 A1 WO2005002550 A1 WO 2005002550A1 ES 2004000282 W ES2004000282 W ES 2004000282W WO 2005002550 A1 WO2005002550 A1 WO 2005002550A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
plga
poloxamer
organic solvent
biodegradable polymer
Prior art date
Application number
PCT/ES2004/000282
Other languages
English (en)
French (fr)
Inventor
María José ALONSO FERNÁNDEZ
Alejandro SÁNCHEZ BARREIRO
Noémi CSABA
Original Assignee
Advanced In Vitro Cell Technologies, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced In Vitro Cell Technologies, S.L. filed Critical Advanced In Vitro Cell Technologies, S.L.
Priority to CA002531111A priority Critical patent/CA2531111A1/en
Priority to EP04736985A priority patent/EP1658842A1/en
Priority to US10/563,031 priority patent/US20060153923A1/en
Priority to AU2004253308A priority patent/AU2004253308A1/en
Priority to BRPI0411954-1A priority patent/BRPI0411954A/pt
Priority to JP2006518241A priority patent/JP2007525474A/ja
Publication of WO2005002550A1 publication Critical patent/WO2005002550A1/es
Priority to NO20056241A priority patent/NO20056241L/no

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention relates to nanoparticles (size smaller than 1 ⁇ m) with a new composition, which are suitable for the administration of active molecules.
  • the new composition comprises two polymers: a biodegradable polymer and a block copolymer derived from polyoxyethylene.
  • biodegradable polymers for its formation are those derived from polylactic acid (PLA) and their copolymers with glycolic acid (PLGA) due to their biodegradability, biocompatibility and safety (Johansen et al., Eur. J. Pharm. Biopharm., 2000, 50, 129-146).
  • Other biodegradable polymers that also offer a promising future in this line are polyesters such as poly ( ⁇ -caprolactone) (Losa et al., Pharm.
  • the poloxamers are triblock polyoxyethylene-polyoxypropylene-polyoxyethylene (PEO-PPO-PEO) copolymers that, depending on their PEO: PPO ratio vary in their molecular weight, hydrophobicity, etc. ..
  • the poloxamines are copolymers formed by 4 PEO chains -PPO linked by an ethylenediamine bridge.
  • PEO-PPO PEO-PPO.
  • BBB blood brain barrier
  • PEO: PPO block copolymers have been widely studied as coating agents that allow the biodistribution of nanoparticles used as drug transporters to be modified.
  • the poloxamer / poloxamine is not part of the polymer matrix constituting the particles but is adsorbed at the surface level. Therefore, the amount of adsorbed poloxamer / poloxamine is limited and its presence has no implications in the encapsulation or controlled release of the active molecule encapsulated in the particles, but its role is limited to the modification of the biodistribution profile of the particles.
  • US5578325 the idea of chemically binding said copolymers to polyesters has been proposed, thus forming multiblock copolymers. In these cases the polyoxyethylene derivative is covalently bound to the polyester, thus leading to the formation of a new copolymer.
  • SUBSTITUTE SHEET (RULE 26) cylinders or microparticles, with a size between 10-100 ⁇ m. These particles are obtained by the double-emulsion technique in the aqueous external phase, which allows only the incorporation of small amounts of hydrophilic poloxamers, as noted in previous studies (Blanco et al., Eur. J. Pharm. Biopharm., 1997 , 43, 287-294; Blanco et al. Eur. J. Pharm. Biopharm., 1998, 45, 285-
  • the present invention relates to nanoparticles comprising a biodegradable polymer, preferably a polyester and a block copolymer derived from polyoxyethylene, preferably poloxamer and poloxamine.
  • the present invention relates to a preparation method that allows the incorporation of high percentages of poloxamers and poloxamines in nanoparticles, the ratio of biodegradable polymer being polyoxyethylene derivative between 1: 0.1 and 1: 3. Therefore, according to a first aspect, the invention relates to a process for preparing nanoparticles smaller than 1 ⁇ m in size, for the administration of active ingredients, comprising the steps of:
  • the active ingredient can be dissolved directly in the non-polar organic solvent (lipophilic molecules) or it can be previously dissolved in a small volume of aqueous phase (water-soluble molecules) and then dispersed in the organic solvent, before or after step a).
  • the organic solvent in a) will be a non-polar solvent.
  • the preparation of the intimate mixing nanoparticle formulations may additionally include a lyophilization step.
  • nanoparticles can be stored for long periods of time and easily regenerated, simply by adding an optimal volume of water. Lyophilization of the nanoparticles has been optimized with the incorporation of a cryoprotectant excipient (glucose or trehalose) in the suspension medium of the formulations.
  • a cryoprotectant excipient glucose or trehalose
  • the biodegradable polymer is a polyester, which is selected from the group of polyesters such as polylactic acid, polylactic-co-glycolic acid and its copolymers, polycaprolactone or from the group of polyanhydrides.
  • the 50:50 Resomer ® RG 503 Mw: 35000 (Boehringer Ingelheim) polylactic-co-glycolic acid polymer has been used.
  • the block copolymer is selected from poloxamers and poloxamines.
  • the poloxamers are triblock polyoxyethylene-polyoxypropylene-polyoxyethylene (PEO-PPO-PEO) copolymers which, depending on their PEO: PPO ratio vary in their characteristics of molecular weight, hydrophobicity, etc.
  • PEO-PPO-PEO triblock polyoxyethylene-polyoxypropylene-polyoxyethylene
  • PPO polyoxypropylene-polyoxyethylene
  • the poloxamers used will have a molecular weight between 1,000 and 25,000 Daltons. These polymers can be obtained from BASF Corporation under the trade name Pluronic.TM.
  • Poloxamines are copolymers formed by 4 PEO-PPO chains linked by an ethylenediamine bridge. Similarly to poloxamers, their characteristics may vary when changing the PEO-PPO ratio. Preferably, the poloxamines used will have a molecular weight between 1,000 and 25,000 Daltons. These polymers can be obtained from BASF Corporation under the trade name Tetronic.TM.
  • the weight ratio of biodegradable polymer is between 1: 1 and 1: 3. According to a second aspect of the present invention, this refers to nanoparticles obtained according to the procedure described above, both lyophilized and non-lyophilized. These nanoparticles offer innovative and distinctive features due to their ability to encapsulate and control the release of very delicate active molecules, such as proteins and DNA plasmids.
  • said nanoparticles may have a differentiated biodistribution profile, in comparison to the classical particles constituted from polyesters. Due to their nanoparticular size these new systems will be able to be administered to the human organism by any route of administration, including the intravenous route, while the microparticles cannot be administered by this route due to the obstruction that they would cause in the blood capillaries. There is also abundant documentation that shows that nanoparticles are capable of overcoming biological barriers (mucous membranes, epithelia) while microparticles are not.
  • MTS ((3- (4,5-dimethylthiazol-2-yl) -5- (3-carboxymethoxyphenyl) -2- (4-sulphophenyl) -2H- tetrazolium) in the MCF-7 cell line grown in Dulbecco's Modified Eagle's Medium)
  • the present invention relates to compositions, especially pharmaceutical and cosmetic, which incorporate the nanoparticles according to the present invention.
  • the invention will be explained in more detail below on the basis of a series of examples, without limitation for the scope of the invention.
  • FIG 1 1 H NMR spectra of nanoparticle formulations
  • FIG 2 TEM images of the PLGA / Pluronic.TM F68 nanoparticle formulation with 1: 1 polymer ratio
  • FIG 3 1 H NMR spectra of PLGA / Tetronic.TM 908 nanoparticle formulations with different polymer ratios
  • FIG 4 TEM images of PLGA / Tetronic.TM 908 nanoparticle formulations with 1: 1 polymer ratio
  • FIG 5 size of PLGA / poloxamero and PLGA / poloxamine nanoparticles as a function of the PLGA / polymer ratio and of the type of poloxamer or poloxamine
  • FIG 6 surface charge of the PLGA / poloxamer and PLGA / poloxamine nanoparticles as a function of the PLGA / ratio polymer and type of poloxamer or poloxamine
  • FIG 8 effect of cryoprotective agents on the size of nanoparticles
  • FIG 9 "in vitro" release profile of plasmid DNA encapsulated in nanoparticles
  • FIG 10 results of the cytotoxicity test of the PLGA / F68 nanoparticles
  • the nanoparticles were collected and concentrated in aqueous medium. Optionally, for subsequent analysis the nanoparticles were centrifuged (1 h, 8000xg, 15 ° C, Avanti 30, Beckman) and lyophilized (48 hours at -34 ° C, Labconco Corp).
  • the size and polydispersion of the nanoparticles were measured with photonic correlation spectroscopy (PCS) and the surface charge was determined by laser-Doppler anemometry (Zetasizer 3000 HS, Malvern Instruments) (TABLE 1).
  • the composition of the matrices was analyzed using 1 H NMR spectroscopy ((Bruker AMX-300) from lyophilized and dissolved samples in deuterated chloroform. These studies confirmed the presence of poloxamer / poloxamine in the nanoparticle matrix. intensities of the corresponding peaks can also be concluded that the amount of the polyoxyethylene-polyoxypropylene block copolymer can be changed by adjusting the parameters of the preparation. (FIGURE 1.) The morphological analysis of the nanostructures was performed by transmission electron microscopy (Philips CM 12 ) using samples stained with a 2% phosphotungstic acid solution (FIGURE 2).
  • Pluronic.TM F68 PLGN poloxa er - size (nm)
  • EXAMPLE 2 Intimate mixing nanoparticles were prepared with the modified solvent diffusion technique described above, but changing the type of the polyoxyethylene-polyoxypropylene copolymer.
  • the emulsion thus obtained was added with stirring to ethanol.
  • the formulations were diluted with water and stirring was maintained for a further 10 minutes. After evaporation of the solvent the nanoparticles were concentrated in aqueous medium.
  • the nanoparticles were centrifuged and lyophilized.
  • the size and polydispersion of the nanoparticles were measured by PCS and the surface charge was determined with laser-Doppler anemometry (TABLE 2).
  • the morphology and composition of the matrices were studied using 1 H RM ⁇ spectroscopy and TEM microscopy.
  • the nanoparticles were centrifuged and lyophilized.
  • the size and polydispersion of the nanoparticles were measured by PCS and the surface charge was determined with laser-Doppler anemometry (TABLE 3).
  • the morphology and composition of the matrices were studied using 1 H RM ⁇ spectroscopy and TEM microscopy (FIGURE 3 and 4).
  • the nanoparticles were centrifuged and lyophilized.
  • the size and polydispersion of the nanoparticles were measured by PCS and the surface charge was determined with laser-Doppler anemometry (TABLE 4).
  • the morphology and composition of the matrices were studied using 1 H NMR spectroscopy and TEM microscopy (FIGURE 3 and 4).
  • the nanoparticles were centrifuged and lyophilized.
  • the size and polydispersion of the nanoparticles were measured by PCS and the surface charge was determined with laser-Doppler anemometry (TABLE 5).
  • the morphology and composition of the matrices were studied using 1 H RM ⁇ spectroscopy and TEM microscopy.
  • Tetronic.TM 901 PLGA poloxamine size (nm) P.I. pot ⁇ (mV)
  • PLGA / Tetronic.TM 908 and PLGA / Tetronic 904 with a 1: 1 polymer ratio were prepared as described in Examples 1, 2, 3 and 4.
  • Two cryoprotectants (glucose and trehalose) were incorporated into the suspension medium of the nanoparticles.
  • the formulations, at different concentrations (1, 2.5, 5 mg / ml), were lyophilized in the presence of 5% or 10% of the cryoprotectant.
  • the size and polydispersion of the nanoparticles were measured after the lyophilization-resuspension process and compared with the initial values. The effects of nanoparticle concentration, type and concentration of the cryoprotectant have been evaluated.
  • cryoprotector resuspended / original size ratio dilution NPs F68 L121 T908 T904 mg / ml 5% glucose 1 1.21 + 0.04 1.25 + 0.21 1.17 + 0.04 1.18 + 0 , 01 2.5 1.15 + 0.06 1.65 + 0.29 1.12 + 0.09 1.59 + 0.35 5 1.11 + 0.09 2.62 ⁇ 0.73 1, 03 + 0.05 3.77 + 0.39 10% glucose 1 1.28 + 0.04 1.32 + 0.39 2.60 1.04 2.5 1.39 + 0.15 1.69+ 0.67 1.59 1.18 5 1.30 + 0.10 2.25 + 0.15 1.20 1.33 5% trehalose 1 1.22 + 0.17 3.58 + 2.47 1, 13 + 0.04 1.29 + 0.17 2.5 1.93 + 0.55 4.66 + 2.9 1.21 + 0.03 2.
  • Intimate mixing nanoparticles of PLGA / Pluronic.TM F68, PLGA / Pluronic.TM L121, PLGA / Tetronic.TM 908 and PLGA / Tetronic 904 with 1: 1 polymer ratio were prepared as described in Examples 1, 2 , 3 and 4.
  • the cytotoxicity of the formulations was studied in the MCF-7 cell culture in DMEM supplemented with 10% FBS. The cells were incubated with different concentrations of nanoparticles (1 to 5 mg / ml) for 24 hours. Cell viability was measured with the MTS reagent after a recovery period of 24 hours. The results show that, despite high concentrations and extended incubation time, none of the formulations produce toxic effects on the cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Nanopartículas de derivados polioxietilenados, de tamaño inferior a 1 micra, para la administración de ingredientes farmacéuticamente o cosméticamente activos, que comprenden un polímero biodegradable, copolímero en bloque derivado del polioxietileno y al menos un ingrediente farmacéutica o cosméticamente activo, un procedimiento de obtención de dichas nanopartículas y composiciones que las contienen.

Description

NANOPARTICULAS DE DERIVADOS POLIOXIETILENADOS
CAMPO DE LA INVENCIÓN La presente invención se refiere a nanopartículas (tamaño inferior a 1 μm) con una nueva composición, que son adecuadas para la administración de moléculas activas. La nueva composición comprende dos polímeros: un polímero biodegradable y un copolímero bloque derivado del polioxietileno .
ANTECEDENTES DE LA INVENCIÓN Las nanopartículas poliméricas están siendo objeto de especial atención debido a su interés para mejorar la estabilidad y promover el transporte y liberación controlada de fármacos a determinadas regiones del organismo. Los polímeros biodegradables más utilizados para su formación son los derivados del ácido poliláctico (PLA) y sus copolímeros con el ácido glicólico (PLGA) debido a su biodegradabilidad, biocompatibilidad e inocuidad (Johansen et al., Eur. J. Pharm. Biopharm., 2000, 50, 129- 146). Otros polímeros biodegradables que también ofrecen un futuro prometedor en esta línea son poliésteres como la poly(ε-caprolactona) (Losa et al., Pharm. Res., 1993, 10,1 , 80-87) y los polianhidridos (Mathiowitz et al., Nature, 1997, 386, 410-414). Las micro y nanopartículas de PLA y PLGA han sido extensivamente estudiadas para la encapsulación y liberación de un amplio número de moléculas terapéuticas (Quintanar-Guerrero et al., Drug Dev. Ind. Pharm., 1998, 24 (12),1113-1128, Sánchez et al., Int.J. Pharm., 1993, 99, 263-273, Sturesson et al., J. Control. Reí., 1999, 59, 377-389, Hsu et al., J. Drug Targ., 7 (4), 313-323). Una característica destacable de estas partículas reside en el hecho de que su capacidad para controlar la liberación de moléculas activas depende de su perfil de degradación. De este modo, un control en la velocidad de degradación del polímero tiene una repercusión directa en el control de la liberación de la molécula activa asociada al mismo. Es sabido que la degradación de los poliésteres conduce a la formación de oligómeros ácidos que pueden acumularse en el interior de las partículas causando así, una acidificación del entramado polimérico y con ello una reducción importante del pH interno de las partículas (Belbella et al., Int. J. Pharm., 1996, 129, 95-102). Este microclima ácido causado por la acumulación de productos de degradación del polímero en el seno de las partículas tiene un efecto muy negativo en la estabilidad de la molécula activa incorporada en las mismas y representa una limitación en la utilización de estos sistemas poliméricos para la liberación controlada
HOJA DE SUSTITUCIÓN REGLA 26 de macromoléculas como proteínas y plásmidos ADN (Zhu et al., Nature Biotech., 18, 52-
57). Los poloxameros son copolímeros tribloque tipo polioxietileno-polioxipropileno- polioxietileno (PEO-PPO-PEO) que, dependiendo de su relación PEO:PPO varían en sus características de peso molecular, hidrofobicidad, etc.. Las poloxaminas son copolímeros formados por 4 cadenas de PEO-PPO unidas por un puente de etilendiamina.
Análogamente a los poloxameros, sus características pueden variar al cambiar la relación
PEO-PPO. Una de las aplicaciones que recientemente se ha propuesto para esta familia de copolímeros derivados del polioxietileno es la de ser promotores del transporte de fármacos a través de la barrera hematoencefálica (BBB) (Kabanov et al., Adv. Drug. Deliv. Rev., 2003, 55, 151-164). Asimismo, estudios recientes han puesto de manifiesto el interés de los mismos en estudios de transfección de plásmidos ADN (Lemieux et al., Gene Ther., 2000, 7, 986-991 ). Por otro lado, los copolímeros bloque PEO:PPO han sido ampliamente estudiados como agentes de recubrimiento que permiten modificar la biodistribución de nanopartículas utilizadas como transportadores de fármacos. Así, son numerosos los trabajos que han puesto de manifiesto que el recubrimiento de nanopartículas con poloxameros y poloxaminas afecta a su biodistribución y, por tanto, a su capacidad para transportar fármacos a diferentes regiones del organismo (Moghimi et al., FEBS Letters, 1994, 344, 25-30, Hawley et al., FEBS Letters, 1997, 400, 319-323). Existen diversos documentos en los que se reivindica la utilización de los derivados PEO-PPO como agentes de recubrimiento de nanopartículas (WO96/20698 y US4904479). El objetivo ha sido el de prolongar el tiempo de circulación de las mismas tras su inyección intravenosa y modificar su perfil de biodistribucción. En dichas composiciones el poloxamero/poloxamina no forma parte de la matriz polimérica constitutiva de las partículas sino que se encuentra adsorbido a nivel superficial. Por tanto, la cantidad de poloxamero/poloxamina adsorbida es limitada y su presencia no tiene implicaciones en la encapsulación o liberación controlada de la molécula activa encapsulada en las partículas, sino que su papel se limita a la modificación del perfil de biodistribución de las partículas. Por otro lado, en otro documento, US5578325, se ha propuesto la idea de unir químicamente los citados copolímeros a poliésteres, formando así copolímeros multibloque. En estos casos el derivado polioxietilenado se encuentra unido covalentemente al poliéster, conduciendo así a la formación de un nuevo copolímero. Estos copolímeros permiten igualmente obtener nanopartículas recubiertas de PEO-PPO
HOJA DE SUSTITUCIÓN (REGLA 26 que ofrecen una larga permanencia en el torrente circulatorio tras su administración intravenosa. Otra de las aplicaciones de que han sido objeto los copolímeros bloque PEO- PPO ha sido la estabilización de proteínas encapsuladas en partículas de PLGA y la modificación de su liberación a partir de las mismas. Así, en estudios previos llevados a cabo en nuestro laboratorio, hemos podido comprobar que la incorporación de copolímeros bloque PEO-PPO, más concretamente poloxameros, en micro y nanopartículas de poliácido láctico /ácido glicólico (PLGA) permite mejorar la estabilidad de las proteínas nanoencapsuladas en dichas partículas. En este estudio inicial, para la incorporación de poloxamero en las partículas hemos optado por el método de doble emulsión (agua/disolvente orgánico/agua), según el cual, el poloxamero hidrofílico se disuelve en la fase interna acuosa de la emulsión (Blanco et al., Eur. J. Pharm. Biopharm., 1997, 43, 287-294, Blanco et al. Eur. J. Pharm. Biopharm., 1998, 45, 285- 294). Este método permite la incorporación de cantidades muy pequeñas de poloxamero en relación a las cantidades de PLGA (normalmente la relación es 10:1 PLGA:poloxamer). Ello se debe a dos razones fundamentales: por un lado, el volumen de la fase interna acuosa en la que se disuelve el poloxamero es muy inferior al volumen de disolvente orgánico en el que se disuelve el polímero hidrofóbico (PLGA); por otro lado, el poloxamero tiende a difundir, durante el proceso de emulsificación, desde la fase interna acuosa hacia la fase externa acuosa, dificultando así la formación de las partículas. Esta dificultad ha podido solventarse haciendo uso de un método de microencapsulación anhidro, consistente en la formación de una emulsión de un disolvente orgánico (en el que se ha de disolver el PLGA y el poloxamero) en una fase externa oleosa en la que se disuelve un agente tensoactivo. Gracias a este método han podido incorporarse cantidades elevadas de poloxameros a micropartículas de PLGA (hasta del 50%) formando matrices mixtas PLGA: poloxamero. Este sistema microparticular mixto formado por una mezcla íntima de poloxamero y PLGA ha permitido la liberación controlada de proteínas (Tobío et al., Pharm. Res., 1999, 16, 5, 682-688). Sin embargo, el inconveniente más notable de este método reside en la dificultad para obtener partículas nanométricas, siendo el tamaño medio de esas poblaciones de partículas superiores a 1 miera (1000 nanómetros). Además, dada la necesidad de utilizar aceites como fase externa de la emulsión, el aislamiento de las microsferas se hace muy laborioso y es necesaria la utilización de importantes cantidades de disolventes orgánicos para conseguir la eliminación del aceite. Por tanto, hasta el momento actual no ha sido descrito ningún procedimiento que permita la incorporación de elevadas cantidades de poloxamero en nanopartículas mixtas de poloxamero:PLGA.
HOJA DE SUSTITUCIÓN (REGLA 26) La primera referencia encontrada relativa a la utilización de poloxameros en la formación de matrices mixtas con poliésteres basadas en la unión física de ambos polímeros aparece descrita en la publicación US5330768. En dicho documento, se propone la utilización de dichas mezclas a fin de lograr una modificación en la liberación de la molécula activa incorporada en estos sistemas. En él se hace referencia a la formación de películas mediante codisolución de ambos polímeros en un disolvente orgánico común y posterior evaporación del disolvente o mediante la fusión conjunta de ambos polímeros y también a la formación de micropartículas mediante el método de doble emulsión (agua/disolvente orgánico/agua); sin embargo, no se menciona la formación de nanopartículas. Ha de destacarse el hecho de que el citado procedimiento de formación de partículas en fase externa acuosa, permite únicamente la incorporación de cantidades limitadas de poloxameros hidrofílicos debido a su lógica tendencia a difundir a la fase externa acuosa; este hecho ha podido ser constatado en nuestros estudios anteriores (Blanco et al., Eur. J. Pharm. Biopharm., 1997, 43, 287-294, Blanco et al. Eur. J. Pharm. Biopharm., 1998, 45, 285-294). Asimismo, el documento US5330768 no menciona la utilización de poloxameros lipofílicos ni de poloxaminas en la formación de las citadas mezclas. El primer documento encontrado que hace referencia a la formación de un sistema microparticular mixto formado por una mezcla íntima de poloxamero y PLGA destinado a mejorar la estabilidad de proteínas microencapsuladas, permitiendo además su liberación controlada, es el publicado por Tobío et al. (Pharm. Res., 1999, 16, 5, 682- 688). Más recientemente, el documento US6465425 describe igualmente la formación de micropartículas biodegradables conteniendo poloxamero con la misma finalidad. Asimismo, en dicha composición se incorporan, con la misma finalidad, un excipiente de tipo ácido y al menos un polisacárido. Según dicho documento, la cantidad de poloxamero que se puede incluir en esta composición puede variar entre un 1 - 40% con respecto al peso total de la composición. La forma de presentación de esta composición es la de films, obtenidos por simple evaporación del disolvente, o bien, de micropartículas obtenidas por atomización. Sin embargo, no se hace referencia alguna a la formación de nanopartículas, lo cual se entiende si tenemos en cuenta que la técnica de atomización no permite obtener partículas de un tamaño tan reducido como las nanopartículas. En la misma línea, con al finalidad de mejorar la estabilidad de proteínas destaca el documento presentado por Schwendeman et al (US2002/0009493), el cual describe la utilización de poloxameros hidrofílicos de peso molecular entre 500 y 30,000 Da, como agentes formadores de poros en sistemas elaborados a partir de poliésteres. En dicho documento se reivindica la presentación de estas composiciones en forma de
HOJA DE SUSTITUCIÓN (REGLA 26) cilindros o de micropartículas, con un tamaño comprendido entre 10-100 μm. Estas partículas se obtienen mediante la técnica de doble emulsión en fase externa acuosa, la cual permite únicamente la incorporación de cantidades pequeñas de poloxameros hidrofílicos, como se señaló en estudios anteriores (Blanco et al., Eur. J. Pharm. Biopharm., 1997, 43, 287-294; Blanco et al. Eur. J. Pharm. Biopharm., 1998, 45, 285-
294), o alternativamente, mediante la técnica de emulsificación de disolvente orgánico/aceite, la cual, como se ha indicado anteriormente (Tobío et al. Pharm. Res.,
1999, 16, 5, 682-688), no permite la obtención de nanopartículas. En relación con los documentos que hacen referencia explícita a la formación de nanopartículas que contienen poloxameros cabe citar el documento US5962566. No obstante, este documento señala la incorporación de colesterol como ingrediente indispensable para la formación de las nanopartículas. El método de formación indica además la necesidad de fundir el conjunto de los materiales y su posterior dispersión en una fase acuosa. Igualmente cabe citar un documento que describe la formación de nanopartículas que incorporan en su estructura poloxameros y poloxaminas, además de un agente lipídico estabilizante (US20030059465). Estas nanopartículas van dirigidas a la liberación del agente citostático camptotecina y se obtienen mediante un procedimiento de hidratación de lípidos previamente liofilizados. Aunque en dicho documento se reivindica la posible incorporación de poliésteres tales como el PLGA, lo cierto es que la técnica descrita no es aplicable a este tipo de polímeros. En cualquier caso, la incorporación de lípidos en la estructura se muestra como un elemento esencial de la composición nanoparticular. Como consecuencia de la revisión de los documentos anteriores, cabe destacar que a pesar del importante número de documentos que hacen referencia a la formación de partículas de PLGA y poloxamero, lo cierto es que ninguno de los documentos citados describe la formación de matrices mixtas que contengan elevadas cantidades de poloxameros y poloxaminas, con diferentes características de hidrofilia/lipofilia y que se presenten bajo la forma nanoparticular. Este último aspecto es de importancia crítica ya que las técnicas de microencapsulación destinadas a la formación de micropartículas difieren generalmente de las nanotecnologías aplicadas a la formación de nanopartículas. Asimismo, conviene destacar el hecho de que los documentos publicados relacionados con la obtención de nanopartículas, utilizan únicamente poloxameros hidrofílicos incorporados en muy bajas proporciones en el sistema nanoparticular.
DESCRIPCIÓN DE LA INVENCIÓN
HOJA DE SUSTITUCIÓN REGLA 26 La presente invención se refiere a nanopartículas que comprenden un polímero biodegradable, preferentemente un poliéster y un copolímero bloque derivado del polioxietileno, preferentemente poloxamero y poloxamina. Asimismo, la presente invención se refiere a un método de preparación que permite la incorporación de porcentajes altos de poloxameros y poloxaminas en nanopartículas, siendo la relación polímero biodegradable: derivado polioxietilenado entre 1 :0,1 y 1 :3. Por lo tanto, según un primer aspecto, la invención se refiere a un procedimiento de preparación de nanopartículas de tamaño inferior a 1 μm, para la administración de ingredientes activos, que comprende las etapas de:
a) disolver un polímero biodegradable junto con un copolímero bloque derivado del polioxietileno en un disolvente orgánico, estando la relación en peso polímero biodegradable:copolímero bloque entre 1 :0,1 y 1 :3; b) añadir, bajo agitación, la disolución obtenida a una fase polar, en la cual el polímero biodegradable presenta una baja solubilidad, precipitando los polímeros y formándose las nanopartículas; c) eliminar el disolvente orgánico; d) aislar las partículas. El ingrediente activo puede disolverse directamente en el disolvente orgánico no polar (moléculas lipofílicas) o puede disolverse previamente en un volumen pequeño de fase acuosa (moléculas hidrosolubles) y luego dispersarse en el disolvente orgánico, antes o después de la etapa a). De forma preferida, el disolvente orgánico en a) será un disolvente no polar. Según una forma de realización preferida, la preparación de las formulaciones de nanopartículas de mezcla íntima puede incluir adicionalmente una etapa de liofilización. En forma liofilizada, las nanopartículas pueden ser almacenadas durante largos períodos de tiempo y ser fácilmente regeneradas, simplemente añadiendo un volumen de agua óptimo. La liofilización de las nanopartículas ha sido optimizada con la incorporación de un excipiente crioprotector (glucosa o trehalosa) en el medio de suspensión de las formulaciones. Según otra forma de realización preferida, en el procedimiento anterior el polímero biodegradable es un poliéster, el cual se selecciona del grupo de poliésteres como el ácido poliláctico, ácido poliláctico-co-glicólico y sus copolímeros, policaprolactona o del grupo de los polianhídridos. Para la preparación de las nanopartículas de mezcla íntima se ha utilizado el polímero ácido poliláctico-co-glicólico 50:50 Resomer® RG 503 Mw: 35000 (Boehringer Ingelheim).
HOJA DE SUSTITUCIÓN REGLA 26 Según otras formas de realización preferida, el copolímero bloque se selecciona de poloxameros y poloxaminas. Los poloxameros son copolímeros tribloque tipo polioxietileno-polioxipropileno- polioxietileno (PEO-PPO-PEO) que, dependiendo de su relación PEO:PPO varían en sus características de peso molecular, hidrofobicidad, etc. De forma preferida, los poloxameros empleados tendrán un peso molecular comprendido entre 1.000 y 25.000 Daltons. Estos polímeros pueden ser obtenidos de BASF Corporation bajo el nombre comercial Pluronic.TM. Para la preparación de las nanopartículas de mezcla íntima hemos utilizado los siguientes poloxameros: Pluronic.TM F68 con peso molecular 8350 y HLB=29, Pluronic.TM con peso molecular 4400 y HLB=1. Las poloxaminas son copolímeros formados por 4 cadenas de PEO-PPO unidas por un puente de etilendiamina. Análogamente a los poloxameros, sus características pueden variar al cambiar la relación PEO-PPO. De forma preferida, la poloxaminas empleadas presentarán un peso molecular comprendido entre 1.000 y 25.000 Daltons. Estos polímeros pueden ser obtenidos de BASF Corporation bajo el nombre comercial Tetronic.TM. Para la preparación de las nanopartículas de mezcla íntima hemos utilizado las siguientes poloxaminas: Tetronic.TM 908 con peso molecular 25000 y HLB=30,5, Tetronic.TM 904 con peso molecular 6700 y HLB=14,5, Tetronic.TM 901 con peso molecular 4700 y HLB=2,5. Según otra forma de realización preferida, la proporción en peso de polímero biodegradable está entre 1 :1 y 1 :3. Según un segundo aspecto de la presente invención, ésta se refiere a nanopartículas obtenidas según el procedimiento anteriormente descrito, tanto liofilizadas como no liofilizadas. Estas nanopartículas ofrecen características innovadoras y distintivas dada su capacidad para la encapsulación y liberación controlada de moléculas activas muy delicadas, como son las proteínas y los plásmidos ADN. Además, debido a la presencia de importantes cantidades de poloxameros y poloxaminas en su composición, dichas nanopartículas pueden presentar un perfil de biodistribución diferenciado, en comparación a las partículas clásicas constituidas a partir de poliésteres. Debido a su tamaño nanoparticular estos nuevos sistemas van a poder ser administrados al organismo humano por cualquier vía de administración, incluyendo la vía intravenosa, mientras que las micropartículas no pueden ser administradas por esta vía debido a la obstrucción que causarían en los capilares sanguíneos. Asimismo, existe abundante documentación que muestra que las nanopartículas son capaces de superar barreras biológicas (mucosas, epitelios) mientras que las micropartículas no lo son.
HOJA DE SUSTITUCIÓN REGLA 26 Las propiedades físico-químicas de las formulaciones de distinta composición y de diferente relación de polímeros han sido caracterizadas empleando las técnicas de espectroscopia de correlación de fotónica (PCS) y anemometría láser-Doppler. La morfología de las nanopartículas se estudió mediante microscopía electrónica de transmisión (TEM) y RMN de 1 H. Estos estudios confirmaron la formación del sistema de mezcla íntima anteriormente descrita. Con el fin de comprobar la aplicabilidad de estas nanopartículas de mezcla íntima para la liberación de macromoléculas delicadas, hemos encapsulado el plásmido pEGFP-C1 (codificante una proteína fluorescente verde) en las diferentes formulaciones. Los resultados de estos estudios de liberación "in vitro" han evidenciado el potencial de las formulaciones como vehículos de liberación controlada durante tiempos extendidos. La citotoxicidad de las nanopartículas de distintas composiciones, a diferentes concentraciones, ha sido ensayado en cultivos celulares con la prueba colorimétrica del
MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H- tetrazolium) en la línea celular MCF-7 crecida en Dulbecco's Modified Eagle's Médium
(DMEM) suplementado con 10% de suero bovino fetal (FBS). Se puede concluir que ninguna de las formulaciones produce efectos tóxicos en las células. Según un tercer aspecto, la presente invención se refiere a composiciones, especialmente farmacéuticas y cosméticas, que incorporan las nanopartículas según la presente invención. A continuación se explica más detalladamente la invención en base a una serie de ejemplos, sin carácter limitativo para el alcance de la invención. EJEMPLOS DESCRIPCIÓN DE LAS FIGURAS FIG 1 : espectros de RMN de 1 H de las formulaciones de nanopartículas
PLGA/Pluronic.TM F68 con diferentes relaciones de polímero
FIG 2: imágenes TEM de las formulación de nanopartículas PLGA/Pluronic.TM F68 con relación de polímero 1 :1
FIG 3: espectros de RMN de 1 H de las formulaciones de nanopartículas PLGA/Tetronic.TM 908 con diferentes relaciones de polímero
FIG 4: imágenes TEM de formulaciones de nanopartículas PLGA/Tetronic.TM 908 con relación de polímero 1 :1
FIG 5: tamaño de nanopartículas PLGA/poloxamero y PLGA/poloxamina en función de la relación PLGA/polímero y del tipo de poloxamero o poloxamina FIG 6: carga superficial de las nanopartículas PLGA/poloxamero y PLGA/poloxamina en función de la relación PLGA/polímero y del tipo de poloxamero o poloxamina
HOJA DE SUSTITUCIÓN REGLA 26 F1G 7: efecto de los agentes crioprotectores en el tamaño de las nanopartículas
PLGA/poloxamero liofilizadas
FIG 8: efecto de los agentes crioprotectores en el tamaño de las nanopartículas
PLGA/poloxamero liofilizadas
FIG 9: perfil de liberación "in vitro" de ADN plasmídico encapsulado en las nanopartículas
PLGA F68, PLGA/L121 , PLGA/T908 y PLGA/T904 con relación de polímeros 1 :1
FIG 10: resultados del ensayo de citotoxicidad de las nanopartículas PLGA/F68,
PLGA/L121 , PLGA/T908 y PLGA/T904 con relación de polímeros 1 :1 en el cultivo celular
MCF-7
EJEMPLO 1
Se prepararon nanopartículas de mezcla íntima con la técnica modificada de difusión del solvente anteriormente descrita. Más específicamente: se disolvieron 50 mg del ácido poliláctico-co-glicólico y 25, 50 o 75 mg del poloxamero Pluronic.TM F68 (HLB=29) en 2 mi de diclorometano y esta solución orgánica se mezcló durante 30 s mediante vortex (2400 min"1, Heidolph) con un pequeño volumen de fase acuosa. La emulsión así obtenida se añadió a 25 mi de etanol bajo agitación magnética moderada. La formulación se diluyó con 25 mi de agua y la agitación se mantuvo durante 10 min más. Después de la evaporación del solvente a 30 °C y en vacío (Rotavapor, Büchi R-114), las nanopartículas se recogieron y se concentraron en medio acuoso. Opcionalmente, para su posterior análisis las nanopartículas se centrifugaron (1 h, 8000xg, 15 °C, Avanti 30, Beckman) y se liofilizaron (48 horas a -34 °C, Labconco Corp).
El tamaño y la polidispersión de las nanopartículas se midieron con espectroscopia de correlación fotónica (PCS) y la carga superficial se determinó mediante anemometría láser-Doppler (Zetasizer 3000 HS, Malvern Instruments) (TABLA 1 ).
La composición de las matrices se analizó empleando espectroscopia de RMN de 1 H ((Bruker AMX-300) a partir de muestras liofilizadas y disueltas en cloroformo deuterado. Estos estudios confirmaron la presencia del poloxamer/poloxamina en la matriz de las nanopartículas. De las intensidades de los picos correspondientes también se puede concluir que la cantidad del copolímero bloque polioxietileno-polioxipropileno se puede cambiar ajusfando los parámetros de la preparación. (FIGURA 1.) El análisis morfológico de las nanoestructuras se realizó mediante microscopía electrónica de transmisión (CM 12 Philips) utilizando muestras teñidas con una solución de 2% ácido fosfotúngstico. (FIGURA 2).
HOJA DE SUSTITUCIÓN REGLA 26 TABLA 1
Pluronic.TM F68 PLGN:poloxa er - tamaño (nm) P.I. pot. ζ (mV) 1 : 0 191.5 ±7.1 0.046 -60.Ü7.4 1 : 0,5 162.8+4.4 0.079 -50.2+0.8 1 : 1 163.2+5.1 0.135 -43.1±6.4 1 : 1,5 159.8±6.5 0.163 -38.5+0.6
EJEMPLO 2 Se prepararon nanopartículas de mezcla íntima con la técnica modificada de difusión del solvente anteriormente descrita, pero cambiando el tipo del copolímero polioxietileno- polioxipropileno. El PLGA y las distintas cantidades del poloxamero Pluronic.TM L121 (HLB=1 ) se disolvieron en diclorometano y esta solución orgánica se mezcló mediante vortex con un pequeño volumen de fase acuosa. La emulsión así obtenida se añadió bajo agitación a etanol. Las formulaciones se diluyeron con agua y la agitación se mantuvo durante 10 minutos más. Después de la evaporación del solvente las nanopartículas se concentraron en medio acuoso. Opcionalmente, para su posterior análisis las nanopartículas se centrifugaron y se liofilizaron. El tamaño y la polidispersión de las nanopartículas se midieron mediante PCS y la carga superficial se determinó con anemometría laser-Doppler (TABLA 2). La morfología y la composición de las matrices se estudiaron empleando espectroscopia RMΝ de 1 H y microscopía TEM.
TABLA 2
HOJA DE SUSTITUCIÓN REGLA 26 Pluronic.TM L121 PLGNpoloxamer - tamaño (nm) P.I. pot. ζ (mV) 1 : 0 191.5±7.1 0.046 -60.1±7.4 1 : 0,5 164.5+6.3 0.156 -27.3+7.1 1 : 1 185.5+6.0 0.195 -30.0±8.0 1 : 1,5 257.3+10.0 0.179 -24.5±5.5
EJEMPLO 3
Se prepararon nanopartículas de mezcla íntima con la técnica modificada de difusión del solvente anteriormente descrita, pero cambiando el tipo del copolímero polioxietileno- polioxipropileno: el PLGA y las distintas cantidades de la poloxamina Tetronic.TM 908 (HLB=3Ó,5) se disolvieron en diclorometano y esta solución orgánica se mezcló mediante vortex con un pequeño volumen de fase acuosa. La emulsión así obtenida se añadió bajo agitación a etanol. Las formulaciones se diluyeron con agua y la agitación se mantuvo durante 10 minutos más. Después de la evaporación del solvente las nanopartículas se concentraron en medio acuoso.
Opcionalmente, para su posterior análisis las nanopartículas se centrifugaron y se liofilizaron. El tamaño y la polidispersión de las nanopartículas se midieron mediante PCS y la carga superficial se determinó con anemometría laser-Doppler (TABLA 3). La morfología y la composición de las matrices se estudiaron empleando espectroscopia RMΝ de 1 H y microscopía TEM (FIGURA 3 y 4). TABLA 3.
HOJA DE SUSTITUCIÓN REGLA 26 Tetronic.TM 908
Figure imgf000013_0001
tamaño (nm) P.I. pot. ζ (mV)
1 : 0 191.5 + 7.1 0.046 -60.1 ± 7.4 1 : 0,5 189.2 + 4.6 0.202 -30.9 ± 3.9 1 : 1 174.0 ± 5.4 0.271 -26.9 ± 1.2 1 : 1,5 171.2 ± 3.2 0.235 -24.1 ± 1.0
EJEMPLO 4
Se prepararon nanopartículas de mezcla íntima con la técnica modificada de difusión del solvente anteriormente descrita, pero cambiando el tipo del copolímero polioxietileno- polioxipropileno: el PLGA y las distintas cantidades de la poloxamina Tetronic.TM 904 (HLB=14,5) se disolvieron en diclorometano y esta solución orgánica se mezcló mediante vortex con un pequeño volumen de fase acuosa. La emulsión así obtenida se añadió bajo agitación a etanol. Las formulaciones se diluyeron con agua y la agitación se mantuvo durante 10 minutos más. Después de la evaporación del solvente las nanopartículas se concentraron en medio acuoso.
Opcionalmente, para su posterior análisis las nanopartículas se centrifugaron y se liofilizaron. El tamaño y la polidispersión de las nanopartículas se midieron mediante PCS y la carga superficial se determinó con anemometría laser-Doppler (TABLA 4). La morfología y la composición de las matrices se estudiaron empleando espectroscopia RMN de 1 H y microscopía TEM (FIGURA 3 y 4). TABLA 4.
HOJA DE SUSTITUCIÓN REGLA 26 Tetronic.TM 904 PLGN :poloxamina tamaño (nm) P.I. pot. ζ (mV)
1 : 0 191.5 ± 7.1 0.046 -60.1 ± 7.4 1 : 0,5 160.2 ± 5.6 0.188 -40.0 ± 4.6 1 : 1 168.7 ± 9.4 0.179 -38.4 ± 3.3 1 : 1,5 168.8 ± 2.5 0.160 -39.6 ± 2.0
EJEMPLO 5
Se prepararon nanopartículas de mezcla íntima con la técnica modificada de difusión del solvente anteriormente descrita, pero cambiando el tipo del copolímero polioxietileno- polioxipropileno: el PLGA y las distintas cantidades de la poloxamina Tetronic.TM 904 (HLB=14,5) se disolvieron en diclorometano y esta solución orgánica se mezcló mediante vortex con un pequeño volumen de fase acuosa. La emulsión así obtenida se añadió bajo agitación a etanol. Las formulaciones se diluyeron con agua y la agitación se mantuvo durante 10 minutos más. Después de la evaporación del solvente las nanopartículas se concentraron en medio acuoso.
Opcionalmente, para su posterior análisis las nanopartículas se centrifugaron y se liofilizaron. El tamaño y la polidispersión de las nanopartículas se midieron mediante PCS y la carga superficial se determinó con anemometría laser-Doppler (TABLA 5). La morfología y la composición de las matrices se estudiaron empleando espectroscopia RMΝ de 1 H y microscopía TEM.
TABLA 5.
Tetronic.TM 901 PLGA:poloxamina tamaño (nm) P.I. pot. ζ (mV)
1 : 0 191.5 ± 7.1 0.046 -60.1 ± 7.4 1 : 0,5 205.3 ± 54.5 0.162 -25.4 ± 5.0 1 : 1 277.4±102.9 0.308 -28.9 ± 5.4 1 : 1,5 333.7 ± 82.1 0.275 -38.2 ± 8.3
HOJA DE SUSTITUCIÓN REGLA 26 EJEMPLO 6
Las nanopartículas de mezcla íntima de PLGA Pluronic.TM F68, PLGA/Pluronic.TM L121 ,
PLGA/Tetronic.TM 908 y PLGA/Tetronic 904 con relación de polímero 1 :1 se prepararon como ha sido descrito en los Ejemplos 1, 2, 3 y 4. Se incorporaron dos agentes crioprotectores (glucosa y trehalosa) en el medio de suspensión de las nanopartículas. Las formulaciones, a diferentes concentraciones (1, 2.5, 5 mg/ml), se liofilizaron en la presencia de 5% o 10% del crioprotector. El tamaño y la polidispersión de las nanopartículas de midieron después del proceso de liofilización-resuspensión y se compararon con los valores iniciales. Los efectos de la concentración de las nanopartículas, el tipo y la concentración del crioprotector han sido evaluadas. Se puede concluir que en presencia de 5% de crioprotector, todas las formulaciones se pueden liofilizar a concentraciones relativamente elevadas (2,5 mg/ml) sin agregación significativa (FIGURA 7 y 8). TABLA 6. cryoprotector dilución de relación de tamaños resuspendido/original NPs F68 L121 T908 T904 mg/ml 5% glucosa 1 1,21+0,04 1,25+0,21 1,17+0,04 1,18+0,01 2,5 1,15+0,06 1,65+0,29 1,12+0,09 1,59+0,35 5 1,11+0,09 2,62±0,73 1,03+0,05 3,77+0,39 10% glucosa 1 1,28+0,04 1,32+0,39 2,60 1,04 2,5 1,39+0,15 1,69+0,67 1,59 1,18 5 1,30+0,10 2,25+0,15 1,20 1,33 5% trehalosa 1 1,22+0,17 3,58+2,47 1,13+0,04 1,29+0,17 2,5 1,93+0,55 4,66+2,9 1,21+0,03 2,27+0,90 5 1,57+0,27 5,23+0,21 1,23+0,04 5,66+4,48 10% 1 1,21+0,12 2,32+1,09 1,25+0,10 1,64 trehalosa 2,5 1,30+0,07 5,46+0,99 1,46+0,06 2,33 5 1,82+0,51 5,35+0,52 1,46+0,20 2,74
EJEMPLO 7:
Las nanopartículas de mezcla íntima de PLGA Pluronic.TM F68, PLGA/Pluronic.TM L121 , PLGA/Tetronic.TM 908 y PLGA/Tetronic 904 con relación de polímero 1:1 se prepararon
HOJA DE SUSTITUCIÓN REGLA 26 como ha sido descrito en los Ejemplos 1 , 2, 3 y 4. El plásmido modelo pEGFP-C1
(codificante de una proteína fluorescente verde) se incorporó en la fase acuosa interna de las formulaciones con una carga teórica de 0,4%. El tamaño, la polidispersión y la carga superficial de las formulaciones cargadas con ADN se midieron empleando espectroscopia de correlación fotónica y anemometría laser-Doppler (TABLA 7). La eficacia de encapsulación y los perfiles de liberación "in vitro" se determinaron a partir de las muestras de sobrenadantes de diferentes tiempos con ensayos fluorimétricos utilizando PicoGreen Quantitation Kit (Molecular Probes) en tampón T.E. a pH = 7,5
(FIGURA 9).
TABLA 7. tipo de tamaño p τ potencial-Z eficacia de poloxamer/poloxamina , . ' ' , Ϊ encapsulación F (nm) (mV) r % Pluronic.TM F68 182,6 + 6,0 0,114 -50,8 + 3,6 35,2 + 8,9 Pluronic.TM L121 216,8 + 5,3 0,154 -23,5 + 1,4 31,3 + 3,8 Tetronic.TM T908 268,7+11,6 0,437 -35,0 + 0,9 32,0 + 3,7 Tetronic.TM T904 161,5 + 7,6 0,154 -54,1 + 2,0 44,1 + 4,3
EJEMPLO 8
Las nanopartículas de mezcla íntima de PLGA/Pluronic.TM F68, PLGA/Pluronic.TM L121 , PLGA/Tetronic.TM 908 y PLGA/Tetronic 904 con relación de polímero 1:1 se prepararon como ha sido descrito en los Ejemplos 1 , 2, 3 y 4. La citotoxicidad de las formulaciones se estudió en el cultivo celular MCF-7 en DMEM suplementado con 10% FBS. Las células de incubaron con distintas concentraciones de nanopartículas (de 1 a 5 mg/ml) durante 24 horas. La viabilidad celular se midió con el reactivo MTS después de un periodo de recuperación de 24 horas. Los resultados demuestran que, a pesar de las concentraciones altas y el tiempo de incubación extendido, ninguna de las formulaciones produce efectos tóxicos en las células.
HOJA DE SUSTITUCIÓN REGLA 26

Claims

REIVINDICACIONES 1.- Procedimiento de preparación de nanopartículas de tamaño inferior a 1 μm, para la administración de ingredientes activos, caracterizado porque comprende las etapas de: a) disolver un polímero biodegradable junto con un copolímero bloque derivado del polioxietileno en un disolvente orgánico, estando la relación en peso de ambos polímeros entre 1 :0,1 y 1:3. b) añadir, bajo agitación, la disolución obtenida a una fase polar, en la cual el polímero biodegradable presenta una baja solubilidad, precipitando el polímero y formándose las nanopartículas. c) eliminar el disolvente orgánico; d) aislar las partículas, donde el ingrediente activo es disuelto en el disolvente orgánico empleado en a), antes o después de la etapa a), o es disuelto en un volumen pequeño de fase acuosa, el cual subsiguientemente es dispersado en el solvente orgánico empleado en a), antes o después de la etapa a).
2.- Procedimiento según la reivindicación 1 , caracterizado porque comprende una etapa adicional después de e) de liofilizar las nanopartículas obtenidas.
3.- Procedimiento según cualquiera de las reivindicaciones 1 y 2, caracterizado porque el polímero biodegradable es un poliéster.
4.- Procedimiento según cualquiera de las reivindicaciones 1 y 2, caracterizado porque el polímero biodegradable es un polianhidrido.
5.- Procedimiento según la reivindicación 3, caracterizado porque el poliéster se selecciona entre la policaprolactona, el ácido poliláctico, el ácido poliláctico-co-glicólico y sus mezclas.
6.- Procedimiento según cualquiera de las reivindicaciones 1 a 5, caracterizado porque el copolímero bloque es poloxamero.
7.- Procedimiento según la reivindicación 6, caracterizado porque el poloxamero tiene un peso molecular comprendido entre 1.000-25.000 Daltons.
8.- Procedimiento según cualquiera de las reivindicaciones 1 a 5, caracterizado porque el copolímero bloque es poloxamina.
HOJA DE SUSTITUCIÓN REGLA 26
9.- Procedimiento según la reivindicación 8, caracterizado porque la poloxamina tiene un peso molecular comprendido entre 1.000-25.000 Daltons.
10.- Procedimiento según cualquiera de las reivindicaciones 1 a 9, caracterizado porque el ingrediente activo se selecciona de moléculas con propiedades terapéuticas, vacunas e ingredientes cosméticos.
11.- Procedimiento según cualquiera de las reivindicaciones 1 a 10, caracterizado porque la relación en peso de ambos polímeros está entre 1 :1 y 1 :3.
12.- Nanopartículas para la administración de ingredientes farmacéuticamente o cosméticamente activos, de tamaño inferior a 1 μm, obtenibles mediante el procedimiento según cualquiera de las reivindicaciones 1 y 3 a 10.
13.- Nanopartículas liofilizadas para la administración de ingredientes farmacéuticamente o cosméticamente activos, de tamaño inferior a 1 μm, obtenibles mediante el procedimiento según la reivindicación 2.
14.- Composiciones caracterizadas porque comprenden nanopartículas según cualquiera de las reivindicaciones 12 y 13.
15.- Composiciones farmacéuticas o cosméticas caracterizadas porque comprenden nanopartículas según cualquiera de las reivindicaciones 12 y 13.
HOJA DE SU TIT
PCT/ES2004/000282 2003-07-04 2004-06-17 Nanopartículas de derivados polioxietilenados WO2005002550A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002531111A CA2531111A1 (en) 2003-07-04 2004-06-17 Nanoparticles of polyoxyethylenated derivatives
EP04736985A EP1658842A1 (en) 2003-07-04 2004-06-17 Nanoparticles of polyoxyethylenated derivatives
US10/563,031 US20060153923A1 (en) 2003-07-04 2004-06-17 Nanoparticles of polypoxyethylenated derivatives
AU2004253308A AU2004253308A1 (en) 2003-07-04 2004-06-17 Nanoparticles of polyoxyethylenated derivatives
BRPI0411954-1A BRPI0411954A (pt) 2003-07-04 2004-06-17 nanopartìculas de derivados poli-oxietilenados e respectivo método de preparação
JP2006518241A JP2007525474A (ja) 2003-07-04 2004-06-17 ポリオキシエチレン誘導体のナノ粒子
NO20056241A NO20056241L (no) 2003-07-04 2005-12-29 Nanopartikler av polyoksyetylenerte derivater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200301570 2003-07-04
ES200301570A ES2232287B1 (es) 2003-07-04 2003-07-04 Nanoparticulas de derivados polioxietilenados.

Publications (1)

Publication Number Publication Date
WO2005002550A1 true WO2005002550A1 (es) 2005-01-13

Family

ID=33560937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/000282 WO2005002550A1 (es) 2003-07-04 2004-06-17 Nanopartículas de derivados polioxietilenados

Country Status (10)

Country Link
US (1) US20060153923A1 (es)
EP (1) EP1658842A1 (es)
JP (1) JP2007525474A (es)
KR (1) KR20060026956A (es)
AU (1) AU2004253308A1 (es)
BR (1) BRPI0411954A (es)
CA (1) CA2531111A1 (es)
ES (1) ES2232287B1 (es)
NO (1) NO20056241L (es)
WO (1) WO2005002550A1 (es)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2044934A1 (en) 2007-10-01 2009-04-08 Institut National De La Sante Et De La Recherche Medicale (Inserm) Dispersion of poloxamer-protein particles, methods of manufacturing and uses thereof
WO2009052493A1 (en) * 2007-10-19 2009-04-23 Bisco, Inc. Time-controlled intraoral film former system for intraoral use
ES2358403B2 (es) * 2009-10-26 2011-12-13 Universidad De Santiago De Compostela Sistema para la administración de sustancias biológicamente activas que comprende poli-epsilón-caprolactona, poloxamina y una o varias sustancias activas.
WO2012059936A1 (en) 2010-11-03 2012-05-10 Padma Venkitachalam Devarajan Pharmaceutical compositions for colloidal drug delivery
CN102008731B (zh) * 2010-12-14 2012-06-27 上海纳米技术及应用国家工程研究中心有限公司 以嵌段共聚物为载体的氟碳化合物纳米载药制剂的制备方法
ES2385995B2 (es) * 2011-01-10 2013-05-21 Universidade De Santiago De Compostela Nanocápsulas con cubierta polimérica
RU2013154422A (ru) * 2011-05-09 2015-06-20 Институт Кимик Де Саррия Полимерные наночастицы, предназначенные для доставки лекарственных средств
KR101367365B1 (ko) * 2012-01-18 2014-02-27 고려대학교 산학협력단 생체적합성 입자 및 이의 제조방법
CN104382866B (zh) * 2014-11-12 2017-08-01 中国人民解放军第二军医大学 一种包载两种表面活性剂的抗肿瘤耐药的纳米递释系统及其制备方法
WO2021158627A1 (en) * 2020-02-03 2021-08-12 Memorial Sloan Kettering Cancer Center Compositions comprising nanoparticles and methods thereof
WO2023168387A1 (en) * 2022-03-04 2023-09-07 West Pharmaceutical Services, Inc. Systems, compositions and methods for low temperature preservation of cells, bioinks, hydrogels, and tissue engineered medicinal products (temps)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020698A2 (en) * 1995-01-05 1996-07-11 The Board Of Regents Acting For And On Behalf Of The University Of Michigan Surface-modified nanoparticles and method of making and using same
US5962566A (en) * 1995-07-05 1999-10-05 European Community Biocompatible and biodegradable nanoparticles designed for proteinaceous drugs absorption and delivery

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582865A (en) * 1984-12-06 1986-04-15 Biomatrix, Inc. Cross-linked gels of hyaluronic acid and products containing such gels
GB8601100D0 (en) * 1986-01-17 1986-02-19 Cosmas Damian Ltd Drug delivery system
FR2608988B1 (fr) * 1986-12-31 1991-01-11 Centre Nat Rech Scient Procede de preparation de systemes colloidaux dispersibles d'une substance, sous forme de nanoparticules
IT1247472B (it) * 1991-05-31 1994-12-17 Fidia Spa Processo per la preparazione di microsfere contenenti componenti biologicamente attivi.
US5543158A (en) * 1993-07-23 1996-08-06 Massachusetts Institute Of Technology Biodegradable injectable nanoparticles
US5565215A (en) * 1993-07-23 1996-10-15 Massachusettes Institute Of Technology Biodegradable injectable particles for imaging
US20010053359A1 (en) * 1994-07-26 2001-12-20 Peter Watts Drug delivery composition for the nasal administration of antiviral agents
AU5004196A (en) * 1995-03-10 1996-10-02 Boehringer Mannheim Gmbh Polypeptide-containing pharmaceutical forms of administration in the form of microparticles and method for the preparation thereof
US7276251B2 (en) * 1997-04-01 2007-10-02 Lg Life Sciences, Ltd., Inc. Sustained-release composition of drugs encapsulated in microparticles of hyaluronic acid
FR2777193B1 (fr) * 1998-04-14 2001-06-08 Coletica Particule a groupement hydroxamique chelatante d'ions metalliques et leur utilisation en cosmetique ou en pharmacie
FR2777895A1 (fr) * 1998-04-28 1999-10-29 Debio Rech Pharma Sa Polymere sequence non-reticule,procede pour sa preparation, et ses utilisations
US20030059465A1 (en) * 1998-05-11 2003-03-27 Unger Evan C. Stabilized nanoparticle formulations of camptotheca derivatives
IN191203B (es) * 1999-02-17 2003-10-04 Amarnath Prof Maitra
AU4476600A (en) * 1999-04-22 2000-11-10 Vanderbilt University Polymeric encapsulation system promoting angiogenesis
US6743446B2 (en) * 1999-12-15 2004-06-01 The Ohio State University Research Foundation Methods for stabilizing biologically active agents encapsulated in biodegradable controlled-release polymers
US6465425B1 (en) * 2000-02-10 2002-10-15 Alkermes Controlled Therapeutics, Inc. Microencapsulation and sustained release of biologically active acid-stable or free sulfhydryl-containing proteins
AU4477001A (en) * 2000-04-18 2001-10-30 Peptron Inc. Injectable sustained release pharmaceutical composition and processes for preparing the same
JP2006514698A (ja) * 2002-10-30 2006-05-11 スフェリックス, インコーポレイテッド ナノ粒子生物活性物質

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996020698A2 (en) * 1995-01-05 1996-07-11 The Board Of Regents Acting For And On Behalf Of The University Of Michigan Surface-modified nanoparticles and method of making and using same
US5962566A (en) * 1995-07-05 1999-10-05 European Community Biocompatible and biodegradable nanoparticles designed for proteinaceous drugs absorption and delivery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LOURENCO C. ET AL.: "Steric stabilization of nanoparticles: size and surface properties", INT. J. PHARMACEUTICS, vol. 138, no. 1, 12 July 1996 (1996-07-12), pages 1 - 12, XP002997310 *
SANCHEZ A. ET AL.: "Biodegradable micro- and nanoparticles as long-term delivery vehicles for interferon-alpha", EUR. J. PHARM. SCIENCES, vol. 18, no. 3-4, March 2003 (2003-03-01), pages 221 - 229, XP002997311 *

Also Published As

Publication number Publication date
KR20060026956A (ko) 2006-03-24
CA2531111A1 (en) 2005-01-13
ES2232287B1 (es) 2006-11-01
AU2004253308A1 (en) 2005-01-13
US20060153923A1 (en) 2006-07-13
EP1658842A1 (en) 2006-05-24
ES2232287A1 (es) 2005-05-16
BRPI0411954A (pt) 2006-08-15
JP2007525474A (ja) 2007-09-06
NO20056241L (no) 2005-12-29

Similar Documents

Publication Publication Date Title
Sur et al. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system
Wais et al. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles
G Nava-Arzaluz et al. Single emulsion-solvent evaporation technique and modifications for the preparation of pharmaceutical polymeric nanoparticles
AU2003304108B2 (en) Nanoparticulate bioactive agents
Wang et al. Controlled preparation and antitumor efficacy of vitamin E TPGS-functionalized PLGA nanoparticles for delivery of paclitaxel
Miyazaki et al. Poly n-butylcyanoacrylate (PNBCA) nanocapsules as a carrier for NSAIDs: in vitro release and in vivo skin penetration
Wu et al. Genistein-loaded nanoparticles of star-shaped diblock copolymer mannitol-core PLGA–TPGS for the treatment of liver cancer
Zarekar et al. Nanogel as a novel platform for smart drug delivery system
Gundloori et al. Nanobased intravenous and transdermal drug delivery systems
Gupta et al. Drug delivery using nanocarriers: Indian perspective
García et al. Self-assembled nanomaterials
ES2232287B1 (es) Nanoparticulas de derivados polioxietilenados.
Gadad et al. Nanoparticles and their therapeutic applications in pharmacy
Rathor et al. A comprehensive review on role of nanoparticles in therapeutic delivery of medicine
EP3434258A2 (en) Temperature-sensitive composite and method for preparing same
Pathak Recent developments in nanoparticulate drug delivery systems
Chellampillai et al. Andrographolide, a novel bioactive phytoconstituent encapsulated in sustained release biodegradable nanoparticles
Mehandole et al. Core–shell type lipidic and polymeric nanocapsules: the transformative multifaceted delivery systems
Katiyar et al. Novel biosurfactant and lipid core-shell type nanocapsular sustained release system for intravenous application of methotrexate
Deepak et al. Polymeric micelles: potential drug delivery devices
Wang et al. Surfactant-free formulation of poly (lactic/glycolic) acid nanoparticles encapsulating functional polypeptide: a technical note
Rezigue Lipid and polymeric nanoparticles: drug delivery applications
MXPA05014095A (es) Nanoparticulas de derivados polioxietilenados
US20100305201A1 (en) Method of Treating a Tumor and Biodistribution of a Drug Delivered by Worm-Like Filomicelles
JP2013010704A (ja) イオントフォレシス用ナノ粒子及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/014095

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2531111

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020067000199

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006518241

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004253308

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004253308

Country of ref document: AU

Date of ref document: 20040617

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2004736985

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006153923

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10563031

Country of ref document: US

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 2004736985

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10563031

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0411954

Country of ref document: BR