WO2005002038A1 - 電動機駆動システム - Google Patents

電動機駆動システム Download PDF

Info

Publication number
WO2005002038A1
WO2005002038A1 PCT/JP2003/008117 JP0308117W WO2005002038A1 WO 2005002038 A1 WO2005002038 A1 WO 2005002038A1 JP 0308117 W JP0308117 W JP 0308117W WO 2005002038 A1 WO2005002038 A1 WO 2005002038A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
common bus
value
reactive power
Prior art date
Application number
PCT/JP2003/008117
Other languages
English (en)
French (fr)
Inventor
Masaru Toyoda
Masato Koyama
Isao Kamiyama
Original Assignee
Toshiba Mitsubishi-Electric Industrial Systems Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi-Electric Industrial Systems Corporation filed Critical Toshiba Mitsubishi-Electric Industrial Systems Corporation
Priority to PCT/JP2003/008117 priority Critical patent/WO2005002038A1/ja
Priority to EP03736261.3A priority patent/EP1641098B1/en
Priority to JP2005503217A priority patent/JP4440880B2/ja
Publication of WO2005002038A1 publication Critical patent/WO2005002038A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/12Use of propulsion power plant or units on vessels the vessels being motor-driven
    • B63H21/17Use of propulsion power plant or units on vessels the vessels being motor-driven by electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/22Transmitting power from propulsion power plant to propulsive elements with non-mechanical gearing
    • B63H23/24Transmitting power from propulsion power plant to propulsive elements with non-mechanical gearing electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/16Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by adjustment of reactive power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/42The network being an on-board power network, i.e. within a vehicle for ships or vessels

Definitions

  • the present invention relates to a motor drive system, and more particularly to a motor drive system suitable for LNG plants and marine electric propulsion.
  • the electric propulsion system using an electric motor drive system has less vibration, easier adjustment of the screw rotation direction and speed, and higher efficiency than the conventional propulsion system that drives the screw directly by a diesel engine.
  • any of the diesel If the engine fails, the circuit breaker provided between the generator driven by the diesel engine and the common bus is opened. On the other hand, the remaining diesel engines will have an increased load due to the loss of mechanical power supply from the failed diesel engine, and will have a reduced rotational speed. As a result, the output voltage of the remaining generators and, consequently, the amplitude and frequency of the common bus voltage decrease. If these amplitude and frequency decreases are below the lower limits set in advance, it is determined that an abnormality has occurred in the system, and the circuit breakers between the remaining generators and the common bus are opened. As a result, there is a problem of a system down, in which the mechanical power supply of the screw is stopped.
  • the present invention connects a plurality of generators, which are driven by a mechanical power generation device that outputs mechanical power by burning liquid or gaseous fuel to generate an AC voltage, and generate an AC voltage, to a common bus in parallel.
  • a plurality of electric motors for driving a load machine are respectively connected to a plurality of electric power converters connected to the common bus and outputting an alternating voltage having a variable amplitude and a variable frequency.
  • the present invention provides a mechanical power generator that outputs mechanical power by burning liquid or gaseous fuel, and a plurality of generators that are driven by the mechanical power generator and generate an AC voltage
  • a common bus in which output terminals of the plurality of generators are connected in parallel, and a plurality of power converters having input terminals connected to the common bus and outputting AC voltages of variable amplitude and variable frequency.
  • Each of which is connected to each of the power converters and drives a plurality of electric motors to drive a load machine.
  • Each of the power converters exchanges data with the common bus according to a voltage change of the common bus.
  • the amplitude of the common bus voltage is controlled to be constant. It is configured.
  • FIG. 1 is a diagram showing a system configuration according to Embodiment 1 of the present invention.
  • FIG. 2 is a phenomenon diagram in the conventional system.
  • FIG. 3 is a phenomenon diagram in the conventional system.
  • FIG. 4 is a phenomenon diagram in Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing a system configuration according to Embodiment 2 of the present invention.
  • FIG. 6 shows a system configuration according to Embodiment 3 of the present invention.
  • FIG. 7 is a diagram showing a system configuration according to Embodiment 4 of the present invention.
  • FIG. 8 is a diagram showing a system configuration according to Embodiment 5 of the present invention.
  • FIG. 9 is a diagram showing a system configuration according to Embodiment 6 of the present invention.
  • FIG. 10 is a diagram showing a system configuration according to Embodiment 7 of the present invention.
  • FIG. 11 is a block diagram showing a configuration of a main part according to Embodiment 1 of the present invention.
  • FIG. 12 is a vector diagram for explaining the operation of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings.
  • the motor drive system shown in FIG. 1 connects multiple generators 6 to 10 that are driven by diesel engines 1 to 5 and generate AC voltage in parallel to a common bus 12 and 1 to 2 via a transformer 46, and a plurality of power converters 52 to 55 that output AC voltage of variable amplitude and variable frequency, and a plurality of power converters that drive screws 31 to 34.
  • Electric motors 23 to 26 such as induction motors are connected respectively.
  • the low-voltage distribution systems 16 and 17 are connected to the common bus 12 via transformers 14 and 15, respectively.
  • Each of the power conversion devices 52 to 55 includes a power conversion circuit 47 that can individually control reactive power and active power of input power, and a common bus 1 as shown in the power conversion device 52.
  • a voltage detection circuit 48 for detecting the voltage of 2
  • an AC voltage control circuit 49 for comparing the feedback voltage value output from the voltage detection circuit 48 with a fixed reference voltage value to calculate a reactive power command value;
  • a main circuit controller 50 having a control function of controlling the reactive power of the input power to the power conversion circuit 47 and controlling the speed of the electric motor 23 is provided.
  • the power converter 51 and the main circuit controller 50 constitute a power converter 51.
  • the power converter 52 includes, for example, a high-power converter that converts AC power into DC power, a smoothing capacitor that smoothes the converted DC power, and a motor 23 that converts DC power into AC power.
  • a converter-inverter type (DC link type) power converter consisting of a self-excited inverter and a DC / AC converter type power converter using a matrix converter. There is.
  • the screws 31 to 34 are driven at variable speeds by the electric motors 23 to 26 via the rotating shafts 27 to 30 respectively.
  • the motors 23 to 26 are variable-speed driven by power converters 52 to 55, respectively.
  • the power required for the variable speed drive is supplied from the common bus 12 via the transformers 46 (there are four units).
  • Output terminals of generators 6 to 10 driven by the diesel engines 1 to 5 are connected to the common bus 12.
  • the mechanical power output from the diesel engine 1 to 5 power is converted into electric power by the generators 6 to 10, and the common bus 12, the transformer 46, and the power conversion device 52-5 5 Electric motors 23 to 26, rotating shafts 27 to 30, finally used as mechanical power for variable speed operation of screws 3 "! To 34.
  • generators 6 to 1 A part of the power by 0 is also supplied to other load devices connected to the low-voltage distribution systems 16 and 17 via the transformers 14 and 15.
  • circuit breakers are provided between the generators 6 to 10 and the common bus 12 and between the transformer 46 and the common bus 12 respectively. . If an abnormality occurs on the generator or motor side, the breaker at the corresponding location is opened and disconnected from the common bus 12.
  • the power generation system including the diesel engines 1 to 5 and the generators 6 to 10 generates power so as to generate an AC power output of a predetermined frequency and voltage.
  • the output of the diesel engine 1 is increased to make the output power of the generator 6 equal to the power consumption, thereby setting the frequency and voltage of the common bus 1 to predetermined values. Has been maintained.
  • the power converter 52 receives AC power from the transformer 46 and outputs AC power of variable amplitude / variable frequency for driving the motor 23 based on an external output command value (not shown).
  • the drive control of the electric motor 23 is performed so that the rotation speed of the motor 23 becomes a desired value.
  • the AC voltage control circuit 49 provided in the power converter 52 detects the voltage of the common bus 12 detected by the voltage detection circuit 48 in a predetermined manner. Calculates the reactive power command value corresponding to the reactive power required to maintain the value, supplies it to the main circuit controller 50 of the power converter 51, and performs power conversion according to the voltage fluctuation of the common bus 12
  • the amplitude of the common bus voltage is controlled to be constant by controlling the reactive power exchanged between the device 52 and the common bus 12.
  • the AC voltage control circuits provided in the other power converters 53 to 55 also perform the same operation.
  • FIG. 2 to FIG. 4 are phenomena diagrams showing fluctuations of the system voltage and the system frequency of the common bus 12 when the load current fluctuates in the conventional motor drive system and the motor drive system according to Embodiment 1 of the present invention. If the voltage fluctuations that occur when an overload occurs can be suppressed by the AC voltage control circuit normally provided in the power generation system, the power consumption is suppressed and the gun voltage and frequency are reduced as shown in Fig. 2. If it is difficult to suppress voltage fluctuations with the AC voltage control circuit provided in the power generation system that can continue operation by maintaining the voltage at a predetermined value, the voltage fluctuations gradually increase as shown in Fig. 3 and eventually. The power generation system will be shut down.
  • the voltage of the common bus 12 is individually detected and exchanged between each of the power conversion devices 52 to 55 and the common bus 12 according to the detected voltage. Control the reactive power, the voltage of the common bus 12 can be maintained at a predetermined value. Figure 4 shows this, and the voltage of the common bus 12 is maintained at a predetermined value. As a result, the continuation of motor operation has been realized more stably.
  • each of the power converters 52 to 55 individually detects the voltage of the common bus 12, and according to the detected voltage, connects to the common bus 12. Since the amplitude of the common bus voltage is controlled to be constant by controlling the reactive power exchanged between the power supply and the power supply, the voltage of the common bus 12 can be maintained at a predetermined value, and the voltage of the power system can be maintained. Vibration can be suppressed, and more stable motor rotation can be achieved.
  • the phase of the power system at the common bus 12 is detected by the PLL circuit 100 via the transformer 14, and the sin 'cos generating circuit 101 detects a sine wave sin L and a cosine wave, respectively.
  • Cos L the phase of the power system at the common bus 12 is detected by the PLL circuit 100 via the transformer 14, and the sin 'cos generating circuit 101 detects a sine wave sin L and a cosine wave, respectively.
  • Figure 12 shows the vector relationship of these currents.
  • the reactive current control circuit 104 includes the reactive current command IQ * from the AC voltage control circuit 49 and the reactive current feedback value I output from the coordinate conversion circuit 102.
  • the DC voltage control circuit 105 compares the and the reactive component current command IQ * and outputs the reactive component voltage command value corresponding to the reactive component current command IQ *.
  • the effective current control circuit 106 compares the effective current command I P * with the effective current return value I P output from the coordinate conversion circuit 102 and responds to the effective current command I p *. Outputs the effective component voltage command value.
  • FIG. 5 is a diagram for explaining an electric motor drive system according to Embodiment 2 for carrying out the present invention.
  • the power conversion device 58 includes a voltage detector 48 that detects a system voltage of the common bus 12 and an oscillation of the system voltage of the common bus 12. It comprises a filter 56 for extracting components and an AC voltage control circuit 57 for calculating a reactive power command value and outputting it to the main circuit controller 50.
  • the other power converters 59 to 61 also have the same configuration.
  • the filter 56 extracts a vibration component from the system voltage of the common bus 12 detected by the voltage detector 48 and supplies the vibration component to the AC voltage control circuit 57.
  • the AC voltage control circuit 57 calculates a command value corresponding to the reactive power required to suppress the vibration component based on the vibration component of the system voltage of the common bus 12 extracted at the filter 56. This is supplied to the main circuit controller 50 to control the reactive power exchanged between the power converter 58 and the common bus 12 according to the voltage fluctuation of the common bus 12.
  • the other power converters 59 to 61 perform the same operation.
  • each of the power converters 58 to 61 individually detects the voltage of the common bus 12 and extracts the vibration component of the system voltage from the detected voltage via the filter 56. Since the reactive power exchanged with the common bus 2 is controlled based on the vibration component, the voltage of the common bus 12 can be maintained at a predetermined value, and the fluctuation of the voltage of the power system can be suppressed. And more stable operation of the motor becomes possible.
  • FIG. 6 is a view for explaining an electric motor drive system according to a third embodiment for carrying out the present invention.
  • the power converter 66 includes a voltage detector 48 for detecting a system voltage of the common bus 12 and a system voltage detection value of the common bus 12. And a reference voltage value setting device 6 3 A deviation calculation circuit 62 with a dead band that adds a dead band to the deviation of the reference voltage value, and an AC voltage control circuit that calculates the output command value and outputs it to the power converter 5 6 and 4.
  • the other power converters 67 to 69 have the same configuration. ⁇
  • the deviation calculation circuit 62 compares the system voltage detection value of the common bus 12 detected by the voltage detector 48 with the output of the predetermined voltage value setting device 63, and the deviation is determined by a predetermined value. Below the value, there is a dead band of zero, which is given to the AC voltage control circuit 64.
  • the AC voltage control circuit 64 calculates a command value according to the reactive power required to suppress the deviation component based on the deviation of the system voltage of the common bus 12 extracted by the computing unit 62. To the main circuit controller 50 of the power converter 51. In this case, if the deviation is within a predetermined value, the output of the AC voltage control circuit 64 does not fluctuate. Can be suppressed. Similar operations are performed in the other power converters 67 to 69.
  • the voltage of the common bus 12 is individually detected, a deviation value between the detected voltage value and the reference value is calculated, and a reactive power command value having a dead zone in the deviation value is obtained. Based on the reactive power command value, Since the reactive power exchanged between the power systems is controlled, voltage fluctuations in the power system can be suppressed, and more stable motor rotation can be achieved.
  • FIG. 7 is a view for explaining an electric motor drive system according to Embodiment 4 for carrying out the present invention.
  • FIG. 7 the components denoted by the same reference numerals as those in FIG. 1 are the same or equivalent.
  • This has the same basic configuration as the first embodiment, but differs from the first embodiment in that a common controller 73 is provided for a plurality of power converters 74 to 77.
  • the common control device 73 includes a voltage detector 70 that detects the system voltage of the common bus 12, a filter 71 that extracts a vibration component of the system voltage of the common bus 12, and a reactive power command value that is calculated by And an AC voltage control circuit 72 which distributes and outputs the power to the power converters 74 to 77.
  • the filter 71 extracts a vibration component from the system voltage of the common bus 12 detected by the voltage detector 48 and supplies the vibration component to the AC voltage control circuit 72.
  • the AC voltage control circuit 72 calculates a command value corresponding to the reactive power required to suppress the vibration component based on the vibration component of the system gun voltage of the common bus 12 extracted by the filter 71, Power converters 74 to 77 are given.
  • the vibration components of the system voltage of the common bus 12 are detected not individually but in common, the vibration components of the system voltage are extracted from the detected voltage via the filter 71, and the vibration components are extracted.
  • the reactive power command value calculated based on the reactive power command value is distributed to each of the power conversion devices 74 to 77, and each of the power conversion devices 74 to 77 is individually connected to the common bus 12 according to the reactive power command value.
  • the amplitude of the common bus voltage is controlled to be constant. The Therefore, compared with the case where the AC voltage control circuit 49 is separately provided as in the first embodiment, the variation of the control of the AC voltage control circuit 49 is not affected. Can be more reliably suppressed, and more stable motor operation can be achieved.
  • Embodiment 5 Embodiment 5
  • FIG. 8 is a view for explaining an electric motor drive system according to Embodiment 5 for carrying out the present invention.
  • an electric power converter 79 includes an AC voltage control circuit 72 for calculating and distributing and outputting a reactive power command value, and a main circuit controller 50. And an upper limit circuit 78 that gives an upper limit of the reactive power command value.
  • the other power converters 80 to 82 also have the same configuration.
  • the upper limit value limiting circuit 78 provides the motor 23 with a predetermined upper limit to the reactive power output command value given to the main circuit controller 50 of the power converter 79 by the AC voltage control circuit 72. It does not affect the power consumption required for the control function. Similar operations are performed in the other power converters 80 to 82.
  • each of the power converters 79 to 82 individually gives a predetermined upper limit to the reactive power command value, and exchanges power between the power converters 79 to 82 and the common bus 12.
  • the amplitude of the common bus voltage is controlled to be constant, so that the voltage oscillation of the common bus 12 can be suppressed and the control function of the motors 23 to 26 is required. A more stable motor operation can be performed without affecting the power consumption.
  • FIG. 9 is a view for explaining an electric motor drive system according to Embodiment 6 for carrying out the present invention.
  • the power conversion device 86 includes an AC voltage control circuit 72 that calculates and distributes and outputs a reactive power command value, and a main circuit control device 84.
  • a variable limiting circuit 83 that variably limits the upper limit value of the reactive power command value according to the power consumption of the load, that is, the variation of the active power of the driving current in the motor 23. .
  • the main circuit controller 84 has a function of giving a signal that changes according to the power consumption state of the load, that is, a signal that changes according to the amount of change in the active power of the driving current in the motor 23 to the variable limiting circuit 83.
  • the other power converters 87 to 89 have the same configuration.
  • the variable limiting circuit 83 gives a predetermined upper limit to the output command value of the reactive power given from the AC voltage control circuit 72 to the main circuit control device 84 of the power converter 86.
  • the power consumption required for the control function of the motor 23 can be prevented from being affected, and the upper limit value can be varied according to the amount of change in the active power of the driving current in the motor 23.
  • the voltage control margin of the power gun can be secured. Similar operations are performed in the other power converters 87 to 89.
  • each of the power conversion devices 86 to 89 individually sets a reactive power command value to an upper limit value that changes according to the amount of change in the active power of the drive current in each of the motors 23 to 26.
  • FIG. 10 is a diagram for explaining an electric motor drive system according to Embodiment 7 for carrying out the present invention.
  • the common control device 93 includes a voltage detector 70 that detects a system voltage of the common bus 12, a system voltage detection value of the common bus 12, and a reference voltage value setting device 9. It is composed of a deviation calculating circuit 91 with a dead band for adding a dead band to the deviation from the reference voltage value of 0, and an AC voltage control circuit 92 for calculating a reactive power command value and outputting it to the power converter 86.
  • the deviation calculation circuit 91 compares the system voltage detection value of the common bus 12 detected by the voltage detector 70 with the output of the reference voltage value setting device 90, and if the deviation is equal to or less than a predetermined value, sets it to zero. A dead band is provided to the AC voltage control circuit 92.
  • the AC voltage control circuit 92 calculates the command value corresponding to the reactive power required to suppress the deviation component based on the deviation of the system voltage of the common bus 12 extracted by the computing unit 91. Give to the power converter 86-89. In this case, if the deviation is within a predetermined value, the output of the AC voltage control circuit 92 does not fluctuate, so that it operates sensitively to a slight change in power consumption and causes disturbance to the control system. Operation can be suppressed.
  • each of the power conversion devices 86 to 89 detects the voltage of the common bus 12, calculates a deviation value between the detected voltage value and a preset reference voltage value, and calculates the deviation value.
  • the reactive power command value with a dead band is distributed to the power converters 86 to 89, and each power converter 86 to 89 individually assigns the reactive power command value to each of the motors 23 to 26.
  • Active power of drive current Since the upper limit value that changes in accordance with the amount of fluctuation of the common bus 12 is given to control the reactive power exchanged with the common bus 12, it is possible to suppress the oscillation of the voltage of the common bus 12 and A more stable motor operation can be performed without affecting the power consumption required for the control function of the motor.
  • the present invention is used particularly as an electric motor drive system for LNG plant-marine electric propulsion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Inverter Devices (AREA)

Abstract

 この発明は、液体或いは気体燃料の燃焼により機械動力を出力する機械動力発生装置1~5と、該機械動力発生装置により駆動され、交流電圧を発生する複数台の発電機6~10と、該複数台の発電機の出力端子が並列接続された共通母線12と、該共通母線に入力端子が接続され、可変振幅及び可変周波数の交流電圧を出力する複数台の電力変換装置52~55と、該各電力変換装置にそれぞれ接続され、負荷機械を駆動する複数台の電動機23~26とから構成され、各電力変換装置52~55は、共通母線12の電圧変動に応じて、共通母線との間でやり取りされる無効電力を制御することにより、共通母線電圧の振幅を一定に制御する。

Description

明 細 書 電動機駆動システム 技術分野
この発明は、 電動機駆動システム、特に、 L N Gプラン卜用や船舶電 気推進用に適した電動機駆動システムに関するものである。 背景技術
電動機駆動システムを適用した電気推進システムは、ディーゼル機関 により直接、スクリユーを駆動する従来の推進システムと比較して、振 動が少ない、スクリューの回転方向や回転数の調整が容易、効率がよい などの利点がある。 このため、乗り心地を重視する豪華客船や前後進を 繰り返す碎氷船などの適用が増加しつつある。
また、天然ガスを液化するための L N Gプラントでは、従来、液化設 備に使用されるコンプレッサの駆動にガスタービンやスチームタービ ンなどの機械動力発生装置が使用してきた。しかし、排気ガスが少ない、 効率が少ないといつた利点から、船舶電気推進システムと同様の電動機 駆動システムの適用が開始されつつある。
船舶電気推進用の従来の電動機駆動システムとしては、例えば、国際 特許公開 W O 0 2 / 1 0 0 7 1 6 A 1 に示されるようなものが用いら れており、ディーゼル機関により駆動され交流電圧を発生する複数台の 発電機を共通母線に並列接続すると共に、該共通母線に接続され、可変 振幅及び可変周波数の交流電圧を出力する複数台の電力変換装置に、ス クリユーを駆動する複数台の電動機がそれぞれ接続されている。
かかる電動機駆動システムにおいて、運転中にいずれかのディーゼル 機関が故障した場合、このディーゼル機関により駆動されていた発電機 と共通母線との間に設けられた遮断器が開放される。一方、残りのディ —ゼル機関は、故障したディ一ゼル機関からの機械動力供給がなくなつ たことにより負荷が増加し、回転数が低下する。 これに伴い残りの発電 機の出力電圧、ひいては共通母線電圧の振幅や周波数が低下する。 これ らの振幅や周波数の低下が予め設定された下限値以下になるとシステ 厶に異常が起こったと判断され、残りの発電機と共通母線との間の遮断 器が開放される。その結果、スクリユーの機械動力供給が停止するとい うシステムダウンの問題が生じる。
一方、 いずれかの電力変換装置が故障した場合は、故障した電力変換 装置側のトランスと共通母線との間に設けられた遮断器が開放される。 この場合は、故障した電力変換装置側のスクリユーへの機械動力供給が なくなったことにより、各ディ一ゼル機関の負荷が減少し、回転数が上 昇する。 これに伴い各発電機の出力電圧、ひいては共通母線の電圧の振 幅や周波数が上昇する。これらの振幅や周波数の低下が予め設定された 上限値以上になるとシステムに異常が起こったと判断され、各発電機と 共通母線との間の遮断器が開放される。その結果、各スクリューの機械 動力供給が停止するというシステムダウンの問題が生じる。
通常、 ディーゼル機関では燃料供給量の調整 (いわゆるガパナ制御) による回転数制御が行われ、発電機では励磁電流制御による出力電圧振 幅制御が行われる。すなわち、共通母線の電圧の周波数変動はディーゼ ル機関のガバナ制御、振幅変動は発電機の励磁電流制御によって抑制さ れる。 しかし、 これらガバナ制御や励磁電流制御の応答速度は秒オーダ と遅いため、 ディーゼル機関、発電機、電力変換装置や電動機の少なく とも 1台が故障した場合に発生する共通母線電圧の周波数変動や振幅 変動を問題のないレベルまで抑制することが困難で、システムダウンの 問題が生じ易い。
特に、船舶電気推進用や L N Gプラント用の電動機駆動システムでは、 投資コストを抑えるために、 ディーゼル機関、発電機、電力変換装置や 電動機の台数は少ないことが望まれている。 このため、 1台のディ一ゼ ル機関や電力変換装置の故障が、共通母線電圧の振幅■周波数変動に及 ぼす影響が大きい。 発明の開示
この発明は、上記の問題に鑑み、液体或いは気体燃料の燃焼により機 械動力を出力する機械動力発生装置により駆動され、交流電圧を発生す る複数台の発電機を共通母線に並列接続すると共に、該共通母線に接続 され、可変振幅及び可変周波数の交流電圧を出力する複数台の電力変換 装置に、負荷機械を駆動する複数台の電動機がそれぞれ接続されている 電動機駆動システムに対し、機械動力発生装置、発電機、電力変換装置 や電動機の少なくとも 1台が故障した場合でも、電力系統の電圧の振動 を効果的に抑制し、より安定して電動機を駆動することができるように することを目的とする。
上記目的を達成するために、 この発明は、液体或いは気体燃料の燃焼 により機械動力を出力する機械動力発生装置と、該機械動力発生装置に より駆動され、交流電圧を発生する複数台の発電機と、該複数台の発電 機の出力端子が並列接続された共通母線と、該共通母線に入力端子が接 続され、可変振幅及び可変周波数の交流電圧を出力する複数台の電力変 換装置と、該各電力変換装置にそれぞれ接続され、負荷機械を駆動する 複数台の電動機とから構成され、上記各電力変換装置は、上記共通母線 の電圧変動に応じて、上記共通母線との間でやり取りされる無効電力を 制御することにより、上記共通母線電圧の振幅を一定に制御するように 構成されている。 図面の簡単な説明
第 1図はこの発明の実施の形態 1におけるシステム構成を示す図で める o
第 2図は従来のシステムにおける現象図である。
第 3図は従来のシステムにおける現象図である。
第 4図はこの発明の実施の形態 1おける現象図である。
第 5図はこの発明の実施の形態 2におけるシステム構成を示す図で める。
第 6図はこの発明の実施の形態 3におけるシステム構成を示す図で める。
第 7図はこの発明の実施の形態 4におけるシステム構成を示す図で ぬる。
第 8図はこの発明の実施の形態 5におけるシステム構成を示す図で る。
第 9図はこの発明の実施の形態 6におけるシステム構成を示す図で
(¾る。
第 1 0図はこの発明の実施の形態 7におけるシステム構成を示す図 である。
第 1 1図はこの発明の実施の形態 1 における要部の構成を示すプロ ック図である。
第 1 2図は第 1 1図の動作を説明するためのベクトル図である。 発明を実施するための最良の形態
実施の形態 1 . 以下、 この発明の実施の形態 1を図に基づいて説明する。第 1図に示 す電動機駆動システムは、ディーゼル機関 1〜5により駆動され、交流 電圧を発生する複敎台の発電機 6〜1 0を共通母線 1 2に並列接続す ると共に、該共通母線 1 2に変圧器 4 6を介して接続され、可変振幅及 び可変周波数の交流電圧を出力する複数台の電力変換装置 5 2〜5 5 に、スクリユー 3 1〜3 4を駆動する複数台の誘導電動機等の電動機 2 3〜2 6がそれぞれ接続されている。また、共通母線 1 2にはそれぞれ 変圧器 1 4, 1 5を介して低圧配電系統 1 6 , 1 7が接続されている。 そして、各電力変換装置 5 2 ~ 5 5は、電力変換装置 5 2において代 表的に示すように、入力電力の無効電力と有効電力を個別に制御できる 電力変換回路 4 7と、共通母線 1 2の電圧を検出する電圧検出回路 4 8 と、電圧検出回路 4 8の出力である帰還電圧値と固定の基準電圧値とを 比較し無効電力指令値を演算する交流電圧制御回路 4 9と、電力変換回 路 4 7への入力電力の無効電力を制御すると共に電動機 2 3の速度制 御する制御機能を有する主回路制御装置 5 0とを備えている。なお、電 力変換回路 4 7と主回路制御装置 5 0とで電力変換器 5 1が構成され ている。
電力変換装置 5 2としては、例えば交流電力を直流電力に変換する高 カ率コンバ一夕と変換された直流電力を平滑する平滑コンデンサと、直 流電力を交流電力に変換して電動機 2 3を駆動する自励式ィンバ一夕 とから構成されるコンバータ-インバ一タ方式 (D Cリンク方式) の電 力変換装置、 あるいはマトリクスコンパ一夕 (Matri ces Converter) による交流-交流変換方式の電力変換装置などがある。
しかして、第 1図において、スクリュー 3 1〜3 4はそれぞれ、 回転 軸 2 7〜3 0を介して電動機 2 3〜2 6により可変速駆動される。また、 電動機 2 3〜2 6はそれぞれ電力変換装置 5 2〜5 5により可変速駆 動されるが、可変速駆動に必要な電力は変圧器 4 6 ( 4台あり) を介し て共通母線 1 2から供給される。 また、 この共通母線 1 2には、 ディー ゼル機関 1 ~ 5によって駆動される発電機 6 ~ 1 0の出力端子が接続 されている。 このようなシステム構成により、ディ一ゼル機関 1〜5力《 出力する機械動力は発電機 6〜1 0によって電力に変換され、共通母線 1 2、変圧器 4 6、電力変換装置 5 2 - 5 5 電動機 2 3〜 2 6、 回転 軸 2 7〜3 0を経由して最終的にスクリュー 3 "!〜 3 4を可変速運転 するための機械動力として利用される。さらに、発電機 6〜1 0による 電力の一部は、変圧器 1 4 , 1 5を絰由して、低圧配電系統 1 6 , 1 7 に接続された他の負荷機器にも供給される。
なお、第 1図中には図示されていないが、発電機 6〜1 0と共通母線 1 2との間、および変圧器 4 6と共通母線 1 2との間にはそれぞれ遮断 器が設けられる。発電機側あるいは電動機側に異常が生じた場合は、該 当する箇所の遮断器が開放され、 共通母線 1 2から切り離される。 上述の電動機駆動システムにおいて、ディ一ゼル機関 1〜5、発電機 6〜1 0を含む発電システムは、所定の周波数、電圧の交流電力出力と なるように発電を行っており、例えば負荷が消費する電力が発電システ 厶の定格範囲内で増加した場合は、ディーゼル機関 1の出力を増加して 発電機 6の出力電力を消費電力と等しくすることにより、共通母線 1 の周波数および電圧を所定値に維持している。
そして、電力変換装置 5 2は変圧器 4 6から交流電力を受電し、図示 しない外部よりの出力指令値に基づいて電動機 2 3を駆動する可変振 幅■可変周波数の交流電力を出力し、電動機 2 3の回転速度が所望の値 となるように電動機 2 3の駆動制御を行う。
このような状態において、電力変換装置 5 2に備えられた交流電圧制 御回路 4 9は、電圧検出回路 4 8で検出した共通母線 1 2の電圧を所定 値に維持するのに必要な無効電力に応じた無効電力指令値を演算し、電 力変換器 5 1の主回路制御装置 5 0に与え、共通母線 1 2の電圧変動に 応じて、電力変換装置 5 2と共通母線 1 2との間でやり取りされる無効 電力を制御することにより、共通母線電圧の振幅を一定に制御する。他 の各電力変換装置 5 3〜5 5に備えられた交流電圧制御回路も同榛の 動作を行なう。
これによりディーゼル機関 1〜5、発電機 6〜1 0、電力変換装置 5 2〜5 5や電動機 2 3〜2 6の少なくとも 1台が故障した場合でも、電 力系統の電圧の振動を効果的に抑制し、より安定して電動機を駆動する ことができる。
第 2図〜第 4図は、従来の電動機駆動システムとこの発明の実施彤態 1による電動機駆動システムにおいて負荷電流が変動した場合の共通 母線 1 2の系統電圧および系統周波数の変動を示す現象図で、過負荷と なった時に発生する電圧変動を発電システムが通常備える交流電圧制 御回路で抑制可能な場合は、第 2図に示したように消費電力を抑制して 系銃電圧 ·周波数を所定値に維持することによって運転継続が可能であ る力 発電システムが備える交流電圧制御回路で電圧変動の抑制が困難 である場合は、第 3図に示すように次第に電圧変動が拡大し、やがて発 電システムの停止に至る。これに対しこの発明の実施形態 1では、個別 に上記共通母線 1 2の電圧を検出し、その検出電圧に応じて各電力変換 装置 5 2〜5 5と共通母線 1 2との間でやり取りされる無効電力を制 御しているので、共通母線 1 2の電圧を所定値に維持することができる 第 4図はこれを示すものであり、共通母線 1 2の電圧を所定値に維持し ており、 より安定に電動機の運拿云継続を実現している。
このように実施形態 1においては、各電力変換装置 5 2〜5 5が個別 に共通母線 1 2の電圧を検出し、その検出電圧に応じて共通母線 1 2と の間でやり取りされる無効電力を制御することにより、共通母線電圧の 振幅を一定に制御しているので、共通母線 1 2の電圧を所定値に維持す ることができると共に、 電力系統の電圧の振動を抑制することができ、 より安定な電動機違転が可能となる。
なお、実施形態 1において交流電圧制御回路 4 9の出力である無効電 力指令値を主回路制御装置 5 0に与え、無効電力を制御する方法の一例 を第 1 1図及び第 1 2図について説明する。
第 1 1図において、共通母線 1 2における電力系統の位相 を、変圧 器 1 4を介し P L L回路 1 0 0により検出し、 si n ' cos 発生回路 1 0 1によりそれぞれ正弦波 sin L ■余弦波 cos Lを演算し、 座標演算回路
1 0 2に与える。座標演算回路 1 0 2は電流検出器 1 0 3で検出した主 回路交流電流 I sを座標変換し有効分電流 I Pと無効分電流 Ϊ Qに演算 分解する。 これらの電流のベク トル関係を第 1 2図に示す。
無効電流制御回路 1 0 4は、交流電圧制御回路 4 9からの無効分電流 指令 I Q *と座標変換回路 1 0 2の出力である無効分電流帰還値 I。と を比較し無効分電流指令 I Q *に対応した無効分電圧指令値を出力する £ —方、 直流電圧制御回路 1 0 5は、 直流電圧指令 E d *と電力変換器
5 1からの直流電圧帰還値とを比較しその偏差が無くなるように有効 分電流指令 I P *を演算し出力する。 有効電流制御回路 1 0 6は、 その 有効分電流指令 I P *と座標変換回路 1 0 2の出力である有効分電流帰 還値 I Pとを比較し有効分電流指令 I p *に対応した有効分電圧指令値 を出力する。
有効電流制御回路 1 0 6の出力である有効分電圧指令値と無効電流 制御回路 1 0 4の出力である無効分電圧指令値とを電圧ぺク 卜ル演算 回路 1 0 7により合成した交流電圧指令 V *に基づき、 P W M制御回路 1 0 8を介して交流電圧制御回路 4 9の出力である無効電力指令値に なるように電力変換器 5 1を制御する。 実施の形態 2 .
第 5図は、この発明を実施するための実施形態 2による電動機駆動シ ステムを説明するための図である。
第 5図において、第 1図と同一の符号を付したものは、 同一またはこ れに相当するものである。 第 5図に示すように、 電力変換装置 5 8は、 実施形態 1の構成に加えて、共通母線 1 2の系統電圧を検出する電圧検 出器 4 8と共通母線 1 2の系統電圧の振動成分を取り出すフィルタ 5 6と、無効電力指令値を演算して主回路制御装置 5 0へ出力する交 _流電 圧制御回路 5 7とから構成されている。他の各電力変換装置 5 9〜6 1 も同様の構成を有している。
このような構成において、フィルタ 5 6は、電圧検出器 4 8で検出し た共通母線 1 2の系統電圧から振動成分を取り出し、交流電圧制御回路 5 7に与える。交流電圧制御回路 5 7は、 フィル夕 5 6で取り出した共 通母線 1 2の系統電圧の振動成分を基に、この振動成分を抑制するのに 必要な無効電力に応じた指令値を演算し、これを主回路制御装置 5 0に 与え、共通母線 1 2の電圧変動に応じて、電力変換装置 5 8と共通母線 1 2との間でやり取りされる無効電力を制御する。他の各電力変換装置 5 9〜6 1も同様の動作を行なう。
このように実施形態 2においては、各電力変換装置 5 8〜6 1が個別 に共通母線 1 2の電圧を検出し、その検出電圧からフィルタ 5 6を介し て系統電圧の振動成分を取り出すと共に、該振動成分に基づき共通母線 2との間でやり取りされる無効電力を制御しているので、共通母線 1 2の電圧を所定値に維持することができると共に、電力系統の電圧の振 動を抑制することができ、 より安定な電動機運転が可能となる。 実施の形態 3 . , 第 6図は、この発明を実施するための実施形態 3による電動機駆動シ ステムを説明するための図である。
第 6図において、第 1図と同一の符号を付したものは、同一またはこ れに相当するものである。 第 6図に示すように、 電力変換装置 6 6は、 実施形態 1の構成に加えて、共通母線 1 2の系統電圧を検出する電圧検 出器 4 8と共通母線 1 2の系統電圧検出値と基準電圧値設定器 6 3の 基準電圧値との偏差に不感帯を加える不惑帯付偏差演算回路 6 2と、出 力指令値を演算して電力変換装置 5 Ίへ岀力する交流電圧制御回路 6 4とから構成されている。他の各電力変換装置 6 7〜6 9も同様の構成 を有している。 ·
このような構成において、偏差演算回路 6 2は、電圧検出器 4 8で検 出した共通母線 1 2の系統電圧検出値と所定電圧値設置器 6 3の出力 を比較し、 その偏差が所定の値以下では、 ゼロとする不惑帯を有し、交 流電圧制御回路 6 4に与える。交流電圧制御回路 6 4は、演算器 6 2で 取り出した共通母線 1 2の系統電圧の偏差分を基に、この偏差成分を抑 制するのに必要な無効電力に応じた指令値を演算し、電力変換器 5 1の 主回路制御装置 5 0に与える。 この場合、 その偏差分が、所定値以内で あれば、交流電圧制御回路 6 4の出力は、変動しないので、多少の消費 電力の変動に対し過敏に動作し制御系に外乱を与えるような動作を抑 止できる。他の各電力変換装置 6 7〜6 9においても同様の動作が行な われる。
上記実施形態 3では、個別に共通母線 1 2の電圧を検出し、その電圧 検出値と基準値との偏差値を演算すると共に、その偏差値に不感帯を設 けた無効電力指令値を得、該無効電力指令値に基づき共通母線 1 2との 間でやり取りされる無効電力を制御するので、電力系統の電圧の振動を 抑制することができ、 より安定な電動機違転が可能となる。 実施の形態 4 ·
第 7図は、この発明を実施するための実施形態 4による電動機駆動シ ステムを説明するための図である。
第 7図において、第 1図と同一の符号を付したものは、同一またはこ れに相当するものである。これは実施形態 1 と基本的な構成は同じであ るが、複数の電力変換装置 7 4〜7 7に対し共通制御装置 7 3を備えて いる点が実施形態 1 と異なっている。
共通制御装置 7 3は、共通母線 1 2の系統電圧を検出する電圧検出器 7 0と、共通母線 1 2の系統電圧の振動成分を取り出すフィルタ 7 1 と、 無効電力指令値を演算して各電力変換装置 7 4〜7 7へ分配出力する 交流電圧制御回路 7 2とから構成されている。
共通制御装置 7 3において、フィルタ 7 1は、電圧検出器 4 8で検出 した共通母線 1 2の系統電圧から振動成分を取り出し、交流電圧制御回 路 7 2に与える。交流電圧制御回路 7 2は、フィルタ 7 1で取り出した 共通母線 1 2の系銃電圧の振動成分を基に、この振動成分を抑制するの に必要な無効電力に応じた指令値を演算し、電力変換装置 7 4〜7 7に 与える。
上記実施形態 4では、共通母線 1 2の系統電圧の振動成分を個別でな く共通的に検出し、その検出電圧からフィルタ 7 1を介して系統電圧の 振動成分を取り出すと共に、該振動成分に基づき演算された無効電力指 令値を各電力変換装置 7 4〜 7 7に分配し、無効電力指令値に応じて各 電力変換装置 7 4〜 7 7が個別に共通母線 1 2との間でやり取りされ る無効電力を制御することにより、共通母線電圧の振幅を一定に制御す る。 このため、実施形態 1のように個別に交流電圧制御回路 4 9を設け る場合に比べて、交流電圧制御回路 4 9の制御バラツキによる影響を受 けないので、共通母線 1 2の電圧の振動をより確実に抑制することがで きると共に、 より安定な電動機運転が可能となる。 実施の形態 5 .
第 8図は、この発明を実施するための実施形態 5による電動機駆動シ ステムを説明するための図である。
第 8図において、第 7図と同一の符号を付したものは、同一またはこ れに相当するものである。第 8図に示すように、 電力変換装置 7 9·は、 実施形態 4の構成に加えて、無効電力指令値を演算して分配出力する交 流電圧制御回路 7 2と主回路制御装置 5 0との間に無効電力指令値の 上限値を与える上限値制限回路 7 8を備えている。他の各電力変換装置 8 0 ~ 8 2も同様の構成を有している。
この上限値制限回路 7 8は、交流電圧制御回路 7 2より電力変換装置 7 9の主回路制御装置 5 0に与えられる無効電力の出力指令値に所定 の上限値を与えることにより、電動機 2 3の制御機能に必要な消費電力 に影響を与えないことができる。他の各電力変換装置 8 0〜8 2におい ても同様の動作が行なわれる。
上記実施形態 5では、各電力変換装置 7 9〜8 2が個別にその無効電 力指令値に所定の上限値を与え、電力変換装置 7 9〜8 2と共通母線 1 2との間でやり取りされる無効電力を制御することにより、共通母線電 圧の振幅を一定に制御するので、共通母線 1 2の電圧の振動を抑制する ことができると共に、電動機 2 3〜 2 6の制御機能に必要な消費電力に 影響を与えないでより安定な電動機違 feを行なうことができる。 実施の形態 6 .
第 9図は、この発明を実施するための実施形態 6による電動機駆動シ ステ厶を説明するための図である。
第 9図において、第 7図と同一の符号を付したものは、同一またはこ れに相当するものである。 第 9図に示すように、 電力変換装置 8 6は、 実施形態 4の構成に加えて、無効電力指令値を演算して分配出力する交 流電圧制御回路 7 2と主回路制御装置 8 4との間に負荷の消費電力、す なわち電動機 2 3における駆動電流の有効電力分の変動量に応じて無 効電力量指令値の上限値を可変に制限する可変制限回路 8 3を備えて いる。なお、主回路制御装置 8 4は負荷の消費電力状態、すなわち.電動 機 2 3における駆動電流の有効電力分の変動量に応じて変化する信号 を可変制限回路 8 3に与える機能を備えている。また、他の各電力変換 装置 8 7〜8 9も同様の構成を有している。
この可変制限回路 8 3は、交流電圧制御回路 7 2より電力変換装置 8 6の主回路制御装置 8 4に与えられる無効電力の出力指令値に所定の 上限値を与える。 これにより、電動機 2 3の制御機能に必要な消費電力 に影響を与えないことができ、 また、その上限値を電動機 2 3における 駆動電流の有効電力分の変動量に応じて可変にすることにより電力系 銃の電圧制御余裕も確保できる。他の各電力変換装置 8 7〜8 9におい ても同様の動作が行なわれる。
上記実施形態 6では、各電力変換装置 8 6〜8 9が個別に無効電力指 令値に、各電動機 2 3〜2 6における駆動電流の有効電力分の変動量に 応じて変化する上限値を与え、各電力変換装置 8 6〜8 9と共通母線 1 2との間でやり取りされる無効電力を制御することにより、共通母線電 圧の振幅を一定に制御するので、共通母線 1 2の電圧の振動を抑制する ことができると共に、電動機 2 3〜2 6の制御機能に必要な消費電力に 影響を与えないでより安定な電動機運転を行なうことができる。 実施の形態 7 .
第 1 0図は、この発明を実施するための実施形態 7による電動機駆動 システムを説明するための図である。
第 1 0図において、第 7図と同一の符号を付したものは、同一または これに相当するものである。第 1 0図に示すように、共通制御装置 9 3 は、共通母線 1 2の系統電圧を検出する電圧検出器 7 0と、共適母線 1 2の系統電圧検出値と基準電圧値設定器 9 0の基準電圧値との偏差に 不感帯を加える不感帯付偏差演算回路 9 1 と、無効電力指令値を演算し て電力変換装置 8 6へ出力する交流電圧制御回路 9 2とから構成され ている。
偏差演算回路 9 1は、電圧検出器 7 0で検出した共通母線 1 2の系統 電圧検出値と基準電圧値設定器 9 0の出力を比較し、その偏差が所定の 値以下では、ゼロとする不感帯を有し、交流電圧制御回路 9 2に与える。 交流電圧制御回路 9 2は、演算器 9 1で取り出した共通母線 1 2の系統 電圧の偏差分を基に、この偏差成分を抑制するのに必要な無効電力に応 じた指令値を演算し、 電力変換装置 8 6〜8 9に与える。 この場合、 そ の偏差分が、所定値以内であれば、 交流電圧制御回路 9 2の出力は、変 動しないので、多少の消費電力の変動に対し過敏に動作し制御系に外乱 を与えるような動作を抑止できる。
上記実施形態 7では、各電力変換装置 8 6 ~ 8 9は、共通母線 1 2の 電圧を検出し、その電圧検出値と予め設定された基準電圧値との偏差値 を演算すると共に、その偏差値に不感帯を設けた無効電力指令値を電力 変換装置 8 6〜8 9に分配し、各電力変換装置 8 6〜8 9が個別にその 無効電力指令値に、各電動機 2 3〜2 6における駆動電流の有効電力分 の変動量に応じて変化する上限値を与え、共通母線 1 2との間でやり取 りされる無効電力を制御するので、共通母線 1 2の電圧の振動を抑制す ることができると共に、電動機の制御機能に必要な消費電力に影響を与 えないでより安定な電動機運転を行なうことができる。 産業上の利用可能性
この発明は、特に、 L N Gプラントゃ船舶電気推進用の電動機駆動シ ステムとして用いられる。

Claims

請 求 の 範 囲
1 .液体或いは気体燃料の燃焼により機械動力を出力する機械動力発生 装置と、該機械動力発生装置により駆動され、交流電圧を発生する複数 台の発電機と、該複数台の発電機の出力端子が並列接続された共通母線 と、該共通母線に入力端子が接続され、可変振幅及び可変周波数の交流 電圧を出力する複数台の電力変換装置と、該各電力変換装置にそれぞれ 接続され、負荷機械を駆動する複数台の電動機とから構成され、上記各 電力変換装置は、上記共通母線の電圧変動に応じて、上記共通母線との 間でやり取りされる無効電力を制御することにより、上記共通母線,電圧 の振幅を一定に制御することを特徴とする電動機駆動システム。
2 . 上記各電力変換装置は、個別に上記共通母線の電圧を検出し、 その 検出電圧に応じて上記共通母線との間でやり取りされる無効電力を制 御することを特徴とする請求項 1記載の電動機駆動システム。
3 . 上記各電力変換装置は、上記共通母線の検出電圧からフィルタを介 して系統電圧の振動成分を取り出すと共に、該振動成分に基づき上記共 通母線との間でやり取りされる無効電力を制御することを特徴とする 請求項 2記載の電動機駆動システム。
4 . 上記各電力変換装置は、上記共通母線の電圧検出値と予め設定され た基準電圧値との偏差値を演算すると共に、その偏差値に不感帯を設け た無効電力指令値を得、該無効電力指令値に基づき上記共通母線との間 でやり取りされる無効電力を制御することを特徴とする請求項 2記載 の電動機駆動システム。
5 . 上記共通母線の電圧を検出し、その検出電圧からフィルタを介して 系統電圧の振動成分を取り出すと共に、該振動成分に基づき演算された 無効電力指令値を上記各電力変換装置に分配し、上記無効電力指令値に 応じて上記各電力変換装置が個別に上記共通母線との間でやり取りさ れる無効電力を制御することを特徴とする請求項 1記載の電動機駆動 ンステム。
6 .上記各電力変換装置が個別にその無効電力指令値に所定の上限値を 与えることを特徴とする請求項 5記載の電動機駆動システム。
7 . 上記各電力変換装置が個別に上記無効電力指令値に、上記電動機に おける駆動電流の有効電力分の変動量 (こ応じて変化する上限値を与え ることを特徴とする請求項 5記載の電動機駆動システム。
8 . 上記各電力変換装置は、上記共通母線の電圧を検出し、 その電圧検 岀値と予め設定された所定電圧値との偏差値を演算すると共に、その偏 差値に不感帯を設けた無効電力指令値を上記電力変換装置に分配し、上 記各電力変換装置が個別にその無効電力指令値に、上記電動機における 駆動電流の有効電力分の変動量に応じて変化する上限値を与え、上記共 通母線との間でやり取りされる無効電力を制御することにより、上記共 通母線電圧の振幅を一定に制御することを特徴とする請求項 1記載の 電動機駆動システム。
PCT/JP2003/008117 2003-06-26 2003-06-26 電動機駆動システム WO2005002038A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2003/008117 WO2005002038A1 (ja) 2003-06-26 2003-06-26 電動機駆動システム
EP03736261.3A EP1641098B1 (en) 2003-06-26 2003-06-26 Motor drive system
JP2005503217A JP4440880B2 (ja) 2003-06-26 2003-06-26 電動機駆動システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/008117 WO2005002038A1 (ja) 2003-06-26 2003-06-26 電動機駆動システム

Publications (1)

Publication Number Publication Date
WO2005002038A1 true WO2005002038A1 (ja) 2005-01-06

Family

ID=33549043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008117 WO2005002038A1 (ja) 2003-06-26 2003-06-26 電動機駆動システム

Country Status (3)

Country Link
EP (1) EP1641098B1 (ja)
JP (1) JP4440880B2 (ja)
WO (1) WO2005002038A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458819C1 (ru) * 2011-02-25 2012-08-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт судовой электротехники и технологии" (ФГУП "ЦНИИ СЭТ") Судовая электроэнергетическая установка (варианты)
CN112638764A (zh) * 2018-09-05 2021-04-09 川崎重工业株式会社 转向型推进器以及转向型推进器的控制方法
US11146073B2 (en) 2019-11-01 2021-10-12 Caterpillar Inc. System and method for optimization of engines on a common variable frequency bus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2375530A1 (en) * 2010-04-09 2011-10-12 Siemens Aktiengesellschaft Onboard floating drilling installation and method for operating an onboard floating drilling installation
RU2521115C2 (ru) * 2012-10-16 2014-06-27 Федеральное государственное унитарное предприятие "Росморпорт" (ФГУП "Росморпорт") Судовая электроэнергетическая установка
RU2521883C1 (ru) * 2013-01-21 2014-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный морской технический университет" Судовая электроэнергетическая установка
RU2529090C1 (ru) * 2013-03-27 2014-09-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный морской технический университет" Судовая электроэнергетическая установка
RU2535768C1 (ru) * 2013-11-14 2014-12-20 Общество с ограниченной ответственностью "Малое инновационное предприятие "Электродвижение судов" Судовая валогенераторная установка
RU2617713C2 (ru) * 2015-08-26 2017-04-26 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Малогабаритный высокооборотный судовой генераторный агрегат
EP3225536B1 (fr) * 2016-03-31 2020-11-25 GE Energy Power Conversion Technology Ltd Système de distribution d'énergie électrique, procédé d'alimentation d'une charge correspondant, système et procédé de propulsion pour navire
RU2709983C2 (ru) * 2018-03-07 2019-12-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный морской технический университет" (СПбГМТУ) Судовая электроэнергетическая установка
RU187176U1 (ru) * 2018-11-19 2019-02-22 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" Судовая валогенераторная установка

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215201A (ja) * 1996-02-05 1997-08-15 Fuji Electric Co Ltd 燃料電池発電装置
JP2000037082A (ja) * 1998-07-16 2000-02-02 Hitachi Ltd インバータドライブ装置によるプラント電源カ率制御方式
WO2001000485A1 (de) * 1999-06-24 2001-01-04 Siemens Aktiengesellschaft Antriebs- und fahrsystem für schiffe
WO2002100716A1 (de) * 2001-06-11 2002-12-19 Siemens Aktiengesellschaft Schiffsantriebssystem mit vermindertem bordnetzklirrfaktor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0720957A (ja) * 1993-07-01 1995-01-24 Tokyo Electric Power Co Inc:The 自励式無効電力補償装置
DE19737590C1 (de) * 1997-08-28 1998-10-22 Siemens Ag Verfahren und Vorrichtung zur Verbesserung der Spannungsqualität eines unterlagerten Netzteiles
JP4284879B2 (ja) * 2001-03-19 2009-06-24 三菱電機株式会社 電力変換装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09215201A (ja) * 1996-02-05 1997-08-15 Fuji Electric Co Ltd 燃料電池発電装置
JP2000037082A (ja) * 1998-07-16 2000-02-02 Hitachi Ltd インバータドライブ装置によるプラント電源カ率制御方式
WO2001000485A1 (de) * 1999-06-24 2001-01-04 Siemens Aktiengesellschaft Antriebs- und fahrsystem für schiffe
WO2002100716A1 (de) * 2001-06-11 2002-12-19 Siemens Aktiengesellschaft Schiffsantriebssystem mit vermindertem bordnetzklirrfaktor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2458819C1 (ru) * 2011-02-25 2012-08-20 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт судовой электротехники и технологии" (ФГУП "ЦНИИ СЭТ") Судовая электроэнергетическая установка (варианты)
CN112638764A (zh) * 2018-09-05 2021-04-09 川崎重工业株式会社 转向型推进器以及转向型推进器的控制方法
US11146073B2 (en) 2019-11-01 2021-10-12 Caterpillar Inc. System and method for optimization of engines on a common variable frequency bus

Also Published As

Publication number Publication date
EP1641098A4 (en) 2011-07-06
EP1641098A1 (en) 2006-03-29
EP1641098B1 (en) 2020-05-13
JP4440880B2 (ja) 2010-03-24
JPWO2005002038A1 (ja) 2006-08-10

Similar Documents

Publication Publication Date Title
JP5530603B2 (ja) パワーコンバータ
JP6318256B2 (ja) ガスタービン発電システム
EP2682339B1 (en) Power distribution systems
AU743548B2 (en) System for supplying electromotive consumers with electric energy
US8198753B2 (en) Power system with method for adding multiple generator sets
US8513911B2 (en) Power converters
JP6022711B2 (ja) ガスタービン発電システム
EP1670130A2 (en) Power conversion system and method
EP1820261A1 (en) Quality power from induction generator feeding variable speed motors
NO337459B1 (no) Kraftomformere
WO2005002038A1 (ja) 電動機駆動システム
CN102005999A (zh) 用于内燃发电机组的节能控制器
US20050225908A1 (en) Power converter system and method
US5111376A (en) Voltage balancing circuit
US7102343B1 (en) Methods and systems having multiple cooperating transformers
JP4440879B2 (ja) 電動機駆動システム
WO2005031939A1 (ja) 電動機駆動システム
JP4489018B2 (ja) 交流電動機の駆動システム
WO2020003619A1 (ja) 電力変換システム
JPS5839298A (ja) 主軸駆動発電装置
JP2008067452A (ja) 誘導発電機の系統並列装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2005503217

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003736261

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003736261

Country of ref document: EP