WO2005001952A1 - Compose pour la formation d'une monocouche auto-organisee, structure en couche, composant semi-conducteur et procede de realisation d'une structure en couche - Google Patents

Compose pour la formation d'une monocouche auto-organisee, structure en couche, composant semi-conducteur et procede de realisation d'une structure en couche Download PDF

Info

Publication number
WO2005001952A1
WO2005001952A1 PCT/DE2004/001342 DE2004001342W WO2005001952A1 WO 2005001952 A1 WO2005001952 A1 WO 2005001952A1 DE 2004001342 W DE2004001342 W DE 2004001342W WO 2005001952 A1 WO2005001952 A1 WO 2005001952A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer structure
substrate
monolayer
layer
Prior art date
Application number
PCT/DE2004/001342
Other languages
German (de)
English (en)
Inventor
Marcus Halik
Günter Schmid
Hagen Klauk
Ute Zschieschang
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2005001952A1 publication Critical patent/WO2005001952A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/701Organic molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/701Langmuir Blodgett films

Definitions

  • the invention relates to a compound for forming a self-organizing monolayer according to the preamble of claim 1, a layer structure according to claim 15, a semiconductor component with a layer structure according to claim 26 and a method for producing a layer structure according to claim 27.
  • OFET organic field effect transistors
  • F-ID radio frequency identification
  • Organic field effect transistors normally consist of at least four different layers, one on top of the other: a gate electrode, a dielectric, a source-drain contact layer and an organic semiconductor.
  • the order of the layers can vary.
  • the individual layers have to be structured, which is relatively complex.
  • the present invention has for its object to provide means and a method with which the manufacture of semiconductor components, in particular for organic field effect transistors, is simplified.
  • connection according to claim 1 This object is achieved by a connection according to claim 1.
  • three different functional chemical groups are matched to one another: at least one anchor group, at least one dielectric group and at least one semiconducting group.
  • Anchor groups per se are described in the articles by G.M. Whitesides et al. , "Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution onto Gold” JACS, vol. 111, p. 321-335 (1989) and ⁇ on J.H. Menzel et al. , “Mixed silane seifassembled monolayers and their in situ modification” Thin Solid Films, vol. 327-9, p. 199-203 (1998).
  • Dielectric layers are described in the article by J. Collet, D. Vuillaume, "Nano-field effect transistor with an organic SAM gate insulator" APL vol. 73, p. 2681 (1998).
  • the invention relates to a molecular structure with which the three groups described are integrated in a compound: a) at least one anchor group for binding the connection to a substrate, in particular an electrode material, b) at least one dielectric group, c) at least one semiconducting group.
  • This molecular structure to form a self-assembling monolayer enables e.g. an inexpensive construction of organic field effect transistors, which can be operated at very low voltages due to the extremely thin dielectric layer integrated in the molecule.
  • Organic transistors manufactured in this way can be used to produce integrated circuits with higher performance, as required, for example, in RF-ID applications.
  • Advantageous embodiments of the compound according to the invention have at least one spacer group and / or at least one crosslinker group.
  • Crosslinkers are also known in principle (see e.g. B. Vollmert “Polymer Chemistry” Springer Verlag New York, Heidelberg 1973).
  • Spacer groups are also known in principle. They serve to separate two functional groups in organic compounds so that they do not influence each other.
  • the at least one spacer group is used for the spatial spacing of adjacent connections of the same type or a different type.
  • the at least one crosslinker group serves to mechanically reinforce one Binding with neighboring connections of the same kind or a different kind.
  • connection is essentially linear and has exactly one anchor group, a dielectric group, a semiconducting group, a spacer group and a crosslinking group, the order of the dielectric group, the semiconducting group, the spacer group and the crosslinking group within the Connection is arbitrary.
  • the function of the connection in a monolayer can be specifically influenced by a specific choice of the order of the groups in the connection.
  • the dielectric group is arranged below the semiconducting group. This order is e.g. well suited for the production of monolayers from the compound for organic field effect transistors.
  • crosslinker group is located at the distal end of the connection, as seen from the substrate, a spacer group being arranged below the crosslinker group.
  • cross-linking e.g. easy to carry out due to thermal, chemical or photochemical effects.
  • At least one anchor group advantageously has a thiol, a chlorosilane, in particular trichlorosilane, an alkoxysilane, in particular trialkoxysilane groups, an amine, an amide and / or a phosphine on.
  • a chain that is too long can cause problems with the
  • At least one semiconducting group (3) has an ⁇ , oJ-oligothiopene, a thiophene-phenyl oligomer and / or a condensed aromatic, in particular a pentazene and / or a tetrazene. Also, at least one can be semiconducting
  • Group have one of the following groups:
  • Alkyl with m 2 ... 6 used.
  • a further advantageous embodiment of the compound according to the invention has at least one crosslinker group which has a polymerizable multiple bond, in particular one
  • Crosslinker group has a group that has an intermolecular interaction to form a network with other molecules, in particular contains a group with a possibility of hydrogen bonding and / or a group with a possibility of van der Waals binding and / or that at least one crosslinker group has one of the following groups:
  • Crosslinker group has a carboxylic acid and / or an amide.
  • this layer structure has a molecular monolayer with compounds according to at least one of Claims 1 to 15.
  • connections in the monolayer are arranged parallel to one another. It is also advantageous if the molecules in the monolayer to form layers have the same groups in the same order, the groups having essentially the same lengths. This results in horizontal layers in the monolayer, in which chemical groups with the same functionality lie (for example a dielectric layer or a semiconducting layer). To form particularly flat semiconductor components, it is advantageous if a layer consisting of the dielectric group (2) and the semiconducting group (3) is between 3 and 10 nm thick.
  • a base substrate has a semiconductor wafer, in particular made of silicon, glass, plastic and / or paper. Metallic and / or organic materials can be deposited on these materials.
  • the substrate on which e.g. a monolayer is to be deposited in particular an electrode material or a gate electrode, a metal layer, in particular made of gold, copper, platinum or
  • Palladium and / or a metal oxide layer in particular made of titanium and / or aluminum on ice.
  • the anchor group of a connection is matched to the substrate, in particular the electrode material.
  • the anchor group has a chlorosilane and / or an alkoxysilane.
  • at least one anchor group has a chlorosilane and / or an alkoxysilane.
  • at least one anchor group has a chlorosilane and / or an alkoxysilane.
  • Anchor group has a thiol.
  • at least one anchor group has an A in and / or an amide.
  • at least one anchor group has a phosphine.
  • the object is also achieved by a semiconductor component according to claim 24 if it has a layer structure according to at least one of claims 14 to 23.
  • the object is also achieved by a method for producing a layer structure according to at least one of claims 14 to 23 according to claim 25.
  • a monolayer (11) of a compound according to at least one of Claims 1 to 15 is applied to an assembly with a base substrate (7) by vapor deposition, depositing from a solution and / or an immersion process.
  • a monolayer is applied to a previously structured substrate, in particular an electrode material.
  • a base substrate and / or a substrate is cross-linked by thermal, photochemical and / or chemical action. This mechanically stabilizes the monolayer so that further processing can be carried out on the surface of the monolayer.
  • a metal layer is advantageously applied to the monolayer as a source-drain layer (8a, 8b), e.g. to obtain a compact field effect transistor structure.
  • Fig. 1 is a schematic representation of an embodiment of a connection according to the invention
  • FIG. 2 shows a schematic illustration of a plurality of connections arranged parallel to one another to form a layer structure
  • Fig. 3 general formula of the compound for forming a layer structure
  • FIG. 4a-c chemical formulas for anchor groups (FIG. 4a), semiconducting groups (FIG. 4b) and a crosslinker groups (FIG. 4c);
  • FIG. 5 shows a schematic structure of an organic field effect transistor with an embodiment of the layer structure according to the invention
  • Fig. 6-b output and pass characteristic of an organic field effect transistor with an embodiment of the layer structure according to the invention.
  • connection 10 shows an embodiment of a connection 10 according to the invention, with which self-organizing monolayers 11 (see FIG. 2) can be produced.
  • the connection 10 is constructed essentially linearly, an anchor group 1 serving to bind the connection 10 to an electrode material 6, not shown here, as a substrate.
  • the anchor group 1 is designed here as a chlorosilane group.
  • the monolayer can also be applied to a substrate other than an electrode material 6.
  • the anchor group 1 can have groups according to FIG. 4a, the first example in FIG. 4a being the chlorosilane group which is also used in the example of FIG. 1.
  • the other groups are alkoxysilanes with n-alkyl radicals (C x to C s ), amines, A ide and phosphines.
  • the adaptation of the anchor group 1 to a specific surface material of the substrate 6 is discussed in connection with FIG. 2.
  • the length of the dielectric group 2 allows the thickness of the insulator layer to be adjusted in a monolayer 11 (see FIG. 2).
  • a semiconducting group 3 which here has a polythiophene chain, is arranged above the dielectric group 2.
  • Corresponding semiconducting groups 3 are shown in Fig. 4b.
  • An alkyl chain with m> 6 does not appear to make sense, since a longer saver group 4 would act as an injection barrier between the top electrode and a semiconductor layer.
  • crosslinker group 5 which can in principle have any polymerizable group.
  • Examples are acrylates, methacrylates, activatable alkenes and / or activatable alkynes. Possible examples are
  • FIG. 3 A generalized structure of the connection is shown in FIG. 3.
  • the nomenclature given therein relates to the molecular groups in FIGS. 4a to 4c.
  • X denotes the anchor groups 1
  • Y the semiconducting groups 3
  • Z the crosslinker groups 5.
  • connections 10 can be used to form a layer structure (monolayer 11) which can be used for organic field effect transistors.
  • FIG. 2 essentially consists of connection 10 of FIG. 1.
  • the anchor group 1 is bonded to a titanium layer with a natural oxide layer on an electrode material 6.
  • the electrode material 6 here forms an electrode for an organic field effect transistor.
  • the anchor groups 1 can be adapted to the corresponding surfaces of the electrode material 6. Chlorosilanes and / or alkoxysilanes are preferably used for metal layers, in particular metal layers with natural oxides (titanium, aluminum). For gold layers are preferred.
  • Thiols, amines and / or amides are preferably used for copper layers and phosphines are preferably used as anchor groups 1 for palladium.
  • the linear connections 10 are arranged essentially parallel to one another.
  • the lengths of the anchor groups 1, the dielectric groups 2, the semiconducting groups 3, the spacer groups 4 and the crosslinker groups 5 are in each case the same, so that a monolayer with a horizontal layer structure is formed. It is advantageous if all connections 10 of a monolayer 11 are the same.
  • connection 10 An organic semiconductor, an organic insulator and mechanical amplifiers (crosslinking) are thus combined in one connection 10. Due to the integrated anchor group 1, the connections 10 bind selectively to a suitable electrode material and, due to their chemical structure, form layers (monolayers) which are arranged over a large area. After cross-linking (mechanical reinforcement
  • further structures can be easily defined (e.g. source-drain electrodes) without destroying the layer.
  • FIGS. 1, 2 and 3 Apart from the anchor group 1, which is always arranged at one end of the connection 10 in the case of linear connections 10, the sequence of the groups 2, 3, 4, 5 within the connection 10 is fundamentally arbitrary. For example, the semiconducting group 3 and the dielectric group 2 are interchanged within the connection 10, so that a different layer sequence results.
  • the anchor group 1, the dielectric group 2, the semiconducting group 3, the spacer group 4 and the crosslinking group 5 are also those described here
  • Embodiments each composed homogeneously from a chemical group.
  • the semiconducting group 3 is composed of different semiconducting groups 3 (for example thiophenes and aromatics).
  • the arrangement of the field-effect transistor shows characteristics with high charge carrier mobility, namely at very low voltages around 2V.
  • FIG. 5 shows a schematic sectional view of an organic field effect transistor 100 as an example of a semiconductor component with a self-organized, cross-linked monolayer 11, as was described in FIG. 2.
  • a base substrate 7 e.g. silicon wafer, glass, plastic film, paper
  • a base substrate 7 e.g. silicon wafer, glass, plastic film, paper
  • a metal layer e.g. titanium, aluminum, palladium, gold etc.
  • etching processes dry, wet chemical
  • This assembly (base substrate 7 with gate electrode 6) is immersed for 1 minute in a 1 to 10% solution of the compounds 10 described above to form a self-assembling monolayer 11.
  • the solvent is inert and, depending on anchor group 1, dry. Examples of solvents are Alcohols, toluene, xylene, n-hexane, Acteon and / or PGMEA are suitable.
  • the coated assembly is then rinsed with pure solvent in order to remove excess, unbound compounds 10. Then the coated assembly is washed with water and dried.
  • cross-linked The assembly with the monolayer 11 is stabilized below, ie cross-linked. This will depend on used crosslinker group 5 a thermal initialization (for example at 100 to 200 ° C for 5 minutes). Cross-linking can also be carried out chemically, in particular acid catalytically or photochemically (for example by irradiation with a dose corresponding to UV light).
  • the monolayer 11 is now mechanically stabilized and the source-drain layer 8a, 8b can be defined.
  • a further metal layer e.g. made of gold, platinum or palladium
  • This is structured using standard methods (e.g. photolithography) to form the source-drain layer 8a, 8b.
  • conductive organic materials e.g. conductive polymers
  • a connection of the individual contact layers is necessary to produce integrated circuits.
  • contact holes must be defined at the appropriate locations before the source-drain layer 8a, 8b is deposited.
  • the transistor structure on the base substrate 7 is very simple compared to conventional methods, since the combination of dielectric and semiconductor in a connection 10 eliminates the need to separate the layers.
  • the deposition of the materials on a previously defined electrode material 6 can take place both by thermal evaporation and from a solution. This means that these materials can also be deposited using inexpensive processes such as immersion processes.
  • Deposition is selective and runs very quickly due to the anchor groups 1, which can be selected specifically for the gate electrode material 6 (see description in connection with FIG. 2).
  • 6a and 6b show current-voltage characteristics which were determined using organic field effect transistors which were provided with embodiments of the monolayers 11 according to the invention.
  • the typical family of output characteristics for an OFET can be seen in FIG. 6a.
  • the gate-source voltage varies between -0.5 and -2 V.
  • the flat pinch-off areas for the drain current are clearly visible.
  • the subthreshold swing was 240 mV / decade, the on / off ratio was 10 3 , the threshold voltage was -0.1 V.
  • the compounds 10 according to the invention and the layer structures produced therefrom essentially offer the following advantages over conventional materials and their processing.
  • the layers are chemically fixed on the substrate (electrode material).
  • the embodiment of the invention is not limited to the preferred exemplary embodiments specified above. Rather, a number of variants are conceivable which make use of the connection according to the invention, the layer structure according to the invention, the semiconductor component according to the invention and the method according to the invention even in the case of fundamentally different types.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Film Transistor (AREA)

Abstract

L'invention concerne un composé utilisé pour former une monocouche auto-organisée, en particulier pour former une structure en couche destinée à un transistor à effet de champs organique, caractérisé par : a) au moins un groupe d'ancrage (1) servant à la liaison de la molécule (10) à un substrat, en particulier une matière d'électrode (6) ; b) au moins un groupe diélectrique (2) ; et c) au moins un groupe semi-conducteur (3). L'invention concerne en outre une structure en couche constituée dudit composé, un composant semi-conducteur et un procédé de production de cette structure de couche. Grâce à l'invention, il est possible de simplifier la production de composants semi-conducteurs, en particulier pour des transistors à effet de champ organiques.
PCT/DE2004/001342 2003-06-24 2004-06-23 Compose pour la formation d'une monocouche auto-organisee, structure en couche, composant semi-conducteur et procede de realisation d'une structure en couche WO2005001952A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10329247.0 2003-06-24
DE10329247A DE10329247A1 (de) 2003-06-24 2003-06-24 Verbindung zur Bildung einer selbstorganisierenden Monolage, eine Schichtstruktur, ein Halbleiterbauelement und ein Verfahren zur Herstellung einer Schichtstruktur

Publications (1)

Publication Number Publication Date
WO2005001952A1 true WO2005001952A1 (fr) 2005-01-06

Family

ID=33546708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/001342 WO2005001952A1 (fr) 2003-06-24 2004-06-23 Compose pour la formation d'une monocouche auto-organisee, structure en couche, composant semi-conducteur et procede de realisation d'une structure en couche

Country Status (2)

Country Link
DE (1) DE10329247A1 (fr)
WO (1) WO2005001952A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103952A1 (fr) * 2008-02-18 2009-08-27 Lomox Limited Substances
US7795145B2 (en) 2006-02-15 2010-09-14 Basf Aktiengesellschaft Patterning crystalline compounds on surfaces
US8558013B2 (en) 2008-01-07 2013-10-15 Lomox Limited Electroluminescent materials
US9006435B2 (en) 2009-09-30 2015-04-14 Lomox Limited Electroluminescent thiophene derivatives

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340610B4 (de) * 2003-08-29 2007-06-06 Infineon Technologies Ag Verbindung mit mindestens einer Speichereinheit aus organischem Speichermaterial, insbesondere zur Verwendung in CMOS-Strukturen, Halbleiterbauelement und ein Verfahren zur Herstellung eines Halbleiterbauelementes
DE102008046707A1 (de) * 2008-09-11 2010-03-18 Universität Bielefeld Vollständig vernetzte chemisch strukturierte Monoschichten
DE102009047315A1 (de) * 2009-11-30 2011-06-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Organischer Feldeffekttransistor und Verfahren zur Herstellung desselben
CN104284996B (zh) 2012-05-02 2017-10-24 巴斯夫欧洲公司 沉积有机材料的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095090A (en) * 1989-04-13 1992-03-10 Fuji Photo Film Co., Ltd. Polypeptide thin film from amphiphilic compounds
DE4233987A1 (de) * 1992-10-09 1994-04-14 Hoechst Ag Substituierte Thiophene und ihre Verwendung
US20020098346A1 (en) * 1998-03-27 2002-07-25 Yissum Research Development Company Of The Hebrew University Of Jerusalem Molecular layer epitaxy method and compositions
US20030099845A1 (en) * 2001-04-17 2003-05-29 Matsushita Electric Industrial Co., Ltd. Conductive organic thin film, method for manufacturing the same, electrode and electric cable using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050101063A1 (en) * 2000-10-24 2005-05-12 Tour James M. Three-terminal field-controlled molecular devices
WO2003007399A2 (fr) * 2001-07-09 2003-01-23 Plastic Logic Limited Alignement a bas point de fusion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095090A (en) * 1989-04-13 1992-03-10 Fuji Photo Film Co., Ltd. Polypeptide thin film from amphiphilic compounds
DE4233987A1 (de) * 1992-10-09 1994-04-14 Hoechst Ag Substituierte Thiophene und ihre Verwendung
US20020098346A1 (en) * 1998-03-27 2002-07-25 Yissum Research Development Company Of The Hebrew University Of Jerusalem Molecular layer epitaxy method and compositions
US20030099845A1 (en) * 2001-04-17 2003-05-29 Matsushita Electric Industrial Co., Ltd. Conductive organic thin film, method for manufacturing the same, electrode and electric cable using the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
COLLET J ET AL: "High anisotropic conductivity in organic insulator/semiconductor monolayer heterostructure", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 76, no. 10, 6 March 2000 (2000-03-06), pages 1339 - 1341, XP012024797, ISSN: 0003-6951 *
COLLET J ET AL: "Low-voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 76, no. 14, 3 April 2000 (2000-04-03), pages 1941 - 1943, XP012024988, ISSN: 0003-6951 *
GARNIER F ET AL: "Two dimensional excitons in thin films of thiophene oligomers", OPTICAL MATERIALS, ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM, NL, vol. 9, no. 1-4, 1998, pages 445 - 448, XP004123069, ISSN: 0925-3467 *
SIRRINGHAUS H ET AL: "TWO-DIMENSIONAL CHARGE TRANSPORT IN SELF-ORGANIZED, HIGH-MOBILITY CONJUGATED POLYMERS", NATURE, MACMILLAN JOURNALS LTD. LONDON, GB, vol. 401, 14 October 1999 (1999-10-14), pages 685 - 688, XP000934323, ISSN: 0028-0836 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7795145B2 (en) 2006-02-15 2010-09-14 Basf Aktiengesellschaft Patterning crystalline compounds on surfaces
US8558013B2 (en) 2008-01-07 2013-10-15 Lomox Limited Electroluminescent materials
US9029537B2 (en) 2008-01-07 2015-05-12 Lomox Limited Electroluminescent materials
WO2009103952A1 (fr) * 2008-02-18 2009-08-27 Lomox Limited Substances
US9508942B2 (en) 2008-02-18 2016-11-29 Lomox Limited Liquid crystal photoalignment materials
US10707426B2 (en) 2008-02-18 2020-07-07 Lomox Limited Liquid crystal photoalignment materials
US9006435B2 (en) 2009-09-30 2015-04-14 Lomox Limited Electroluminescent thiophene derivatives

Also Published As

Publication number Publication date
DE10329247A1 (de) 2005-01-27

Similar Documents

Publication Publication Date Title
DE10328811B4 (de) Verbindung zur Bildung einer selbstorganisierenden Monolage, Schichtstruktur, Halbleiterbauelement mit einer Schichtstruktur und Verfahren zur Herstellung einer Schichtstruktur
EP1825534B1 (fr) Procede pour l'application structuree de molecules sur un trace conducteur et matrice de memoire moleculaire
DE112009001944T5 (de) Oberflächenbehandelte Substrate für organische Dünnschichttransistoren mit oben liegendem Gate
DE102004025423B4 (de) Dünnfilm-Feldeffekt-Transistor mit Gate-Dielektrikum aus organischem Material und Verfahren zu dessen Herstellung
EP1516374A1 (fr) Diminution de la resistance de contact dans des transistors a effet de champ organiques dotes de contact au palladium, par utilisation de nitriles et d'isonitriles
DE10006257A1 (de) Dünnfilmtransistoren mit organisch-anorganischen Hybridmaterialien als halbleitende Kanäle
EP1743389A2 (fr) Dielectriques ultra minces et leur utilisation dans des transistors organiques a effet de champ
DE102004009600B4 (de) Selbstorganisierende organische Dielektrikumsschichten auf der Basis von Phosphonsäure-Derivaten
DE602004005685T2 (de) Verfahren zur herstellung einer elektronischen anordnung
DE102012200896A1 (de) Elektronisches Bauelement
EP1658647B1 (fr) Circuit integre comportant un semi-conducteur organique et procede de fabrication d'un circuit integre
DE112010000849T5 (de) Verfahren zum Bilden von Source- und Drain-Elektoden organischer Dünnfilmtransistoren durch stromloses Plattieren
WO2005001952A1 (fr) Compose pour la formation d'une monocouche auto-organisee, structure en couche, composant semi-conducteur et procede de realisation d'une structure en couche
DE10153562A1 (de) Verfahren zur Verringerung des elektrischen Kontaktwiderstandes in organischen Feldeffekt-Transistoren durch Einbetten von Nanopartikeln zur Erzeugung von Feldüberhöhungen an der Grenzfläche zwischen dem Kontaktmaterial und dem organischen Halbleitermaterial
EP1525631B1 (fr) Reduction de la resistivite de contact dans les transistors a effet de champ organiques par l'utilisation de phosphines et de phosphines metalliferes
DE102004010094B3 (de) Halbleiterbauelement mit mindestens einer organischen Halbleiterschicht und Verfahren zu dessen Herstellung
DE10226370B4 (de) Substrat für ein elektronisches Bauteil, Verwendung des Substrates, Verfahren zur Erhöhung der Ladungsträgermobilität und Organischer Feld-Effekt Transistor (OFET)
EP1644995B1 (fr) Composant en semi-conducteur, et son procede de production
EP1704606B1 (fr) Procédé de fabrication de transistor organique à électrode grille autoréglable
EP1684304A2 (fr) Liaison des molecules organiques a une surface de silicium afin de fabriquer des memoires comprennant de composants organiques
DE10340609A1 (de) Polymerformulierung und Verfahren zur Herstellung einer Dielektrikumsschicht
WO2004047194A2 (fr) Composant electronique organique comportant le meme materiau organique pour au moins deux couches fonctionnelles
DE102006027884B4 (de) Organischer Dünnfilmtransistor mit einer homogen-kristallinen organischen Halbleiterschicht
DE202005017580U1 (de) Nano-elektronische Bauelemente
DE102009047315A1 (de) Organischer Feldeffekttransistor und Verfahren zur Herstellung desselben

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase