WO2005001946A1 - Peltier element and production method therefor - Google Patents

Peltier element and production method therefor Download PDF

Info

Publication number
WO2005001946A1
WO2005001946A1 PCT/JP2004/009162 JP2004009162W WO2005001946A1 WO 2005001946 A1 WO2005001946 A1 WO 2005001946A1 JP 2004009162 W JP2004009162 W JP 2004009162W WO 2005001946 A1 WO2005001946 A1 WO 2005001946A1
Authority
WO
WIPO (PCT)
Prior art keywords
peltier device
electrodes
thermoelectric
thermoelectric converters
pair
Prior art date
Application number
PCT/JP2004/009162
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Higashi
Original Assignee
Da Vinci Co., Ltd.
Sera Corporation. Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Da Vinci Co., Ltd., Sera Corporation. Inc. filed Critical Da Vinci Co., Ltd.
Priority to JP2005511085A priority Critical patent/JP4669395B2/en
Publication of WO2005001946A1 publication Critical patent/WO2005001946A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a Peltier device and a method for manufacturing the same. More specifically, it has at least one pair of thermoelectric converters in which P-type semiconductor elements and N-type semiconductor elements are alternately arranged and adjacent ends are alternately connected in series with electrodes, and has a cooling action by the Peltier effect.
  • the present invention relates to a Peltier device and a method for manufacturing the same.
  • thermoelectric conversion substrates which are thermoelectric conversion bodies
  • Patent Documents 1 and 2 those described in Patent Documents 1 and 2 below are known.
  • a plurality of thermoelectric conversion substrates are stacked via a ceramic heat transfer plate.
  • Patent Document 1 JP-A-8-236820
  • Patent Document 2 JP-A-10-303473
  • Patent Document 1 the size of the thermoelectric conversion substrate is unified, and the number of semiconductors arranged in each stage is the same.
  • the heat absorption efficiency is improved by sequentially increasing the amount of current from the heat absorption side stage to the heat radiation side stage by an integral multiple.
  • the pattern of the thermoelectric conversion board had to be different for each stage in order to increase the amount of current sequentially, and the design * manufacturing was complicated.
  • Patent Document 2 the melting point of the solder in each step is changed in order to stack a plurality of stages of thermoelectric conversion substrates, and the production is complicated in order to increase the reliability of forming each layer.
  • an object of the present invention is to provide a Peltier device that is easy to manufacture and has high cooling efficiency and a method for manufacturing the same.
  • a feature of the Peltier device is that a P-type semiconductor device and an N-type semiconductor device are alternately arranged, and adjacent ends are alternately connected in series with electrodes.
  • the intermediate substrate is not required, and the electrodes constituting the thermoelectric converter do not need to be largely different in each layer, and can be easily manufactured.
  • the insulating sheet interposed between the opposing electrodes only needs to insulate and bond these electrodes, so that the insulating sheet can be made very thin, and as a result, the thermal resistance can be reduced.
  • the elasticity of the adhesive reinforced with fibers absorbs the thermal stress generated at the joint between the two thermoelectric converters, so that the problem of thermal distortion is also eliminated.
  • thermoelectric converters can be connected in parallel or in series to a power supply.
  • thermoelectric converters When independent voltage application terminals are provided for the pair of thermoelectric converters, a voltage can be applied to each thermoelectric converter, and design can be performed with a high degree of freedom.
  • an electrode on the opposite side of the electrode facing the fiber is formed on an insulating substrate.
  • thermoelectric converter By covering the side surface of the thermoelectric converter orthogonal to the laminating direction with the insulating sheet, insulation is provided.
  • An edge moisture-proof layer may be constituted.
  • the fiber may be glass fiber, and the adhesive may be a silicone varnish. It is desirable that the thickness of the fiber is 0.3 mm or less.
  • the pair of thermoelectric converters is formed, and the electrodes are opposed to each other with the insulating sheet interposed therebetween, and the bonding is performed. It is to fix the electrodes facing each other by drying.
  • the heat resistance is reduced by eliminating the ceramic heat transfer plate interposed between the thermoelectric conversion substrates, thereby improving the cooling efficiency. Became possible.
  • the use of an insulating sheet improves the manufacturing efficiency by facilitating the joining process while ensuring insulation using fibers, and improves the durability of the element by absorbing thermal deformation with a bonding material reinforced with fibers. I got it.
  • thermoelectric converters of substantially the same shape formed symmetrically with respect to the plane can be electrically laminated independently, so that the degree of freedom in designing according to the use of the user is increased.
  • the characteristics of each thermoelectric converter are adjusted by, for example, making the resistance values of the two-stage thermoelectric converters stacked different from each other, and the maximum temperature difference between the heat absorption side and the heat generation side of the Peltier element as a whole is determined. It is also possible to design such as to achieve the goal.
  • thermoelectric converters by eliminating the ceramic heat conductive plate from between the pair of thermoelectric converters and introducing a thin-film insulating sheet, the temperature difference between the heat absorbing surface and the heat radiating surface of each thermoelectric converter is reduced. Reduced.
  • FIG. 1 is a side view of a Peltier device according to the present invention.
  • FIG. 2 is a side view of a thermoelectric converter used for the Peltier device in FIG. 1.
  • FIG. 3 is an exploded perspective view of the Peltier device of FIG. 1.
  • FIG. 4 is a side view of a Peltier device according to a second embodiment of the present invention.
  • FIG. 5 is a side view of a Peltier device according to a third embodiment of the present invention.
  • FIG. 6 is a side view of a Peltier device according to a fourth embodiment of the present invention.
  • the Peltier element 1 is configured by stacking a plurality of thermoelectric converters 2 (2a) as shown in FIG. 2 as shown in FIG.
  • Each thermoelectric converter 2 is formed by alternately connecting the adjacent ends of a P-type semiconductor element 4 and an N-type semiconductor element 5 which are alternately arranged in series with an electrode 6.
  • an electrode 6b made of copper or the like on an insulating base material 7 made of a ceramic base material and an electrode 6a made of a single metal such as copper are used as joining members.
  • the electrodes 6b, 6b opposite to the electrodes 6a, 6a facing the insulating sheet 3 are formed on the insulating substrate 7.
  • Voltage application terminals 8A, 8B, 8C and 8D are fixed to the electrodes 6b and 6b located at the beginning and end of each thermoelectric converter 2 by soldering, respectively. Since these terminals 8A, 8B, 8C and 8D are independent, they can be electrically connected either in series or in parallel, and two types of two-stage Peltier elements with different characteristics can be easily formed from the same thermoelectric conversion board. Can produce. Furthermore, it is also possible to apply different voltages individually, which has succeeded in ensuring the freedom of design for the user. And, since the connection form of the terminals can be varied in various ways, we succeeded in improving the degree of freedom in design.
  • the pair of thermoelectric converters 2a and 2b are formed such that their shapes are symmetric with respect to a plane parallel to the electrode 6 (6a).
  • the opposing electrodes 6a, 6a are both formed in a rectangular shape when viewed in the layered direction.
  • the electrodes 6a and 6a face each other means “the electrodes 6a and 6a almost overlap each other when viewed in the stacked direction”. Since the pair of thermoelectric converters 2a and 2b are formed so as to be symmetrical in shape with respect to the above-mentioned parallel plane, the heat transfer between the pair of thermoelectric converters 2a and 2b is considered to be the most efficient. Become.
  • the electrodes are fixed to each other with an insulating sheet 3 formed by applying an adhesive 3b to fibers 3a.
  • the fiber 3a is located between each facing metal electrode. It is desirable that at least each of the electrodes 6a, 6a be disposed so as to avoid direct contact with each other.
  • the fiber includes a woven fabric in which fibers are arranged vertically and horizontally, a nonwoven fabric in which fibers are randomly arranged, and a fiber in which fibers are oriented in one direction. In other words, it can be said to be a cloth.
  • the fibers are oriented in two or more directions along the plane of each electrode 6a in order to withstand tensile and compressive changes.
  • a glass cloth using glass fiber as an insulator is used as the fiber 3a.
  • an inorganic adhesive such as a silicone adhesive, for example, silicone rubber or silicone varnish can be used as the adhesive.
  • both the fiber 3a and the adhesive 3b are made of an insulating material.
  • the thickness of the insulating sheet is 0.3 mm or less, preferably 0.2 mm or less.
  • thermoelectric converters 2a and 2b are prepared. Then, after the electrodes 6a, 6a are opposed to each other with the insulating sheet 3 interposed therebetween, the adhesive 3b is dried and the opposed electrodes 6a, 6a are fixed to complete the Peltier device 1.
  • the right terminal 8A of the lower thermoelectric converter 2a is connected to a positive terminal, and the other terminal 8B is connected to a negative terminal.
  • the right terminal 8C of the upper thermoelectric converter 2b is connected to a positive terminal, and the other terminal 8D is connected to a negative terminal.
  • the upper surfaces F 1 and F 1 of the thermoelectric converters 2 a and 2 b are on the heat absorbing side, and the lower surfaces F 2 and F 2 are on the heat radiating side. Heat is dissipated from the lower side of element 1 as shown by arrow H2.
  • these terminals 8A, 8B, 8C, 8D are independent, various variations can be realized without being limited to this.
  • thermoelectric converter 2a having an electric resistance of 1.8 ⁇ and the same shape made of the same number of semiconductors, but the P-type semiconductor element 4 and the N-type semiconductor element 5 are arranged in reverse.
  • the thermoelectric converter 2c having an electric resistance value of 1.5 ⁇ is laminated according to the above-described procedure.
  • external connection terminals 8E and 8F are provided at the left ends of both thermoelectric converters 2a and 2c, and the other left ends are connected with a connection terminal 8G and connected in series.
  • the voltage and power consumption of the upper thermoelectric converter 2c are equal to those of the lower thermoelectric converter 2a. It seems that the heat absorption becomes smaller. However, since there is greater heat absorption from the lower thermoelectric converter 2a, the temperature difference force S between the heat absorbing surface F1 and the heat generating surface F2 of the upper thermoelectric converter 2c itself becomes smaller, and the maximum value of the temperature difference increases. When the plus electrode and the minus electrode are inverted, the maximum value of the temperature difference tends to decrease compared to the above, but the maximum endothermic amount tends to increase and the maximum values of the maximum endothermic amount and the temperature difference are the resistance values. Can be determined by adjusting the difference between the two.
  • the semiconductors 4 and 5 and the electrodes 6 sandwiched between the insulating bases 7 and 7 of the thermoelectric converter 2 in the Peltier device 1 according to the second embodiment The same thing as the above-mentioned insulating sheet is arranged so as to surround the outer periphery of the above.
  • the sheet is dried and fixed to form the insulating and moisture-proof layer 10.
  • a thick insulating moisture-proof film formed of silicone RTV rubber or the like for insulation moisture-proofing can be formed into a thin film, so that the film propagates to each ceramic substrate via the insulating moisture-proofing film.
  • the amount of heat generated can be reduced, and the mechanical strength can be reinforced.
  • thermoelectric converter 2d similar to the Peltier device 1 according to the second embodiment is further added to form a three-layer structure.
  • An insulating sheet 3 is inserted between the lower thermoelectric converter 2d and the intermediate thermoelectric converter 2e, and between the intermediate thermoelectric converter 2e and the upper thermoelectric converter 2f, respectively, and is inserted into the electrodes 6a and 6a of the insulating sheet insertion portion.
  • Each thermoelectric converter 2d, 2e, 2f is formed as a plane symmetrical shape through a parallel plane.
  • External connection terminals 8H and 81 are fixed to the lower thermoelectric converter 2d and the upper thermoelectric converter 2f, respectively. Adjacent thermoelectric converters are connected by series terminals 8J and 8K.
  • the upper connection terminal 81 when the upper connection terminal 81 is connected to the plus electrode and the lower connection terminal 8H is connected to the minus electrode, the upper surface F1 of each of the thermoelectric converters 2d, 2e, 2f becomes a heat absorbing surface and the lower surface F2 becomes a heat radiating surface.
  • the present invention can be used as a Peltier device having at least one pair of thermoelectric converters, and can also be used as a multi-stage Peltier device further provided with a plurality of thermoelectric converters.

Abstract

A Peletier element easy to produce and high in cooling efficiency, and a production method therefor. This Peletier element (1) has at least one pair of thermoelectric converters (2) in which p-type semiconductor elements (4) and n-type semiconductor elements (5) are alternately disposed with adjacent ens of respective elements series-joined by electrodes (6, 6a) alternately. A pair of thermoelectric converters (2a, 2b) are formed so that they are symmetrical in shape with respect to a surface parallel to the electrode (6) and a heat absorption surface F1 and a heat emission surface F2 face each other. Respective electrodes (6, 6a) are fixed to face each other across an insulation sheet (3) consisting of glass fibers (3a) coated with silicone varnish (3b).

Description

明 細 書  Specification
ペルチェ素子及びその製造方法  Peltier device and method of manufacturing the same
技術分野  Technical field
[0001] 本発明は、ペルチェ素子及びその製造方法に関する。さらに詳しくは、 P型半導体 素子と N型半導体素子とを交互に配置して隣り合う端部同士を交互に電極で直列接 合した熱電変換体を少なくとも一対有し、ペルチェ効果による冷却作用を有するペル チェ素子とその製造方法に関する。  The present invention relates to a Peltier device and a method for manufacturing the same. More specifically, it has at least one pair of thermoelectric converters in which P-type semiconductor elements and N-type semiconductor elements are alternately arranged and adjacent ends are alternately connected in series with electrodes, and has a cooling action by the Peltier effect. The present invention relates to a Peltier device and a method for manufacturing the same.
背景技術  Background art
[0002] 従来、熱電変換体である熱電変換基板を複数段重ねた上述の如きペルチェ素子と しては、次の特許文献 1、 2に記載のものが知られている。同特許文献によれば、セラ ミック製熱伝達板を介して複数の熱電変換基板を重ねている。  Conventionally, as a Peltier element as described above in which a plurality of thermoelectric conversion substrates, which are thermoelectric conversion bodies, are stacked, those described in Patent Documents 1 and 2 below are known. According to the patent document, a plurality of thermoelectric conversion substrates are stacked via a ceramic heat transfer plate.
特許文献 1:特開平 8 - 236820号  Patent Document 1: JP-A-8-236820
特許文献 2:特開平 10 - 303473号  Patent Document 2: JP-A-10-303473
[0003] 特許文献 1では、熱電変換基板の大きさを統一して各段に配置される半導体数を 同一にしている。そして、吸熱側段から放熱側段に至るまでの電流量を整数倍で順 次大きくすることにより、吸熱効率の向上を図っている。しかし、電流量を順次大きく するために各段毎に熱電変換基板のパターンを異ならせねばならず、設計 *製造が 煩雑であった。  [0003] In Patent Document 1, the size of the thermoelectric conversion substrate is unified, and the number of semiconductors arranged in each stage is the same. The heat absorption efficiency is improved by sequentially increasing the amount of current from the heat absorption side stage to the heat radiation side stage by an integral multiple. However, the pattern of the thermoelectric conversion board had to be different for each stage in order to increase the amount of current sequentially, and the design * manufacturing was complicated.
[0004] 特許文献 2では、複数段の熱電変換基板を重ねるために、各段の半田の融点を変 更しており、各層形成の確実性を高めるために製造が煩雑となっていた。  [0004] In Patent Document 2, the melting point of the solder in each step is changed in order to stack a plurality of stages of thermoelectric conversion substrates, and the production is complicated in order to increase the reliability of forming each layer.
[0005] そして、レ、ずれの文献記載の技術にぉレ、ても、積層時の加熱変形を抑制する必要 力 Sある。また、中間基板は両側に位置する熱電変換基板の受熱面と放熱面とに対峙 するため、温度差に起因する熱歪みによるストレスにも耐えねばならない。したがって 、これらの不都合を解消するために、セラミック製熱伝達板には堅牢性が求められ、 その結果、各熱電変換基板間に介在する熱伝達板の熱抵抗が増大し、冷却効率が 低下する不都合があった。  [0005] Furthermore, even with the techniques described in the literatures of "D" and "D", there is a force S required to suppress heat deformation during lamination. In addition, since the intermediate substrate faces the heat receiving surface and the heat radiating surface of the thermoelectric conversion substrates located on both sides, the intermediate substrate must also withstand the stress due to thermal distortion caused by the temperature difference. Therefore, in order to eliminate these inconveniences, the ceramic heat transfer plate is required to have robustness. As a result, the heat resistance of the heat transfer plate interposed between the thermoelectric conversion boards increases, and the cooling efficiency decreases. There was an inconvenience.
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems the invention is trying to solve
[0006] かかる従来の実情に鑑みて、本発明は、製造が容易で冷却効率の高いペルチェ 素子及びその製造方法を提供することを目的とする。  [0006] In view of such conventional circumstances, an object of the present invention is to provide a Peltier device that is easy to manufacture and has high cooling efficiency and a method for manufacturing the same.
課題を解決するための手段  Means for solving the problem
[0007] 上記目的を達成するため、本発明に係るペルチェ素子の特徴は、 P型半導体素子 と N型半導体素子とを交互に配置して隣り合う端部同士を交互に電極で直列接合し た熱電変換体を少なくとも一対有する構成であって、前記一対の熱電変換体を、前 記電極に平行な面について形状が互いに対称的となり吸熱面と発熱面とが対向する ように形成し、繊維に接着剤を塗布した絶縁シートを挟んで前記各電極を対畤させ て固着したことにある。 [0007] In order to achieve the above object, a feature of the Peltier device according to the present invention is that a P-type semiconductor device and an N-type semiconductor device are alternately arranged, and adjacent ends are alternately connected in series with electrodes. A configuration having at least one pair of thermoelectric converters, wherein the pair of thermoelectric converters is formed such that the shape parallel to the electrode is symmetrical with respect to the surface, and the heat absorbing surface and the heat generating surface are opposed to each other. That is, the electrodes are fixed to each other with the insulating sheet coated with an adhesive interposed therebetween.
[0008] 同構成により、中間基板は不要となって、熱電変換体を構成する電極を各層で大 幅に異ならせる必要がなくて容易に製造可能となった。また、対峙する電極間に介在 する絶縁シートは、これら電極を絶縁及び接合すればよいので、非常に薄くてすみ、 その結果熱抵抗も低減することができる。し力も、二枚の熱電変換体の接合部に生じ る熱ストレスを繊維で補強された接着材がその弾性により吸収するので、熱歪みの問 題も解消される。  [0008] According to the configuration, the intermediate substrate is not required, and the electrodes constituting the thermoelectric converter do not need to be largely different in each layer, and can be easily manufactured. In addition, the insulating sheet interposed between the opposing electrodes only needs to insulate and bond these electrodes, so that the insulating sheet can be made very thin, and as a result, the thermal resistance can be reduced. The elasticity of the adhesive reinforced with fibers absorbs the thermal stress generated at the joint between the two thermoelectric converters, so that the problem of thermal distortion is also eliminated.
[0009] また、前記一対の熱電変換体は電源に対して並列接合も直列接合も可能である。  [0009] The pair of thermoelectric converters can be connected in parallel or in series to a power supply.
前記一対の熱電変換体に各々独立した電圧印加用端子を設けた場合には、各々の 熱電変換体に電圧を印加でき、高い自由度で設計をすることができる。直列接合す る場合には、これら熱電変換体の抵抗値を異ならせるとよい。例えば、片方の熱電変 換体の抵抗値を他方よりも小さくすることにより、他方の熱電変換体に印加される電 圧が大きくなる。その結果として、最大吸熱量及び最大温度差が変化することになり 、製造段階での用途に応じたペルチヱ素子の設計が容易なものとなる。実験によれ ば、前記抵抗値は 0. 2オーム以上異ならせることが望ましぐ後述する本発明の実施 形態では、 0. 3オーム異ならせている。  When independent voltage application terminals are provided for the pair of thermoelectric converters, a voltage can be applied to each thermoelectric converter, and design can be performed with a high degree of freedom. When connecting in series, it is preferable to make the resistance values of these thermoelectric converters different. For example, by making the resistance value of one thermoelectric converter smaller than that of the other, the voltage applied to the other thermoelectric converter increases. As a result, the maximum heat absorption and the maximum temperature difference change, and the design of the Peltier element according to the application at the manufacturing stage becomes easy. According to experiments, it is desired that the resistance values be different by 0.2 ohm or more, and in the embodiment of the present invention described later, the resistance values are changed by 0.3 ohm.
[0010] 本発明の実施形態では、前記繊維に対峙する電極とは反対側の電極が絶縁基板 上に形成されている。  [0010] In an embodiment of the present invention, an electrode on the opposite side of the electrode facing the fiber is formed on an insulating substrate.
[0011] 前記熱電変換体の積層方向に直交する側面を前記絶縁シートで覆うことにより絶 縁防湿層を構成してもよい。上記各構成において、前記繊維がガラス繊維であり、接 着材がシリコーンワニスであってもよい。前記繊維の厚みは 0. 3mm以下であること が望ましい。 [0011] By covering the side surface of the thermoelectric converter orthogonal to the laminating direction with the insulating sheet, insulation is provided. An edge moisture-proof layer may be constituted. In each of the above structures, the fiber may be glass fiber, and the adhesive may be a silicone varnish. It is desirable that the thickness of the fiber is 0.3 mm or less.
[0012] 一方、上記特徴のいずれかに記載のペルチェ素子の製造方法は、前記一対の熱 電変換体を作成し、前記絶縁シートを挟んで前記各電極を対峙させて接合し、接着 材を乾燥させて対峙する電極を固着することにある。  [0012] On the other hand, in the method of manufacturing a Peltier device according to any one of the above features, the pair of thermoelectric converters is formed, and the electrodes are opposed to each other with the insulating sheet interposed therebetween, and the bonding is performed. It is to fix the electrodes facing each other by drying.
発明の効果  The invention's effect
[0013] 上記本発明に係るペルチェ素子及びその製造方法の特徴によれば、各熱電変換 基板間に介在するセラミック製熱伝達板を排除することで熱抵抗を低下させて冷却 効率を向上させることが可能となった。また、絶縁シートを用いることで、繊維により絶 縁を確実にしつつ接合工程を容易として製造効率を向上させ、繊維で補強された接 着材で熱変形を吸収して素子の耐久性を向上させ得るに至った。  [0013] According to the features of the Peltier device and the method of manufacturing the same according to the present invention, the heat resistance is reduced by eliminating the ceramic heat transfer plate interposed between the thermoelectric conversion substrates, thereby improving the cooling efficiency. Became possible. In addition, the use of an insulating sheet improves the manufacturing efficiency by facilitating the joining process while ensuring insulation using fibers, and improves the durability of the element by absorbing thermal deformation with a bonding material reinforced with fibers. I got it.
[0014] しかも、面対称的に形成されたほぼ同一形状の熱電変換体を電気的に独立して積 層させることができるので、使用者の用途に応じた設計を行う自由度が増大した。そ して、積層される 2段の熱電変換体の抵抗値の値を異ならせること等で、各熱電変換 体の特性を調整し、ペルチェ素子全体として吸熱側と発熱側との温度差の最大化を 図る等の設計も可能となった。  [0014] Furthermore, thermoelectric converters of substantially the same shape formed symmetrically with respect to the plane can be electrically laminated independently, so that the degree of freedom in designing according to the use of the user is increased. The characteristics of each thermoelectric converter are adjusted by, for example, making the resistance values of the two-stage thermoelectric converters stacked different from each other, and the maximum temperature difference between the heat absorption side and the heat generation side of the Peltier element as a whole is determined. It is also possible to design such as to achieve the goal.
[0015] 加えて、一対の熱電変換体の間からセラミック製熱伝導板を排除し薄膜の絶縁シ 一トを揷入したことにより、各々の熱電変換体の吸熱面と放熱面の温度差が低減した 。そして、この温度差の低減により、ペルチヱ効果の反作用として出現するゼーベック 効果の低減を通じて印加電力に対する電熱変換効率を向上させることに成功し、例 えば、一段のペルチヱ素子の凡そ半分の消費電力で同等の温度差を得ることができ るようになった。 [0015] In addition, by eliminating the ceramic heat conductive plate from between the pair of thermoelectric converters and introducing a thin-film insulating sheet, the temperature difference between the heat absorbing surface and the heat radiating surface of each thermoelectric converter is reduced. Reduced. By reducing the temperature difference, we succeeded in improving the electrothermal conversion efficiency with respect to the applied power by reducing the Seebeck effect that appears as a reaction to the Peltier effect.For example, the power consumption is about half that of a single-stage Peltier element. Temperature difference can be obtained.
[0016] 本発明の他の目的、構成及び効果については、以下の「発明を実施するための最 良の形態」の項から明らかになるであろう。  [0016] Other objects, configurations, and effects of the present invention will become apparent from the following section, "Best mode for carrying out the invention".
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明に係るペルチェ素子の側面図である。  FIG. 1 is a side view of a Peltier device according to the present invention.
[図 2]図 1のペルチェ素子に用いられる熱電変換体の側面図である。 [図 3]図 1のペルチヱ素子の分解斜視図である。 FIG. 2 is a side view of a thermoelectric converter used for the Peltier device in FIG. 1. FIG. 3 is an exploded perspective view of the Peltier device of FIG. 1.
[図 4]本発明の第二実施形態に係るペルチェ素子の側面図である。  FIG. 4 is a side view of a Peltier device according to a second embodiment of the present invention.
[図 5]本発明の第三実施形態に係るペルチェ素子の側面図である。  FIG. 5 is a side view of a Peltier device according to a third embodiment of the present invention.
[図 6]本発明の第四実施形態に係るペルチェ素子の側面図である。  FIG. 6 is a side view of a Peltier device according to a fourth embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 次に、図 1一 3を参照しながら、本発明をさらに詳しく説明する。 Next, the present invention will be described in more detail with reference to FIGS.
ペルチェ素子 1は、図 2に示す如き熱電変換体 2 (2a)が図 1の如く複数重ねられて 構成される。各熱電変換体 2は、交互に配置した P型半導体素子 4と N型半導体素子 5との隣り合う端部同士を交互に電極 6で直列接合してなる。本実施形態では、セラミ ック基材よりなる絶縁基材 7上に銅等で形成された電極 6bと、同じく銅等の単一体の 金属よりなる電極 6aとが接合部材に用いられている。換言すると、絶縁シート 3に対 畤する電極 6a、 6aとは反対側の電極 6b、 6bが絶縁基板 7上に形成されていることと なる。  The Peltier element 1 is configured by stacking a plurality of thermoelectric converters 2 (2a) as shown in FIG. 2 as shown in FIG. Each thermoelectric converter 2 is formed by alternately connecting the adjacent ends of a P-type semiconductor element 4 and an N-type semiconductor element 5 which are alternately arranged in series with an electrode 6. In the present embodiment, an electrode 6b made of copper or the like on an insulating base material 7 made of a ceramic base material and an electrode 6a made of a single metal such as copper are used as joining members. In other words, the electrodes 6b, 6b opposite to the electrodes 6a, 6a facing the insulating sheet 3 are formed on the insulating substrate 7.
[0019] 各熱電変換体 2の始端と終端とに位置する電極 6b、 6bにそれぞれ電圧印加用の 端子 8A, 8B, 8C, 8Dを半田付けにより固定してある。これら端子 8A, 8B, 8C, 8D は独立しているので、直列にも並列にも電気的に接続可能であり、同一の熱電変換 基板から二種の異なる特性の二段式ペルチェ素子が容易に生産できる。さらには、 個別に異なる電圧を印加することも可能であり、使用者における設計の自由度を確 保することに成功した。そして、端子の接続形態を様々に異ならせられるので、設計 の自由度を向上させることに成功した。  [0019] Voltage application terminals 8A, 8B, 8C and 8D are fixed to the electrodes 6b and 6b located at the beginning and end of each thermoelectric converter 2 by soldering, respectively. Since these terminals 8A, 8B, 8C and 8D are independent, they can be electrically connected either in series or in parallel, and two types of two-stage Peltier elements with different characteristics can be easily formed from the same thermoelectric conversion board. Can produce. Furthermore, it is also possible to apply different voltages individually, which has succeeded in ensuring the freedom of design for the user. And, since the connection form of the terminals can be varied in various ways, we succeeded in improving the degree of freedom in design.
[0020] 一対の熱電変換体 2a, 2bは、それぞれが電極 6 (6a)に平行な面について形状が 互いに対称的となるように形成してある。ここで、対峙する電極 6a、 6aはいずれも積 層方向視で方形に形成されている。本明細書で「電極 6a、 6aが対峙」するとは、「積 層方向視で電極 6a、 6aがほぼ重なりあうこと」をいうものとする。そして、一対の熱電 変換体 2a, 2bは、上記平行な面について形状が互いに対称的となるように形成され ているから、一対の熱電変換体 2a, 2bの伝熱は最も効率がよいものとなる。  [0020] The pair of thermoelectric converters 2a and 2b are formed such that their shapes are symmetric with respect to a plane parallel to the electrode 6 (6a). Here, the opposing electrodes 6a, 6a are both formed in a rectangular shape when viewed in the layered direction. In this specification, "the electrodes 6a and 6a face each other" means "the electrodes 6a and 6a almost overlap each other when viewed in the stacked direction". Since the pair of thermoelectric converters 2a and 2b are formed so as to be symmetrical in shape with respect to the above-mentioned parallel plane, the heat transfer between the pair of thermoelectric converters 2a and 2b is considered to be the most efficient. Become.
一対の熱電変換体 2a, 2bの間には、繊維 3aに接着材 3bを塗布した絶縁シート 3を 挟んで前記各電極を対畤させて固着してある。繊維 3aは、対峙する各金属電極間の 夫々に介在して、少なくとも各電極 6a, 6aが直接接触を避け得るように配置されるこ とが望ましい。ここで、繊維としては、繊維を縦横に配置した織物や繊維をランダムに 配置した不織布の他、繊維を一方向に配向したものも含まれ、換言すれば布と言い 得る。但し、引っ張り、圧縮変化に耐えるには、繊維が各電極 6aの平面に沿う二方向 以上に向かって配向されるものが望ましい。本実施形態では、繊維 3aとして、絶縁体 であるガラス繊維を用いたガラス布を用いている。また、例えば接着材としては、シリ コーン系等の無機系の接着材、例えばシリコーンゴムやシリコーンワニスを用いること ができる。絶縁シートは全体として絶縁できればよいが、本実施形態では繊維 3a及 び接着材 3bの双方とも絶縁性の素材を用いている。絶縁シートの厚みは 0. 3mm以 下、望ましくは 0. 2mm以下である。 Between the pair of thermoelectric converters 2a and 2b, the electrodes are fixed to each other with an insulating sheet 3 formed by applying an adhesive 3b to fibers 3a. The fiber 3a is located between each facing metal electrode. It is desirable that at least each of the electrodes 6a, 6a be disposed so as to avoid direct contact with each other. Here, the fiber includes a woven fabric in which fibers are arranged vertically and horizontally, a nonwoven fabric in which fibers are randomly arranged, and a fiber in which fibers are oriented in one direction. In other words, it can be said to be a cloth. However, it is desirable that the fibers are oriented in two or more directions along the plane of each electrode 6a in order to withstand tensile and compressive changes. In the present embodiment, a glass cloth using glass fiber as an insulator is used as the fiber 3a. In addition, for example, an inorganic adhesive such as a silicone adhesive, for example, silicone rubber or silicone varnish can be used as the adhesive. As long as the insulating sheet can be insulated as a whole, in this embodiment, both the fiber 3a and the adhesive 3b are made of an insulating material. The thickness of the insulating sheet is 0.3 mm or less, preferably 0.2 mm or less.
[0021] 上述の如きペルチヱ素子の製造にあっては、一対の熱電変換体 2a, 2bを作成する 。そして、絶縁シート 3を挟んで各電極 6a, 6aを対峙させて接合した後、接着材 3bを 乾燥させて対峙する電極 6a, 6aを固着することによりベルチェ素子 1が完成する。  In manufacturing the Peltier device as described above, a pair of thermoelectric converters 2a and 2b are prepared. Then, after the electrodes 6a, 6a are opposed to each other with the insulating sheet 3 interposed therebetween, the adhesive 3b is dried and the opposed electrodes 6a, 6a are fixed to complete the Peltier device 1.
[0022] 使用に際しては、例えば下側の熱電変換体 2aの右端子 8Aをプラス、他方端子 8B をマイナスに接続する。また、上側の熱電変換体 2bの右端子 8Cをプラス、他方端子 8Dをマイナスに接続する。これにより、図 1において、各熱電変換体 2a、 2bの上面 F 1 , F1は吸熱側、下面 F2, F2は放熱側となり、ペルチヱ素子 1の上側から矢印 HIに 示すように吸熱がなされ、同素子 1の下側から矢印 H2に示すように放熱がなされる。 但し、これら端子 8A, 8B, 8C, 8Dは独立しているので、これに限らず様々なバリエ ーシヨンを実現できる。  In use, for example, the right terminal 8A of the lower thermoelectric converter 2a is connected to a positive terminal, and the other terminal 8B is connected to a negative terminal. Also, the right terminal 8C of the upper thermoelectric converter 2b is connected to a positive terminal, and the other terminal 8D is connected to a negative terminal. As a result, in FIG. 1, the upper surfaces F 1 and F 1 of the thermoelectric converters 2 a and 2 b are on the heat absorbing side, and the lower surfaces F 2 and F 2 are on the heat radiating side. Heat is dissipated from the lower side of element 1 as shown by arrow H2. However, since these terminals 8A, 8B, 8C, 8D are independent, various variations can be realized without being limited to this.
[0023] 次に、本発明に係る第二実施形態を図 4を参考にして説明する。本実施例では電 気抵抗値が 1, 8 Ωの下側熱電変換体 2aと、同一の個数の半導体からなる同一形状 ではあるが P型半導体素子 4と N型半導体素子 5が逆に配列された電気抵抗値が 1 , 5 Ωの熱電変換体 2cとを上述の手順で積層する。そして両熱電変換体 2a、 2cの左 端に外部接続用端子 8E, 8Fを設ける一方、他方の左端同士を連結用の端子 8Gで 結び、直列接続した例である。  Next, a second embodiment according to the present invention will be described with reference to FIG. In this embodiment, the lower thermoelectric converter 2a having an electric resistance of 1.8 Ω and the same shape made of the same number of semiconductors, but the P-type semiconductor element 4 and the N-type semiconductor element 5 are arranged in reverse. The thermoelectric converter 2c having an electric resistance value of 1.5 Ω is laminated according to the above-described procedure. In this example, external connection terminals 8E and 8F are provided at the left ends of both thermoelectric converters 2a and 2c, and the other left ends are connected with a connection terminal 8G and connected in series.
[0024] 係る構成により、上側端子 8Fをプラス電極に、下側端子 8Eをマイナス電極に接続 した場合には、上側熱電変換体 2cの電圧及び消費電力量は、下側熱電変換体 2aよ り小さくなり吸熱量も低下するように見える。しかし、下側熱電変換体 2aからより大き な吸熱があるために、上側熱電変換体 2c自体の吸熱面 F1と発熱面 F2との温度差 力 S小さくなり、温度差の最大値を増大する。プラス電極とマイナス電極を反転した場 合には、温度差の最大値は前記に比較して減少傾向となるが、最大吸熱量は増大 する傾向となり最大吸熱量及び温度差の最大値は抵抗値の差を調整することで決定 すること力 Sできる。 With this configuration, when the upper terminal 8F is connected to the plus electrode and the lower terminal 8E is connected to the minus electrode, the voltage and power consumption of the upper thermoelectric converter 2c are equal to those of the lower thermoelectric converter 2a. It seems that the heat absorption becomes smaller. However, since there is greater heat absorption from the lower thermoelectric converter 2a, the temperature difference force S between the heat absorbing surface F1 and the heat generating surface F2 of the upper thermoelectric converter 2c itself becomes smaller, and the maximum value of the temperature difference increases. When the plus electrode and the minus electrode are inverted, the maximum value of the temperature difference tends to decrease compared to the above, but the maximum endothermic amount tends to increase and the maximum values of the maximum endothermic amount and the temperature difference are the resistance values. Can be determined by adjusting the difference between the two.
[0025] 図 5に示す本発明の第三実施形態では、実施形態 2に記載のペルチェ素子 1にお ける熱電変換体 2の絶縁基材 7, 7に挟まれた半導体 4, 5及び電極 6の外周を囲うよ うに、上述の絶縁シートと同じものを配置する。そしてこのシートを乾燥固着すること により、絶縁防湿層 10を構成する。このように構成することで、絶縁防湿のためにシリ コーン RTVゴムなどで形成していた厚みのある絶縁防湿膜を薄膜に形成できるため 、各セラミック基材に絶縁防湿膜を介して伝播していた熱量を軽減でき、更には機械 的強度を補強することが可能となる。  In the third embodiment of the present invention shown in FIG. 5, the semiconductors 4 and 5 and the electrodes 6 sandwiched between the insulating bases 7 and 7 of the thermoelectric converter 2 in the Peltier device 1 according to the second embodiment The same thing as the above-mentioned insulating sheet is arranged so as to surround the outer periphery of the above. The sheet is dried and fixed to form the insulating and moisture-proof layer 10. With this configuration, a thick insulating moisture-proof film formed of silicone RTV rubber or the like for insulation moisture-proofing can be formed into a thin film, so that the film propagates to each ceramic substrate via the insulating moisture-proofing film. The amount of heat generated can be reduced, and the mechanical strength can be reinforced.
[0026] 図 6に示す本発明の第四実施形態では、実施形態 2に記載のペルチェ素子 1に対 し、さらに付カ卩的な熱電変換体 2dが加わり、 3層となっている。下熱電変換体 2dと中 間熱電変換体 2eとの間、中間熱電変換体 2eと上熱電変換体 2fとの間にそれぞれ絶 縁シート 3が挿入され、絶縁シート揷入部の電極 6a, 6aに平行な平面を介して各熱 電変換体 2d, 2e, 2fは面対称形状として形成されている。下熱電変換体 2dと上熱 電変換体 2fとにはそれぞれ外部接続端子 8H, 81が固着されている。また、隣接する 各熱電変換体間は直列端子 8J, 8Kにより接続されている。一例を挙げれば、上接続 端子 81をプラス電極、下接続端子 8Hをマイナス電極に接続すると、各熱電変換体 2 d, 2e, 2fの上面 F1が吸熱面、下面 F2が放熱面となる。  In the fourth embodiment of the present invention shown in FIG. 6, a thermoelectric converter 2d similar to the Peltier device 1 according to the second embodiment is further added to form a three-layer structure. An insulating sheet 3 is inserted between the lower thermoelectric converter 2d and the intermediate thermoelectric converter 2e, and between the intermediate thermoelectric converter 2e and the upper thermoelectric converter 2f, respectively, and is inserted into the electrodes 6a and 6a of the insulating sheet insertion portion. Each thermoelectric converter 2d, 2e, 2f is formed as a plane symmetrical shape through a parallel plane. External connection terminals 8H and 81 are fixed to the lower thermoelectric converter 2d and the upper thermoelectric converter 2f, respectively. Adjacent thermoelectric converters are connected by series terminals 8J and 8K. For example, when the upper connection terminal 81 is connected to the plus electrode and the lower connection terminal 8H is connected to the minus electrode, the upper surface F1 of each of the thermoelectric converters 2d, 2e, 2f becomes a heat absorbing surface and the lower surface F2 becomes a heat radiating surface.
[0027] これら上述の各実施形態は相互に組み合わせることが可能である。また、各実施形 態における数値や材料はそれらに限定されるものではなぐ一例に過ぎず適宜改変 が可能である。  [0027] These embodiments described above can be combined with each other. Further, the numerical values and materials in each embodiment are not limited to those, but are merely examples, and can be appropriately modified.
産業上の利用可能性  Industrial applicability
[0028] 本発明は、熱電変換体を少なくとも一対有するペルチェ素子として利用でき、熱電 変換体をさらに複数段設けた多段ペルチェ素子として利用することもできる。  [0028] The present invention can be used as a Peltier device having at least one pair of thermoelectric converters, and can also be used as a multi-stage Peltier device further provided with a plurality of thermoelectric converters.

Claims

請求の範囲 The scope of the claims
[1] P型半導体素子と N型半導体素子とを交互に配置して隣り合う端部同士を交互に電 極で直列接合した熱電変換体を少なくとも一対有するペルチェ素子であって、前記 一対の熱電変換体を、前記電極に平行な面について形状が互いに対称的となるよう に形成し、繊維に接着材を塗布した絶縁シートを挟んで前記各電極を対峙させて固 着してある。  [1] A Peltier element having at least one pair of thermoelectric converters in which P-type semiconductor elements and N-type semiconductor elements are alternately arranged and adjacent ends are alternately joined in series by electrodes. The converter is formed so that its shape is symmetrical with respect to a plane parallel to the electrodes, and the electrodes are fixed to each other with an insulating sheet in which an adhesive is applied to fibers interposed therebetween.
[2] 前記一対の熱電変換体に各々独立した電圧印加用端子を設けてある請求項 1記載 のペルチェ素子。  [2] The Peltier device according to claim 1, wherein each of the pair of thermoelectric converters is provided with an independent voltage application terminal.
[3] 前記一対の熱電変換体を直列接合し、これら熱電変換体の抵抗値を異ならせてある 請求項 1又は 2記載のペルチヱ素子。  3. The Peltier device according to claim 1, wherein the thermoelectric converters are joined in series, and the thermoelectric converters have different resistance values.
[4] 前記抵抗値が 0. 2オーム以上異ならせてある請求項 1一 3のいずれかに記載のペル チヱ素子。 [4] The Peltier device according to any one of [13] to [13], wherein the resistance values are different from each other by 0.2 ohm or more.
[5] 前記繊維に対峙する電極とは反対側の電極が絶縁基板上に形成されたものである 請求項 1一 4のいずれかに記載のペルチヱ素子。  [5] The Peltier element according to any one of [14] to [14], wherein an electrode opposite to the electrode facing the fiber is formed on an insulating substrate.
[6] 前記熱電変換体の積層方向に直交する側面を前記絶縁シートで覆うことにより絶縁 防湿層を構成してある請求項 1一 5のいずれかに記載のペルチヱ素子。 6. The Peltier device according to claim 15, wherein a side surface orthogonal to a laminating direction of the thermoelectric converter is covered with the insulating sheet to form an insulating moisture-proof layer.
[7] 前記繊維がガラス繊維である請求項 1一 6のいずれかに記載のペルチェ素子。 [7] The Peltier device according to claim 16, wherein the fiber is a glass fiber.
[8] 接着材がシリコーンワニスである請求項 1一 7のいずれかに記載のペルチヱ素子。 [8] The Peltier device according to any one of [17] to [17], wherein the adhesive is a silicone varnish.
[9] 前記絶縁シートの厚みが 0. 3mm以下である請求項 1一 8のいずれかに記載のペル チェ素子。 9. The Peltier device according to claim 18, wherein the thickness of the insulating sheet is 0.3 mm or less.
[10] 請求項 1一 9のいずれかに記載のペルチェ素子の製造方法であって、前記一対の熱 電変換体を作成し、前記絶縁シートを挟んで前記各電極を対峙させて接合し、前記 接着材を乾燥させて対峙する電極を固着する。  [10] The method for manufacturing a Peltier device according to any one of [11] to [9], wherein the pair of thermoelectric converters are formed, and the respective electrodes are joined to face each other with the insulating sheet interposed therebetween. The adhesive is dried to fix the opposing electrodes.
PCT/JP2004/009162 2003-06-30 2004-06-29 Peltier element and production method therefor WO2005001946A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005511085A JP4669395B2 (en) 2003-06-30 2004-06-29 Peltier device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-186592 2003-06-30
JP2003186592 2003-06-30

Publications (1)

Publication Number Publication Date
WO2005001946A1 true WO2005001946A1 (en) 2005-01-06

Family

ID=33549695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009162 WO2005001946A1 (en) 2003-06-30 2004-06-29 Peltier element and production method therefor

Country Status (2)

Country Link
JP (1) JP4669395B2 (en)
WO (1) WO2005001946A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237146A (en) * 2005-02-23 2006-09-07 Ishikawajima Harima Heavy Ind Co Ltd Cascade module for thermoelectric conversion
WO2008111587A1 (en) * 2007-03-13 2008-09-18 Sumitomo Chemical Company, Limited Substrate for thermoelectric conversion module, and thermoelectric conversion module
WO2010067368A3 (en) * 2008-12-11 2010-12-02 Lamos Inc. Thermo-electric structures for cooling, heating, and electric current generation
WO2011138522A1 (en) 2010-05-05 2011-11-10 Commissariat à l'Energie Atomique et aux Energies Alternatives Thermoelectric module optimized for operation in peltier mode or in seebeck mode
EP2458657A1 (en) * 2010-11-26 2012-05-30 Schneider Electric Industries SAS Thermoelectric module with improved performance
US20140048112A1 (en) * 2012-08-17 2014-02-20 Behr Gmbh & Co. Kg Thermoelectric heat exchanger
WO2016051313A1 (en) * 2014-10-01 2016-04-07 Consorzio Delta Ti Research Silicon integrated bivalve thermoelectric generator of out-of-plane heat flux configuration
US9997691B2 (en) 2014-10-09 2018-06-12 Consorzio Delta Ti Research 3D integrated thermoelectric generator operating in an out-of-plane heat flux configuration with internal voids and heat conduction paths conditioning vias
US10050190B2 (en) 2014-09-22 2018-08-14 Consorzio Delta Ti Research Silicon integrated, out-of-plane heat flux thermoelectric generator
KR20190028948A (en) * 2017-09-11 2019-03-20 한국과학기술원 Bilayer flexible thermoelectric devices and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236820A (en) * 1995-02-27 1996-09-13 Aisin Seiki Co Ltd Multistage electronic cooler
JPH1079532A (en) * 1996-09-04 1998-03-24 Nanba Kikujiro Thermoelectric conversion device
JPH10303473A (en) * 1997-02-28 1998-11-13 Aisin Seiki Co Ltd Multistep thermoelectric cooling equipment and its manufacture
JP2001135867A (en) * 1999-11-05 2001-05-18 Suzuki Sogyo Co Ltd Thermoelement module
JP2002335022A (en) * 2001-05-11 2002-11-22 Matsushita Electric Works Ltd Peltier module
JP2003142739A (en) * 2001-11-02 2003-05-16 Yamaha Corp Thermoelectric device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3560414B2 (en) * 1996-05-07 2004-09-02 北川工業株式会社 Peltier element
JP3501394B2 (en) * 1999-03-30 2004-03-02 日本発条株式会社 Thermoelectric conversion module
JP2003163409A (en) * 2001-11-26 2003-06-06 Eco 21 Inc Semiconductor laser module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236820A (en) * 1995-02-27 1996-09-13 Aisin Seiki Co Ltd Multistage electronic cooler
JPH1079532A (en) * 1996-09-04 1998-03-24 Nanba Kikujiro Thermoelectric conversion device
JPH10303473A (en) * 1997-02-28 1998-11-13 Aisin Seiki Co Ltd Multistep thermoelectric cooling equipment and its manufacture
JP2001135867A (en) * 1999-11-05 2001-05-18 Suzuki Sogyo Co Ltd Thermoelement module
JP2002335022A (en) * 2001-05-11 2002-11-22 Matsushita Electric Works Ltd Peltier module
JP2003142739A (en) * 2001-11-02 2003-05-16 Yamaha Corp Thermoelectric device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237146A (en) * 2005-02-23 2006-09-07 Ishikawajima Harima Heavy Ind Co Ltd Cascade module for thermoelectric conversion
JP4622577B2 (en) * 2005-02-23 2011-02-02 株式会社Ihi Cascade module for thermoelectric conversion
WO2008111587A1 (en) * 2007-03-13 2008-09-18 Sumitomo Chemical Company, Limited Substrate for thermoelectric conversion module, and thermoelectric conversion module
JP2008227178A (en) * 2007-03-13 2008-09-25 Sumitomo Chemical Co Ltd Thermoelectric conversion module and substrate therefor
WO2010067368A3 (en) * 2008-12-11 2010-12-02 Lamos Inc. Thermo-electric structures for cooling, heating, and electric current generation
CN102971880A (en) * 2010-05-05 2013-03-13 原子能和代替能源委员会 Thermoelectric module optimized for operation in peltier mode or in seebeck mode
FR2959874A1 (en) * 2010-05-05 2011-11-11 Commissariat Energie Atomique THERMOELECTRIC MODULE OPTIMIZED FOR OPERATION IN PELTIER MODE AND SEEBECK MODE.
US9054272B2 (en) 2010-05-05 2015-06-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Optimized thermoelectric module for operation in peltier mode or in seebeck mode
WO2011138522A1 (en) 2010-05-05 2011-11-10 Commissariat à l'Energie Atomique et aux Energies Alternatives Thermoelectric module optimized for operation in peltier mode or in seebeck mode
CN102569628A (en) * 2010-11-26 2012-07-11 施耐德电器工业公司 Thermoelectric module with improved performance
FR2968134A1 (en) * 2010-11-26 2012-06-01 Schneider Electric Ind Sas THERMOELECTRIC MODULE WITH IMPROVED YIELD
EP2458657A1 (en) * 2010-11-26 2012-05-30 Schneider Electric Industries SAS Thermoelectric module with improved performance
US20140048112A1 (en) * 2012-08-17 2014-02-20 Behr Gmbh & Co. Kg Thermoelectric heat exchanger
US10050190B2 (en) 2014-09-22 2018-08-14 Consorzio Delta Ti Research Silicon integrated, out-of-plane heat flux thermoelectric generator
WO2016051313A1 (en) * 2014-10-01 2016-04-07 Consorzio Delta Ti Research Silicon integrated bivalve thermoelectric generator of out-of-plane heat flux configuration
CN106716658A (en) * 2014-10-01 2017-05-24 德尔塔蒂研究财团 Silicon integrated bivalve thermoelectric generator of out-of-plane heat flux configuration
JP2017537460A (en) * 2014-10-01 2017-12-14 コンソルツィオ デルタ ティ リサーチ Silicon integrated bi-valve thermoelectric generator with out-of-plane heat flux configuration
US10003002B2 (en) 2014-10-01 2018-06-19 Consorzio Delta Ti Research Silicon integrated bivalve thermoelectric generator of out-of-plane heat flux configuration
US9997691B2 (en) 2014-10-09 2018-06-12 Consorzio Delta Ti Research 3D integrated thermoelectric generator operating in an out-of-plane heat flux configuration with internal voids and heat conduction paths conditioning vias
KR20190028948A (en) * 2017-09-11 2019-03-20 한국과학기술원 Bilayer flexible thermoelectric devices and method for manufacturing the same
KR102036554B1 (en) * 2017-09-11 2019-10-25 한국과학기술원 Bilayer flexible thermoelectric devices and method for manufacturing the same

Also Published As

Publication number Publication date
JP4669395B2 (en) 2011-04-13
JPWO2005001946A1 (en) 2006-11-02

Similar Documents

Publication Publication Date Title
AU2008344797B2 (en) Thermoelectric device
JP5493562B2 (en) Thermoelectric conversion module
US6577044B1 (en) Multi-output composite piezoelectric transformer with expansion vibration mode
WO2005001946A1 (en) Peltier element and production method therefor
KR20130052361A (en) Thermoelectric module and method of manufacturing the same
JP2017208478A (en) Thermoelectric conversion module and thermoelectric conversion device
JP2007202103A5 (en)
KR102323978B1 (en) Thermoelectric module
JPS63253677A (en) Multilayered thermoelectric conversion device
KR102335989B1 (en) Thermoelectric module sheet and thermoelectric module assembly having the same
WO2017154917A1 (en) Thermoelectric conversion module
JP2000091650A (en) High temperature thermoelectric transducer
JP5200884B2 (en) Thermoelectric power generation device
KR200407510Y1 (en) Electric heating sheet
JP5418080B2 (en) Method for manufacturing thermoelectric conversion element
JPH02206185A (en) Piezoelectric actuator
JP5200883B2 (en) Thermoelectric power generation device
JPH07169995A (en) Thermoelement array
JP5200885B2 (en) Thermoelectric power generation device
JP4831859B2 (en) Piezoelectric transformer
KR20200132232A (en) Thermoelectric module having single crystal thermoelectric material and fabrication method for thereof
JP2004063675A (en) Wiring electrode structure for power converter and method for manufacturing wiring electrode of power converter
JP2020181753A (en) Carbon nanotube heater
JPH0812933B2 (en) Method for manufacturing thermoelectric converter
JPS63119186A (en) Panel heater

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511085

Country of ref document: JP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase