JPH07169995A - Thermoelement array - Google Patents

Thermoelement array

Info

Publication number
JPH07169995A
JPH07169995A JP5316663A JP31666393A JPH07169995A JP H07169995 A JPH07169995 A JP H07169995A JP 5316663 A JP5316663 A JP 5316663A JP 31666393 A JP31666393 A JP 31666393A JP H07169995 A JPH07169995 A JP H07169995A
Authority
JP
Japan
Prior art keywords
type semiconductor
thermoelectric element
type semiconductors
array
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5316663A
Other languages
Japanese (ja)
Inventor
Hiroyuki Iizuka
博之 飯塚
Takuya Yamazaki
琢也 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP5316663A priority Critical patent/JPH07169995A/en
Priority to EP95902936A priority patent/EP0685893A4/en
Priority to PCT/JP1994/002076 priority patent/WO1995017020A1/en
Publication of JPH07169995A publication Critical patent/JPH07169995A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To obtain a thermoelement array which can provide a high electromotive force in a small area and facilitate assembling, by arranging a plurality of layer-built thermoelements in which a pair and more of p type semiconductors and n type semiconductors, are piled up, in such a way that high-temperature ends are lined up on the same plane and mutually connected electrically. CONSTITUTION:Nine layer-built thermoelements 1 in which size pairs of a p type semiconductors and n type semiconductors, 30mm long, 6mm wide, and 5mm thick, are formed, are used. Each thermoelement 1 generates an electromotive foce of over 1.5V by a temperature difference of 600 deg.C. The high temperature ends of these thermoelements are fixed by alumina element to a 0.6mm thick alumina substrate 10, at an approx. 5mm pitch, in 3X3 arrangement. Respective elements are connected in series electrically by soldering lead wires. This enables a high output thermoelement array of the same dimensions to be obtained easily as compared with the conventional one.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゼーベック効果を利用
し、かつ高起電力を得るように構成された熱電素子アレ
イに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric element array that utilizes the Seebeck effect and is configured to obtain a high electromotive force.

【0002】[0002]

【従来の技術】従来の一般的な熱電素子は、p型半導体
のブロック体とn型半導体のブロック体が金属を介して
接合(π型接合)されたものである。その接合部(高温
端)を熱すると、ベーゼック効果により、高温端とその
反対側の半導体端部(低温端)の温度差に応じた起電力
を発生する。例えば、半導体組成としてFeSi2 系を
用いた、温度差600℃で0.3Vの起電力を発生する
素子が作られている。
2. Description of the Related Art A conventional general thermoelectric element is one in which a block body made of a p-type semiconductor and a block body made of an n-type semiconductor are joined via a metal (π-type junction). When the junction (high temperature end) is heated, an electromotive force is generated due to the temperature difference between the high temperature end and the semiconductor end (low temperature end) on the opposite side due to the Beseck effect. For example, an element that uses a FeSi 2 system as a semiconductor composition and generates an electromotive force of 0.3 V at a temperature difference of 600 ° C. has been manufactured.

【0003】得られる起電力がp型半導体とn型半導体
との一組(一対)だけでは小さい場合、これらを直列に
数対あるいは数十対接続し所望の起電力を得る。例え
ば、先に挙げた0.3Vを発生する素子を5個直列につ
なぎ、すべての素子に600℃の温度差を与えると、ト
ータルで1.5Vの起電力を得ることができる。熱源が
フラットである程度の面積がある場合、図3に示すよう
に、複数の熱電素子の高温端を平面上に配列し、電気的
に直列に接続することで一対の素子よりも起電力の大き
い熱電素子アレイを作製し、熱エネルギーを電気エネル
ギーに変換することができる。
When the electromotive force obtained is small with only one set (pair) of the p-type semiconductor and the n-type semiconductor, a desired electromotive force is obtained by connecting several pairs or tens of pairs of these in series. For example, if the five elements that generate 0.3 V described above are connected in series and a temperature difference of 600 ° C. is applied to all the elements, a total electromotive force of 1.5 V can be obtained. When the heat source is flat and has a certain area, as shown in FIG. 3, by arranging the high temperature ends of a plurality of thermoelectric elements on a plane and electrically connecting them in series, the electromotive force is larger than that of a pair of elements. Thermoelectric element arrays can be made to convert thermal energy into electrical energy.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、高起電
力を得るためにはp型半導体とn型半導体の対の数を増
やす必要があり、p型半導体とn半導体とそれらを接合
する金属材の設置スペースが増えるため必然的に熱電素
子アレイの面積も増加せざるを得なかった。各半導体を
細くすると省スペースにはなるが、組み立てや配線が難
しくなり、かつ直列接続なので半導体の一本でも破損す
ると熱電素子アレイ全体の起電力が得られなくなるとい
う欠陥があった。
However, in order to obtain a high electromotive force, it is necessary to increase the number of pairs of the p-type semiconductor and the n-type semiconductor, and the p-type semiconductor and the n-semiconductor and the metal material for joining them are required. Since the installation space is increased, the area of the thermoelectric element array is inevitably increased. If each semiconductor is made thin, space is saved, but assembly and wiring are difficult, and there is a defect that if one of the semiconductors is damaged because of serial connection, the electromotive force of the entire thermoelectric element array cannot be obtained.

【0005】本発明は、上記事情に鑑み、小面積で高起
電力が得られ、しかも組立てが容易な熱電素子アレイを
提供することを目的とする。
In view of the above circumstances, it is an object of the present invention to provide a thermoelectric element array which can obtain a high electromotive force in a small area and can be easily assembled.

【0006】[0006]

【課題を解決するための手段】上記目的を達成する本発
明の熱電素子アレイは、高温端側がP−N接合されると
ともに低温端側が絶縁層を介して積層されたP型半導体
とN型半導体との対が一対以上積層された積層型熱電素
子が、高温端どうしが同一面上に並ぶように複数個配列
されるとともに互いに電気的に接続されてなることを特
徴とする。
A thermoelectric element array according to the present invention that achieves the above object has a P-type semiconductor and an N-type semiconductor in which a high temperature end side is PN junctioned and a low temperature end side is laminated via an insulating layer. A plurality of laminated thermoelectric elements in which pairs of and are laminated are arranged so that the high temperature ends are arranged on the same plane, and are electrically connected to each other.

【0007】[0007]

【作用】本発明の熱電素子アレイは、アレイの要素とな
る熱電素子として、上記の積層型熱電素子が用いられて
いるため、例えば図3に示すようなアルミナ基板等の上
に新たな金属接続を作る必要がない。さらに、積層型熱
電素子は、対の数を増やした分だけ起電力が増加する。
例えば、1個の素子内にp−nの組を6対形成した素子
では、その1個の素子だけで温度差600℃1で1.5
Vの起電力が得られる。
In the thermoelectric element array of the present invention, since the above-mentioned laminated thermoelectric element is used as a thermoelectric element that is an element of the array, a new metal connection is made on, for example, an alumina substrate as shown in FIG. You don't have to make Further, in the laminated thermoelectric element, the electromotive force increases as the number of pairs increases.
For example, in an element in which 6 pairs of pn pairs are formed in one element, the temperature difference of 600 ° C. is 1.5 in only one element.
An electromotive force of V is obtained.

【0008】図3に示すような、従来品を多数の直列接
続して平面上に配置した場合と比べて、少ない素子数、
すなわち小面積で同等の起電力を持つアレイを作製する
ことができる。また、同面積のアレイを作製した場合、
従来のπ型接合素子を用いたものに比べて数倍〜数十倍
の起電力を得ることができる。さらに、p型半導体とn
型半導体との間の高温端での金属接合が不要であるた
め、配置の自由度が高い。
As compared with the case where a large number of conventional products are connected in series and arranged on a plane as shown in FIG.
That is, it is possible to manufacture an array having a small area and an equivalent electromotive force. If an array with the same area is made,
It is possible to obtain an electromotive force that is several times to several tens of times that of the conventional one using a π-type junction element. Furthermore, p-type semiconductor and n
Since there is no need for metal bonding to the type semiconductor at the high temperature end, the degree of freedom of arrangement is high.

【0009】[0009]

【実施例】以下、本発明の実施例について説明する。図
1は、本発明の熱電素子アレイを構成する1個の熱電素
子の一例を示す斜視図である。この積層型熱電素子1
は、絶縁体層3を挟んでp型半導体層1cとn型半導体
層1dが積層されることにより構成されている。積層型
熱電素子1の高温端1aは、p及びn型半導体層1c,
1dがP−N接合されている。また、積層型熱電素子1
の低温端1bの上面および下面にはメッキ電極4が形成
されており(下面側のメッキ電極は図面上はあらわれて
いない)、このメッキ電極4にはリード線5が半田付け
されている。
EXAMPLES Examples of the present invention will be described below. FIG. 1 is a perspective view showing an example of one thermoelectric element constituting the thermoelectric element array of the present invention. This laminated thermoelectric element 1
Is configured by stacking a p-type semiconductor layer 1c and an n-type semiconductor layer 1d with the insulator layer 3 interposed therebetween. The high temperature end 1a of the laminated thermoelectric element 1 has a p-type and an n-type semiconductor layer 1c,
1d has a P-N junction. In addition, the laminated thermoelectric element 1
A plating electrode 4 is formed on the upper surface and the lower surface of the low temperature end 1b (the plating electrode on the lower surface side is not shown in the drawing), and a lead wire 5 is soldered to the plating electrode 4.

【0010】この積層型熱電素子1を構成するp型半導
体層1cは例えばFeSi2 にCrを添加した組成を有
し、n型半導体層1dは例えばFeSi2 にCoを添加
した組成を有し、絶縁体層3は例えばZrO2 とガラス
の混合物の組成を有している。この積層型熱電素子1
は、一例として以下のようにして形成される。
The p-type semiconductor layer 1c constituting the laminated thermoelectric element 1 has a composition in which Cr is added to FeSi 2 , for example, and the n-type semiconductor layer 1d has a composition in which Co is added to FeSi 2 , for example. The insulator layer 3 has a composition of, for example, a mixture of ZrO 2 and glass. This laminated thermoelectric element 1
Is formed as follows as an example.

【0011】先ず上記各組成にそれぞれ溶媒とバインダ
ーを加え混合調整して各泥漿を得、それぞれの泥漿から
ドクターブレード法によりグリーンシート(図示せず)
を得る。p型半導体とn型半導体のグリーンシートを所
定の大きさに切断し、また絶縁体のグリーンシートをp
型半導体,n型半導体の寸法よりも小さい所定の大きさ
に切断する。切断されたp型半導体のグリーンシートと
n型半導体のグリーンシートが、高温端1aと低温端1
bで交互に接続されるように(図1参照)、p型半導体
のグリーンシートとn型半導体のグリーンシートとの間
に絶縁体のグリーンシートを挟んで、それらグリーンシ
ートを積層して熱圧着する。
First, a solvent and a binder are added to each of the above compositions to prepare a mixture, and each slurry is obtained. A green sheet (not shown) is prepared from each slurry by a doctor blade method.
To get Cut the green sheets of p-type semiconductor and n-type semiconductor to a specified size, and cut the green sheet of insulator into p
It is cut into a predetermined size smaller than the dimensions of the type semiconductor and the n-type semiconductor. The cut p-type semiconductor green sheet and the n-type semiconductor green sheet are cut into the high temperature end 1a and the low temperature end 1
The green sheets of the insulator are sandwiched between the green sheets of the p-type semiconductor and the green sheets of the n-type semiconductor so that the green sheets of the p-type semiconductor and the green sheets of the n-type semiconductor are sandwiched so that they are alternately connected by b (see FIG. 1), and the green sheets are laminated and thermocompression bonded. To do.

【0012】このようにして得られた積層グリーンブロ
ックを、所定の大きさに切断して成形体を得る。この成
形体を空気中において脱脂した後に真空中において無加
圧で焼成する。アニール操作の後の成形体の、後に低温
端として用いられる一端に、図1に示すようにメッキ電
極4を形成し、それらのメッキ電極4にリード線5を半
田付けする。このようにして積層型熱電素子1が形成さ
れる。
The laminated green block thus obtained is cut into a predetermined size to obtain a molded body. This molded body is degreased in air and then fired in vacuum without pressure. As shown in FIG. 1, the plated electrode 4 is formed on one end of the molded body after the annealing operation, which will be used as a low temperature end later, and the lead wire 5 is soldered to the plated electrode 4. In this way, the laminated thermoelectric element 1 is formed.

【0013】図2は、本発明の熱電素子アレイの一実施
例の斜視図である。ここでは、上記のようにして形成し
た、長さ30mm、幅6mm、厚み5mmの、p型半導
体とn型半導体との対が6対形成された積層型熱電素子
1を9個使用した。各々の素子は、600℃の温度差で
1.5V以上の起電力を発生する。これらの素子の高温
端を厚さ0.6mmのアルミナ基板10に、約5mmピ
ッチで3×3の配列でアルミナセメントで固定した。各
素子1はリード線の半田付けで電気的に直列に接続し
た。
FIG. 2 is a perspective view of an embodiment of the thermoelectric element array of the present invention. Here, nine stacked thermoelectric elements 1 having a length of 30 mm, a width of 6 mm, and a thickness of 5 mm, each having six pairs of a p-type semiconductor and an n-type semiconductor formed, were used. Each element generates an electromotive force of 1.5 V or more with a temperature difference of 600 ° C. The high temperature ends of these devices were fixed to an alumina substrate 10 having a thickness of 0.6 mm with alumina cement in a 3 × 3 arrangement at a pitch of about 5 mm. Each element 1 was electrically connected in series by soldering a lead wire.

【0014】アルミナ基板1をホットプレートで均一に
加熱したところ、高温端と低温端の温度差が100℃で
1.5Vの起電力を発生した。従来のπ型接合素子を6
個使った同面積のアレイ(図3参照)の場合100℃で
0.3Vの起電力であるから、本発明品では従来品の5
倍の起電力を得ることができた。
When the alumina substrate 1 was uniformly heated by a hot plate, an electromotive force of 1.5 V was generated when the temperature difference between the high temperature end and the low temperature end was 100 ° C. The conventional π-junction element is 6
In the case of an array of the same area used (see FIG. 3), the electromotive force is 0.3 V at 100 ° C.
It was possible to obtain double the electromotive force.

【0015】[0015]

【発明の効果】以上説明したように、本発明により、従
来に比べ、同じ寸法で高出力の熱電素子アレイを容易に
得ることができる。また、p型半導体とn型半導体間の
高温端での金属接合が不要であるため、配置の自由度が
高く、様々なニーズに対応し易い。
As described above, according to the present invention, it is possible to easily obtain a thermoelectric element array having the same size and high output as compared with the conventional one. Moreover, since metal bonding between the p-type semiconductor and the n-type semiconductor at the high temperature end is not required, the degree of freedom of arrangement is high and it is easy to meet various needs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱電素子アレイを構成する1個の熱電
素子の一例を示す斜視図である。
FIG. 1 is a perspective view showing an example of one thermoelectric element that constitutes a thermoelectric element array of the present invention.

【図2】本発明の熱電素子アレイの一実施例の斜視図で
ある。
FIG. 2 is a perspective view of an embodiment of the thermoelectric element array of the present invention.

【図3】従来の、π型接合熱電素子アレイを示す斜視図
である。
FIG. 3 is a perspective view showing a conventional π-type junction thermoelectric element array.

【符号の説明】[Explanation of symbols]

1 積層型熱電素子 1a 高温端 1b 低温端 1c p型半導体 1d n型半導体 3 絶縁体 10 アルミナ基板 DESCRIPTION OF SYMBOLS 1 Multilayer thermoelectric element 1a High temperature end 1b Low temperature end 1c p-type semiconductor 1d n-type semiconductor 3 Insulator 10 Alumina substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温端側がP−N接合されるとともに低
温端側が絶縁層を介して積層されたP型半導体とN型半
導体との対が一対以上積層された積層型熱電素子が、高
温端どうしが同一面上に並ぶように複数個配列されると
ともに互いに電気的に接続されてなることを特徴とする
熱電素子アレイ。
1. A laminated thermoelectric element in which one or more pairs of a P-type semiconductor and an N-type semiconductor, in which a high temperature end side is PN junctioned and a low temperature end side is laminated via an insulating layer, are laminated. A thermoelectric element array, wherein a plurality of thermoelectric element arrays are arranged so that they are arranged on the same plane and are electrically connected to each other.
JP5316663A 1993-12-16 1993-12-16 Thermoelement array Withdrawn JPH07169995A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5316663A JPH07169995A (en) 1993-12-16 1993-12-16 Thermoelement array
EP95902936A EP0685893A4 (en) 1993-12-16 1994-12-09 Thermoelectric conversion element, thermoelectric conversion element array, and thermal displacement converter.
PCT/JP1994/002076 WO1995017020A1 (en) 1993-12-16 1994-12-09 Thermoelectric conversion element, thermoelectric conversion element array, and thermal displacement converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5316663A JPH07169995A (en) 1993-12-16 1993-12-16 Thermoelement array

Publications (1)

Publication Number Publication Date
JPH07169995A true JPH07169995A (en) 1995-07-04

Family

ID=18079527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5316663A Withdrawn JPH07169995A (en) 1993-12-16 1993-12-16 Thermoelement array

Country Status (1)

Country Link
JP (1) JPH07169995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198831A (en) * 2010-03-17 2011-10-06 Fujitsu Ltd Thermoelectric conversion module and complex thermoelectric conversion element
JP2014514740A (en) * 2011-03-22 2014-06-19 テクニカル ユニヴァーシティー オブ デンマーク Structure useful for production of thermoelectric generator, thermoelectric generator provided with the structure, and method for producing the thermoelectric generator
WO2019003582A1 (en) * 2017-06-27 2019-01-03 株式会社村田製作所 Thermoelectric conversion module and electronic component module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011198831A (en) * 2010-03-17 2011-10-06 Fujitsu Ltd Thermoelectric conversion module and complex thermoelectric conversion element
JP2014514740A (en) * 2011-03-22 2014-06-19 テクニカル ユニヴァーシティー オブ デンマーク Structure useful for production of thermoelectric generator, thermoelectric generator provided with the structure, and method for producing the thermoelectric generator
WO2019003582A1 (en) * 2017-06-27 2019-01-03 株式会社村田製作所 Thermoelectric conversion module and electronic component module

Similar Documents

Publication Publication Date Title
JP5609967B2 (en) Power generation device, power generation method, and method of manufacturing power generation device
US10510940B2 (en) Thermoelectric generator
RU2546830C2 (en) Thermoelectric element
JPH10303471A (en) Thermoelectric element and thermoelectric element module using the same
US20050211288A1 (en) Thermoelectric device
JP2009049165A (en) Thermoelectric conversion module and thermoelectric conversion module assembly
JP2017208478A (en) Thermoelectric conversion module and thermoelectric conversion device
JP2011134940A (en) Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same
JPS63253677A (en) Multilayered thermoelectric conversion device
JPH07169995A (en) Thermoelement array
KR20180093366A (en) Thermoelectric module and manufacturing method thereof
US20160149108A1 (en) Thermoelectric generator
JPH0992891A (en) Thermoelectric element and thermoelectric module
EP0685893A1 (en) Thermoelectric conversion element, thermoelectric conversion element array, and thermal displacement converter
EP3428981B1 (en) Thermoelectric conversion module
JP2006013200A (en) Thermoelectric transducing module, substrate therefor cooling device, and power generating device
JP2003234515A (en) Thermoelectric module
JPH02178958A (en) Electronic cooling element and manufacture thereof
JPH07176796A (en) Thermoelectric converter
EP3442039B1 (en) Thermoelectric conversion module
TW201843849A (en) Thermoelectric conversion module and method for manufacturing same
JP6822609B1 (en) Thermoelectric conversion element module and manufacturing method of thermoelectric conversion element module
JPH0193182A (en) thermoelectromotive force element
JPH0974227A (en) Assembling method of thermoelectric module
JPH0745871A (en) Layered thermoelectrical element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306