WO2005001476A1 - アレイの作製方法 - Google Patents

アレイの作製方法 Download PDF

Info

Publication number
WO2005001476A1
WO2005001476A1 PCT/JP2004/009409 JP2004009409W WO2005001476A1 WO 2005001476 A1 WO2005001476 A1 WO 2005001476A1 JP 2004009409 W JP2004009409 W JP 2004009409W WO 2005001476 A1 WO2005001476 A1 WO 2005001476A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
spotting
spot
substrate
pin
Prior art date
Application number
PCT/JP2004/009409
Other languages
English (en)
French (fr)
Inventor
Motoki Kyo
Yutaka Takarada
Toshihiro Kuroita
Kazuki Inamori
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003183868A external-priority patent/JP3870935B2/ja
Priority claimed from JP2003183870A external-priority patent/JP2005017155A/ja
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2005001476A1 publication Critical patent/WO2005001476A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • B01L3/0244Drop counters; Drop formers using pins
    • B01L3/0255Drop counters; Drop formers using pins characterized by the form or material of the pin tip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/0241Drop counters; Drop formers
    • B01L3/0244Drop counters; Drop formers using pins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated

Definitions

  • the present invention relates to a method for producing an array on a metal substrate, and more particularly to a method for producing an array suitably used when performing measurement using a protein represented by antigen-antibody reaction measurement. Specifically, a method for manufacturing a chip on a metal substrate by automatically contacting and spotting a spot can be obtained by maintaining the spot for a long time without drying it, thereby obtaining a stable spot.
  • the present invention relates to a method for producing an array that can provide stable evaluation results. Furthermore, the present invention relates to a method for producing an array in which spotting can be easily performed at an arbitrary place. '
  • the present invention also preferably relates to a method for screening antibodies using an array prepared by these methods.
  • Interaction analysis is attracting attention as a means of analyzing the function of biomolecules or examining biomolecules expressed in cells.
  • optical detection methods such as surface plasmon resonance (SPR) and ellipsometry have become widely used as interaction analysis methods that can be measured in a label-free and real-time manner.
  • SPR surface plasmon resonance
  • ellipsometry ellipsometry
  • Such an optical detection method immobilizes molecules on a metal substrate and exposes the surface to the analyte (analyte) to be examined for interaction. Whether the analyte has bound to the surface can be determined by analyzing the reflected light.
  • fluorescence or radioisotope requires that the analyte be labeled with each label substance, the optical detection method described above has a great advantage in that it is not necessary to label the analyte.
  • the spotting by the ink jet method has no fear of damaging the surface of the thin metal layer, but the equipment is extremely expensive.
  • the viscosity of the sample is different, the conditions under which the droplets fly from the nozzle vary greatly, and it is very difficult to control the droplet size.
  • the spot droplet volume is set to less than 1 n1.
  • the tip of the pin used for spotting was sharp, and there was a problem that the thin metal layer on the chip surface was damaged.
  • the pin is often provided with a spring, which is not preferable because the pin is pressed against the substrate by a strong stress and the metal substrate is damaged. If the thin metal layer is damaged, it cannot be measured by the above optical detection method.
  • the appropriate liquid amount of the spot is less than In1, the spot is too small to be measured by the above optical detection method.
  • the immobilized sample is DNA in each case, and there is little problem with drying after spotting.
  • the sample could be denatured by drying.
  • the size of the spot is not constant because the droplet gradually becomes smaller than the surroundings, and the immobilization conditions are different at the spot part to concentrate, enough There was a problem that the spot immobilization density became so uneven that the spot dried, for example, before bonding, and that the results of the interaction observation could not be obtained stably.
  • This automatic spotter is a machine that samples a solution of molecules prepared on a microtiter plate with a pin or a head, and aligns small droplets of the solution on a substrate by spotting.
  • the pins are set on the X, Y, and Z axes, and an array of multiple samples can be manufactured by operating the X, Y, and Z axes (Japanese Patent Publication No. 10-503841).
  • Japanese Patent Publication No. 10-503841 Japanese Patent Publication No. 10-503841
  • the same sample may be provided at a plurality of points at the time of potting, and a spot pattern can be produced in some cases (Japanese Patent Laid-Open No. 2001-21558).
  • conventional spotter / arrayer spot pattern programming was very difficult and complicated. Therefore, creating spots with free patterns was avoided, and it was common to use patterns that had already been entered.
  • An object of the present invention is to obtain a chip in which molecules are easily immobilized on a metal substrate by automatically performing spotting using a pin having a specific tip, without damaging the substrate. .
  • An object of the present invention is to obtain an array in which molecules that can be observed stably are suppressed without denaturing a sample contained in the spot by not drying the spotted droplet, thereby suppressing unevenness of the spot. It is in.
  • the present invention relates to a method for producing an array that can easily create a spot pattern and easily monitor the progress of spotting.
  • FIG. 1 shows a photomask pattern used in the example. Chrome is coated on the black part to block light.
  • FIG. 2 shows the spotting pattern used in Example 1.
  • the upper figure shows the upper slide, and the lower figure shows the 96-well plate.
  • 96 Samples in the A1 to B12 plate of the 6-well plate were spotted in the pattern shown above.
  • B 2 to B 2 were blank.
  • FIG. 3 is a schematic view of the tip of a pin used in Example 1.
  • FIG. 4 is a schematic view of the inside of the mounting head of the pin used in the first embodiment.
  • FIG. 5 is a schematic internal structure of the automatic spotter according to the first embodiment.
  • FIG. 6 is a reaction scheme on a slide in Example 1.
  • FIG. 7 is an SPR imaging image of the slide on which the antibody is immobilized in Example 1.
  • FIG. 8 shows a change in SPR signal when the concentration of the antigen in Example 1 was increased stepwise.
  • Fig. 9 shows a scout yard plot created from the night of Fig. 8.
  • FIG. 10 is an SPR imaging image of the slide on which the antibody was immobilized in Reference Example 2.
  • FIG. 11 shows an example of the tip of the pin.
  • FIG. 12 is an example of the tip of the pin.
  • FIG. 13 shows an example of the tip of the pin.
  • Fig. 14 shows an example of the tip of a pin.
  • FIG. 15 is a main screen of the spotting control mechanism of the third embodiment.
  • FIG. 16 shows a spot pattern creation screen of the spotting control mechanism of the third embodiment.
  • FIG. 17 shows a spot pattern creation screen (during spotting) of the spotting control mechanism of the third embodiment.
  • Figure 18 shows the spotting control screen of the application used in Reference Example 4.
  • FIG. 19 is a schematic view of the automatic spotter of the first embodiment (a perspective view, rails, and a head are omitted).
  • FIG. 20 is a schematic view (cross-sectional view) of the automatic spotter according to the first embodiment.
  • FIG. 21 is a schematic diagram of the humidifying chamber used in Example 1. Disclosure of the invention
  • a solution containing a substance to be immobilized is held to the pin, by contacting the pin area of the tip shape is 0. 0 1 mm 2 or more to the substrate, on a metal substrate chip Array preparation method including spotting solution
  • An array is created by spotting a sample of the microtiter plate into the spotting position on the array using an automatic spotter.
  • the spotting control mechanism of the automatic spotter in which a diagram showing the array of spots on the micro tie plate and a diagram showing the array of spot positions on the array are shown on the display.
  • a pin holding a solution containing a substance to be immobilized contacts a metal substrate chip to form a droplet on the substrate.
  • the substance to be immobilized is not limited, and is immobilized on a chip and used for observing the interaction between molecules.
  • the solvent of the solution is not limited, and examples thereof include water, a buffer, and an organic solvent.
  • the pins and the substrate are in contact.
  • Means for ejecting droplets, such as the ink jet method are very expensive, and the setting of the spot pressure varies depending on the viscosity of the sample, making setting difficult and not desirable.
  • the means for contacting the pins is very easy and inexpensive and is preferred.
  • the area of the pin in the tip shape is 0. 0 1 mm 2 or more, more favorable The Mashiku 0. 0 2 mm 2 or more, still more preferably 0. 0 3 mm 2 or more. If it is less than 0.01 mm 2 , the stress applied to the tip of the pin at the time of spotting increases, which may damage the metal substrate.
  • the tip in contact with the substrate has a radius of 100 / im or more, preferably a radius of 15 / im. If the curved surface corresponds to a sphere having a radius of 0 m or more, particularly preferably a radius of 2.0 m or more, the portion can be counted as an area.
  • the upper limit of the area of the tip is not particularly limited, but is preferably 2 mm 2 , and more preferably 1 mm 2 . If it exceeds 2 mm 2 , the spot area becomes too large, and the number of spots that can be spotted on the substrate decreases, which is not preferable.
  • the shape of the figure at the tip is not particularly limited, and includes a circle, a polygon, a grooved hole, a holed hole, and the like.
  • the pin may be processed into a capillary shape from the tip to the upper part, and may have a mechanism for holding the solution. Examples of these pins are shown in FIGS. In Fig. 11, a slit is provided from the tip of the pin to the top, and the solution is held in the slit.
  • FIG. 12 shows a structure in which two plates narrow toward each other to form a capillary. In Fig. 13, a recess is provided at the tip of the pin. In Fig. 14, a groove is provided from the pin tip to the side.
  • the corners of the tip and side portions of the pins may be rounded so that the metal on the substrate is not easily damaged.
  • the radius is not less than 10 / xm.
  • the material of the pin is not particularly limited as long as it is used for the purpose of spotting a solution, such as an inert metal such as stainless steel, gold, platinum, and titanium, an alloy, a ceramic, a glass, a plastic, and a natural stone. is not. Among these, metals and alloys are preferable.
  • the pin As a means for absorbing the shock at the time of spotting and adjusting the stress applied to the tip of the pin, it is preferable to provide a buffer mechanism on the support portion of the pin. When the pin comes into contact with the board and is pushed in, the shock absorbing mechanism absorbs the shock applied to the pin and generates an appropriate reaction force to apply stress to the tip of the pin. Also, the pin is The pin has a freely movable structure, and stress can be applied to the pin tip by the weight of the pin (and its accessories).
  • a polymer buffer material As the buffer mechanism. This is because the pressure caused by contact with the substrate can be absorbed. Metal springs widely used in DNA microarrays may not be desirable because the spring strength is too high.
  • the material of the polymer is not particularly limited, but is preferably a soft foam (foam), and examples thereof include polyolefin, rubber, and urethane foams. ⁇ Humidity around the spot>
  • the humidity around the substrate at the time of spotting is preferably 70% RH or more, more preferably 78% RH or more, and further preferably 80% RH or more. If the humidity is lower than this, the droplets gradually become smaller due to drying, and the size of the spots is not constant. The concentration of the sample in the droplets is concentrated.
  • the fixation unevenness occurs due to the difference, and when immobilized by the reaction, the fixation unevenness occurs due to drying before a sufficient reaction. It is not preferable that there be large unevenness or fixed unevenness, because the signal obtained by the interaction tends to vary. Therefore, it is better to prevent the microdroplets from drying by adjusting the surrounding humidity.
  • the humidity adjustment may be performed only in the vicinity of the substrate, or may be performed by the entire spotting apparatus. However, the humidity in the present invention means a value measured near the substrate.
  • the inside of the spotter is a closed space and a humidifying mechanism is provided.
  • the humidifying mechanism include a method of providing a pool of water, a method of generating water vapor by heating water with a heater or the like, and a method of spraying fog with ultrasonic waves. It is also preferable to link the humidifying mechanism and the humidity sensor so that the humidity is controlled at a constant level. Further, by circulating the air inside the spotter, it is possible to reduce unevenness and time-dependent fluctuation of the humidity inside the spotter, which is preferable.
  • the ambient temperature is not particularly limited, but it is common sense that spotting is performed at 4 to 30. Although it is inexpensive and convenient to use at room temperature around 25 ° C, a method of cooling to 4 to 10 is also effective as a means of increasing humidity.
  • the substrate is kept in a state in which the microdroplets are not dried, so that the time is preferably 5 minutes or more, preferably 10 minutes or more, more preferably 15 minutes or more, and the humidity is 70% RH or more, more preferably It is preferable that the substrate is left in an environment of 8% RH or more and the immobilization is completely performed.
  • the spot after leaving the spot may be left as it is in the spotter's chip storage area, or may be moved to a location inside the spotter with a humidity of 70% RH or more and left alone. Further, the substrate may be taken out of the spotter and left in a container having another humidity of 70% RH.
  • a container having a humidity of 70% RH or more a container that can be sealed and has a humidifying mechanism similar to that of a spotter is preferable.
  • the present invention has a functional group capable of chemically reacting with the sample at a portion where the sample on the substrate binds, and the functional group capable of chemically reacting with the sample is immobilized by a chemical reaction. It is particularly preferably applicable to
  • Functional groups capable of chemically reacting with the sample include carboxylic acid groups, amino groups, acid anhydrides, maleimide groups, succinimide groups, epoxy groups, isocyanate groups, azide groups, etc., among which maleimide groups, succinimides Groups are mentioned as preferred functional groups.
  • the present invention can be preferably applied to a mode of forming a chelate bond, an ionic bond, or a hydrophobic bond with a functional group on the substrate.
  • the pin holds the solution containing the substance to be automatically immobilized, and spots a part or most of the solution held on the metal substrate. Spots of the same solution may be repeated. If you want to make a spot of a different solution, It is preferable that the washing and drying of the pins be performed continuously and automatically, because of the risk of contamination with the solution that has been removed.
  • the washing solution and the washing solution are not particularly limited, and include a solution containing water, an alcohol, and a solution containing a surfactant.
  • the washing method is also a method of immersing in the solution or a method of applying running water (solution). Or a combination of these, and means for sonication.
  • the number of times of washing is not limited, but if it is carried out twice or more, washing can be performed while suppressing contamination. Even if the pin is washed several times, it includes both washing with the same washing solution and washing with different washing solutions.
  • the pin For automatic spotting, the pin must be held by a holder and move vertically, horizontally, and vertically. Furthermore, the pins must be drivable by a drive device, and the drive device must be programmed so that its movement can be controlled using a computer or the like. Driving methods include a stepping motor, a servo motor, and a linear motor, and these techniques can be directly applied to the techniques used in conventional automatic spotters such as arrays.
  • the solution containing the substance to be immobilized is preferably prepared in a 96-well plate or a 384-well plate. All have almost the same shape as general-purpose products on the market for experiments, so they can be easily obtained.Adjustment of the solution containing the substance to be immobilized is performed on these plates. This is because it can be fixed. It is preferable that the pattern for automatically producing droplets is also spotted in a manner that reflects the arrangement of the 96-well plate or the 384-well plate. For example, when 96 types of samples are prepared on a 96-hole plate, it is preferable to reproduce the arrangement prepared on the 96-hole plate on the substrate as it is, since it is easy to identify the spot location. However, this also includes point symmetry, line symmetry, 180 ° rotation, or a combination thereof in the arrangement of the 96-well plate.
  • the present invention includes a case where the same sample is spotted eight times in the vertical direction, or a case where spots are shifted one or more diagonally. It includes a symmetric and rotated pattern.
  • the present invention also includes a blank containing no substance to be immobilized.
  • the metal substrate chip is preferably a flat glass coated with a thin gold film, and the surface of gold is easily modified by gold-sulfur bond.
  • a self-assembled surface of an altinthiol is formed by contacting an altinthiol having a functional group such as an amino group or a hydroxyl group at the end in a solution, and the functional group is introduced into the surface. be able to.
  • the gold substrate is preferable because it can be used for the SPR method, the ellipsometry method, the sum frequency generation (SFG) method, and the like.
  • the SPR method is widely used, and is highly reliable and preferable as a method for measuring an interaction.
  • the SPR imaging method is more preferable because a wide range of interactions can be observed.
  • Means for coating the gold thin film is not particularly limited, and examples thereof include a vapor deposition method, a sputtering method, and an ion coating method.
  • the thickness of the gold is not particularly limited, it is usually used in the range of 30 to 100 nm.
  • Glass is preferable because a transparent substrate having various refractive indexes can be prepared. Plastics can also be used for substrates, but molding can be difficult.
  • the glass plate is preferably flat. It may be processed with a diffraction grating or the like. However, although processing enables measurement without using a prism, processing is not only expensive, but spots may be difficult due to the presence of minute grooves.
  • the distance between the centers of adjacent spots is 1.5 mm or less, since the spots have high density.
  • the density is high because many samples can be immobilized on a small area.
  • the substrate completely immobilized in this way is subjected to post-treatments such as washing away excess sample solution, reacting with another reaction solution, and drying, if necessary, to obtain an array for measurement.
  • post-treatments such as washing away excess sample solution, reacting with another reaction solution, and drying, if necessary, to obtain an array for measurement.
  • a diagram showing the array of holes (holes) on the microplate and a diagram showing the array of spot positions on the array are drawn.
  • the figure only needs to be able to discriminate the socket sequence and the spot position sequence, and need not be accurate.
  • the micro tie plate installed in the equipment is made of plastic and has multiple wells. Although some of the wells contain the sample solution to be spotted, not all wells need to have a sample, as long as one or more wells have a sample solution.
  • the microtiter plate may have an arbitrary number of wells, but a 96-well plate or a 384-well plate is preferred because it is easily available. Another advantage is the ability to hold many samples
  • the spot location may or may not have a clear distinction and border on the board, and is located anywhere on the board. However, the location of the spot is clearly shown on the diagram of the control mechanism.
  • the number of spot positions on the array is an integer multiple of 96. As described above, it is preferable to use a 96-well plate or a 384-well plate. Therefore, the number of spots is also preferably an integral multiple of 96, which can correspond to the number of wells.
  • the number of spotted positions is not so large, and is preferably 1536 or less. This is because it is difficult to show a very large number of spot positions on the control mechanism. Therefore, the present invention is suitable for an array having a lower degree of integration than a DN microarray. For example, it is very suitable for arrays used in surface plasmon resonance imaging. It is preferable to monitor the progress of spotting on the spotting control mechanism, since it can be confirmed that the device is operating normally. In the spotting process, the color on the control mechanism for the spot on the microtiter plate and the spot position on the array where spotting was completed was changed, and the mechanism for indicating the progress of spotting is clear. preferable.
  • the color used is not particularly limited, but is more preferably a color that can be clearly distinguished (for example, yellow and black, red and blue, etc.). It is preferable that a spot pattern can be freely created on the spotting control mechanism. By creating various patterns, highly applicable experiments can be performed. It is also possible to analyze data variations due to spot positions.
  • a spot pattern can be freely created by using a diagram showing a pail array of a microtiter plate on a controller and a diagram showing a spot position array on an array.
  • the pointer As a method for selecting the level, the pointer is moved to the position of the level of the sample to be spotted on the display using a pointing device such as a mouse, a pointing pad, or a pointing stick, and is clicked or entered by an enter key. It is possible to confirm or select the position of the pail on the display that has become a touch panel by directly touching it.
  • a method of selecting a spot position the pointer can be moved to a position to be spotted on the display in the same manner as described above, or the spot can be selected.
  • These methods include a method of selecting a spot position immediately after selecting a gel by simply clicking and entering an operation, a method of performing an operation called copy and paste (a method of performing copy and paste operations). And select the spot position by pasting. In this case, by repeating the pasting, multiple spot positions can be selected by one page selection.), Drag and drop and It can be done by a called operation (selecting a page by dragging, and selecting a spot position by dropping).
  • control mechanism recognizes information about the relationship between the well and the position where the sample is spotted, and coordinates and coordinates of the spotting positions of the wells and arrays of microtiter plates already registered.
  • spotter movement is automatically programmed based on the evening.
  • the spotting control mechanism is preferably a commercially available personal computer.
  • the form such as a desktop or a laptop is not particularly limited.
  • the operating system (OS) includes Windows (R), Mac OS (R), and Linux (R), but is not particularly limited.
  • the control mechanism requires some application, but its software is not limited.
  • the languages used for the software include Visual Basic and C language, but are not particularly limited.
  • the method for producing an array of the present invention is preferably used for surface plasmon measurement, but its use is not particularly limited.
  • the material of the substance serving as the substrate is not particularly limited, and examples thereof include glass, ceramics, metal, diamond, organic compounds, polymer compounds, silicon wafers, and mica.
  • This technique is not limited to the contact method using the above-described pins, but can be applied to a contact method using various pins, an inkjet method, and the like.
  • the epitopes are not limited to one and the same. That is, the antibody may be a monoclonal antibody, a polyclonal antibody, or a combination of monoclonal antibodies having different epitopes. Even when the combination / mixing ratio is different, the affinity is different, so they are treated as different antibodies. Multiple antibodies are immobilized on a single metal substrate to form an array.
  • a solution containing an antigen is exposed on a substrate, and the antigen is trapped by an antigen-antibody reaction, and the trapped state is observed.
  • the SPR method is preferable.
  • SPR is a label-free interaction analysis method and is preferable because it is not necessary to label antigens with fluorescent substances or radioisotopes. You can also observe the SPR signal in real time This allows the solution containing the antigen to continue flowing over the sensor surface until the interaction is saturated.
  • Kinetics analysis is possible because the change in signal corresponds to the amount adsorbed, which is preferable.
  • the equilibrium constant of the antigen-antibody reaction can be obtained by Kinetic analysis, and it becomes possible to select an antibody with high affinity.
  • the number of screenings that can be performed at one time is limited to the number that can be observed by SP R, that is, the number of spots in the array.
  • the number of spots in the array is preferably at least 6, more preferably at least 12, and even more preferably at least 20.
  • the upper limit of the number of spots is not limited as long as observation can be performed, but is generally about 1000.
  • a plurality, preferably 4 or more, more preferably 6 or more antibodies are spotted on these arrays.
  • the number of spots may be one for one type of antibody, or it may be preferable to increase the number of spots by spotting at multiple locations.
  • Gold is preferable as the metal of the metal substrate. This is because gold can be observed by SPR and it is easy to introduce functional groups on the surface through gold-sulfur bonds.
  • the metal substrate is preferably a flat glass substrate coated with a thin gold layer. Glass is preferable because it has various refractive indices and can easily obtain a slide by being cut out. Further, a flat substrate is preferable because molding is easy and array fabrication is easy.
  • the SPR imaging method is a method of irradiating a polarized light beam onto a glass substrate coated with a thin metal layer, passing the reflected image through a wavelength filter, and photographing the image with a CCD camera or the like.
  • an antigen-antibody reaction is observed, and its Kinetics value is analyzed from changes in the SPR signal.
  • dissociation is observed by flowing a buffer solution after the interaction, and the dissociation rate constant can be calculated from the dissociation rate.
  • the equilibrium constant is preferably calculated by the Scatchard plot method. In this method, the concentration (C) is gradually increased, and the concentration is increased. Determine the equilibrium value of the signal in degrees R eq. Plot RedZC and Rei, and obtain the equilibrium constant from the slope.
  • the amino-coupling method of activating the hydroxyl group on the surface with a water-soluble carpoimide and N-hydroxysuccinimide and reacting with the amino group in the antibody is easy and preferable.
  • the antibody can be converted into F (ab ') 2 by pepsin digestion and reduced to Fab' by reduction, and can be reacted with a maleimide group and a disulfide group formed on the surface by thiol coupling.
  • a means for immobilization using a sugar chain contained in the antibody can be considered.
  • PEG thiol has a molecular weight of 5,000 and is very hydrophilic.
  • the terminal of PEG is a methoxy group, and has little reactivity.
  • the slide was washed with Milli-Q water and ethanol and dried by air spray.
  • a photomask as shown in Fig. 1 was placed on the slide, and a 500 W ultra-high pressure mercury lamp (manufactured by Shio Electric) was used. Irradiated for a period of time to remove the PEG thiol in the irradiated part.
  • the photomask pattern is composed of 96 squares of 500mX500xm, and this square portion is the spot position.
  • the spot positions are separated from each other by a distance of 1 mm from the center point to the center of the spot position from the top to the top and from the bottom to the bottom.
  • the distance from the center to the center is 5.5 mm, and the distance from the left to the center of the leftmost spot and from the right to the center of the rightmost spot is 3.5 mm.
  • the slide was washed with water, dried by air spray, and mounted on an automatic spotter. 1 Adjust three anti-goat IgG monoclonal antibodies to a concentration of 100 ⁇ g / I (PBS (—)), and add 101 to the 96-well plate of A1 ⁇ 12, B1 We prepared them.
  • Figure 2 shows the spotting pattern. In this way, spotting was performed in a manner that reflects the way of placing the sample in the 96-well plate. Since the monoclonal antibody sample is not contained in the gels of B2 to 12, the spots are blank.
  • Figure 3 shows the tip of the pin used for spotting.
  • the pin diameter is 487 ⁇ im and has a groove of 200 ⁇ am width. Therefore, the area is 0.09 mm 2 .
  • Fig. 4 shows a schematic diagram of the internal structure of the head with the pins attached.
  • the pins are attached to the internal pin fixing jig through the guides, and the pin fixing jig can move up and down.
  • Soft polyurethane foam is provided as a cushioning material on the pin fixing jig, and when the pin is pressed against the board, the pin moves upward together with the pin fixing jig, compressing the cushioning material and reducing the impact And apply an appropriate stress to the pin.
  • Figure 5 shows an outline of the internal arrangement of the automatic spotter used.
  • the pins are immersed in a 96-well plate to hold the sample in the well. Hold and move on the slide to perform spotting.
  • the pins move to the wash bath and are washed twice with Milli-Q water. After washing, vertical movement is performed three times with a swing width of 30 mm in the dryer, and the pins are dried. Samples and samples are collected in the next well, and the same operation is performed automatically under the control of the attached computer.
  • the humidity is adjusted using an ultrasonic humidifier, and the fog generated by the ultrasonic wave is blown into the spotter.
  • the internal humidity is measured around the chip storage area, and the ultrasonic humidifier is turned on based on this data. No Adjusted by switching OFF. Humidity around the substrate was kept within 81% soil 3%.
  • the outline of the apparatus is shown in FIG. 19 and FIG.
  • the humidification chamber has a structure in which the bottom of the container is filled with water and a slide can be placed in the middle stage. The humidification chamber can be sealed, so that the reaction can continue without drying for a long time. .
  • the chip was washed several times with Milli-Q water, water was removed by air spray, and an aqueous aminoglycol-terminated polyethylene glycol having a molecular weight of 2,000 was adjusted to pH 2 at a concentration of 2 mg Z ml. The mixture was adjusted to 8.5 and poured into a slide, and the remaining succinimid group was reacted with polyethylene glycol to perform a blocking reaction.
  • Figure 6 shows the reaction scheme for surface immobilization.
  • the antibody-immobilized slide was washed three times with water, dried by air spray, and set on a SP R imaging device (Toyobo Co., Ltd.).
  • PBS
  • Fig. 7 shows the SPR imaging image at that time.
  • Antibodies are immobilized on the spots that are white, and are not immobilized on other areas. No scratch was found at the spot where the sample solution was spotted due to the contact of the pin. '
  • FIG. 8 shows the change of the SPR signal at this time.
  • Fig. 9 shows the results of Scatchyard plots of ReqZC and C. In each case, a substantially linear relationship is obtained.
  • the binding equilibrium constant is calculated from the slope of the straight line in Fig. 9, and is shown in Table 1.
  • Example 2 Spotting is performed in the same manner as in Example 1 using the pins having the shapes shown in FIGS.
  • the tip of the pin is two pieces of 400 ii m X 150 j m and is spaced apart by about 50 w m.
  • the pin was moved to the well sample every time in Example 1 and the solution was applied to the pin.In Example 2, the solution was collected in the gap between the pins. Therefore, only the first sample is attached to the pin, and three consecutive spots can be spotted.
  • the area of the tip of the pin is 0.12 mm 2 and does not damage the metal film of the substrate.
  • FIG. 15 shows an application screen of the spotting control mechanism according to the present invention.
  • the figure drawn with the 96 squares in the upper right shows the position arrangement of 96 points on the board, and the figure drawn with the 96 circles in the lower right shows the 96
  • the microtiter plate is shown.
  • the vertical axis is A-H and the horizontal axis is 111, similar to the commercially available 96-L plate.
  • Fig. 16 shows a screen where a spotting pattern different from that of Example 1 is freely created.Click the gel position of the lower 96-well plate with the mouse, and then click the upper left spotting position. Then, the spot number is entered at the spot position, and the spot pattern can be created freely. The created pattern can be saved as a text file.
  • the color of the button is red, while the unoperated part is blue. In this way, the spotting process can be monitored on the control mechanism. It is also designed to automatically clean the pins when sampling different samples.
  • the above applications run on an operating system (windows (R)) of a commercially available personal computer and can be operated very easily.
  • the spotting device was controlled by using NssEditorMini manufactured by Nichicho One Co., Ltd., and spotting to the spot position shown in Fig. 1 was performed.
  • Figure 18 shows the operation screen. Here, one line is written for one command.
  • an array of biomolecules can be easily and inexpensively obtained on a metal substrate.
  • An array can be obtained without damaging the metal substrate and maintaining the activity of biomolecules.
  • the sample of each well of the microtiter plate can be easily controlled to be spotted at any position on the array.
  • the array produced by the present invention is expected to be widely used for analyzing the interaction of biomolecules.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

明細書
アレイの作製方法 技術分野
本発明は、 金属基板上にアレイを作製する方法に関し、 特に抗原抗体反応の測 定に代表されるタンパク質を用いて測定を行う際に好適に用いられるアレイの作 成方法に関する。 具体的には、 自動的に接触的にスポッティ ングすることによる 金属基板上のチップの作製方法、 スポッ ト部分を乾燥させることなく長時間維持 することにより安定したスポッ ト部分を得ることができ、 安定した評価結果の得 られるアレイの作製方法に関する。 さらには容易に任意の場所にスポッティ ング ができるアレイの作製方法に関する。 '
また、 好ましくはこれらの方法により作成されたアレイを用いて抗体のスクリ 一二ングを行う方法に関する。 背景技術
生体分子の機能解析、 もしくは細胞内に発現している生体分子を調べる手段と して相互作用解析が注目を浴びている。中でも表面プラズモン共鳴(S P R )法、 エリプソメ トリ一法をはじめとした光学的検出方法はラベルフリ一かつリアルタ ィムに測定できる相互作用解析法として広く使われるようになつている。 このよ うな光学的検出方法は金属基板上に分子を固定化し、 相互作用するかどうか調べ たい測定対象物質 (アナライ ト) を表面に曝露させる。 アナライ トが表面に結合 したかどうかを反射光を分析することで知ることができる。 蛍光やラジオァイソ トープを用いた方法ではアナライ トをそれぞれのラベル物質で標識しておく必要 があるのに対し、 上記の光学的検出法ではアナライ トをラベルする必要がないの が大きな利点である。
しかし、 従来の光学的相互作用検出法は、 多数点での検出は困難であり、 最大 4点までしか検出できず、 研究の効率は不十分であった。 J o r d a nらはレー ザ一光を広げてから偏光平行光にし、 金薄層を蒸着したチップの広い面積に照射 し、 その反射光を撮影することで、 D N Aハイブリダィゼ一シヨ ンによる S P R 変化を観察するのに成功した ( J o r d a nら An a l . C h e m. , 6 9, 1 449 - 1 4 5 6, 1 9 9 7、 参照)。 B r o c kma nらは白色光源を用いるこ とで干渉縞を低減し、 DN A—蛋白相互作用を観察した。 スポッティ ングは手動 で行い、 自動でスポッ トすることは行っていない。 その論文内にはインクジエツ ト技術により、 多数の生体分子をアレイ化する可能性は示唆している。 何らかの ァレイ作製手段により、 S P R法により多数点の相互作用を行う手段は示されて る (B r o c kma nら j . Am. C h em. S o c . , 1 2 1, 8 044 - 8 0 5 1, 1 9 9 9、 参照)。
しかし、 ィンクジエツ ト法によるスポッティ ングは金属薄層表面を傷つける心 配はないものの、 装置は極めて高価である。 また、 サンプルの粘度が異なるとノ ズルから液滴を飛ばす条件が大きく変化するため、 液滴大きさの制御は非常に難 しいのが問題であった。
従来の DN Αマイクロアレイ用のスポッターでは高密度が求められるため、 ス ポッ ト液滴量は 1 n 1未満に設定されている。 スポッティ ングに用いられるピン の先端は鋭利であり、 チップ表面の金属薄層を傷つける問題があった。 また、 ピ ンにはスプリングばねが備えられている場合が多く、 強い応力でピンが基板に押 しつけられ、 金属基板が傷つけられるため好ましくなかった。 金属薄層が傷つく と、 上記の光学的検出方法では測定は不可能である。 また、 スポッ トの液適量が I n 1未満であると、 スポッ トが小さすぎて上記光学的検出方法では測定できな い。
さらに、 いずれも固定化したサンプルは DNAであり、 スポッ ト後に乾燥して も問題は少ない。 しかし、 蛋白などのサンプルを固定化する場合、 乾燥によりサ ンプルが変性する可能性があった。
また、 乾燥していく場合、 液滴が周囲より徐々に小さくなつていくため、 スポ ッ トの大きさが一定しない、 濃縮されていくためにスポッ トの部分部分で固定化 条件が異なる、 十分な結合前に乾燥する、 などスポッ トの固定化密度のムラがひ どくなり、 相互作用観察の結果が安定して得られない問題があった。
また一方、 アレイのスポッ ト数は増加し、 集積される一方であり、 人間の手で アレイを作製することは非常に困難であるため、 自動スポッター (アレイヤーと 呼ばれることもある) が用いられることが多い。 この自動スポッターは、 マイク ロタイタ一プレートに用意した分子の溶液を、 ピンやへッ ドでサンプリ ングし、 スポッティ ングによって溶液の微小液滴を基板上に整列させる機械である。 ピン は X— Y— Z軸に設置されており、 X— Y— Z軸を動作させることで、 複数のサ ンプルのアレイを製作することができる (公表平 10-503841号公報)。 これらの中 にはポッティ ングの際に、 同じサンプルが複数点設けられることもあり、 スポッ トのパターンを作製できるものもあった (特開平 2 0 0 1 — 2 1 5 5 8号公報)。 しかし、 従来のスポッター/アレイヤーのスポッ トパターンのプログラミング は非常に難解かつ、 煩雑であった。 従って、 自由なパターンでスポッ トを作るの は避けられており、 すでに入力されているパターンを使用するのが一般的であつ た。
本発明の課題は、 特定の先端を有するピンを用いて、 自動的にスポッティ ング することで、 基板を傷つけることなく、 容易に金属基板上に分子を固定化したチ ップを得ることにある。
本発明の課題は、 スポッ トした液滴を乾燥させないことで、 スポッ トに含まれ るサンプルを変性させず、 スポッ トのムラを抑制し、 安定した観察のできる分子 を固定化したアレイを得ることにある。
さらには、 本発明はスポッ トパターンを容易に作成でき、 スポッティ ングの経 過を容易に監視することができるアレイ作製方法に関する。 図面の簡単な説明
図 1は、 実施例に使用したフォ トマスクパターンである。 黒色部分にクロムがコ 一ティ ングされ光を遮断する。
図 2は、 実施例 1で使用したスポッティングのパターンである。 上図がスライ ド 上を表し、 下図が 9 6穴プレートを示す。 9 6穴プレートの A 1〜: B 1 2のゥェ ル内のサンプルを、 上図のパターンでスポッ 卜した。 実施例 1では B 2 ~ 1 2は ブランクとした。
図 3は、 実施例 1で使用したピンの先端の概略図である。
図 4は、 実施例 1で使用したピンの取り付けへッ ド内部の概略図である。 図 5は、 実施例 1の自動スポッターの内部構造概略である。
図 6は、 実施例 1でのスライ ド上の反応スキームである。
図 7は、実施例 1での抗体を固定化したスライ ドの S P Rイメージング像である。 図 8は、 実施例 1での抗原の濃度を段階的に増加させた場合の S P Rシグナル変 化である。
図 9は、 図 8のデ '一夕から作成したスキャッチヤードプロッ トである。
図 1 0は、 参考例 2での抗体を固定化したスライ ドの S P Rイメージング像であ る。
図 1 1は、 ピンの先端部の 1例である。
図 1 2は、 ピンの先端部の 1例である。
図 1 3は、 ピンの先端部の 1例である。
図 1 4は、 ピンの先端部の 例である。
図 1 5は、 実施例 3のスポッティング制御機構のメイン画面である。
図 1 6は、 実施例 3のスポッティング制御機構のスポッ 卜パターン作成画面であ る。
図 1 7は、 実施例 3のスポッティ ング制御機構のスポッ トパターン作成画面 (ス ポッティ ング中) である。
図 1 8は、 参考例 4で使用したアプリケ一シヨンのスポッティ ング制御画面であ る。
図 1 9は、 実施例 1の自動スポッターの概略図 (斜視図、 レール、 ヘッ ドは省略) である。
図 2 0は、 実施例 1の自動スポッターの概略図 (断面図) である。
図 2 1は、 実施例 1で用いた加湿チヤンバーの概略図である。 発明の開示
本発明者らは鋭意検討した結果、 以下に示す手段により、 上記課題を解決でき ることを見出した。
( 1 ) 固定化する物質を含む溶液をピンに保持させ、 先端部図形の面積が 0 . 0 1 m m 2以上であるピンを基板に接触させることにより、 金属基板チップ上に 溶液をスポッティ ングする操作を含むアレイ作製方法
( 2 ) ピンの上部にポリマー緩衝材を配置していることを特徴とする ( 1 ) に 記載のアレイ作製方法
( 3 ) スポッティ ングとピン洗浄、 ピン乾燥を自動的に行う操作を含む ( 1 ) または ( 2 ) に記載のアレイ作製方法
(4) 基板周囲の湿度を 7 0 % RH以上に保ち、 スポッティング操作を行う金 属基板上のアレイの作製方法
( 5 ) 基板周囲の湿度を 7 0 %RH以上に保ち、スポッティ ング操作を行う( 1 ) 〜 ( 3 ) のいずれかに記載の金属基板上のアレイの作製方法
( 6 ) 9 6穴プレートもしくは 3 8 4穴プレートに用意したサンプルを自動的 に金属基板上にスポッティ ングする ( 1 ) 〜 ( 5 ) のいずれかに記載のアレイ作 製方法
( 7 ) 9 6穴プレートもしくは 3 8 4穴プレー卜の配置を反映した形でスポッ ティ ングを行う ( 1 ) 〜 ( 6 ) のいずれかに記載のアレイ作製方法
( 8 ) 上記金属基板チップが金を蒸着した平面ガラスである ( 1 ) 〜 ( 7 ) の いずれかに記載のアレイ作製方法
( 9 ) 上記アレイが表面プラズモン共鳴測定用である ( 1 ) ~ ( 8 ) のいずれ かに記載のアレイ作製方法
( 1 0 ) 表面プラズモン共鳴が表面プラズモン共鳴イメージングである ( 1 ) ~ ( 9 ) のいずれかに記載のアレイ作製方法
( 1 1 ) 隣り合うスポッ トの中心間の距離が 1. 5 mm以下である ( 1 )〜( 1 0 ) のいずれかに記載のアレイ作製方法
( 1 2 ) 自動スポッターを用いてマイクロタイ夕一プレートのゥエルのサンプ ルをァレイ上のスボッティ ング位置にスポッティ ングすることによりァレイを作 成する方法において、 マイクロタイタープレートのゥエル配列を示す図と、 ァレ ィ上のスポッ ト位置配列を示す図がディスプレイ上に表示されている自動スポッ ターのスポッティング制御機構を用いることを特徴とするアレイ作製方法
( 1 3 ) 自動スポッターを用いてマイクロタイタープレートのゥエルのサンプ ルをアレイ上のスポッティ ング位置にスポッティングすることによりアレイを作 成する方法において、 マイクロタイ夕一プレートのゥエル配列を示す図と、 ァレ ィ上のスポッ ト位置配列を示す図がディスプレイ上に表示されている自動スボッ ターのスポッティ ング制御機構を用いることを特徴とする ( 1 ) 記載のアレイ作 製方法
( 1 4) スポッティ ングの操作中に、 スポッティ ングの経過を監視できる機構 を有する ( 1 2) または ( 1 3) に記載のアレイ作製方法
( 1 5) 自動スポッターのスポッティング制御装置のディスプレイ上のマイク ロタイタ一プレートのゥエル配列を示す図上のゥエルを選択した後、 引き続きァ レイ上のスポッ ト位置配列を示す図上のスポッ ト位置を選択することにより、 ス ポッティ ングパターンを決定すること特徴とする ( 1 2)、 ( 1 3) または ( 1 4) のいずれかに記載のアレイの作製方法。 発明を実施するための最良の形態
以下、 本発明を詳細に説明する。
ぐスポッ 卜用ピン >
まず金属基板チップ上にピンの接触によってのアレイを作製する方法を説明す る。
本発明において、 固定化する物質を含む溶液を保持したピンと金属基板チップ が接触することで基板上に液滴を形成する。 固定化する物質は限定されるもので はなく、 チップ上に固定化され、 分子間の相互作用観察に用いられる。 溶液の溶 媒も限定されるものではなく、 水、 緩衝液、 有機溶媒などが挙げられる。 ピンと 基板は接触することが好ましい。 インクジェッ ト法などの液滴を飛ばす手段は非 常に高価であり、 サンプルの粘度によってスポッ トの圧力条件が変わるために、 設定が難しく好ましくない。 ピン接触させる手段は非常に容易、 かつ安価であり 好ましい。
金属基板を傷つけないため、 ピンと基板が接触する際に、 高い応力がかからな い方が好ましい。 応力を低く抑える手段として、 ピンが基板に接触する面積は大 きい方がよく、 ピンにかかる重さは小さい方がよい。
ピンの先端部図形の面積は 0. 0 1 mm 2以上であることが好ましく、 より好 ましくは 0 . 0 2 mm 2以上、 さらに好ましくは 0 . 0 3 m m 2以上である。 0 . 0 1 m m 2未満であると、 スポッ ト時のピン先端にかかる応力が大きくなり、 金 属基板を傷つける恐れがあるため、 好ましくない。
なお、 ここで、 ピン先端部図形の面積を言う場合は、 先端部が完全に平面とな つていなくても、 基板と接触する先端部が半径 1 0 0 /i m以上、 好ましくは半径 1 5 0 m以上、 特に好ましくは半径 2 .0 0 m以上の球形に相当する曲面であ れば、 その部分は面積として数えることができる。
また、 先端部の面積の上限は、 特に限定するものではないが 2 m m 2であるこ とが好ましく、 さらには 1 mm 2であることが好しい。 2 mm 2を越えるとスポッ ト面積が大きくなりすぎ、 基板上にスポッ ト出来る数が少なくなるため好ましく ない。
先端部の図形の形状は特に限定されるものではなく、 円形、 多角形、 それぞれ に溝がはいったものや穴があいたものなどを含む.。 また、 ピンには先端部から上 部にかけて毛細管状の加工が施され、 溶液が保持される機構を持つものであって も良い。 これらのピンの例を図 1 1〜 1 3に挙げる。 図 1 1はピン先端から上部 に向かってスリ ッ トが設けられており、 スリッ トに溶液が保持される構造となつ ている。 図 1 2は 2枚のプレートが先端に向かって互いに狭まり毛細管を形成す る構造となっている。 図 1 3はピン先端に凹みが設けられている。 図 1 4はピン 先端から側面にかけて溝が設けられている。
また、 ピンの先端部と側面部の角は基板の金属が傷付きにくいように角を丸め ておいても良い。 丸める場合には半径 1 0 /x m以上であることが好ましい。
ピンの材質としては、 ステンレス、 金、 白金、 チタンなどの不活性な金属や合 金類、 セラミック、 ガラス、 プラスチック、 天然石など溶液のスポッティ ングの 目的に用いられるものであれば特に限定されるものではない。 これらの中でも、 金属や合金類が好ましい。
スボッティ ング時に衝撃を吸収し、 ピンの先端にかかる応力を調整する手段と しては、 ピンの支持体部分に緩衝機構を設けることが好ましい。 ピンが基板に接 触して押し込まれた際に緩衝機構によりピンにかかる衝撃を吸収すると共に、 適 度な反力が発生してピンの先端に応力をかけることが出来る。 また、 ピンは上方 には自由に可動する構造とし、 ピン (およびその付属物) の自重により ピン先端 に応力をかけることも出来る。
緩衝機構としてはポリマ一製の緩衝材を用いることが好ましい。 基板と接触す ることによる圧力を吸収することができるためである。 D N Aマイクロアレイに 広く使用されている金属ばねはばねの強度が強すぎて好ましくない場合がある。 ポリマーの素材は特に限定されるものではないが、 軟質の発泡系 (フォーム) の ものが好ましく、 ポリオレフイ ン系、 ゴム系、 ウレタン系のフォームなどが挙げ られる。 <スポッ ト時の周辺の湿度〉
次に、 スポッ ト時の周辺環境、 特に湿度に関して説明する。
スポッ 卜する際の、 基板周囲の湿度は 7 0 % R H以上が好ましく、 7 8 % R H 以上がより好ましく、 さらには 8 0 % R H以上が好ましい。 それ以下の湿度であ ると、 乾燥によって液滴が徐々に小さくなりスポッ トの大きさが一定しない、 液 滴中のサンプル濃度が濃縮されていき、 スポッ トの部分部分で、 固定化条件が異 なるために固定ムラが生じる、 反応により固定化する際には十分な反応前に乾燥 するために固定ムラが生じる、 等が起こりやすい。 大きさの大きなムラや固定ム ラがある場合、 相互作用によって得られるシグナルにばらつきが生じ易いため、 好ましくない。 よって、 微小液滴は周囲の湿度調整により、 乾燥を防ぐほうが好 ましい。 湿度調整は、 基板近傍のみだけでもよく、 スポッティ ングを行う装置全 体であってもよい。 ただし、 本発明における湿度とは基板近傍にて測定されたも のを言う。
なお、 この技術は上記のピンを用いた接触法に限定されるものではなく、 さら に種々のピンを用いた接触法やインクジェッ ト法などにも展開が可能である。 湿度を 7 0 % R H以上に維持する手段としては、 スポッター内部を閉鎖空間と し、 加湿機構を設けることが好ましい。 加湿機構としては、 水のたまり場を設け る方法、 ヒーター等で水を加熱して水蒸気を発生させる方法、 超音波で霧を噴霧 する方法等、 任意のものが挙げられる。 また、 加湿機構と湿度センサーを連動さ せ、 一定の湿度にコントロールされるようにすることも好ましい。 さらに、 スポッター内部の空気を循環させることで、 スポッター内の湿度の場 所による偏り、 時間的変動を少なくすることができ好ましい。
周囲温度は特に限定されるものではないが、 常識的には 4でから 3 0 でスポ ッティ ングは行われる。室温 2 5 °C前後で使用するのが安価であり簡便であるが、 4〜 1 0 に冷やす方法も湿度を高める手段として有効である。
スポッ ト後、 基板は微小液滴が乾燥されない状態を保っため、 好ましくは 5分 以上、 好ましくは 1 0分以上、 さらに好ましくは 1 5分以上の時間、 湿度 7 0 % R H以上、 さらには 7 8 % R H以上の環境下に放置され、 固定化が完全に行われ ることが好ましい。 スポッ ト後の放置はスポッターのチップ置き場でそのまま放 置しても良いし、 スポッター内部の別の場所で湿度 7 0 % R H以上の場所に移動 させて放置しても良い。 さ らには基板をスポッターから取り出して別の湿度 7 0 % R Hの容器内に放置しても良い。 湿度 7 0 % R H以上の容器としては、 密封 できる容器でスポッターと同様の加湿機構を持つものが好ましい。 簡便なものと しては、 底部に水を入れたデシケ一夕等が挙げられる。
また、 本発明は基板上のサンプルが結合する部分に、 サンプルと化学反応可能 な官能基を有し、 この化学反応可能な官能基とサンプルとが化学反応により結合 することにより固定化されるものに特に好ましく適応できる。
サンプルと化学反応可能な官能基としては、 カルボン酸基、 アミノ基、 酸無水 物、 マレイミ ド基、 スクシンイミ ド基、 エポキシ基、 イソシァネート基、 アジド 基などが挙げられる、 中でもマレイミ ド基、 スクシンイミ ド基が好ましい官能基 として挙げられる。
また、 また、 化学反応以外でも、 基板上の官能基とによるキレート結合、 ィォ ン結合、 疎水結合となる様式にも好ましく適応することができる。
スポッティ ング後すぐには乾燥されることなく十分な時間を与えられることに より、 基板上のこれら官能基とスポッ トされるサンプルの官能基とが十分に結合 し、 強固なスポッ トとなるために安定した各種の観測が可能となる。
本発明ではピンは自動的に固定化する物質を含む溶液を保持し、 金属基板上に 保持した溶液の一部もしくは大部分をスポッ 卜する。 同一の溶液のスポッ トは繰 り返されることもある。 異なる溶液のスポッ トを作製する場合は、 直前にスポッ 卜した溶液とコンタミする恐れがあるため、 ピンの洗浄、 ピンの乾燥が連続して 自動的に行われることが好ましい。 洗浄液および洗浄液は特に限定されるもので はなく、 .水、 アルコール類を含んだ液、 界面活性剤を含んだ液が挙げられ、 洗浄 方法も、 液に浸ける方法、 流水 (溶液) をかける方法やこれらの組み合わせが用 いられ、 超音波処理したりする手段も挙げられる。
洗浄回数も限定されるものではないが、 2回以上行うとコンタミを抑制して洗 浄することができる。ピンを複数回洗诤する場合でも、同一の洗浄液で洗う場合、 異なる洗浄液で洗う場合の両方を含む。
自動的にスポッティ ングするため、 ピンは保持具に保持され、 縦、 横、 高さ方 向に可動である構造にする必要がある。さらに、ピンは駆動装置で駆動可能とし、 駆動装置はコンピュータ等を用いて動きが制御できるようプログラムされている 必要がある。 駆動方法としてはステッピングモータやサーポモータ、 リニアモ一 夕による方法等挙げられ、 これらの技 は従来のアレイ等の自動スポッターで用 いられる技術をそのまま転用することが出来る。
固定化する物質を含む溶液は 9 6穴プレートもしくは 3 8 4穴プレートに用意 されることが好ましい。 いずれも汎用品としてほぼ同じ形状のものが実験用に市 販されているため容易に手に入れることができ、 固定化する物質を含む溶液の調 整をこれらプレート上で行い、 そのままスポッターに固定できるためである。 自動的に液滴を作製するパターンも 9 6穴プレートもしくは 3 8 4穴プレート の配列を反映した形でスポッ トすることが好ましい。 例えば、 9 6種類のサンプ ルが 9 6穴プレ一トに用意された場合、 9 6穴プレートに用意した配列をそのま ま基板上に再現すると、 スポッ トした場所が特定しやすく好ましい。 ただし、 9 6穴プレートの配列の点対称、 線対称、 1 8 0 ° 回転もしくはそれらの組み合わ せも含む。
もう一つの例として、 1 2種類のサンプルの場合は n = 8でスポッ トすること ができる。 同一のサンプルを縦方向に 8つスポッ トすることや、 斜めに一つ又は それ以上ずつずらしてスポッ トする場合も、 本発明に含まれる。 それを対称 · 回 転したパターンも含まれる。 固定化する物質を含まないブランクを入れる場合も 本発明に含まれる。 金属基板チップは金薄膜をコーティ ングした平面ガラスであることが好ましレ^ 金は金一硫黄結合により、 表面修飾が容易であるためである。 例えば、 末端にァ ミノ基ゃ力ルポキシル基などの官能基をもつアル力ンチォ一ルを溶液中で接触さ せることでアル力ンチオールの自己組織化表面が形成され、 表面に官能基を導入 することができる。 また、 金基板は S P R法、 エリプソメ トリ一法、 和周波発生 ( S F G ) 法などに使用することができるため好ましい。
中でも S P R法は広く用いられており、 相互作用の測定方法として信頼性が高 く、 好ましい。 また、 S P Rイメージング法は広い範囲の相互作用を観察するこ とができるため、 さらに好ましい。
金薄膜をコーティ ングする手段は特に限定されるものではないが、 蒸着法、 ス パッタリング法、 イオンコ一ティ ング法などが挙げられる。 金の厚さは特に限定 されるものではないが、 通常は 3 0〜 1 0 0 n mの範囲で使用される。 金の剥離 を防ぐために、 金をコーティ ングする前に、 基板にあらかじめクロムもしくはチ タンの層を l〜 1 0 n mだけ形成しておくのが一般的である。
ガラスはさまざまな屈折率を有する透明基板が用意できるため好ましい。 ブラ スチックも基板に使うことは可能であるが、 成形は困難である場合がある。 ガラ ス板は平面であることが好ましい。 回折格子などの加工を行ったものであっても 良い。 しかし加工を行うことで、 プリズムを用いずに測定ができることができる ものの、 加工は高価であるだけでなく、 微小な溝があるために、 スポッ トが難し くなることがある。
隣り合うスポッ トの中心間の距離は 1 . 5 m m以下であると、 スポッ トが高密 度になるため好ましい。 9 6穴プレート、 3 8 4穴プレー卜のパターンを反映さ せるため、 高密度である方が小さな面積の上に多くのサンプルを固定化すること ができるため好ましい。
このようにして完全に固定化された基板は、 必要により、 過剰分のサンプル液 を洗い流す、 さらに別の反応液と反応させる、 乾燥させる等の後処理を行い、 測 定用のアレイとする。 ぐスポッティ ングの制御 > さらに、 ΐ動スポッターの制御機構に関して説明する。
スポッティ ングの制御機構においてはマイクロ夕イタ一プレートのゥエル(穴) 配列を示す図と、 アレイ上のスポッ ト位置配列を示す図が描かれている。 図はゥ エル配列及びスポッ ト位置配列が判別できればよく、 正確である必要はない。 装置内に設置されるマイクロタイ夕一プレートはプラスチックで構成されてお り、 複数のゥエルを有している。 ゥエルの中にはスポッ トされるサンプル溶液が 含まれているが、 すべてのゥエルにサンプルが存在する必要はなく、 一つ以上の ゥエルにサンプル溶液が存在していればよい。
マイクロタイタ一プレートは任意の数のゥエルを有していてよいが、 9 6ゥェ ルもしくは 3 8 4ゥエルプレートであると、 入手が容易であるため好ましい。 ま た、 多くのサンプルを保持できることも利点である
スポッ ト位置は、 基板上で明確な区別、 境界線があってもなくてもよく、 基板 上の任意の場所に設置される。 ただし、 制御機構の図の上では、 スポッ トされる 場所は明確に示されている。 アレイ上のスポッ ト位置の数は 9 6の整数倍数であ ることが好ましい。 前述のように 9 6ゥエルまたは 3 8 4ゥエルプレートを用い ることが好ましいため、 スポッ トの数も、 ゥエルの数に対応できる 9 6の整数倍 が好適である。
ただし、 本発明の方法におけて、 スポッ トされる位置の数は、 それほど多いも のではなく、 1 5 3 6以下であるのが好ましい。 なぜなら、 制御機構上において 非常に多数のスポッ ト位置を図示するのは困難であるからである。 従って、 D N Αマイクロアレイよりは、 集積度の低いアレイに本発明は好適である。 例えば、 表面プラズモン共鳴イメージング法に用いられるアレイには極めて適している。 スポッティ ングの制御機構上において、スポッティ ングの経過が監視できると、 装置が正常に動作していることが確認できるため好ましい。 スポッティ ングの過 程において、 スポッティ ングが終了したマイクロタイタ一プレート上のゥエル、 及びアレイ上のスポッ ト位置の制御機構上における色が変更され、 スポッティ ン グの経過を示す機構は明解であるため好ましい。 使用される色は特に限定される ものではないが、 明確に区別できる色 (例えば黄と黒、 赤と青など) であるとさ らに好ましい。 スポッティング制御機構上で、 自由にスポッ トパターンが作成できることが好 ましい。 さまざまなパターンを作成することで、 応用性の高い実験ができる。 ま た、 スポッ ト位置によるデータのばらつきも解析することも可能である。
制御機冓上でマイクロタイタープレートのゥエル配列を示す図と、 アレイ上の スポッ ト位置配列を示す図を用いて、 自由にスポッ トパターンを作成できると、 パターンの作成が容易でありさらに好ましい。
スポッティ ングパターンの作成は、 自動スポッターのスポッティング制御装置 のディスプレイ上のマイクロタイタープレートのゥエル配列を示す図上のゥエル を選択した後、 引き続きアレイ上のスポッ ト位置配列を示す図上のスポッ ト位置 を選択することにより、 行われることが好ましい。
ゥエルの選択方法としては、 ディスプレイ上のスポッ 卜するサンプルのゥエル の位置に、 マウス、 ポインティ ングパッ ド、 ポインティ ングスティ ック等のボイ ンティ ングデバイスを用いてポインターを移動させ、 クリック操作やエンターキ —により確定させたり、 夕ツチパネルとなったディスプレイ上のゥエル位置を直 接触れる操作等により選択することができる。 また、 スポッ ト位置の選択方法と しては、 ディスプレイ上のスポッ トしたい位置に、 上記と同様な方法でポインタ —を移動させたり、 夕ツチすることで選択することができる。
これらの方法としては、 単にクリ ックやェンタ一キ一操作のみによって、 ゥェ ルを選択した後直ちにスポッ ト位置を選択する方法、 コピーおよび貼り付けと呼 ばれる操作で行う方法 (コピーによりゥエルを選択し、 貼り付けによりスポッ ト 位置を選択する。 この場合には貼り付けを繰り返すことにより、 1回のゥエル選 択で複数のスポッ ト位置を選択することが出来る。)、 ドラッグアンド ドロップと 呼ばれる操作 (ドラッグによりゥエルを選択し、 ドロップによりスポッ ト位置を 選択する) などで、 行う ことができる。
これらの操作により、 制御機構にゥエルとそのサンプルをスポッ トする位置の 関係の情報が認識され、 この情報およびすでに登録されているマイクロタイター プレートのゥエルおよびアレイの個々のスポッティ ング位置の座標デ一夕を基に スポッターの動きが自動的にプログラムされることが好ましい。
これらの情報を認識させる方法、 プログラムを組み立てる方法等は、 すでに広 く知られているものであって、 特に限定されるものではない。
スポッティングの制御機構は市販のパーソナルコンピュー夕であるのが好まし い。 デスク トップ、 ラップトップなど形態は特に限定されない。 また、 オペレー ティ ングシステム (O S ) はウィ ンドウズ (R )、 マック O S ( R )、 リナックス ( R ) などが挙げられるが特に限定されるものではない。 制御機構には何らかの アプリケーションが必要であるが、そのソフトは限定されるものではない。また、 ソフ トに使用される言語としてビジュアルベーシック、 C言語などが挙げられる が、 特に限定されるものではない。
本発明のアレイの作製方法は、表面プラズモン測定用に好ましく用いられるが、 特にその用途を限定されるものではない。 また、 基板となる物質の材料は特に限 定されるものではなく、 ガラス、 セラミックス、 金属、 ダイアモンド、 有機化合 物、 高分子化合物、 シリコンウェハー、 雲母などが挙げられる。
この技術も上記のピンを用いた接触法に限定されるものではなく、 さらに種々 のピンを用いた接触法やインクジェッ ト法などにも展開が可能である。
<抗体のスクリ一二ング方法 >
次に、 複数の抗体を同一金属基板上に固定化したアレイを用いて抗体のスクリ —ニングを行う方法を説明する。
ここにおいて、 スクリーニングの対象となる抗体は複数であり、 抗原となる分 子は同一である。 ただし、 ェピトープは単一とも同一とも限定されない。 すなわ ち、 抗体はモノクローナル抗体であってもポリク口一ナル抗体であってもよく、 ェピトープの異なるモノクローナル抗体の組み合わせであってもよい。 組み合わ せ/配合率が異なる場合も、ァフィ二ティが異'なるため、異なる抗体として扱う。 複数の抗体は一つの金属基板に固定化され、 アレイが形成される。
スクリーニングの際の測定には、 抗原を含んだ溶液が基板上に曝露され、 抗原 抗体反応によって、 抗原がトラップされ、 この卜ラップされた状態を観察する。 表面に抗原が吸着するのを観察する手段としては S P R法が好ましい。 S P Rは ラベルフリーの相互作用解析方法であり、 抗原を蛍光物質や放射線同位体でラベ ルする必要がないため好ましい。 また、 リアルタイムで S P Rシグナルを観察で きるため、 相互作用が飽和するまで抗原を含む溶液をセンサー表面に流し続ける ことができる。 また、 半定量的な検出方法であるため、 シグナルの変化が吸着し た量に対応するため、 K i n e t i c s解析が可能であり好ましい。
K i n e t i c s解析によって抗原抗体反応の平衡定数が得られ、 ァフィニテ ィの高い抗体を選ぶことが可能となる。
一度に行えるスクリーニングの件数は、 S P Rで観察できる数、 すなわちァレ ィのスポッ ト数が上限である。 アレイのスポッ ト数としては、 好ましくは 6個以 上、 より好ましくは 1 2個以上、 さらに好ましくは 2 0個以上である。 また、 ス ポッ ト数の上限としては観察が行える限り限定はされないが、 概ね 1 0 0 0 0個 である。
これらのアレイに複数種、 好ましくは 4種以上、 さらに好ましくは 6種以上の の抗体をスポッ トする。 スポッ トは抗体 1種に対して 1箇所でも良いし、 複数箇 所にスポッ トしてデ一夕の n数を増やすことも好ましい。
金属基板の金属としては金が好ましい。 金は S P Rによる観察が可能であるこ とと、 金一硫黄結合によって、 表面に官能基を導入するのが容易であるからであ る。 金属基板としては金薄層にコーティ ングされた平面ガラス基板であることが 好ましい。 ガラスはさまざまな屈折率を有するものが揃っており、 切り出すこと で容易にスライ ドを得ることができるため好ましい。 また、 平面基板である方が 成形は容易かつアレイ作製が容易であり好ましい。
S P R法としては、 広範囲に S P Rシグナル変化を観察することのできる S P Rイメージング法が好ましい。 S P Rイメージング法は偏光とした光束が金属薄 層をコーティ ングしたガラス基板に照射され、 その反射像を波長フィルターで通 した上で、 C C Dカメラ等で撮影する方法である。
こうして抗原抗体反応が観察され、 その K i n e t i c s値は S P Rシグナル 変化から解析される。ァフィ二ティの低い相互作用の場合、相互作用させた後に、 緩衝液を流すことで解離が観察され、解離の速度から解離速度定数が算出できる。 しかし、 抗原抗体反応の場合、 ァフィ二ティが高く、 解離を解析するのは困難で ある。 そこで、 平衡定数はスキャッチヤードプロッ ト法によって計算されるのが 好ましい。 この方法においては、 濃度 (C ) を段階的に上昇させていき、 その濃 度におけるシグナルの平衡値 R e qを求める。 R e dZCと R e iとプロッ トし、 その傾きから平衡定数が求まる。
抗体を固定化する手段としては、 さまざまな手段が挙げられる。 表面の力ルポ キシル基を水溶性カルポジィミ ドと N—ヒ ドロキシスクシンイミ ドによって活性 化し、 抗体中のアミノ基と反応させるァミノカップリング法が容易であり、 好ま しい。 また、 抗体をペプシン消化によって F ( a b ') 2とし、 還元することで F a b ' として、 チオールカップリングにより、 表面に形成したマレイミ ド基、 ジ スルフイ ド基と反応させることができる。 また、 抗体に含まれる糖鎖を用いて、 固定化する手段も考えられる。 実施例
以下に実施例を示して本発明を具体的に説明するが、 本発明は実施例に限定さ れるものではない。
[実施例 1 ]
末端にチオール基を有するポリエチレングリコール (P E Gチオール : 日本油 脂製 S UNB R I GHT ME SH— 50 H)を ImMの濃度で 7 m 1のェタノ一 ル : 水 = 6 : 1の混合溶液に溶解させた。 P E Gチオールの分子量は 5, 0 0 0 であり、 親水性が非常に高い。 また、 P E Gの末端はメ トキシ基であり、 反応性 をほとんど有さない。
1 8 mm四方、 1 mm厚の L a k 1 0ガラススライ ドにクロムを 3 nm蒸着し、 金を 45 nm蒸着した金蒸着スライ ドを、 上記 P E Gチオール溶液に 3時間浸漬 させ、 金基板全体に P E Gチオールを結合させた。
スライ ドをミリ Q水とエタノールで洗浄し、 空気噴霧により乾燥させたのち、 このスライ ドの上に図 1に示すフォ トマスクを載せ、 5 0 0 W超高圧水銀ランプ (ゥシォ電機製)で 2時間照射し、照射された部分の P E Gチオールを除去した。 フォ トマスクのパターンは 5 0 0 mX 5 0 0 xmの四角形が 9 6個並んだもの であり、 この四角形部分がスポッ ト位置となる。
スポッ ト位置同士は中心点の間隔で上下、左右 1 mmの間隔が設けられており、 上端から最上部のスポッ ト位置の中心部および下端から最下端のスポッ ト位置の 中心部までの間隔は 5. 5 mm, 左端から最左部のスポッ ト位置の中心部および 右端から最右端のスポッ ト位置の中心部までの間隔は 3 . 5 mmとなっている。 ミリ Q水とェタノ一ルで洗浄したのち、 7 —力ルポキシルー 1 一ヘプタンチォ —ル( 7 — C H T:同仁化学研究所)の 1 mM溶液中にスライ ドを 1時間浸漬し、 紫外線照射部に力ルポキシル基を導入した。
3 0 0 Lの 0 . 2 M 1 —ェチル一 3 — ( 3—ジメチルァミノプロピル) カル ポジイミ ド塩酸塩 (水溶性カルポジイミ ド) / 0. 0 5 M N—ヒドロキシスクシ ンイミ ド P B S (—)溶液をスライ ドの上に滴下して一時間反応させ、 C O OH基 をスクシンィミ ドエステルとして活性化した。
スライ ドを水洗後、 空気噴霧により乾燥させ、 自動スポッターに装着した。 1 3種類の抗ャギ I g Gモノクローナル抗体を 1 0 0 β g / I の濃度に調整し ( P B S (—))、 1 0 1 を 9 6穴プレートの A l〜 1 2、 B 1のゥエルに用意 した。 自動スポッターの内部湿度を 8 1 %に保ち、 n = 4でスポッティングを行 つた。 湿度はァズワン社 NT— 1 8 0 0デジタル温湿度計をチップ置場横に置い て測定した。
スポッティ ングのパターンを図 2に示す。 このように、 9 6穴プレー卜に入れ たサンプルの入れ方を反映した形でスポッティ ングを行った。 B 2〜 1 2のゥェ ルにはモノクローナル抗体サンプルは入っていないため、 ブランクのスポッ トと なる。
スポッティングに用いたピンの先端の図を図 3に示す。 ピンの直径は 4 8 7 ^i mであり、 2 0 0 ^a mの幅の溝が入っている。 従って、 面積は 0 . 0 9 mm 2で ある。また、ピンが取り付けられたヘッ ド部分の内部構造の概略図を図 4に示す。 ピンはガイ ドを通して内部のピン固定治具に取り付けられており、 ピン固定治具 は上下方向に移動可能となっている。 ピン固定治具の上には緩衝材として軟質ゥ レタンフォームが設けられ、 ピンが基板に押し付けられた時には、 ピンがピン固 定治具と共に上方に移動し、 緩衝材が圧縮され、 衝撃を緩和すると共にピンに適 度な応力を与える。
スポッティ ングは自動的に行われる。 図 5に使用した自動スポッターの内部の 配置の概略を示す。 ピンは 9 6穴プレートに浸潰され、 ゥエル内のサンプルを保 持し、 スライ ド上へと移動し、 スポッティ ングを行う。 実施例の場合は n = 4で あるため、 9 6穴プレートとスライ ドの間を 3回往復する。 4回目のスポッティ ングが終わった段階でピンは洗浄浴へと移動し、 ミ リ Q水で 2回洗浄される。 洗 浄後にドライャ一内にて上下運動が 3 0 m mの振り幅で 3回行われ、 ピンが乾燥 される。 次のゥエルにてサンプルと採取し、 同様の動作は付属したコンピュータ で制御されて自動的に行われる。
湿度の調整は超音波加湿器を用い、 超音波により発生した霧をスポッター内に 吹き込む方式とし、 内部湿度はチップ置き場周辺での湿度を測定し、 このデータ を元に超音波加湿器の O Nノ O F Fを切り替えて調整した。 基板周辺の湿度は 8 1 %土 3 %内に維持されていた。 装置の概略は図 1 9およぴ図 2 0に示す。
スポッティ ング終了後、 スポッターからスライ ドを取り出し、 直ちに図 2 1に 示す加湿チヤンバ一内にスライ ドを移し、 2時間保持してスライ ド上の官能基と 抗体のアミノ基を反応させ、抗体を表面に固定化した。なお、加湿チャンバ一は、 容器の底部に水を張り、 中段にスライ ドを置ける構造となったものであり、 密閉 が可能であるため、長時間乾燥させることなく反応の進行を続けることが出来る。 反応終了後のチップをミリ Q水で数回洗浄した上で、 空気噴霧により水を取り 除き、 分子量 2, 0 0 0のァミノ基末端ポリエチレングリコ一ル水溶液を 2 m g Z m l の濃度で p H 8 . 5に調製し、 3 0 0 // 1 をスライ ド上に注ぎ、 残存する スクシンイミ ド基にポリエチレングリコールを反応させ、 ブロッキング反応を行 つた。 表面固定化の反応スキームを図 6に示す。
抗体を固定化したスライ ドを 3回水洗した後、 空気噴霧により乾燥させ、 S P Rイメージング装置 (東洋紡績製) にセッ トした。 緩衝液として P B S (—) を 2 5 0 n 1 m l の流速で 3 0分通液し、 1 0 0 β 1 / 1 の流速で 3 0分通液 して安定化させた。 その際の S P Rイメージング像を図 7に示す。 白くなつてい るスポッ ト部分には抗体が固定化されており、 その他の部分には固定化されてい ない。 ピンが接触してサンプル液がスポッ トされた部分には全く傷は見当たらな かった。 '
次に抗原であるャギ I g Gを から 8 ^i g / m l まで濃度 (C ) を 段階的に倍増させて流し、 各々の濃度における平衡時のシグナル (R e q ) を得 た。 この際の S P Rシグナルの変化を図 8に示す。
R e q Z Cと Cをプロッ 卜した(スキャッチヤードプロッ ト)結果を図 9に示す。 いずれもほぼ直線関係が得られている。 図 9の直線の傾きから結合平衡定数を算 出し、 表 1 に示す。
ただし、 シグナルが低いために相関係数が 0 . 8未満となったデータは省いて いる。 このように金属基板上に基板を傷つけることなく、 分子のアレイを作製し 有用なデータを取ることが可能となった。
表 1
Figure imgf000021_0001
[実施例 2〕
図 1 2の形状のピンを用いて実施例 1 と同様にスポッ トを行う。 ピンの先端は 4 0 0 ii m X 1 5 0 j mが 2個であり、 約 5 0 w mの間隔が開けてある。 同一サ ンプル溶液を 3箇所にスポッ 卜する際には、 実施例 1では毎回ゥエルのサンプル にピンを移動させ液をピンに付けていたが、 実施例 2ではピンの隙間に液を溜め ることができるため、 ピンにサンプルを付けるのは最初の 1回のみで、 連続して 3箇所にスポッ 卜することができる。
ピンの先端の面積は 0 . 1 2 m m 2であり基板の金属膜に傷を付けることはな い。
[参考例 1 ]
円錐状であり約 0 . 0 0 5 m m 2の先端面積を持つピンを備え、 緩衝装置とし てパネを上部にもつスポッター装置でスポッティ ングしたところ、 金蒸着面の剥 離が観察された。
[参考例 2 ] スポッターの力パーを外し、 加湿装置を作動させることなく、 2 5で 3 0 % 1 H環境下で実施例 1 と同様にスポッ トを行った。 目視による観察ではスポッ ト部 の微小液滴はスポッティ ング後 1分以内に乾燥した。 さらに加湿チャンバ一で保 存することなく直ちにミリ Q水で洗浄して後は実施例と同様に行った。 得られた スライ ドを S P Rにより観察した時のィメ一ジング像を図 1 0に示す。 スポッ ト 部は不鮮明であり、 安定したデータが見込めなかったため、 測定は中止した。
[参考例 3 ]
湿度の設定を変え、 湿度 6 5 %に保って実施例 1 と同様にスポッティ ングした ところ、 スポッ ト中にスポッ トした液滴が乾燥した。 不安定な分子の相互作用に は不適当であるため、 測定は中止した。
[実施例 3 ]
本発明に基づくスポッティング制御機構のアプリ'ケ一シヨン画面を図 1 5に示 す。 右上の 9 6個の四角形で描かれている図は、 基板上の 9 6点の位置配列を示- しており、 右下の 9 6個の丸で描かれている図は 9 6ゥエルのマイクロタイタ一 プレートを示している。 制御画面上においても、 市販の 9 6ゥエルプレートと同 様に、 縦軸が A— H、 横軸が 1 一 1 2 となっている。
図 1 6は実施例 1 とは異なるスポッティ ングパターンを自由作成している画面 であり、 右下の 9 6ゥエルプレートのゥェル位置をマウスでクリ ックした後に、 左上のスポッティ ング位置をクリックすれば、スポッ ト位置にゥエル番号が入り、 スポッ トのパターンを自由に作成することができる。 作成したパターンはテキス トフアイルで保存可能である。
図 1 7は 4 8個のゥエルから、 n = 2で 9 6個のスポッ 卜位置にスポッティ ン グを行っている操作中の画面であり、 サンプリングの終了したゥエル及びスポッ ティ ングの終了したスポッ トの色は赤となっているのに対し、 未操作の部分は青 となっている。 このように、 スポッティ ング経過を制御機構上にて監視すること ができる。 また異なるサンプルをサンプリングする際は、 自動的にピンの洗浄操 作が入るように設計されている。 以上のアプリケーションは市販のパソコンのォ ペレ一ティ ングシステム (ウィ ンドウズ (R ) ) 上で動作し、 非常に容易に操作可 能である。 [参考例 4]
二チリ ョ一社製 N s s E d i t o r M i n i を用いてスポッティング装置を制 御し、 図 1に示すスポッ ト位置へのスポッティ ングを実施した。 図 1 8がその操 作画面であり、 ここでは一つのコマンドに対して一行書く形式となっている。 サ ンプリング操作、 スポッティング操作ともに、 X— Y— Z軸の座標の位置を数字 で入力して指定する必要がある。 9 6点スポッ トするには、 サンプル位置とスポ ッ ト位置の座標で、 少なく とも 1 9 2点の座標を個別に入力する必要がある。 ま た、サンプルが変更される際のスポッティ ングピンの洗浄も入力する必要がある。 プログラミングは難解かつ煩雑である。
産業上の利用可能性
本発明により、 金属基板上に生体分子のアレイを容易にかつ安価に得ることが できるようになった。 金属基板は傷つけられることなく、 また、 生体分子は活性 を保ったままアレイが得られる。 さらには、 マイクロタイタープレートの各ゥェ ルのサンプルを、 アレイの任意の位置にスポッ トするよう、 容易に制御すること ができる。 今後、 本発明により作製されたアレイは生体分子の相互作用解析に広 く使用されていく と期待される。

Claims

請求の範囲
• 1 . 固定化する物質を含む溶液をピンに保持させ、 先端部図形の面積が 0 . 0 1 m m 2以上であるピンを基板に接触させることにより、 金属基板チップ上に溶液 をスポッティングする操作を含むアレイ作製方法
2 . ピンの上部にポリマ一緩衝材を配置していることを特徴とする請求項 1 に記 載のアレイ作製方法
3 . スポッティ ングとピン洗浄、 ピン乾燥を自動的に行う操作を含む請求項 1ま たは 2に記載のアレイ作製方法
4 . 基板周囲の湿度を 7 0 % R H以上に保ち、 スポッティ ング操作を行う金属基 板上のアレイの作製方法
5 . 基板周囲の湿度を 7 0 % R H以上に保ち、 スポッティング操作を行う請求項 1 ~ 3のいずれかに記載の金属基板上のアレイの作製方法
6 . 9 6穴プレートもしくは 3 8 4穴プレートに用意したサンプルを自動的に金 属基板上にスポッティングする請求項 1〜 5のいずれかに記載のアレイ作製方法
7 . 9 6穴プレートもしくは 3 8 4穴プレートの配置を反映した形でスポッティ ングを行う請求項 1〜 6のいずれかに記載のアレイ作製方法
8 . 上記金属基板チップが金を蒸着した平面ガラスである請求項 1〜 7のいずれ かに記載のアレイ作製方法
9 . 上記アレイが表面プラズモン共鳴測定用である請求項 1〜 8のいずれかに記 載のアレイ作製方法
1 0 . 表面プラズモン共鳴が表面プラズモン共鳴イメージングである請求項 1〜 9のいずれかに記載のアレイ作製方法
1 1 . 隣り合うスポッ トの中心間の距離が 1 . 5 m m以下である請求項 1〜 1 0 のいずれかに記載のアレイ作製方法
1 2 . 自動スポッ夕一を用いてマイクロタイ夕一プレートのゥエルのサンプルを アレイ上のスポッティ ング位置にスボッティ ングすることによりアレイを作成す る方法において、 マイクロ夕イタ一プレートのゥエル配列を示す図と、 アレイ上 のスポッ ト位置配列を示す図がディスプレイ上に表示されている自動スポッター のスポッティ ング制御機構を用いることを特徴とするアレイ作製方法
1 3 . 自動スポッ夕一を用いてマイクロタイタープレートのゥエルのサンプル をアレイ上のスポッティ ング位置にスポッティ ングすることによりアレイを作成 する方法において、 マイクロタイ夕一プレートのゥエル配列を示す図と、 アレイ 上のスポッ ト位置配列を示す図がデイスプレイ上に表示されている自動スポッタ 一のスポッティ ング制御機構を用いることを特徴とする請求項 1記載のアレイ作 製方法 1 4 . スポッティ ングの操作中に、 スポッティ ングの経過を監視できる機構を 有する請求項 1 2または 1 3に記載のアレイ作製方法
1 5 . 自動スポッ夕一のスポッティ ング制御装置のディスプレイ上のマイクロ タイタープレートのゥエル配列を示す図上のゥエルを選択した後、 引き続きァレ ィ上のスポッ ト位置配列を示す図上のスポッ ト位置を選択することにより、 スポ ッティ ングパターンを決定すること特徴とする請求項 1 2、 1 3または 1 4のい ずれかに記載のアレイの作製方法。
PCT/JP2004/009409 2003-06-27 2004-06-25 アレイの作製方法 WO2005001476A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003183868A JP3870935B2 (ja) 2003-06-27 2003-06-27 金属基板チップに分子を固定化したアレイの作製方法
JP2003183870A JP2005017155A (ja) 2003-06-27 2003-06-27 金属基板上のアレイの作製方法
JP2003-183870 2003-06-27
JP2003-183868 2003-06-27

Publications (1)

Publication Number Publication Date
WO2005001476A1 true WO2005001476A1 (ja) 2005-01-06

Family

ID=33554459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009409 WO2005001476A1 (ja) 2003-06-27 2004-06-25 アレイの作製方法

Country Status (1)

Country Link
WO (1) WO2005001476A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008154225A2 (en) * 2007-06-06 2008-12-18 Bayer Healthcare Llc Microdeposition system for a biosensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509274A (ja) * 1998-01-13 2002-03-26 ジェネティック・マイクロシステムズ・インコーポレイテッド 培養基上に流体試料をデポジットし、整列したアレイを形成し、デポジットされたアレイを分析するための技術
JP2002181837A (ja) * 2000-12-08 2002-06-26 Hitachi Software Eng Co Ltd スポットピン及びバイオチップ作製装置
WO2002055199A2 (en) * 2000-10-30 2002-07-18 Sequenom Inc Method and apparatus for delivery of submicroliter volumes onto a substrate
JP2002323507A (ja) * 2001-04-26 2002-11-08 Thk Co Ltd マイクロアレイ作製装置及び方法
JP2003344430A (ja) * 2002-05-30 2003-12-03 Hitachi Software Eng Co Ltd スポットピン
JP2004212303A (ja) * 2003-01-07 2004-07-29 Dainippon Printing Co Ltd バイオチップの製造装置およびバイオチップの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509274A (ja) * 1998-01-13 2002-03-26 ジェネティック・マイクロシステムズ・インコーポレイテッド 培養基上に流体試料をデポジットし、整列したアレイを形成し、デポジットされたアレイを分析するための技術
WO2002055199A2 (en) * 2000-10-30 2002-07-18 Sequenom Inc Method and apparatus for delivery of submicroliter volumes onto a substrate
JP2002181837A (ja) * 2000-12-08 2002-06-26 Hitachi Software Eng Co Ltd スポットピン及びバイオチップ作製装置
JP2002323507A (ja) * 2001-04-26 2002-11-08 Thk Co Ltd マイクロアレイ作製装置及び方法
JP2003344430A (ja) * 2002-05-30 2003-12-03 Hitachi Software Eng Co Ltd スポットピン
JP2004212303A (ja) * 2003-01-07 2004-07-29 Dainippon Printing Co Ltd バイオチップの製造装置およびバイオチップの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008154225A2 (en) * 2007-06-06 2008-12-18 Bayer Healthcare Llc Microdeposition system for a biosensor
WO2008154225A3 (en) * 2007-06-06 2009-02-26 Bayer Healthcare Llc Microdeposition system for a biosensor
US9182393B2 (en) 2007-06-06 2015-11-10 Bayer Healthcare Llc Microdeposition system for a biosensor
US10046294B2 (en) 2007-06-06 2018-08-14 Ascensia Diabetes Care Holdings Ag Microdeposition system for a biosensor

Similar Documents

Publication Publication Date Title
US9175421B2 (en) System and method for carrying out multiple binding reactions in an array format
Baird et al. Current and emerging commercial optical biosensors
US20060223113A1 (en) Immobilization of binding agents
JP3537767B2 (ja) 結合層と検体の結合相互作用を感知するための方法と装置
US9829434B2 (en) Optical detection system for liquid samples
US8345253B2 (en) System and method for surface plasmon resonance based detection of molecules
JP5002584B2 (ja) 親和性検定方法による分析試料検出用の基質をコーティングするための新規な装置および方法
US20050255526A1 (en) Anti-tag antibody chip for protein interaction analysis
JP4247398B2 (ja) 局在化表面プラズモンセンサ
US6221674B1 (en) Process for the application of reagent spots
JPWO2005106472A1 (ja) バイオチップの製造方法、バイオチップ、バイオチップ解析装置、バイオチップ解析方法
JP2006214880A (ja) 平板型セル
JP3870935B2 (ja) 金属基板チップに分子を固定化したアレイの作製方法
WO2005001476A1 (ja) アレイの作製方法
JP2006030155A (ja) 分光法を用いたプレートアッセイ
JP2005017155A (ja) 金属基板上のアレイの作製方法
JP4178514B2 (ja) 抗体のスクリーニング方法
Gonzalez et al. Sandwich ELISA microarrays: generating reliable and reproducible assays for high-throughput screens
KR20050053350A (ko) 표면 플라스몬 공명을 측정하는 방법
JP4292043B2 (ja) 表面プラズモン共鳴測定装置に用いられる測定チップ
JP2006226921A (ja) 表面プラズモン共鳴測定方法
Xiao An integrated microarray printing and detection system to study protein-protein interactions
JP4474226B2 (ja) 試料の分析方法、および分析器具
JP2006078212A (ja) 表面プラズモン共鳴測定方法
JP3897265B2 (ja) 測定チップ表面への物質固定化方法及び装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase