WO2005001249A1 - プラズマ発生電極及びプラズマ反応器、並びに排気ガス浄化装置 - Google Patents

プラズマ発生電極及びプラズマ反応器、並びに排気ガス浄化装置 Download PDF

Info

Publication number
WO2005001249A1
WO2005001249A1 PCT/JP2004/009013 JP2004009013W WO2005001249A1 WO 2005001249 A1 WO2005001249 A1 WO 2005001249A1 JP 2004009013 W JP2004009013 W JP 2004009013W WO 2005001249 A1 WO2005001249 A1 WO 2005001249A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
plasma
electrode
space
missing
Prior art date
Application number
PCT/JP2004/009013
Other languages
English (en)
French (fr)
Inventor
Yukio Miyairi
Yasumasa Fujioka
Masaaki Masuda
Tatsuhiko Hatano
Takeshi Sakuma
Yuuichiro Imanishi
Keizo Iwama
Kenji Dosaka
Original Assignee
Ngk Insulators, Ltd.
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd., Honda Motor Co., Ltd. filed Critical Ngk Insulators, Ltd.
Priority to US10/561,840 priority Critical patent/US7648683B2/en
Priority to DE602004031843T priority patent/DE602004031843D1/de
Priority to JP2005511056A priority patent/JP4448094B2/ja
Priority to EP04746482A priority patent/EP1647681B1/en
Publication of WO2005001249A1 publication Critical patent/WO2005001249A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0892Electric or magnetic treatment, e.g. dissociation of noxious components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2441Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes characterised by the physical-chemical properties of the dielectric, e.g. porous dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • B01J2219/0813Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes employing four electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0835Details relating to the shape of the electrodes substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2437Multilayer systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a plasma generation electrode, a plasma reactor, and an exhaust gas purification device.
  • the present invention relates to a plasma generation electrode, a plasma reactor, and an exhaust gas purification device. More specifically, when a fluid to be treated is flowed into a space where plasma is generated, a single flow of the fluid causes a plurality of predetermined components contained in the fluid to be treated to have a plurality of different sizes suitable for each reaction.
  • the present invention relates to a plasma generating electrode and a plasma reactor that can be processed by the above plasma. Further, the present invention relates to an exhaust gas purifying apparatus capable of purifying exhaust gas satisfactorily. Background art
  • Silent discharge is generated by placing a dielectric between two electrodes and applying a high-voltage alternating current or periodic pulse voltage, and active species, radicals, and ions are generated in a plasma field generated by the discharge. It is known that it promotes the reaction and decomposition of gases, which can be used to remove harmful components contained in engine exhaust gas and various incinerator exhaust gases.
  • the present invention has been made in view of the above-described problems, and a plasma is generated from a fluid to be processed.
  • a plasma is generated from a fluid to be processed.
  • a plasma generating electrode and a plasma reactor are provided.
  • the present invention provides an exhaust gas purifying apparatus including the above-described plasma reactor and a catalyst, and capable of satisfactorily purifying exhaust gas.
  • the present invention provides the following plasma generating electrode, plasma reactor, and exhaust gas purifying apparatus.
  • a plurality of unit electrodes are hierarchically stacked at a predetermined interval, and both ends in one direction are open and both ends in the other direction are closed between the unit electrodes.
  • a plasma generating electrode capable of generating a plasma in the space by applying a voltage between the unit electrodes, wherein the unit electrode is a dielectric electrode.
  • a plate-shaped ceramic body serving as a body and a conductive film disposed inside the ceramic body, and between the one end and the other end in the one direction.
  • a missing unit electrode having a portion where the conductive film is missing, and a normal unit electrode having no missing portion, and wherein the space is formed between the facing normal unit electrode and the missing unit electrode, respectively.
  • the missing unit electricity A plurality of normal spaces formed so that the distance between the conductive films is equal to the distance between the unit electrodes between the poles, and oppose each other with the missing portion of the missing unit electrode interposed therebetween.
  • the conductive film constituting the unit electrode includes a plurality of conductive film groups each having a different potential when a voltage is applied, and the conductive film group having a predetermined potential ( Each of the first conductive film group extends to an end of the space in the other direction, and has a different potential from that of the first conductive film group. Each of which extends to the end of the space in the other direction, and the surface on the end side where the first conductive film group extends and the second conductive film group extends.
  • a conductive film (a first side end conductive film and a second side end conductive film) is disposed on each of the end side surfaces thus formed, and the first conductive film group and the first conductive film group are disposed.
  • the first conductive film is brought into contact with the one side end conductive film to enable electrical conduction, and the second conductive film group and the second side end conductive film are brought into contact with each other.
  • Do conduction is made to be the record of [1] one [3], the plasma generating electrode according to any misalignment.
  • the unit electrode is constituted by the normal unit electrode and the missing unit electrode, thereby forming a normal space and a missing space in which the distance between the conductive films is different from each other.
  • the magnitude of the plasma generated in the normal space and in the missing space can be made different.
  • the plasma reactor of the present invention since the plasma reactor of the present invention has such a plasma generating electrode, when a gas containing a predetermined component is introduced into the reactor, it is usually included in the predetermined component.
  • the types of components that are reacted by the plasma generated in the space and the types of components that are reacted by the plasma generated in the missing space It is possible to make the components different from each other, and each component can be efficiently reacted by the plasma of the optimal size. Furthermore, since the exhaust gas purifying apparatus of the present invention includes the above-described plasma reactor and the catalyst, it is possible to purify the exhaust gas satisfactorily.
  • FIG. 1 (a) schematically shows an embodiment of the plasma generating electrode of the present invention, and is a cross-sectional view taken along a plane perpendicular to one direction. It is.
  • FIG. 1 (b) is a sectional view taken along the line AA ′ of FIG. 1 (a).
  • FIG. 2 is a sectional view of a unit electrode constituting the plasma generating electrode of the present invention.
  • FIG. 3 is a plan view schematically showing a conductive film constituting the plasma generating electrode of the present invention.
  • FIG. 4 (a) schematically shows another embodiment of the plasma generating electrode of the present invention, and is a cross-sectional view cut along a plane perpendicular to one direction.
  • FIG. 4 (b) is a sectional view taken along the line BB ′ of FIG. 4 (a).
  • FIG. 5 is a side view of another embodiment of the plasma generating electrode of the present invention in which a side end conductive film is provided, as viewed from a first side end.
  • FIG. 6 is a perspective view schematically showing a ridge-arranged ceramic body constituting one embodiment of the plasma generating electrode of the present invention.
  • FIG. 7 is a perspective view schematically showing a ceramic body provided with a conductive film, which constitutes one embodiment of the plasma generating electrode of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing one embodiment of the plasma reactor of the present invention.
  • FIG. 9 is an explanatory view schematically showing one embodiment of the exhaust gas purifying apparatus of the present invention.
  • FIG. 1 (a) and FIG. 1 (b) schematically show one embodiment of the plasma generating electrode of the present invention, and FIG. 1 (a) is perpendicular to one direction.
  • FIG. 1 (b) is a cross-sectional view taken along line AA ′ of FIG. 1 (a).
  • FIG. 2 is a sectional view of a unit electrode constituting the plasma generating electrode of the present invention.
  • the plasma generating electrode 1 of the present embodiment includes a plurality of unit electrodes 2 which are hierarchically stacked at predetermined intervals.
  • a space V is formed between the unit electrodes 2 in which both ends in one direction P are open and both ends in the other direction Q are closed, and a voltage is applied between these unit electrodes 2.
  • the plasma generation electrode 1 is capable of generating plasma in the space V.
  • unit electrode 2 constituting plasma generating electrode 1 of the present embodiment has a plate-shaped ceramic body 3 serving as a dielectric, and is disposed inside ceramic body 3. Each is formed from the conductive film 4. Then, as shown in FIGS. 1 (a) and 1 (b), the unit electrode 2 is a portion where the conductive film 4 is missing from one end to the other end in one direction P. And a normal unit electrode 2a having no missing part. Then, a space V is formed between the opposed normal unit electrode 2a and the missing unit electrode 2b or between the missing unit electrodes 2b, so that the distance between the conductive films 4 becomes the distance between the unit electrodes 2.
  • the distance between the conductive films 4 between the plurality of normal spaces Va and the normal unit electrodes 2a that face each other across the missing portion of the missing unit electrode 2b is larger than the distance between the conductive films 4 in the normal space Va. And a plurality of missing spaces Vb formed to be longer.
  • the above-mentioned missing portion refers to a missing portion when the conductive film 4 of the unit electrode 2 has a portion that is missing from the one end side in one direction P by a certain length and does not exist.
  • the above-mentioned fixed length is not particularly limited, but may be any length that allows a predetermined component to react when the missing space Vb is formed and used in the following plasma reactor.
  • the missing space Vb is 20-80 for the whole space V of the plasma reactor. / o is preferred.
  • each unit electrode 2 is alternately connected to the power supply side and the ground side. Both the normal unit electrode 2a and the missing unit electrode 2b Both the source side and the ground side can be connected.
  • part or all of the normal unit electrode 2a connected to the power supply side is divided into a plurality (in FIG. 1 (b), a part of the normal unit electrode 2a is divided into two). May be formed to have different potentials.
  • the same power supply may be used for the same potential in a state of being divided into a plurality of parts.
  • the plasma generating electrode 1 of the present embodiment is configured as described above, the conductive film 4 constituting the unit electrode 2 for generating plasma in the normal space Va and the missing space Vb The distance between them is different, and the strength of the plasma generated in the normal space Va and the missing space Vb is different. Therefore, when the plasma generating electrode 1 of the present embodiment is used in the following plasma reactor, when the exhaust gas or the like is processed, when the fluid to be processed flows into the space where plasma is generated, it only needs to flow once. In addition, it is possible to treat a plurality of predetermined components contained in the fluid to be treated with a plurality of plasmas of different intensities suitable for the respective reactions.
  • the difference in plasma intensity means that the magnitude of the energy of the plasma is different.
  • the smaller the distance between the unit electrodes the larger the energy of the plasma. Become.
  • the missing electrode 2b constituting the plasma generating electrode 1 of the present embodiment is partially formed from one end side of one direction P of each of the ceramic body 3 and the conductive film 4 constituting the unit electrode 2. Are formed missing. Therefore, the missing portion of the missing unit electrode 2b becomes a space (not only the conductive body 4 but also the ceramic body 3 does not exist), and the missing space Vb becomes a space larger than the normal space Va interposed between the normal unit electrodes 2a. ing.
  • the distance W2 between the unit electrodes 2a is preferably 0.5 to 5 mm.
  • the distance W1 (the width of the normal space Va) between the missing unit electrodes 2b is preferably 0.1 to 3 mm.
  • one type of missing unit electrode 2b is used.
  • two or more types of missing unit electrodes 2b having different lengths may be used, and spaces having different widths may be formed.
  • the third and subsequent spaces are formed between the missing unit electrodes or between the missing unit electrode and the normal unit electrode. Thereby, plasmas of different sizes can be generated.
  • the thickness of the conductive For reasons such as miniaturization of the generating electrode 1 and reduction of the resistance of the fluid to be processed that passes between the unit electrodes 2 when treating exhaust gas, etc., it is preferable that the thickness is 0.001 to 0.1 mm. In addition, it is 0.005-0.05mm that the force S is preferred.
  • the conductive film 4 used in the present embodiment preferably contains a metal having excellent conductivity as a main component.
  • the main components of the conductive film 4 include tungsten, molybdenum, and manganese.
  • Preferable examples include at least one metal selected from the group consisting of chromium, titanium, zirconium, nickel, iron, silver, copper, platinum, and palladium.
  • the main component means a component that accounts for 60% by mass or more of the component.
  • the conductive film 4 contains two or more kinds of metals from the above-mentioned groups as main components, the conductive film 4 accounts for 60% by mass or more of the total force component of those metals.
  • the conductive film 4 is preferably applied and disposed on the tape-shaped ceramic body 3, and specific coating methods include, for example, printing and roller. , Spray, electrostatic coating, dip, knife coater and the like can be mentioned as preferable examples. According to such a method, the conductive film 4 having excellent surface smoothness after coating and having a small thickness can be easily formed.
  • a metal powder which is a main component of the conductive film 4, an organic binder, and a solvent such as terbineol are mixed to form a conductive base. It can be formed by forming a strike and applying it to the tape-shaped ceramic body 3 by the method described above. Further, an additive may be added to the above-described conductor paste as needed to improve the adhesion and sinterability with the tape-shaped ceramic body 3.
  • the same component as the ceramic body 3 to the metal component of the conductive film 4, it is possible to improve the adhesion between the conductive film 4 and the ceramic body 3. Further, a glass component can be added to the ceramic component added to the metal component. By adding the glass component, the sinterability of the conductive film 4 is improved, and the denseness is improved in addition to the adhesion.
  • the sum of the components and / or glass components of the ceramic body 3 other than the metal components is preferably 30% by mass or less. If it exceeds 30% by mass, the resistance value may decrease, and the function as the conductive film 4 may not be obtained.
  • the plate-shaped ceramic body 3 (tape-shaped ceramic body) constituting the unit electrode 2 has a function as a dielectric as described above, and the conductive film 4 is formed of a plate-shaped ceramic body. 3 of By being used in a state where it is disposed inside, compared to the case where the conductive film 4 alone discharges, it is possible to reduce unbalanced discharges such as sparks and generate small discharges at a plurality of locations. S becomes possible. Such a plurality of small discharges can reduce power consumption because a smaller amount of current flows as compared to a discharge such as a spark, and furthermore, the presence of a dielectric causes a flow between the unit electrodes 2. The current is limited, and a non-thermal plasma that consumes little energy without increasing the temperature can be generated.
  • At least one of the unit electrodes 2 has a force S, a plate-shaped ceramic body 3 serving as a dielectric, and a film-shaped direction disposed in the plate-shaped ceramic body 3 and shown in FIG. It is preferable to have the conductive film 4 in which a plurality of through-holes 5 having a cross section cut along a plane perpendicular to the thickness direction penetrating partially include a circular arc.
  • the through-holes 5 are more preferably arranged so that each is located at a vertex of a square, and each of the through holes 5 is located at a vertex of an equilateral triangle.
  • the size of the above-described through holes 5 is not particularly limited.
  • the diameter of each through hole 5 is preferably 110 mm. With this configuration, the electric field concentration on the outer periphery of the through hole 5 becomes a suitable condition for the discharge, and the discharge can be started well even if the voltage applied between the pair of unit electrodes 2 is not so high. be able to. If the diameter force of the through hole 5 is less than Slmm, the size of the through hole 5 becomes too small, and the discharge generated on the outer periphery of the through hole 5 is similar to the local discharge starting from the above-described point. State, which may cause non-uniform plasma. If the diameter of the through-hole 5 exceeds 10 mm, a discharge is unlikely to occur inside the through-hole 5, and the density of plasma generated between the pair of unit electrodes 2 may be reduced.
  • the distance between the centers of the through holes 5 that are in P contact with each other is such that uniform and high-density plasma can be generated according to the diameter of the through holes 5.
  • the length is appropriately determined to be the length.
  • the distance between adjacent centers is preferably 1.5 to 20 mm.
  • the through-hole 5 is formed such that the perimeter of the through-hole 5 per unit area becomes longer. It is preferred that With this configuration, the length of the region where the electric field is non-uniform per unit area, that is, the length of the outer periphery serving as a plasma generation starting point can be increased, and many discharges can be generated per unit area. High-density plasma can be generated.
  • the specific length of the outer periphery of the through hole 5 per unit area (mm / (mm) 2 ) can be appropriately set according to the intensity of the plasma to be generated. In that case, it is preferable that it is 0.05-1.7mmZ (mm) 2 . If the perimeter of the through hole 5 per unit area is smaller than 0.05, local discharge occurs, and a stable discharge space may be obtained. If it is larger than 1.7, the resistance value of the conductive film 4 may increase, and the discharge efficiency may decrease.
  • the area of the conductive film 4 per unit area is 0.1-0.98.
  • (mm) 2 / (mm) 2 force is preferable. If it is less than 0.1, the capacitance of the dielectric electrode is too small, and it may be difficult to obtain the discharge required for exhaust gas purification. If it is larger than 0.98, it is difficult to obtain a uniform discharge effect by the through-hole, and local discharge is likely to occur.
  • the through hole 5 formed in the conductive film 4 shown in FIG. 3 has a space for forming a space V between the unit electrodes 2 when formed in the plasma generator 1 shown in FIG. It is preferable not to overlap part of the pulser. Abnormal discharge can be suppressed by not overlapping the spacer part.
  • the plate-shaped ceramic body 3 preferably contains a material having a high dielectric constant as a main component.
  • a material having a high dielectric constant for example, aluminum oxide, dinoreconium oxide, silicon oxide, mullite, cordierite, titanium-barium oxide, magnesium Monocalcium-titanium oxide, barium-titanium-zinc oxide, silicon nitride, aluminum nitride, and the like can be preferably used.
  • a material excellent in thermal shock resistance as a main component, it becomes possible to operate the plasma generating electrode even under high temperature conditions.
  • LTO low-temperature fired substrate material
  • Copper metallization can be used as conductor for CC). Since copper metallization is used, an electrode having a low resistance and a high discharge efficiency is manufactured, and the size of the electrode can be reduced. And the design which avoided the thermal stress is attained, and the problem of low strength is solved. Also, titanic acid When electrodes are made of high dielectric constant materials such as barium, magnesium monocalcium monotitanium oxide, and barium monotitanium monozinc oxide, the thermal expansion is high because the discharge efficiency is high and the electrode size can be reduced. Therefore, it is possible to design a structure that can minimize the occurrence of thermal stress.
  • the thickness of the tape-shaped ceramic body is not particularly limited, but is 0.1 to 13 mm. Is preferred. If the thickness force of the tape-shaped ceramic body is less than 0.1 mm, electrical insulation between a pair of adjacent unit electrodes 2 may not be secured. Also, if the thickness of the tape-shaped ceramic body exceeds 3 ⁇ 4mm, it will hinder space saving as an exhaust gas purification system and increase the load voltage due to the increase in the distance between the electrodes, which may reduce efficiency. is there.
  • a ceramic green sheet for a ceramic substrate can be suitably used.
  • the ceramic green sheet is formed by shaping a slurry or paste for producing a green sheet into a predetermined thickness according to a conventionally known method such as a doctor blade method, a calendar method, a printing method, a reverse roll coater method, or the like. Can be formed.
  • the ceramic green sheet thus formed is subjected to processing such as cutting, cutting, punching, formation of a communication hole, etc., or integrated by thermocompression bonding in a state where a plurality of green sheets are laminated. It may be used as a laminate.
  • the above-mentioned slurry or paste for producing a green sheet is preferably prepared by mixing a predetermined ceramic powder with an appropriate binder, sintering aid, plasticizer, dispersant, organic solvent and the like.
  • Suitable examples of the ceramic powder include powders of alumina, mullite, cordierite, zirconia, silica, silicon nitride, aluminum nitride, ceramic glass, glass, and the like.
  • the sintering aid silicon oxide, magnesium oxide, calcium oxide, titanium oxide, zirconium oxide and the like can be mentioned as preferred examples.
  • the sintering aid is preferably added in an amount of 3 to 10 parts by mass based on 100 parts by mass of the ceramic powder.
  • the plasticizer, dispersant and organic solvent conventionally used plasticizers, dispersants and organic solvents can be suitably used.
  • the porosity of the plate-shaped ceramic body 3 is preferably 0.1 to 35%, more preferably 0.1 to 35%.
  • the plate-shaped ceramic body 3 constituting the unit electrode 2 shown in FIG. 2 has the conductive film 4 disposed on the surface of the tape-shaped ceramic body as described above. It is formed by arranging a tape-shaped ceramic body so as to sandwich the conductive film 4 between the ceramic bodies.
  • FIGS. 4 (a) and 4 (b) schematically show another embodiment of the plasma generating electrode of the present invention.
  • FIG. 4 (a) is a plane perpendicular to one direction.
  • FIG. 4B is a cross-sectional view taken along a line BB ′ of FIG. 4A.
  • the plasma generating electrode 31 of the present embodiment is different from the plasma generating electrode 31 shown in FIGS. 1 (a) and 1 (b) described above.
  • a plurality of unit electrodes 32 are layered in layers at predetermined intervals, and both ends in one direction S are disposed between the unit electrodes 32.
  • a space X is formed which is open and closed at both ends in the other direction T.
  • a plasma generation electrode 31 capable of generating plasma in the space X by applying a voltage between these unit electrodes 32. It is. The difference from the embodiment of the plasma generating electrode of the present invention shown in FIGS.
  • the missing electrode Xb is defined as the space between the normal unit electrode 32a and the missing part of the missing unit electrode 32b (the part where the plate-shaped ceramic body 33 exists), and between the missing parts of the missing unit electrode 32b. It is composed of a sandwiched space.
  • the missing space Xb is a space having the same width as the normal space Xa.
  • the distance between the conductive films 34 of the unit electrode 32 that generates plasma in the normal space Xa is different from the unit electrode 32 that forms the normal space Xa.
  • the distance between them is substantially the same as W3 (differs by the thickness of the tape-shaped ceramic body 33), but the distance between the conductive films 34 that generates plasma in the missing space Xb forms the missing space Xb
  • the distance W4 is substantially the same as the distance W4 between the normal unit electrodes 32a opposed to each other across the missing unit electrode 32b.
  • the width of the normal space Xa and the width of the missing space Xb are the same, but since the distance between the conductive films 34 that generate plasma in each space is different, The size of the plasma generated in the space Xb and the size of the plasma generated in the normal space Xa are different.
  • the configuration other than the above of the plasma generation electrode of the present embodiment can be the same as that of the above-described embodiment of the plasma generation electrode of the present invention.
  • each of the conductive film groups (first conductive film group) 11 having a predetermined potential is in the other direction T of the space X (see FIG. 4 (a)).
  • each of the 12 extends to the end (second side end) 15 (see FIG. 4 (a)) in the other direction T of the space X (see FIG. 4 (a)).
  • FIG. 5 is a side view of another embodiment of the plasma generating electrode of the present invention shown in FIG. 4 in which a side end conductive film is provided, as viewed from the first side end. Then, a conductive film (a first conductive film) is provided on each of the surface on the end portion (first side end) 14 where the first conductive film group 11 is extended and the surface on the end portion side where the second conductive film group is extended. A first side end conductive film 18 and a second side end conductive film 19) are provided, and the first conductive film group 11 and the first side end conductive film 18 It is preferable that the conduction be enabled and that the second conductive film group 12 and the second side end conductive film 19 contact each other to enable electrical conduction.
  • a part of the plurality of unit electrodes 32 including the first conductive film group 11 is a normal unit electrode 32a (see FIG. 4B), and the normal unit electrode 32a
  • the conductive film 34 (see FIG. 4 (b)) (see FIG. 4 (b)) is interrupted at an intermediate portion to form a third conductive film group 13 which is not electrically connected to the first conductive film group 11. are doing. Then, it comes into contact with the third conductive film group 13 to establish electrical continuity.
  • a third side end conductive film 20 that can be formed is formed on the surface on the first side end 14 side.
  • each of the first conductive film group 11 and the second conductive film group 12 may be extended to the same side end in the other direction T of the space X (see FIG. 4A). .
  • each of the first conductive film group 11 and the second conductive film group 12 is electrically connected by the first side conductive film 18 and the second conductive film 19. May be connected.
  • the above-mentioned side end conductive film is also used for collecting the conductive film 4 in one embodiment of the plasma generating electrode of the present invention shown in Figs. 1 (a) and 1 (b). Can use force S as well
  • a ceramic green sheet to be the above-mentioned ceramic body is formed.
  • at least one kind of material selected from the group consisting of alumina, mullite, cordierite, mullite, silicon nitride, aluminum nitride, ceramic glass, and glass may be added to the above-mentioned sintering aid, butyral-based resin, and cellulose-based resin.
  • Add a binder such as DOP, DBP, etc., an organic solvent such as toluene and butadiene, etc. and mix well using an alumina pot and alumina cobblestone to produce a slurry for green sheet production.
  • these materials may be manufactured by mixing a ball mill with a mono ball.
  • the obtained slurry for producing a green sheet is stirred under reduced pressure to remove bubbles, and further adjusted to have a predetermined viscosity.
  • the slurry for green sheet production adjusted in this manner is formed into a tape shape by a tape forming method such as a doctor blade method to form an unfired ceramic body.
  • a conductor paste for forming a conductive film disposed on one surface of the obtained unfired ceramic body is formed.
  • This conductor paste can be formed, for example, by mixing a solvent such as a binder and terpineol with silver powder and sufficiently mixing the mixture using a triroll mill.
  • the conductive paste thus formed is printed on the surface of the unfired ceramic body by using screen printing or the like to form a conductive film having a predetermined shape, and an unfired ceramic body provided with a conductive film is prepared. I do. At this time, after forming the unit electrode by sandwiching the conductive film between the ceramic bodies, It is preferable to print the conductive film so as to extend to the outer peripheral portion of the unfired ceramic body so that electricity can be supplied to the conductive film from outside the unit electrode.
  • the conductive paste may be printed in a predetermined shape.
  • the unfired ceramic body on which the conductive film is printed and another unfired ceramic body are laminated so as to cover the printed conductive film.
  • the unfired ceramic body laminated with the conductive film sandwiched therebetween is fired to form a unit electrode including a plate-shaped ceramic body serving as a dielectric and the conductive film.
  • the formed unit electrodes are stacked.
  • a square pole-shaped ceramic rod is formed from the same raw material as that of the above-mentioned ceramic body so as to form a predetermined gap between the unit electrodes, and is sandwiched between the unit electrodes.
  • the thickness of the ceramic rod is the distance between each unit electrode.
  • the ceramic rod need not be a quadrangular column, but may be a column, a polygon, or any other column.
  • a plurality of projections may be formed on one surface of the ceramic body, and a space may be formed by sandwiching a unit electrode with the projections interposed therebetween. Further, a space may be formed by forming irregularities on the ceramic body and overlapping them. As described above, by stacking a plurality of unit electrodes hierarchically via the ceramic rod, it is possible to obtain the plasma generating electrode of the present embodiment.
  • the plasma generating electrode of the present embodiment may be manufactured by another method described below.
  • a plurality of ridges 43 are disposed substantially in parallel on a plate-shaped ceramic body 42, and a ridge disposed ceramic body 41 is formed by extrusion molding, and an end surface conductive film 47 is formed on an end surface portion. Arrange them. Then, a plate-like ceramic body 44 constituting the conductive film-provided ceramic body 46 shown in FIG. 7 is formed by extrusion molding.
  • the conditions such as the raw materials of the ridged ceramic body 41 and the plate-shaped ceramic body 44 are the same as those in the above-described method of manufacturing the plasma generating electrode of the present embodiment. It is preferred that
  • a conductive film 45 is provided on the plate-like ceramic body 44. It is preferable that the conditions such as the material of the conductive film 45, the method of disposing the conductive film 45 on the ceramic body 44, and the like are the same as those in the above-described method of manufacturing the plasma generating electrode of the present embodiment.
  • a ceramic body 46 provided with a conductive film and a ceramic body 46 provided with a conductive film 45 are provided on the surface of the ceramic body 41 provided with the protrusions on which the protrusions 43 are not provided. They are arranged so as to be in contact with each other to form a laminate. By laminating such laminates in a predetermined number of stages, a plasma generating electrode before firing is obtained, and by firing this, the plasma generating electrode of the present embodiment can be obtained.
  • FIG. 8 is a cross-sectional view schematically showing one embodiment of the plasma reactor of the present invention.
  • a plasma reactor 21 of the present embodiment is provided with another embodiment (plasma generating electrode 31) of the plasma generating electrode of the present invention as shown in FIG. It is.
  • the plasma reactor 21 of the present embodiment includes a plasma generation electrode 31 and a plasma generation electrode 31 in a space X arranged three-dimensionally between a plurality of unit electrodes 32 constituting the same.
  • a case body 22 housed in a state in which a gas (fluid to be treated) containing a predetermined component can be introduced.
  • the case body 22 has an inflow port 23 into which the fluid to be processed flows, and an outflow port 24 through which the inflowing fluid flows between the unit electrodes 32 and outflows the processed fluid.
  • the plasma reactor 21 of the present embodiment is provided with the plasma generating electrode 31 shown in Fig. 4, when the fluid to be processed flows in from the inflow port 23 and passes through the normal space Xa, the interval is small.
  • the plasma generated by the conductive film 34 decomposes a substance requiring a high-energy plasma for a reaction of a particulate matter or the like.
  • the plasma generated by the conductive film 34 having a large interval decomposes a substance that reacts with a plasma having a small energy such as NO.
  • the fluid to be treated flows into the space where the plasma is generated, the fluid is treated only once, and A plurality of predetermined components contained in the physical fluid can be efficiently treated by a plurality of plasmas of different sizes suitable for each reaction.
  • an insulating and heat-resistant material is provided between the case body 22 and the plasma generating electrode 31.
  • a buffer is interposed.
  • the material of the case body 22 used in the present embodiment is not particularly limited, but, for example, it has excellent conductivity, is lightweight and inexpensive, and has little deformation due to thermal expansion. , Preferably ferrite stainless steel.
  • the plasma reactor 21 configured as described above can be used, for example, by installing it in an exhaust system of an automobile.
  • the plasma reactor 21 generates exhaust gas in a space X formed between the unit electrodes 32.
  • harmful substances such as soot and nitrogen oxide, which are the above-mentioned predetermined components, contained in the exhaust gas can be reacted and discharged as harmless gas to the outside.
  • the plasma reactor of the present embodiment may further include a power supply for applying a voltage to the plasma generation electrode.
  • a power supply for applying a voltage to the plasma generation electrode.
  • a conventionally known power supply can be used as long as it can supply electricity that can effectively generate plasma.
  • the plasma reactor of the present embodiment may have a configuration in which a current is supplied from an external power supply instead of the configuration including the power supply as described above.
  • the current supplied to the plasma generation electrode used in the present embodiment can be appropriately selected and determined according to the intensity of the generated plasma.
  • the current supplied to the plasma generating electrode the DC current whose voltage is lkV or more, the peak voltage is lkV or more and the number of pulses per second or more
  • the pulse current is a pulse current of 100 Hz or more, an AC current of a peak voltage of lkV or more and a frequency of 100 or more (100 Hz or more), or a current obtained by superposing any two of them. With such a configuration, it is possible to efficiently generate plasma.
  • FIG. 9 is an explanatory diagram schematically showing the exhaust gas purification device of the present embodiment.
  • the exhaust gas purification device 51 of the present embodiment includes the plasma reactor 21 according to the embodiment of the present invention described above and a catalyst 54, and the plasma reactor 21, the catalyst 54, and the power This is an exhaust gas purifying device 51 disposed inside the exhaust system of the engine.
  • the plasma reactor 21 is disposed on the exhaust gas generation side (upstream side) of the exhaust system, and the catalyst 54 is disposed on the exhaust side (downstream side). And are connected via a pipe 52.
  • the exhaust gas purification device 51 of the present embodiment is, for example, a device that purifies N ⁇ in exhaust gas under an oxygen-excess atmosphere. That is, the plasma generated in the plasma reactor 21 is used to reform NO so that the catalyst 54 on the downstream side can be easily purified, or to reform HC (hide port carbon) in the exhaust gas so that it can easily react with NO. And the catalyst 54 purifies the NO.
  • the plasma reactor 21 used in the exhaust gas purifying apparatus 51 of the present embodiment uses a plasma to generate a gas contained in exhaust gas by combustion under an oxygen-excess atmosphere such as lean burn, a gasoline direct injection engine, or a diesel engine. It converts NO to NO. Also, Plas
  • the reactor 21 generates active species from HC or the like in the exhaust gas, and a reactor configured in the same manner as the plasma reactor 21 shown in FIG. 8 can be suitably used.
  • the catalyst 54 is a catalyst unit 55 including a catalyst member including a support having a plurality of pores formed therein through which exhaust gas flows, and is provided downstream of the plasma reactor 21 in the exhaust system. It is arranged.
  • the catalyst member has a support and a catalyst layer formed to cover an inner wall surface surrounding a plurality of pores of the support.
  • the catalyst layer is generally produced by impregnating a support with a catalyst in the form of a slurry (catalyst slurry) as described later, and is therefore sometimes referred to as a "posh coat (layer)".
  • the shape of the support is not particularly limited in the present invention as long as the support has a space through which the exhaust gas flows.
  • a honeycomb-shaped support having a plurality of pores is used. ing.
  • the support is preferably formed from a material having heat resistance.
  • a material having heat resistance examples include porous (ceramic) such as cordierite, mullite, silicon carbide (SiC) and silicon nitride (SiN), and metal (eg, stainless steel).
  • the catalyst layer is formed of a porous carrier and one or more selected from Pt, Pd, Rh, Au, Ag, Cu, Fe, Ni, Ir, Ga, and the like supported on the surface of the porous carrier.
  • the main part is the combination of A plurality of continuous pores continuous with the pores of the support are formed inside the catalyst layer.
  • the porous carrier can be formed by appropriately selecting and using, for example, anoremina, zeolite, silica, titania, zirconia, silica alumina, ceria, and the like.
  • the catalyst 54 is a catalyst that promotes the decomposition reaction of NO.
  • a plasma generating electrode 1 having a configuration as shown in FIG. 1 was manufactured, and the exhaust gas was processed using the plasma generating electrode 1 as a plasma reactor.
  • the soot, nitrogen monoxide (NO), and soot contained in the processed gas were used.
  • the amount of hydrocarbons (HC) and the presence or absence of aldehydes were measured.
  • the plasma generating electrode used in the plasma reactor of this example was manufactured as follows. First, an unsintered alumina tape substrate with a thickness of 0.5 mm after lamination of two sheets was fired, using tungsten paste, in an array pattern with a diameter of 5 mm and an interval between adjacent ones of 6 mm using tungsten paste. The conductive film in which the through holes were formed was screen-printed so that the thickness became 10 ⁇ m. At this time, a 100 x 100 mm substrate has an 80 x 40 mm conductive film on the gas inlet side (normal space Va (see Fig. 1 (b))) and the gas outlet side (missing space Vb (see Fig. 1 (b)).
  • An integrated electrode unit was fabricated in which four types of electrodes C and D having terminals on different end surfaces were stacked in the order of A, C, D, B, C, and D at an electrode spacing of 0.5 mm.
  • Two six-stage integrated electrode units were fixed with a metal frame, the outer periphery was held with a heat-resistant mat, and then placed in a cylindrical container made of SUS430.
  • the distance between the electrode A inlet side (entrance side electrode) and electrode C, and the electrodes D and B are 0.5 mm, respectively, while the distance between the electrode A outlet side (exit side electrode) and electrode B is 2 mm. It is 5mm.
  • Exhaust gas simulating the state of exhaust gas discharged from the engine was passed through this plasma reactor.
  • oxygen 10 volume 0/0, CO 10 vol 0/0, propylene 200 ppmC, NO gas 200 ppm, the mixed gas mixture as the remainder is nitrogen, a mixture of soot 100 OmgZhr was used.
  • the concentration (PM amount) of each component contained in the gas that passed through the plasma was measured. Table 1 shows the measurement results.
  • the pulse number was changed to the plasma reactor configured in the same manner as the plasma reactor of Example 1.
  • the same measurement was performed by applying a pulse current of 4 kV so that the reading became 100 times / second. Table 1 shows the measurement results.
  • the flat electrode that constitutes the electrode unit is the electrode part on the exit side where the distance between the electrodes is 2.5 mm
  • the same measurement was performed by applying a 6 kV pulse current to a plasma reactor configured in the same way as the plasma reactor of Was. Table 1 shows the measurement results.
  • An exhaust gas purification device was manufactured by disposing a catalyst on the downstream side of the plasma reactor of Example 3, and its N ⁇ purification performance was evaluated.
  • the catalyst is a catalyst powder obtained by impregnating a commercially available ⁇ -A1 ⁇ with 5% by mass of Pt on a cordierite ceramic honeycomb.
  • the honeycomb catalyst has a cylindrical shape with a diameter of 105.7 mm and a length of 114.3 mm, a thickness of 400 senoles, and a partition wall (rib thickness) of 4 mils (approximately 0.1 mm).
  • the plasma generation conditions and gas conditions are the same as in Example 3.
  • An exhaust gas purification device was manufactured by arranging a catalyst similar to that used in Example 4 downstream of the plasma reactor of Comparative Example 1, and the NO purification performance was evaluated.
  • the plasma generation conditions and gas conditions are the same as in Comparative Example 1.
  • the unit electrode force S, the normal unit electrode and the missing unit electrode are constituted, and the distance between the conductive films is different from each other.
  • the plasma reactor of the present invention since such a plasma generating electrode is provided, when a gas containing a predetermined component is introduced into the reactor, among the predetermined components, It is possible to make the type of component reacted by the plasma generated in the normal space different from the type of component reacted by the plasma generated in the missing space, and each component has an optimal size. The reaction can be efficiently performed by the plasma.
  • the exhaust gas purification of the present invention Since the gasification apparatus includes such a plasma reactor and the catalyst, for example, it is possible to satisfactorily purify exhaust gas discharged from an internal combustion engine of an automobile or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 本発明のプラズマ発生電極1は、複数の単位電極2が所定間隔を隔てて階層的に積層され、単位電極2が、導電膜4を欠落した部分を有する欠落単位電極2bと、欠落した部分を有しない通常単位電極2aとから構成されてなり、各単位電極2間に形成される空間Vが、導電膜4間の距離が単位電極2相互間の距離となるように形成された通常空間Vaと、通常単位電極2a相互間に、導電膜4間の距離が通常空間Vaにおける導電膜4間の距離よりも長くなるように形成された欠落空間Vbとから構成されている。本発明のプラズマ発生電極1は、被処理流体を一度流すだけで、含有される複数の所定成分を、それぞれの反応に適した複数の異なるプラズマにより、効率的に処理することができる。

Description

明 細 書
プラズマ発生電極及びプラズマ反応器、並びに排気ガス浄化装置 技術分野
[0001] 本発明は、プラズマ発生電極及びプラズマ反応器、並びに排気ガス浄化装置に関 する。さらに詳しくは、被処理流体をプラズマが発生する空間に流したときに、一度流 すだけで、被処理流体に含有される複数の所定の成分を、それぞれの反応に適した 複数の異なる大きさのプラズマにより、処理することができるプラズマ発生電極及びプ ラズマ反応器に関する。また、排気ガスを良好に浄化することが可能な排気ガス浄化 装置に関する。 背景技術
[0002] 二枚の電極間に誘電体を配置し高電圧の交流、あるいは周期パルス電圧をかける ことにより、無声放電が発生し、これによりできるプラズマ場では活性種、ラジカル、ィ オンが生成され、気体の反応、分解を促進することが知られており、これをエンジン排 気ガスや各種の焼却炉排気ガスに含まれる有害成分の除去に利用できることが知ら れている。
[0003] 例えば、エンジン排気ガスや各種の焼却炉排気ガスを、プラズマ場内を通過させる ことによって、このエンジン排気ガスや各種の焼却炉排気ガス中に含まれる、例えば 、 NO、カーボン微粒子、 HC、 CO等を処理する、プラズマ反応器等が開示されてい る(例えば、特開 2001—164925号公報参照)。
発明の開示
[0004] し力しながら、上記 NO、カーボン微粒子等はそれぞれ、プラズマで処理するときの 適した放電電圧の大きさが異なっているため、排気ガス中のこれらの成分を処理する ときには、別々のプラズマ反応器を複数使用するか、最も放電電圧の大きな条件に 合わせてプラズマを発生させる必要があった。プラズマ反応器を複数使用すると設備 費がかかり、また放電電圧を大きく設定するとエネルギーロスが大きくなるという問題 があった。
[0005] 本発明は、上述した問題に鑑みてなされたものであり、被処理流体をプラズマが発 生する空間に流したときに、一度流すだけで、被処理流体に含有される複数の所定 の成分を、それぞれの反応に適した複数の異なる大きさのプラズマにより、効率的に 処理することができるプラズマ発生電極及びプラズマ反応器を提供する。また、上述 したプラズマ反応器と、触媒とを備え、排気ガスを良好に浄化することが可能な排気 ガス浄化装置を提供する。
[0006] 上述の目的を達成するため、本発明は、以下のプラズマ発生電極及びプラズマ反 応器、並びに排気ガス浄化装置を提供するものである。
[0007] [1] 複数の単位電極が所定間隔を隔てて階層的に積層されてなるとともに、前記単 位電極相互間に、一の方向の両端が開放されるとともに他の方向の両端が閉鎖され た空間が形成されてなり、これらの単位電極間に電圧を印加することによって前記空 間におレ、てプラズマを発生させることが可能なプラズマ発生電極であって、前記単位 電極が、誘電体となる板状のセラミック体と、前記セラミック体の内部に配設された導 電膜から形成されるとともに、前記一の方向における一の端部から他の端部に至るま での間に前記導電膜を欠落した部分を有する欠落単位電極と、欠落した部分を有し ない通常単位電極とから構成されてなり、かつ前記空間が、それぞれ対向する前記 通常単位電極と前記欠落単位電極との間又は前記欠落単位電極相互間に、前記導 電膜間の距離が前記単位電極相互間の距離となるように形成された複数の通常空 間と、前記欠落単位電極の欠落部分を挟んでそれぞれ対向することになる前記通常 単位電極相互間に、前記導電膜間の距離が前記通常空間における導電膜間の距 離よりも長くなるように形成された複数の欠落空間とから構成されてなり、前記通常空 間と前記欠落空間とにおける、プラズマを発生させる前記単位電極を構成する前記 導電膜間の距離が異なることにより、前記通常空間と前記欠落空間とにおいて発生 するプラズマの大きさが異なるプラズマ発生電極。
[0008] [2] 前記欠落単位電極が、前記単位電極を構成する前記導電膜の一部のみが欠 落して形成されてなる前記 [1]に記載のプラズマ発生電極。
[0009] [3] 前記欠落単位電極が、前記単位電極を構成する前記セラミック体及び前記導 電膜のそれぞれの一部が欠落して形成されてなる前記 [ 1 ]に記載のプラズマ発生電 極。 [0010] [4] 前記単位電極を構成する前記導電膜が、電圧が印加されたときに、それぞれ 異なった電位となる複数の導電膜群から構成され、所定の電位となる前記導電膜群 (第一の導電膜群)のそれぞれが、前記空間の前記他の方向の端部まで延設され、 前記第一の導電膜群の場合とは異なる電位となる前記導電膜群 (第二の導電膜群) のそれぞれが、前記空間の前記他の方向の端部まで延設され、前記第一の導電膜 群が延設された端部側の面及び前記第二の導電膜群が延設された端部側の面のそ れぞれに導電膜 (第一の側端部導電膜及び第二の側端部導電膜)が配設され、前 記第一の導電膜群と前記第一の側端部導電膜とが接触して電気的な導通が可能と されてなるとともに、前記第二の導電膜群と前記第二の側端部導電膜とが接触して 電気的な導通が可能とされてなる前記 [1]一 [3]のレ、ずれかに記載のプラズマ発生 電極。
[0011] [5] 前記 [1]一 [4]のいずれかに記載のプラズマ発生電極を備えてなり、前記ブラ ズマ発生電極を構成する複数の前記単位電極相互間に形成された前記空間内に 所定の成分を含有するガスが導入されたときに、前記空間内に発生させたプラズマ により前記ガス中の前記所定の成分を反応させることが可能なプラズマ反応器。
[0012] [6] 前記空間内に前記所定の成分を含有するガスが導入されたときに、前記所定 成分のなかで、前記通常空間内で発生するプラズマにより反応される成分の種類と、 前記欠落空間内で発生するプラズマにより反応される成分の種類とが異なる前記 [5 ]に記載のプラズマ反応器。
[0013] [7] 前記 [5]又は [6]に記載のプラズマ反応器と、触媒とを備え、前記プラズマ反 応器と前記触媒とが、内燃機関の排気系の内部に配設された排気ガス浄化装置。
[0014] このように、本発明のプラズマ発生電極は、単位電極が、通常単位電極と欠落単位 電極とから構成され、それにより導電膜間の距離がそれぞれ異なる通常空間と欠落 空間とが形成されることにより、通常空間と欠落空間のそれぞれに発生するプラズマ の大きさを異ならせることができる。そして、本発明のプラズマ反応器は、このようなプ ラズマ発生電極を有するものとしたため、反応器内に、所定の成分を含有するガスが 導入されたときに、その所定成分のなかで、通常空間内で発生するプラズマにより反 応される成分の種類と、欠落空間内で発生するプラズマにより反応される成分の種 類とを異ならせることが可能となり、それぞれの成分を最適な大きさのプラズマにより 効率的に反応させることができる。さらに、本発明の排気ガス浄化装置は、上述した プラズマ反応器と、触媒とを備えていることから、排気ガスを良好に浄化することがで きる。
図面の簡単な説明
[0015] [図 1(a)]図 1 (a)は、本発明のプラズマ発生電極の一の実施の形態を模式的に示すも のであり、一の方向に垂直な平面で切断した断面図である。
[図 1(b)]図 1 (b)は、図 1 (a)の A-A'断面図である。
[図 2]図 2は、本発明のプラズマ発生電極を構成する単位電極の断面図である。
[図 3]図 3は、本発明のプラズマ発生電極を構成する導電膜を模式的に示した平面 図である。
[図 4(a)]図 4 (a)は、本発明のプラズマ発生電極の他の実施の形態を模式的に示すも のであり、一の方向に垂直な平面で切断した断面図である。
[図 4(b)]図 4 (b)は、図 4 (a)の B-B '断面図である。
[図 5]図 5は、本発明のプラズマ発生電極の他の実施の形態に側端部導電膜を配設 したものを第一側端部側からみた側面図である。
[図 6]図 6は、本発明のプラズマ発生電極の一の実施の形態を構成する突条配設セ ラミック体を模式的に示した斜視図である。
[図 7]図 7は、本発明のプラズマ発生電極の一の実施の形態を構成する導電膜配設 セラミック体を模式的に示した斜視図である。
[図 8]図 8は、本発明のプラズマ反応器の一の実施の形態を模式的に示す断面図で ある。
[図 9]図 9は、本発明の排気ガス浄化装置の一の実施の形態を模式的に示す説明図 である。
発明を実施するための最良の形態
[0016] 以下、図面を参照して、本発明のプラズマ発生電極及びプラズマ反応器、並びに 排気ガス浄化装置の実施の形態について詳細に説明するが、本発明は、これに限 定されて解釈されるものではなぐ本発明の範囲を逸脱しない限りにおいて、当業者 の知識に基づいて、種々の変更、修正、改良を加え得るものである。
[0017] 図 1 (a)、図 1 (b)は、本発明のプラズマ発生電極の一の実施の形態を模式的に示 すものであり、図 1 (a)は、一の方向に垂直な平面で切断した断面図であり、図 1 (b) は、図 1 (a)の A— A '断面図である。図 2は、本発明のプラズマ発生電極を構成する 単位電極の断面図である。
[0018] 本実施の形態のプラズマ発生電極 1は、図 1 (a)、図 1 (b)に示すように、複数の単 位電極 2が所定間隔を隔てて階層的に積層されてなるとともに、単位電極 2相互間に 、一の方向 Pの両端が開放されるとともに他の方向 Qの両端が閉鎖された空間 Vが形 成されてなり、これらの単位電極 2間に電圧を印加することによって空間 Vにおいて プラズマを発生させることが可能なプラズマ発生電極 1である。
[0019] 本実施の形態のプラズマ発生電極 1を構成する単位電極 2は、図 2に示すように、 誘電体となる板状のセラミック体 3と、セラミック体 3の内部に配設された、導電膜 4か らそれぞれ形成される。そして、図 1 (a)、図 1 (b)に示すように、単位電極 2は、一の 方向 Pにおける一の端部から他の端部に至るまでの間に導電膜 4を欠落した部分を 有する欠落単位電極 2bと、欠落した部分を有しなレ、通常単位電極 2aとから構成され ている。そして、空間 Vが、それぞれ対向する通常単位電極 2aと欠落単位電極 2bと の間又は欠落単位電極 2b相互間に、導電膜 4間の距離が単位電極 2相互間の距離 となるように形成された複数の通常空間 Vaと、欠落単位電極 2bの欠落部分を挟んで それぞれ対向することになる通常単位電極 2a相互間に、導電膜 4間の距離が通常 空間 Vaにおける導電膜 4間の距離よりも長くなるように形成された複数の欠落空間 V bとから構成される。
[0020] 上記欠落部とは、単位電極 2の導電膜 4が、一の方向 Pの一方の端部側から一定 長さだけ欠落して存在しない部分を有するときの、その欠落した部分をいう。上記一 定長さは、特に限定されるものではないが、欠落空間 Vbを形成して、下記のプラズ マ反応器に使用したときに、所定の成分を反応させることができるだけの長さであれ ばよレ、。例えば、プラズマ反応器の空間 Vの全体に対して、欠落空間 Vbが 20— 80。/o であることが好ましい。電圧を印加するときには、各単位電極 2が交互に電源側と接 地側に接続される。そして、通常単位電極 2a及び欠落単位電極 2bは、いずれも、電 源側にも接地側にも接続されることができる。また、通常単位電極 2aの中の電源側に 接続するものの一部又は全部が、複数に分割され(図 1 (b)では通常単位電極 2aの 一部が 2つに分割されている)、複数の異なる電位となるように形成されてもよい。複 数に分割された状態で、同一の電源で同一の電位としてもよい。
[0021] このように、本実施の形態のプラズマ発生電極 1は、上述のように構成されるため、 通常空間 Vaと欠落空間 Vbとにおける、プラズマを発生させる単位電極 2を構成する 導電膜 4間の距離が異なり、通常空間 Vaと欠落空間 Vbとにおいて発生するプラズマ の強さが異なるものとなる。そのため、本実施の形態のプラズマ発生電極 1を下記の プラズマ反応器に使用したときには、排気ガス等を処理するとき、被処理流体をブラ ズマが発生する空間に流したときに、一度流すだけで、被処理流体に含有される複 数の所定の成分を、それぞれの反応に適した複数の異なる強さのプラズマにより、処 理すること力 Sできる。
[0022] プラズマの強さが異なるとは、プラズマのエネノレギ一の大きさが異なることであり、単 位電極間の電位差が同じときには、単位電極間の距離が小さいほうがプラズマのェ ネルギ一は大きくなる。
[0023] 本実施の形態のプラズマ発生電極 1を構成する欠落電極 2bは、単位電極 2を構成 するセラミック体 3及び導電膜 4のそれぞれの、一の方向 Pの一方の端部側から一部 が欠落して形成されている。そのため、欠落単位電極 2bの欠落部分は、空間となり( 導電膜 4だけでなくセラミック体 3も存在しない)、欠落空間 Vbは、通常単位電極 2a に挟まれた、通常空間 Vaより大きい空間となっている。
[0024] 通常単位電極 2a相互間の距離 W2 (欠落空間 Vbの幅)は、 0. 5— 5mmであること が好ましい。また、欠落単位電極 2b相互間の距離 W1 (通常空間 Vaの幅)は、 0. 1 一 3mmであることが好ましレ、。本実施の形態では、欠落単位電極 2bは一種類である が、二種類以上の長さの異なる欠落単位電極 2bを使用し、さらに幅の異なる空間を 形成するようにしてもよレ、。この場合には、三番目以降の空間(図示せず)は、欠落単 位電極相互間又は欠落単位電極と通常単位電極との間に形成されることになる。そ れにより、さらに異なる大きさのプラズマを発生させることができる。
[0025] 図 1 (a)、図 1 (b)に示す、単位電極 2を構成する導電膜 4の厚さとしては、プラズマ 発生電極 1の小型化及び、排気ガス等を処理する場合に単位電極 2間を通過させる 被処理流体の抵抗を低減させる等の理由から、 0. 001— 0. 1mmであることが好ま しく、さらに、 0. 005— 0. 05mmであること力 S好ましレ、。
[0026] また、本実施の形態に用いられる導電膜 4は、導電性に優れた金属を主成分とする ことが好ましぐ例えば、導電膜 4の主成分としては、タングステン、モリブデン、マン ガン、クロム、チタン、ジルコニウム、ニッケル、鉄、銀、銅、白金、及びパラジウムから なる群から選ばれる少なくとも一種の金属を好適例として挙げることができる。なお、 本実施の形態において、主成分とは、成分の 60質量%以上を占めるものをいう。な お、導電膜 4が、上述した群のうち二種類以上の金属を主成分として含む場合には、 それら金属の総和力 成分の 60質量%以上を占めるものとする。
[0027] 単位電極 2において、導電膜 4は、テープ状のセラミック体 3に塗工されて配設され たものであることが好ましく、具体的な塗工の方法としては、例えば、印刷、ローラ、ス プレー、静電塗装、ディップ、ナイフコータ等を好適例としてあげることができる。この ような方法によれば、塗工後の表面の平滑性に優れ、且つ厚さの薄い導電膜 4を容 易に形成することができる。
[0028] 導電膜 4をテープ状のセラミック体に塗工する際には、導電膜 4の主成分として挙 げた金属の粉末と、有機バインダーと、テルビネオール等の溶剤とを混合して導体べ 一ストを形成し、上述した方法でテープ状のセラミック体 3に塗工することで形成する こと力 Sできる。また、テープ状のセラミック体 3との密着性及び焼結性を向上させるベく 、必要に応じて上述した導体ペーストに添加剤を加えてもよい。
[0029] 導電膜 4の金属成分にセラミック体 3と同じ成分を添加することにより、導電膜 4とセ ラミック体 3との密着性を良くすることが可能となる。また、金属成分に添加するセラミ ック体成分にガラス成分をカ卩えることもできる。ガラス成分の添カ卩により、導電膜 4の焼 結性を向上し、密着性に加え緻密性が向上する。金属成分以外のセラミック体 3の成 分及び/又はガラス成分の総和は、 30質量%以下が好ましい。 30質量%を超えると 、抵抗値が下がり、導電膜 4としての機能が得られないことがある。
[0030] また、単位電極 2を構成する板状のセラミック体 3 (テープ状のセラミック体)は、上述 したように誘電体としての機能を有するものであり、導電膜 4が板状のセラミック体 3の 内部に配設された状態で用いられることにより、導電膜 4単独で放電を行う場合と比 較して、スパーク等の片寄った放電を減少させ、小さな放電を複数の箇所で生じさせ ること力 S可能となる。このような複数の小さな放電は、スパーク等の放電に比して流れ る電流が少ないために、消費電力を削減することができ、さらに、誘電体が存在する ことにより、単位電極 2間に流れる電流が制限されて、温度上昇を伴わない消費エネ ルギ一の少ないノンサーマルプラズマを発生させることができる。
[0031] 単位電極 2のうちの少なくとも一つ力 S、誘電体となる板状のセラミック体 3と、板状の セラミック体 3の内部に配設された、図 3に示すその膜厚方向に貫通した膜厚方向に 垂直な方向の平面で切断した断面の形状が一部に円弧を含む形状の貫通孔 5が複 数形成された導電膜 4とを有してなることが好ましい。貫通孔 5は、図 3ではそれぞれ が正方形の頂点に位置するように配置されている力 S、それぞれが正三角形の頂点に 位置するように配置されるとより好ましい。このように、導電膜 4に貫通孔 5を形成する と、さらに均一な放電を、低電圧で得ることができるため、好ましい。
[0032] 上述した貫通孔 5の大きさについては、特に限定されることはないが、例えば、それ ぞれの貫通孔 5の直径が 1一 10mmであることが好ましレ、。このように構成することに よって、貫通孔 5の外周上での電界集中が、放電に適した条件となり、一対の単位電 極 2間に印加する電圧がさほど高くなくとも放電を良好に開始させることができる。貫 通孔 5の直径力 Slmm未満であると、貫通孔 5の大きさが小さくなり過ぎて、貫通孔 5の 外周上に生ずる放電が、上述した点を起点とした局所的な放電と似た状態となり、不 均一なプラズマが発生する恐れがある。また、貫通孔 5の直径が 10mmを超えると、 貫通孔 5の内部には放電が生じにくいため、一対の単位電極 2間に生じるプラズマの 密度が低下する恐れがある。
[0033] また、本実施の形態においては、貫通孔 5の、 P 接するそれぞれの中心間の距離 は、貫通孔 5の直径に応じて、均一かつ高密度なプラズマを発生させることができる ような長さとなるように適宜決定されていることが好ましぐ例えば、特に限定されるこ とはないが、隣接するそれぞれの中心間の距離力 1. 5 20mmであることが好まし レ、。
[0034] また、この貫通孔 5は、単位面積当りの貫通孔 5の外周の長さが長くなるように形成 されていることが好ましい。このように構成することによって、単位面積当たりに電界不 均一な領域の長さ、即ち、プラズマの発生起点となる外周の長さを長くすることができ 、単位面積当たりに多くの放電を起こさせて高密度のプラズマを発生させることがで きる。具体的な単位面積当りの貫通孔 5の外周の長さ(mm/ (mm) 2)としては、発生 させるプラズマの強度等によって適宜設定することができるが、例えば、 自動車の排 気ガスを処理する場合には、 0. 05-1. 7mmZ (mm) 2であることが好ましレ、。単位 面積当りの貫通孔 5の外周の長さが 0. 05より小さいと局所的な放電が起こり、安定 な放電空間が得に《なることがある。 1. 7より大きいと、導電膜 4の抵抗値が高くなり 放電効率が低下することがある。
[0035] また、本実施の形態においては、単位面積当たりの導電膜 4の面積は 0. 1-0. 98
(mm) 2/ (mm) 2であること力、好ましい。 0. 1より小さいと誘電体電極の静電容量が 小さすぎて、排ガス浄化に必要な放電を得ることが難しくなることがある。 0. 98より大 きいと、貫通孔による均一な放電効果が得にくくなり、局所的な放電が起こりやすくな ること力ある。
[0036] 図 3に示す導電膜 4に形成される貫通孔 5は、図 1 (a)に示すプラズマ発生器 1に形 成したときに、単位電極 2間に空間 Vを形成するためのスぺーサ一部分に重ならない ようにすることが好ましレ、。スぺーサ一部分に重ならなレ、ようにすることで異常放電す ることを抑制することができる。
[0037] 板状のセラミック体 3は、誘電率の高い材料を主成分とすることが好ましぐ例えば、 酸化アルミニウム、酸化ジノレコニゥム、酸化珪素、ムライト、コージヱライト、チタン-バ リウム系酸化物、マグネシウム一カルシウム一チタン系酸化物、バリウム-チタン一亜鉛 系酸化物、窒化珪素、窒化アルミニウム等を好適に用いることができる。耐熱衝撃性 にも優れた材料を主成分とすることによって、プラズマ発生電極を高温条件下におい ても運用することが可能となる。
[0038] 例えば、酸化アルミニウム (Al O )にガラス成分を添加した低温焼成基板材料 (LT
2 3
CC)に導体として銅メタライズを用いることができる。銅メタライズを用いるため、抵抗 が低ぐ放電効率の高い電極が造られるため、電極の大きさが小さくできる。そして、 熱応力を回避した設計が可能となり、強度が低い問題が解消される。また、チタン酸 バリウム、マグネシウム一カルシウム一チタン系酸化物、バリウム一チタン一亜鉛系酸化 物等の誘電率の高い材料で電極を造る場合、放電効率が高いため、電極の大きさを 小さくできるため、熱膨脹が高いことによる熱応力の発生を、小さくできる構造体設計 が可能である。
[0039] また、板状のセラミック体 3をテープ状のセラミック体から形成するときには、テープ 状のセラミック体の厚さについては、特に限定されることはないが、 0. 1一 3mmであ ることが好ましい。テープ状のセラミック体の厚さ力 0. 1mm未満であると、隣接する 一対の単位電極 2間の電気絶縁性を確保することができないことがある。また、テー プ状のセラミック体の厚さ力 ¾mmを超えると、排ガス浄化システムとして省スペース化 の妨げになるとともに、電極間距離が長くなることによる負荷電圧の増大につながり 効率が低下することがある。
[0040] テープ状のセラミック体は、セラミック基板用のセラミックグリーンシートを好適に用 レ、ることができる。このセラミックグリーンシートは、グリーンシート製作用のスラリー又 はペーストを、ドクターブレード法、カレンダ一法、印刷法、リバースロールコータ法等 の従来公知の手法に従って、所定の厚さとなるように成形して形成することができる。 このようにして形成されたセラミックグリーンシートは、切断、切肖 ij、打ち抜き、連通孔 の形成等の加工を施したり、複数枚のグリーンシートを積層した状態で熱圧着等によ つて一体的な積層物として用いてもよい。
[0041] 上述したグリーンシート製作用のスラリー又はペーストは、所定のセラミック粉末に 適当なバインダ、焼結助剤、可塑剤、分散剤、有機溶媒等を配合して調製したものを 好適に用いることができ、例えば、このセラミック粉末としては、アルミナ、ムライト、コ ージヱライト、ジルコユア、シリカ、窒化珪素、窒化アルミニウム、セラミックガラス、ガラ ス等の粉末を好適例として挙げることができる。また、焼結助剤としては、酸化ケィ素 、酸化マグネシウム、酸化カルシウム、酸化チタン、酸化ジルコニウム等を好適例とし て挙げること力 Sできる。なお、焼結助剤は、セラミック粉末 100質量部に対して、 3-1 0質量部加えることが好ましい。可塑剤、分散剤及び有機溶媒については、従来公 知の方法に用レ、られている可塑剤、分散剤及び有機溶媒を好適に用レ、ることができ る。 [0042] また、板状のセラミック体 3の気孔率は、 0. 1— 35%であることが好ましぐさらに 0.
1一 10%であることが好ましい。このように構成することによって、板状のセラミック体 3 を備えた単位電極 2間に効率よくプラズマを発生させることが可能となり、省エネルギ 一化を実現することができる。
[0043] 図 2に示す単位電極 2を構成する板状のセラミック体 3は、上述のようにテープ状の セラミック体の表面に導電膜 4が配設され、さらにその上から、二枚のテープ状のセラ ミック体で導電膜 4を挟持するようにテープ状のセラミック体を配設して形成されたも のである。
[0044] 次に、本発明のプラズマ発生電極の他の実施の形態について説明する。図 4 (a)、 図 4 (b)は、本発明のプラズマ発生電極の他の実施の形態を模式的に示したもので あり、図 4 (a)は、一の方向に垂直な平面で切断した断面図であり、図 4 (b)は、図 4 ( a)の B—B'断面図である。
[0045] 図 4 (a)、図 4 (b)に示すように、本実施の実施の形態のプラズマ発生電極 31は、上 述した図 1 (a)、図 1 (b)に示す本発明のプラズマ発生電極の一の実施の形態の場合 と同様に、複数の単位電極 32が所定間隔を隔てて階層的に積層されてなるとともに 、単位電極 32相互間に、一の方向 Sの両端が開放されるとともに他の方向 Tの両端 が閉鎖された空間 Xが形成されてなり、これらの単位電極 32間に電圧を印加すること によって空間 Xにおいてプラズマを発生させることが可能なプラズマ発生電極 31であ る。上述した図 1 (a)、図 1 (b)に示す本発明のプラズマ発生電極の一の実施の形態 の場合と異なる点は、本実施の形態のプラズマ発生電極 31を構成する欠落電極 32 bが、単位電極 32を構成する導電膜 34のみが一部欠落して形成されてレ、ることであ る。そのため、欠落単位電極 32bの欠落部分は、導電膜 34は存在しないが板状のセ ラミック体 33が存在する。そして、欠落空間 Xbは、通常単位電極 32aと欠落単位電 極 32bの欠落部分 (板状のセラミック体 33が存在する部分)とに挟まれた空間、及び 欠落単位電極 32bの欠落部分相互間に挟まれた空間とから構成される。従って、欠 落空間 Xbは、上述した本発明のプラズマ発生電極の一の実施の形態の場合と異な り、通常空間 Xaと同じ幅の空間となっている。一方、通常空間 Xaにプラズマを発生さ せる単位電極 32の導電膜 34相互間の距離は、通常空間 Xaを形成する単位電極 32 相互間の距離 W3と略同じである(テープ状のセラミック体 33の厚さ分だけ異なる)が 、欠落空間 Xbにプラズマを発生させる導電膜 34相互間の距離は、欠落空間 Xbを形 成する欠落単位電極 32bには導電膜 34が存在していないため、その欠落単位電極 32bを挟んでそれぞれ対向する通常単位電極 32a相互間の距離 W4と略同じとなる 。このように、本実施の形態においては、通常空間 Xaの幅と欠落空間 Xbとの幅は同 じであるが、それぞれの空間にプラズマを発生させる導電膜 34間の距離が異なるた め、欠落空間 Xbに発生するプラズマと通常空間 Xaに発生するプラズマの大きさが異 なるものとなる。
[0046] 本実施の形態のプラズマ発生電極の上記以外の構成は、上述した本発明のプラズ マ発生電極の一の実施の形態の場合と同様とすることができる。
[0047] また、図 5に示すように、上述の本発明のプラズマ発生電極の他の実施の形態にお いて、単位電極 32を構成する導電膜 34が、電圧が印加されたときに、それぞれ異な つた電位となる複数の導電膜群から構成され、所定の電位となる導電膜群 (第一の 導電膜群) 11のそれぞれが、空間 Xの他の方向 T (図 4 (a)参照)の端部(第一側端 部) 14 (図 4 (a)参照)まで延設され、第一の導電膜群 11の場合とは異なる電位とな る導電膜群(第二の導電膜群) 12のそれぞれが、空間 Xの他の方向 T (図 4 (a)参照) の端部(第二側端部) 15 (図 4 (a)参照)まで延設されていることが好ましい。ここで、 図 5は、図 4に示す本発明のプラズマ発生電極の他の実施の形態に側端部導電膜 を配設したものを第一側端部側からみた側面図である。そして、第一の導電膜群 11 が延設された端部(第一側端部) 14側の面及び第二の導電膜群が延設された端部 側の面のそれぞれに導電膜 (第一の側端部導電膜 18及び第二の側端部導電膜 19 )が配設され、第一の導電膜群 11と第一の側端部導電膜 18とが接触して電気的な 導通が可能とされてなるとともに、第二の導電膜群 12と第二の側端部導電膜 19とが 接触して電気的な導通が可能とされることが好ましい。また、本実施の形態において は、第一の導電膜群 11を含む複数の単位電極 32のなかの一部が通常単位電極 32 a (図 4 (b)参照)であり、その通常単位電極 32a (図 4 (b)参照)の導電膜 34 (図 4 (b) 参照)が中間部分で途切れて、第一の導電膜群 11とは電気的に導通しない第三の 導電膜群 13を形成している。そして、第三の導電膜群 13と接触して電気的な導通を 可能とする第三の側端部導電膜 20が第一側端部 14側の面に形成されている。また 、第一の導電膜群 11と第二の導電膜群 12のそれぞれが、空間 Xの他の方向 T (図 4 (a)参照)の同一側の端部に延設されていてもよい。そして、同じ側の端部で、第一 の導電膜群 11と第二の導電膜群 12のそれぞれが、第一の側端部導電膜 18及び第 二の側端部導電膜 19により電気的に接続されてもよい。
[0048] 上述の側端部導電膜は、図 1 (a)、図 1 (b)に示す、本発明のプラズマ発生電極の 一の実施の形態においても、導電膜 4を集電するときに同様に使用すること力 Sできる
[0049] 以下、本発明のプラズマ発生電極の一の実施の形態の製造方法について具体的 に説明する。
[0050] まず、上述したセラミック体となるセラミックグリーンシートを成形する。例えば、アル ミナ、ムライト、コージヱライト、ムライト、窒化珪素、窒化アルミニウム、セラミックガラス 、及びガラス群から選ばれる少なくとも一種の材料に、上述した焼結助剤や、ブチラ 一ル系榭脂やセルロース系樹脂等のバインダ、 DOPや DBP等の可塑斉 lj、トルエン やブタジエン等の有機溶媒等を加え、アルミナ製ポット及びアルミナ玉石を用いて十 分に混合してグリーンシート製作用のスラリーを作製する。また、これらの材料を、モノ ボールによりボールミル混合して作製してもよい。
[0051] 次に、得られたグリーンシート製作用のスラリーを、減圧下で撹拌して脱泡し、さら に所定の粘度となるように調整する。このように調整したグリーンシート製作用のスラリ 一をドクターブレード法等のテープ成形法によってテープ状に成形して未焼成セラミ ック体を形成する。
[0052] 一方、得られた未焼成セラミック体の一方の表面に配設する導電膜を形成するため の導体ペーストを形成する。この導体ペーストは、例えば、銀粉末にバインダ及びテ ルピネオール等の溶剤をカ卩え、トリロールミルを用いて十分に混鍊して形成すること ができる。
[0053] このようにして形成した導体ペーストを、未焼成セラミック体の表面にスクリーン印刷 等を用いて印刷して、所定の形状の導電膜を形成し、導電膜配設未焼成セラミック 体を作製する。このとき、導電膜をセラミック体で挟持して単位電極を形成した後に、 単位電極の外部から導電膜に電気を供給することができるように、導電膜が未焼成 セラミック体の外周部にまで延設するように印刷することが好ましい。
[0054] 未焼成セラミック体の大きさとしては、通常単位電極に相当する長いものと、欠落単 位電極に相当する短いものを形成する。そして、通常単位電極のなかで、電気的に 導通しない複数種の導電膜を形成する場合には、導電ペーストを印刷するときに、 所定の形状に印刷すればよい。
[0055] 次に、導電膜を印刷した未焼成セラミック体と、他の未焼成セラミック体とを、印刷し た導電膜を覆うようにして積層する。未焼成セラミック体を積層する際には、温度 100 °C、圧力 lOMPaで押圧しながら積層することが好ましい。次に、導電膜を挟持した 状態で積層した未焼成セラミック体を焼成して、誘電体となる板状のセラミック体と、 導電膜とを有してなる単位電極を形成する。
[0056] 次に、形成された複数の単位電極を積層する。このとき、各単位電極間に所定の間 隔を開けるために、上記セラミック体と同様の原料により四角柱状のセラミック棒を形 成し、各単位電極の間に挟むようにする。このときの、セラミック棒の厚さが各単位電 極間の距離となる。セラミック棒を各単位電極の間に挟むときには、それぞれが略平 行になるようにし、排ガス等を処理するときのガスの流路を確保する。セラミック棒は 四角柱状である必要はなぐ円柱状、多角柱状、その他の柱状であってもよい。また 、上記セラミック体の一の面に複数の突条を形成し、この突条を挟んで単位電極を挟 むことにより空間を形成してもよい。さらに、セラミック体に凹凸を形成し、それを重ね 合わせることにより空間を形成してもよい。このように、複数の単位電極を、上記セラミ ック棒を介して階層的に積層することにより、本実施の形態のプラズマ発生電極を得 ること力 Sできる。
[0057] 本実施の形態のプラズマ発生電極は以下に示す他の方法により製造してもよい。
まず、図 6に示す、板状のセラミック体 42に複数本の突条 43を略平行に配設した、 突条配設セラミック体 41を押出成形により形成し、端面部分に端面導電膜 47を配設 する。そして、図 7に示す、導電膜配設セラミック体 46を構成する板状のセラミック体 44を押出成形により形成する。突条配設セラミック体 41及び板状のセラミック体 44の 原料等の条件は、上述の本実施の形態のプラズマ発生電極の製造方法の場合と同 様にすることが好ましい。
[0058] 次に、図 7示すように、導電膜 45を板状のセラミック体 44に配設する。導電膜 45の 材質、導電膜 45をセラミック体 44に配設する方法等の条件は、上述の本実施の形 態のプラズマ発生電極の製造方法の場合と同様にすることが好ましい。
[0059] 次に、突条配設セラミック体 41の突条 43が配設されていない側の面に、導電膜配 設セラミック体 46を、導電膜 45が配設されている側の面を当接させるようにして配設 させて積層体とする。そして、このような積層体を所定の段数積層することにより焼成 前のプラズマ発生電極とし、これを焼成することにより、本実施の形態のプラズマ発生 電極とすることができる。
[0060] 次に、本発明のプラズマ反応器の一の実施の形態について説明する。図 8は、本 発明のプラズマ反応器の一の実施の形態を模式的に示す断面図である。図 8に示 すように、本実施の形態のプラズマ反応器 21は、図 4に示したような本発明のプラズ マ発生電極の他の実施の形態(プラズマ発生電極 31)を備えてなるものである。具体 的には、本実施の形態のプラズマ反応器 21は、プラズマ発生電極 31と、プラズマ発 生電極 31を、それを構成する複数の単位電極 32間に立体的に配列された空間 X内 に所定の成分を含有するガス (被処理流体)が導入され得る状態で収納したケース 体 22とを備えている。このケース体 22は、被処理流体が流入する流入口 23と、流入 した被処理流体が単位電極 32間を通過して処理された処理流体を流出する流出口 24とを有している。このように構成された本実施の形態のプラズマ反応器 21は、空間 X内に所定の成分を含有するガスが導入されたときに、空間 X内に発生させたプラズ マによりガス中の所定の成分を反応させることができる。
[0061] 本実施の形態のプラズマ反応器 21は、図 4に示したプラズマ発生電極 31を備えて なることから、被処理流体が流入口 23から流入し、通常空間 Xaを通るときには間隔 の狭い導電膜 34により発生するプラズマにより、粒状物等の反応にエネルギーの大 きなプラズマを必要とする物質が分解される。そして、欠落空間 Xbを通るときには間 隔の広い導電膜 34により発生するプラズマにより、 NO等のエネルギーの小さなブラ ズマで反応する物質が分解される。このように、本実施の形態のプラズマ反応器によ ると、被処理流体をプラズマが発生する空間に流したときに、一度流すだけで、被処 理流体に含有される複数の所定の成分を、それぞれの反応に適した複数の異なる 大きさのプラズマにより、効率的に処理することができる。
[0062] 本実施の形態のプラズマ反応器 21において、プラズマ発生電極 31を配設するとき には、破損を防止するため、ケース体 22とプラズマ発生電極 31との間に絶縁性で耐 熱性の緩衝剤を介在させることが好ましレ、。
[0063] 本実施の形態に用いられるケース体 22の材料としては、特に制限はなレ、が、例え ば、優れた導電性を有するとともに、軽量かつ安価であり、熱膨張による変形の少な レ、フェライト系ステンレス等であることが好ましレ、。
[0064] このように構成されたプラズマ反応器 21は、例えば、 自動車の排気系中に設置して 用いることができ、排気ガスを単位電極 32間に形成される空間 X内に発生させたブラ ズマの中を通過させて、排気ガスに含まれる上記所定の成分である煤や窒素酸化物 等の有害物質を反応させて無害な気体として外部に排出することができる。
[0065] また、図示は省略するが、本実施の形態のプラズマ反応器においては、プラズマ発 生電極に電圧を印加するための電源をさらに備えていもよレ、。この電源については、 プラズマを有効に発生させることができるような電気を供給することができるものであ れば従来公知の電源を用いることができる。
[0066] また、本実施の形態のプラズマ反応器においては、上述したように電源を備えた構 成とせずに、外部の電源から電流を供給するような構成としてもょレ、。
[0067] 本実施の形態に用いられるプラズマ発生電極に供給する電流については、発生さ せるプラズマの強度によって適宜選択して決定することができる。例えば、プラズマ反 応器を自動車の排気系中に設置する場合には、プラズマ発生電極に供給する電流 、電圧が lkV以上の直流電流、ピーク電圧が lkV以上かつ 1秒あたりのパルス数 力 以上(100Hz以上)であるパルス電流、ピーク電圧が lkV以上かつ周波数が 100以上(100Hz以上)である交流電流、又はこれらのいずれか二つを重畳してなる 電流であることが好ましい。このように構成することによって、効率よくプラズマを発生 させること力できる。
[0068] 次に、本発明の排気ガス浄化装置の一の実施の形態について具体的に説明する 。図 9は、本実施の形態の排気ガス浄化装置を模式的に示す説明図である。図 9に 示すように、本実施の形態の排気ガス浄化装置 51は、上述した本発明の実施の形 態であるプラズマ反応器 21と、触媒 54とを備え、このプラズマ反応器 21と触媒 54と 力 内燃機関の排気系の内部に配設された排気ガス浄化装置 51である。なお、ブラ ズマ反応器 21は、排気系の排気ガス発生側(上流側)に配設され、触媒 54は、その 排気側(下流側)に配設されており、プラズマ反応器 21と触媒 54とは配管 52を介し て接続されている。
[0069] 本実施の形態の排気ガス浄化装置 51は、例えば、酸素過剰雰囲気下における排 気ガス中の N〇を浄化する装置である。即ち、プラズマ反応器 21で発生したプラズ マによって、 NOを下流側の触媒 54で浄化しやすいように改質、又は NOと反応し やすいように排気ガス中の HC (ハイド口カーボン)等を改質して、触媒 54によって N Oを浄化する。
[0070] 本実施の形態の排気ガス浄化装置 51に用いられるプラズマ反応器 21は、プラズマ により、リーンバーン、ガソリン直噴エンジン又はディーゼルエンジン等の酸素過剰雰 囲気下での燃焼による排気ガス中の NOを NOに変換するものである。また、プラズ
2
マ反応器 21は、排気ガス中の HC等から活性種を生成するものであり、図 8に示した プラズマ反応器 21と同様に構成されたものを好適に用いることができる。
[0071] 触媒 54は、その内部に排気ガスが流通する複数の細孔が形成された支持体を含 む触媒部材を備えた触媒ユニット 55として、排気系におけるプラズマ反応器 21の下 流側に配設されている。触媒部材は、支持体と、支持体の複数の細孔を取り囲む内 壁面を覆うように形成された触媒層を有してレ、る。
[0072] 触媒層は、一般に、後記するように支持体をスラリー状の触媒 (触媒スラリー)に含 浸して製造されるため、「ゥォッシュコート (層)」と呼ばれることもある。
[0073] 支持体の形状は、排気ガスが流通する空間を有していれば本発明では特に制限さ れず、本実施の形態では、複数の細孔が形成されたハニカム状のものを使用してい る。
[0074] 支持体は、耐熱性を有する材料から形成されることが好ましい。このような材料とし ては、例えば、コージヱライト、ムライト、シリコンカーバイド(SiC)、シリコンナイトライド (Si N )等の多孔質 (セラミック)や、メタル (例えば、ステンレス)等が挙げられる。 [0075] 触媒層は、多孔質担体と、多孔質担体の表面に担持した Pt、 Pd、 Rh、 Au、 Ag、 C u、 Fe、 Ni、 Ir、 Ga等から選択される一種又は二種以上の組合せを主要部として形 成されている。触媒層の内部には支持体の細孔に連続する複数の連続細孔が形成 されている。
[0076] 多孔質担体は、例えば、ァノレミナ、ゼォライト、シリカ、チタニア、ジルコユア、シリカ アルミナ、セリア等から適宜選択して使用し、形成することができる。なお、触媒 54は 、 NOの分解反応を促進する触媒を用いる。
[0077] 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定 されるものではない。
[0078] (実施例 1)
図 1に示すような構成のプラズマ発生電極 1を製造し、これをプラズマ反応器として 用いて排気ガスの処理を行レ、、処理後のガスに含まれる煤、一酸化窒素(NO)、及 び炭化水素(HC)の量と、アルデヒドの有無を測定した。
[0079] 本実施例のプラズマ反応器に用いられるプラズマ発生電極は、以下のようにして作 製した。まず、二枚積層して焼成後の厚さが 0. 5mmとなる未焼成のアルミナテープ 基板の内側に、タングステンペーストを用いて、直径 5mm、隣接相互の間隔が 6mm となるような配列パターンで貫通孔が形成された導電膜を、その厚さが 10 μ mとなる ようにスクリーン印刷した。この際、 100 X 100mmの基板には、ガス入口側(通常空 間 Va (図 1 (b)参照))に 80 X 40mmの導電膜とガス出口側(欠落空間 Vb (図 1 (b) 参照) )に 80 X 40mmの二つの導電膜を持つ電極 Aと、同じ 100 X 100mm基板に 8 0 X 90mmの導電膜を持つ電極 B、 100 X 50mmの基板に 80 X 40mmの導電膜を 持ち互いに異なる端面側に端子を持つ電極 C、 Dの四種類の電極を、電極間隔 0. 5 mmで、 A、 C、 D、 B、 C、 Dの順で積み重ねた一体型電極ユニットを作製した。 6段 一体型電極ユニット 2個を金属枠で固定し、耐熱マットで外周を保持した後、 SUS43 0で作製した円筒容器に納めた。また、電気的接続は、電極 A入口側、電極 D及び 電極 A出口側はパルス電源に、電極 B、 Cは接地側に各々接続した。電極 A入口側( 入り口側電極)と電極 C、電極 Dと電極 Bは各々電極間距離が 0. 5mmであるが、電 極 A出口側(出口側電極)と電極 Bは電極間距離が 2. 5mmとなってレ、る。 [0080] このプラズマ反応器に、エンジンから排出される排気ガス状態を模擬した排気ガス を通気した。この排気ガスとしては、酸素 10体積0 /0、 CO 10体積0 /0、プロピレン 200 ppmC、 NOガス 200ppm、残りが窒素となるように混合された混合ガスに、煤を 100 OmgZhrで混合したものを用いた。プラズマを通過したガスに含まれる各成分の濃 度 (PM量)を測定した。測定結果を表 1に示す。
[0081] [表 1]
Figure imgf000021_0001
[0082] (実施例 2)
実施例 1のプラズマ反応器と同様に構成されたプラズマ反応器に、入口側電極と、 出口側電極で加える電圧を 4kVと 6kVに分配してパルス電流を通電して同様の測 定を行った。測定結果を表 1に示す。
[0083] (実施例 3)
実施例 1のプラズマ反応器と同様に構成されたプラズマ反応器で、入口側電極と出 口側電極を別々のパルス電源に接続し、異なる周波数及び異なる電圧を負荷して、 同様の測定を行った。測定結果を表 1に示す。
[0084] (比較例 1)
電極ユニットを構成する平板電極が、電極間距離が 0. 5mmの入口側の電極部分 だけで構成された以外は、実施例 1のプラズマ反応器と同様に構成されたプラズマ 反応器に、パルス数が 100回/秒となるように 4kVのパルス電流を通電して同様の 測定を行った。測定結果を表 1に示す。
[0085] (比較例 2)
電極ユニットを構成する平板電極が、電極間距離が 2. 5mmの出口側の電極部分 だけで構成された以外は、実施例 1のプラズマ反応器と同様に構成されたプラズマ 反応器に、パルス数が 1000回/秒となるように 6kVのパルス電流を通電して同様の 測定を行った。測定結果を表 1に示す。
[0086] (実施例 4)
実施例 3のプラズマ反応器の下流側に触媒を配置して排気ガス浄化装置を製造し 、その N〇浄化性能を評価した。触媒は、市販の Ί -A1 Οに Ptを 5質量%含浸した 触媒粉末をコージヱライト製セラミックスハニカムに担持したものである。ハニカム触媒 のサイズは、直径 105. 7mm、長さ 114. 3mmの筒状で、 400セノレ、セルを区画す る隔壁の厚さ(リブ厚)が 4ミル(約 0. 1mm)である。プラズマの発生条件及びガス条 件は、実施例 3と同じである。
[0087] その結果、 200ppmの N〇がプラズマ反応器及び触媒を通過した後には NOとし て 120ppmまで低減していた。
[0088] (比較例 3)
比較例 1のプラズマ反応器の下流側に実施例 4に用レ、た触媒と同様の触媒を配置 して排気ガス浄化装置を製造し、その NO浄化性能を評価した。プラズマ発生条件 及びガス条件は、比較例 1と同じである。
[0089] その結果、 200ppmの NOがプラズマ反応器及び触媒を通過した後には NOとし て 170ppmまでしか低減していなかった。
産業上の利用可能性
[0090] 以上説明したように、本発明のプラズマ発生電極によれば、単位電極力 S、通常単位 電極と欠落単位電極とから構成され、それにより導電膜間の距離がそれぞれ異なる 通常空間と欠落空間とが形成されることにより、通常空間と欠落空間のそれぞれに発 生するプラズマの大きさを異ならせることができる。そして、本発明のプラズマ反応器 によれば、このようなプラズマ発生電極を有するものとしたため、反応器内に、所定の 成分を含有するガスが導入されたときに、その所定成分のなかで、通常空間内で発 生するプラズマにより反応される成分の種類と、欠落空間内で発生するプラズマによ り反応される成分の種類とを異ならせることが可能となり、それぞれの成分を最適な 大きさのプラズマにより効率的に反応させることができる。また、本発明の排気ガス浄 化装置は、このようなプラズマ反応器と触媒とを備えていることから、例えば、 自動車 等の内燃機関から排出される排気ガスを良好に浄化することができる。

Claims

請求の範囲
[1] 複数の単位電極が所定間隔を隔てて階層的に積層されてなるとともに、前記単位 電極相互間に、一の方向の両端が開放されるとともに他の方向の両端が閉鎖された 空間が形成されてなり、これらの単位電極間に電圧を印加することによって前記空間 においてプラズマを発生させることが可能なプラズマ発生電極であって、
前記単位電極が、誘電体となる板状のセラミック体と、前記セラミック体の内部に配 設された導電膜から形成されるとともに、前記一の方向における一の端部から他の端 部に至るまでの間に前記導電膜を欠落した部分を有する欠落単位電極と、欠落した 部分を有しない通常単位電極とから構成されてなり、かつ
前記空間が、それぞれ対向する前記通常単位電極と前記欠落単位電極との間又 は前記欠落単位電極相互間に、前記導電膜間の距離が前記単位電極相互間の距 離となるように形成された複数の通常空間と、前記欠落単位電極の欠落部分を挟ん でそれぞれ対向することになる前記通常単位電極相互間に、前記導電膜間の距離 が前記通常空間における導電膜間の距離よりも長くなるように形成された複数の欠 落空間とから構成されてなり、
前記通常空間と前記欠落空間とにおける、プラズマを発生させる前記単位電極を 構成する前記導電膜間の距離が異なることにより、前記通常空間と前記欠落空間と において発生するプラズマの大きさが異なるプラズマ発生電極。
[2] 前記欠落単位電極が、前記単位電極を構成する前記導電膜の一部のみが欠落し て形成されてなる請求項 1に記載のプラズマ発生電極。
[3] 前記欠落単位電極が、前記単位電極を構成する前記セラミック体及び前記導電膜 のそれぞれの一部が欠落して形成されてなる請求項 1に記載のプラズマ発生電極。
[4] 前記単位電極を構成する前記導電膜が、電圧が印加されたときに、それぞれ異な つた電位となる複数の導電膜群から構成され、所定の電位となる前記導電膜群 (第 一の導電膜群)のそれぞれが、前記空間の前記他の方向の端部まで延設され、前記 第一の導電膜群の場合とは異なる電位となる前記導電膜群 (第二の導電膜群)のそ れぞれが、前記空間の前記他の方向の端部まで延設され、
前記第一の導電膜群が延設された端部側の面及び前記第二の導電膜群が延設さ れた端部側の面のそれぞれに導電膜 (第一の側端部導電膜及び第二の側端部導 電膜)が配設され、
前記第一の導電膜群と前記第一の側端部導電膜とが接触して電気的な導通が可 能とされてなるとともに、前記第二の導電膜群と前記第二の側端部導電膜とが接触し て電気的な導通が可能とされてなる請求項 1一 3のいずれかに記載のプラズマ発生 電極。
[5] 請求項 1一 4のいずれかに記載のプラズマ発生電極を備えてなり、前記プラズマ発 生電極を構成する複数の前記単位電極相互間に形成された前記空間内に所定の 成分を含有するガスが導入されたときに、前記空間内に発生させたプラズマにより前 記ガス中の前記所定の成分を反応させることが可能なプラズマ反応器。
[6] 前記空間内に前記所定の成分を含有するガスが導入されたときに、前記所定成分 のなかで、前記通常空間内で発生するプラズマにより反応される成分の種類と、前記 欠落空間内で発生するプラズマにより反応される成分の種類とが異なる請求項 5に 記載のプラズマ反応器。
[7] 請求項 5又は 6に記載のプラズマ反応器と、触媒とを備え、前記プラズマ反応器と 前記触媒とが、内燃機関の排気系の内部に配設された排気ガス浄化装置。
PCT/JP2004/009013 2003-06-27 2004-06-25 プラズマ発生電極及びプラズマ反応器、並びに排気ガス浄化装置 WO2005001249A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/561,840 US7648683B2 (en) 2003-06-27 2004-06-25 Plasma generating electrode, plasma generator, and exhaust gas purifying device
DE602004031843T DE602004031843D1 (de) 2003-06-27 2004-06-25 Plasmaerzeugungselektrode, plasmaerzeugungseinrichtun und abgasreinigungsvorrichtung
JP2005511056A JP4448094B2 (ja) 2003-06-27 2004-06-25 プラズマ発生電極及びプラズマ反応器、並びに排気ガス浄化装置
EP04746482A EP1647681B1 (en) 2003-06-27 2004-06-25 Plasma generating electrode, plasma reactor, and exhaust gas purifying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003185327 2003-06-27
JP2003-185327 2003-06-27

Publications (1)

Publication Number Publication Date
WO2005001249A1 true WO2005001249A1 (ja) 2005-01-06

Family

ID=33549651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009013 WO2005001249A1 (ja) 2003-06-27 2004-06-25 プラズマ発生電極及びプラズマ反応器、並びに排気ガス浄化装置

Country Status (5)

Country Link
US (1) US7648683B2 (ja)
EP (1) EP1647681B1 (ja)
JP (1) JP4448094B2 (ja)
DE (1) DE602004031843D1 (ja)
WO (1) WO2005001249A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305194A (ja) * 2005-04-28 2006-11-09 Midori Anzen Co Ltd 触媒保持装置及びガス除去装置
GR20050100173A (el) * 2005-04-04 2006-11-23 Γεωργιος Ευαγγελακης Μεθοδος και συσκευη αποστειρωσης αερα εξαερισμου
EP1838140A2 (en) * 2006-03-24 2007-09-26 Ngk Insulators, Ltd. Plasma generation electrode, plasma reactor, and exhaust gas cleaning apparatus
WO2008078508A1 (ja) * 2006-12-26 2008-07-03 Kyocera Corporation プラズマ発生体及び反応装置
WO2008087944A1 (ja) * 2007-01-15 2008-07-24 Yamatake Corporation ガス処理装置
KR101182356B1 (ko) 2012-04-27 2012-09-20 한국기계연구원 유해 기체 제거용 플라즈마-촉매 반응기 및 이를 이용한 유해 기체 처리 방법
JP2019060316A (ja) * 2017-09-28 2019-04-18 ダイハツ工業株式会社 プラズマリアクター

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5252931B2 (ja) 2008-01-16 2013-07-31 日本碍子株式会社 セラミックプラズマ反応器、及びプラズマ反応装置
US10478517B2 (en) 2008-09-19 2019-11-19 Fipak Research And Development Company Method and apparatus for purging unwanted substances from air
US9120073B2 (en) * 2009-06-05 2015-09-01 Eon Labs, Llc Distributed dielectric barrier discharge reactor
DE102011078942A1 (de) * 2011-07-11 2013-01-17 Evonik Degussa Gmbh Verfahren zur Herstellung höherer Silane mit verbesserter Ausbeute
IN2015DN03749A (ja) * 2012-10-04 2015-09-18 Fipak Res And Dev Company
EP3356026B1 (en) 2015-10-01 2022-11-09 Milton Roy, LLC Plasma reactor for liquid and gas
US10882021B2 (en) 2015-10-01 2021-01-05 Ion Inject Technology Llc Plasma reactor for liquid and gas and method of use
US11452982B2 (en) 2015-10-01 2022-09-27 Milton Roy, Llc Reactor for liquid and gas and method of use
US10187968B2 (en) 2015-10-08 2019-01-22 Ion Inject Technology Llc Quasi-resonant plasma voltage generator
US10046300B2 (en) 2015-12-09 2018-08-14 Ion Inject Technology Llc Membrane plasma reactor
CN112312637A (zh) * 2019-08-02 2021-02-02 中国石油化工股份有限公司 等离子体发生器
TWI718966B (zh) * 2020-06-15 2021-02-11 明志科技大學 電漿空氣清淨裝置
RU2764684C1 (ru) * 2021-01-11 2022-01-19 ЗАКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ЛАЙТТЕК ПЛЮС" (ЗАО "Лайттек Плюс") Устройство для очистки отходящих газов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164925A (ja) 1999-12-10 2001-06-19 Mitsubishi Motors Corp プラズマ排気ガス処理システム
JP2001193441A (ja) 2000-01-11 2001-07-17 Denso Corp 内燃機関の排ガス浄化装置
JP2002129947A (ja) * 2000-10-19 2002-05-09 Denso Corp 内燃機関の排気浄化装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887440B2 (en) * 2000-11-16 2005-05-03 Delphi Technologies, Inc. Edge-connected non-thermal plasma exhaust after-treatment device
US6482368B2 (en) * 2000-12-19 2002-11-19 Delphi Technologies, Inc. Non-thermal plasma reactor for lower power consumption
GB0107020D0 (en) * 2001-03-21 2001-05-09 Aea Technology Plc A reactor for plasma assisted treatment of gaseous media
WO2004114729A1 (ja) * 2003-06-20 2004-12-29 Ngk Insulators, Ltd. プラズマ発生電極及びプラズマ発生装置、並びに排気ガス浄化装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164925A (ja) 1999-12-10 2001-06-19 Mitsubishi Motors Corp プラズマ排気ガス処理システム
JP2001193441A (ja) 2000-01-11 2001-07-17 Denso Corp 内燃機関の排ガス浄化装置
JP2002129947A (ja) * 2000-10-19 2002-05-09 Denso Corp 内燃機関の排気浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1647681A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR20050100173A (el) * 2005-04-04 2006-11-23 Γεωργιος Ευαγγελακης Μεθοδος και συσκευη αποστειρωσης αερα εξαερισμου
JP2006305194A (ja) * 2005-04-28 2006-11-09 Midori Anzen Co Ltd 触媒保持装置及びガス除去装置
JP4636930B2 (ja) * 2005-04-28 2011-02-23 ミドリ安全株式会社 触媒保持装置及びガス除去装置
EP1838140A2 (en) * 2006-03-24 2007-09-26 Ngk Insulators, Ltd. Plasma generation electrode, plasma reactor, and exhaust gas cleaning apparatus
US7507934B2 (en) 2006-03-24 2009-03-24 Ngk Insulators, Ltd. Plasma generation electrode, plasma reactor, and exhaust gas cleaning apparatus
EP1838140A3 (en) * 2006-03-24 2010-04-28 Ngk Insulators, Ltd. Plasma generation electrode, plasma reactor, and exhaust gas cleaning apparatus
WO2008078508A1 (ja) * 2006-12-26 2008-07-03 Kyocera Corporation プラズマ発生体及び反応装置
JP5053292B2 (ja) * 2006-12-26 2012-10-17 京セラ株式会社 プラズマ発生体及び反応装置
WO2008087944A1 (ja) * 2007-01-15 2008-07-24 Yamatake Corporation ガス処理装置
KR101182356B1 (ko) 2012-04-27 2012-09-20 한국기계연구원 유해 기체 제거용 플라즈마-촉매 반응기 및 이를 이용한 유해 기체 처리 방법
JP2019060316A (ja) * 2017-09-28 2019-04-18 ダイハツ工業株式会社 プラズマリアクター
JP7018283B2 (ja) 2017-09-28 2022-02-10 ダイハツ工業株式会社 プラズマリアクター

Also Published As

Publication number Publication date
EP1647681A4 (en) 2009-11-18
US7648683B2 (en) 2010-01-19
EP1647681A1 (en) 2006-04-19
EP1647681B1 (en) 2011-03-16
JPWO2005001249A1 (ja) 2007-09-20
DE602004031843D1 (de) 2011-04-28
US20060150911A1 (en) 2006-07-13
JP4448094B2 (ja) 2010-04-07

Similar Documents

Publication Publication Date Title
US7635824B2 (en) Plasma generating electrode, plasma generation device, and exhaust gas purifying device
JP4863743B2 (ja) プラズマ発生電極、プラズマ反応器及び排ガス浄化装置
JP4448094B2 (ja) プラズマ発生電極及びプラズマ反応器、並びに排気ガス浄化装置
JP4104627B2 (ja) プラズマ発生電極及びプラズマ発生装置、並びに排気ガス浄化装置
US7780923B2 (en) Plasma reaction vessel, and method of producing the same
US7771673B2 (en) Plasma generating electrode and plasma reactor
JP4494955B2 (ja) プラズマ発生電極及びプラズマ反応器
US20070119828A1 (en) Plasma generating electrode, its manufacturing method, and plasma reactor
JP5150482B2 (ja) 排気ガス浄化装置
JP2005123034A (ja) プラズマ発生電極及びプラズマ反応器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006150911

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10561840

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005511056

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004746482

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004746482

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10561840

Country of ref document: US