WO2004112284A1 - 遠隔励起方式の光伝送システム - Google Patents

遠隔励起方式の光伝送システム Download PDF

Info

Publication number
WO2004112284A1
WO2004112284A1 PCT/JP2003/007370 JP0307370W WO2004112284A1 WO 2004112284 A1 WO2004112284 A1 WO 2004112284A1 JP 0307370 W JP0307370 W JP 0307370W WO 2004112284 A1 WO2004112284 A1 WO 2004112284A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
transmission
main signal
signal light
Prior art date
Application number
PCT/JP2003/007370
Other languages
English (en)
French (fr)
Inventor
Hironari Aoyama
Toshishiro Ohtani
Tsukasa Takahashi
Takanori Maki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/007370 priority Critical patent/WO2004112284A1/ja
Publication of WO2004112284A1 publication Critical patent/WO2004112284A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0775Performance monitoring and measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/078Monitoring an optical transmission system using a supervisory signal using a separate wavelength

Definitions

  • the present invention relates to an optical transmission system provided with an optical amplifier of a remote pump type on an optical transmission line through which a main signal light propagates, and more particularly, to a main signal light while confirming a communication state of an optical transmission line through which a high-power light propagates.
  • the present invention relates to a remote-pumped optical transmission system that performs long-distance transmission. Background art
  • an optical amplification medium is placed in the middle of the optical transmission line, high-power pumping light is sent from the terminal station to the optical amplification medium, and the remote excitation type light is used to amplify the signal light propagating through the optical transmission line.
  • high-power pumping light is sent from the terminal station to the optical amplification medium
  • the remote excitation type light is used to amplify the signal light propagating through the optical transmission line.
  • a supervisory control light different from the main signal light is terminated.
  • a pump amplifier for pump amplifiers for Raman amplification and optical amplifiers for remote pumping are used.
  • a configuration is used in which an excitation light source is started.
  • the optical transmission path is considered to be disconnected, and immediate shutdown control of each device is performed, exposing the human body to danger. Need to ensure a safe condition that will not be is there.
  • the remote pumping light generated by the pumping light source provided in the transmitting station or the receiving station is different from the optical transmission line through which the main signal light propagates.
  • high-power remote pumping light is transmitted through a dedicated optical transmission line, and is supplied to the remote pumping type optical amplifying medium via a line optical transmission line.
  • the present invention has been made in view of the above points, and it is necessary to perform a long-distance transmission of a main signal light while securely confirming the communication of an optical transmission path through which high-power light propagates and ensuring a safe state. It is an object of the present invention to provide a remote pumping type optical transmission system capable of performing the following.
  • Patent Document 1
  • Patent Document 2
  • one aspect of the present invention is to provide at least one optical amplification medium on a main signal light transmission path through which a main signal light transmitted and received between a plurality of terminal stations propagates,
  • the pumping light output from the pumping light source provided in at least one of the terminal stations is supplied to the optical amplification medium via a pumping light transmission path different from the main signal light transmission path.
  • a remote pumping type optical transmission system for amplifying a main signal light propagating through the optical amplifying medium comprising a supervisory control light generating unit, a loop optical path forming unit, a supervisory control light receiving unit, and a control unit.
  • the monitoring and control light generator has an excitation light source It is located at the installed terminal and generates supervisory control light having a different wavelength from the pump light.
  • the loop optical path forming unit forms a loop optical path including the pumping light transmission path for the monitoring control light generated by the monitoring control light generating unit between the pumping light source and the terminal station provided with the pumping light source. I do.
  • the supervisory control light receiving unit receives the supervisory control light transmitted from the supervisory control light generator near one end of the loop optical path near the other end of the loop optical path.
  • the control unit determines the communication status of the transmission path for the pumping light in accordance with the receiving state of the monitoring control light in the monitoring control light receiving unit, and controls at least the pumping light source according to the determination result.
  • the monitoring control light generated by the monitoring control light generator provided at the same terminal as the pumping light source is transmitted to the loop light path including the pumping light transmission path.
  • the light propagates through the loop optical path, is returned to the transmitting terminal, and is received by the supervisory control light receiving unit.
  • the supervisory control light receiving unit receives the supervisory control light, it is confirmed that the pumping light transmission path is connected.
  • the supervisory control light receiving unit cannot receive the supervisory control light, disconnection or the like on the loop optical path may occur. It is determined that a failure has occurred, and the operation of the excitation light source and the like is controlled according to the determination result.
  • it is possible to reliably check the communication of the transmission line for the pump light, and to prevent the high-power remote pump light from being radiated to the outside, thereby ensuring a safe state.
  • the monitoring and control light generator generates a loss when the monitor and control light propagates through the non-excited optical amplification medium, and the main signal light propagates through the non-excited optical amplification medium. It is preferable to generate supervisory control light whose wavelength is set so as to be smaller than the loss that occurs when the monitoring control light is generated. As a result, even when the optical pumping medium in the non-pumped state before the remote pumping light is supplied exists on the loop optical path, the loss received when the monitoring and control light propagates through the optical pumping medium in the non-pumped state is reduced. Therefore, it is possible to reliably transmit the monitoring and control light.
  • monitoring and control light having a wavelength different from that of the monitoring and control light transmitted through the loop optical path is transmitted near one end of the transmission path for main signal light, and the other end of the transmission path for main signal light is transmitted.
  • a main signal light side communication judging unit for judging the communication status of the main signal light transmission path in accordance with the reception state of the supervisory control light of another wavelength in the vicinity, wherein the control unit determines the main signal light side communication The transmission state of the main signal light may be controlled according to the determination result of the unit. According to such a configuration, it is possible to ensure the communication between the transmission path for the pump light and the transmission path for the main signal light. In this case, high-power remote pumping light and main signal light can be reliably prevented from being emitted to the outside.
  • the main signal light side communication determination unit may use an optical surge generated by inputting pulse light to the optical amplifier as the monitoring control light of another wavelength. According to such a configuration, even if an optically amplifying medium in an unexcited state exists on the transmission path for the main signal light, it is possible to cause the optical surge transmitted with sufficiently high power to reach the receiving end. However, it is possible to surely confirm the communication of the transmission path for the main signal light.
  • FIG. 1 is a diagram showing an overall configuration of an optical transmission system according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a specific example of each wavelength of the main signal light, the remote pump light, and the supervisory control light in the first embodiment.
  • FIG. 3 is a diagram showing an example of the result of measuring the transmission characteristics of the C-band EDF in a non-excitation state.
  • FIG. 4 is a diagram illustrating the transmission characteristics of the optical filter used in the first embodiment.
  • FIG. 5 is a diagram showing a configuration example in the case where a backward pumping configuration is applied in relation to the first embodiment.
  • FIG. 6 is a diagram illustrating the transmission characteristics of the optical filter used in the configuration of FIG.
  • FIG. 7 is a diagram illustrating transmission characteristics of another optical filter used in the configuration of FIG.
  • FIG. 8 is a diagram showing a configuration example in a case where a remote pumping light is supplied from a transmitting-side terminal station in relation to the first embodiment.
  • FIG. 9 is a diagram illustrating the transmission characteristics of the optical filter used in the configuration of FIG. Fig. 10 shows an example of a configuration in which a forward excitation type configuration is applied in relation to the configuration in Fig. 8.
  • FIG. 9 is a diagram illustrating the transmission characteristics of the optical filter used in the configuration of FIG. Fig. 10 shows an example of a configuration in which a forward excitation type configuration is applied in relation to the configuration in Fig. 8.
  • FIG. 11 is a diagram illustrating the transmission characteristics of the optical filter used in the configuration of FIG.
  • FIG. 12 is a diagram for explaining the transmission characteristics of another optical filter used in the configuration of FIG.
  • FIG. 13 is a diagram showing a configuration example in the case of transmitting information for notifying the communication of the pumping light transmission line to the partner station using the opposite line in relation to the first embodiment.
  • FIG. 14 is a diagram showing the overall configuration of the optical transmission system according to the second embodiment of the present invention.
  • FIG. 15 is a diagram illustrating the transmission characteristics of the optical filter used in the second embodiment.
  • FIG. 16 is a diagram showing an example in which the propagation direction of the monitoring control light transmitted through the transmission path for pumping light is reversed in relation to the second embodiment.
  • FIG. 17 is a diagram showing another example in which the propagation direction of the monitoring control light transmitted through the transmission path for pumping light is reversed in relation to the second embodiment.
  • FIG. 18 is a diagram showing a configuration example in a case where a remote pumping light is supplied from a transmitting-side terminal station in connection with the second embodiment.
  • FIG. 19 is a diagram illustrating the transmission characteristics of the optical filter used in the configuration of FIG.
  • FIG. 20 is a diagram showing the overall configuration of the optical transmission system according to the third embodiment of the present invention.
  • FIG. 21 is a diagram illustrating the transmission characteristics of an optical filter used in the optical amplifier on the transmission side in the third embodiment.
  • FIG. 22 is a diagram illustrating the transmission characteristics of the optical filter used for the optical amplifier on the receiving side in the third embodiment.
  • FIG. 23 is a diagram illustrating an example of a case where the monitoring control light transmitted through the transmission path for pumping light is propagated through different paths in relation to the third embodiment.
  • FIG. 24 is a diagram for explaining the transmission characteristics of the optical filter used in the transmission-side optical amplifier in the configuration of FIG.
  • FIG. 25 is a diagram illustrating the transmission characteristics of the optical filter used in the optical amplifier on the receiving side in the configuration of FIG.
  • FIG. 26 is a diagram showing another example of the case where the monitoring control light transmitted through the transmission path for pumping light is propagated through different paths in relation to the third embodiment.
  • FIG. 27 is a diagram illustrating the overall configuration of the optical transmission system according to the fourth embodiment of the present invention.
  • FIG. 28 is a diagram illustrating a specific configuration example of the optical surge transmitter in the fourth embodiment.
  • FIG. 1 is a diagram showing an overall configuration of an optical transmission system according to a first embodiment of the present invention.
  • the optical transmission system connects a terminal station A and a terminal station B to each other via an optical transmission line 1 and transmits a main signal light Ls transmitted and received between the terminal stations A and B.
  • a remote pumping optical amplifier 30 provided in the middle of the optical transmission line 1
  • a loop optical path including the pump light transmission path 33 through which the remote pump light Lp propagates is formed with the terminal station B, and according to the transmission state of the supervisory control light (OSC) L1 in the loop light path.
  • the pump light source 33 is controlled by judging the communication status of the pump light transmission line 33.
  • the terminal station A includes an optical transmission unit 10 for transmitting the main signal light Ls to the optical transmission line 1, and the terminal station B receives the main signal light Ls transmitted on the optical transmission line 1.
  • An optical receiver 20 is provided.
  • the optical transmitter 10 includes, for example, a plurality of transmitters 11, a multiplexer 12, a post-amplifier 13 and an OSC transmitter 14.
  • Each transmitter 11 is a general transmitter that generates signal lights having different wavelengths.
  • the multiplexer 12 wavelength-multiplexes the signal light output from each transmitter 11 and outputs it.
  • Post-amplifier 13 The output main signal light Ls is amplified to a required level and transmitted to the optical transmission line 1.
  • the OSC transmitter 14 generates general supervisory control light L 0 applied to a conventional system and sends it to the optical transmission line 1.
  • the wavelength of the monitor control light L0 transmitted from the OSC transmitter 14 is the wavelength of each of the main signal light Ls and the monitor control light L1 for confirming the communication of the pump light transmission line 33. It is set to be different from.
  • the optical receiver 20 includes, for example, a preamplifier 21, a duplexer 22, a plurality of receivers 23, an OSC receiver 24, and a control circuit 25.
  • the preamplifier 21 amplifies the main signal light Ls transmitted through the optical transmission line 1 to a required level and outputs the amplified signal to the duplexer 22.
  • the demultiplexer 22 separates the main signal light Ls output from the preamplifier 21 according to the wavelength, and outputs the signal light of each wavelength to the corresponding receiver 23.
  • Each of the receivers 22 receives the signal light from the demultiplexer 22 and executes a required process.
  • the OSC receiver 24 receives a part of the light that has propagated along the optical transmission line 1 and has reached the optical receiver 20, and detects whether or not the monitoring control lights L0 and L1 have been received.
  • the control circuit 25 determines the communication status of the main signal light transmission line 1 based on the reception state of the supervisory control light L0 detected by the OSC receiver 24, and based on the reception state of the monitor control light L1. Then, the communication state of the transmission path 33 for the excitation light is determined, and the operation of the excitation light source 32 and the optical transmission unit 10 is controlled.
  • the OSC transmitter 14 and the OSC receiver 24 function as a main signal light side communication determination unit
  • the control circuit 25 functions as a control unit.
  • the remote pumping type optical amplifier 30 includes, for example, an erbium-doped fiber (EDF) 31 as an optical amplification medium, an excitation light source (LD) 32, an excitation light transmission line 33, and an optical filter as a loop optical path forming unit. 34, and a 0SC transmitter 35 as a supervisory control light generator.
  • EDF 31 is a well-known optical amplification medium in which erbium (Er) is added to the core of an optical fiber.
  • the pumping light source 32 is a general light source that generates a remote pumping light Lp having a required wavelength capable of exciting the erbium in the EDF 31, and is connected to one terminal station (here, the receiving terminal station B). Provided.
  • the transmission line for pumping light 33 is an optical transmission line that connects the pumping light source 32 and the optical filter 34 and is prepared separately from the transmission line 1 for main signal light.
  • the optical filter 34 is connected to one end of the EDF 31 (here, the input end of the main signal light L s), and is remote-excited through the transmission line 33 for the pump light.
  • the light Lp is multiplexed with the main signal light Ls transmitted through the main signal light transmission line 1 and supplied to the EDF 31.
  • the optical filter 34 transmits the monitoring control light L 0 that has propagated through the main signal light transmission line 1 and the monitoring control light L 1 that has propagated through the pumping light transmission line 33 to the EDF 31 side.
  • the transmitter 35 is provided in the same terminal station B as the pumping light source 32, generates the supervisory control light L1 for judging the communication status of the pumping light transmission line 33, and uses it for pumping light. It is transmitted to the transmission line 33.
  • the EDF 31 is applied as an optical amplification medium in the optical amplifier 30 of the remote pumping system.
  • the present invention is not limited to this, and other rare earth elements other than erupium may be used. It is also possible to use a rare earth-doped fiber in which is added to an optical fiber as an optical amplification medium.
  • the pumping light source 32 and the ⁇ SC transmitter 35 are arranged inside the terminal station B, the pumping light source 32 and the OSC transmitter 35 may be installed near the terminal station B. Absent.
  • each wavelength of the main signal light Ls, the remote pump light Lp, and the supervisory control lights L0 and L1 will be described in detail with reference to a specific example shown in FIG.
  • the wavelength of each light is not limited to the specific example in FIG.
  • the wavelength of the remote pumping light LP is 980 nm band. And 1480 nm band.
  • the wavelength of the supervisory control light L0 transmitted through the transmission path 1 for the main signal light is preferably set to a wavelength band of 1500 nm to 1520 nm adjacent to the C-band on the short wavelength side.
  • Such wavelength setting of the supervisory control light L0 is the same as the wavelength setting of the supervisory control light in the conventional system.
  • the wavelength of the monitor and control light L1 transmitted through the transmission line for pump light 33 is a known L-band (generally a wavelength band of 1565 nm to 1625 nm) located on the long wavelength side with respect to the C band. ) Is preferably set. If the wavelength of the supervisory control light L1 is set to the L-one band, the transmission loss in the transmission line 33 for the pump light and the transmission line 1 for the main signal light becomes relatively small, and the remote pump light Since the influence of absorption in the non-excited EDF 31 before receiving the supply of Lp is reduced, it is possible to more reliably determine the communication state of the transmission path 33 for the pump light.
  • Figure 3 shows the transmission characteristics of the EDF (length: 20m) for the C-band in the unexcited state. It is a figure showing an example of the set result.
  • the transmission characteristics of the EDF in the non-excited state are as follows: given the input light with a certain power, the power of the output light is such that the wavelength of the light approaches the C_ band. It tends to be smaller.
  • the loss in the non-excited EDF is calculated by subtracting the output light power from the input light power, as shown in the lower part of Fig. 3, the light wavelength is shifted from the C band to the long wavelength side and the L It can be seen that the loss is significantly reduced by setting to.
  • the optical filter 34 includes a port P 1 to which the transmission line 1 for the main signal light on the transmission side is connected, an EDF 31 and a transmission line 33 for the excitation light. It has a port P2 to be connected, and has a transmission wavelength characteristic between the ports P1 and P2 as shown in the lower part of FIG. Specifically, the transmission wavelength characteristics of the optical filter 34 are such that the wavelength band ⁇ s of the main signal light L s and the wavelength ⁇ 0 of the supervisory control light L 0 fall within the transmission band, and the wavelength ⁇ ⁇ of the remote pump light L ⁇ The wavelength ⁇ 1 of the supervisory control light L1 is set outside the transmission band.
  • the main signal light Ls and the supervisory control light L0 propagating through the main signal light transmission line 1 and input to the port # 1 pass through the optical filter 34 and pass through the port # 2 to the EDF 31 Sent to Further, the remote pumping light Lp and the supervisory control light L1 that propagate through the pumping light transmission path 33 and are input to the port # 2 are reflected by the optical filter 34 and sent to the EDF 31.
  • a loop including the photovoltaic transmission path 33 is provided between the remote pumping type optical amplifier 30 and the terminal station B that supplies the remote pumping light Lp. An optical path is formed.
  • the # 3 transmitter 35 is driven, and the supervisory control light L1 is transmitted to the pump light transmission line 33.
  • the excitation light source 32 and the optical transmission unit 10 are stopped without operating.
  • the supervisory control light L1 sent to the pumping light transmission line 33 is disconnected from the optical fiber on the pumping light transmission line 33. If no failure such as that has occurred, the light propagates through the pump light transmission line 33, enters the port 2 of the optical filter 34, is reflected by the optical filter 34, and is sent to the EDF 31.
  • the EDF 31 since the remote pumping light Lp has not been supplied to the EDF 31, the EDF 31 is in a non-excited state.
  • the supervisory control light L1 whose wavelength is set to the L-band has little absorption in the non-excited EDF31, so that the EDF31 does not significantly reduce the power.
  • the light passes through the optical transmission line 1 on the receiving side and reaches the terminal station B.
  • the supervisory control light L1 that has propagated through the loop light path including the pump light transmission path 33 and returned to the source terminal station B is sent to the OSC receiver 24 and received, and a signal indicating the result is received. Is transmitted to the control circuit 25.
  • control circuit 25 when the reception of the monitoring control light L1 is confirmed based on the reception result of the OSC receiver 24, the communication of the pump light transmission line 33 is determined, and the drive of the pump light source 32 is performed. A control signal to start is generated and output to the excitation light source 32. At the same time, a signal notifying the communication of the pump light transmission line 33 is transmitted to the terminal station A on the transmission side.
  • the reception of the supervisory control light L1 cannot be confirmed, it is determined that a failure has occurred on the loop optical path including the pump light transmission line 33, and the failure has occurred without starting the drive of the pump light source 32. Is output to the outside or the like.
  • the remote pump light Lp generated by the pump light source 32 is transmitted to the EDF via the pump light transmission line 33 and the optical filter 34.
  • the EDF 31 is supplied to the EDF 31 to be excited.
  • the monitor control light L0 is transmitted from the OSC transmitter 14 to the main signal light transmission line 1. At this time, each transmitter 11 or post-amplifier 13 is in a stopped state, and the transmission of the main signal light Ls to the main signal light transmission line 1 is not yet performed.
  • the monitoring control light L0 sent to the main signal light transmission line 1 is transmitted to the main signal light transmission line 1 when no failure such as disconnection of an optical fiber occurs on the main signal light transmission line 1.
  • the light propagates and is input to the port 1 of the optical filter 34 and is transmitted to the EDF 31 through the optical filter 34.
  • the monitoring control light L 0 propagating through the EDF 31 is amplified according to the supply state of the remote pumping light L p, sent to the main signal light transmission line 1 on the receiving side, and reaches the terminal station B on the receiving side. And it is input to terminal B
  • the supervisory control light L0 is sent to and received by the OSC receiver 24, and a signal indicating the result is transmitted to the control circuit 25.
  • the control circuit 25 when the reception of the supervisory control light L0 is confirmed based on the reception result of the OSC receiver 24, the communication of the transmission path 1 for the main signal light is determined, and the communication is determined. The signal to be transmitted is transmitted to the terminal A on the transmitting side.
  • the reception of the supervisory control light L0 cannot be confirmed, it is determined that a failure has occurred on the transmission path 1 for the main signal light, and the information notifying the occurrence of the failure without starting transmission of the main signal light Ls. Is output to the outside or the like. At this time, it is desirable that the driving of the excitation light source 32 be stopped and the supply of the remote excitation light LP to the EDF 31 be shut down.
  • each transmitter 11 and the post-amplifier 13 are driven to transmit the main signal light Ls to the transmission signal for the main signal light.
  • the signal is transmitted to the line 1 and the transmission of the main signal light Ls from the terminal station A to the terminal station B is started.
  • the OSC receiver 2 of the supervisory control light L 1 propagating through the loop light path including the pump light transmission path 33 3
  • the communication status of the pump light transmission line 3 3 is checked at any time based on the reception state in 4, and the monitoring control light L 0 propagating through the main signal light transmission line 1 is received by the OSC receiver 24. Based on the state, the communication status of the main signal light transmission line 1 is checked at any time. If any one of the supervisory control lights L0 and L1 cannot be received, the remote pump light Lp and the main signal light Ls are immediately shut down.
  • the optical transmission system of the first embodiment it is possible to determine not only the communication state of the transmission path 1 for the main signal light but also the transmission state of the transmission path 33 for the excitation light. It is possible to prevent the remote pumping light Lp and the main signal light Ls having high power from being radiated to the outside due to disconnection or the like, thereby ensuring a safe state.
  • the communication of the pump light transmission line 33 is confirmed. May be determined at that time, the remote pumping light Lp and the main signal light Ls are activated at that time, and the confirmation of the communication of the main signal light transmission line 1 by the monitoring control light L0 may be omitted. .
  • the supervisory control light L 1 is transmitted from the OSC transmitter 35 in the terminal B to the pump light transmission line. 33, the optical filter 34, the EDF 31, and the transmission path 1 for the main signal light are transmitted to the OSC receiver 25 in the terminal B.
  • the OSC transmitter in the terminal B is shown. Even if the arrangement of the OSC receiver 35 and the OSC receiver 25 is exchanged so that the supervisory control light L1 is transmitted in the opposite direction to the above, it is possible to confirm the communication of the transmission path 33 for the excitation light.
  • a forward pumping type configuration was described as the remote pumping type optical amplifier 30.
  • the optical filter 34 'connected to the main signal light output terminal of the EDF31 has a configuration and transmission wavelength characteristics as shown in Fig. 6 or Fig. 7, for example. be able to.
  • the transmission wavelength characteristic of the optical filter 34 'illustrated in FIG. 6 is such that the main signal light Ls, the remote pump light Lp, and the supervisory control light L0 are within the transmission band, and the supervisory control light L1 is transparent. It is set to be out of band.
  • the main signal light Ls and the supervisory control light L0 propagating through the EDF 31 and input to the port P1 pass through the optical filter 34 and pass through the port P2 to the main signal light transmission line 1 on the receiving side.
  • Sent to The remote pumping light Lp propagating through the pumping light transmission line 33 and input to the port P2 passes through the optical filter 34 and is sent from the port P1 to the EDF 31.
  • the supervisory control light L1 propagating through the pump light transmission line 33 and input to the port P2 is reflected by the optical filter 34 and sent to the main signal light transmission line 1 on the receiving side.
  • the transmission wavelength characteristics of the optical filter 34 'illustrated in FIG. 7 are such that the main signal light Ls and the supervisory control lights L0 and L1 fall within the transmission band, and the remote pump light Lp falls outside the transmission band. It is set as follows. As a result, the main signal light L s and the supervisory control light L 0, which propagate through the EDF 31 and are input to the port P 1, pass through the optical filter 34 and pass from the port P 2 to the main signal light transmission path on the receiving side. Sent to one. Further, the remote pump light L p propagating through the pump light transmission line 33 and input to the port P 1 is reflected by the optical filter 34 and sent to the EDF 31. Further, the supervisory control light L1 propagating through the pumping light transmission line 33 and input to the port P1 passes through the optical filter 34 and is transmitted from the port P2 to the main signal light transmission line 1 on the receiving side. Can be
  • the reception by the remote pumping type optical amplifier 30 is performed.
  • An example in which the remote pumping light Lp is supplied from the terminal station B on the side has been shown, but it is also possible to supply the remote pumping light from the terminal station A on the transmitting side to the EDF 31 as shown in FIG.
  • the terminal A instead of the OSC transmitter 14 shown in FIG. 1, the terminal A has a function of receiving the supervisory control light L1 transmitted from the SC transmitter 35, and a transmission path for the main signal light.
  • An OSC transceiver 14 ' having a function of generating the supervisory control light L0 to be transmitted to 1 is provided, and the operation of the excitation light source 32 and the like is controlled in accordance with the result of reception by the OSC transceiver 14'
  • the control circuit 15 is provided.
  • the optical filter 34 connected to the main signal light output terminal of the EDF 31 for example, one having a configuration and transmission wavelength characteristics as shown in FIG. 9 can be used.
  • the transmission wavelength characteristic of the optical filter 34 is similar to the characteristic shown in FIG.
  • the light passes through the optical filter 34 and is sent from the port P2 to the main signal light transmission line 1 on the receiving side. Further, the remote pumping light Lp and the supervisory control light L1 that are input to the port P1 after propagating through the pumping light transmission line 33 are reflected by the optical filter 34 and sent to the EDF 31.
  • FIG. 8 a configuration in which remote pumping light is supplied from the terminal station A on the transmission side to the backward pumping optical amplifier is shown.
  • the optical filter 34 'connected to the main signal light input end of the EDF 31 has, for example, the configuration and transmission wavelength characteristics shown in FIG. 11 or FIG. Things can be used.
  • the transmission wavelength characteristic of the optical filter 34 'illustrated in FIG. 11 is similar to the characteristic shown in FIG. 6 described above, and propagates through the main signal light transmission line 1 and is input to the port P1.
  • the main signal light Ls and the supervisory control light L0 pass through the optical filter 34 and are sent from the port P2 to the EDF 31. Further, the remote pumping light Lp propagating through the pumping light transmission line 33 and input to the port P1 passes through the optical filter 34 and is sent from the port P2 to the EDF 31. Further, the supervisory control light L 1 propagating through the pump light transmission line 33 and input to the port P 1 is reflected by the optical filter 34 and sent to the main signal light transmission line 1 on the transmission side.
  • the transmission wavelength characteristic of the optical filter 34 'illustrated in FIG. 12 is similar to the characteristic shown in FIG. 7 described above, and propagates through the main signal light transmission line 1 and enters the port P1.
  • the main signal light Ls and the supervisory control light L0 transmitted through the optical filter 34 are sent from the port P2 to the EDF 31.
  • the remote pumping light Lp propagating through the pumping light transmission line 33 and input to the port P 2 is reflected by the optical filter 34 and sent to the EDF 31.
  • the monitor control light L1 propagating through the pump light transmission line 33 and input to the port P2 is transmitted through the optical filter 34 and transmitted from the port P1 to the transmission side main signal light transmission line 1 on the transmission side. Sent.
  • terminal stations A and B are connected by two optical transmission lines 1, and the main signal light Ls is transmitted between the terminal stations A and B.
  • information indicating communication of the pumping light transmission line 33 on one line side is transmitted from the optical receiving unit 20 to the optical transmitting unit 10 in the same station, and the information is transmitted.
  • On the supervisory control light L0 transmitted on the other line and can be transmitted to the partner station.
  • the configuration using such an opposite line can be similarly applied to the configurations shown in FIGS. 5, 8, and 10 described above.
  • FIG. 14 is a diagram illustrating an overall configuration of an optical transmission system according to the second embodiment.
  • the optical transmission system of the present embodiment is, for example, a system in which a plurality of remote pumping optical amplifiers are provided on the optical transmission line 1 in the configuration shown in FIG.
  • a remote pumping optical amplifier 40 is arranged on the main signal light transmission line 1 on the receiving side of the remote pumping optical amplifier 30.
  • the remote pumping optical amplifier 40 has an EDF 41, a pumping light source 42, a pumping light transmission line 43, an optical filter 44, and an OSC transmitter 45, similarly to the remote pumping optical amplifier 30 arranged in the preceding stage. .
  • the difference between the latter optical amplifier 40 and the former optical amplifier 30 is the wavelength setting of the OSC transmitter 45 and the transmission wavelength characteristics of the optical filter 44.
  • the configuration of the optical amplifier 40 other than the OSC transmitter 45 and the optical filter 44 and the configurations of the optical transmitter 10, the optical receiver 20, and the optical amplifier 30 are the same as those of the first embodiment described above. The description is omitted here because it is the same.
  • the OSC transmitter 45 is a monitoring system for judging the communication status of the pump light transmission line 43.
  • the control light L2 is generated and transmitted to the transmission line 43 for the pump light.
  • the wavelength ⁇ 2 of the supervisory control light L 2 is set to be different from the wavelength ⁇ 1 of the supervisory control light L 1 transmitted through the pump light transmission line 33 of the optical amplifier 30 on the transmission side.
  • the wavelength ⁇ 2 is set on the longer wavelength side than the wavelength ⁇ 1.
  • the optical filter 44 includes a port ⁇ 1 to which the transmission line 1 for the main signal light on the transmission side is connected, and a port to which the EDF 41 and the transmission line 43 for the excitation light are connected. ⁇ 2, and transmission wavelength characteristics between ports ⁇ 1 and ⁇ 2 as shown in the lower part of FIG. Specifically, the transmission wavelength characteristic of the optical filter 44 is such that the main signal light Ls, the supervisory control light L0 and the supervisory control light L1 fall within the transmission band, and the remote pump light Lp and the supervisory control light L2 pass through the transmission band. It is set to be outside.
  • the main signal light Ls and the supervisory control light LO, L1 which propagate through the main signal light transmission line 1 and enter the port P1, pass through the optical filter 44 and pass through the port P2. Sent to EDF41. Further, the remote pumping light Lp and the supervisory control light L2, which are transmitted through the pumping light transmission line 43 and input to the port P2, are reflected by the optical filter 44 and sent to the EDF 41.
  • a loop optical path including the transmission line 33 for the pumping light is formed for the supervisory control light L1 with the terminal station B that supplies the remote pumping light Lp.
  • a loop optical path including the pumping light transmission line 43 is formed for the supervisory control light L2 with the terminal station B that supplies the remote pumping light Lp.
  • pumping is performed according to the transmission state of the supervisory control light L 1 in the loop optical path including the pumping light transmission path 33.
  • the communication status of the optical transmission line 33 was confirmed, and the communication status of the excitation light transmission line 43 was confirmed according to the transmission state of the supervisory control light L2 in the loop optical path including the excitation light transmission line 43.
  • the pumping light sources 32 and 42 are driven to start supplying the remote pumping light Lp to the EDFs 31 and 41.
  • the supervisory control light L 0 is transmitted from the optical transmission unit 10 in the terminal station A to the transmission path 1 for the main signal light, and according to the reception state of the supervisory control light L 0 in the optical reception unit 20 in the terminal station B.
  • the main signal light transmission line 1 is confirmed to be Transmission of the main signal light Ls from the terminal station A to the terminal station B is started. If any of the supervisory control lights L0, L1, and L2 cannot be received during system operation, the remote pump light Lp and the main signal light Ls are immediately shut down.
  • each of the optical amplifiers 30 and 40 By forming a loop optical path corresponding to 40 and transmitting the supervisory control lights L 1 and L 2 having different wavelengths, it is possible to individually determine the communication status of the pump light transmission paths 33 and 43.
  • FIGS. 16 and 17 An example of a configuration in which the monitoring control lights LI and L2 are transmitted in the same direction (left-handed counterclockwise in FIG. 14) in each loop optical path is shown.
  • Each supervisory control light Ll, L2 is transmitted in the opposite direction in each loop optical path (the supervisory control light L2 is clockwise in Fig. 16, and the supervisory control light L1 is clockwise in Fig. 17).
  • the OSC transmitters 35 and 45 in the configuration of FIG. 14 the OSC transmitters corresponding to the clockwise supervisory control light are replaced with the OSC receivers 35 'and 45', and are not shown here.
  • a 0 CS transmitter for generating clockwise supervisory control light is provided in the optical receiver 20.
  • the configuration in which the remote pumping light Lp is supplied from the terminal station B on the receiving side to each of the EDFs 31 and 41 has been exemplified, but, for example, as shown in FIG. A configuration in which the remote pumping light Lp is supplied from the terminal station A is also possible.
  • the optical filters 34, 44 connected to the main signal light output terminals of the EDFs 31, 41 for example, those having the configuration and transmission wavelength characteristics shown in FIG. 19 can be used.
  • the transmission wavelength characteristic of the optical filter 34 located on the receiving side is similar to the characteristic shown in FIG. 9 described above.
  • the transmission wavelength characteristic of the optical filter 44 located on the transmitting side is such that the main signal light Ls, the supervisory control light L0 and the supervisory control light L1 are in the transmission band. It is set so that it is within the transmission band, and the remote pump light Lp and the supervisory control light L2 are outside the transmission band.
  • the backward pump configuration is illustrated in FIGS. 18 and 19 above, the forward pump configuration is applied to each optical amplifier in the same manner as in the cases shown in FIGS. 10 to 12 described above. You can also.
  • FIG. 20 is a diagram illustrating an overall configuration of an optical transmission system according to the third embodiment.
  • the optical transmission system of the present embodiment has, for example, a remote pumping optical amplifier 50 having a bidirectional pumping configuration, which is disposed on the transmitting side and the receiving side on the optical transmission line 1, respectively.
  • the terminal station a to form a propagating each loop optical path for each excitation optical transmission line 53 have 53 2 of the remote pumping light Lp supplied to each optical amplifier 50 from B, it can determine the communication status of their respective It is like that.
  • the configurations of the optical transmission unit 10 in the terminal station A and the optical reception unit 20 in the terminal station B are the same as those in the first embodiment shown in FIG. I do.
  • the bidirectional pumping type optical amplifier 50 includes, for example, EDF 51, pumping light source (LD) 52 52 2 , pumping light transmission line 53 53 2 , optical filter 54 54 2 and OSC transmitter 55 55 With 2 .
  • Each pumping light sources 52 have 52 2 generates a remote pumping light L p having a required wavelength that can excite the erbium inside EDF 51.
  • Remote pumping light L p which is output from the pumping light source 52 E is transmitted optical filter 54 this through the transmission path 53 i for excitation light, remote pumping light Lp output from the pumping light source 52 2, the excitation light It is sent to the optical filter 54 2 through the use transmission path 53 2.
  • the optical filter 54 ⁇ is connected to one end of the EDF 51 located farther from the terminal from which the remote pump light Lp is sent, and the optical filter 54 2 receives the remote pump light Lp. Connected to the other end of EDF 51 located closer to the terminal station. 03
  • the transmitters 55 1 and 55 2 generate the monitoring and control lights L 1 and L 2 for judging the communication state of the pump light transmission line 53 ⁇ 53 2 , and transmit them to the pump light transmission line 53 53 53 2 Respectively.
  • Each monitor The wavelengths 1 and ⁇ 2 of the control lights LI and 2 are set to different values in the same manner as in the above-described second embodiment.
  • Light Fi le evening 54 I 54 2 used in the optical amplifier 50 disposed on the transmission side on the main signal light transmission line 1 is, for example, as shown in connection configuration and lower as shown in the upper part of FIG. 2 1 transmission It has wavelength characteristics.
  • the optical filter 54 i arranged on the far side (right side in FIG. 21) from the terminal A to which the remote pumping light Lp is sent is composed of the main signal light output terminal of the EDF 51 and the pumping light It has a port P 1 to which the transmission line 53 i is connected, and a port P 2 to which the transmission line 1 for the main signal light on the receiving side is connected.
  • the optical filter 54 2 is disposed (the left side in FIG. 21) side closer to the end station A, the port P 1 of the main signal light transmission line 1 of the transmission side is connected, feed transfer excitation light It has a port P 2 to which the path 53 2 and the main signal light input end of the EDF 51 are connected.
  • L 2 is set within the transmission band, and the remote pumping light Lp is set outside the transmission band.
  • the main signal main signal light propagating through the optical transmission line 1 L s and monitoring control light L 0 is transmitted through the optical filter 54 2 is sent to the EDF 51, further transmitted through the optical fill evening 54 1 Then, it is sent to the main signal light transmission line 1 on the receiving side.
  • the remote pump light Lp and the supervisory control light L1 which are transmitted through the pump light transmission path 53 and input to the port P1 of the optical filter 54i, are reflected by the optical filter 54 and transmitted to the EDF 51. It is possible.
  • remote pumping light L p inputted propagated excitation optical transmission line 53 2 to port P 2 of the optical fill evening 54 2 is sent is reflected by the light-filled evening 54 2 to EDF 51.
  • the optical amplifier 50 on the transmitting side has a loop optical path including the pumping light transmission line 53 for the supervisory control light L1 between the terminal A and the terminal A.
  • the optical supervisory L 2 to loop optical path including the excitation optical transmission line 5 3 2 are formed.
  • the optical filter 5 4 I 5 4 2 used in the optical amplifier 5 0 which are arranged on the receiving side of the main signal light on the transmission line 1, for example, shown in connection configuration and lower as shown in the upper part of FIG. 2 2
  • Such transmission wavelength characteristics are provided.
  • the optical filter 54 i arranged farther from the terminal B to which the remote pumping light L p is sent (the left side in FIG. 22) is a transmission line for the main signal light on the transmitting side. Port P1 to which 1 is connected, and transmission line for pumping light 5 3! And the port P 2 to which the main signal light input end of the EDF 51 is connected.
  • the transmission wavelength characteristic between the ports P 1 and P 2 is such that the main signal light L s and the supervisory control light L 0 are within the transmission band. That is, the remote pumping light Lp and the supervisory control lights L1 and L2 are set to be outside the transmission band. Further, the light Fi le evening 5 4 2 disposed near the side ( Figure 2 2 right) to the end station B, transmission path 5 3 2 connecting main signal light output end and the pump light of EDF 5 1 And the port P2 to which the transmission line 1 for the main signal light on the receiving side is connected.
  • the transmission wavelength characteristics between the ports Pl and P2 depend on the main signal light Ls and the supervisory control.
  • the light L0, LI, and L2 are set so as to be within the transmission band, and the remote pump light Lp is set to be outside the transmission band.
  • the main signal light L s and the supervisory control light L 0 propagating through the main signal light transmission line 1 are transmitted through the optical filter 54 and sent to the EDF 51, and are further transmitted to the EDF 51. 2 and is transmitted to the main signal light transmission line 1 on the receiving side.
  • the remote pumping light Lp and the supervisory control light L1 propagating through the pumping light transmission path 53i and input to the port P2 of the optical filter 54i are reflected by the optical filter 54. Sent to EDF 51.
  • remote pumping light L p which is input to the transmission path 5 3 2 excitation light to port one bets P 1 of the light-filled evening 5 4 2 propagates is reflected by the optical filter 5 4 2 to EDF 5 1 Sent.
  • the monitoring control light L 2 and EDF 5 1 passes through the light fill evening 5 4 2 Po Bok P propagates through the excitation optical transmission line 5 3 2 is input to the port P 1 of the optical filter 5 4 2 monitoring control light L 1 to be input to 1 is sent to the optical filter 5 4 transmission line 1 for 2 transmitted to the receiving side of the main signal light. Therefore, with respect to the optical amplifier 50 on the receiving side, a loop optical path including the transmission line for pumping light 53 i is formed for the supervisory control light L 1 between the terminal stations B, and the supervisory control light L 2 is formed. Loop including excitation light transmission line 5 3 2 An optical path is formed.
  • each of the transmission-side and reception-side optical amplifiers 50 depends on the transmission state of the monitoring control light L1 in the loop light path including the pump light transmission path 53i.
  • communication status of the transmission path 5 3 E excitation light is determined Te together, transmission path 5 for excitation light in accordance with the transmission state of the optical supervisory L 2 in the loop optical path including the excitation optical transmission line 5 3 2 32 The communication status of 2 is determined.
  • the pump light source 52 in each of the terminal stations A and B 5 2 5 2 2 Are respectively driven to start supplying bidirectional remote pumping light Lp to each of the EDFs 51 on the transmitting and receiving sides, and from the optical transmitting unit 10 in the terminal station A for the main signal light.
  • a configuration in which the remote-pumped optical amplifier 50 to which the bidirectional pump-type configuration is applied is arranged on the optical transmission line 1 is also possible.
  • the communication status of each pumping light transmission line 5 3 5 3 2 can be individually determined. You can judge.
  • the bidirectionally pumped optical amplifier 50 is disposed on the transmission side and the reception side on the optical transmission line 1, respectively.
  • the optical amplifier 50 may be provided only on the side, and three or more optical amplifiers 50 may be provided on the optical transmission line 1.
  • each supervisory control light Ll, L2 propagates in each loop optical path in the same direction, and the optical transmitting section 10 in terminal station A or the optical receiving section in terminal station B. While showing a configuration example sent to 2 0, for example, as shown in FIG. 2 3, the monitoring control light L 2 propagating the excitation light transmission line 5 3 2 rather than sending to the terminal station side, EDF 5 1 To the transmission line for excitation light 53 i through the OSC, and the supervisory control light L 2 is sent to the OSC transceiver 55. It is also possible to receive. 0 3. It is assumed that the transceiver 55 1 ′ has a function of transmitting the supervisory control light L 1 and a function of receiving the supervisory control light L 2.
  • the optical filters 54 1 and 54 2 used in the optical amplifier 50 on the transmission side have, for example, the configuration and transmission wavelength characteristics shown in FIG. It can be used ones, optical fill evening 5 4 1 for use in an optical amplifier 5 0 of the receiving side; 5 4 2 uses one having a configuration and transmission wavelength characteristics shown in FIG. 2. 5, for example be able to.
  • the transmission wavelength characteristic of the optical full I le evening 5 4 is similar to that shown in FIG. 2 1 and 2 2 described above, the optical filter 5 4 2 Regarding the transmission wavelength characteristic of, the point that the supervisory control light L2 is outside the transmission band is different from the cases of FIGS. 21 and 22.
  • supervisory control light L 1 when applying the optical filter 5 4 there 5 4 2 as shown in FIG. 2 4 and 2 5 above, for example, in the direction as shown in FIG. 2 6 supervisory control light L 1, L 2 transmission it is also possible to cause performing communication confirmation of the excitation optical transmission line 5 s 3 5 3 2 is.
  • the supervisory control light L1 is transmitted from the optical transmitter 10 or the optical receiver 20, and propagates through the pump light transmission line 53 in the direction opposite to the pump light Lp.
  • the monitoring control light L 2 sent from the OSC transceiver 5 5 the excitation optical transmission line 5 3 i, the excitation optical transmission line 5 3 2 excitation light L
  • the signal propagates in the opposite direction to p and is received by the OSC receiver 5 5 2 ′.
  • FIG. 27 is a diagram illustrating the overall configuration of the optical transmission system according to the fourth embodiment.
  • the optical transmission system of the present embodiment includes, for example, an optical surge transmitter 60 in the terminal station A on the transmitting side, and an optical surge receiver 60 in the terminal station B on the receiving side.
  • the main signal light is transmitted from the optical surge transmitter 60 to the optical surge receiver 61 via the main signal light transmission line 1 and the remote excitation type optical amplifier 30 according to the reception state of the optical surge L3.
  • the communication status of the transmission line 1 is determined.
  • the optical surge transmitter 60 has a light source 60A, an optical switch 60B, and an optical amplifier 60C, for example, as shown in FIG.
  • the light source 6OA is a general light source that generates continuous light having a different wavelength from the main signal light Ls.
  • the optical switch 60 B has an input terminal P in to which the output light from the light source 6 OA is provided, and an input terminal of the optical amplifier 60 C. It has an output terminal Pout1 connected to the terminal and an output terminal Pout2 connected to the optical terminator T, and the connection state between the input / output terminals is switched in a pulsed manner, so that the optical amplifier 60 Pulse light is generated so that an optical surge can occur in C.
  • the optical amplifier 60C generates an optical surge L3 when the pulse light output from the output terminal P out l of the optical switch 60B is input at the start-up of the system, and generates a main signal light transmission path.
  • the optical surge receiver 61 receives a part of the light that has propagated through the main signal light transmission line 1 and has reached the terminal station B to detect whether or not the optical surge L3 has been received. To the optical surge transmitter 60.
  • the communication of the pump light transmission line 33 is performed in accordance with the transmission state of the supervisory control light L1 in the same manner as in the first embodiment described above.
  • the situation is determined.
  • the optical surge L3 is transmitted between the terminal stations A and B before the supply of the remote pumping light Lp is started.
  • the communication status of transmission line 1 is checked. Specifically, at terminal A on the transmitting side, continuous light output from the light source 6 OA of the optical surge transmitter 60 is converted into pulse light that is turned on and off at a required cycle by the switching operation of the optical switch 60 B.
  • the optical surge L3 having a very high power is transmitted to the main signal light transmission line 1 in the above-described cycle. At this time, transmission of the main signal light s from the light transmission unit 10 to the main signal light transmission line 1 is not yet performed.
  • optical surge L 3 transmitted to the main signal light transmission line 1 is transmitted to the reception-side terminal B through the main signal light transmission line 1 and the EDF 31.
  • the optical surge L 3 is attenuated without being amplified by the EDF 31 because the EDF 31 is in a non-excited state in which the remote pumping light L p is not supplied.
  • optical surge L3 is output from terminal station A with sufficiently high power, even if a relatively large loss occurs in optical transmission line 1 or EDF31, it reaches terminal station B. Reception is possible with the optical surge receiver 61.
  • the optical surge receiver 61 detects the reception of the optical surge L3, the communication of the transmission path 1 for the main signal light is confirmed, and when the reception of the optical surge L3 is not detected, the main It is determined that a failure such as a disconnection has occurred on the signal light transmission line 1.
  • the pump light source 32 is driven to start supplying the remote pump light Lp to the EDF 31.
  • a signal notifying the communication of the transmission path 1 for the main signal light is transmitted to the terminal station A on the transmission side, and the optical transmission unit 10 is driven to transmit the main signal light Ls to the transmission signal for the main signal light.
  • the signal is transmitted to the path 1 and the transmission of the main signal light Ls from the terminal station A to the terminal station B is started.
  • the optical surge transmitter 60 stops transmitting the optical surge L3 to the transmission path 1 for the main signal light, and replaces the transmission of the optical surge L3.
  • the transmission of the monitoring control light L0 is performed in the same manner as in the first embodiment described above, and the communication status of the transmission path for the main signal light during system operation is monitored.
  • the optical surge L3 generated at the terminal station A on the transmission side at the start-up of the system is transmitted to the terminal station B on the reception side, and the communication state of the transmission path 1 for the main signal light is transmitted.
  • the supply of the remote pumping light L p and the main signal light L s Transmission can be started, so that a more secure optical transmission system can be realized.
  • Such an optical transmission system is particularly effective for a system in which the number of wavelengths of the signal light is large and the total output power of the remote pump light and the main signal light is high.
  • the optical amplifier 60C for generating the optical surge L3 is separately provided in the terminal station A on the transmitting side.
  • the output from the optical switch 60B is provided.
  • the pulse light to be applied may be given to the boost amplifier 13 of the optical transmission unit 10 to generate an optical surge L 3.
  • the configuration can be simplified.
  • the pulse light is generated by using the optical switch 60B, the method of generating the pulse light is not limited to the above example, and the pulse light generated by a known technique may be converted into an optical amplifier. To generate an optical surge.
  • the communication of the transmission path for the main signal light is checked by an optical surge, but the same can be applied to other embodiments. It is.
  • the main signal light transmission line It is of course effective to use an optical surge for communication confirmation.
  • the information which notifies the communication of the main signal light transmission line 1 confirmed by the optical surge receiver 61 is transmitted to the transmitting end using the opposing line. You may be made to tell a station.
  • the monitoring control light transmitted on the opposite line can be an optical surge, and the optical surge sent to the opposite line at this time is preferably set to a cycle different from that of the optical surge transmitting on the own line. . This makes it possible to efficiently confirm the communication of the main signal light transmission line 1 for the bidirectional line.
  • the present invention relates to a remote control system capable of performing a long-distance transmission of a main signal light by securely confirming the communication of a transmission line for a pump light and a main signal light transmission line through which high-power light propagates and securing a safe state. Since it is possible to provide a pumping type optical transmission system, it has great industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本発明は、高いパワーの光が伝搬する光伝送路の疎通確認を確実に行うことのできる遠隔励起方式の光伝送システムを提供することを目的とする。このため、本光伝送システムは、主信号光用伝送路とは別線の励起光用伝送路を介して光増幅媒体に励起光を供給する励起光源が設けられた端局に、励起光とは波長の異なる監視制御光を発生する監視制御光発生部を配置すると共に、励起光源およびその励起光源が設けられた端局の間で、上記の監視制御光について、励起光用伝送路を含んだループ光路を形成し、監視制御光発生部からループ光路の一端近傍に送信した監視制御光をループ光路の他端近傍で受信して、その受信状態に応じて励起光用伝送路の疎通状況を判断するようにしたものである。

Description

遠隔励起方式の光伝送システム 技術分野
本発明は、 主信号光が伝搬する光伝送路上に遠隔励起方式の光増幅器を備えた 光伝送システムに関し、 特に、 高いパワーの光が伝搬する光伝送路の疎通状況を 確認しながら主信号光の長距離伝送を行う遠隔励起方式の光伝送システムに関す る。 背景技術
近年、 2 0 0 k mを越えるような長距離の伝送区間について信号光を無中継で 伝送する光伝送システムに対する要求が高まっている。 例えば、 海底伝送システ ムなどでは、 従来、 送信局側にポストアンプを設けて送信光を所要のレベルまで 増幅して光伝送路に送出すると共に、 受信局側にラマン増幅器を設けて光伝送路 を伝搬する信号光のラマン増幅を行うことにより、 2 5 0 k m程度の無中継伝送 を目標としたシステムが開発されている。 また、 光伝送路の途中に光増幅媒体を 配置し、 その光増幅媒体に端局から高出力の励起光を送って、 光伝送路を伝搬す る信号光の増幅を行う遠隔励起方式の光増幅器を設けることにより、 さらなる長 距離伝送の実現を目標としたシステムも知られている (例えば、 下記の特許文献 1, 2参照)。
ところで、 上記のような従来の光伝送システムでは、 光ファイバの断線やコネ クタ抜けなどによって高いパワーの光が外部に放射されるのを防ぐために、 主信 号光とは異なる監視制御光を端局間で送受信し、 その監視制御光の伝送状態に応 じて端局間を結ぶ光伝送路の疎通状況を判断した後に、 ボストアンプやラマン増 幅用の励起光源、 遠隔励起方式の光増幅器のための励起光源を立ち上げる構成が 一般的である。 また、 システムの立ち上げ後は、 監視制御信号が受信できなくな つた場合に、 光伝送路が断線状態にあると考えて各機器のシャツトダウン制御を 即座に実行して、 人体が危険に曝されることのない安全な状態を確保する必要が ある。
しかしながら、 前述したような遠隔励起方式の光増幅が行われるシステムでは、 送信局または受信局に設けられた励起光源で発生する遠隔励起光が、 主信号光の 伝搬する光伝送路とは異なる別線の光伝送路を介して遠隔励起方式の光増幅媒体 に供給される構成となり、 高いパワーの遠隔励起光が専用の光伝送路を伝搬する ことになるため、 主信号光用の光伝送路の疎通状況を確認しただけでは安全な状 態を確保することが難しいという課題がある。
また、 従来の光伝送システムについては、 その立ち上げ時において、 励起光の 供給をまだ受けていない光増幅媒体が存在する光伝送路を介して監視制御光の送 受信を行い光伝送路の疎通状況を確認することが必要になるが、 非励起状態の光 増幅媒体は監視制御光に対して吸収 (損失) 媒体となる場合があり、 監視制御光 が対向局まで到達できずに光伝送路の疎通状況を確認することが困難になってし まうという問題点もある。
本発明は上記の点に着目してなされたもので、 高いパワーの光が伝搬する光伝 送路の疎通確認を確実に行い安全な状態を確保して主信号光の長距離伝送を行う ことのできる遠隔励起方式の光伝送システムを提供することを目的とする。
特許文献 1
特開平 9一 1 1 3 9 4 1号公報
特許文献 2
特開平 1 0— 2 5 7 0 2 8号公報 発明の開示
上記の目的を達成するため、 本発明の 1つの態様は、 複数の端局間で送受信さ れる主信号光が伝搬する主信号光用伝送路上に少なくとも 1つの光増幅媒体を有 し、 複数の端局のうちの少なくとも 1つの端局に設けられた励起光源から出力す る励起光を、 主信号光用伝送路とは異なる励起光用伝送路を介して前記光増幅媒 体に供給して、 当該光増幅媒体を伝搬する主信号光を増幅する遠隔励起方式の光 伝送システムについて、 監視制御光発生部、 ループ光路形成部、 監視制御光受信 部および制御部を備えて構成したものである。 監視制御光発生部は、 励起光源が 設けられた端局に配置され、 励起光とは波長の異なる監視制御光を発生する。 ル ープ光路形成部は、 励起光源およびその励起光源が設けられた端局の間で、 監視 制御光発生部で発生する監視制御光について、 励起光用伝送路を含んだループ光 路を形成する。 監視制御光受信部は、 監視制御光発生部からループ光路の一端近 傍に送信された監視制御光をループ光路の他端近傍で受信する。 制御部は、 監視 制御光受信部における監視制御光の受信状態に応じて励起光用伝送路の疎通状況 を判断し、 その判断結果に従って少なくとも励起光源を制御する。
上記のような構成の光伝送システムでは、 励起光源と同じ端局に設けられた監 視制御光発生部で発生する監視制御光が、 励起光用伝送路を含んだループ光路に 送信され、 そのループ光路を伝搬して送信元の端局に戻されて監視制御光受信部 で受信される。 監視制御光受信部で監視制御光が受信された場合には励起光用伝 送路の疎通が確認され、 監視制御光受信部で監視制御光を受信できない場合には ループ光路上において断線等の障害は発生していると判断されて、 その判断結果 に従って励起光源等の動作が制御される。 これにより、 励起光用伝送路の疎通確 認を確実に行うことができるようになり、 高いパワーの遠隔励起光が外部に放射 されることを防止して安全な状態を確保することが可能になる。
また、 上記の光伝送システムについて監視制御光発生部は、 非励起状態の光増 幅媒体を監視制御光が伝搬するときに発生する損失が、 非励起状態の光増幅媒体 を主信号光が伝搬するときに発生する損失よりも小さくなるように波長設定され た監視制御光を発生するようにするのがよい。 これにより、 遠隔励起光が供給さ れる前の非励起状態の光増幅媒体がループ光路上に存在する場合でも、 監視制御 光が非励起状態の光増幅媒体を伝搬する際に受ける損失が軽減されるため、 監視 制御光の伝送を確実に行うことが可能になる。
さらに、 上記の光伝送システムについては、 ループ光路を伝送される監視制御 光とは別波長の監視制御光を主信号光用伝送路の一端近傍に送信し、 主信号光用 伝送路の他端近傍における別波長の監視制御光の受信状態に応じて主信号光用伝 送路の疎通状況を判断する主信号光側疎通判断部を備え、 上記の制御部が、 主信 号光側疎通判断部の判断結果に従って主信号光の送信状態を制御するようにして もよい。 かかる構成によれば、 励起光用伝送路および主信号光用伝送路の疎通確 認がそれぞれ行われるようになり、 高いパワーの遠隔励起光や主信号光が外部に 放射されることを確実に防ぐことが可能になる。
加えて、 上記の主信号光側疎通判断部については、 別波長の監視制御光として、 光アンプにパルス光を入力することで発生する光サージを用いるようにしてもよ い。 このような構成によれば、 主信号光用伝送路上に非励起状態の光増幅媒体が 存在していても、 十分に高いパワーで送信される光サージを受信端まで到達させ ることが可能となり、 主信号光用伝送路の疎通確認を確実に行うことができるよ うになる。
なお、 本発明の他の目的、 特徴および利点に関しては、 添付図面に関連する実 施の形態についての以下の説明で明白になるであろう。 図面の簡単な説明
図 1は、 本発明の第 1実施形態による光伝送システムの全体構成を示す図であ る。
図 2は、 上記の第 1実施形態における主信号光、 遠隔励起光および監視制御光 の各波長の具体例を示す図である。
図 3は、 C一バンド用 E D Fの伝送特性を非励起状態で測定した結果の一例を 示す図である。
図 4は、 上記の第 1実施形態に用いられる光フィル夕の伝送特性を説明する図 である。
図 5は、 上記の第 1実施形態に関連して、 後方励起型の構成を適用した場合の 構成例を示す図である。
図 6は、 図 5の構成で用いられる光フィル夕の伝送特性を説明する図である。 図 7は、 図 5の構成で用いられる他の光フィル夕の伝送特性を説明する図であ る。
図 8は、 上記の第 1実施形態に関連して、 送信側の端局から遠隔励起光を供給 するようにした場合の構成例を示す図である。
図 9は、 図 8の構成で用いられる光フィル夕の伝送特性を説明する図である。 図 1 0は、 図 8の構成に関連して、 前方励起型の構成を適用した場合の構成例 を示す図である。
図 1 1は、 図 1 0の構成で用いられる光フィル夕の伝送特性を説明する図であ る。
図 1 2は、 図 1 0の構成で用いられる他の光フィル夕の伝 特性を説明する図 である。
図 1 3は、 上記の第 1実施形態に関連して、 励起光用伝送路の疎通を知らせる 情報を対向回線を利用して相手局まで伝達する場合の構成例を示す図である。 図 1 4は、 本発明の第 2実施形態による光伝送システムの全体構成を示す図で ある。
図 1 5は、 上記の第 2実施形態に用いられる光フィル夕の伝送特性を説明する 図である。
図 1 6は、 上記の第 2実施形態に関連して、 励起光用伝送路を伝送される監視 制御光の伝搬方向を逆方向とした場合の一例を示す図である。
図 1 7は、 上記の第 2実施形態に関連して、 励起光用伝送路を伝送される監視 制御光の伝搬方向を逆方向とした場合の他の一例を示す図である。
図 1 8は、 上記の第 2実施形態に関連して、 送信側の端局から遠隔励起光を供 給するようにした場合の構成例を示す図である。
図 1 9は、 図 1 8の構成で用いられる光フィル夕の伝送特性を説明する図であ る。
図 2 0は、 本発明の第 3実施形態による光伝送システムの全体構成を示す図で ある。
図 2 1は、 上記の第 3実施形態において送信側の光増幅器に用いられる光フィ ル夕の伝送特性を説明する図である。
図 2 2は、 上記の第 3実施形態において受信側の光増幅器に用いられる光フィ ル夕の伝送特性を説明する図である。
図 2 3は、 上記の第 3実施形態に関連して、 励起光用伝送路を伝送される監視 制御光を異なる経路で伝搬させた場合の一例を示す図である。
図 2 4は、 図 2 3構成において送信側の光増幅器に用いられる光フィル夕の伝 送特性を説明する図である。 図 2 5は、 図 2 3の構成において受信側の光増幅器に用いられる光フィル夕の 伝送特性を説明する図である。
図 2 6は、 上記の第 3実施形態に関連して、 励起光用伝送路を伝送される監視 制御光を異なる経路で伝搬させた場合の他の一例を示す図である。
図 2 7は、 本発明の第 4実施形態による光伝送システムの全体構成を示す図で ある。
図 2 8は、 上記の第 4実施形態における光サージ送信部の具体的な構成例を示 す図である。 発明を実施するための最良の形態
以下、 本発明に係る遠隔励起方式の光伝送システムを実施するための最良の形 態について添付図面を参照しながら説明する。 なお、 全図を通して同一の符号は 同一または相当部分を示すものとする。
図 1は、 本発明の第 1実施形態による光伝送システムの全体構成を示す図であ る。
図 1において、 第 1実施形態の光伝送システムは、 端局 Aと端局 Bの間を光伝 送路 1によって互いに接続し、 端局 A, B間で送受信される主信号光 L sを、 光 伝送路 1の途中に設けた遠隔励起方式の光増幅器 3 0を利用して増幅しながら伝 送するシステム構成について、 遠隔励起方式の光増幅器 3 0とその遠隔励起光 L Pの供給を行う端局 Bとの間で、 遠隔励起光 L pが伝搬する励起光用伝送路 3 3 を含んだループ光路を構成し、 そのループ光路における監視制御光 (O S C ) L 1の伝送状態に応じて励起光用伝送路 3 3の疎通状況を判断して励起光源等の制 御を行うようにしたものである。
具体的に、 ここでは端局 Aが光伝送路 1に主信号光 L sを送信する光送信部 1 0を備え、 端局 Bが光伝送路 1を伝搬した主信号光 L sを受信する光受信部 2 0 を備える。 光送信部 1 0は、 例えば、 複数の送信器 1 1、 合波器 1 2、 ポストア ンプ 1 3および O S C送信器 1 4を有する。 各送信器 1 1は、 互いに波長の異な る信号光を発生する一般的な送信器である。 合波器 1 2は、 各送信器 1 1から出 力される信号光を波長多重して出力する。 ポストアンプ 1 3は、 合波器 1 2から 出力される主信号光 L sを所要のレベルまで増幅して光伝送路 1に送出する。 O SC送信器 14は、 従来のシステムでも適用されている一般的な監視制御光 L 0 を生成し、 それを光伝送路 1に送出する。 この OSC送信器 14から送信される 監視制御光 L0の波長は、 後で詳しく説明するように、 主信号光 L sおよび励起 光用伝送路 33の疎通確認用の監視制御光 L 1の各波長とは異なるように設定さ れている。
光受信部 20は、 例えば、 プリアンプ 21、 分波器 22、 複数の受信器 23、 OS C受信器 24および制御回路 25を有する。 プリアンプ 21は、 光伝送路 1 を伝搬した主信号光 L sを所要のレベルまで増幅して分波器 22に出力する。 分 波器 22は、 プリアンプ 21から出力される主信号光 L sを波長に応じて分離し て、 各波長の信号光を対応する受信器 23にそれぞれ出力する。 各受信器 22は、 分波器 22からの信号光を受信して所要の処理をそれぞれ実行する。 OSC受信 器 24は、 光伝送路 1を伝搬して光受信部 20に到達した光の一部を受信して監 視制御光 L 0, L 1が受信されたか否かを検出する。 制御回路 25は、 OSC受 信器 24で検出される監視制御光 L 0の受信状態に基づいて主信号光用伝送路 1 の疎通状況を判断すると共に、 監視制御光 L 1の受信状態に基づいて励起光用伝 送路 33の疎通状況を判断して、 励起光源 32や光送信部 10の動作を制御する。 ここでは、 O S C送信器 14および O S C受信器 24が主信号光側疎通判断部 として機能し、 また、 制御回路 25が制御部として機能することになる。
遠隔励起方式の光増幅器 30は、 例えば、 光増幅媒体としてのエルビウムドー プファイバ (EDF) 31と、 励起光源 (LD) 32と、 励起光用伝送路 33と、 ループ光路形成部としての光フィル夕 34と、 監視制御光発生部としての 0 S C 送信器 35とを有する。 EDF 31は、 光ファイバのコア部分にエルビウム (E r) を添加した周知の光増幅媒体である。 励起光源 32は、 EDF 31内のエル ビゥムを励起可能な所要の波長を有する遠隔励起光 L pを発生する一般的な光源 であり、 一方の端局 (ここでは受信側の端局 B) に設けられる。 励起光用伝送路 33は、 励起光源 32と光フィル夕 34の間を接続する、 主信号光用伝送路 1と は別に用意された光伝送路である。 光フィル夕 34は、 EDF 31の一端 (ここ では主信号光 L sの入射端) に接続され、 励起光用伝送路 33を伝搬した遠隔励 起光 L pを主信号光用伝送路 1を伝搬した主信号光 L sと合波して ED F 31に 供給する。 また、 光フィルタ 34は、 主信号光用伝送路 1を伝搬した監視制御光 L 0および励起光用伝送路 33を伝搬した監視制御光 L 1をそれぞれ EDF 31 側に伝える。 〇3じ送信器35は、 励起光源 32と同じ端局 B内に設けられ、 励 起光用伝送路 33の疎通状況を判断するための監視制御光 L 1を発生し、 それを 励起光用伝送路 33に送出する。
なお、 上記の構成例では、 遠隔励起方式の光増幅器 30における光増幅媒体と して EDF 31が適用される場合を示したが、 本発明はこれに限らず、 エルピウ ム以外の他の希土類元素を光ファイバに添加した希土類ドープファイバを光増幅 媒体として使用することも可能である。 また、 励起光源 32および〇SC送信器 35が端局 Bの内部に配置される構成を示したが、 端局 Bの近傍に励起光源 32 および OS C送信器 35を設置するようにしても構わない。
ここで、 主信号光 L s、 遠隔励起光 Lpおよび監視制御光 L 0, L 1の各波長 について図 2に示す具体例を参照しながら詳しく説明する。 ただし、 各光の波長 は図 2の具体例に限定されるものではない。
図 2に示すように、 例えば、 主信号光 L sの波長帯域として公知の C一バンド (一般に 1530 nm〜 1 565 nmの波長帯) を想定した場合、 遠隔励起光 L Pの波長は 980 nm帯や 1480 nm帯などに設定される。 また、 主信号光用 伝送路 1を伝送される監視制御光 L 0の波長は、 C一バンドに対して短波長側に 隣接する 1500 n m〜 1520 nmの波長帯域に設定するのがよい。 このよう な監視制御光 L 0の波長設定は、 従来のシステムにおける監視制御光の波長設定 と同様のものである。 一方、 励起光用伝送路 33を伝送される監視制御光 L 1の 波長は、 C一バンドに対して長波長側に位置する公知の L一バンド (一般に 15 65 nm〜l 625 nmの波長帯) に設定するのが好ましい。 監視制御光 L 1の 波長を L一バンドに設定すれば、 励起光用伝送路 33や主信号光用伝送路 1にお ける伝送損失が比較的小さくなると共に、 次に述べるように遠隔励起光 L pの供 給を受ける前の非励起状態の EDF 31における吸収の影響が少なくなるため、 励起光用伝送路 33の疎通状況をより確実に判断することが可能になる。
図 3は、 C一バンド用の EDF (長さ: 20m) の伝送特性を非励起状態で測 定した結果の一例を示す図である。 図 3の上段に示すように、 非励起状態の E D Fの伝送特性は、 ある一定のパワーの入力光を与えた場合を考えると、 その出力 光のパワーは当該光の波長が C _バンドに近づくほど小さくなる傾向を持つ。 入 力光パワーから出力光パワーを減算して非励起状態の E D Fにおける損失を求め ると、 図 3の下段に示すように、 光の波長を C一バンドから長波長側に離して L 一バンドに設定することで損失が著しく減少することが分かる。 従って、 後述す るように遠隔励起光 L pを供給する前の非励起状態の E D F 3 1を伝搬すること になる監視制御光 L 1の波長を L—バンドに設定することで、 E D F 3 1におけ る監視制御光 L 1の吸収を効果的に低減させることができるようになる。
ここで、 遠隔励起方式の光増幅器 3 0に用いられる光フィル夕 3 4の伝達特性 について図 4を参照しながら詳しく説明する。
光フィル夕 3 4は、 例えば図 4上段の拡大図に示すように、 送信側の主信号光 用伝送路 1が接続されるポート P 1と、 E D F 3 1および励起光用伝送路 3 3が 接続されるポート P 2を有し、 図 4の下段に示すようなポート P 1 , P 2間の透 過波長特性を備える。 具体的に、 光フィル夕 3 4の透過波長特性は、 主信号光 L sの波長帯 λ sおよび監視制御光 L 0の波長 λ 0が透過帯域内となり、 遠隔励起 光 L ρの波長 λ ρおよび監視制御光 L 1の波長 λ 1が透過帯域外となるように設 定されている。 これにより、 主信号光用伝送路 1を伝搬してポート Ρ 1に入力さ れる主信号光 L sおよび監視制御光 L 0は、 光フィル夕 3 4を透過してポート Ρ 2から E D F 3 1に送られる。 また、 励起光用伝送路 3 3を伝搬してポート Ρ 2 に入力される遠隔励起光 L pおよび監視制御光 L 1は、 光フィル夕 3 4で反射さ れて E D F 3 1に送られる。 これにより、 遠隔励起方式の光増幅器 3 0とその遠 隔励起光 L pの供給を行う端局 Bとの間で、 励監視制御光 L 1について、 起光伝 送路 3 3を含んだループ光路が形成されるようになる。
次に、 上記のような構成を備えた光伝送システムの動作について説明する。 本光伝送システムでは、 その立ち上げ時において、 まず、 〇3 送信器3 5が 駆動されて監視制御光 L 1が励起光用伝送路 3 3に送出される。 このとき、 励起 光源 3 2および光送信部 1 0は動作させずに停止状態とされる。 励起光用伝送路 3 3に送出された監視制御光 L 1は、 励起光用伝送路 3 3上で光ファイバの断線 等の障害が発生していない場合、 励起光用伝送路 33を伝搬して光フィル夕 34 のポート 2に入力され、 光フィルタ 34で反射されて EDF 31に送られる。 こ の時点では EDF 31に遠隔励起光 L pがまだ供給されていないため、 EDF 3 1は非励起状態となっている。 しかし、 前述の図 3に示したように、 波長が L一 バンドに設定されている監視制御光 L 1は非励起状態の EDF31における吸収 が少ないため、 著しいパワーの低下を招くことなく EDF 31を通過し、 さらに、 受信側の光伝送路 1を伝搬して端局 Bに到達する。 そして、 励起光用伝送路 33 を含んだループ光路を伝搬して送信元の端局 Bに戻ってきた監視制御光 L 1は、 OSC受信器 24に送られて受信され、 その結果を示す信号が制御回路 25に伝 えられる。
制御回路 25では、 OS C受信器 24での受信結果に基づいて、 監視制御光 L 1の受信が確認された場合に、 励起光用伝送路 33の疎通が判断され、 励起光源 32の駆動を開始させる制御信号が生成されて励起光源 32に出力される。 また、 これと同時に、 励起光用伝送路 33の疎通を知らせる信号が送信側の端局 Aに伝 えられる。 一方、 監視制御光 L 1の受信が確認できない場合には、 励起光用伝送 路 33を含んだループ光路上での障害発生が判断されて、 励起光源 32の駆動を 開始させることなく、 障害発生を知らせる情報が外部等に出力される。
励起光用伝送路 33の疎通が確認されて励起光源 32の駆動が開始されると、 励起光源 32で発生した遠隔励起光 Lpは、 励起光用伝送路 33および光フィル 夕 34を介して EDF 31に供給されて、 EDF 31が励起状態となる。 また、 励起光用伝送路 33の疎通を知らせる信号を受けた送信側の端局 Aでは、 OSC 送信器 14から主信号光用伝送路 1に監視制御光 L 0が送出される。 このとき、 各送信器 1 1またはポストアンプ 13は停止状態にあって、 主信号光用伝送路 1 への主信号光 L sの送信はまだ行われない。 主信号光用伝送路 1に送出された監 視制御光 L 0は、 主信号光用伝送路 1上で光ファイバの断線等の障害が発生して いない場合、 主信号光用伝送路 1を伝搬して光フィル夕 34のポート 1に入力さ れ、 光フィル夕 34を透過して EDF 31に送られる。 EDF31を伝搬する監 視制御光 L 0は、 遠隔励起光 L pの供給状態に応じて増幅されて受信側の主信号 光用伝送路 1に送られ、 受信側の端局 Bに到達する。 そして、 端局 Bに入力され た監視制御光 L 0は、 O S C受信器 2 4に送られて受信され、 その結果を示す信 号が制御回路 2 5に伝えられる。
制御回路 2 5では、 O S C受信器 2 4での受信結果に基づいて、 監視制御光 L 0の受信が確認された場合に、 主信号光用伝送路 1の疎通が判断され、 それを知 らせる信号が送信側の端局 Aに伝えられる。 一方、 監視制御光 L 0の受信が確認 できない場合には、 主信号光用伝送路 1上での障害発生が判断され、 主信号光 L sの送信を開始させることなく、 障害発生を知らせる情報が外部等に出力される。 また、 このとき励起光源 3 2の駆動を停止させて、 E D F 3 1への遠隔励起光 L Pの供給をシャツトダウンさせるのが望ましい。
主信号光用伝送路 1の疎通を知らせる信号を受けた送信側の端局 Aでは、 各送 信器 1 1およびポストアンプ 1 3が駆動されて、 主信号光 L sが主信号光用伝送 路 1に送出され、 端局 Aから端局 Bへの主信号光 L sの伝送が開始される。
上記のようにして立ち上げ時の動作が完了してシステムの運用が開始された後 には、 励起光用伝送路 3 3を含んだループ光路を伝搬する監視制御光 L 1の O S C受信器 2 4における受信状態に基づいて、 励起光用伝送路 3 3の疎通状況が随 時確認されると共に、 主信号光用伝送路 1を伝搬する監視制御光 L 0の O S C受 信器 2 4における受信状態に基づいて、 主信号光用伝送路 1の疎通状況が随時確 認される。 監視制御光 L 0, L 1のいずれかが受信できなくなった場合には、 遠 隔励起光 L pおよび主信号光 L sが即座にシャツトダウンされる。
このように第 1実施形態の光伝送システムによれば、 主信号光用伝送路 1の疎 通状況だけでなく励起光用伝送路 3 3の疎通状況も判断することができるため、 光ファイバの断線等によって高いパワーの遠隔励起光 L pや主信号光 L sが外部 に放射されることを防止して安全な状態を確保することが可能になる。
なお、 上記の第 1実施形態において、 主信号光 L sの波長数が少なく トータル 出力パワーが低くなるようなシステムの場合には、 励起光用伝送路 3 3の疎通が 確認されていれば安全な状態であると判断し、 その時点で遠隔励起光 L pおよび 主信号光 L sを立ち上げ、 監視制御光 L 0による主信号光用伝送路 1の疎通確認 を省略するようにしてもよい。
また、 監視制御光 L 1が、 端局 B内の O S C送信器 3 5から、 励起光用伝送路 33、 光フィル夕 34、 EDF 31および主信号光用伝送路 1を介して、 端局 B 内の OS C受信器 25に伝送される構成を示したが、 端局 B内の OS C送信器 3 5および OS C受信器 25の配置を入れ替えて上記とは逆方向に監視制御光 L 1 が伝送されるようにしても励起光用伝送路 33の疎通確認を行うことができる。 さらに、 上記の第 1実施形態では、 遠隔励起方式の光増幅器 30として前方励 起型の構成について説明したが、 例えば図 5に示すように後方励起型の構成を遠 隔励起方式の光増幅器 30に適用することも可能である。 図 5に示す後方励起型 の場合、 EDF31の主信号光出力端に接続される光フィル夕 34' は、 例えば 図 6または図 7に示すような構成および透過波長特性を備えたものを使用するこ とができる。
具体的に、 図 6に例示した光フィルタ 34' の透過波長特性は、 主信号光 L s、 遠隔励起光 L pおよび監視制御光 L 0が透過帯域内となり、 監視制御光 L 1が透 過帯域外となるように設定される。 これにより、 EDF 31を伝搬してポート P 1に入力される主信号光 L sおよび監視制御光 L 0は、 光フィルタ 34を透過し てポート P 2から受信側の主信号光用伝送路 1に送られる。 また、 励起光用伝送 路 33を伝搬してポート P 2に入力される遠隔励起光 Lpは、 光フィルタ 34を 透過してポート P 1から EDF 31に送られる。 さらに、 励起光用伝送路 33を 伝搬してポート P 2に入力される監視制御光 L 1は、 光フィル夕 34で反射され て受信側の主信号光用伝送路 1に送られる。
一方、 図 7に例示した光フィルタ 34' の透過波長特性は、 主信号光 L sおよ び監視制御光 L 0, L 1が透過帯域内となり、 遠隔励起光 Lpが透過帯域外とな るように設定される。 これにより、 EDF 31を伝搬してポート P 1に入力され る主信号光 L sおよび監視制御光 L 0は、 光フィル夕 34を透過してポート P 2 から受信側の主信号光用伝送路 1に送られる。 また、 励起光用伝送路 33を伝搬 してポート P 1に入力される遠隔励起光 L pは、 光フィル夕 34で反射されて E DF 31に送られる。 さらに、 励起光用伝送路 33を伝搬してポート P 1に入力 される監視制御光 L 1は、 光フィル夕 34を透過してポート P 2から受信側の主 信号光用伝送路 1に送られる。
加えて、 上記の第 1実施形態では、 遠隔励起方式の光増幅器 30に対して受信 側の端局 Bから遠隔励起光 Lpを供給する一例を示したが、 例えば図 8に示すよ うに送信側の端局 Aから EDF 31に遠隔励起光を供給することも可能である。 この場合、 端局 A内には、 図 1に示した OS C送信器 14に代えて、 〇SC送信 器 35から送信される監視制御光 L 1を受信する機能と、 主信号光用伝送路 1に 送信する監視制御光 L 0を発生する機能とを備えた OS C送受信器 14' を設け ると共に、 OS C送受信器 14' での受信結果に応じて励起光源 32等の動作を 制御する制御回路 15を設けるようにする。 また、 EDF 31の主信号光出力端 に接続される光フィル夕 34は、 例えば図 9に示すような構成および透過波長特 性を備えたものを使用することができる。 この光フィルタ 34の透過波長特性は、 前述の図 4に示した特性と同様のものであり、 EDF 31を伝搬してポート P 1 に入力される主信号光 L sおよび監視制御光 L 0は、 光フィルタ 34を透過して ポート P 2から受信側の主信号光用伝送路 1に送られる。 また、 励起光用伝送路 33を伝搬してポート P 1に入力される遠隔励起光 L pおよび監視制御光 L 1は、 光フィルタ 34で反射されて EDF 31に送られる。
また、 上記の図 8では後方励起型の光増幅器に対して送信側の端局 Aから遠隔 励起光を供給する構成を示したが、 例えば図 10に示すように、 前方励起型の光 増幅器についても応用することが可能である。 図 10に示す前方励起型の場合、 EDF 31の主信号光入力端に接続される光フィル夕 34' は、 例えば図 1 1ま たは図 12に示すような構成および透過波長特性を備えたものを使用することが できる。 図 1 1に例示した光フィル夕 34' の透過波長特性は、 前述の図 6に示 した特性と同様のものであり、 主信号光用伝送路 1を伝搬してポート P 1に入力 される主信号光 L sおよび監視制御光 L0は、 光フィルタ 34を透過してポート P 2から EDF 31に送られる。 また、 励起光用伝送路 33を伝搬してポート P 1に入力される遠隔励起光 L pは、 光フィル夕 34を透過してポート P 2から E DF 31に送られる。 さらに、 励起光用伝送路 33を伝搬してポート P 1に入力 される監視制御光 L 1は、 光フィル夕 34で反射されて送信側の主信号光用伝送 路 1に送られる。
一方、 図 12に例示した光フィル夕 34' の透過波長特性は、 前述の図 7に示 した特性と同様のものであり、 主信号光用伝送路 1を伝搬してポート P 1に入力 される主信号光 L sおよび監視制御光 L 0は、 光フィル夕 34を透過してポート P 2から EDF 31に送られる。 また、 励起光用伝送路 33を伝搬してポート P 2に入力される遠隔励起光 Lpは、 光フィルタ 34で反射されて EDF 31に送 られる。 さらに、 励起光用伝送路 33を伝搬してポート P 2に入力される監視制 御光 L 1は、 光フィル夕 34を透過してポート P 1から送信側の主信号光用伝送 路 1に送られる。
さらに、 前述の図 1に示した第 1実施形態の構成では、 励起光用伝送路 33の 疎通が確認されたことを受信側の端局 Bから送信側の端局 Aに伝えるための交信 手段を別途設けていたが、 例えば図 13に示すように、 端局 Aおよび端局 Bの間 が 2本の光伝送路 1によって接続され、 各端局 A, B間で主信号光 L sが双方向 に送受信されるような構成の場合には、 一方の回線側における励起光用伝送路 3 3の疎通を知らせる情報を同一局内の光受信部 20から光送信部 10に伝え、 そ の情報を他方の回線を伝送される監視制御光 L 0に載せて相手局まで伝達するこ とが可能である。 このような対向回線を利用した構成は、 前述の図 5、 図 8およ び図 10に示した構成についても同様にして適用することができる。
次に、 本発明の第 2実施形態について説明する。
図 14は、 第 2実施形態による光伝送システムの全体構成を示す図である。 図 14において、 本実施形態の光伝送システムは、 例えば、 上述の図 1に示し た構成について、 光伝送路 1上に遠隔励起方式の光増幅器を複数台設けるように したシステムであって、 ここでは、 遠隔励起方式の光増幅器 30よりも受信側の 主信号光用伝送路 1上に遠隔励起方式の光増幅器 40が配置される。
遠隔励起方式の光増幅器 40は、 前段に配置された遠隔励起方式の光増幅器 3 0と同様に、 EDF41、 励起光源 42、 励起光用伝送路 43、 光フィル夕 44 および OSC送信器 45を有する。 この後段の光増幅器 40が前段の光増幅器 3 0と相違する点は、 OSC送信器 45の波長設定と、 光フィルタ 44の透過波長 特性である。 なお、 OSC送信器 45および光フィル夕 44以外の他の光増幅器 40の構成、 並びに、 光送信部 10、 光受信部 20および光増幅器 30の各構成 は、 上述した第 1実施形態の場合と同様であるためここので説明を省略する。
OSC送信器 45は、 励起光用伝送路 43の疎通状況を判断するための監視制 御光 L 2を発生し、 それを励起光用伝送路 43に送出する。 この監視制御光 L 2 の波長 λ 2は、 送信側の光増幅器 30の励起光用伝送路 33を伝送される監視制 御光 L 1の波長 λ 1とは異なるように設定される。 ここでは、 例えば図 15の下 段に示すように、 波長 λ 1よりも長波長側に波長 λ 2が設定されるものとする。 光フィル夕 44は、 例えば図 15上段の拡大図に示すように、 送信側の主信号 光用伝送路 1が接続されるポート Ρ 1と、 EDF41および励起光用伝送路 43 が接続されるポート Ρ 2を有し、 図 15の下段に示すようなポート Ρ 1, Ρ 2間 の透過波長特性を備える。 具体的に、 光フィル夕 44の透過波長特性は、 主信号 光 L s、 監視制御光 L 0および監視制御光 L 1が透過帯域内となり、 遠隔励起光 Lpおよび監視制御光 L 2が透過帯域外となるように設定されている。 これによ り、 主信号光用伝送路 1を伝搬してポート P 1に入力される主信号光 L sおよび 監視制御光 L O, L 1は、 光フィル夕 44を透過してポート P 2から EDF41 に送られる。 また、 励起光用伝送路 43を伝搬してポート P 2に入力される遠隔 励起光 L pおよび監視制御光 L 2は、 光フィル夕 44で反射されて EDF 41に 送られる。
従って、 前段の光増幅器 30に関しては、 遠隔励起光 Lpの供給を行う端局 B との間で、 監視制御光 L 1について、 励起光用伝送路 33を含んだループ光路が 形成され、 また、 後段の光増幅器 40に関しては、 遠隔励起光 Lpの供給を行う 端局 Bとの間で、 監視制御光 L 2について、 励起光用伝送路 43を含んだループ 光路が形成されるようになる。
上記のような構成の光伝送システムでは、 上述した第 1実施形態の場合の動作 と同様にして、 励起光用伝送路 33を含んだループ光路における監視制御光 L 1 の伝送状態に応じて励起光用伝送路 33の疎通状況が確認されると共に、 励起光 用伝送路 43を含んだループ光路における監視制御光 L 2の伝送状態に応じて励 起光用伝送路 43の疎通状況が確認される。 各励起光用伝送路 33, 43の疎通 が確認されると、 各々の励起光源 32, 42が駆動されて EDF 31 , 41への 遠隔励起光 Lpの供給が開始される。 そして、 端局 A内の光送信部 10から主信 号光用伝送路 1に監視制御光 L 0が送信され、 端局 B内の光受信部 20における 監視制御光 L 0の受信状態に応じて主信号光用伝送路 1の疎通が確認されると、 端局 Aから端局 Bへの主信号光 L sの伝送が開始される。 また、 システム運用中 に、 監視制御光 L0, L 1, L 2のいずれかが受信できなくなった場合には、 遠 隔励起光 Lpおよび主信号光 L sが即座にシャツトダウンされる。
このように第 2実施形態の光伝送システムによれば、 光伝送路 1上に 2台の遠 隔励起方式の光増幅器 30, 40が配置されるような構成についても、 各光増幅 器 30, 40に対応させてループ光路を形成して波長の異なる監視制御光 L 1, L 2を伝送させることで、 各々の励起光用伝送路 33, 43の疎通状況を個別に 判断することができる。
なお、 上記の第 2実施形態では、 遠隔励起方式の光増幅器を 2台接続する一例 を示したが、 3台以上の光増幅器を光伝送路 1上に配置する場合にも、 上記の場 合と同様にして応用することが可能である。 また、 各光増幅器として前方励起型 の構成を示したが、 前述の図 5〜図 7に示した場合と同様にして、 後方励起型の 構成を各々の光増幅器に適用することもできる。
さらに、 各監視制御光 L I, L 2が各々のループ光路を同じ方向 (図 14にお いて左周り) に伝送される構成例を示したが、 例えば、 図 16、 図 17に示すよ うに、 各監視制御光 L l, L 2が各々のループ光路を逆の方向 (図 16では監視 制御光 L 2が右周り、 図 17では監視制御光 L 1が右周り) に伝送されるように してもよい。 この場合、 図 14の構成における OS C送信器 35, 45について、 右周りの監視制御光に対応する OS C送信器を OS C受信器 35 ', 45' に代 えると共に、 ここでは図示を省略したが光受信部 20内に右周りの監視制御光を 発生する 0 C S送信器を設けるようにする。
さらに、 受信側の端局 Bから各 EDF31, 41に遠隔励起光 Lpを供給する 構成を例示したが、 例えば図 18に示すように、 前述の図 8に示した場合と同様 にして送信側の端局 Aから遠隔励起光 Lpを供給する構成とすることも可能であ る。 この場合、 各 EDF 31, 41の主信号光出力端に接続される光フィル夕 3 4, 44は、 例えば図 19に示すような構成および透過波長特性を備えたものを 使用することができる。 受信側に位置する光フィル夕 34の透過波長特性は、 前 述の図 9に示した特性と同様のものである。 送信側に位置する光フィルタ 44の 透過波長特性は、 主信号光 L s、 監視制御光 L 0および監視制御光 L 1が透過帯 域内となり、 遠隔励起光 L pおよび監視制御光 L 2が透過帯域外となるように設 定されている。 なお、 上記の図 18、 図 19では後方励起型の構成を例示したが、 前述の図 10〜図 12に示した場合と同様にして、 前方励起型の構成を各々の光 増幅器に適用することもできる。
加えて、 上記の図 14、 図 15に示した受信側の端局 Bから遠隔励起光 Lpを 供給する構成と、 図 18、 図 19に示した送信側の端局 Aから遠隔励起光 Lpを 供給する構成とを組み合わせて、 より多くの遠隔励起方式の光増幅器を光伝送路 1上に配置して光伝送システムの長距離化を実現することも可能である。
次に、 本発明の第 3実施形態について説明する。
図 20は、 第 3実施形態による光伝送システムの全体構成を示す図である。 図 20において、 本実施形態の光伝送システムは、 例えば、 双方向励起型の構 成を有する遠隔励起方式の光増幅器 50を光伝送路 1上の送信側と受信側にそれ ぞれ配置し、 端局 A, Bから各光増幅器 50に供給される遠隔励起光 Lpの伝搬 する各々の励起光用伝送路 53い 532ごとにループ光路を形成して、 それぞ れの疎通状況を判断できるようにしたものである。 なお、 端局 A内の光送信部 1 0および端局 B内の光受信部 20の構成は、 上述の図 1に示した第 1実施形態の 場合と同様であるためここでの説明を省略する。
双方向励起型の光増幅器 50は、 例えば、 EDF 51、 励起光源 (LD) 52 い 522、 励起光用伝送路 53い 532、 光フィル夕 54い 542および OS C送信器 55い 552を有する。 各励起光源 52い 522は、 EDF 51内の エルビウムを励起可能な所要の波長を有する遠隔励起光 L pを発生する。 励起光 源 52ェから出力される遠隔励起光 L pは、 励起光用伝送路 53 iを介して光フ ィルタ 54 こ送られ、 励起光源 522から出力される遠隔励起光 Lpは、 励起 光用伝送路 532を介して光フィルタ 542に送られる。 光フィル夕 54^ 、 遠 隔励起光 Lpが送られてくる端局に対して遠い側に位置する EDF 51の一端に 接続され、 光フィル夕 542は、 遠隔励起光 Lpが送られてくる端局に対して近 い側に位置する EDF 51の他端に接続される。 03 送信器551, 552は、 励起光用伝送路 53ぃ 532の疎通状況を判断するための監視制御光 L 1, L 2を発生し、 それを励起光用伝送路 53い 532にそれぞれ送出する。 各監視 制御光 L I, し 2の波長久 1, λ 2は、 上述した第 2実施形態の場合と同様にし て互いに異なる値に設定されている。
ここで、 各光フィルタ 54ぃ 542の透過波長特性について詳しく説明する。 主信号光用伝送路 1上の送信側に配置された光増幅器 50に用いられる光フィ ル夕 54ぃ 542は、 例えば図 2 1の上段に示すような接続構成および下段に 示すような透過波長特性を備える。 具体的に、 遠隔励起光 Lpが送られてくる端 局 Aに対して遠い側 (図 2 1の右側) に配置される光フィルタ 54 iは、 EDF 51の主信号光出力端および励起光用伝送路 53 iが接続されるポート P 1と、 受信側の主信号光用伝送路 1が接続されるポート P 2を有し、 ポート P I, P 2 間の透過波長特性が、 主信号光 L sおよび監視制御光 L 0が透過帯域内となり、 遠隔励起光 Lpおよび監視制御光 L 1, L 2が透過帯域外となるように設定され ている。 また、 端局 Aに対して近い側 (図 21の左側) に配置される光フィルタ 542は、 送信側の主信号光用伝送路 1が接続されるポート P 1と、 励起光用伝 送路 532および EDF 51の主信号光入力端が接続されるポート P 2を有し、 ポート P I, P 2間の透過波長特性が、 主信号光 L sおよび監視制御光 L 0, L 1, L 2が透過帯域内となり、 遠隔励起光 Lpが透過帯域外となるように設定さ れている。
これにより、 主信号光用伝送路 1を伝搬してきた主信号光 L sおよび監視制御 光 L 0は、 光フィルタ 542を透過して EDF 51に送られ、 さらに、 光フィル 夕 541を透過して受信側の主信号光用伝送路 1に送られる。 また、 励起光用伝 送路 53 を伝搬して光フィル夕 54 iのポート P 1に入力される遠隔励起光 L pおよび監視制御光 L 1は、 光フィルタ 54 で反射されて EDF 51に送られ る。 さらに、 励起光用伝送路 532を伝搬して光フィル夕 542のポート P 2に 入力される遠隔励起光 L pは、 光フィル夕 542で反射されて EDF 51に送ら れる。 また、 励起光用伝送路 532を伝搬して光フィルタ 542のポート P 2に 入力される監視制御光 L 2および EDF 51を通過して光フィル夕 542のポー ト P 2に入力される監視制御光 L 1は、 光フィルタ 542を透過して送信側の主 信号光用伝送路 1に送られる。 従って、 送信側の光増幅器 50に関しては、 端局 Aとの間で、 監視制御光 L 1について励起光用伝送路 53ェを含んだループ光路 が形成され、 また、 監視制御光 L 2について励起光用伝送路 5 3 2を含んだルー プ光路が形成されるようになる。
一方、 主信号光用伝送路 1上の受信側に配置された光増幅器 5 0に用いられる 光フィルタ 5 4ぃ 5 4 2は、 例えば図 2 2の上段に示すような接続構成および 下段に示すような透過波長特性を備える。 具体的に、 遠隔励起光 L pが送られて くる端局 Bに対して遠い側 (図 2 2の左側) に配置される光フィル夕 5 4 iは、 送信側の主信号光用伝送路 1が接続されるポ一卜 P 1と、 励起光用伝送路 5 3! および E D F 5 1の主信号光入力端が接続されるポート P 2を有し、 ポート P 1, P 2間の透過波長特性が、 主信号光 L sおよび監視制御光 L 0が透過帯域内とな り、 遠隔励起光 L pおよび監視制御光 L 1 , L 2が透過帯域外となるように設定 されている。 また、 端局 Bに対して近い側 (図 2 2の右側) に配置される光フィ ル夕 5 4 2は、 E D F 5 1の主信号光出力端および励起光用伝送路 5 3 2が接続 されるポート P 1と、 受信側の主信号光用伝送路 1が接続されるポー卜 P 2を有 し、 ポート P l, P 2間の透過波長特性が、 主信号光 L sおよび監視制御光 L 0, L I , L 2が透過帯域内となり、 遠隔励起光 L pが透過帯域外となるように設定 されている。
これにより、 主信号光用伝送路 1を伝搬してきた主信号光 L sおよび監視制御 光 L 0は、 光フィル夕 5 4 を透過して E D F 5 1に送られ、 さらに、 光フィル 夕 5 4 2を透過して受信側の主信号光用伝送路 1に送られる。 また、 励起光用伝 送路 5 3 iを伝搬して光フィルタ 5 4 iのポ一卜 P 2に入力される遠隔励起光 L pおよび監視制御光 L 1は、 光フィルタ 5 4 で反射されて E D F 5 1に送られ る。 さらに、 励起光用伝送路 5 3 2を伝搬して光フィル夕 5 4 2のポ一ト P 1に 入力される遠隔励起光 L pは、 光フィルタ 5 4 2で反射されて E D F 5 1に送ら れる。 また、 励起光用伝送路 5 3 2を伝搬して光フィルタ 5 4 2のポート P 1に 入力される監視制御光 L 2および E D F 5 1を通過して光フィル夕 5 4 2のポー 卜 P 1に入力される監視制御光 L 1は、 光フィルタ 5 4 2を透過して受信側の主 信号光用伝送路 1に送られる。 従って、 受信側の光増幅器 5 0に関しては、 端局 Bの間で、 監視制御光 L 1について励起光用伝送路 5 3 iを含んだループ光路が 形成され、 また、 監視制御光 L 2について励起光用伝送路 5 3 2を含んだループ 光路が形成されるようになる。
上記のような構成の光伝送システムでは、 送信側および受信側の各光増幅器 5 0について、 それぞれ、 励起光用伝送路 5 3 iを含んだループ光路における監視 制御光 L 1の伝送状態に応じて励起光用伝送路 5 3ェの疎通状況が判断されると 共に、 励起光用伝送路 5 3 2を含んだループ光路における監視制御光 L 2の伝送 状態に応じて励起光用伝送路 5 3 2の疎通状況が判断される。 送信側および受信 側の各光増幅器 5 0における各々の励起光用伝送路 5 3 1 ( 5 3 2の疎通が確認 されると、 各端局 A , B内の励起光源 5 2い 5 2 2がそれぞれ駆動されて、 送 信側および受信側の各 E D F 5 1に対する双方向の遠隔励起光 L pの供給が開始 される。 そして、 端局 A内の光送信部 1 0から主信号光用伝送路 1に監視制御光 L 0が送信され、 端局 B内の光受信部 2 0における監視制御光 L 0の受信状態に 応じて主信号光用伝送路 1の疎通が確認されると、 端局 Aから端局 Bへの主信号 光 L sの伝送が開始される。 また、 システム運用中に、 監視制御光 L 0, L 1 , L 2のいずれかが受信できなくなった場合には、 遠隔励起光 L pおよび主信号光 L sが即座にシャツトダウンされる。
このように第 3実施形態の光伝送システムによれば、 双方向励起型の構成を適 用した遠隔励起方式の光増幅器 5 0が光伝送路 1上に配置されるような構成につ いても、 双方向励起に対応させてループ光路を形成して波長の異なる監視制御光 L I , L 2を伝送させることで、 各々の励起光用伝送路 5 3い 5 3 2の疎通状 況を個別に判断することができる。
なお、 上記の第 3実施形態では、 双方向励起型の光増幅器 5 0を光伝送路 1上 の送信側および受信側にそれぞれ配置する一例を示したが、 送信側および受信側 のいずれかの側だけに光増幅器 5 0を配置してもよく、 また、 3台以上の光増幅 器 5 0を光伝送路 1上に設けることも可能である。
さらに、 各光増幅器 5 0について、 各監視制御光 L l, L 2が各々のループ光 路を同じ方向に伝搬して端局 A内の光送信部 1 0または端局 B内の光受信部 2 0 に送られる構成例を示したが、 例えば図 2 3に示すように、 励起光用伝送路 5 3 2を伝搬した監視制御光 L 2を端局側に送るのではなく、 E D F 5 1を介して励 起光用伝送路 5 3 i側に送り、 その監視制御光 L 2を O S C送受信器 5 5 で 受信することも可能である。 なお、 0 3。送受信器5 5 1 ' は、 監視制御光 L 1 を送信すると共に、 監視制御光 L 2を受信する機能を備えているものとする。 上 記の図 2 3に示した構成の場合、 送信側の光増幅器 5 0に用いられる光フィルタ 5 4 1; 5 4 2は、 例えば図 2 4に示すような構成および透過波長特性を備えた ものを使用することができ、 受信側の光増幅器 5 0に用いられる光フィル夕 5 4 1; 5 4 2は、 例えば図 2 5に示すような構成および透過波長特性を備えたもの を使用することができる。 図 2 4および図 2 5のいずれの場合についても、 光フ ィル夕 5 4 の透過波長特性は、 前述の図 2 1および図 2 2に示した場合と同様 であり、 光フィルタ 5 4 2の透過波長特性に関して、 監視制御光 L 2が透過帯域 外となる点が図 2 1および図 2 2の場合と相違している。
加えて、 上記の図 2 4および図 2 5に示したような光フィルタ 5 4い 5 4 2 を適用した場合、 例えば図 2 6に示すような方向に監視制御光 L 1, L 2を伝送 させて励起光用伝送路 5 3い 5 3 2の疎通確認を行うことも可能である。 図 2 6に示す構成の場合、 監視制御光 L 1が、 光送信部 1 0または光受信部 2 0から 送信され、 励起光用伝送路 5 3 を励起光 L pとは逆方向に伝搬して O S C送受 信器 5 5 で受信されると共に、 監視制御光 L 2が、 O S C送受信器 5 5 から励起光用伝送路 5 3 iに送出され、 励起光用伝送路 5 3 2を励起光 L pとは 逆方向に伝搬して O S C受信器 5 5 2 ' で受信されるようになる。
次に、 本発明の第 4実施形態について説明する。
図 2 7は、 第 4実施形態による光伝送システムの全体構成を示す図である。 図 2 7において、 本実施形態の光伝送システムは、 例えば、 送信側の端局 A内 に光サージ送信器 6 0を設けると共に、 受信側の端局内 Bに光サージ受信器 6 0 を設け、 光サージ送信器 6 0から主信号光用伝送路 1および遠隔励起方式の光増 幅器 3 0を介して光サージ受信器 6 1に到達する光サージ L 3の受信状態に応じ て主信号光用伝送路 1の疎通状況を判断するようにしたものである。
具体的に、 光サージ送信器 6 0は、 例えば図 2 8に示すように、 光源 6 0 A、 光スィッチ 6 0 Bおよび光アンプ 6 0 Cを有する。 光源 6 O Aは、 主信号光 L s とは波長の異なる連続光を発生する一般的な光源である。 光スィッチ 6 0 Bは、 光源 6 O Aからの出力光が与えられる入力端子 P in と、 光アンプ 6 0 Cの入力 端子に接続される出力端子 P out 1 および光終端器 Tに接続される出力端子 P out2 とを有し、 入出力端子間の接続状態がパルス的に切り替えられることによ り、 光アンプ 6 0 Cにおいて光サージが発生可能となるようなパルス光を生成す る。 光アンプ 6 0 Cは、 光スィッチ 6 0 Bの出力端子 P out l から出力されるパ ルス光がシステムの立ち上げ時に入力されることにより光サージ L 3を発生して 主信号光用伝送路に送出する。 光サージ受信器 6 1は、 主信号光用伝送路 1を伝 搬して端局 Bに到達した光の一部を受信して光サージ L 3が受信されたか否かを 検出し、 その結果を光サージ送信器 6 0に伝える。
上記のような構成の光伝送システムでは、 その立ち上げ時において、 上述した 第 1実施形態の場合と同様にして、 監視制御光 L 1の伝送状態に応じて励起光用 伝送路 3 3の疎通状況が判断される。 励起光用伝送路 3 3の疎通が確認されると、 ここでは遠隔励起光 L pの供給を開始する前に、 端局 A, B間で光サージ L 3を 伝送することによって主信号光用伝送路 1の疎通状況の確認が行われる。 具体的 には、 送信側の端局 Aにおいて、 光サージ送信器 6 0の光源 6 O Aから出力され る連続光が光スィッチ 6 0 Bの切り替え動作により所要の周期でオンオフするパ ルス光に変換され、 そのパルス光が光アンプ 6 0 Cに入力されることにより、 非 常に高いパワーを有する光サージ L 3が上記の周期で主信号光用伝送路 1に送出 されるようになる。 このとき、 光送信部 1 0から主信号光用伝送路 1への主信号 光し sの送信はまだ行われない。
主信号光用伝送路 1に送出された光サージ L 3は、 主信号光用伝送路 1および E D F 3 1を通過して受信側の端局 Bまで伝送される。 このとき、 E D F 3 1は 遠隔励起光 L pの供給を受けていない非励起状態にあるため、 光サージ L 3は E D F 3 1で増幅されることなく減衰することになる。 しかし、 光サージ L 3は十 分に高いパワーを持って端局 Aから出力されているため、 光伝送路 1や E D F 3 1で比較的大きな損失が発生しても端局 Bまで到達して光サージ受信器 6 1で受 信可能となる。 従って、 光サージ受信器 6 1において光サージ L 3の受信が検出 された場合には、 主信号光用伝送路 1の疎通が確認され、 光サージ L 3の受信が 検出できない場合には、 主信号光用伝送路 1上で断線等の障害が発生していると 判断される。 主信号光用伝送路 1の疎通が確認されると、 励起光源 3 2が駆動されて E D F 3 1への遠隔励起光 L pの供給が開始される。 また、 これと同時に、 主信号光用 伝送路 1の疎通を知らせる信号が送信側の端局 Aに伝えられ、 光送信部 1 0が駆 動されて主信号光 L sが主信号光用伝送路 1に送出され、 端局 Aから端局 Bへの 主信号光 L sの伝送が開始される。 なお、 主信号光 L sの送信が開始されると、 光サージ送信器 6 0は主信号光用伝送路 1への光サージ L 3の送信を停止し、 光 サージ L 3の伝送に代わって、 上述した第 1実施形態の場合と同様にして監視制 御光 L 0の伝送が行われ、 システム運用中の主信号光用伝送路の疎通状況が監視 される。
このように第 4実施形態によれば、 システムの立ち上げ時に送信側の端局 Aで 発生させた光サージ L 3を受信側の端局 Bに送って主信号光用伝送路 1の疎通状 況を判断するようにしたことで、 励起光用伝送路 3 3および主信号光用伝送路 1 のすベての疎通が確認された後に、 遠隔励起光 L pの供給および主信号光 L sの 送信を開始させることができるため、 より安全性に優れた光伝送システムを実現 することが可能になる。 このような光伝送システムは、 信号光の波長数が多く、 遠隔励起光や主信号光のトータル出力パワーが高くなるようなシステムについて 特に有効である。
なお、 上記の第 4実施形態では、 送信側の端局 A内に光サージ L 3を発生させ るための光アンプ 6 0 Cを別途設けるようしたが、 例えば、 光スィッチ 6 0 Bか ら出力されるパルス光を光送信部 1 0のボストアンプ 1 3に与えて光サージ L 3 を発生させるようにしてもよい。 この場合、 光アンプ 6 0 Cとポストアンプ 1 3 を共通化できるため構成の簡略化を図ることが可能である。 また、 光スィッチ 6 0 Bを利用してパルス光を発生させるようにしたが、 パルス光を生成する方法は 上記の一例に限定されるものではなく、 公知の技術により生成したパルス光を光 アンプに入力して光サージを発生させることも可能である。
さらに、 上述の図 1に示した第 1実施形態の構成について光サージによる主信 号光用伝送路の疎通確認を行うようにしたが、 他の実施形態についても同様にし て適用することが可能である。 加えて、 励起光用伝送路についての疎通確認が行 われない従来の遠隔励起方式の光伝送システムに対して、 主信号光用伝送路の疎 通確認のために光サージを利用することも勿論有効である。
また、 上述の図 1 3に示した場合と同様にして、 光サージ受信器 6 1で確認さ れた主信号光用伝送路 1の疎通を知らせる情報を対向回線を利用して送信側の端 局に伝えるようにしてもよい。 この場合、 対向回線を伝送される監視制御光を光 サージとすることも可能であり、 このとき対向回線に送る光サージは、 自回線を 伝送する光サージとは異なる周期に設定するのが好ましい。 これにより、 双方向 の回線についての主信号光用伝送路 1の疎通確認を効率的に行うことが可能にな る。 産業上の利用可能性
本発明は、 高いパワーの光が伝搬する励起光用伝送路や主信号光伝送路の疎通 確認を確実に行い安全な状態を確保して主信号光の長距離伝送を行うことのでき る遠隔励起方式の光伝送システムを提供することが可能であるため、 産業上の利 用可能性が大である。

Claims

請 求 の 範 囲
1 . 複数の端局間で送受信される主信号光が伝搬する主信号光用伝送路上に少 なくとも 1つの光増幅媒体を有し、 前記複数の端局のうちの少なくとも 1つの端 局に設けられた励起光源から出力する励起光を、 主信号光用伝送路とは異なる励 起光用伝送路を介して前記光増幅媒体に供給して、 当該光増幅媒体を伝搬する主 信号光を増幅する遠隔励起方式の光伝送システムであって、
前記励起光源が設けられた端局に配置され、 励起光とは波長の異なる監視制御 光を発生する監視制御光発生部と、
前記励起光源およびその励起光源が設けられた端局の間で、 前記監視制御光発 生部で発生する監視制御光について、 励起光用伝送路を含んだループ光路を形成 するループ光路形成部と、
前記監視制御光発生部から前記ループ光路の一端近傍に送信された監視制御光 をループ光路の他端近傍で受信する監視制御光受信部と、
該監視制御光受信部における監視制御光の受信状態に応じて励起光用伝送路の 疎通状況を判断し、 その判断結果に従って少なくとも前記励起光源を制御する制 御部と、
を備えて構成されたことを特徴とする遠隔励起方式の光伝送システム。
2 . 請求項 1に記載の光伝送システムであって、
前記ループ光路形成部は、 前記主信号光用伝送路上の光増幅媒体の一端と励起 光用伝送路との接続部分に配置した光フィル夕を有し、 該光フィル夕は、 励起光 用伝送路を伝搬した励起光を光増幅媒体に与えると共に、 励起光用伝送路を伝搬 した監視制御光を前記励起光源が設けられた端局側の主信号光用伝送路上に導く ことが可能な伝達特性を備えたことを特徴とする遠隔励起方式の光伝送システム。
3 . 請求項 1に記載の光伝送システムであって、
前記監視制御光発生部は、 非励起状態の光増幅媒体を監視制御光が伝搬すると きに発生する損失が、 非励起状態の光増幅媒体を主信号光が伝搬するときに発生 する損失よりも小さくなるように波長設定された監視制御光を発生することを特 徵とする遠隔励起方式の光伝送システム。
4 . 請求項 3に記載の光伝送システムであって、
前記監視制御光発生部は、 主信号光の波長帯域が C一バンドに設定されている とき、 L一バンドに波長設定された監視制御光を発生することを特徴とする遠隔 励起方式の光伝送システム。
5 . 請求項 1に記載の光伝送システムであって、
複数の励起光源から出力される励起光が複数の励起光伝送路を介して光増幅媒 体に供給されるとき、
前記監視制御光発生部は、 前記複数の励起光伝送路にそれぞれ対応した波長の 異なる複数の監視制御光を発生し、
前記ループ光路形成部は、 前記複数の監視制御光について、 対応する励起光伝 送路を含んだ複数のループ光路をそれぞれ形成し、
前記監視制御光受信部は、 前記監視制御光発生部から前記複数のループ光路の 一端近傍にそれぞれ送信された各波長の監視制御光を、 各々のループ光路の他端 近傍でそれぞれ受信することを特徴とする遠隔励起方式の光伝送システム。
6 . 請求項 1に記載の光伝送システムであって、
前記ループ光路を伝送される監視制御光とは別波長の監視制御光を主信号光用 伝送路の一端近傍に送信し、 主信号光用伝送路の他端近傍における前記別波長の 監視制御光の受信状態に応じて主信号光用伝送路の疎通状況を判断する主信号光 側疎通判断部を備え、
前記制御部は、 前記主信号光側疎通判断部の判断結果に従って主信号光の送信 状態を制御することを特徴とする遠隔励起方式の光伝送システム。
7 . 請求項 6に記載の光伝送システムであって、
前記別波長の監視制御光は、 励起状態の光増幅媒体を伝搬するときに増幅され ることを特徴とする遠隔励起方式の光伝送システム。
8 . 請求項 6に記載の光伝送システムであって、
前記主信号光側疎通判断部は、 前記別波長の監視制御光として、 光アンプにパ ルス光を入力することで発生する光サージを用いることを特徴とする遠隔励起方 式の光伝送システム。
9 . 請求項 8に記載の光伝送システムであって、 前記主信号光側疎通判断部は、 前記光アンプとして、 主信号光用伝送路に送信 する主信号光を増幅するボストアンプを使用することを特徴とする遠隔励起方式 の光伝送システム。
1 0 . 請求項 1に記載の光伝送システムであって、
前記制御部は、 励起光用伝送路の疎通が確認されることにより、 当該励起光用 伝送路を介した光増幅媒体への励起光の供給を開始することを特徴とする遠隔励 起方式の光伝送システム。
1 1 . 請求項 6に記載の光伝送システムであって、
前記制御部は、 主信号光用伝送路の疎通が確認されることにより、 主信号光の 送信を開始することを特徴とする遠隔励起方式の光伝送システム。
1 2 . 請求項 8に記載の光伝送システムであって、
前記制御部は、 励起光用伝送路の疎通が確認され、 かつ、 主信号光用伝送路の 疎通が確認されることにより、 当該励起光用伝送路を介した光増幅媒体への励起 光の供給および主信号光の送信をそれぞれ開始することを特徴とする遠隔励起方 式の光伝 システム。
1 3 . 請求項 1に記載の光伝送システムであって、
前記制御部は、 前記監視制御光受信部において監視制御光が受信されなくなつ たとき、 対応する励起光用伝送路を介した光増幅媒体への励起光の供給を少なく とも遮断することを特徴とする遠隔励起方式の光伝送システム。
1 4 . 請求項 6に記載の光伝送システムであって、
前記制御部は、 前記主信号光側疎通判断部において別波長の監視制御光が受信 されなくなったとき、 主信号光の送信を少なくとも停止させることを特徴とする 遠隔励起方式の光伝送システム。
1 5 . 複数の端局間で送受信される主信号光が伝搬する主信号光用伝送路上に 少なくとも 1つの光増幅媒体を有し、 前記複数の端局のうちの少なくとも 1つの 端局に設けられた励起光源から出力する励起光を、 主信号光用伝送路とは異なる 励起光用伝送路を介して前記光増幅媒体に供給して、 当該光増幅媒体を伝搬する 主信号光を増幅する遠隔励起方式の光伝送システムであって、
光アンプにパルス光を入力することで発生する光サージを主信号光用伝送路の 一端近傍に送信する光サージ送信部と、
該光サージ送信部から送信された光サージを主信号光用伝送路の他端近傍で受 信する光サージ受信部と、
該光サージ受信部における光サージの受信状態に応じて主信号光用伝送路の疎 通状況を判断し、 その判断結果に従って主信号光の送信状態を制御する制御部と、 を備えて構成されたことを特徴とする遠隔励起方式の光伝送システム。
1 6 . 請求項 1 5に記載の光伝送システムであって、
前記光サージ送信部は、 前記光アンプとして、 主信号光用伝送路に送信する主 信号光を増幅するボス卜アンプを使用することを特徴とする遠隔励起方式の光伝 システム。
PCT/JP2003/007370 2003-06-10 2003-06-10 遠隔励起方式の光伝送システム WO2004112284A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/007370 WO2004112284A1 (ja) 2003-06-10 2003-06-10 遠隔励起方式の光伝送システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/007370 WO2004112284A1 (ja) 2003-06-10 2003-06-10 遠隔励起方式の光伝送システム

Publications (1)

Publication Number Publication Date
WO2004112284A1 true WO2004112284A1 (ja) 2004-12-23

Family

ID=33548985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007370 WO2004112284A1 (ja) 2003-06-10 2003-06-10 遠隔励起方式の光伝送システム

Country Status (1)

Country Link
WO (1) WO2004112284A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294109A (ja) * 1996-03-01 1997-11-11 Fujitsu Ltd 光増幅双方向伝送装置
JPH1127214A (ja) * 1997-07-02 1999-01-29 Sumitomo Electric Ind Ltd 中継用光増幅装置
JP2000151521A (ja) * 1998-11-12 2000-05-30 Nippon Telegr & Teleph Corp <Ntt> 遠隔励起光伝送システム
WO2001033750A1 (fr) * 1999-10-29 2001-05-10 Fujitsu Limited Dispositif d'emission optique et dispositif de repetition optique
JP2003008117A (ja) * 2001-06-27 2003-01-10 Fujitsu Ltd 光増幅ブロックとこれを用いる光増幅システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294109A (ja) * 1996-03-01 1997-11-11 Fujitsu Ltd 光増幅双方向伝送装置
JPH1127214A (ja) * 1997-07-02 1999-01-29 Sumitomo Electric Ind Ltd 中継用光増幅装置
JP2000151521A (ja) * 1998-11-12 2000-05-30 Nippon Telegr & Teleph Corp <Ntt> 遠隔励起光伝送システム
WO2001033750A1 (fr) * 1999-10-29 2001-05-10 Fujitsu Limited Dispositif d'emission optique et dispositif de repetition optique
JP2003008117A (ja) * 2001-06-27 2003-01-10 Fujitsu Ltd 光増幅ブロックとこれを用いる光増幅システム

Similar Documents

Publication Publication Date Title
JP4509451B2 (ja) ラマン増幅を利用した光増幅装置
US8139951B2 (en) Fiber-optic long-haul transmission system
EP1593213B1 (en) Optical transmission system
JP2002252595A (ja) 光増幅器
JP2002221743A (ja) 光増幅器、光ファイバラマン光増幅器、及び光システム
US8031395B2 (en) Optical transmission system using Raman amplifier and controlling method thereof
US7136584B2 (en) Optical output power automatic attenuation circuit for optical communication apparatus
JP4122884B2 (ja) 光中継器
EP1441452B1 (en) Raman amplification system
JP2013197332A (ja) 光回路装置
JP4356545B2 (ja) 光伝送システム
US7079313B2 (en) Optical amplifying apparatus which routes pumping light to a raman amplification medium and a rare-earth-doped optical amplification medium
JPWO2004088881A1 (ja) 光伝送路障害検出システム
US8228598B2 (en) Optical amplifier with Raman and rare-earth-doped fiber amplifier both pumped efficiently using direct and reflected pump light
WO2004112284A1 (ja) 遠隔励起方式の光伝送システム
JP2008199098A (ja) 光波長を多重化する光伝送装置とその光通信復旧を確認する方法
JP4648263B2 (ja) 光増幅器および光伝送装置
JP2003124551A (ja) 光増幅器、光増幅伝送路及び光伝送システム
JP2002319898A (ja) 光増幅中継装置、端局、光伝送システムおよびその故障監視方法
EP4262109A1 (en) Optical communication link with remote optically pumped amplifier
JP6965954B2 (ja) 光中継器、光通信システム、および光通信方法
JP2001345759A (ja) 光中継装置
JP2597748B2 (ja) 光増幅器
WO2019244660A1 (ja) 光増幅器、光伝送システム及び光ケーブル障害個所測定方法
JPH05284114A (ja) 光中継器監視装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP