WO2004111211A1 - 前駆脂肪細胞由来の分化細胞及びその取得方法 - Google Patents

前駆脂肪細胞由来の分化細胞及びその取得方法 Download PDF

Info

Publication number
WO2004111211A1
WO2004111211A1 PCT/JP2004/007322 JP2004007322W WO2004111211A1 WO 2004111211 A1 WO2004111211 A1 WO 2004111211A1 JP 2004007322 W JP2004007322 W JP 2004007322W WO 2004111211 A1 WO2004111211 A1 WO 2004111211A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
derived
cell
differentiation
days
Prior art date
Application number
PCT/JP2004/007322
Other languages
English (en)
French (fr)
Inventor
Koichiro Kano
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to US10/560,595 priority Critical patent/US20080044899A1/en
Priority to EP04734379A priority patent/EP1637590B1/en
Priority to AT04734379T priority patent/ATE529503T1/de
Priority to JP2005506883A priority patent/JP5055613B2/ja
Publication of WO2004111211A1 publication Critical patent/WO2004111211A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • C12N5/0667Adipose-derived stem cells [ADSC]; Adipose stromal stem cells

Definitions

  • the present invention provides a method for obtaining cells having other functions by inducing transdifferentiation using a preadipocyte cell line obtained by dedifferentiating mature adipocytes derived from animal and human adipose tissues, and the method. For the cells obtained by
  • Organs such as the kidney, heart, and liver have various functions, and if these organs do not perform their original functions, humans will die. Therefore, in order to completely capture the original functions of living organisms, treatments using organ transplants derived from living organisms that replace healthy and non-functional organs of other humans and animals are being performed. By transplanting organs derived from living organisms, it is possible to supplement the functions of living organisms in the heart and lungs, which were difficult to replace with artificial products, and in the liver, where it was almost impossible to develop artificial products. Was. The number of people receiving treatment for organ transplants is increasing year by year. In Japan, more than 700 kidney transplants and more than 400 liver transplants are performed annually.
  • transplantation of organs derived from living organisms is not immune rejection or infectious disease. There are many cases that die due to these effects after transplantation, which is more likely to cause throat. In addition, the number of patients who are waiting for transplants due to a shortage of donors is large, and the number of patients who are waiting has exceeded the number of transplants performed annually. Even if an organ is transplanted, there are many problems with organ transplantation from living organisms, such as the huge cost of transplantation and prognostic treatment. In order to overcome such problems of organ transplantation, regenerative medicine has attracted attention as a new treatment method, and has received great interest.
  • Regenerative medicine is a treatment method characterized by the differentiation of pluripotent and self-replicating cells into the lost or dysfunctional part of the human body, and the reconstruction of tissues and organs. It is. This treatment allows autologous transplantation using the patient's own cells and is unlikely to cause immunological rejection or infection. In addition, since cells and tissues are used to form tissues and organs, they are expected to be used as new methods for resolving the shortage of donors and as therapeutic methods.
  • Known donor cells that can be used for regenerative medicine include embryonic stem cells (ES cells; Embryonic Stem Cells) derived from fertilized eggs and somatic stem cells (MS cells; Marrow Stem Cells) derived from bone marrow stroma. I have.
  • ES cells are undifferentiated cells derived from fertilized eggs and can induce differentiation into various tissues and organs. However, it is necessary to use human fertilized eggs to establish cells, which poses ethical problems.
  • MS cells which are stem cells derived from bone marrow stroma, are considered to be useful in regeneration of bone, muscle and adipose tissue in regenerative medicine. In addition, since it is a somatic cell, it can be collected relatively easily from the body of an adult who has no ethical problems.
  • bone marrow stroma contains a wide variety of cells, it is difficult to isolate only pluripotent MS cells, and even if MS cells are obtained, they will be lost during growth and culture due to contamination with other cells. There are many problems that need to be solved in transplantation therapy, which is more likely to occur. Another problem is that the burden on donors is large because anesthesia is required at the time of collection.
  • the present inventor has largely departed from the conventional concept of donor cells for regenerative medicine, and has focused on mature fat cells present on the body surface of each part of the living body.
  • Mature cells are cells that have undergone differentiation, and it is generally believed that terminally differentiated cells do not dedifferentiate.
  • the present inventors have succeeded in establishing a new culture method for inducing dedifferentiation of mature adipocytes and establishing a preadipocyte cell line (JP-A-2000-83656).
  • the preadipocyte cell line established by this culture method is uniform, easy to maintain and culture, and does not require special techniques or facilities. Therefore, it is expected to be a new donor cell for regenerative medicine that almost solves the problems of stem cells.
  • the preadipocyte cell line developed by the present inventors is derived from mature adipocytes existing near the body surface, such as subcutaneously. Mature adipocytes can be easily collected as a single cell group without contamination with other cells, and can be collected in large quantities and easily with little burden on the donor side. In addition, since subcutaneous fat exists from newborns to the elderly, donor cells can be obtained regardless of age, and autologous transplantation is possible. If immunological problems are solved, there is a high possibility that industrial mass production will be possible, such as using fat cells discarded in cosmetic surgery.
  • a method for dedifferentiating mature adipocytes into preadipocytes developed by the present inventors and using the preadipocyte cell line to induce transdifferentiation to obtain bone cells, muscle cells, chondrocytes, epithelial cells, and nerve cells It is desirable to establish a method for obtaining cells having other functions, such as the ability to form tissues and organs, in constructing an autotransplantation system for regenerative medicine.
  • the present invention provides a method for obtaining cells having other functions by inducing transdifferentiation using preadipocytes obtained by dedifferentiating mature adipocytes derived from adipose tissue of an animal, and methods for obtaining cells having other functions. For cells. Further, the present invention relates to the formation of tissues and organs from cells obtained by the method and application to regenerative medicine.
  • the present invention relates to a culture method for inducing transdifferentiation into another cell as described below, and to a cell transdifferentiated using such a culture method.
  • a cell derived from a mature adipocyte which has been transdifferentiated using the culture method according to any one of the above 1) to 8).
  • the dedifferentiation of mature adipose cells derived from adipose tissue in the present invention may be performed, for example, according to Japanese Patent Application Laid-Open No. 2000-83656 made by the present inventors. That is, subcutaneous and visceral adipose tissues are treated with collagenase, and then filtered with a mesh of 100 or 150 ⁇ ra in diameter to obtain a single fraction consisting of monocytic adipocytes only (FIG. 1).
  • Ponderocytes Porcine Peradipocytes derived from Matured Adipocytes: PPMA, hereinafter PA
  • Examples of such cells derived from monocytic fat cells include mature fat cells derived from adipose tissue such as humans, pigs, mice, and chickens.
  • Examples of monocytic fat cells include subcutaneous adipose tissue and visceral organs. Cells derived from adipose tissue and the like are desirable.
  • Peroxisome Proliferator-Responsive Factor ⁇ (PPAR abbreviated below, upper row) involved in commitment during the early stage of differentiation of cells, Cbfal (middle row) and myocyte differentiation involved in the determination of osteocyte differentiation Heterologous cells that already express each of the Myffi (lower) involved in the decision-making process.
  • PPAR Peroxisome Proliferator-Responsive Factor ⁇
  • PA strain derived from mature adipocytes of pigs with such characteristics was obtained from the Budapest Treaty at the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary, 1-6-1 Tsukuba East, Ibaraki Prefecture, Japan. International deposit based on the deposit number and the deposit number FERM BP-08645 (Deposit date: February 20, 2004).
  • FIG. 1 shows micrographs of porcine and mouse mature adipocytes isolated from adipose tissue.
  • A The nucleus is stained by hematoxylin staining of the mature adipocytes of the stag.
  • FIG. 2 is a photograph showing the expression status of various transcription factor groups during the growth phase of mouse preadipocytes derived from mature adipocytes. The expression of PPARy, (upper), Cbfal (middle) and MyiS (lower) are shown.
  • FIG. 3 shows a micrograph of osteoblasts obtained by transdifferentiating PA derived from mature adipocytes of the example.
  • Alkaline phosphatase positive cells show a morphology unique to osteoblasts.
  • FIG. 4 shows a micrograph of osteoblasts obtained by transdifferentiating PA derived from mature adipocytes of the example.
  • FIG. 5 shows a microscopic photograph of osteoblasts derived from mature adipocytes that secrete osteocalcin in Examples.
  • FIG. 6 is a photomicrograph showing the formation of bone matrix (calcium deposition) of osteoblasts derived from mature adipocytes of the example.
  • the arrow indicates that the calcium deposits stained with Kossa were stained 20 days after the induction of differentiation.
  • FIG. 7 shows micrographs of osteoblasts obtained by transdifferentiating PA derived from mature adipocytes of the mouse of the example.
  • FIG. 8 shows a micrograph of myoblasts obtained by transdifferentiating PA derived from the mature adipocytes of the example.
  • FIG. 9 is a micrograph of myoblasts obtained by transdifferentiating PA derived from the mature adipocytes of the example. Indicates true.
  • FIG. 10 shows a micrograph of myoblast-derived myoblasts expressing myogenin of the example.
  • FIG. 11 shows a micrograph of myoblasts obtained by transdifferentiating PA derived from mature adipocytes of the mouse of the example.
  • FIG. 12 shows micrographs of chondrocytes obtained by transdifferentiating PA derived from mature adipocytes of the example.
  • Toluidine blue stained image 16 days after induction of differentiation. The cells form clumps, which are stained inside (see arrowheads).
  • FIG. 13 shows micrographs of chondrocytes obtained by transdifferentiating PA derived from mature adipocytes of the mouse of Example.
  • FIG. 14 shows a micrograph of mammary gland epithelial cells (ME) obtained by transdifferentiating PA (GFP-PA) derived from mature adipocytes of the example.
  • FIG. 15 shows a micrograph of mammary gland epithelial cells (ME) obtained by subjecting PA (GFP-PA) derived from mature adipocytes of the example to transformation.
  • ME mammary gland epithelial cells
  • FIG. 16 shows a micrograph of mammary gland epithelial cells (ME) obtained by transdifferentiating PA (GFP-PA) derived from mature adipocytes of the example.
  • FIG. 17 shows a micrograph of mammary epithelial cells (ME) obtained by transdifferentiating PA (GFP-PA) derived from mature adipocytes of the example.
  • FIG. 18 shows micrographs of nerve cells obtained by transdifferentiating PA derived from mature adipocytes of the example.
  • Ngl08_15 cell line was shown as a control. Ngl08-15 showed neuronal-specific morphology after differentiation induction.
  • FIG. 19 shows micrographs of nerve cells obtained by transdifferentiating PA derived from mature adipocytes of the example.
  • FIG. 20 shows a micrograph of a nerve cell obtained by transdifferentiating PA derived from the mature adipocyte of the mouse of the example.
  • osteoblasts, myoblasts, chondrocytes, epithelial cells or nerve cells are obtained by inducing transdifferentiation of PA derived from pig and mouse mature adipocytes.
  • the transdifferentiation method any of the conventional methods used for transdifferentiation of cells can be used.
  • the PA strain is suspended in a serum-supplemented medium, and the suspension is used for collagen type 1 or type 3.
  • the cells are inoculated in a tissue culture dish or flask, and cultured in a carbon dioxide gas culture apparatus adjusted to a gas phase of 5% carbon dioxide and 95% air.When the cells reach confluence, the medium is replaced with a differentiation-inducing medium. Culture is preferably performed for up to 20 days.
  • This differentiation-inducing medium may be either a medium to be used as a conventional component I spoon induction medium but, for example, in the osteoblast dexamethasone or active vitamin D 3, Asukorubin acid, beta - a glycerin port phosphorus San ⁇ Pi serum
  • the culture is preferably performed for 10 to 20 days using the added modified Dulbecco's Eagle's medium.
  • Dulbecco's modified Eagle's medium supplemented with hide-mouth cortisone and serum.
  • chondrocytes cultured for 10-18 days insulin, ascorbic acid, transforming growth
  • the culture is preferably performed for 2 weeks using a modified Dulbecco's Eagle's medium supplemented with factor] 33 and serum.
  • prolata Using tanole becco's modified Eagle medium supplemented with caroline with tin, dexamethasone, ITS (insulin 'transferrin' selenium), Culture for 10 to 18 days. For neurons, after culturing for 12 hours in Dulbecco's modified Eagle's medium supplemented with 13-mercaptoethanol and serum, 5] in Dulbecco's modified Eagle's medium supplemented with 3-mercaptoethanol. Time cultivation is recommended.
  • Osteoblasts transdifferentiated from cells cultured in this way were identified by measuring the specific activity of alkaline phosphatase staining, immunostaining with osteocalcin antibody, von Kossa staining, and calcified extracellular cells. It is preferable to use the matrix formation as an index.
  • the osteoblasts are separated from this medium by first releasing the cells from the medium, suspending the cells in a culture solution, and centrifuging the fat cells, which have accumulated lipid droplets in the upper layer, into the lower layer ( The osteoblasts are separated into the sediment fraction, and the lower layer osteoblasts are collected.
  • Myoblasts are identified by immunostaining with Myf5, MyoD, and myogenin antibodies, which are muscle determinants, and chondrocytes are identified by Alcian blue staining, druidin blue staining, and collagen type ⁇ . It is preferable to perform the immunostaining by using as an index. For identification of epithelial cells, immunostaining with ⁇ -cadherin, vinculin, keratin and ⁇ -1 antibody is used as an index. For identification of nerve cells, nestin, neuron-specific enolase, ⁇ -tubulin, ⁇ 2 And immunostaining with a neurofilament antibody as an indicator.
  • a strain derived from mature adipocytes was produced by the method described in JP-A-2000-83656.
  • the strain of Puta was obtained by the following steps. 4 g of subcutaneous adipose tissue collected from a 6-month-old boar is modified with Dulbecco's containing Hepes containing 1% collagenase (Type II; SIGMA). The cells were placed in one dull medium (Hepes-DMEM; Nissui Pharmaceutical Co., Ltd.), treated with collagenase, and then filtered through a nylon mesh to obtain a cell suspension. The resulting cell suspension was centrifuged at 106G for 3 minutes, the monocytic fat fraction separated in the upper layer was added to fresh Hepes-DME medium containing 3% FCS, and centrifuged at 106G for 3 minutes.
  • SIGMA Dulbecco's containing Hepes containing 1% collagenase
  • adipocyte tissue culture flasks Falcon, 3107
  • FCS fetal calf serum
  • 1.8mg / ml NaHC0 3 and 0.08 mg / ml kanamycin - completely fills the inside of the flask in DMEM medium supplemented with sulfate, 37 ° C, and cultured for 6 days in a carbon dioxide culture apparatus adjusted to a gaseous phase of 5% CO 2 and 95% air, with the flask bottom facing up.
  • FA derived from porcine mature adipocytes has an active proliferative ability and also has a differentiation ability to redifferentiate into adipocytes having lipid droplets by differentiation inducers such as DEX, INS, and IBMX. It was created as PA from vesicular adipocytes (Fig. 1A). Hereinafter, PAs produced in the same manner were used in Examples.
  • the produced PA was resuspended at 1 ⁇ 10 4 cells / ml in DMEM medium supplemented with 20% serum. Thereafter, seeded collagen type 1 in coated culture dish for tissue culture (Falcon, 3001), placed in 37 ° C, 5% C0 2 , 95% in carbon dioxide culture device humidified atmosphere of air And cultured. The medium was replaced every four days. Eight days after the culture, the PA medium that had reached confluence was replaced with a DMEM medium (differentiation induction medium) supplemented with 0.1 ⁇ dexamethasone and 10% serum, and cultured for 10 days.
  • DMEM medium differentiate induction medium
  • the mouse strain was obtained by the following steps. 2 g of subcutaneous adipose tissue collected from a 6-week-old male transgenic mouse transfected with the Green Florescent Protein (GFP) gene was obtained, and a cell suspension was obtained in the same manner as described above. Monocytic adipocytes are obtained from the obtained cell suspension in the same manner as described above, and cultured in the same manner as described above. When a large number of cells that change to a fibroblast-like (FA) morphology without any droplets were observed, the culture was continued in the same manner as above with the cell adhesion surface at the bottom, and fat droplets were obtained. , And actively proliferating FA were obtained.
  • FFP Green Florescent Protein
  • FA derived from mature adipocytes of mice has an active proliferative ability and also has the ability to differentiate into adipocytes having lipid droplets by differentiation inducers such as DEX, INS, and IBM X. It was created as a PA strain (GFP-PA) derived from vesicular adipocytes (Fig. 1B).
  • GFP-PA PA strain derived from vesicular adipocytes
  • the produced PA was cultured in the same manner as above, and after 8 days of culture, the PA medium that had reached confluence was replaced with a DMEM medium (differentiation induction medium) supplemented with 0.1 M dexamethasone and 10% serum, followed by 10 days. Cultured. In addition, the expression status of various transcription factor groups during the growth phase was examined, and the expression of PPARy, Cbfal and Myf5 is shown in FIG.
  • osteoblasts were identified using alkaline phosphatase staining and specific activity measurement, immunostaining with osteocalcin antibody, von Kossa staining and formation of calcified extracellular matrix as indices.
  • PAs derived from mature adipocytes of mice and 7 days after induction of differentiation from mouse adipocytes were fixed, cells were fixed in the following manner, and then lipophosphatase (AP ) And oil red (OR) 0. 1 ml of a 4% formalin solution was added to the differentiation-inducing medium in the culture dish, and left at room temperature for 20 minutes to perform pre-fixation. After removing the pre-fixation solution, 2 ml of a 4% formalin solution was newly added, and the mixture was allowed to stand at room temperature for 1 hour. After removing the fixative, the plate was washed three times with 2 ml of distilled water.
  • AP lipophosphatase
  • OR oil red
  • PAs derived from mature pig adipocytes were induced 16 days after induction of differentiation, and PAs derived from mature mouse adipocytes were induced 12 days after induction of differentiation. Washed with liquid (PBS). Washing 3 times with 2% aqueous hydrogen peroxide PBS inhibited endogenous peroxidase activity. Furthermore, after endogenous avidin-biotin was inhibited, the cells were blocked with PBS supplemented with normal serum for 20 minutes, and reacted with osteocalcin antibody (diluted 400-fold) at 4 ° C for 20 hours. After washing twice with PBS, the cells were reacted with a diluted biotinylated secondary antibody for 30 minutes, and then washed twice with PBS. Then, it was reacted with ABC reagent for 60 minutes. After the reaction, the cells were washed with Tris-HCl and stained with DAB for 10 minutes. After washing three times with distilled water, they were used for observation.
  • PBS liquid
  • Pigs derived from mature adipocytes of pigs and PAs derived from mature mice adipocytes are fixed 16 times after induction of differentiation using the same fixation method as described above, and then three times with phosphate buffered saline (PBS). Washed. It was immersed in 5% silver nitrate PBS for 60 ⁇ while irradiating with ultraviolet rays. After being carefully washed three times with distilled water, it was immersed in a 5% sodium thiosulfate solution for 3 minutes. After washing twice with distilled water, it was used for observation.
  • PBS phosphate buffered saline
  • FIGS. 3 to 6 show micrographs of the osteoblasts induced to differentiate from PA obtained from the swine mature adipocytes thus obtained.
  • FIG. 7 shows a micrograph of osteoblasts induced to differentiate from PA derived from mouse mature adipocytes. As shown in these figures, it was confirmed that osteoblasts were obtained by induction of transdifferentiation of PA derived from pig and mouse mature adipocytes.
  • the cells were treated with 0.1% trypsin and ⁇ . ⁇ / oEDTA-supplemented PBS for 3 minutes. After confirming that the cells were completely released, the cells were suspended by pouring a DMEM medium supplemented with 20% PSC FCS. Far away cells After transfer to a sediment tube, the mixture was centrifuged at 800G, and lipoblasts with lipid droplets accumulated in the upper layer and osteoblasts were separated into a sediment fraction. The upper fat cells were removed, and osteoblasts in the sediment fraction were obtained.
  • DME medium supplemented with 20% serum of PA derived from porcine mature adipocytes and PA derived from mouse mature adipocytes produced by the method described in (1) above at a concentration of 1 ⁇ 10 4 cells / ml.
  • seeded collagen type 1 in coated culture Yosara for tissue culture (Falcon, 3001), to 37 ° C, 5% C0 2 , 95% in a carbon dioxide gas culture apparatus humidified atmosphere of air
  • the culture was allowed to stand still.
  • the medium was changed every four days.
  • PA from mature adipocytes of septa reached culture after 8 days
  • PA from mouse mature adipocytes reached confluence after 5 days in culture DME medium containing 50 ⁇ M hydrated cortisone and 10% serum in PA medium (Differentiation induction medium) and cultured for 10 days.
  • myoblasts were differentiated into myoblasts by the following method. That is, identification of myoblasts was performed using immunostaining with Myf5 and MyoD, which are determinants of myoblasts, and myogenin antibody, which is a commitment factor of myocytes, as an index.
  • the cells were fixed by the method described below.
  • a pre-fixation was performed by adding a 4% formalin solution equal to the amount of the differentiation-inducing medium in the culture dish and leaving the mixture at room temperature for 20 minutes. After removing the pre-fixation solution, re-add 2 ml of 4 ° /. The formalin solution was prepared and allowed to stand at room temperature for 1 hour. After removing the solid solution, the plate was washed with a phosphate buffer (PBS). Washing three times with 2% aqueous hydrogen peroxide in PBS inhibited endogenous peroxidase activity.
  • PBS phosphate buffer
  • Pigs derived from mature adipocytes were fixed 10 to 18 days after induction of differentiation, and PAs derived from mouse mature adipocytes were fixed 7 to 10 days after induction of differentiation, using the same fixation method as above.
  • the plate was washed three times with a phosphate buffer (PBS). Washing three times with 2% aqueous hydrogen peroxide PBS inhibited endogenous peroxidase activity. Furthermore, endogenous avidin-biotin was inhibited, and after blocking with PBS containing normal serum for 20 minutes, a myogenin antibody (300-fold dilution) was reacted at 4 ° C for 20 hours.
  • PBS phosphate buffer
  • the plate After washing twice with PBS, the plate was reacted with a diluted biotinylated secondary antibody for 30 minutes, and then washed twice with PBS. Then, it was reacted with ABC reagent for 60 minutes. After the reaction, the plate was washed with Tris-HCl and stained with DAB for 10 minutes. After washing three times with distilled water, it was used for observation.
  • FIGS. 8 to 10 show micrographs of the myoblasts induced to differentiate from PA obtained from the mature adipocytes of septum obtained in this manner.
  • FIG. 11 shows a micrograph of myoblasts induced to differentiate from PA derived from mature mouse adipocytes.
  • myoblasts were obtained by the induction of transdifferentiation of PA derived from mature adipocytes.
  • Many of myoblasts induced to differentiate from PA derived from porcine mature adipocytes expressed myoblast-specific markers 18 days after the induction of transdifferentiation.
  • Most of the myoblasts induced to differentiate from PA derived from mouse mature adipocytes expressed myoblast-specific markers 10 days after the induction of transdifferentiation.
  • the medium was replaced with a DMEM medium (differentiation induction medium) supplemented with growth factor 3 and 1% serum, and PA derived from mature adipocytes of the septum was cultured for 10-18 days. Fat cell-derived PA was cultured for 14 days.
  • a rat-derived L6 cell line that differentiates into PA without inducing differentiation and chondrocytes was used as a positive control.
  • chondrocytes were differentiated into chondrocytes by the following method. That is, the identification of chondrocytes was performed using Alcian blue staining, druidin blue staining and immunostaining with collagen type II antibody as an index.
  • AB Alcian Blue
  • 1 ml of a 4% formalin solution was added to the differentiation-inducing medium in the culture dish, and left at room temperature for 20 minutes for pre-fixation.
  • 2 ml of a 4% formalin solution was newly added, and the mixture was left at room temperature for 1 hour.
  • the plate was washed three times with 2 ml of distilled water.
  • 100 mg of AB was dissolved in 10 ml of 0.1N HCl and filtered to prepare an AB staining solution.
  • Pigs derived from mature adipocytes of pigs are differentiated 8 days after induction of differentiation, and PAs derived from mouse mature adipocytes are 14 days after induction of differentiation. did. 1 ml of Rossman's fixative was added to the differentiation-inducing medium in the culture dish, and allowed to stand at room temperature for 20 minutes to perform pre-fixation. After removing the pre-fixation solution, 2 ml of Rossman's fixation solution was newly added, and the mixture was allowed to stand at room temperature for 1 hour. After removing the fixative, the plate was washed three times with 2 ml of distilled water. Subsequently, the cells were stained by immersion in 2 ml of 0.05% (%) TB staining solution for 60 minutes. After removing the TB staining solution, the plate was washed three times with 2 ml of distilled water.
  • Porcine mature adipocyte-derived PA was induced 16 days after differentiation induction, and mouse mature adipocyte-derived PA was fixed 14 days after differentiation induction, using the same fixation method as above. (PBS). Wash 3 times with PBS with 2% hydrogen peroxide Inhibited peroxidase activity. Furthermore, after inhibiting endogenous avidin-biotin, the cells were blocked with PBS supplemented with normal serum for 20 minutes, and then reacted with collagen type 2 antibody (diluted 1000-fold) at 4 ° C for 20 hours. After washing twice with PBS, the cells were reacted with a diluted biotinylated secondary antibody for 30 minutes, and then washed twice with PBS. Then, it was reacted with ABC reagent for 60 minutes. After the reaction, the cells were washed with Tris-HCl and stained with DAB for 10 minutes. After washing three times with distilled water, it was used for observation.
  • PBS fixation method as above.
  • FIGS. 12 Micrographs of the chondrocytes induced to differentiate from the PAs derived from the control and pig mature adipocytes thus obtained are shown in FIGS. 12 (A-D).
  • FIG. 13 shows a micrograph of chondrocytes induced to differentiate from PA derived from mouse mature adipocytes.
  • AB 'staining, TB staining, and collagen type 2 immunostaining resulted in the induction of transdifferentiation of PA derived from mature adipocytes, as shown in these figures, and chondrocytes were obtained.
  • chondrocytes were obtained.
  • the PA strain (GFP-PA) derived from the mature adipocytes was obtained by the method described in (1) above. Created.
  • glandular epithelial cells (ME) were obtained from the mammary gland tissue of wild-type female mice in the second trimester according to the method of Emerman et al. (Proc. Natl. Acad. Sci. USA, 74: 4466-4470, 1977). Collected.
  • the tissue was minced in 0.5% (w / v) trypsin + 0.05% (w / v) EDTA solution.
  • DMEM containing 0.1% (w / v) type I collagenase and 5% FCS (v / v) was added, and the mixture was further stirred at 37 ° C for 45 minutes (100 to 100%). 120 times / min).
  • the cell suspension was centrifuged (X 200 g, 1 minute) to remove the supernatant, and then resuspended in 10 ml of DMEM supplemented with 10% FCS.
  • the obtained mammary epithelial cells were resuspended in DMEM medium supplemented with 20% serum of GFP-PA and ME, and three-dimensionally cultured in type 1 collagen (1.5%).
  • the co-cultured GFP-PA was identified as being transdifferentiated to ME by the following method.
  • the identification of ME derived from GFP-PA is premised on cells expressing GFP, but E-cadherin, vinculin, keratin and keratin, which are specifically expressed on epithelial cells. Immunostaining using ZO-1 and ZO-1 antibodies was performed as an index. Wild-type ME was used for the control.
  • the cells were reacted with E-cadherin, vinculin, keratin and ZO-1 antibody (diluted 200- to 1000-fold) diluted at various concentrations at 4 ° C for 18 hours.
  • the mixture was reacted with a TRITC-labeled mouse antibody diluted 200-fold at room temperature for 30 minutes.
  • the cells were washed twice with PBS under light shielding, and the specimens were air-dried, and then observed using an optical microscope or a fluorescence microscope.
  • FIGS. 14-17 Photomicrographs of MEs derived from mature adipocytes obtained in this way are shown in FIGS. 14-17.
  • GFP-PA aggregates in three-dimensional culture to form a tubular structure (Fig. 17), and they adopt a donut-shaped alveolar concept with a central alveolar cavity as in the positive control (Fig. 17). 16), showing an epithelial cell-like morphology.
  • GFP-PA showing an epithelial cell-like morphology was stained with E-cadherin, vinculin, keratin, and ZO-1 antibodies (FIGS. 16-17).
  • FIGS. 14-17 Photomicrographs of MEs derived from mature adipocytes obtained in this way are shown in FIGS. 14-17.
  • GFP-PA aggregates in three-dimensional culture to form a tubular structure (Fig. 17), and they adopt a donut-shaped alveolar concept with a central alveolar cavity as in the positive control (Fig. 17). 16), showing an epithelial
  • the mature adipocytes derived PA of PA and mouse mature adipocytes derived descriptor which is produced by the method described, porcine cells such that the IX 10 5 cells / ml, respectively serum 20%
  • Mouse cells are resuspended in DMEM medium supplemented with 10% serum.
  • the culture was allowed to stand still in the carbon dioxide gas culturing apparatus. Induction of differentiation into nerve cells was performed according to the method of Woodbury et al. (J. Neuro. Res., 61: 364-3702000).
  • the medium of PA that reached 80% confluence was replaced with DMEM medium supplemented with 1-10 mM ⁇ -mercaptoethanol (BME) and 20% FCS.
  • the medium was replaced with a DMEM medium supplemented with -10 mM ⁇ -mercaptoethanol ( ⁇ ) and 10% FCS, and each was cultured for 12 hours.
  • the cells were further cultured in DMEM medium supplemented with ImM BME for 5 hours to induce differentiation into neurons.
  • PA which did not induce differentiation and Ngl08-15 cell line which was divided into nerve cells were used as positive controls.
  • the cultured PA was differentiated into nerve cells by the following method.
  • neurons were identified using immunostaining with nestin, neuron-specific enolase, ⁇ m-tubulin, MAP2 (Microtubule-associated protein 2) and neurofilament antibodies as indices.
  • FIG. 20 shows a micrograph of a nerve derived from a mouse mature adipocyte.
  • FIGS. 18 and 20 show neuronal cell-like morphology.
  • PA showing neuron-like morphology as a result of immunostaining was stained for nestin, an indicator of neuronal differentiation, neuron-specific enolase, ⁇ III-tubulin, ⁇ 2, and neurofilament antibody, similarly to the control group.
  • Figure 19 As can be seen from these figures, it was confirmed that nerve cells can be obtained by inducing transdifferentiation of pig and mouse ⁇ ⁇ derived from mature adipocytes.
  • the present invention is the only method for elucidating the transdifferentiation mechanism of inducing transdifferentiation of ⁇ to obtain osteoblasts, myoblasts, chondrocytes, epidermal cells, and nerve cells.
  • adipocytes, bone cells, muscle cells, and chondrocytes have the same mesodermal stem cells origin, and neurons and epithelial cells have been known to be derived from ectodermal stem cells.
  • the direction of the differentiation has been thought to be terminal differentiation from stem cells to adipocytes and bone cells through their progenitor cells.
  • the present invention reverses these common senses and obtains osteoblasts, myoblasts, chondrocytes, epithelial cells, and nerve cells by inducing ⁇ ⁇ transformation obtained by dedifferentiating mature adipocytes. The only way it can do this is to significantly contribute to elucidating the transdifferentiation mechanism.
  • adipocytes Due to its structure, mature adipocytes can be collected as a single cell group, so that a uniform cell group can be easily collected without special equipment.
  • PAs derived from mature adipocytes are fibroblasts, so they are easy to handle and do not require special culture techniques.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Rheumatology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

ブタ及びマウスの成熟脂肪細胞由来の前駆脂肪細胞株を用い、分化転換誘導することにより、他の機能を有する細胞を取得する方法及び該方法により取得された他の機能を有する細胞に関する。本発明により、ブタ及びマウスの成熟脂肪細胞由来の前駆脂肪細胞株を分化転換誘導することにより、骨芽細胞、筋芽細胞、軟骨細胞、神経細胞を取得することができた。さらに、マウスの成熟脂肪細胞由来の前駆脂肪細胞株を分化転換誘導することにより、上皮細胞を取得することができた。

Description

明細書 前駆脂肪細胞由来の分化細胞及びその取得方法
[技術分野]
本発明は動物およぴヒトの脂肪組織由来の成熟脂肪細胞を脱分化させた前駆脂肪 細胞株を用い分化転換を誘導することにより、他の機能を有する細胞を取得する方法 およぴ該方法により取得された細胞に関する。
[背景技術]
人間の体の失われた部分や機能しなくなった部分を交換する方法として、義足、義 歯などの人工物で捕う方法や、他人の体の一部を用いた皮膚、角膜などの組織を移 植する方法がある。腎臓、心臓、肺などの臓器の移植は 19世紀から 20世紀にかけて 普及した。これらの代替物のうち、人工物を使用するものとして、 1945年頃から人工腎 臓 (透析器)が発達し、現在広く使用されている。心臓、肺の機能の一部を代行する人 ェ呼吸器、人工心臓なども作られたが、これらのほとんどは体外で使用する装置であ るため、使用の制約が大きい。また複雑な機能を持つ肝臓においては、人工肝臓が 開発される可能性は低い。従って、臓器を人工物と代替することによって生体の機能 を完全に捕うことは難しい。
腎臓、心臓、肝臓などの臓器は多様な機能を持っており、これらの臓器が本来の機 能を果たさなければ、人間は死に至る。そこで、生体の本来の機能を完全に捕うため に、他の人間や動物の健康な臓器と機能しない臓器を交換する生体由来の臓器移植 による治療が行われるようになっている。生体由来の臓器を移植することにより、人工 物による代替が困難であった心臓や肺、またほぼ人工物の開発が不可能であった肝 臓においても、生体の機能を補うことが可能となった。臓器移植の治療を受ける人は 年々増加しており、日本においては年間 700件以上の腎臓移植や、 400件以上の肝 臓移植が行われている。また心臓移植や肺移植において件数はまだ少ないが、確実 に患者の生存率を高めており、臓器移植は効果的な治療方法として確立されている。 しかし、一方で生体由来の臓器を移植することは、免疫的な拒絶反応や感染症な どを引き起こす可能性が高ぐ移植した後にこれらの影響で死亡する例も多レ、。また、 ドナー不足により移植を望みながら待機している患者が多ぐ年間の移植実施数に対 し、待機者の死亡数が上回っている。さらに臓器移植を受けた場合でも、移植や予後 の治療に莫大な費用がかかるなど、生体由来の臓器移植における問題点は多い。こ のような臓器移植の問題点を克服するために、新しい治療方法として再生医療が注目 され、大きな関心が寄せられている。
再生医療とは、人間の体の失われた部分や機能しなくなった部分に対し、多能性 および自己複製能力を有する細胞を分化させ、組織や器官を再構築することを特徴と した治療方法である。この治療は患者本人の細胞を使用する自家移植が可能であり、 免疫的な拒絶反応や感染をひきおこす可能性が低い。また、細胞を用レ、て組織や器 ' 官を形成するため、ドナー不足の解決につながる新しレ、治療方法として期待されてレヽ る。再生医療に使用可能なドナー細胞としては、受精卵に由来する胚性幹細胞 (ES細 胞; Embryonic Stem Cell)と骨髄間質由来の体性幹細胞(MS 細胞; Marrow Stem Cell)などが知られている。
ES細胞は受精卵由来の未分化な細胞で、多種多様な組織、器官への分化誘導が 可能である。しかし、細胞の樹立にヒトの受精卵を用いる必要があり、倫理的な問題が ある。一方、骨髄間質由来の幹細胞である MS 細胞は再生医療のうち、骨、筋おょぴ 脂肪組織の再生に有用であると考えられている。また体細胞であるため倫理的な問題 はなぐ成人の体から比較的容易に採取することができる。しかし、骨髄間質には多種 多様な細胞が含まれるので多能性を有する MS細胞のみを単離するのは困難であり、 MS細胞が得られても他細胞の混入によって増殖培養中に損失する確率が高ぐ移植 治療には解決されるべき問題が多くある。また、採取時に麻酔が必要であることからド ナ一の負担が大きレ、ことも問題となってレ、る。
移植にはまとまった数の細胞が必要とされるため、再生医療の進展には簡単かつ 安価に大量供給可能なドナー細胞の開発が必要不可欠である。幹細胞が再生医療 のドナー細胞として集中的に研究されている力 これらの ES細胞あるいは MS細胞の 供給、維持、培養には特殊な試薬、機器および技術が必要であり、莫大な費用がかか る。これらの問題の解決において、多能性および自己複製能力を有し、さらに簡単に 採取可能であり、かつ安定して特性が維持される細胞を得ることが必要であり、それら の条件を満たす細胞を取得する方法の確立が望まれる。
そこで本発明者はこれらの問題点を解決するために、 従来の再生医療用ド ナー細胞に対する考え方から大きく離れて、 生体の各部位の体表面に存在する 成熟脂肪細胞に着目した。 成熟細胞とは分化が終了した細胞であり、 終末分化 した細胞は脱分化しないと一般的に考えられている。 しかし、 本発明者は成熟 脂肪細胞の脱分化を誘導し、 前駆脂肪細胞株を樹立する新しい培養方法を確立 することに成功した(特開 2000-83656)。 この培養方法により樹立された前駆脂 肪細胞株は均一で、 維持、 培養が容易であり、 かつ特別な技術あるいは施設等 が不必要である。 したがつて幹細胞における問題点をほぼ解決する新規の再生 医療用ドナー細胞として期待される。
本発明者らが開発した前駆脂肪細胞株は皮下などの体表近くに存在する成熟 脂肪細胞を由来とする。 成熟脂肪細胞は他細胞の混入がない単一な細胞群とし て簡単に採取ができ、 ドナー側の負担が少ない状態で大量かつ容易に採取する ことができる。 また、 新生児から高齢者まで皮下脂肪は存在するため、 年齢を 問わずドナー細胞を得ることができ、 自家移植も可能である。 免疫的な問題を クリア一すれば、 美容整形外科等において廃棄される脂肪細胞等を利用するな ど、 工業的に量産ができる可能性も高い。 本発明者が開発した成熟脂肪細胞を 前駆脂肪細胞に脱分化させる方法およびその前駆脂肪細胞株を用レ、分化転換誘 導することにより、 骨細胞、 筋細胞、 軟骨細胞、 上皮細胞、 神経細胞などの他 の機能を有する細胞を取得する方法を確立し、 組織や器官の形成を行うこと力 再生医療の自家移植システムの構築において望まれる。
[発明の開示]
本発明は、動物の脂肪組織由来の成熟脂肪細胞を脱分化させた前駆脂肪細胞を 用い分化転換誘導することにより、他の機能を有する細胞を取得する方法およぴ該方 法により取得された細胞に関する。さらに該方法により取得された細胞より組織、器官 を形成し、再生医療へ応用することに関する。
すなわち、本発明は、次のとおりの他の細胞への分化転換を誘導する培養方法、及 びこのような培養方法を用いて分化転換された細胞に関する。 1) 脂肪組織由来の成熟脂肪細胞を脱分化させた前駆脂肪細胞を分化転換誘導 することにより、他の機能を有する細胞を取得する方法。
2) 脂肪組織由来の成熟脂肪細胞を脱分化させた前駆脂肪細胞株が FERM BP-08645である請求項 1に記載の他の機能を有する細胞を取得する方法。
3) 脂肪組織由来の成熟脂肪細胞が皮下組織由来の成熟脂肪細胞である前記 1)に 記載の他の機能を有する細胞を取得する方法。
4) 分化転換された他の細胞が骨芽細胞である前記 1)〜3)のいずれかに記載の方 法。
5) 分化転換された他の細胞が筋芽細胞である前記 1) 〜3)のいずれかに記載の 方法。
6) 分化転換された他の機能を有する細胞が軟骨細胞である前記 1) 〜3)のいずれ かに記載の方法。
7) 分化転換された他の機能を有する細胞が上皮細胞である前記 1) 〜3)のいずれ かに記載の方法。
8) 分化転換された他の機能を有する細胞が神経細胞である前記 1) 〜3)のいずれ かに記載の方法。
9) 前記 1)〜8)のいずれかの培養方法を用いて分化転換させた、成熟脂肪細胞由 来の細胞。
10) 細胞が骨芽細胞である前記 9)に記載される細胞。
11) 細胞が筋芽細胞である前記 9)に記載される細胞。
12) 細胞が軟骨細胞である前記 9)に記載される細胞。
13) 細胞が上皮細胞である前記 9)に記載される細胞。
14) 細胞が神経細胞である前記 9)に記載される細胞。
本発明における脂肪組織由来の成熟脂肪細胞の脱分化は、たとえば、本発明者ら によってなされた特開 2000-83656号公報によっておこなうとよい。すなわち、皮下およ ぴ内臓脂肪組織をコラゲナーゼ処理したのち、口径 100および 150 μ raのメッシュでフ ィルトレーシヨンすると単胞性脂肪細胞のみからなる単一の画分が採取される(図 1)。 それら動物の単胞性脂肪細胞を天井培養して形成される線維芽細胞様脂肪細胞 (Fi broblastAdipocytes:以下、 FAとする) を継代培養して分化誘導することによって前 駆脂肪細胞(Porcine Peradipocytes derived from Matured Adipocytes: PPMA、以下 P Aとする)を得ることができる。このような動物の単胞脂肪由来細胞としては、ヒト、ブタ、 ゥシ、ニヮトリ等の脂肪組織由来の成熟脂肪細胞を挙げることができる、また、単胞性 脂肪細胞としては、皮下脂肪組織、内臓脂肪組織等に由来する細胞が望ましい。 このようにして、成熟脂肪細胞力 脱分化された一部の PAは、 RT-PCR法を用いて 種々の転写因子 mRNAの発現状況を調べたところ、図 2に示すように増殖期において 脂肪細胞の分化の初期過程におけるコミットメントにかかわるペルォキシソーム増殖剤 応答性因子 γ (以下 PPAR yと略す、上段)、骨細胞の分ィヒ過程における決定にかか わる Cbfal (中段)およぴ筋細胞の分化過程における決定にかかわる Myffi (下段)のそ れぞれをすでに発現しているへテロな細胞群である。すなわち、骨、筋あるいは脂肪 細胞の初期マーカーをすでに発現しているへテロな細胞群であり、「ゆらぎ」の状態に あり、幹細胞とは異なるユニークな細胞である。このような特徴を持つブタの成熟脂肪 細胞由来の PA株は、日本国茨城県つくば巿東 1丁目 1番地 1中央第 6所在の独立 行政法人産業技術総合研究所特許生物寄託センターにブタペスト条約に基づく国際 寄託し、受託番号 FERM BP-08645 (寄託日平成 16年 2月 20日)が付されてレヽる。
[図面の簡単な説明]
図 1は、脂肪組織から単離されたブタおよびマウスの成熟脂肪細胞の顕微鏡写真を示 す。
A;プタの成熟脂肪細胞のへマトキシリン染色により、核が染色されている。
B ; GFP マウス由来の成熟脂肪細胞の蛍光顕微鏡像を示した。核および細胞質が蛍 光している。
図 2は、マウスの成熟脂肪細胞由来の前駆脂肪細胞の増殖期における種々の転写因 子群の発現状況を写真にて示す。 PPAR y、(上段)、 Cbfal (中段)および MyiS (下段) の発現を示す。
図 3は、実施例の成熟脂肪細胞に由来する PAを分化転換した骨芽細胞の顕微鏡写 真を示す。
A. 分化誘導 28日後におけるアルカリホスファターゼ陽性の骨芽細胞を示す。
B. 倍率を高めたアルカリホスファターゼ陽性細胞の形態を示す。アルカリホスファタ ーゼ陽性細胞が骨芽細胞特有の形態を示している。
図 4は、実施例の成熟脂肪細胞に由来する PAを分化転換した骨芽細胞の顕微鏡 写真を示す。
A. 分化誘導 4 日後におけるマウス胎子頭蓋骨由来のアルカリホスファターゼ陽性 の骨芽細胞 (対照区)。
B. 分化誘導 14日後における成熟脂肪細胞由来の骨芽細胞 (青)を示す。骨芽細胞 (青)と脂肪細胞 (赤)とが混在する。
図 5は、実施例のォステオカルシンを分泌した成熟脂肪細胞由来の骨芽細胞の顕微 鏡写真を示す。
矢印は、骨芽細胞への分化誘導 24日後におけるォステオカルシン抗体おょぴ染色 された成熟脂肪細胞由来の骨芽細胞を示す。
図 6は、実施例の成熟脂肪細胞由来の骨芽細胞の骨マトリックス (カルシウムの沈着) の形成を顕微鏡写真にて示す。
矢印は、分化誘導 20 日後にコッサ染色されたカルシウム沈着部分が染色されてい る。
図 7は、実施例のマウスの成熟脂肪細胞に由来する PAを分化転換した骨芽細胞の顕 微鏡写真を示す。
A. 分化誘導 28日後におけるアルカリホスファターゼ陽性の骨芽細胞を示す。
B. 実施例のォステオボンチンを分泌した成熟脂肪細胞由来の骨芽細胞の顕微鏡 写真を示す。矢印は、骨芽細胞への分化誘導 12日後におけるォステオカルシン抗体 および染色された成熟脂肪細胞由来の骨芽細胞を示す。
C. 実施例の成熟脂肪細胞由来の骨芽細胞の骨マトリックス(カルシウムの沈着)の 形成を顕微鏡写真にて示す。分化誘導 16日後にコッサ染色されたカルシウム沈着部 分が染色されている。
図 8は、実施例の成熟脂肪細胞に由来する PAを分化転換した筋芽細胞の顕微鏡写 真を示す。
A. 対照区。核内に Myf5を発現して!/、なレ、。
B. 分化誘導 4日後、殆どの細胞の核内に Myffiの発現が観察される。
図 9は、実施例の成熟脂肪細胞に由来する PAを分化転換した筋芽細胞の顕微鏡写 真を示す。
分化誘導 6日後、殆どの細胞の核内に MyoDの発現が観察される。
図 10は、実施例のミオゲニンを発現した成熟脂肪細胞由来の筋芽細胞の顕微鏡写 真を示す。
分化誘導 18日後、殆どの細胞の核内にミオゲニンの発現が観察される。
図 11は、実施例のマウスの成熟脂肪細胞に由来する PAを分化転換した筋芽細胞の 顕微鏡写真を示す。
A. 分化誘導 4日後、殆どの細胞の核内に Myf5の発現が観察される。
B. 分化誘導 4日後、殆どの細胞の核内に MyoDの発現が観察される。
C. 分化誘導 7日後、殆どの細胞の核内にミオゲニンの発現が観察される。
図 12は、実施例の成熟脂肪細胞に由来する PAを分化転換させた軟骨細胞の顕微 鏡写真を示す。
A. 培養 16日後における対照区の PAを示す。軟骨細胞に分化転換誘導した場合に 観察される細胞の凝集塊は観察されない。対照区の細胞はアルシアンブルー染 色、トルイジンブルー染色およびコラーゲンタイプ 2免疫染色されない(data not sno n)
B. 分化誘導 16日後におけるアルシアンブルー染色像を示した。細胞は凝集塊を形 成し、その内部が染色される(矢頭参照)。
C. 分化誘導 16 日後におけるトルイジンブルー染色像を示した。細胞は凝集塊を形 成し、その内部が染色される(矢頭参照)。
D. 分化誘導 16日後におけるコラーゲンタイプ 2免疫染色像を示した。細胞は凝集塊 を形成し、その内部が染色される(矢頭参照)。
図 13は、実施例のマウスの成熟脂肪細胞に由来する PAを分化転換させた軟骨細胞 の顕微鏡写真を示す。
A. 分化誘導 14 日後におけるアルシアンブルー染色像を示した。殆どの細胞が染色 される。
B. 分化誘導 14日後におけるトルィジンブルー染色像を示した。殆どの細胞が染色さ れる。一部では凝集塊が形成される (矢頭参照)。
C. 分化誘導 14日後におけるコラーゲンタイプ 2免疫染色像を示した。 図 14は、実施例の成熟脂肪細胞に由来する PA (GFP-PA)を分化転換させた乳腺上 皮細胞 (ME)の顕微鏡写真を示す。
A. コラーゲンゲル 3次元培養 2日後における GFP-PAおよび ME (矢頭)の光学顕微 鏡像を示した。 3次元培養下の GFP- PAおよび MEは,いずれも線維芽細胞様の 形態を示した。
B. コラーゲンゲル 3次元培養 2日後における GFP- PAおよび ME (矢頭)の蛍光顕微 鏡像を示した。紫外線照射下において核が緑色に強く蛍光する線維芽細胞は GFP- PAであることが確認できる。野生型の MEは蛍光しない。
図 15は、実施例の成熟脂肪細胞に由来する PA (GFP-PA)を分ィ匕転換させた乳腺上 皮細胞 (ME)の顕微鏡写真を示す。
A. 分化誘導 28日後、細胞は集合して乳管様の形態を示した (矢頭)。
B. 分化誘導 28 日後、蛍光顕微鏡下で蛍光する乳管様の形態を示した細胞群は GFP-PA 由来であり、それらは上皮細胞様の形態に変化し、腺胞構造を形成し た。
図 16は、実施例の成熟脂肪細胞に由来する PA (GFP-PA)を分化転換させた乳腺上 皮細胞 (ME)の顕微鏡写真を示す。
A. 分化誘導 28日後、へマトキシリン染色した GFP- PAおよび ME (矢頭)の光学顕微 鏡像を示した。コラーゲンゲル中の細胞は集合し、腺胞構造を形成した。
B. Aで腺胞構造を形成した細胞群の蛍光顕微鏡像を示した。腺胞構造を示した細 胞の核が強く蛍光したことから、それらの上皮細胞様の細胞は GFP-PA由来であ ることが確認された。
C. Bと同様の標本における E -力ドヘリン免疫染色像を示した。 Bとは異なり、腺胞構 造を形成する細胞全体が蛍光するのが確認された (矢頭)。
D.ケラチン免疫染色像を示した。 Bとは異なり、腺胞構造を形成する細胞全体が蛍光 するのが確認された (矢頭)。
図 17は、実施例の成熟脂肪細胞に由来する PA (GFP-PA)を分化転換させた乳腺上 皮細胞 (ME)の顕微鏡写真を示す。
A. 分化誘導 28日後、へマトキシリン染色した GFP-PAおよび ME (矢頭)の光学顕微 鏡像を示した。コラーゲンゲル中の細胞は集合し、管状構造を形成した。 B. Aで腺胞構造を形成した細胞群の蛍光顕微鏡像を示した。管状構造を示した細 胞が強く蛍光したことから、それらの上皮細胞様の細胞は GFP- PA由来であること が確認された。
C. Bと同様の標本におけるビンキュリン免疫染色像を示した。管状構造を形成する細 胞全体が蛍光するのが確認された (矢頭)。
D. ZO - 1免疫染色像を示した。管状構造を形成する細胞全体が蛍光するのが確認さ れた (矢頭)。
図 18 は、実施例の成熟脂肪細胞に由来する PAを分化転換させた神経細胞の顕微 鏡写真を示す。
A. 神経細胞へと分化誘導しなかった PAを示した。いずれの細胞も線維芽細胞様の · 形態が維持されている。
B. 分化誘導 12時間後における PAの光学顕微鏡像を示した。線維芽細胞様の PA と神経細胞様の形態に変化した細胞 (矢印)が観察される。
C.対照区として Ngl08_15細胞株を示した。 Ngl08- 15は分化誘導後に神経細胞特 有の形態 示した。
図 19 は、実施例の成熟脂肪細胞に由来する PAを分化転換させた神経細胞の顕微 鏡写真を示す。
A. 分化誘導 17時間後、神経細胞様の形態を示した細胞のみがネスチン抗体で染色 された (矢頭)。
B. 分化誘導 17時間後、神経細胞様の形態を示した細胞のみがニューロン特異的ェ ノラーゼ抗体で染色された (矢頭)。
C. 分化誘導 17 時間後、神経細胞様の形態を示した細胞のみが/ 3 III-チューブリン 抗体で染色された。
D. 分化誘導 17時間後、神経細胞様の形態を示した細胞のみが MAP2抗体で染色 された。
E. 分化誘導 17時間後、神経細胞様の形態を示した細胞のみがニューロフィラメント 抗体で染色された (矢頭)。
図 20は、実施例のマウスの成熟脂肪細胞に由来する PAを分化転換させた神経細胞 の顕微鏡写真を示す。 A.神経細胞へと分化誘導しなかった PAを示した。いずれの細胞も線維芽細胞様の 形態が維持されている。
B. 分化誘導 17時間後、神経細胞様の形態を示した細胞がネスチン抗体で染色され た。
C. 分化誘導 17時間後、神経細胞様の形態を示した細胞がニューロン特異的ェノラ ーゼ抗体で染色された。
D. 分化誘導 17 時間後、神経細胞様の形態を示した細胞が ]3 III-チューブリン抗体 で染色された。
E. 分化誘導 17時間後、神経細胞様の形態を示した細胞が MAP2抗体で染色され た。
F. 分化誘導 17時間後、神経細胞様の形態を示した細胞がニューロフィラメント抗体 で染色された。
[発明を実施するための最良の形態]
以下、本発明を具体的に説明する。
本発明において、ブタ及びマウスの成熟脂肪細胞由来の PAを分化転換誘導するこ とにより骨芽細胞、筋芽細胞、軟骨細胞、上皮細胞または神経細胞を取得する。この 分化転換の方法としては、従来の細胞の分化転換に用いられるいずれの方法でも用 いることができる力 特に、前記 PA株を血清添加培地に浮遊させ、これを、コラーゲン タイプ 1またはタイプ 3を塗布した組織培養皿あるいはフラスコに播種し、 5%炭酸ガス、 95%空気の気相に調節した炭酸ガス培養装置内で培養し、コンフルェントに到達した ら、培地を分化誘導培地に交換し、 10〜20日間培養を行うとよい。
この分化誘導培地は、従来分ィ匕誘導培地として用いられるいずれの培地を用いても よいが、例えば骨芽細胞ではデキサメタゾンあるいは活性ビタミン D3、ァスコルビン酸、 β -グリセ口リン酸及ぴ血清を添加したダルベッコ一変法イーグル培地を用い、 10〜20 日間培養を行うとよい。筋芽細胞では、ハイド口コルチゾン及ぴ血清を添加したダルべ ッコ一変法イーグル培地を用レ、、 10〜18 日間培養を行うとよぐ軟骨細胞では、インス リン、ァスコルビン酸、トランスフォーミング増殖因子 ]3 3及び血清を添加したダルべッ コー変法イーグル培地を用い、 2週間培養を行うとよい。また、上皮細胞では、プロラタ チン、デキサメタゾン、 ITS (インスリン'トランスフェリン 'セレニウム)、 Hepes (N_(2 - Hydroxyetnyl)piperazine— Nし (2— ethanesulfonic acid))及び Jk清を添カロしたタノレ べッコ一変法イーグル培地を用い、 10〜; 18 日間培養を行うとよ 神経細胞では、 13 - メルカプトエタノール、血清を添加したダルベッコ一変法イーグル培地で 12時間培養 した後、 ]3 -メルカプトエタノールを添加したダルベッコ一変法イーグル培地で 5 時間 培養を行うとよい。
このようにして培養した細胞から分化転換された骨芽細胞の同定は、アルカリホスフ ァターゼ染色おょぴ比活性値の測定、ォステオカルシン抗体による免疫染色、フォン コッサ染色法おょぴ石灰化した細胞外マトリックスの形成を指標として行うとよい。
そして、この培地から骨芽細胞の分離は、まず培地かち細胞を遊離させ、細胞を培 養液のなかに懸濁させ、遠心分離することによって上層に脂肪滴を蓄積した脂肪細胞 が、下層(沈澱画分)に骨芽細胞が分離されるので、この下層の骨芽細胞を採取する ことによって行われる。
筋芽細胞の同定には、筋決定因子である Myf5、 MyoDおよびミオゲニン抗体による 免疫染色法を指標として行うとよぐ軟骨細胞の同定には、アルシアンブルー染色、ド ルイジンブルー染色およびコラーゲンタイプ Πによる免疫染色を指標として行うとよい。 また、上皮細胞の同定には Ε-カドヘリン、ビンキュリン、ケラチン及ぴ ΖΟ- 1抗体による 免疫染色を指標として行うとよぐ神経細胞の同定には、ネスチン、ニューロン特異的 エノラーゼ、 βチュープリン、 ΜΑΡ2及びニューロフィラメント抗体による免疫染色を指 標として行うとよレ、。
[実施例]
次に本発明を具体化した実施例を示すが、本発明は、いかなる場合でもこのような 実施例に限定して解釈されるものではない。
(1)成熟脂肪細胞の骨芽細胞への分化転換誘導
ブタおよびマウスの皮下脂肪組織中の成熟脂肪細胞を用いて、(特開 2000— 83656号公報に記載した方法で成熟脂肪細胞由来の ΡΑ株を作出した。
すなわちプタの ΡΑ株は以下の工程より得られた。 6ヶ月齢の雄豚より採取した皮下 脂肪組織 4gを 1%コラゲナーゼ (TypeII;SIGMA)添加の Hepes含有ダルベッコ変法ィ 一ダル培地(Hepes- DMEM;日水製薬)に入れ、コラゲナーゼ処理を行った後、ナイ口 ンメッシュにて濾過し、細胞懸濁液を得た。得られた細胞懸濁液を 3分間、 106Gで遠 心分離し、上層に分離される単胞性脂肪画分を新鮮な 3%FCS添加 Hepes-DME 培地に加え、 3分間、 106Gの遠心分離を 3回繰り返すことで、単胞性脂肪細胞を得 た。単胞性脂肪細胞を組織培養フラスコ(Falcon, 3107)に移し、 20%FCS、 1.8mg/ml NaHC03および 0.08mg/mlカナマイシン-硫酸塩を添加した DMEM培地でフラスコ内 を完全に満たし、 37°C、 5%C02, 95%空気の気相に調節した炭酸ガス培養装置内 にフラスコ底面が上となるように静置して 6日間培養した。培養 4日後には大部分の細 胞がフラスコ天井面にしつ力 と接着し、大型の脂肪滴の周辺に種々の大きさの脂肪 滴を有する多胞性脂肪細胞へと形態変化した。培養 6 '日後には脂肪滴がさらに小さく なり、脂肪滴をまったく持たない繊維芽細胞様 (FA)の形態に変化する細胞が多数観 察された。培養 6日後にフラスコ内の培地を 20%FCS添カ卩 DMEM培地に交換し、細 胞接着面が底面になるようにして炭酸ガス培養装置内で 16 日間培養を続けた。培地 交換は 4日毎に行った。脂肪滴を持たない FAは活発に増殖し、培養 14日後にはフラ スコ内の細胞は FAのみとなり、コンフルェントに達した。
ブタの成熟脂肪細胞由来の FAは、活発な増殖能を有し、また DEX、 INS, IBMX 等の分化誘導剤により、脂肪滴を有する脂肪細胞に再分化する分化能を有することか ら、単胞性脂肪細胞由来の PAとして作出された(図 1A)。以下、実施例中の PAは同 様に作出されたものを用いた。
作出された PAを 1 X 104 cells/mlとなるように 20%血清添加した DMEM培地に再 浮遊させた。その後、コラーゲンタイプ 1を塗布した組織培養用の培養皿(Falcon, 3001)中に播種し、 37°C、 5%C02、 95%空気の気相に調節した炭酸ガス培養装置内 に静置して培養した。なお、培地の交換は 4日ごとに行った。培養 8日後、コンフルェ ントに到達した PAの培地を 0.1 μ Μデキサメタゾンおよび 10%血清添加した DMEM 培地 (分化誘導培地)に交換し、 10日間培養した。
またマウスの ΡΑ株は以下の工程より得られた。グリーンフローラセントタンパク質 (GFP)遺伝子を導入したトランスジエニックマウスの 6週齢の雄マウスより採取した皮下 脂肪組織 2gを得て、上記と同様の方法で細胞懸濁液を得た。得られた細胞懸濁液よ り上記と同様の方法で、単胞性脂肪細胞を得て、上記と同様に培養することで、脂肪 滴をまったく持たない繊維芽細胞様 (FA)の形態に変化する細胞が多数観察された 段階で、細胞接着面が底面になるようにして上記と同様に培養を継続することで、脂 肪滴を持たず、活発に増殖する FAを得た。
マウスの成熟脂肪細胞由来の FAは、活発な増殖能を有し、また DEX、 INS、 IBM X等の分化誘導剤により、脂肪滴を有する脂肪細胞に再分化する分化能を有すること から、単胞性脂肪細胞由来の PA株 (GFP- PA)として作出された(図 1B)。以下、実施 例中の PAは同様に作出されたものを用いた。
作出された PAは上記と同様の方法で培養し、培養 8日後、コンフルェントに到達し た PAの培地を 0.1 Mデキサメタゾンおよび 10%血清添加した DMEM培地(分化誘 導培地)に交換し、10日間培養した。また、増殖期における種々の転写因子群の発現 状況を調べ PPAR y、 Cbfalおよび Myf5の発現を図 2に示した。
(2)骨芽細胞の同定方法
前記(1)の方法により作出されたプタの成熟脂肪細胞由来の PAとマウスの成熟脂 肪細胞由来の PAがそれぞれ骨芽細胞に分化されていることを次の方法で同定した。 すなわち、骨芽細胞の同定は、アルカリホスファターゼ染色おょぴ比活性値の測定、 ォステオカルシン抗体による免疫染色、フォンコッサ染色法および石灰化した細胞外 マトリックスの形成を指標として行つた。
1)アルカリホスファターゼ (AP)およびオイルレッド(OR) 0染色
ブタの成熟脂肪細胞由来の PAは分ィヒ誘導 8日後に、マウスの成熟脂肪細胞由来 の PAは分化誘導 7日後に、それぞれ以下に示す方法で細胞を固定したのち、アル力 リホスファターゼ (AP)およびオイルレッド(OR) 0で二重染色した。培養皿中の分化誘 導培地に 1mlの 4%ホルマリン液を添加し、室温で 20分間静置して前固定を行なった。 前固定液を除去したのち、新たに 2mlの 4%ホルマリン液を加え、室温で 1時間静置 した。固定液を除去したのち、 2mlの蒸留水で 3回洗浄した。 40 mgのファストブルー BB (和光純薬)を溶解した 0.1Mトリス緩衝液 (Tris-HCl pH9.0) 50 mlに 8 mgナフトー ル AS- TRホスフェート Na(SIGMA)を予め添加した 0.5 ml n-nジメチルホルムアミド(和 光純薬)を混合した。さらに MgCl2を加えた混合液を濾過し、 AP染色液を準備した。 ついで、準備した AP染色液を 2mlを加え、 37°Cの恒温槽内に 1時間静置した。 AP 染色液を除去したのち、 2mlの蒸留水で 3回洗浄した。引き続き、 0.5gのオイルレッド 0 (SIGMA)添加した 100mlのイソプロピルアルコールと蒸留水を 3:2の比率で混合し たのち濾過した。 2mlの ORO染色液を加え、室温で 20分間静置した。
2)ォステオカルシン抗体による免疫染色
ブタの成熟脂肪細胞由来の PAは分化誘導 16日後に、マウスの成熟脂肪細胞由来 の PAは分化誘導 12日後に、それぞれ上記と同様の固定方法を用いて細胞を固定し たのち、リン酸緩衝液 (PBS)で洗浄した。 2%過酸化水素水 PBSで 3回洗浄して内因 性パーォキシダーゼ活性を阻害した。さらに、内因性アビジン-ビォチンを阻害しのち、 正常血清添加 PBSで 20分間ブロッキングしたのち、ォステオカルシン抗体(400倍希 釈)を 4°C、 20時間反応させた。 PBSで 2回洗浄後、希釈ビォチン化 2次抗体で 30分 間反応させたのち、 PBSで 2回洗浄した。ついで、 ABC試薬で 60分間反応させた。反 応後、 Tris- HC1で洗浄したのち、 10分間 DAB染色した。蒸留水で 3回洗浄したのち、 観察に供試した。
3)フォンコッサ染色法 on Kossa histochemicai methods)
ブタの成熟脂肪細胞由来の PA及びマウスの成熟脂肪細胞由来の PAは分化誘導 16 日後に、それぞれ上記と同様の固定方法を用いて細胞を固定したのち、リン酸緩 衝液 (PBS)で 3回洗浄した。 5%硝酸銀 PBSで紫外線照射しながら 60 ^間浸漬した。 蒸留水で注意深く 3回洗浄したのち、 5%チォ硫酸ナトリウム溶液に 3分間浸漬した。 蒸留水で 2回洗浄後、観察に供試した。
このようにして取得されたブタの成熟脂肪細胞由来の PAより分化誘導された骨芽細 胞の顕微鏡写真を図 3〜6に示した。またマウスの成熟脂肪細胞由来の PAより分化 誘導された骨芽細胞の顕微鏡写真を図 7に示した。これらの図に見られるようにブタ及 ぴマウスの成熟脂肪細胞に由来する PAの分化転換誘導により骨芽細胞が取得され ることが確認された。
(3)骨芽細胞と脂肪細胞の分離方法
細胞をカルシウムおよびマグネシウムを含まない PBSで 3回洗浄したのち、 0.1%トリ プシンおよび Ο.ΟΡ/oEDTA添カ卩 PBSで 3分間処理した。細胞が完全に遊離したのを 確認したのち、 20%ゥシ FCS添カ卩 DMEM培地をカ卩えて細胞を浮遊させた。細胞を遠 沈管に移したのち 800Gで遠心分離し、上層に脂肪滴を蓄積した脂肪細胞と沈殿画 分に骨芽細胞が分離された。上層の脂肪細胞を除去し、沈殿画分の骨芽細胞を取得 した。
(4)成熟脂肪細胞の筋芽細胞への分化転換誘導
前記(1)記載の方法により作出されたブタの成熟脂肪細胞由来の PAとマウスの成 熟脂肪細胞由来の PAを、それぞれ 1 X 104 cells/mlとなるように 20%血清添加した DME 培地に再浮遊させた。その後、コラーゲンタイプ 1を塗布した組織培養用の培 養皿 (Falcon, 3001)中に播種し、 37°C、 5%C02, 95%空気の気相に調節した炭酸ガ ス培養装置内に静置して培養した。培地の交換は 4日ごとに行った。プタの成熟脂肪 細胞由来の PAは培養 8日後に、マウスの成熟脂肪細胞由来の PAは培養 5日後にコ ンフルェントに到達した PAの培地を 50 μ Mハイド口コルチゾン、 10%血清添加した DME 培地 (分化誘導培地)に交換し、 10日間培養した。
(5)筋芽細胞の同定方法
培養された細胞が筋芽細胞に分化されていることを次の方法で同定した。すなわち、 筋芽細胞の同定は、筋芽細胞の決定因子である Myf5、 MyoDおよぴ筋細胞のコミット メント因子であるミオゲニン抗体による免疫染色を指標として行った。
1) Myffiおよび MyoD抗体による免疫染色
分化誘導 4日後に以下に示す方法で細胞を固定した。培養皿中の分化誘導培地と 等量の 4%ホルマリン液を添カ卩し、室温で 20分間静置して前固定を行なった。前固定 液を除去したのち、新たに 2mlの 4°/。ホルマリン液をカ卩え、室温で 1時間静置した。固 定液を除去後、リン酸緩衝液 (PBS)で洗浄した。 2%過酸化水素水 PBSで 3回洗浄し て内因性パーォキシダーゼ活性を阻害した。さらに、内因性アビジン -ビォチンを阻害 しのち、正常血清添加 PBSで 20分間ブロッキングしたのち、 Myffiあるいは MyoD抗 体 (400倍希釈)を 4°C、20時間反応させた。 PBSで 2回洗浄後、希釈ビォチン化 2次 抗体で 30分間反応させたのち、 PBSで 2回洗浄した。ついで、 ABC試薬で 60分間反 応させた。反応後、 Tris-HClで洗浄したのち、 10分間 DAB染色した。蒸留水で 3回洗 浄したのち、観察に供試した。 2)ミオゲニン抗体による免疫染色
ブタの成熟脂肪細胞由来の PAは分化誘導 10— 18 日後に、マウスの成熟脂肪細胞 由来の PAは分化誘導 7— 10 日後に、上記と同様の固定方法を用いて細胞を固定し たのち、リン酸緩衝液(PBS)で 3回洗浄した。 2%過酸化水素水 PBSで 3回洗浄して内 因性パーォキシダーゼ活性を阻害した。さらに、内因性アビジン-ビォチンを阻害し、 正常血清添加 PBSで 20分間ブロッキングしたのち、ミオゲニン抗体 (300倍希釈)を 4°C、 20時間反応させた。 PBSで 2回洗浄後、希釈ビォチン化 2次抗体で 30分間反応 させたのち、 PBSで 2回洗浄した。ついで、 ABC試薬で 60分間反応させた。反応後、 Tris-HClで洗浄したのち、 10分間 DAB染色した。蒸留水で 3回洗浄したのち、観察 に供試した。
このようにして得られたプタの成熟脂肪細胞由来の PAより分化誘導された筋芽細胞 の顕微鏡写真を図 8〜 10に示した。また、マウスの成熟脂肪細胞由来の PAより分化 誘導された筋芽細胞の顕微鏡写真を図 11に示した。これらの図に見られるように成熟 脂肪細胞に由来する PAの分化転換誘導により筋芽細胞が取得されることが確認され た。ブタの成熟脂肪細胞由来の PAより分化誘導された筋芽細胞は、分化転換誘導 1 8日後には多くの細胞が筋芽細胞特異的なマーカーを発現した。また、マウスの成熟 脂肪細胞由来の PAより分化誘導された筋芽細胞は、分化転換誘導 10日後には、そ の殆どの細胞が筋芽細胞特異的なマーカーを発現した。
(6)成熟脂肪細胞の軟骨細胞への分化転換誘導
前記(1)記載の方法により作出されたブタの成熟脂肪細胞由来の PAとマウスの成 熟脂肪細胞由来の PAを、それぞれ I X 105 cells/mlとなるように 20%血清添加した DMEM培地に再浮遊させた。その後、コラーゲンタイプ 1を塗布した組織培養用の培 養皿 (Falcon, 3001)中に播種し、 37°C、 5%C〇2、 95%空気の気相に調節した炭酸ガ ス培養装置内に静置して培養した。培地の交換は 4日ごとに行った。ブタの成熟脂肪 細胞由来の PAは培養 8日後に、マウスの成熟脂肪細胞由来の PAは培養 5日後に、 コンフルェントに到達した PAの培地を 5 μ gインスリン、 50 μ Μァスコルビン酸、 ΙΟηΜ トランスフォーミング増殖因子 3および 1 %血清添加した DMEM培地 (分化誘導培 地)に交換し、プタの成熟脂肪細胞由来の PAは 10—18日間培養し、マウスの成熟脂 肪細胞由来の PAは 14日間培養した。なお、対照区としては、分化誘導しない PAを■ また軟骨細胞に分化するラット由来の L6細胞株をポジティブコントロールに用いた。
(7)軟骨細胞の同定方法
培養された細胞が軟骨細胞に分化されていることを次の方法で同定した。すなわち、 軟骨細胞の同定には、アルシアンブルー染色、ドルイジンブルー染色おょぴコラーゲ ンタイプ II抗体による免疫染色を指標として行なった。
1)アルシアンブルー染色
ブタの成熟脂肪細胞由来の PAは分化誘導 8日後に、マウスの成熟脂肪細胞由来の PAは分化誘導 .14 日後に、以下に示す方法で細胞を固定したのち、アルシアンブル 一 (AB)で染色した。培養皿中の分化誘導培地に 1mlの 4%ホルマリン液を添加し、室 温で 20分間静置して前固定を行なった。前固定液を除去したのち、新たに 2mlの 4% ホルマリン液を加え、室温で 1時間静置した。固定液を除去したのち、 2mlの蒸留水で 3回洗浄した。 lOOmgの ABを 10 mlの 0.1N HC1に溶解し、濾過して AB染色液を準 備した。ついで、 2mlの 0.1N HC1を細胞を固定した培養皿に入れ、 5分間室温下で 保持した。 0.1N HC1を除去したのち、 2mlの AB染色液に 30分間浸漬した。 AB染色 液を除去したのち、 2mlの蒸留水で 3回洗浄した。
2)トルイジンブルー染色
ブタの成熟脂肪細胞由来の PAは分化誘導 8日後に、マウスの成熟脂肪細胞由来 の PAは分化誘導 14日後に、以下に示す方法で細胞'を囱定したのち、トルィジンブル 一 (TB)で染色した。培養皿中の分化誘導培地に 1mlの Rossman' s固定液を添加し、 室温で 20分間静置して前固定を行なった。前固定液を除去したのち、新たに 2mlの Rossman' s固定液を加え、室温で 1時間静置した。固定液を除去したのち、 2mlの蒸 留水で 3回洗浄した。ついで、 2mlの 0·05%(%) TB染色液に 60分間浸漬することに よって染色した。 TB染色液を除去したのち、 2mlの蒸留水で 3回洗浄した。
3)コラーゲンタイプ 2抗体による免疫染色
ブタの成熟脂肪細胞由来の PAは分化誘導 16日後に、マウスの成熟脂肪細胞由来 の PAは分化誘導 14日後に、上記と同様の固定方法を用いて細胞を固定したのち、 リン酸緩衝液 (PBS)で洗浄した。 2%過酸化水素水を加えた PBSで 3回洗浄して内因 性パーォキシダーゼ活性を阻害した。さらに、内因性アビジン-ビォチンを阻害しのち、 正常血清添加 PBSで 20分間ブロッキングしたのち、コラーゲンタイプ 2抗体(1000倍 希釈)を 4°C、20時間反応させた。 PBSで 2回洗浄後、希釈ビォチン化 2次抗体で 30 分間反応させたのち、 PBSで 2回洗浄した。ついで、 ABC試薬で 60分間反応させた。 反応後、 Tris- HC1で洗浄したのち、 10分間 DAB染色した。蒸留水で 3回洗浄したの ち、観察に供試した。
このようにして取得された対照区およびブタの成熟脂肪細胞由来の PAより分化誘導 された軟骨細胞の顕微鏡写真を図 12 (A—D)に示した。また、マウスの成熟脂肪細胞 由来の PAより分化誘導された軟骨細胞の顕微鏡写真を図 13に示した。ポジティブコ ントロールである L6細胞株と同様に AB'染色、 TB染色およびコラーゲンタイプ 2免疫 染色によって、これらの図に見られるように成熟脂肪細胞に由来する PAの分化転換 誘導により軟骨細胞が取得されることが確認された。
(8)成熟脂肪細胞の乳腺上皮細胞への分化転換誘導
グリーンフローラセントタンパク質(GFP)遺伝子を導入したトランスジエニックマウス の皮下脂肪組織中の成熟脂肪細胞を用いて、前記(1)に記載した方法で成熟脂肪 細胞由来の PA株(GFP- PA)を作出した。また、妊娠中期の野生型雌マウスの乳腺組 織より、 Emermanら(Proc. Natl. Acad. Sci. USA, 74: 4466-4470, 1977)の方法に従つ て し腺上皮細胞 (ME)を採取した。すなわち、乳腺組織を PBSで 3回洗浄したのち、 0.5%(w/v)トリプシン + 0.05%(w/v)EDTA液中にて組織を細切した。 ついで、 37°Cで 30分間水平震盪したのち、0.1%(w/v) I型コラゲナーゼおよび 5%FCS(v/v) 添加した DMEMを加えて、さらに 37°Cで 45分間撹拌(100〜120回/分)した。その 後、細胞懸濁液を遠心処理 ( X 200g,、 1分間)して上清を除去したのち、 10mlの 10% FCS添加 DMEMで再浮遊させた。同様の遠心洗浄処理を 3回することによって、血球 系細胞や繊維芽細胞を除去した。細胞懸濁液を 150 mのメッシュで濾過して未消化 の組織を除去して、最終的に得られた乳腺上皮細胞を培養に用いた。得られた乳腺 上皮細胞を GFP- PAおよび MEを 20%血清添加した DMEM培地に再浮遊させ、 1 型コラーゲン(1.5%)内にて 3次元培養を行なった。培養 2日後まで 20%血清添加 DMEM培地で、それ以後は 5.0 mg/mlゥシ血清アルブミン、 5 μ g/mlプロラタチン、 1 μ g/mlデキサメタゾン、 0.01%(v/v)ITSおよび 10 mM Hepesを添加した培地(分化誘 導培地)に交換し、 37°C、 5%C02、 95%空気の気相に調節した炭酸ガス培養装置内 に静置して 2週間培養した。培養 2週間後にコラーゲンを培養皿底面から引きはがし て浮遊させ、更に 2週間培養を行なった。
(9)乳腺上皮細胞の同定方法
共培養された GFP-PAが MEに分化転換していることを次の方法で同定した。すな わち、 GFP - PA由来の MEの同定には、 GFP発現している細胞であることが大前提で あるが、さらに上皮細胞特異的に発現している E-カドヘリン、ビンキュリン、ケラチンお よび ZO- 1の抗体を用いた免疫染色を指標として行なった。なお、対照区には、野生 型の MEを用いた。
1) E-カドヘリン、ビンキュリン、ケラチンおよび ZO- 1抗体による免疫染色
分化誘導 28日後、培養皿中のコラーゲンゲルを取りだし、 PBSで洗浄後に常法に従 つて凍結切片作製用の 0·Τ· コンパウンド (Tissue Tek.)で包埋した。その後、コール ドトームで 0.5; mの凍結連続切片を作製した。切片を 4%ホルマリン液に浸漬し、室 温で 1時間静置することによって固定したのち、リン酸緩衝生理食塩水(PBS)で 3回 洗浄した。 0.1% (v/v) Tween20添カ卩 PBS(T- PBS)に 5分間浸漬したのち、 1.5% (v/v) ゥサギ血清添加した PBSで 60分間ブロッキングを行なった。その後、種々の濃度に希 釈した E-カドヘリン、ビンキュリン、ケラチンおよび ZO- 1抗体(200— 1000倍希釈)で 4°C、 18時間反応させた。 200倍希釈した TRITC標識したマウス抗体で室温下、 30分 反応させた。次いで、遮光下において PBSで 2回洗浄し、標本を風乾したのち、光学 顕微鏡ある 、は蛍光顕微を用 ヽて観察を行なつた。
このようにして得られた成熟脂肪細胞に由来する MEの顕微鏡写真を図 14— 17に 示した。 GFP-PAは 3次元培養下で集合して管状構造を形成すること(図 17)、またそ れらはポジティブコントロールと同様の中心に腺胞腔のあるドーナッツ状の腺胞構想を とり(図 16)、上皮細胞様の形態を示した。免疫染色の結果、上皮細胞様の形態を示 した GFP- PAは E-カドヘリン、ビンキュリン、ケラチンおよび ZO-1抗体に染色された (図 16— 17)。これらの図に見られるように成熟脂肪細胞に由来する GFP - PAが MEに 分化転換し、乳腺胞を形成することが確認された。 (10)成熟脂肪細胞の神経細胞への分化転換誘導
前記(1)記載の方法により作出されたプタの成熟脂肪細胞由来の PAとマウスの成 熟脂肪細胞由来の PAを、それぞれ I X 105 cells/mlとなるようにブタの細胞は 20%血 清添加した DMEM培地に、マウスの細胞は 10%血清添加した DMEM培地に再浮遊す る。その後、コラーゲンタイプ 1あるいは 3を塗布した組織培養用の培養皿(Falcon, 3001)あるいはフラスコ(Falcon, 3107)中に播種し、 37°C, 5%C02, 95%空気の気相 に調節した炭酸ガス培養装置内に静置して培養した。神経細胞への分化誘導は、 Woodburyら(J. Neuro. Res., 61:364 - 370 2000)の方法に準じて行なった。すなわち、 培養 6— 7日後、 80%コンフルェントに到達したプタの PAの培地を 1-10 mM β -メルカ プトエタノール(BME)、 20%FCS添加 DMEM培地に交換し、マウスの PAの培地を 1-10 mM β -メルカプトエタノール(ΒΜΕ)、 10%FCS添加 DMEM培地に交換し、それぞれ 12 時間培養した。 PBSで洗浄後、神経細胞へ分化転換誘導するために ImM BME添加 DMEM培地 でさらに 5時間培養した。なお、対照区としては、分化誘導しない PAを、 また神経細胞に分ィ匕する Ngl08- 15細胞株をポジティブコントロールに用いた。
(11)神経細胞の同定方法
培養された PAが神経細胞に分化されていることを次の方法で同定した。すなわち、 神経細胞の同定には、ネスチン、ニューロン特異的エノラーゼ、 β m -チューブリン、 MAP2 (Microtubule— associated protein 2) およぴニューロフィラメント抗体による免疫 染色を指標として行なった。
培養後、分化誘導 12時間後に培養皿中の分化誘導培地に lmlの 4%ホルマリン液を 添加し、室温で 20分間静置して前固定を行なった。前固定液を除去したのち、新たに 2mlの 4%ホルマリン液を加え、室温で 1時間静置し、リン酸緩衝液(PBS)で洗浄した。 2%過酸化水素- PBSで 3回洗浄して内因性パーォキシダーゼ活性を阻害した。さらに、 内因性アビジン-ピオチンを阻害しのち、正常血清添加 PBSで 20分間ブロッキングした のち、ネスチン、ニューロン特異的エノラーゼ、 β III-チューブリンおよびニューロフイラ メント抗体(200— 1000倍希釈)を 4°C、 20時間反応させた。 PBSで 2回洗浄後、希釈ビ ォチン化 2次抗体で 30分間反応させたのち、 PBSで 2回洗浄した。ついで、 ABC試薬 で 60分間反応させた。反応後、 Tris- HC1で洗浄したのち、 10分間 DAB染色した。蒸留 水で 3回洗浄したのち、常法に従いへマトキシリンでカウンター染色し、観察に供試し た。
このようにして取得されたブタの成熟脂肪細胞に由来する神経の顕微鏡写真を図 18 一 19に示した。また、マウスの成熟脂肪細胞に由来する神経の顕微鏡写真を図 20に 示した。ブタ及ぴマウスの PAを神経細胞へと分化誘導した結果、それらの細胞は神 経細胞様の形態を示した (図 18、図 20)。免疫染色の結果、神経細胞様の形態を示し た PAは対照区と同様に、神経細胞分化の指標であるネスチン、ニューロン特異的ェ ノラーゼ、 β I I I -チューブリン、 ΜΑΡ2 およびニューロフィラメント抗体にそれぞれ 染色された(図 19)。これらの図に見られるように成熟脂肪細胞に由来するブタ及びマ ウスの ΡΑを分化転換誘導することにより神経細胞が得られることが確認された。
[産業上の利用可能性]
本発明の効果を列挙すると次のとおりである。
(1)本発明は、 ΡΑを分化転換誘導することで、骨芽細胞、筋芽細胞、軟骨細胞、上 皮細胞、神経細胞を取得するという分化転換機構解明のための唯一の方法である。こ れまで、脂肪細胞おょぴ骨細胞、筋細胞、軟骨細胞は同じ中胚葉性幹細胞を起源に もち、また、神経細胞、上皮細胞は外胚葉系幹細胞に由来することが知られている力 その分化の方向性は幹細胞からそれぞれの前駆細胞をへて脂肪細胞や骨細胞へと 終末分化すると考えられてきた。本発明は、それらの常識を覆し、成熟脂肪細胞を脱 分化させることによって得られた ΡΑを分ィヒ転換誘導することで骨芽細胞、筋芽細胞、 軟骨細胞、上皮細胞、神経細胞を取得することができる唯一の方法として、分化転換 機構の解明に著しく貢献する。
(2)新規の再生医療用のドナー細胞として以下のような効果力 Sある。
1)皮下脂肪を用いるので採取しやすく、ドナーの麻酔による危険性が低く、負担 が少ない。
2)多数の細胞が採取されるので、多くの成熟脂肪細胞数が得られ、それに比例 して多数の骨芽細胞、筋芽細胞、軟骨細胞、上皮細胞、神経細胞を得ることが できる。従って骨芽細胞、筋芽細胞、軟骨細胞、上皮細胞、神経細胞の採取 が著しく低コストで行うことができる。
3)成熟脂肪細胞はその構造から、単一な細胞群として採取することができるので、 均一な細胞群が特別な機器がなくても簡単に分採することができる。
4)成熟脂肪細胞由来の PAは線維芽細胞であるので、取り扱いが容易で特別な 培養技術を必要としない。
5)新生児から高齢者まで皮下脂肪は存在するので、治療対象者の年齢を問わ ず実施できる。
6)受精卵を用いず実施できるので、倫理面の制約を受けることがない。また、美 容整形外科等で廃棄されるものも再利用することができる。
[寄託された生物材料への言及]
ィ.当該生物材料を寄託した寄託機関の名称およびあて名
名称:独立行政法人産業技術総合研究所
特許生物寄託センター
あて名:日本国茨城県つくば巿東 1丁目 1番地 1中央第 6
口.ィの機関に寄託した日付
平成 16年 2月 20日(ブタペスト条約に基づく原寄託日)
ハ.ィの機関が寄託について付した寄託番号
FERM BP- 08645

Claims

請求の範囲
1. 脂肪組織由来の成熟脂肪細胞を脱分化させた前駆脂肪細胞株を分化転換 誘導することにより、他の機能を有する細胞を取得する方法。
2. 脂肪組織由来の成熟脂肪細胞を脱分化させた前駆脂肪細胞株が FERM BP - 08645である請求項 1に記載の他の機能を有する細胞を取得する方法。
3. 脂肪組織由来の成熟脂肪細胞が皮下脂肪組織由来の成熟脂肪細胞である 請求項 1に記載の他の機能を有する細胞を取得する方法。
4. 分化転換された他の機能を有する細胞が骨芽細胞である請求項 1〜3のい ずれかに記載の方法。
5. 分化転換された他の機能を有する細胞が筋芽細胞である請求項;!〜 3のい ずれかに記載の方法。
6. 分化転換された他の機能を有する細胞が軟骨細胞である請求項 1〜3のい ずれかに記載の方法。
7. 分化転換された他の機能を有する細胞が上皮細胞である請求項 1〜3のい ずれかに記載の方法。
8. 分化転換された他の機能を有する細胞が神経細胞である請求項 1〜3のい ずれかに記載の方法。
9. 請求項 1〜8のいずれかの培養方法を用いて分化転換された細胞。
10.細胞が骨芽細胞である請求項 9に記載の細胞。
11.細胞が筋芽細胞である請求項 9に記載の細胞。
12.細胞が軟骨細胞である請求項 9に記載の細胞。
13. 細胞が上皮細胞である請求項 9に記載の細胞。
14. 細胞が神経細胞である請求項 9に記載の細胞。
PCT/JP2004/007322 2003-06-13 2004-05-21 前駆脂肪細胞由来の分化細胞及びその取得方法 WO2004111211A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/560,595 US20080044899A1 (en) 2003-06-13 2004-05-21 Differentiated Cells Originating in Precursor Fat Cells and Method of Acquiring the Same
EP04734379A EP1637590B1 (en) 2003-06-13 2004-05-21 Differentiated cells originating in precursor fat cells and method of acquiring the same
AT04734379T ATE529503T1 (de) 2003-06-13 2004-05-21 Differenzierte zellen mit ursprung in vorläuferfettzellen sowie verfahren zur gewinnung davon
JP2005506883A JP5055613B2 (ja) 2003-06-13 2004-05-21 前駆脂肪細胞由来の分化細胞及びその取得方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003170011 2003-06-13
JP2003-170011 2003-06-13

Publications (1)

Publication Number Publication Date
WO2004111211A1 true WO2004111211A1 (ja) 2004-12-23

Family

ID=33549400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007322 WO2004111211A1 (ja) 2003-06-13 2004-05-21 前駆脂肪細胞由来の分化細胞及びその取得方法

Country Status (5)

Country Link
US (1) US20080044899A1 (ja)
EP (1) EP1637590B1 (ja)
JP (1) JP5055613B2 (ja)
AT (1) ATE529503T1 (ja)
WO (1) WO2004111211A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196503A1 (ja) 2013-06-06 2014-12-11 学校法人日本大学 歯周組織再生用材料
WO2017078007A1 (ja) * 2015-11-06 2017-05-11 学校法人日本大学 培養容器
JP2020066624A (ja) * 2018-10-18 2020-04-30 学校法人日本大学 壊死性腸炎治療用組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7020667B2 (ja) * 2017-12-11 2022-02-16 学校法人日本大学 哺乳動物由来の脱分化脂肪細胞から神経細胞を製造する方法及び哺乳動物由来の脱分化脂肪細胞から神経細胞への分化誘導用キット

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083656A (ja) 1998-09-09 2000-03-28 Meiji Milk Prod Co Ltd 前駆脂肪細胞株
JP2002537849A (ja) * 1999-03-10 2002-11-12 ユニヴァーシティ オヴ ピッツバーグ オヴ ザ コモンウェルス システム オヴ ハイアー エデュケーション 脂肪由来の幹細胞および格子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391297B1 (en) * 1997-12-02 2002-05-21 Artecel Sciences, Inc. Differentiation of adipose stromal cells into osteoblasts and uses thereof
US20030082152A1 (en) * 1999-03-10 2003-05-01 Hedrick Marc H. Adipose-derived stem cells and lattices
JP2004129549A (ja) * 2002-10-09 2004-04-30 Yasuo Kitagawa 脂肪由来細胞群からの間葉系幹細胞の選択的増殖方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000083656A (ja) 1998-09-09 2000-03-28 Meiji Milk Prod Co Ltd 前駆脂肪細胞株
JP2002537849A (ja) * 1999-03-10 2002-11-12 ユニヴァーシティ オヴ ピッツバーグ オヴ ザ コモンウェルス システム オヴ ハイアー エデュケーション 脂肪由来の幹細胞および格子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196503A1 (ja) 2013-06-06 2014-12-11 学校法人日本大学 歯周組織再生用材料
WO2017078007A1 (ja) * 2015-11-06 2017-05-11 学校法人日本大学 培養容器
JPWO2017078007A1 (ja) * 2015-11-06 2018-08-30 学校法人日本大学 培養容器
US11299699B2 (en) 2015-11-06 2022-04-12 Nihon University Culture container
JP2020066624A (ja) * 2018-10-18 2020-04-30 学校法人日本大学 壊死性腸炎治療用組成物
JP7348612B2 (ja) 2018-10-18 2023-09-21 学校法人日本大学 壊死性腸炎治療用組成物

Also Published As

Publication number Publication date
EP1637590A4 (en) 2006-08-02
EP1637590A1 (en) 2006-03-22
US20080044899A1 (en) 2008-02-21
EP1637590B1 (en) 2011-10-19
ATE529503T1 (de) 2011-11-15
JP5055613B2 (ja) 2012-10-24
JPWO2004111211A1 (ja) 2006-07-20

Similar Documents

Publication Publication Date Title
JP4862046B2 (ja) ヒト脂肪組織由来の多能性幹細胞及びそれを含む細胞治療剤
US9867854B2 (en) Therapeutic method using cardiac tissue-derived pluripotent stem cells
US9206393B2 (en) Isolated adult pluripotent stem cells and methods for isolating and cultivating thereof
RU2467066C2 (ru) Способ конструирования массы миокардиальных клеток и применение массы миокардиальных клеток
EP2374871B1 (en) Pluripotent stem cells, method for preparation thereof and uses thereof
CN102449141B (zh) 人脐带血来源的间充质干细胞的分离
US20070243172A1 (en) Multipotent stem cells derived from placenta tissue and cellular therapeutic agents comprising the same
JPWO2006006692A1 (ja) 低血清培養で選択的に増殖する動物組織遍在性の分化多能性細胞
JP6545690B2 (ja) 栄養膜基底層から由来した幹細胞及びそれを含む細胞治療剤
RU2433172C2 (ru) Способ получения гомогенной популяции стволовых клеток и ее применение
CN104946590A (zh) 成人骨髓中Muse细胞诱导为神经前体细胞的方法
WO2004083414A1 (ja) 単球由来多能性細胞momc
JPWO2008150001A1 (ja) adipocluster
JP4435178B2 (ja) 乳腺分泌物から細胞を単離するための方法
US20080241111A1 (en) Pluripotent Stem Cell Derived from Cardiac Tissue
JP2004129549A (ja) 脂肪由来細胞群からの間葉系幹細胞の選択的増殖方法
JP5055613B2 (ja) 前駆脂肪細胞由来の分化細胞及びその取得方法
US20180271913A1 (en) Pharmaceutical compositions for promoting hair follicle regeneration and methods for preparing the same
JP4294284B2 (ja) 体性幹細胞株または体性幹細胞クローンを用いた分化誘導方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506883

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004734379

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10560595

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004734379

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10560595

Country of ref document: US