WO2004110970A1 - Verfahren zur destillativen trennung eines vinylether und alkohol enthaltenden gemischs - Google Patents

Verfahren zur destillativen trennung eines vinylether und alkohol enthaltenden gemischs Download PDF

Info

Publication number
WO2004110970A1
WO2004110970A1 PCT/EP2004/006160 EP2004006160W WO2004110970A1 WO 2004110970 A1 WO2004110970 A1 WO 2004110970A1 EP 2004006160 W EP2004006160 W EP 2004006160W WO 2004110970 A1 WO2004110970 A1 WO 2004110970A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl ether
alcohol
distillation column
distillation
column
Prior art date
Application number
PCT/EP2004/006160
Other languages
English (en)
French (fr)
Inventor
Katrin Klass
Heike Becker
Regina Vogelsang
Alexander Hauk
Markus Siegert
Jochem Henkelmann
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to DE502004005217T priority Critical patent/DE502004005217D1/de
Priority to US10/560,135 priority patent/US7670464B2/en
Priority to JP2006515845A priority patent/JP2006527225A/ja
Priority to EP04739689A priority patent/EP1636158B1/de
Publication of WO2004110970A1 publication Critical patent/WO2004110970A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • C07C29/82Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation by azeotropic distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/05Preparation of ethers by addition of compounds to unsaturated compounds
    • C07C41/06Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only
    • C07C41/08Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only to carbon-to-carbon triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/40Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation
    • C07C41/42Separation; Purification; Stabilisation; Use of additives by change of physical state, e.g. by crystallisation by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S203/00Distillation: processes, separatory
    • Y10S203/20Power plant

Definitions

  • the present invention relates to a process for the distillative separation of a vinyl ether of the general formula (I)
  • R 1 and R 2 independently of one another denote a saturated or unsaturated, aliphatic or cycloaliphatic radical having 2 to 10 carbon atoms, in which the alcohol (II) has a boiling point which is at least 1 ° C higher, measured at or extrapolated to 0 , 1 MPa abs, as having the vinyl ether (II).
  • Vinyl ethers represent an important class of compounds with a wide range of applications. They are used, inter alia, as monomer building blocks in polymers and copolymers, in coatings, adhesives, printing inks and in radiation-curing paints. Further fields of application are the production of intermediates, odorants and flavorings as well as pharmaceutical products.
  • the technical preparation of vinyl ethers is generally carried out by reacting the corresponding alcohols with ethyne in the presence of basic catalysts (see Ullmann's Encyclopedia of Industrial Chemistry, 6 th edition, 2000 Electronic Release, Chapter "VINYL ETHERS - Production” and W. Reppe et al. , Justus Liebigs Ann. Chem., 601 (1956), pages 135 to 138).
  • the reaction mixture formed in addition to the catalyst and possible by-products mainly contains the vinyl ethers formed and the unreacted alcohol.
  • the latter two components are not separable by simple distillation into fractions of the desired purity except for the d-derivatives of methyl vinyl ether / methanol due to azeotrope formation.
  • EP-A 0 415 334 describes the one-stage or multistage extraction of a mixture containing vinyl ether and alcohol with an aqueous solution of a base, in which a vinyl ether phase and an aqueous alcoholic phase are obtained and the alcohol is subsequently obtained by distillation from the aqueous alcoholic phase becomes.
  • US 2,779,720 describes a process for the separation of a mixture containing an aliphatic vinyl ether and an aliphatic alcohol, in which this mixture is distilled together with water and a glycol or glycol ether.
  • the top product formed is an azeotropic mixture of the vinyl ether and water, from which the vinyl ether can be recovered in a further distillation.
  • As the bottom product remains a mixture containing the alcohol and glycol or Glykoiether from which the alcohol can be obtained by a subsequent distillation.
  • DE-A 1 000 804 discloses a process for working up a mixture which comprises a monovinyl ether of a polyhydric alcohol and a polyhydric alcohol, in which this mixture is distilled in the alkaline medium together with water or subjected to steam distillation.
  • an azeotropic mixture of the vinyl ether with water is obtained as the top product, leaving as residue in the bottom of the alcohol.
  • the top fraction obtained during the distillation can be extracted with a non-water-soluble solvent, the vinyl ether being converted into the organic phase and being able to be distilled from this.
  • SU 1 616 888 describes the separation of a mixture containing butanol and butyl vinyl ether by extractive distillation with water. From the azeotropic mixture formed as top product, which contains the butyl vinyl ether and water, the butyl vinyl ether is recovered in a subsequent distillation. The butanol-containing bottom product from the first distillation is treated in a further distillation and butanol is recovered.
  • US 3,878,058 discloses a process for recovering alkyl vinyl ethane from a mixture containing the alkyl vinyl ether and an aliphatic alcohol, in which this mixture is distilled together with a glycol monoether.
  • the alkyl vinyl ether is removed as the top product and obtained as the bottom product, an alcohol and glycol monoether-containing mixture. This is separated in a subsequent distillation in the alcohol and the glycol monoether and the latter recycled to the first distillation stage.
  • a disadvantage of all the above-mentioned methods is the addition of one or more foreign substances as auxiliaries. This adds new connections to the system, which must then be disconnected again.
  • the object was to find a method for the separation of a vinyl ether and alcohol-containing mixture, which does not have the disadvantages mentioned above and in particular with low equipment and process complexity, with high plant capacity and without the risk of contamination of the vinyl ether and / or of the alcohol by the addition of foreign substances as an aid to purified vinyl ether and alcohol.
  • R 1 and R 2 independently represent a saturated or unsaturated, aliphatic or cycloaliphatic radical having 2 to 10 carbon atoms-containing mixture in which the alcohol (II) has a higher by at least 1 0 C boiling point, measured at or extrapolated to 0 , 1 MPa abs, as the vinyl ether (II) found, which is characterized in that
  • the mixture is passed into a first distillation column and, as top product, azeotrope containing vinyl ether (I) and alcohol (II) and, as the bottom product, a stream enriched in the alcohol (II);
  • the process according to the invention thus comprises two distillation columns.
  • the mixture containing vinyl ether (I) and alcohol (II) is separated into an azeotrope containing vinyl ether (I) and alcohol (II) as the top product and a stream enriched in the alcohol (II) as the bottoms product.
  • the first distillation column is operated at a pressure of 0.01 to 1 MPa abs and preferably from 0.05 to 0.5 0 MPa abs, measured at the top of the column, wherein the pressure to be selected mainly depends on the vinyl ether to be separated (I) and alcohol (II) and the selected temperature in the
  • the temperature to be selected for each specific system and the pressure to be selected can be determined by a person skilled in the art by simple calculation or simple routine tests. In this case, there is a relationship between temperature and pressure for each specific system, so that the applicable parameter range usually by technical (eg design of the distillation column), economic (for example, investment costs and / or energy costs) and chemical (for example, no or only insignificant decomposition of the products ) Boundary conditions.
  • the first distillation column has a number of theoretical plates from 5 to 75, wherein the number of theoretical plates to be used for a particular system depends mainly on the vinyl ether (I) and alcohol (II) to be separated and on the expected separation efficiency.
  • the number of theoretical plates to be selected for each specific system can be determined by a person skilled in the art by simple calculation or simple routine tests.
  • any distillation column which contains the technical boundary conditions, in particular the desired separation performance, the required temperature stability, the required distillation column can be used as the first distillation column Pressure resistance and the required material resistance met.
  • these are columns with a metal jacket and separation-effective as well as non-separating internals.
  • trays or packs may be considered as separating internals.
  • the concentration of the alcohol (II) in the stream to be withdrawn as bottom product is generally> 90% by weight and preferably> 95% by weight.
  • the second distillation column is operated at a temperature of 75 to 225 ° C and preferably from 100 to 175 0 C, measured in the bottom of the column, wherein the temperature to be selected mainly depends on the vinyl ether (I) to be separated and alcohol (II ) and the selected pressure in the distillation column.
  • the second distillation column is operated at a pressure which is 0.01 to 3 MPa higher than that of the first distillation column.
  • the second distillation column is operated with respect to the first distillation column at a pressure which is 0.1 to 2 MPa higher.
  • a key parameter in determining the pressure to be applied is the desired separation efficiency.
  • the separation efficiency in the second distillation column is generally higher, the greater the pressure difference from the first distillation column.
  • the separation efficiency in the second distillation column is generally higher, the greater the pressure difference from the first distillation column.
  • Temperature and the pressure to be selected can be determined by the skilled person by simple calculation or simple routine tests. In this case, there is a relationship between temperature and pressure for each specific system, so that the parameter range to be applied is generally determined by technical (for example, design of the distillation column, separation efficiency, flow rates), economic (for example, investment costs and / or energy costs) and chemical (for example, none or only insignificant decomposition of the products).
  • the second distillation column has a number of theoretical plates from 5 to 75, wherein the number of theoretical plates to be used for a specific system depends mainly on the vinyl ether (I) and alcohol (II) to be separated and on the expected separation efficiency.
  • the number of theoretical plates to be selected for each specific system can be determined by a person skilled in the art by simple calculation or simple routine tests.
  • any distillation column which contains the technical boundary conditions, in particular the desired separation performance, the required temperature stability, the required distillation column can be used as the second distillation column
  • the removal of the vinyl ether (I) takes place in liquid form as the bottom product or in gaseous form as a side draw in the stripping section.
  • the removal of the vinyl ether (I) is preferably in the range of the lower 25% and more preferably in the range of the lower 10% of the total number of theoretical plates.
  • the formulation in the range of the lower 25% of the total number of theoretical plates in a distillation column with a total of 75 theoretical plates means that the gaseous sidestream is taken in the range of the first to nineteenth theoretical plate.
  • the advantage of the gaseous side draw is the improvement in the color number of the purely to be obtained vinyl ether (I), since unwanted high boilers can be kept away from the product.
  • the second distillation column it is generally advantageous to design and operate the second distillation column in such a way that ⁇ 20%, preferably ⁇ 50%, particularly preferably 75 75% and very particularly preferably 90 90% of the Mixture supplied amount of vinyl ether (I) are removed via the bottom product. Values ⁇ 20% generally lead to huge and thus uneconomical return flows.
  • the concentration of the vinyl ether (I) in the stream to be withdrawn as the bottom product is generally> 97.5% by weight and preferably> 99.5% by weight.
  • FIG. 1 shows a simplified block diagram of the method according to the invention.
  • the vinyl ether (I) and alcohol (U) containing stream (a) is fed via line (1) of the first distillation column A.
  • As the bottom product via line (2) with an alcohol (II) enriched stream (b) is removed.
  • the vinyl ether (I) and alcohol (II) containing azeotrope, which is taken overhead, is fed via line (3) of the second distillation column B. From this is taken as the bottom product or as a gaseous side draw in the stripping section of the vinyl ether (I) (c) via line (4).
  • the vinyl ether (I) and alcohol (II) containing azeotrope, which is taken off as the top product, is recycled via line (5) to the first distillation column A.
  • the vinyl ether (I) withdrawn as the bottom product or as a gaseous side draw in the stripping section of the second distillation column is generally still contaminated with minor secondary components such as acetals, it is preferably passed into a purifying distillation column and the top of the purified vinyl ether (I).
  • the design of the pure distillation column and the determination of the distillation parameters can be determined by the skilled person by simple calculation or simple routine experiments.
  • FIG. 2 shows a simplified block diagram of this preferred method of the invention.
  • the stream comprising vinyl ether (I) taken off as the bottom product or as a gaseous side draw in the stripping section of the second distillation column is fed via line (4) to the purifying distillation column C.
  • As the bottom product via line (7) is a stream with the higher-boiling
  • the purified vinyl ether (I) (d) is taken off as overhead product via line (6).
  • the mixture to be used in the process according to the invention contains a vinyl ether (I) of the general formula (I)
  • radicals R 1 and R 2 independently of one another denote a saturated or unsaturated, aliphatic or cycloaliphatic radical having 2 to 10 carbon atoms, and in which the alcohol (II) has a boiling point which is at least 1 ° C higher, measured at or extrapolated to 0.1 MPa abs, as the vinyl ether (II) has.
  • the alcohol (II) preferably has a boiling point which is at least 2 ° C. and more preferably at least 5 ° C., measured at or extrapolated to 0.1 MPa abs, as the vinyl ether (II).
  • C 2 to C 10 alkyl radicals such as, for example, ethyl, 1-propyl, 2-propyl (sec-propyl), 1-butyl, 2-butyl (sec-butyl), 2-methyl-1-propyl (iso Butyl), 2-methyl-2-propyl (tert-butyl), 1-pentyl, 2-pentyl, 3-pentyl, 3-methyl-2-butyl, 2-methyl-2-butyl, 1-hexyl, 1 Heptyl, 1-octyl, 2-ethyl-1-hexyl, 1-nonyl, 1-decyl;
  • alkenyl radicals such as ethenyl (vinyl), 1-prop-1-enyl, 2-prop-1-enyl, 3-prop-1-enyl, 1-but-1-enyl, 2-but-1-enyl, 3-but-1-enyl, 4-but-1-enyl, 1-but-2-enyl, 2-but-2-enyl, 3-but-2-enyl, 4- but-2-enyl;
  • C 2 to do-cycloalkyl radicals such as, for example, cyclopentyl, 2-methylcyclopentyl, 3-methylcyclopentyl, cyclohexyl, 2-methylcyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, cycloheptyl, cyclooctyl;
  • C 2 to C 10 cycloalkenyl radicals such as 1-cyclopent-1-enyl, 3-cyclopent-1-enyl, 4-cyclopent-1-enyl, 1-cyclohex-1-enyl, 3-cyclohex -1-enyl, 4-
  • a mixture comprising vinyl ether (I) and alcohol (II), in which the radicals R 1 and R 2 independently of one another are a C 2 - to C 4 -alkyl radical, in particular ethyl, 1 -propyl, 2 Propyl (sec.propyl), 1-butyl, 2-butyl (sec.butyl), 2-methyl-1-propyl (iso-butyl) and 2-methyl-2-propyl (tert-butyl).
  • a mixture containing vinyl ether (I) and alcohol (II) is used, in which the radicals R 1 and R 2 are identical.
  • the use of the following vinyl ether (I) and alcohol (II) -containing mixtures is thus very particularly preferred:
  • the vinyl ether (I) and alcohol (II) mixture used is derived from the vinyl ether synthesis by reacting the alcohol (II) with ethyne in the presence of a basic alkali metal or alkaline earth metal compound; Alcohol (II) enriched bottom product from the first distillation column low boilers and high boilers by distillation and leads the purified alcohol (U) back to the vinyl ether synthesis.
  • the separation by distillation of the low boilers and high boilers from the enriched with the alcohol (II) bottoms product from the first distillation column is carried out in the aforementioned preferred method according to the invention in a dividing wall column or an array of conventional or thermally and / or materially coupled distillation columns. Particular preference is given to said distillative separation in a dividing wall column or an arrangement of thermally and / or materially coupled distillation columns.
  • FIG. 3 shows a simplified block diagram of this preferred method according to the invention.
  • the stream containing alcohol (II) withdrawn as bottom product of the first distillation column is conducted via line (2) to the dividing wall column D or an arrangement of conventional or thermally and / or materially coupled distillation columns.
  • the purified alcohol (II) is taken from the dividing wall column D or the arrangement of conventional or thermally and / or materially coupled distillation columns as side draw and returned via line (10) to the synthesis stage S.
  • a mixture containing vinyl ether (I) and alcohol (II) which originates from the vinyl ether synthesis by reaction of the alcohol (II) with ethyne in the presence of a basic alkali metal or alkaline earth metal compound and in which the radicals R 1 and R 2 are identical and represent a C 2 - to C 4 -alkyl radical.
  • This mixture is separated analogously to the description of the simplified block diagram of Figure 1 into a stream containing alcohol (II) and a stream containing vinyl ether (I).
  • the stream containing the alcohol (II) is to be further purified, this is preferably purified analogously to the description of the simplified block diagram of FIG. 3 by a subsequent distillation in a dividing wall column or an arrangement of thermally and / or materially coupled distillation columns ,
  • the resulting alcohol (II) containing stream is then returned to the synthesis stage.
  • the stream containing vinyl ether (I) is purified by subsequent distillation analogously to the description of the simplified block diagram of FIG. 2, and the purified vinyl ether (I) is recovered as top product.
  • the first distillation column generally comprises from 5 to 75 theoretical plates and is at a pressure of 0.01 to 1 MPa abs, measured at the top of the column, and a temperature of 75 to 225 ° C, measured in the bottom of Column, operated.
  • the second distillation column generally comprises from 5 to 75 theoretical plates and is operated at a pressure of 0.1 to 2 MPa higher than the first distillation column and a temperature of 75 to 225 ° C, measured in the bottom of the column. If the vinyl ether (I) is taken off from the second distillation column as a gaseous side draw in the stripping section, this side take-off is generally in the range from the first to the tenth and preferably in the region of the first to second theoretical plates.
  • the inventive method allows the separation of a vinyl ether and alcohol-containing mixture, which in particular with low equipment and process complexity, with high system capacity and without the risk of contamination of the vinyl ether and / or alcohol by the addition of foreign substances as an aid to purified vinyl ether and alcohol leads.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Verfahren zur destillativen Trennung eines Vinylether der allgemeinen Formel (I) R1-O-CH=CH2, und Alkohol der allgemeinen Formel (II) R2-OH, in der R1 und R2 unabhängig voneinander einen gesättigten oder ungesättigten, aliphatischen oder cycloaliphatischen Rest mit 2 bis 10 Kohlenstoffatomen bedeuten, enthaltenden Gemischs, bei dem der Alkohol (II) einen um mindestens 1 °C höheren Siedepunkt, gemessen bei oder extrapoliert auf 0,1 MPa abs, als der Vinylether (II) aufweist, bei dem man a) das Gemisch in eine erste Destillationskolonne leitet und als Kopfprodukt ein Vinylether (I) und Alkohol (II) enthaltendes Azeotrop und als Sumpfprodukt einen mit dem Alkohol (II) angereicherten Strom entnimmt; b) das Vinylether (I) und Alkohol (II) enthaltende Azeotrop aus der ersten Destillationskolonne in eine zweite Destillationskolonne, welche bei gegenüber der ersten Destillationskolonne um einen 0,01 bis 3 MPa höheren Druck betrieben wird, leitet und als Sumpfprodukt oder gasförmigen Seitenabzug im Abtriebsteil den Vinylether (I) und als Kopfprodukt ein Vinylether (I) und Alkohol (II) enthaltendes Azeotrop entnimmt; und c) das Vinylether (I) und Alkohol (II) enthaltende Azeotrop aus der zweiten Destillationskolonne in die erste Destillationskolonne zurückführt.

Description

Verfahren zur destillativen Trennung eines Vinylether und Alkohol enthaltenden Gemische
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur destillativen Trennung eines Vinylether der allgemeinen Formel (I)
R1O-CH=CH2 (I),
und Alkohol der allgemeinen Formel (II)
R2-OH (II),
in der R1 und R2 unabhängig voneinander einen gesättigten oder ungesättigten, aliphatischen oder cycloaliphatischen Rest mit 2 bis 10 Kohlenstoffatomen bedeuten, enthaltenden Gemischs, bei dem der Alkohol (II) einen um mindestens 1 °C höheren Siedepunkt, gemessen bei oder extrapoliert auf 0,1 MPa abs, als der Vinylether (II) aufweist.
Vinylether stellen eine wichtige Verbindungsklasse mit breitem Einsatzgebiet dar. So finden sie unter anderem Verwendung als Monomerbausteine in Polymeren und Copolymeren, in Beschichtungen, Klebstoffen, Druckfarben sowie in Strahlungshärtenden Lacken. Weitere Anwendungsgebiete sind die Herstellung von Zwischenprodukten, Geruchs- und Geschmacksstoffen sowie pharmazeutischen Produkten.
Die technische Herstellung von Vinylethern erfolgt in der Regel durch Umsetzung der entsprechenden Alkohole mit Ethin in Gegenwart basischer Katalysatoren (siehe Ullmann's Encyclopedia of Industrial Chemistry, 6th edition, 2000 Electronic Release, Chapter "VINYL ETHERS - Production" und W. Reppe et al., Justus Liebigs Ann. Chem., 601 (1956), Seiten 135 bis 138). Das dabei gebildete Reaktionsgemisch enthält neben dem Katalysator und möglichen Nebenprodukten hauptsächlich den gebildeten Vinylether und den nicht-umgesetzten Alkohol. Die beiden letztgenannten Komponenten sind bis auf die d-Derivate Methylvinylether/Methanol aufgrund Azeotropbildung nicht durch einfache Destillation in Fraktionen der gewünschten Reinheit trennbar. Dieses Problem wurde bisher durch den Einsatz extraktiver und extrativdestillativer Verfahren gelöst, bei denen man eine oder mehrere Fremdsubstanzen als Hilfsmittel zufügt und diese nach Auftrennung in eine Vinylether- und eine Alkohol-enthaltende Fraktion wieder abtrennt. So beschreibt EP-A 0 415 334 die ein- oder mehrstufige Extraktion eines Vinylether und Alkohol enthaltenden Gemischs mit einer wässrigen Lösung einer Base, bei der eine Vinylether-Phase und eine wässrige alkoholische Phase erhalten und der Alkohol anschließend aus der wässrigen alkoholischen Phase destillativ gewonnen wird.
US 2,779,720 beschreibt ein Verfahren zur Trennung eines Gemischs, welches einen aliphatischen Vinylether und einen aliphatischen Alkohol enthält, bei dem dieses Gemisch zusammen mit Wasser und einem Glykol oder Glykolether destilliert wird. Als Kopfprodukt bildet sich dabei ein azeotropes Gemisch aus dem Vinylether und Wasser, aus dem in einer weiteren Destillation der Vinylether gewonnen werden kann. Als Sumpfprodukt verbleibt ein den Alkohol und Glykol oder Glykoiether enthaltendes Gemisch, aus dem durch eine nachgeschaltete Destillation der Alkohol gewonnen werden kann.
DE-A 1 000 804 offenbart ein Verfahren zur Aufarbeitung eines Gemischs, welches einen Monovinylether eines mehrwertigen Alkohols und einen mehrwertigen Alkohol enthält, bei dem dieses Gemisch im alkalischen Medium zusammen mit Wasser destilliert oder einer Wasserdampfdestillation unterworfen wird. Dabei wird als Kopfprodukt eine azeotrope Mischung des Vinylethers mit Wasser erhalten, wobei als Rückstand im Sumpf der Alkohol zurückbleibt. Die bei der Destillation angefallene Kopffraktion kann gegebenenfalls mit einem nicht wasserlöslichen Lösungsmittel extrahiert werden, wobei der Vinylether in die organische Phase übergeht und aus dieser destillativ enthalten werden kann.
SU 1 616 888 beschreibt die Trennung eines Butanol und Butyl-vinylether enthaltenden Gemischs durch Extraktivdestillation mit Wasser. Aus der als Kopfprodukt gebildeten azeotropen Mischung, welche den Butyl-vinylether und Wasser enthält, wird in einer nachfolgenden Destillation der Butyl-vinylether gewonnen. Das Butanol enthaltende Sumpfprodukt der ersten Destillation wird in einer weiteren Destillation aufbereitet und Butanol gewonnen.
US 3,878,058 offenbart ein Verfahren zur Gewinnung von Alkylvinylethem aus einem den Alkylvinylether und einen aliphatischen Alkohol enthaltenden Gemisch, bei dem dieses Gemisch zusammen mit einem Glykol-monoether destilliert wird. Dabei wird als Kopfprodukt der Alkylvinylether abgetrennt und als Sumpfprodukt ein Alkohol und Glykol-monoether enthaltendes Gemisch erhalten. Dieses wird in einer nachgeschalteten Destillation in den Alkohol und den Glykol-monoether getrennt und letzterer zur ersten Destillationsstufe zurückgeführt. Nachteilig an allen oben genannten Verfahren ist der Zusatz einer oder mehrerer Fremdsubstanzen als Hilfsmittel. Dadurch werden dem System neue Verbindungen hinzugefügt, welche anschließend wieder abgetrennt werden müssen. Damit verbunden ist zum Einen ein entsprechender apparativer und verfahrenstechnischer Aufwand und zum Anderen die Gefahr der Verunreinigung des Vinylethers und/oder des Alkohols durch restliche Mengen dieser Fremdsubstanzen. Des Weiteren verringern die Fremdsubstanzen aufgrund ihres Eigenvolumens die Kapazität der Destillationsvorrichtungen beziehungsweise bedingen den Einsatz größerer Destillationsvorrichtungen.
Demgemäss bestand die Aufgabe, ein Verfahren zur Trennung eines Vinylether und Alkohol enthaltenden Gemischs zu finden, welches die oben genannten Nachteile nicht besitzt und insbesondere mit geringem apparativen und verfahrenstechnischen Aufwand, mit hoher Anlagen-Kapazität und ohne die Gefahr einer Verunreinigung des Vinylethers und/oder des Alkohols durch die Zugabe von Fremdsubstanzen als Hilfsmittel zu aufgereinigtem Vinylether und Alkohol führt.
Demgemäss wurde ein Verfahren zur destillativen Trennung eines Vinylether der allgemeinen Formel (I)
R1-O-CH=CH2 (I),
und Alkohol der allgemeinen Formel (II)
R2-OH (II),
in der R1 und R2 unabhängig voneinander einen gesättigten oder ungesättigten, aliphatischen oder cycloaliphatischen Rest mit 2 bis 10 Kohlenstoffatomen bedeuten, enthaltenden Gemischs, bei dem der Alkohol (II) einen um mindestens 10C höheren Siedepunkt, gemessen bei oder extrapoliert auf 0,1 MPa abs, als der Vinylether (II) aufweist, gefunden, welches dadurch gekennzeichnet ist, dass man
a) das Gemisch in eine erste Destillationskolonne leitet und als Kopfprodukt ein Vinylether (I) und Alkohol (II) enthaltendes Azeotrop und als Sumpfprodukt einen mit dem Alkohol (II) angereicherten Strom entnimmt;
b) das Vinylether (I) und Alkohol (II) enthaltende Azeotrop aus der ersten Destillationskolonne in eine zweite Destillationskolonne, welche bei gegenüber der ersten Destillationskolonne um einen 0,01 bis 3 MPa höheren Druck betrieben wird, leitet und als Sumpfprodukt oder gasförmigen Seitenabzug im Abtriebsteil den Vinylether (I) und als Kopfprodukt ein Vinylether (I) und Alkohol (II) enthaltendes Azeotrop entnimmt; und
c) das Vinylether (I) und Alkohol (II) enthaltende Azeotrop aus der zweiten Destilla- tionskolonne in die erste Destillationskolonne zurückführt.
Das erfindungsgemäße Verfahren umfasst somit zwei Destillationskolonnen. In der ersten Destillationskolonne wird das einzusetzende Vinylether (I) und Alkohol (II) enthaltende Gemisch in ein Vinylether (I) und Alkohol (II) enthaltendes Azeotrop als Kopf produkt und einen mit dem Alkohol (II) angereicherten Strom als Sumpf produkt getrennt.
Im Allgemeinen betreibt man die erste Destillationskolonne bei einer Temperatur von 75 bis 225°C und bevorzugt von 100 bis 1750C, gemessen im Sumpf der Kolonne, wobei die zu wählende Temperatur hauptsächlich abhängig ist vom zu trennenden Vinylether (I) und Alkohol (II) und dem gewählten Druck in der Destillationskolonne. Im Allgemeinen betreibt man die erste Destillationskolonne bei einem Druck von 0,01 bis 1 MPa abs und bevorzugt von 0,05 bis 0,50MPa abs, gemessen am Kopf der Kolonne, wobei der zu wählende Druck hauptsächlich abhängig ist vom zu trennenden Vinylether (I) und Alkohol (II) und der gewählten Temperatur in der
Destillationskolonne. Die jeweils für ein konkretes System zu wählende Temperatur und der zu wählende Druck kann vom Fachmann durch einfache Berechnung oder einfache Routineversuche ermittelt werden. Dabei existiert für jedes konkrete System ein Zusammenhang zwischen Temperatur und Druck, so dass der anzuwendende Parameterbereich in der Regel durch technische (beispielsweise Auslegung der Destillationskolonne), wirtschaftliche (beispielsweise Investitionskosten und/oder Energiekosten) und chemische (beispielsweise keine oder nur unwesentliche Zersetzung der Produkte) Randbedingungen festgelegt wird.
Im Allgemeinen weist die erste Destillationskolonne eine Anzahl theoretischer Trennstufen von 5 bis 75 auf, wobei die für ein konkretes System einzusetzende Anzahl der theoretischen Böden hauptsächlich abhängig ist vom zu trennenden Vinylether (I) und Alkohol (II) sowie von der erwarteten Trennleistung. Die jeweils für ein konkretes System zu wählende Anzahl der theoretischen Trennstufen kann vom Fachmann durch einfache Berechnung oder einfache Routineversuche ermittelt werden.
Als erste Destillationskolonne kann prinzipiell jede Destillationskolonne eingesetzt werden, welche die technischen Randbedingungen, insbesondere die gewünschte Trennleistung, die erforderliche Temperaturbeständigkeit, die erforderliche Druckbeständigkeit und die geforderte Materialbeständigkeit erfüllt. In der Regel handelt es sich um Kolonnen mit einem Metallmantel und trennwirksame sowie nicht- trennwirksame Einbauten. Als trennwirksame Einbauten kommen beispielsweise Böden oder Packungen in Betracht.
Beim erfindungsgemäßen Verfahren ist im Allgemeinen vorteilhaft, die erste Destillationskolonne so auszulegen und zu betreiben, dass > 50%, bevorzugt > 75% und besonders bevorzugt ≥ 90% der mit dem Gemisch zugeführten Menge an Alkohol (II) über das Sumpfprodukt entnommen werden.
Die Konzentration des Alkohols (II) in dem als Sumpfprodukt zu entnehmenden Stroms beträgt im Allgemeinen > 90 Gew.-% und bevorzugt > 95 Gew.-%.
In der zweiten Destillationskolonne wird das Vinylether (I) und Alkohol (II) enthaltende Azeotrop aus der ersten Destillationskolonne in ein Vinylether (I) und Alkohol (II) enthaltendes Azeotrop als Kopfprodukt und dem Vinylether (I) als Sumpfprodukt oder als gasförmigen Seitenabzug im Abtriebsteil getrennt.
Im Allgemeinen betreibt man die zweite Destillationskolonne bei einer Temperatur von 75 bis 225°C und bevorzugt von 100 bis 1750C, gemessen im Sumpf der Kolonne, wobei die zu wählende Temperatur hauptsächlich abhängig ist vom zu trennenden Vinylether (I) und Alkohol (II) und dem gewählten Druck in der Destillationskolonne. Um eine entsprechende Trennung in ein Vinylether (I) und Alkohol (II) enthaltendes Azeotrop und einem Vinylether (I) Strom zu erreichen, betreibt man die zweite Destillationskolonne gegenüber der ersten Destillationskolonne bei einem um 0,01 bis 3 MPa höheren Druck. Bevorzugt betreibt man die zweite Destillationskolonne gegenüber der ersten Destillationskolonne bei einem um 0,1 bis 2 MPa höheren Druck. Ein wesentlicher Parameter bei der Festlegung des anzuwendenden Drucks ist hierbei die gewünschte Trennleistung. Dabei ist die Trennleistung in der zweiten Destillationskolonne in der Regel umso höher, je größer die Druckdifferenz zur ersten Destillationskolonne ist. Mit steigender Druckdifferenz zur ersten Destillationskolonne steigt auch der Anteil an Vinylether (I), welcher als Sumpfprodukt oder als gasförmiger Seitenabzug im Abtriebsteil entnommen werden kann. Das verbleibende Azeotrop ist somit bei hohem Druck ärmer an Vinylether (I), was letztendlich den Mengenstrom und die Belastung der ersten Destillationskolonne verringert. Demgegenüber ist zu beachten, dass mit steigender Druckdifferenz mehr Verdichtungsenergie benötigt wird, die zweite Destillationskolonne entsprechend für den entsprechenden Druck ausgelegt sein sollte und für ein konkretes, zu trennendes Gemisch auch die Destillationstemperatur steigt, was zu einer höheren thermischen Belastung der zu trennenden Produkte führt. Die jeweils für ein konkretes System zu wählende Temperatur und der zu wählende Druck kann vom Fachmann durch einfache Berechnung oder einfache Routineversuche ermittelt werden. Dabei existiert für jedes konkrete System ein Zusammenhang zwischen Temperatur und Druck, so dass der anzuwendende Parameterbereich in der Regel durch technische (beispielsweise Auslegung der Destillationskolonne, Trennleistung, Mengenströme), wirtschaftliche (beispielsweise Investitionskosten und/oder Energiekosten) und chemische (beispielsweise keine oder nur unwesentliche Zersetzung der Produkte) Randbedingungen festgelegt wird.
Im Allgemeinen weist die zweite Destillationskolonne eine Anzahl theoretischer Trennstufen von 5 bis 75 auf, wobei die für ein konkretes System einzusetzende Anzahl der theoretischen Trennstufen hauptsächlich abhängig ist vom zu trennenden Vinylether (I) und Alkohol (II) sowie von der erwarteten Trennleistung. Die jeweils für ein konkretes System zu wählende Anzahl der theoretischen Trennstufen kann vom Fachmann durch einfache Berechnung oder einfache Routineversuche ermittelt werden.
Als zweite Destillationskolonne kann prinzipiell jede Destillationskolonne eingesetzt werden, welche die technischen Randbedingungen, insbesondere die gewünschte Trennleistung, die erforderliche Temperaturbeständigkeit, die erforderliche
Druckbeständigkeit und die geforderte Materialbeständigkeit erfüllt. In der Regel handelt es sich um Kolonnen mit einem Metallmantel und trennwirksame sowie nicht- trennwirksame Einbauten. Als trennwirksame Einbauten kommen beispielsweise Böden oder Packungen in Betracht.
Bei der zweiten Destillationskolonne erfolgt die Entnahme des Vinylethers (I) flüssig als Sumpfprodukt oder gasförmig als Seitenabzug im Abtriebsteil. Im letztgenannten Fall erfolgt die Entnahme des Vinylethers (I) bevorzugt im Bereich der unteren 25% und besonders bevorzugt im Bereich der unteren 10% der Gesamtzahl der theoretischen Trennstufen. So bedeutet beispielsweise die Formulierung im Bereich der unteren 25% der Gesamtzahl der theoretischen Trennstufen bei einer Destillationskolonne mit insgesamt 75 theoretischen Trennstufen, dass der gasförmige Seitenabzug im Bereich des ersten bis 19. theoretischen Trennstufe entnommen wird. Der Vorteil des gasförmigen Seitenabzugs liegt in der Verbesserung der Farbzahl des rein zu gewinnenden Vinylethers (I), da unerwünschte Schwersieder aus dem Produkt ferngehalten werden können.
Beim erfindungsgemäßen Verfahren ist im Allgemeinen vorteilhaft, die zweite Destillationskolonne so auszulegen und zu betreiben, dass ≥ 20%, bevorzugt ≥ 50%, besonders bevorzugt > 75% und ganz besonders bevorzugt > 90% der mit dem Gemisch zugeführten Menge an Vinylether (I) über das Sumpfprodukt entnommen werden. Werte < 20% führen im Allgemeinen zu riesigen und somit unwirtschaftlichen Rückführungsströmen. Die Konzentration des Vinylethers (I) in dem als Sumpfprodukt zu entnehmenden Stroms beträgt im Allgemeinen > 97,5 Gew.-% und bevorzugt > 99,5 Gew.-%.
Abbildung 1 zeigt ein vereinfachtes Blockdiagramm des erfindungsgemäßen Verfahrens. Der zu trennende Vinylether (I) und Alkohol (U) enthaltende Strom (a) wird über Leitung (1 ) der ersten Destillationskolonne A zugeführt. Als Sumpfprodukt wird über Leitung (2) ein mit Alkohol (II) angereicherter Strom (b) entnommen. Das Vinylether (I) und Alkohol (II) enthaltende Azeotrop, welches als Kopfprodukt entnommen wird, wird über Leitung (3) der zweiten Destillationskolonne B zugeführt. Aus dieser wird als Sumpfprodukt oder als gasförmiger Seitenabzug im Abtriebsteil der Vinylether (I) (c) über Leitung (4) entnommen. Das Vinylether (I) und Alkohol (II) enthaltende Azeotrop, welches als Kopfprodukt entnommen wird, wird über Leitung (5) zur ersten Destillationskolonne A zurückgeführt.
Da der als Sumpfprodukt oder als gasförmiger Seitenabzug im Abtriebsteil der zweiten Destillationskolonne entnommene Vinylether (I) in der Regel noch mit geringfügigen Nebenkomponenten wie beispielsweise Acetalen verunreinigt ist, leitet man diesen bevorzugt in eine Reindestillationskolonne und gewinnt den den aufgereinigten Vinylether (I) als Kopfprodukt. Die Auslegung der Reindestillationskolonne und die Ermittlung der Destillationsparameter kann vom Fachmann durch einfache Berechnung oder einfache Routineversuche ermittelt werden.
Abbildung 2 zeigt ein vereinfachtes Blockdiagramm diese bevorzugten erfindungsgemäßen Verfahrens. Der als Sumpfprodukt oder als gasförmiger Seitenabzug im Abtriebsteil der zweiten Destillationskolonne entnommene Vinylether (I) enthaltende Strom wird über Leitung (4) der Reindestillationskolonne C zurgeführt. Als Sumpfprodukt wird über Leitung (7) ein Strom mit den höhersiedenden
Nebenkomponenten (e) entnommen. Der aufgereinigte Vinylether (I) (d) wird als Kopfprodukt über Leitung (6) entnommen.
Das beim erfindungsgemäßen Verfahren einzusetzende Gemisch enthält einen Vinylether (I) der allgemeinen Formel (I)
R1 -0-CH=CH2 (I),
und einen Alkohol der allgemeinen Formel (II) R2-OH (II),
in der die Reste R1 und R2 unabhängig voneinander einen gesättigten oder ungesättigten, aliphatischen oder cycloaliphatischen Rest mit 2 bis 10 Kohlenstoffatomen bedeuten, enthält, und bei dem der Alkohol (II) einen um mindestens 1 °C höheren Siedepunkt, gemessen bei oder extrapoliert auf 0,1 MPa abs, als der Vinylether (II) aufweist.
Bevorzugt weist der Alkohol (II) einen um mindestens 2°C und besonders bevorzugt einen um mindestens 5°C höheren Siedepunkt, gemessen bei oder extrapoliert auf 0,1 MPa abs, als der Vinylether (II) auf.
Als bevorzugte gesättigte oder ungesättigte, aliphatische oder cycloaliphatische Reste R1 und R2 mit 2 bis 10 Kohlenstoffatomen seien
• C2- bis Cio-Alkyl-Reste, wie beispielsweise Ethyl, 1-Propyl, 2-Propyl (sek. Propyl), 1 -Butyl, 2-Butyl (sek. Butyl), 2-Methyl-1 -propyl (iso-Butyl), 2-Methyl-2-propyl (tert- Butyl), 1-Pentyl, 2-Pentyl, 3-Pentyl, 3-Methyl-2-butyl, 2-Methyl-2-butyl, 1-Hexyl, 1- Heptyl, 1-Octyl, 2-Ethyl-1 -hexyl, 1 -Nonyl, 1-Decyl;
• C2- bis Cio-Alkenyl-Reste, wie beispielsweise Ethenyl (Vinyl), 1-Prop-1 -enyl, 2- Prop-1 -enyl, 3-Prop-1-enyl, 1-But-1-enyl, 2-But-1 -enyl, 3-But-1-enyl, 4-But-1-enyl, 1-But-2-enyl, 2-But-2-enyl, 3-But-2-enyl, 4-But-2-enyl;
• C2- bis do-Cycloalkyl-Reste, wie beispielsweise Cyclopentyl, 2-MethyI-cyclopentyl, 3-Methylcyclopentyl, Cyclohexyl, 2-Methylcyclohexyl, 3-Methyl-cyclohexyl, 4- Methylcyclohexyl, Cycloheptyl, Cyclooctyl;
• C2- bis C-io-Cycloalkenyl-Reste, wie beispielsweise 1 -Cyclopent-1-enyl, 3- Cyclopent-1 -enyl, 4-Cyclopent-1 -enyl, 1 -Cyclohex-1 -enyl, 3-Cyclohex-1 -enyl, 4-
Cyclohex-1 -enyl;
genannt.
Besonders bevorzugt setzt man beim erfindungsgemäßen Verfahren ein Vinylether (I) und Alkohol (II) enthaltendes Gemisch ein, bei dem die Reste R1 und R2 unabhängig voneinander einen C2- bis C4-Alkylrest, insbesondere Ethyl, 1 -Propyl, 2-Propyl (sek. Propyl), 1 -Butyl, 2-Butyl (sek. Butyl), 2-Methyl-1 -propyl (iso-Butyl) und 2-Methyl-2- propyl (tert.-Butyl) bedeuten. Ganz besonders bevorzugt setzt man beim erfindungsgemäßen Verfahren ein Vinylether (I) und Alkohol (II) enthaltendes Gemisch ein, bei dem die Reste R1 und R2 identisch sind. Ganz besonders bevorzugt ist somit der Einsatz folgender Vinylether (I) und Alkohol (II) enthaltender Gemische:
• Ethylvinylether und Ethanol;
• 1 -Propylvinylether und 1-Propanol;
• 2-Propyvinylether und 2-Propanol;
• 1 -Butylvinylether und 1-Butanol; • 2-Butylvinylether und 2-Butanol;
• Isobutylvinylether und Isobuatnol;
• tert.-Butylvinylether und tert.-Butanol.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens stammt das eingesetzte Vinylether (I) und Alkohol (II) enthaltende Gemisch aus der Vinylether- Synthese durch Umsetzung des Alkohols (II) mit Ethin in Gegenwart einer basischen Alkali- oder Erdaikalimetallverbindung, trennt man aus dem mit dem Alkohol (II) angereicherten Sumpfprodukt aus der ersten Destillationskolonne Leichtsieder und Schwersieder destillativ ab und führt den aufgereinigten Alkohol (U) wieder zur Vinylether-Synthese zurück. Die Syntheseverfahren zur Herstellung von Vinylethem durch Umsetzung des Alkohols (II) mit Ethin in Gegenwart einer basischen Alkali- oder Erdalkalimetallverbindung sind allgemein bekannt und beispielsweise in Ullmann's Encyclopedia of Industrial Chemistry, 6th edition, 2000 Electronic Release, Chapter "VINYLETHERS - Production" oder W. Reppe et al., Justus Liebigs Ann. Chem., 601 (1956), Seiten 135 bis 138 und den darin zitierten Dokumenten beschrieben.
Die destillative Abtrennung der Leichtsieder und Schwersieder aus dem mit dem Alkohol (II) angereicherten Sumpf produkt aus der ersten Destillationskolonne erfolgt beim zuvor genannten bevorzugten erfindungsgemäßen Verfahren in einer Trennwandkolonne oder einer Anordnung von konventionellen oder von thermisch und/oder stofflich gekoppelten Destillationskolonnen. Besonders bevorzugt erfolgt die genannte destillative Abtrennung in einer Trennwandkolonne oder einer Anordnung von thermisch und/oder stofflich gekoppelten Destillationskolonnen.
Abbildung 3 zeigt ein vereinfachtes Blockdiagramm dieses bevorzugten erfindungsgemäßen Verfahrens. Der als Sumpfprodukt der ersten Destillationskolonne entnommene Alkohol (II) enthaltende Strom wird über Leitung (2) zur Trennwandkolonne D beziehungsweise einer Anordnung von konventionellen oder thermisch und/oder stofflich gekoppelten Destillationskolonnen geführt. Dort erfolgt die Trennung in Leichtsieder (f), welche über Leitung (9) als Kopfprodukt und in Schwersieder (g), welche über Leitung (8) als Sumpfprodukt entnommen werden. Der aufgereinigte Alkohol (II) wird aus der Trennwandkolonne D beziehungsweise der Anordnung von konventionellen oder thermisch und/oder stofflich gekoppelten Destillationskolonnen als Seitenabzug entnommen und über Leitung (10) zur Synthesstufe S zurückgeführt.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens setzt man ein Vinylether (I) und Alkohol (II) enthaltendes Gemisch ein, welches aus der Vinylether-Synthese durch Umsetzung des Alkohols (II) mit Ethin in Gegenwart einer basischen Alkali- oder Erdalkalimetallverbindung stammt und bei dem die Rest R1 und R2 identisch sind und für einen C2- bis C4-Alkylrest stehen. Dieses Gemisch wird analog der Beschreibung zum vereinfachten Blockdiagramm der Abbildung 1 in einen Alkohol (II) enthaltenden Strom und einen Vinylether (I) enthaltenden Strom getrennt. Falls aufgrund der erzielten und gewünschten Reinheit der den Alkohol (II) enthaltende Strom weiter aufzureinigen ist, wird dieser bevorzugt analog der Beschreibung zum vereinfachten Blockdiagramm der Abbildung 3 durch eine nachfolgende Destillation in einer Trennwandkolonne oder einer Anordnung von thermisch und/oder stofflich gekoppelten Destillationskolonnen aufgreinigt. Der erhaltene Alkohol (II) enthaltende Strom wird anschließend zur Synthesstufe zurückgeführt. Der Vinylether (I) enthaltende Strom wird analog der Beschreibung zum vereinfachten Blockdiagramm der Abbildung 2 durch eine nachfolgende Destillation aufgereinigt und der aufgereinigte Vinylether (I) als Kopfprodukt gewonnen.
Bei der genannten bevorzugten Ausführungsform umfasst die erste Destillationskolonne im Allgemeinen 5 bis 75 theoretische Trennstufen und wird bei einem Druck von 0,01 bis 1 MPa abs, gemessen am Kopf der Kolonne, und einer Temperatur von 75 bis 225°C, gemessen im Sumpf der Kolonne, betrieben. Die zweite Destillationskolonne umfasst im Allgemeinen 5 bis 75 theoretische Trennstufen und wird bei einem um 0,1 bis 2 MPa höheren Druck als die erste Destillationskolonne und einer Temperatur von 75 bis 225°C, gemessen im Sumpf der Kolonne, betrieben. Wird der Vinylether (I) aus der zweiten Destillationskolonne als gasförmiger Seitenabzug im Abtriebsteil entnommen, so befindet sich dieser Seitenabzug im Allgemeinen im Bereich des ersten bis zehnten und bevorzugt im Bereich des ersten bis zweiten theoretischen Bodens.
Das erfindungsgemäße Verfahren ermöglicht die Trennung eines Vinylether und Alkohol enthaltenden Gemischs, welches insbesondere mit geringem apparativen und verfahrenstechnischen Aufwand, mit hoher Anlagen-Kapazität und ohne die Gefahr einer Verunreinigung des Vinylethers und/oder des Alkohols durch die Zugabe von Fremdsubstanzen als Hilfsmittel zu aufgereinigtem Vinylether und Alkohol führt.

Claims

Patentansprüche
1. Verfahren zur destillativen Trennung eines Vinyiether der allgemeinen Formel (I)
R1 -0-CH=CH2 (I),
und Alkohol der allgemeinen Formel (II)
R2-OH (II),
in der R1 und R2 unabhängig voneinander einen gesättigten oder ungesättigten, aliphatischen oder cycloaliphatischen Rest mit 2 bis 10 Kohlenstoffatomen bedeuten, enthaltenden Gemischs, bei dem der Alkohol (II) einen um mindestens 1°C höheren Siedepunkt, gemessen bei oder extrapoliert auf 0,1 MPa abs, als der Vinyiether (II) aufweist, dadurch gekennzeichnet, dass man
a) das Gemisch in eine erste Destillationskolonne leitet und als Kopfprodukt ein Vinyiether (I) und Alkohol (II) enthaltendes Azeotrop und als Sumpfprodukt einen mit demAlkohol (II) angereicherten Strom entnimmt;
b) das Vinyiether (I) und Alkohol (II) enthaltende Azeotrop aus der ersten Destillationskolonne in eine zweite Destillationskolonne, welche bei gegenüber der ersten Destillationskolonne um einen 0,01 bis 3 MPa höheren Druck betrieben wird, leitet und als Sumpfprodukt oder gasförmigen Seitenabzug im Abtriebsteil den Vinyiether (I) und als
Kopfprodukt ein Vinyiether (I) und Alkohol (II) enthaltendes Azeotrop entnimmt; und
c) das Vinyiether (I) und Alkohol (II) enthaltende Azeotrop aus der zweiten Destillationskolonne in die erste Destillationskolonne zurückführt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man die zweite Destillationskolonne um einen um 0,1 bis 2 MPa höheren Druck, gemessen am Kopf der Kolonne, betreibt als die erste Destillationskolonne.
3. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass man die erste Destillationskolonne bei einer Temperatur von 75 bis 225°C, gemessen im Sumpf der Kolonne und einem Druck von 0,01 bis 1 MPa abs, gemessen am Kopf der Kolonne, betreibt.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass man die zweite Destillationskolonne bei einer Temperatur von 75 bis 225°C, gemessen im Sumpf der Kolonne, betreibt.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass man in der zweiten Destillationskolonne den Vinylether (I) als gasförmigen Seitenabzug im Abtriebsteil im Bereich der unteren 25% der Gesamtzahl der theoretischen Trennstufen entnimmt.
6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass man den aus der zweiten Destillationskolonne als Sumpfprodukt oder gasförmigen Seitenabzug im Abtriebsteil entnommenen Vinylether (I) in eine Reindestillationskolonne leitet und daraus den aufgereinigten Vinylether (I) als Kopfprodukt gewinnt.
7. Verfahren nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass man ein Vinylether (I) und Alkohol (II) enthaltendes Gemisch einsetzt, bei dem die Reste R1 und R2 unabhängig voneinander einen C2- bis C4-Alkylrest bedeuten.
8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass man ein Vinylether (I) und Alkohol (II) enthaltendes Gemisch einsetzt, bei dem die Reste R1 und R2 identisch sind.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das eingesetzte Vinylether (I) und Alkohol (II) enthaltende Gemisch aus der Vinylether-Synthese durch Umsetzung des Alkohols (II) mit Ethin in Gegenwart einer basischen Alkalioder Erdalkalimetallverbindung stammt, man aus dem mit dem Alkohol (II) angereicherten Sumpfprodukt aus der ersten Destillationskolonne Leichtsieder und Schwersieder destillativ abtrennt und man den aufgereinigten Alkohol (II) wieder zur Vinylether-Synthese zurückführt.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass man die destillative Abtrennung der Leichtsieder und Schwersieder aus dem mit dem Alkohol (II) angereicherten Sumpfprodukt aus der ersten Destillationskolonne in einer Trennwandkolonne oder einer Anordnung von thermisch und/oder stofflich gekoppelten Destillationskolonnen durchführt.
PCT/EP2004/006160 2003-06-12 2004-06-08 Verfahren zur destillativen trennung eines vinylether und alkohol enthaltenden gemischs WO2004110970A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE502004005217T DE502004005217D1 (de) 2003-06-12 2004-06-08 Verfahren zur destillativen trennung eines vinylether und alkohol enthaltenden gemischs
US10/560,135 US7670464B2 (en) 2003-06-12 2004-06-08 Method for the distillative separation of a mixture containing vinyl ether and alchol
JP2006515845A JP2006527225A (ja) 2003-06-12 2004-06-08 ビニルエーテルおよびアルコールを含有する混合物の蒸留分離法
EP04739689A EP1636158B1 (de) 2003-06-12 2004-06-08 Verfahren zur destillativen trennung eines vinylether und alkohol enthaltenden gemischs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10326403A DE10326403A1 (de) 2003-06-12 2003-06-12 Verfahren zur destillativen Trennung eines Vinylether und Alkohol enthaltenden Gemischs
DE10326403.5 2003-06-12

Publications (1)

Publication Number Publication Date
WO2004110970A1 true WO2004110970A1 (de) 2004-12-23

Family

ID=33482810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/006160 WO2004110970A1 (de) 2003-06-12 2004-06-08 Verfahren zur destillativen trennung eines vinylether und alkohol enthaltenden gemischs

Country Status (8)

Country Link
US (1) US7670464B2 (de)
EP (1) EP1636158B1 (de)
JP (1) JP2006527225A (de)
CN (1) CN1802340A (de)
AT (1) ATE375328T1 (de)
DE (2) DE10326403A1 (de)
ES (1) ES2293274T3 (de)
WO (1) WO2004110970A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070858A2 (de) * 2004-01-21 2005-08-04 Basf Aktiengesellschaft Verfahren zur herstellung von isopropenylethern

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101191122B1 (ko) * 2009-01-20 2012-10-15 주식회사 엘지화학 고순도 노르말 부탄올 생산용 분리벽형 증류탑, 및 노르말 부탄올 증류방법
JP5312133B2 (ja) 2009-03-26 2013-10-09 丸善石油化学株式会社 高純度ビニルエーテルの製造法
JP2013177343A (ja) * 2012-02-28 2013-09-09 Daicel Corp ビニルエーテルの製造方法、及びビニルエーテルの回収方法
US11247961B2 (en) 2016-09-14 2022-02-15 Maruzen Petrochemical Co., Ltd. Me 1 hod for removing or collecting 2-alkoxyethanol, and method for producing (2-alkoxyethyl) vinyl ether
US11401227B2 (en) 2018-08-30 2022-08-02 Basf Se Process to produce a mono vinyl ether
KR102477055B1 (ko) * 2020-12-16 2022-12-13 한화토탈에너지스 주식회사 에틸렌-비닐알코올 공중합체 제조 공정에서 미반응물 회수 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878058A (en) * 1972-02-05 1975-04-15 Kyowa Yuka Kk Recovery of alkylvinylether by extractive distillation of a feed containing only trace amounts of water
SU1616888A1 (ru) * 1988-02-08 1990-12-30 Предприятие П/Я А-3678 Способ разделени смеси винилбутиловый эфир-бутанол азеотропной ректификацией
JPH10109952A (ja) * 1996-10-02 1998-04-28 Maruzen Petrochem Co Ltd シクロヘキシルビニルエーテルの分離方法
WO2000015590A1 (de) * 1998-09-11 2000-03-23 Basf Aktiengesellschaft Verfahren zur herstellung von enolethern

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779720A (en) * 1957-01-29 Condenser
US2760990A (en) * 1952-08-15 1956-08-28 Rohm & Haas Vinyl transetherification
DE1000804C2 (de) 1953-11-25 1957-06-19 Solvay Werke Gmbh Verfahren zum Aufarbeiten von aus Monovinylaethern mehrwertiger Alkohole und den mehrwertigen Alkoholen selbst bestehenden Gemischen
DE3928774A1 (de) 1989-08-31 1991-03-07 Hoechst Ag Verfahren zur abtrennung von enolethern aus reaktionsgemischen mit alkoholen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3878058A (en) * 1972-02-05 1975-04-15 Kyowa Yuka Kk Recovery of alkylvinylether by extractive distillation of a feed containing only trace amounts of water
SU1616888A1 (ru) * 1988-02-08 1990-12-30 Предприятие П/Я А-3678 Способ разделени смеси винилбутиловый эфир-бутанол азеотропной ректификацией
JPH10109952A (ja) * 1996-10-02 1998-04-28 Maruzen Petrochem Co Ltd シクロヘキシルビニルエーテルの分離方法
WO2000015590A1 (de) * 1998-09-11 2000-03-23 Basf Aktiengesellschaft Verfahren zur herstellung von enolethern

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 9148, Derwent World Patents Index; Class E17, AN 1991-351559, XP002298961 *
DATABASE WPI Section Ch Week 9827, Derwent World Patents Index; Class E15, AN 1998-306099, XP002298960 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005070858A2 (de) * 2004-01-21 2005-08-04 Basf Aktiengesellschaft Verfahren zur herstellung von isopropenylethern
WO2005070858A3 (de) * 2004-01-21 2005-11-10 Basf Ag Verfahren zur herstellung von isopropenylethern

Also Published As

Publication number Publication date
EP1636158B1 (de) 2007-10-10
EP1636158A1 (de) 2006-03-22
DE502004005217D1 (de) 2007-11-22
DE10326403A1 (de) 2004-12-30
CN1802340A (zh) 2006-07-12
US7670464B2 (en) 2010-03-02
JP2006527225A (ja) 2006-11-30
US20060151310A1 (en) 2006-07-13
ATE375328T1 (de) 2007-10-15
ES2293274T3 (es) 2008-03-16

Similar Documents

Publication Publication Date Title
EP1465859B1 (de) Verfahren zur kontinuierlichen herstellung von alkyl(meth)acrylaten
EP1583733B1 (de) Verbessertes verfahren zur kontinuierlichen herstellung von alkyl(meth)acrylaten mit mehrfacher katalysatorrezyklierung
EP0790230A1 (de) Verfahren zur kontinuierlichen Herstellung von Alkylestern der (Meth)acrylsäure
EP1931650A1 (de) Verfahren zur herstellung von dioxolan
EP0765859A1 (de) Verfahren und Vorrichtung zur kontinuierlichen Herstellung von Alkylestern der (Meth)acrylsäure
EP1122248A1 (de) Verfahren zur Epoxidierung von Olefinen
EP2675780B1 (de) Verfahren zur herstellung von divinylethern
EP1853546A1 (de) Kontinuierliches verfahren zur herstellung von cyclohexyl(meth)acrylat
EP1066240A1 (de) Verfahren zur herstellung von acrylsäure und acrylsäureestern
EP1636158B1 (de) Verfahren zur destillativen trennung eines vinylether und alkohol enthaltenden gemischs
EP1399409B1 (de) Verfahren zur herstellung von (meth)acrylsäureestern
DE102005010588A1 (de) Verfahren zur Herstellung von Alkylestern der (Meth)acrylsäure
DE19651325A1 (de) Verfahren zur Herstellung von Glyoxalmonoacetalen
WO2005023743A1 (de) Verfahren zur aufarbeitung von 1,1,2,2-tetramethoxyethan und glyoxaldimethylacetal enthaltenden zusammensetzungen
EP1060155A1 (de) Verfahren zur destillation butandiolhaltiger gemische
DE102005010587A1 (de) Verfahren zur Herstellung von Alkylestern der (Meth)acrylsäure
WO2001077051A1 (de) Verfahren zur herstellung von alkenylethern
EP2780313A1 (de) Destillatives verfahren zur gewinnung von di-trimethylolpropan
EP3755692B1 (de) Verfahren zur abreicherung von 2-methoxyethanol (moe)
EP2554535B1 (de) Verfahren zur Herstellung von (Meth)acrylsäureestern von Polyolen
EP1053995B1 (de) Verfahren zur Herstellung von (Meth)acrylsäureestern
DE102019209234A1 (de) Verfahren zur Herstellung von 1-Hydroxy-2-methyl-3-pentanon
EP1999102B1 (de) Verfahren zur herstellung von n,n-dimethylaminoethoxyethanol
DD297395A5 (de) Verfahren zur abtrennung von enolethern aus reaktionsgemischen mit alkoholen
WO1998009932A1 (de) Verfahren zur herstellung von alkindiolen oder gemischen von alkindiolen mit alkinmonoolen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004739689

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048159597

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006151310

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10560135

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006515845

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004739689

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10560135

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004739689

Country of ref document: EP