WO2004110585A1 - 放射球状晶析物およびその製造方法並びにこれを利用するドライパウダー製剤 - Google Patents

放射球状晶析物およびその製造方法並びにこれを利用するドライパウダー製剤 Download PDF

Info

Publication number
WO2004110585A1
WO2004110585A1 PCT/JP2004/007171 JP2004007171W WO2004110585A1 WO 2004110585 A1 WO2004110585 A1 WO 2004110585A1 JP 2004007171 W JP2004007171 W JP 2004007171W WO 2004110585 A1 WO2004110585 A1 WO 2004110585A1
Authority
WO
WIPO (PCT)
Prior art keywords
radial spherical
supercritical fluid
crystallized product
crystallization
modifier
Prior art date
Application number
PCT/JP2004/007171
Other languages
English (en)
French (fr)
Other versions
WO2004110585A9 (ja
Inventor
Kazumi Danjo
Hirokazu Okamoto
Takeaki Furudate
Original Assignee
Taisho Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisho Pharmaceutical Co., Ltd. filed Critical Taisho Pharmaceutical Co., Ltd.
Priority to JP2005506882A priority Critical patent/JP4622855B2/ja
Priority to CA002528413A priority patent/CA2528413A1/en
Priority to US10/560,169 priority patent/US20060275219A1/en
Priority to EP04745323A priority patent/EP1683560A4/en
Publication of WO2004110585A1 publication Critical patent/WO2004110585A1/ja
Publication of WO2004110585A9 publication Critical patent/WO2004110585A9/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0403Solvent extraction of solutions which are liquid with a supercritical fluid
    • B01D11/0411Solvent extraction of solutions which are liquid with a supercritical fluid the supercritical fluid acting as solvent for the solvent and as anti-solvent for the solute, e.g. formation of particles from solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops

Definitions

  • the present invention relates to a radial spherical crystallized product, and more particularly, to a radial spherical crystallized product produced by a crystallization technique using a supercritical fluid and having a needle-like portion.
  • the resulting radial spherical crystallization can be used as a drug delivery vehicle for transmucosal and pulmonary administration.
  • a dry powder inhalant is a drug that inhales a drug substance powder and delivers it to the alveoli or bronchi at the administration site.
  • the particle size of the drug substance must be 0.5 to 5 m. It is necessary.
  • the drug substance is often adjusted to the above particle size by pulverization, so that it is not possible to overlook adhesion due to static electricity and cohesiveness, such as adhesion to inhalation devices and formation of secondary particles due to aggregation of particles. was a problem.
  • a method of attaching a fine drug substance to a carrier has been developed for the purpose of improving the release rate from a device and preventing aggregation of particles.
  • the carrier fills the device with the drug substance adhered to its surface, and when inhaling, the turbulence created by the inhalation occurs in the device, and the turbulent flow causes the carrier and the drug substance to form.
  • the drug substance reaches the target site, but the carrier may be deposited in the oral cavity. Therefore, with this method, the inhalation efficiency (pulmonary coverage) is generally low at about 30%, and the remaining 70% deposited at other than the target site may cause side effects.
  • the supercritical fluid is a fluid that is a fluid at a temperature and pressure higher than the critical temperature (Tc) and critical pressure (Pc).
  • Tc critical temperature
  • Pc critical pressure
  • the fluid density changes greatly even with a small change in pressure, and the solvent can be freely controlled.
  • the density of supercritical fluid is 0.1-0.9g 'dm- 3 under normal conditions.
  • the most commonly used supercritical fluid is diacid carbon. The reason is that it is inexpensive, has no toxicity, does not burn, and is easy to obtain a supercritical state with a low critical temperature. You.
  • the other is a gas non-dissolution (GAS) recrystallization method, in which a target solid does not dissolve in a supercritical fluid or a modified supercritical fluid, and in some cases, has a very small solubility. Useful if not available.
  • GAS gas non-dissolution
  • the solute of interest is dissolved in a common solvent.
  • Dioxygen carbon or other supercritical fluid is introduced into the solution and the volume of the solution is rapidly expanded. As a result, the solvating power sharply decreases in a short time, creating an opportunity for crystallization of particles (see Non-Patent Document 2).
  • Non-Patent Document 1 Jasco Report “Special Issue on Supercritical Technology”, JASCO, May 8, 1997
  • the present invention can be applied to a carrier to which a drug substance is attached or a drug substance itself to reach a target site such as a lung or a bronchus. It is an object of the present invention to provide a fine drug substance or a fine carrier that can be advantageously used as a drug or a drug delivery vehicle.
  • the present inventors have conducted intensive studies to obtain a fine drug substance and a fine carrier suitable for a dry powder inhalant, and as a result, have adjusted the conditions in the crystallization of supercritical fluid force. As a result, it has been found that a radial spherical crystallized product having a plurality of radially extending needle-like portions and having a small force can be obtained.
  • a first aspect of the present invention is a radial spherical crystallization having a plurality of needle-like portions radially extended with a central force directed outward.
  • the second aspect of the present invention relates to a method for introducing a supercritical fluid, which may contain a modifier, and a sample component-containing solution into a crystallization vessel through different flow paths and ejecting them into the crystallization vessel.
  • a supercritical fluid which may contain a modifier
  • a sample component-containing solution into a crystallization vessel through different flow paths and ejecting them into the crystallization vessel.
  • a third aspect of the present invention is to guide a supercritical fluid, which may contain a modifier, and a sample component-containing solution to a crystallization vessel through different flow paths, and to eject these into the crystallization vessel.
  • This is a method for producing a radial spherical crystallized product, which is brought into contact with a sphere.
  • a fourth aspect of the present invention is a dry powder preparation containing, as an active ingredient, a radial spherical crystallized product produced using a pharmaceutical drug as a sample component.
  • a fifth aspect of the present invention is a dry powder preparation containing, as a carrier, a radial spherical crystallization product produced using a preparation carrier as a sample component.
  • This radial spherical crystallized substance is used as a drug substance for DPI when it is composed of a drug itself, and when it is a drug carrier, it is used as a DPI carrier that reaches the lungs and mucous membranes while carrying the drug. Applicable. BEST MODE FOR CARRYING OUT THE INVENTION
  • the radial spherical crystallized product of the present invention is a crystallized product in which a large number of needle-like objects extend outward from the crystal center and have a substantially spherical shape (see FIGS. 1 and 2). .
  • This shape can be expressed in other ways, such as a “penny-like” shape, in which the outer surface of a spherical shell is covered with long thorns, or a “coni” shape of a chestnut. It can also be called “conical algae (marimo)."
  • the crystallized substance having such a shape is obtained by growing a crystal with a sample component as a nucleus in a supercritical fluid and forming a plurality of radiating needle-like sites.
  • the number and shape of the "needle-shaped portions" of the radial spherical crystallized product of the present invention vary depending on crystallization conditions and the like, and the "needle-shaped” includes a rod-shaped or plate-shaped.
  • the “spherical shape” in the present invention includes not only a perfect spherical shape but also a substantially spherical shape, and includes an ellipsoidal sphere and a flat sphere.
  • the aerodynamic diameter of the radial spherical crystallized product (hereinafter referred to as "crystallized product”) of the present invention is about 0.1 to 20 ⁇ m. However, for example, if it is used for pulmonary administration, it should be adjusted to about 0.1-5 / zm.If it is used for local administration to the bronchi, etc., it should be adjusted to about 0.5-20 / zm. It is desirable.
  • the aerodynamic diameter is a particle diameter related to the inertia of the air flow field, which is not a geometric length, and its particle size distribution is, for example, an Andersen cascade impactor, a multi-liquid impinge. It can be measured using a jar or the like, and as a simple method, it can be measured using an aerobicizer or the like.
  • the bulk density of the crystallized product is about 100 mgZmL or less, and preferably 30-100 mgZmL.
  • the bulk density is a value obtained by filling a container having a known volume with powder by a certain method, and dividing the mass of the powder by the volume including voids between particles. A sample is gently placed, the mass of the sample when the sample is filled with 10 mL is measured, and the value is obtained by dividing the mass by 1 OmL.
  • the crystallization product of the present invention is obtained, for example, by mixing a supercritical fluid mixed with a modifier as needed and introduced into a different flow channel, and a sample component-containing solution from the flow channel into the crystallization vessel. It is manufactured by contacting when squirting.
  • the "sample component” is a substance to be crystallized, It is a substance having the property of being insoluble or almost insoluble in the supercritical fluid or a mixture of the supercritical fluid and the modifier described below. This substance is not particularly limited as long as it has the above-mentioned properties, but when the radial spherical crystallized product of the present invention is used as a drug or a carrier thereof, pharmaceutically acceptable active ingredients and excipients are used. It is preferably a component or a mixture thereof.
  • the prepared crystallized product can be directly used for transmucosal / pulmonary administration. Further, when a crystallized product is prepared using an excipient as a sample component, the active ingredient can be carried on the needle-like site of the crystallized product, and used for transmucosal or pulmonary administration.
  • the sample component selected is preferably a substance having good biocompatibility, for example, sugar or sugar alcohol. Is lactose.
  • sample component-containing solution in the present invention is a solution in which a sample component to be crystallized is dissolved or suspended, and the selected “solvent” is the type of the sample component to be crystallized. It will be decided according to. For example, when sugar or sugar alcohol is used as a sample component, water is preferable. This solvent does not need to be one kind, but may be a mixture of two or more kinds of solvents.
  • the "supercritical fluid" in the production of a crystallized substance means a fluid at a pressure and temperature higher than the critical pressure (Pc) and the critical temperature (Tc).
  • the pressure of the supercritical fluid is often in the range of 1.01-7.0Pc, and the temperature is often in the range of 1.01-4.0Tc.
  • a substance used as a supercritical fluid is a substance which easily liquefies at a relatively low pressure and reaches a supercritical state at low pressure and low temperature.
  • Such materials include carbon dioxide, nitrous sulfide, sulfur hexafluoride, xenon, ethylene, ethane, chlorotrifluoromethane and trifluoromethane, but are inexpensive, non-toxic and do not burn. That the critical temperature is low and the supercritical state is easily obtained.
  • the “crystallization vessel” used in the present invention has a container in which the inside is maintained at a temperature and pressure at which a gas or liquid used as a supercritical fluid becomes a subcritical or supercritical fluid. The diffusion and crystallization of the sample components are performed.
  • a "modifier” can be mixed in a supercritical fluid, if necessary.
  • This modifier also called a modifier or co-solvent, has the property of mixing with the supercritical fluid to change the supercritical properties at or near the critical point.
  • the modifier is not particularly limited, but when the supercritical fluid is carbon dioxide and the sample solution is water, an alcohol such as ethanol is exemplified.
  • the solubility of the sample component in the mixed liquid of the supercritical fluid and the modifier is small, and the supercritical fluid or the like acts as a so-called poor solvent for the sample component.
  • the shape and size of the crystallized product may be related to the amount of the modifier contained in the supercritical fluid.
  • the flow rate of the modifier is increased by keeping the flow rate of the supercritical fluid constant.
  • the particle diameter gradually decreases and the ethanol flow rate is about one-fourth of the carbon dioxide flow rate. If the flow rate of ethanol is further increased, needle-like sites disappear, and a normal recrystallized product (Tomahawk type) is produced (see Fig. 12). A precipitate can be obtained.
  • FIG. 3 is a drawing showing an outline of an example of an apparatus used for producing a crystallized product.
  • 1 is a thermostat
  • 2 is a crystallization vessel
  • 3 is a nozzle
  • 4 is a back pressure regulator
  • 5 is a sample solution feed pump
  • 6 is a supercritical fluid feed pump
  • 7 is a modifier solution pump
  • 8 is a sample solution container
  • 9 is a medium container for supercritical fluid
  • 10 is a modifier solution container
  • 11 is a mixing column (coil)
  • 12 is a waste solvent recovery container.
  • a is a sample piping
  • b is a supercritical fluid piping
  • c is a modifier piping
  • d is a discharge piping.
  • the temperature in the crystallization vessel 2 is set to a temperature at which the supercritical fluid can exist in a subcritical or supercritical state in the thermostatic oven 1. .
  • the supercritical fluid is sent out into the crystallization vessel 2 and the back 'pressure' regulator 4 Is adjusted to maintain a pressure at which the supercritical fluid can exist in a subcritical or supercritical state.
  • the supercritical fluid and the modifier are mixed in the mixing column 11 through the respective pipes b and c, and the mixed liquid is sent into the crystallization vessel 2.
  • the flow rate of the supercritical fluid and the modifier is determined by the flow rate ratio at which the sample forms a radial spherical crystallized substance.
  • the flow rate of carbon dioxide is maximized, and the ethanol flow rate is calculated as 4 Adjust to one-half.
  • the solvent in which the sample components are suspended or dissolved is sent out into the crystallization vessel 2 through the sample solution pipe a, and the nozzle 3a installed in the vessel is used for the nozzle 3b.
  • the mist sample solution is brought into contact with and mixed with the mixed solution of the mist and the modifier so that the sample crystallizes in the container 2.
  • a V-shaped nozzle may be used as the nozzle 3 (H. Okamoto, S.
  • a radiated spherical crystallized product is obtained by the method of the present invention is considered as follows. That is, the “sample component-containing solution” and the “supercritical fluid” or the “mixture of the supercritical fluid and the modifier” are introduced into the crystallization vessel 2 through different flow paths without contact outside the crystallization vessel 2. Is done. Then, immediately after entering the crystallization vessel 2, the two come into contact with each other, and the vibrating force causes the solution containing the sample component to become a fine mist and scatter (diffuse) into the crystallization container, thereby causing small particles of the sample component to be dispersed. It is thought that the nucleus becomes a nucleus and a needle-like part grows to form a spherical crystal.
  • the power of the carbon dioxide pump was turned on, and the pump power was waited until the pump was cooled to 5 ° C.
  • turn on the knock 'pressure' regulator set the pressure and temperature, open the carbon dioxide flow path valve and the main valve of the carbon dioxide cylinder, and turn on the carbon dioxide supply switch.
  • the ethanol (modifier) pump was turned on to start pumping.
  • the sample feeding pump was switched on, a sample (20% lactose aqueous solution) was introduced, and crystallization was started.
  • the sample feeding pump and the modifier feeding pump were stopped, the knob was closed, and the column was dried by continuing to flow carbon dioxide for 30 minutes or more.
  • the carbon dioxide pump was stopped, the main valve of the carbon dioxide cylinder was closed, and the pressure of the knock 'pressure' regulator was gradually reduced. Finally, the exhaust valve was opened, the inside of the container was completely returned to normal temperature and normal pressure, and the crystallized substance in the column was recovered.
  • the aerodynamic particle size was measured and the particle shape was observed by SEM on the crystallized product obtained in Example 1 above, and the effect of the operating conditions of the supercritical crystallization apparatus on the particle properties was measured. Was examined.
  • the air port sizer body and the attached PC were prepared according to the usage procedure.
  • Set dispersion pressure After 4.0 psi, about 0.5 cup of microspar was placed in the sample holder, the lid was closed, and the sample holder was fixed firmly to the mounting part, and the aerodynamic particle diameter was measured.
  • a double-sided tape is stuck on the sample table, and the crystallized substance is sprinkled on the double-sided tape.
  • the crystallized substance is fixed on the sample table, and Pt-Pd is vapor-deposited using ion sputtering. The shape was confirmed with.
  • the basic conditions are as follows: "carbon dioxide flow rate 14.0mLZmin, ethanol flow rate 0.7mLZmin, sample feeding rate 0 • 035mLZmin, pressure 16MPa, temperature 35 ° C, sample concentration (lactose aqueous solution concentration 10% w / w)”
  • SEM particle shape
  • aerodynamic diameter air sizer
  • Table 3 summarizes the yields and aerodynamic diameters of the crystallization products obtained under each of the study conditions.
  • the particles observed by the SEM showed similar shapes with similar deviations (FIG. 16). Dramatic change in shape was observed only when the flow rate of carbon dioxide was changed (see FIG. 7).
  • the flow rate of carbon dioxide was 6.5 mLZmin or less (ratio of the flow rate of ethanol to the flow rate of carbon dioxide: CZE ⁇ 9.3)
  • the shape change of the crystallized product was remarkable.
  • the particle size reflects the shape change, the needle-shaped crystals obtained when the flow rate of carbon dioxide is small are crystallized as the flow rate of carbon dioxide increases, with the particle size being as small as about 18 m.
  • the product turned into a needle-shaped crystallized mass and the particle size increased to about (see Fig. 7).
  • Table 5 summarizes the yields and aerodynamic diameters of the crystallization products obtained under each study condition.
  • the change in particle size was not so large as the change in ethanol flow rate, and the change in particle size was in the range of about 514 / zm.
  • the change in shape was hardly observed, and the particle size was almost unchanged at around 6-8 IX m.
  • Figure 13 shows the relationship of CZE. It was found that the emissive spherical crystallization can be prepared when CZE is 4.
  • a crystallization product having a cumulative diameter of 5.2 m was obtained.
  • Salbutamol sulfate DPI formulations were prepared and their in vitro inhalation properties evaluated as described below.
  • DPI manufactured using commercially available lactose was used as a comparative product. Table 6 shows the results.
  • Salbutamol sulfate sieved at 250M and radial globular crystals (Run No. 22 described in Table 5) also sieved at 250M were mixed in a ratio of 3: 7 to obtain the formulation of the present invention.
  • This formulation showed good mixing uniformity with a content of 29.2% and an RSD of 3.6% as a result of quantification of 6 measurements.
  • a mixture of salbutamol sulfate sieved at 250 M and lactose LH200 (Borculo-Domo), which was also sieved at 250 M, in a ratio of 3: 7 was used.
  • Gelatin capsules were filled with 3 mg each of Formulation 1 of the present invention and Comparative Formulation 1.
  • Iecheler was used as a device for inhalation. Attach the leveler to the Andersen Cascade Compactor (ACI) via the mouthpiece, and suction for 6 seconds at 40.0 LZmin with the vacuum pump. I pulled. Two sprays (3 mg capsule X 2) were performed per measurement. After the suction, the sample deposited on each of the Stage 0-7, the throat, and the fraction of the device was washed into a volumetric flask with a solvent, and this was used as a sample solution. Salbutamol sulfate in the formulation deposited in each fraction was quantified by the HPLC method, and the rate of reaching the lung relative to the capsule filling amount was determined. The measurement was performed twice for each preparation. Table 6 shows the results.
  • a radial spherical crystallized product of the substance was produced as a white powder in the same manner as in Example 1 except that the sample solution was a 20% aqueous solution of salbutamol sulfate.
  • the crystallization conditions are as shown in Table 7.
  • the radial spherical crystallization product of the present invention obtained by force can be used for various applications.
  • One example of such force is the use as a drug such as a DPI preparation. That is, by making the drug into a spherical crystallization product according to the present invention, the drug can be delivered to the alveoli or bronchus at the administration site by means such as inhalation.
  • the pharmaceutical carrier a radial spherical crystallization product according to the present invention, a higher drug content, for example, 30% or more, than the conventional DPI carrier is obtained, which is excellent. In vitro inhalation properties can be obtained.
  • FIG. 1 is an electron micrograph of a radial spherical crystallized product (lactose).
  • FIG. 2 is an electron micrograph of a radial spherical crystallized product (lactose).
  • FIG. 3 is a schematic view of a supercritical fluid crystallizer.
  • FIG. 4 is a graph showing the effect of ethanol flow rate on particle size and shape change.
  • FIG. 5 is a graph showing the effect of pressure on particle size and shape change.
  • FIG. 6 is a graph showing the effect of temperature on particle size and shape change.
  • FIG. 7 is a graph showing the effect of the flow rate of carbon dioxide on particle size and shape change.
  • FIG. 8 is a graph showing the effect of the ratio of the flow rate of ethanol to the flow rate of carbon dioxide (5%) on changes in particle size and shape.
  • FIG. 9 is a graph showing the effect of the sample solution flow rate on the particle size and shape change.
  • FIG. 10 is a graph showing the effect of pressure on particle size and shape change.
  • FIG. 11 is a graph showing the effect of temperature on particle size and shape change.
  • FIG. 12 is a graph showing the effect of ethanol flow rate on particle size and shape change.
  • FIG. 13 is a schematic diagram showing the relationship between the particle shape of the crystallized product and the ratio (C / E) of the flow rate of ethanol and the flow rate of carbon dioxide.
  • FIG. 14 is an electron micrograph of a radial spherical crystallized product (salbutamol sulfate). Explanation of reference numerals

Abstract

 例えば、異なる流路で導入された、必要に応じてモディファイアを混合した超臨界流体と、試料成分含有溶液とを、流路から晶析容器内へ噴出する際に接触せしめることにより製造される、中心部から外部へ向かって放射状に延びた複数の針状部位を有する放射球状晶析物が開示されている。  この放射球状晶析物は、経粘膜・経肺投与用の薬剤あるいは薬物送達媒体として用いることができ、ドライパウダー吸入剤(DPI)等の微細原薬ないしは微細キャリアとして利用可能である。

Description

明 細 書
放射球状晶析物およびその製造方法並びにこれを利用するドライパウダ 一製剤
技術分野
[0001] 本発明は、放射球状晶析物に関し、さらに詳しくは、超臨界流体を用いた晶析技術 によって製造され、針状部位を有する放射球状晶析物に関する。得られる放射球状 晶析物は経粘膜'経肺投与用の薬物送達媒体として用いることができる。
背景技術
[0002] ドライパウダー吸入剤 (DPI)は、原薬粉末を吸入して投与部位の肺胞または気管 支まで送達させるものである力 そのためには原薬の粒子径を 0.5— 5 mにする必 要がある。従来は、粉砕によって原薬を上記粒子径に調製することが多ぐそのため 、静電気による付着'凝集性を看過することができなくなり、吸入デバイスへの付着や 粒子の凝集による二次粒子の形成等が問題となっていた。
[0003] そこで、デバイスからの放出率改善や粒子の凝集防止を目的とし、キャリアに微細 な原薬を付着させる方法 (キャリア法)が開発された。しかし、この方法によりキャリア は原薬をその表面に付着させた状態でデバイスに充填し、吸入を行なうと、吸気によ つて作り出される乱流がデバイス内に生じ、その乱流でキャリアと原薬が分離し、原薬 は標的部位へ到達するが、キャリアは口腔内などに沈着してしまうことがあった。従つ て、この方法では一般に吸入効率 (肺到達率)は 30%程度と低ぐ標的部位以外に 沈着した残りの 70%程度が副作用の原因となることがあった。
[0004] ところで、近年、超臨界流体及びその利用方法について多くの文献発表が行われ ている(非特許文献 1参照)。ここで、超臨界流体とは、臨界温度 (Tc)及び臨界圧力 (Pc)以上の温度及び圧力状態にある流体ということになる力 その性質としては、以 下のものが知られている。
(1) 通常の液体に比して拡散係数が大きいが、粘度及び界面張力は小さい。
(2) 理想気体と異なり圧縮性が大きいため、圧力のわずかな変化によってもその流 体密度は大きく変化し、溶媒ィ匕カを自在にコントロールすることができる。 一般に、超臨界流体の密度は常態下において 0.1— 0.9g' dm— 3である。
(3) 超臨界流体の多くは大気温度'圧力下では、気体であるため、従来の液体抽 出法で必須であった蒸発 ·濃縮工程は不要である。
(4) 超臨界流体の多くは、その不活性さと常態下における温度故に、熱的に不安 定な化合物に対して非酸化性すなわち非分解性の雰囲気を形成する。
最も一般的に用いられる超臨界流体は二酸ィ匕炭素である力 その理由は、安価で あること、毒性がないこと、燃焼しないこと、臨界温度が低ぐ超臨界状態を得やすい ことにめる。
[0005] こうした物理的性質に基づ 、て、超臨界流体を用いて抽出及び粒子形成を行うた めの技術が開発され、特に粒子形成のための二つの方法が注目されている。
このうちの一つは、超臨界溶液の急速膨張法 (RESS)で、対象となる溶質を超臨 界流体に溶解させた後、その超臨界流体を大気圧まで急速に膨張させることによつ て、粒子を晶析させる方法である (非特許文献 2参照)。
[0006] もう一つは、ガス非溶解 (GAS)再結晶法で、対象となる固体が超臨界流体または 改質した超臨界流体に溶解しな 、場合、ある 、は極めて小さな溶解度しか有して ヽ ない場合には、有用である。この方法では、対象となる溶質は通常の溶媒に溶解さ せる。二酸ィ匕炭素その他の超臨界流体をその溶液中に導入し、その溶液の容積を 急速に膨張させる。その結果、短時間の間に溶媒化力が急激に低下し、粒子の晶析 化の契機を作出する (非特許文献 2参照)。
[0007] し力しながら、超臨界流体による晶析技術を使って経粘膜'経肺投与用のドライバ ウダ一製剤用キャリアを調製し、実用化した例は報告されていない。
[0008] 非特許文献 1: Jasco Report「超臨界技術 特集号」日本分光社、平成 9年 5月 8日発 行
^^特 §午文献 2 : Peter York, 「Strategies for particle using supercritical fluid tech nologies」 Pharmaceuticak^cience & Technology Today, Vol.2, No.l l, p.425-467 , 1999年
発明の開示 発明が解決しょうとする課題
[0009] 従って本発明は、原薬を付着させたキャリアとしても、また原薬自体としても標的部 位である肺、気管支等に到達させることができ、 DPIなどの経粘膜'経肺投与用の薬 剤あるいは薬物送達媒体として有利に用いることができる微細原薬な 、しは微細キヤ リアの提供を課題とする。
課題を解決するための手段
[0010] 本発明者らは、ドライパウダー吸入剤に適した微細原薬や微細キャリアを得べく鋭 意検討を行った結果、超臨界流体力 の結晶晶析において、その条件を調整するこ とによって、放射状に延びた複数の針状部位を有し、し力も微細な放射球状晶析物 が得られることを見出した。
[0011] すなわち本発明の第一の態様は、中心部力 外部へ向力つて放射状に延びた複 数の針状部位を有する放射球状晶析物である。
[0012] また本発明の第二の態様は、モディファイァを含んでも良い超臨界流体と試料成分 含有溶液とを、異なる流路で晶析容器に導き、これらを晶析容器内へ噴出させる際 に接触せしめることにより製造される放射球状晶析物である。
[0013] 更に本発明の第三の態様は、モディファイァを含んでも良い超臨界流体と試料成 分含有溶液とを、異なる流路で晶析容器に導き、これらを晶析容器内へ噴出させる 際に接触せしめることを特徴とする放射球状晶析物の製造方法である。
[0014] 更にまた本発明の第四の態様は、医薬用薬物を試料成分として製造された放射球 状晶析物を有効成分とするドライパウダー製剤である。
[0015] また更に本発明の第五の態様は、製剤用キャリアを試料成分として製造された放射 球状晶析物をキャリアとして含有するドライパウダー製剤である。
発明の効果
[0016] 本発明により、従来知られて!/、な 、微細な放射球状晶析物を得ることが可能となつ た。この放射球状晶析物は、それ自体薬物で構成される場合は、そのまま DPI用原 薬として、またそれが製剤用キャリアである場合は、薬物を担持したまま肺や粘膜に 到達する DPIキャリアに応用可能である。 発明を実施するための最良の形態
[0017] 本発明の放射球状晶析物は、結晶中心から外に向力つて多数の針状物が伸びて おり、大略球形の形状となる晶析物である(図 1、図 2参照)。この形状は、他の表現と して、球形の殻の外面が長い棘で覆われたゥ二のような形状である「ゥニ状」や、栗の 「毬 ( 、が)状」あるいは「毬藻 (マリモ)状」とも 、うことができるものである。
[0018] このような形状の晶析物は、超臨界流体中で試料成分を核として結晶が成長し、放 射状に延びた複数の針状部位を形成することにより得られるものである。
[0019] 本発明の放射球状晶析物の「針状部位」の数や形状は晶析条件等によって異なり 、また、「針状」には棒状もしくは板状も含まれる。更に、本発明における「球形」には 、完全な球形はもちろん、ほぼ球形であれば足り、楕円球体や扁平球体も含まれる。
[0020] 本発明の放射球状晶析物(以下、「晶析物」 、う)の空気動力学径は 0.1— 20 μ m程度である。しかし、例えば、これを経肺投与に用いる場合には、 0.1— 5 /z m程度 に調製することが望ましぐ気管支等への局所投与に用いる場合には、 0.5— 20 /z m 程度に調製することが望ましい。
[0021] なお、空気動力学径とは、幾何学的な長さではなぐ空気の流れの場の慣性にか かわる粒子径であり、その粒度分布は、例えば、アンダーセンカスケードインパクター 、マルチリキッドインピンジャー等により測定することができ、簡便な方法としては、ェ ァロサイザ一などを使って測定することもできる。
[0022] また、晶析物の嵩密度は lOOmgZmL以下程度であり、好ましくは 30— lOOmgZ mLである。
[0023] この嵩密度は、体積既知の容器に粉体を一定方法で充填し、粒子間の空隙も含め た体積で粉体の質量を除した値であって、例えば、 lOmLのメスシリンダーに試料を 静かに入れ、その試料が lOmL充填されたときの試料の質量を測定し、その質量を 1 OmLで除して得られる値である。
[0024] 本発明の上記晶析物は、例えば、異なる流路で導入された、必要に応じてモディフ アイァを混合した超臨界流体と、試料成分含有溶液とを、流路から晶析容器内へ噴 出する際に接触せしめることにより製造される。
[0025] 上記晶析物の製造にぉ 、て、「試料成分」とは、晶析の対象となる物質であって、 後記の超臨界流体または超臨界流体とモディファイァの混合液に溶解しな 、か、ほ とんど溶解しない性質を有する物質である。この物質は、上記性質を有するものであ れば特に制約はされないが、本発明の放射球状晶析物を薬剤ないしその担体として 使用する場合は、薬学的に許容される有効成分、賦形剤成分あるいはこれらの混合 物であることが好ましい。
[0026] 試料成分として有効成分を含有していれば調製された晶析物はそのまま経粘膜 · 経肺投与に利用することができる。また、賦形剤を試料成分として晶析物を調製した 場合は、晶析物の針状部位に有効成分を担持させて経粘膜'経肺投与に供すること もできる。なお、ドライパウダー製剤用キャリアとしての用途を考慮すれば、選択され る試料成分は、生体適合性のよい物質であることが好ましぐ例えば、糖又は糖アル コールが挙げられ、このうち糖としては乳糖が挙げられる。
[0027] また、本発明における「試料成分含有溶液」は、晶析の対象となる試料成分を溶解 または懸濁させた溶液であって、選択される「溶媒」は晶析させる試料成分の種類に 応じて決まってくる。例えば、試料成分として糖又は糖アルコールを用いた場合には 、水が好ましい。この溶媒は 1種であることを要せず、 2種以上の溶媒の混液であって ちょい。
[0028] 更に、晶析物の製造における「超臨界流体」とは、臨界圧 (Pc)及び臨界温度 (Tc) 以上の圧力及び温度の状態にある流体を意味する。実際には、超臨界流体の圧力 は 1.01— 7.0Pcの範囲に、温度は 1.01— 4.0Tcの範囲内にあることが多い。超臨界 流体として用いられるのは、比較的低い圧力で容易に液ィ匕し、低圧 ·低温下におい て、超臨界状態に至る物質である。このような物質としては、二酸化炭素、亜硫化窒 素、六フッ化硫黄、キセノン、エチレン、ェタン、クロ口トリフルォロメタン及びトリフルォ ロメタンが挙げられるが、安価であること、毒性ないこと、燃焼しないこと、臨界温度が 低ぐ超臨界状態を得やすいこと等の理由力 二酸ィ匕炭素を利用することが好ましい
[0029] 一方、本発明に用いる「晶析容器」は、その内部が、超臨界流体として使用される 気体又は液体が亜臨界又は超臨界状態の流体となる温度及び圧力に保持された容 器であって、試料成分の拡散、晶析が行われるものである。 [0030] 晶析物の製造においては、必要により超臨界流体中に「モディファイァ」を混合する こともできる。このモディファイァは、改質剤または補助溶媒ともいわれ、超臨界流体 と混ざり合って、臨界点またはその付近の超臨界の特性を変化させる性質を有するも のである。超臨界流体の流量に対し、モディファイァの流量を変化させることによって 、晶析物の形状や大きさを変わることがある。このモディファイァとしては、特に制約さ れるものではないが、超臨界流体が二酸化炭素、試料溶液が水の場合は、エタノー ル等のアルコールが例示される。
[0031] 上記超臨界流体な!/、しはこれとモディファイァの混合液に対する試料成分の溶解 度は小さぐこの超臨界流体等は試料成分に対していわゆる貧溶媒として作用する。
[0032] 本発明の晶析物の製造において、晶析物の形状及び大きさは、超臨界流体中に 含まれるモディファイァの量に関係する場合がある。例えば、超臨界流体に二酸化炭 素、モディファイァにエタノール、試料成分に乳糖、試料成分を溶解させる溶媒に水 を選択した場合、超臨界流体の流量を一定にしてモディファイァの流量を増大させる と、粒子径がしだいに小さくなり、エタノール流量が二酸ィ匕炭素流量の 4分の 1のとこ ろで、目的とする放射球状晶析物が生じる。さらにエタノール流量を増加させると、針 状部位は見られなくなり、通常の再結晶体 (トマホーク型)が生じるに至る(図 12参照 ) o他の系においても、これを参考に実験的に好ましい晶析物を得ることができる。
[0033] 次に、本発明晶析物の製造に使用する装置の一例を挙げ、説明を行う。
[0034] 図 3は、晶析物の製造に使用する装置の一例の概要を示す図面である。図中、 1は 恒温槽、 2は晶析容器、 3はノズル、 4はバック'プレツシャ一 ·レギュレーター( Back Pressure Regulater )、 5は試料溶液送液ポンプ、 6は超臨界流体送液ポンプ、 7はモ ディファイア送液ポンプ、 8は試料溶液容器、 9は超臨界流体用媒体容器、 10はモ ディファイア溶液容器、 11はミキシングカラム (コイル)、 12は廃溶媒回収容器である 。また、 aは試料系配管、 bは超臨界流体系配管、 cはモディファイァ系配管、 dは排 出系配管である。
[0035] 図 3に示した装置で晶析物を製造するには、まず、恒温槽 1で晶析容器 2内の温度 を超臨界流体が亜臨界または超臨界状態で存在しうる温度とする。次いで、晶析容 器 2内に超臨界流体を送出し、容器に設置したバック'プレッシャー'レギュレーター 4 を調整して超臨界流体が亜臨界または超臨界状態で存在しうる圧力に保持する。超 臨界流体とモディファイァを、それぞれの配管 b及び cを通じてミキシングカラム 11で 混合し、この混合液を晶析容器 2内に送出する。ここで、超臨界流体とモディファイァ の流量を試料が放射球状の晶析物を形成する流量比、例えば、二酸化炭素とェタノ ールの場合、二酸化炭素の流量を最大に、エタノール流量をその 4分の 1に調整して おく。一方、試料成分を懸濁または溶解させた溶媒を、試料溶液配管 aを通じて晶析 容器 2内に送出し、容器内に入るところに設置したノズル 3aで、同じくノズル 3b力ゝらの 超臨界流体及びモディファイァの混合液と接触、混合させ、ミスト化した試料溶液が 容器 2内で試料が晶析するようにする。このとき使用するノズル 3としては、 V字型ノズ ルを使用するとよい(H. Okamoto, S. Nishida, H. Todo, Y. Sakakura, K. Iida, and K. Dan jo (2003): Pulmonary gene delivery by chitosan— pDNA complex powder prepared with supercritical carbon dioxide. J. Pharm. Sci. 92(2): 371- 380.参照)。晶 析物を乾燥し、容器 2から得られた放射球状の晶析物を回収する。
[0036] 本発明方法により、放射球状の晶析物が得られる理由は、次のように考えられてい る。すなわち、「試料成分含有溶液」と「超臨界流体」または「超臨界流体とモディファ ィァの混合液」とは晶析容器 2外では接触することなぐ異なる流路を通じて晶析容 器 2に導入される。そして、まさに晶析容器 2に入った直後に両者は接触し、その勢 いによって試料成分含有溶液が細カゝぃミストとなって晶析容器内に飛散 (拡散)し、 試料成分の小さな粒が核となって針状部位が成長し、球形の結晶を形成するに至る と考えられる。
実施例
[0037] 以下に、実施例および試験例を挙げ、本発明をさらに詳細に説明するが、本発明 はこれら実施例等により何ら制約されるものではない。
[0038] 実施例 1
試料溶液として乳糖水溶液、超臨界流体として二酸化炭素、モディファイァとしてェ タノールを使用し、図 3に示す超臨界二酸化炭素晶析装置および表 1に示す使用機 器を用いて、下記晶析方法により放射球状晶析物を製造し、その晶析物を評価した [0039] [表 1]
使用機器
Figure imgf000010_0001
[0040] [晶析方法]
二酸ィ匕炭素送液ポンプの電源を入れ、ポンプ力— 5°Cに冷却されるまで待った。冷 却が終わった後、ノ ック 'プレッシャー'レギュレーターの電源を入れ、圧力'温度を設 定後、二酸化炭素流路のバルブ及び二酸化炭素ボンベの元栓を開き、二酸化炭素 送液のスィッチを入れて送液を開始した。圧力が設定値に達したら、エタノール (モ ディファイア)送液ポンプのスィッチを入れて送液を開始した。容器内の温度'圧力が 定常状態に達した後、試料送液ポンプのスィッチを入れ、試料 (20%乳糖水溶液)を 導入し、晶析を開始した。晶析が終了した後、試料送液ポンプ及びモディファイァ送 液ポンプを止め、ノ レブを閉め、 30分以上二酸ィ匕炭素を流し続けることでカラム内を 乾燥させた。乾燥後、二酸化炭素送液ポンプを止め、二酸ィ匕炭素ボンベの元栓を閉 めた後、ノック 'プレッシャー'レギュレーターの圧力を徐々に下げた。最後に排気バ ルブを開け、完全に容器内を常温 '常圧に戻し、カラム内の晶析物を回収した。
[0041] 試験例 1
上記実施例 1で得た晶析物にっ 、て、空気動力学粒子径の測定および SEMによ る粒子形状の観察を行 1、、超臨界晶析装置の操作条件が粒子物性に及ぼす影響を 調べた。
( 1 )空気動力学粒子径の測定:
使用手順に従いエア口サイザ一本体及び付属 PCの準備を行った。分散圧を設定( 4.0psi)した後、サンプルホルダーにミクロスパーテル 0.5杯程度の検体を入れて蓋 を閉め、サンプルホルダー取り付け部にしつ力りと固定し、空気動力学粒子径を測定 した。
[0042] (2) SEMによる粒子形状の観察:
サンプル台上に両面テープを貼り、その上に晶析物を撒くことで、晶析物をサンプ ル台上に固定し、イオン'スパッタ(Ion Sputter)を用い Pt— Pdを蒸着した後、 SEMで 形状を確認した。
[0043] (3)超臨界晶析装置の操作条件が粒子物性に及ぼす影響:
(試験条件及び方法)
「二酸化炭素流量 14.0mLZmin、エタノール流量 0.7mLZmin、試料送液速度 0 •035mLZmin、圧力 16MPa、温度 35°C、試料濃度 (乳糖水溶液濃度) 10%w/ w)」と 、う条件を基本とし、各操作条件を表 2のように変化させたときの粒子形状 (SE M)及び空気動力学径 (エア口サイザ一)を評価した。
[0044] [表 2]
Figure imgf000011_0001
※ 下線の条件は基本となる条件
[0045] (結果及び考察)
各検討条件とその条件によって得られた晶析物の収率及び空気動力学径を表 3 まとめた。
[0046] [表 3] 晶析条件と晶析物の収率及び空気動力学 50%粒子径
Figure imgf000012_0001
[0047] また、晶析物の形状に注目すると、二酸化炭素流量以外の条件変化では、 SEM によって観察された粒子は ヽずれも似たような形状を有して ヽたが(図 4一 6参照)、 二酸ィ匕炭素流量を変化させた場合のみ劇的な形状変化が認められた(図 7参照)。 特に二酸ィ匕炭素流量が 6.5mLZmin以下(エタノール流量と二酸ィヒ炭素流量の比: CZE≤ 9.3)では晶析物の形状変化が著し力 た。粒子径もその形状変化を反映 するように、二酸ィ匕炭素流量が小さいときに得られた針状結晶は粒子径が約 18 m と小さぐ二酸ィ匕炭素流量が大きくなるにつれて晶析物が針状結晶力 塊状の晶析 物に変化し、粒子径も約 と大きくなつた(図 7参照)。
[0048] しかし、エタノール流量と二酸化炭素流量の比(CZE)を一定(5%)にして混合溶 媒の流量を変化させた場合の粒子形状変化(図 8参照)は、二酸化炭素流量単独で 変化させた場合と比較して小さかった。このこと力ら、二酸ィ匕炭素流量が晶析物の形 状に影響を及ぼすというよりは、エタノール流量と二酸ィ匕炭素流量の比 (CZE)が大 きく影響して!/、ることが示された。
[0049] もっとも、エタノール流量のみを変化させたときには、 CZEの値が変化しているにも 関わらず、それほど大きな形状の変化は認められな力つた。すなわち、 C/E≥26.7 の範囲では、粒子形状に影響を与えな 、ことがわ力つた。
[0050] 以上の事実を総合考慮すると、少なくとも CZE≤ 9.3のときに晶析物の形状が大き く変化することがわ力つた。
[0051] 試験例 2
上記実施例 1を基に、放射球状晶析物を得るための晶析条件を検討した。
[0052] (試験条件及び方法)
検討中に得られた放射球状晶析物の空気動力学径を減少させるために、晶析条 件検討を行った。実験は、「二酸化炭素流量 14.0mLZmin、エタノール流量 3.5m L/min,試料送液速度 0.035mLZmin、圧力 25MPa、温度 35°C、試料濃度(乳 糖水溶液濃度) 20%wZw」と ヽぅ条件を基本とし、各操作条件を表 4のように変化さ せたときの粒子形状 (SEM)及び空気動力学径 (エア口サイザ一)を評価した。ただし 、エタノール流量を変化させる実験時のみ、試料濃度 10%wZw、圧力 30MPaの条 件を基本として実験を行った。
[0053] [表 4]
放射球状晶析物の晶析検討条件
Figure imgf000013_0001
* EtOHを変化させた実験のときのみ圧力を 30l*Paで行った. 下線の条件は基本となる条件 (C02流量は何れも 14mL/ain)
[0054] (結果及び考察)
各検討条件とその条件によって得られた晶析物の収率及び空気動力学径を表 5 まとめた。
[0055] [表 5] 放射球状晶析物の晶析条件と晶析物の収率及び
空気動力学的 5 0 %粒子径
Figure imgf000014_0001
* 本実 Kのときのみ K料濃度 10%w/w. 試料溶液流量 0.035mL/min, 圧力 30MPaで実験を行った.
[0056] 一方、晶析物の形状に着目すると、エタノール流量以外の条件変化では、 V、ずれ も放射球状晶析物が得られ、劇的な形状変化は認められな力つた(図 9一 11参照)。
[0057] これに対し、エタノール流量を変化させた場合には、エタノール流量が大きくなるに つれて針状結晶集合体→針状晶析物→放射球状晶析物→トマホーク状と放射球状 の混合晶析物と 、うように劇的な形状変化が認められた(図 12参照)。粒子径に関し ては、形状と同様、エタノール流量変化で約 7— 34 /z mの範囲で大きな粒子形状変 化が認められた。温度変化に対しては、多少の粒子径変化が認められた力 形状変 化はそれほど認められな力つた。そのため、エタノール流量変化ほどの粒子径変化 は認められず、約 5 14 /z mの範囲の粒子径変化であった。他の晶析条件に関して は、形状の変化がほとんど認められな力つたことから、粒子径も 6— 8 IX m付近とほと んど変化はな力つた。
[0058] 以上より、エタノール流量変化によって劇的な形状変化が認められたことから、上記 試験例 1で考察したように、晶析物の形状変化はエタノール流量と二酸ィヒ炭素流量 の比(C/E)に大きく依拠していることが確認された。空気動力学 50%累積径は、 R un No.34において最小で、 5.2 μ mであった。
[0059] [晶析条件と形状 ] 以上、実験例 1及び実験例 2より、温度、圧力の違いによらず、エタノール流量と二 酸化炭素流量の比 (CZE)で晶析物の形状がおおよそ決まってくることがわ力つた。
CZEの関係を図 13に示す。放射球状晶析物に関しては、 CZEが 4のときに調製可 能であることがわかった。
[0060] 乳糖を試料として、超臨界二酸化炭素晶析の操作条件変化が晶析粒子物性に及 ぼす影響を検討した結果、エタノール流量と二酸化炭素流量の比 (CZE)が、粒子 形状及び粒子径に大きく影響することがわ力つた。
[0061] また、放射球状晶析物を薬物を担持させたまま肺に到達する DPIキャリアとして応 用するために、粒子径を小さくするための晶析条件検討を行ったが、空気動力学 50
%累積径が 5.2 mの晶析物が得られている。
[0062] 実施例 2
DPI製剤:
下記のようにして、サルブタモール硫酸塩の DPI製剤を調製し、そのイン'ビトロ(In vitro)吸入特性を評価した。比較品としては、市販の乳糖を用いて製造した DPIを用 いた。この結果を表 6に示す。
[0063] (製造方法)
250Mで篩過したサルブタモール硫酸塩と、同じく 250Mで篩過した放射球状晶 析物(表 5に記載した Run No.22のもの)を 3 : 7の割合で混合し、本発明製剤を得た (本発明製剤 1)。この製剤は、測定 6回の定量の結果、含量 29.2%、 RSD 3.6%と いう良好な混合均一性を有するものであった。なお比較品としては、 250Mで篩過し たサルブタモール硫酸塩と、同じく 250Mで篩過した巿販乳糖 LH200 (Borculo— D omo社製)を 3 : 7の割合で混合したものを使用した (比較製剤 1)。このものは、測定 6 回の定量の結果、含量 28.8%、 RSD 1.6%という良好な混合均一性を有する製剤 であった。
[0064] (吸入特性評価試験)
本発明製剤 1および比較製剤 1の各 3mgをゼラチンカプセルに充填した。吸入用 デバイスとしてィーヘラーを用いた。マウスピースを介してアンダーセンカスケードィ ンパクター(ACI)にィ一へラーを装着し、真空ポンプにより 40.0LZminで 6秒間吸 引した。 1回の測定あたり 2回噴霧(3mgカプセル X 2)を行った。吸引後、ステージ( Stage) 0— 7及びスロート (Throat)、デバイスの各フラクションに沈着した試料を溶 媒でメスフラスコ内に洗いこみ、これを試料溶液とした。 HPLC法により、各フラクショ ンに沈着した製剤中のサルブタモール硫酸塩を定量し、カプセル充填量に対する肺 到達率を求めた。各製剤ともに測定を 2回行った。結果を表 6に示す。
[0065] [表 6]
Figure imgf000016_0001
[0066] 実施例 3
試料溶液として 20%サルブタモール硫酸塩水溶液、超臨界流体として二酸ィ匕炭素 、モディファイァとしてエタノールを使用し、図 3に示す超臨界二酸化炭素晶析装置 を用い、下記の晶析方法で放射球状晶析物を製造した。また得られた晶析物は下記 方法で評価を行った。なお、製造および評価で使用した機器は実施例 1の表 1と同様 である。
[0067] <晶析方法 >
試料溶液を 20%サルブタモール硫酸塩水溶液とする以外は、実施例 1と同様にし 、白色粉体として当該物質の放射球状晶析物を製造した。なお、晶析条件は、表 7 の通りである。
[0068] [表 7] 操作項目 条件
C02流量 、mL/min) 14
EtOH流量 (mL/min) 2.8
試料溶液流量 (mL/min) 0.020
圧力 (MPa) 25
温度 CC) 35 [0069] <晶析物の評価 >
試験例 1 (2)と同様にして、 SEMによる粒子形状を観察した。この結果を図 14に示 す。
産業上の利用可能性
[0070] 力べして得られる本発明の放射球状晶析物は、種々の用途での使用が考えられる 力 その一つの例として、 DPI製剤等の医薬としての利用を挙げることができる。すな わち、薬物を本発明に従った放射球状晶析物とすることにより、これを吸入等の手段 で投与部位の肺胞または気管支まで送達することが可能となる。
[0071] また、製剤用キャリアを本発明に従って放射球状晶析物とすることにより、従来の D PIキャリアより高い薬物含有量、例えば、 30%ないしそれ以上の含有量が得られ、優 れたインビトロ吸入特性を得ることができる。
図面の簡単な説明
[0072] [図 1]放射球状晶析物 (乳糖)の電子顕微鏡写真である。
[図 2]放射球状晶析物 (乳糖)の電子顕微鏡写真である。
[図 3]超臨界流体晶析装置の概略図である。
[図 4]エタノール流量が粒子径及び形状変化に及ぼす影響を示すグラフである。
[図 5]圧力が粒子径及び形状変化に及ぼす影響を示すグラフである。
[図 6]温度が粒子径及び形状変化に及ぼす影響を示すグラフである。
[図 7]二酸ィ匕炭素流量が粒子径及び形状変化に及ぼす影響を示すグラフである。
[図 8]エタノール流量と二酸化炭素流量の比(5%)が粒子径及び形状変化に及ぼす 影響を示すグラフである。
[図 9]試料溶液流量が粒子径及び形状変化に及ぼす影響を示すグラフである。
[図 10]圧力が粒子径及び形状変化に及ぼす影響を示すグラフである。
[図 11]温度が粒子径及び形状変化に及ぼす影響を示すグラフである。
[図 12]エタノール流量が粒子径及び形状変化に及ぼす影響を示すグラフである。
[図 13]晶析物の粒子形状とエタノール流量及び二酸ィ匕炭素流量の比 (C/E)との関 係を示す模式図である。
[図 14]放射球状晶析物 (サルブタモール硫酸塩)の電子顕微鏡写真である。 符号の説明
1……恒温槽
2……晶析容器
3 ノズル
4 バック'プレッシャー'レギユレータ
5……試料溶液送液ポンプ
6……超臨界流体送液ポンプ
7……モディファイァ送液ポンプ 8……試料溶液容器
9……超臨界流体用媒体容器
10……モディファイァ溶液容器
11……ミキシングカラム (コイル) 12……廃溶媒回収容器
a……試料系配管
b……超臨界流体系配管
c……モディファイァ系配管
d……排出系配管

Claims

請求の範囲
[I] 中心部から外部へ向かって放射状に延びた複数の針状部位を有する放射球状晶析 物。
[2] 空気動力学径が 0.1— 20 μ mである請求項 1記載の放射球状晶析物。
[3] 嵩密度が lOOmgZmL以下である請求項 1又は 2記載の放射球状晶析物。
[4] モディファイァを含んでも良い超臨界流体と試料成分含有溶液とを、異なる流路で晶 析容器に導き、これらを晶析容器内へ噴出させる際に接触せしめることにより製造さ れる放射球状晶析物。
[5] 超臨界流体またはこれとモディファイァの混合物が試料成分に対して貧溶媒である 請求項 4記載の放射球状晶析物。
[6] 試料成分が医薬用薬物である請求項 4又は 5記載の放射球状晶析物。
[7] 試料成分が製剤用キャリアである請求項 4又は 5記載の放射球状晶析物。
[8] 製剤用キャリアが糖又は糖アルコールである請求項 7記載の放射球状晶析物。
[9] 超臨界流体が二酸化炭素である請求項 4な 、し 8の何れかの項記載の放射球状晶 析物。
[10] モディファイァがエタノールである請求項 4な 、し 9の何れかの項記載の放射球状晶 析物。
[II] ドライパウダー製剤用原薬である請求項 1一 10の何れか 1項に記載の放射球状晶析 物。
[12] ドライパウダー製剤用キャリアである請求項 1一 10の何れか 1項に記載の放射球状 晶析物。
[13] モディファイァを含んでも良い超臨界流体と試料成分含有溶液とを、異なる流路で晶 析容器に導き、これらを晶析容器内へ噴出させる際に接触せしめることを特徴とする 放射球状晶析物の製造方法。
[14] 超臨界流体またはこれとモディファイァの混合物が試料成分に対して貧溶媒である 請求項 13記載の放射球状晶析物の製造方法。
[15] 試料成分が医薬用薬物である請求項 13又は 14記載の放射球状晶析物の製造方法
PCT/JP2004/007171 2003-06-10 2004-05-26 放射球状晶析物およびその製造方法並びにこれを利用するドライパウダー製剤 WO2004110585A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005506882A JP4622855B2 (ja) 2003-06-10 2004-05-26 放射球状晶析物およびその製造方法並びにこれを利用するドライパウダー製剤
CA002528413A CA2528413A1 (en) 2003-06-10 2004-05-26 Radial spherical crystallization product, process for producing the same and dry powder preparation containing the crystallization product
US10/560,169 US20060275219A1 (en) 2003-06-10 2004-05-26 Radial spherical crystallization product, process for producing the same, and dry powder preparation containing the crystallization product
EP04745323A EP1683560A4 (en) 2003-06-10 2004-05-26 RADIAL SPHERICAL CRYSTALLIZATION PRODUCT, PROCESS FOR PRODUCING THE CRYSTALLIZATION AND PREPARATION OF DRY POWDER CONTAINING THE CRYSTALLIZATION PRODUCT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003165565 2003-06-10
JP2003-165565 2003-06-10

Publications (2)

Publication Number Publication Date
WO2004110585A1 true WO2004110585A1 (ja) 2004-12-23
WO2004110585A9 WO2004110585A9 (ja) 2006-03-23

Family

ID=33549218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007171 WO2004110585A1 (ja) 2003-06-10 2004-05-26 放射球状晶析物およびその製造方法並びにこれを利用するドライパウダー製剤

Country Status (6)

Country Link
US (1) US20060275219A1 (ja)
EP (1) EP1683560A4 (ja)
JP (1) JP4622855B2 (ja)
CN (1) CN1819863A (ja)
CA (1) CA2528413A1 (ja)
WO (1) WO2004110585A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505605A (ja) * 2006-10-06 2010-02-25 ニューサウス イノベーションズ ピーティーワイ リミテッド 粒子の形成
WO2010052896A1 (ja) * 2008-11-04 2010-05-14 日揮株式会社 プロピオン酸フルチカゾンを含む局所投与剤
US10568837B2 (en) * 2014-09-11 2020-02-25 Dejan Lamesic Particles of spherically agglomerated lactose for direct compression and method of preparation thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544503B2 (ja) * 2004-05-24 2014-07-09 独立行政法人物質・材料研究機構 マリモカーボン及びその製造方法並びにその製造装置
US8945598B2 (en) 2005-12-29 2015-02-03 Cordis Corporation Low temperature drying methods for forming drug-containing polymeric compositions
TWI426963B (zh) * 2011-04-25 2014-02-21 Nat Univ Chung Hsing Preparation of high purity caffeic acid phenethyl ester micro - nano - powder by supercritical fluid anti - crystallization
EP3909565A1 (en) * 2020-05-14 2021-11-17 MEGGLE GmbH & Co. KG Inhalable lactose containing composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500925A (ja) * 1988-10-05 1992-02-20 ファルマシア・アンド・アップジョン・カンパニー 反溶剤への沈澱を介する微細分化固体結晶性粉末
JPH11503448A (ja) * 1995-04-13 1999-03-26 アストラ・アクチエボラーグ 吸引可能粒子の製造法
JP2002515324A (ja) * 1998-05-15 2002-05-28 ブラッドフォード パーティクル デザイン パブリック リミティド カンパニー 粒子製造方法及び装置
JP2003010672A (ja) * 2001-07-03 2003-01-14 Japan Science & Technology Corp 超臨界媒体中での固体改質方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192528A (en) * 1985-05-22 1993-03-09 Liposome Technology, Inc. Corticosteroid inhalation treatment method
EP0277008B1 (en) * 1987-01-29 1995-06-14 Beecham Group Plc Process for crystallization of potassium clavulanate
US5707634A (en) * 1988-10-05 1998-01-13 Pharmacia & Upjohn Company Finely divided solid crystalline powders via precipitation into an anti-solvent
GB9326574D0 (en) * 1993-12-31 1994-03-02 King S College London Dry power inhalers
GB9413202D0 (en) * 1994-06-30 1994-08-24 Univ Bradford Method and apparatus for the formation of particles
SI20305A (sl) * 1999-08-06 2001-02-28 LEK, tovarna farmacevtskih in kemi�nih izdelkov, d.d. Kristali natrijeve soli pravastatina
TR200401219T4 (tr) * 2001-02-26 2004-10-21 Dompe S.P.A. Mikron ve alt partikül oluşturmak için aparat ve yöntem.
JP3557588B2 (ja) * 2001-10-26 2004-08-25 株式会社東北テクノアーチ 超・亜臨界流体処理システム及び装置
GB0300427D0 (en) * 2003-01-09 2003-02-05 Univ Strathclyde Pharmaceutical composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500925A (ja) * 1988-10-05 1992-02-20 ファルマシア・アンド・アップジョン・カンパニー 反溶剤への沈澱を介する微細分化固体結晶性粉末
JPH11503448A (ja) * 1995-04-13 1999-03-26 アストラ・アクチエボラーグ 吸引可能粒子の製造法
JP2002515324A (ja) * 1998-05-15 2002-05-28 ブラッドフォード パーティクル デザイン パブリック リミティド カンパニー 粒子製造方法及び装置
JP2003010672A (ja) * 2001-07-03 2003-01-14 Japan Science & Technology Corp 超臨界媒体中での固体改質方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1683560A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505605A (ja) * 2006-10-06 2010-02-25 ニューサウス イノベーションズ ピーティーワイ リミテッド 粒子の形成
WO2010052896A1 (ja) * 2008-11-04 2010-05-14 日揮株式会社 プロピオン酸フルチカゾンを含む局所投与剤
US10568837B2 (en) * 2014-09-11 2020-02-25 Dejan Lamesic Particles of spherically agglomerated lactose for direct compression and method of preparation thereof

Also Published As

Publication number Publication date
WO2004110585A9 (ja) 2006-03-23
JPWO2004110585A1 (ja) 2006-07-20
CA2528413A1 (en) 2004-12-23
US20060275219A1 (en) 2006-12-07
JP4622855B2 (ja) 2011-02-02
EP1683560A4 (en) 2008-10-01
CN1819863A (zh) 2006-08-16
EP1683560A1 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
Reverchon et al. Micronization of antibiotics by supercritical assisted atomization
TW492877B (en) Process for the preparation of respirable particles
US6862890B2 (en) Process for production of nanoparticles and microparticles by spray freezing into liquid
JP4728558B2 (ja) ナノ粒子の製造方法
Kankala et al. Supercritical fluid (SCF)-assisted fabrication of carrier-free drugs: an eco-friendly welcome to active pharmaceutical ingredients (APIs)
US20100092453A1 (en) Method of producing porous microparticles
Li et al. Inhaled hyaluronic acid microparticles extended pulmonary retention and suppressed systemic exposure of a short-acting bronchodilator
Ogienko et al. Large porous particles for respiratory drug delivery. Glycine-based formulations
JP2010528094A (ja) 表面改質されたエアロゾル粒子、その製造のための方法および装置ならびにこの粒子を含む粉末および分散液
CN108463213A (zh) 可吸入扎鲁司特颗粒的制备
WO2004110585A1 (ja) 放射球状晶析物およびその製造方法並びにこれを利用するドライパウダー製剤
Park et al. Surface modification strategies for high-dose dry powder inhalers
Reverchon et al. Ampicillin micronization by supercritical assisted atomization
GB2388541A (en) Aerosol formulations comprising a particulate active substance suspended in a hydrofluorocarbon
JP2008533055A (ja) 吸入剤
JP2003501378A (ja) 粒子の被覆方法およびその方法により製造した粒子
JP2003519171A (ja) 吸入粒子
Zhiyi et al. Experimental investigation on the micronization of aqueous cefadroxil by supercritical fluid technology
Pyo Two different shapes of insulin microparticles produced by solution enhanced dispersion supercritical fluid (SEDS) process
WO2005055978A2 (en) A method of engineering particles for use in the delivery of drugs via inhalation
Kale et al. Recent advancements in particle engi-neering techniques for pharmaceutical applications
CA2477592A1 (en) Powdery medicinal compositions for inhalation and process for producing the same
KR20200014902A (ko) 비정질 나노구조 제약 물질
RU2504370C1 (ru) Способ получения высокодисперсных фармацевтических композиций сальбутамола
JP6650933B2 (ja) マトリックス中に分散された活性薬剤ドメインを形成するためのプロセス

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506882

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2528413

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004745323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006275219

Country of ref document: US

Ref document number: 10560169

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048164307

Country of ref document: CN

COP Corrected version of pamphlet

Free format text: PAGE 18, CLAIMS, ADDED

WWP Wipo information: published in national office

Ref document number: 2004745323

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10560169

Country of ref document: US