WO2004109193A1 - 水素燃焼型温風暖房機、水素燃焼型温風発生方法及びその方法に用いるバーナー - Google Patents

水素燃焼型温風暖房機、水素燃焼型温風発生方法及びその方法に用いるバーナー Download PDF

Info

Publication number
WO2004109193A1
WO2004109193A1 PCT/JP2004/007630 JP2004007630W WO2004109193A1 WO 2004109193 A1 WO2004109193 A1 WO 2004109193A1 JP 2004007630 W JP2004007630 W JP 2004007630W WO 2004109193 A1 WO2004109193 A1 WO 2004109193A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
hot air
gas
air
combustion
Prior art date
Application number
PCT/JP2004/007630
Other languages
English (en)
French (fr)
Inventor
Hiroshi Kohara
Haruyoshi Tanaka
Original Assignee
Hiroshi Kohara
Haruyoshi Tanaka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshi Kohara, Haruyoshi Tanaka filed Critical Hiroshi Kohara
Priority to JP2005506765A priority Critical patent/JP4671232B2/ja
Priority to KR1020057023024A priority patent/KR101125580B1/ko
Publication of WO2004109193A1 publication Critical patent/WO2004109193A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/06Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
    • F24H3/065Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators using fluid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/06Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
    • F24H3/08Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • F23D14/24Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel

Definitions

  • Hydrogen combustion type hot air heater hydrogen combustion type hot air generation method, and burner used in the method
  • the present invention relates to a hydrogen combustion type hot air heater, a hydrogen combustion type hot air generation method, and a burner used in the method, and more specifically, a greenhouse gas (particularly, c ⁇ ) is contained in exhaust gas.
  • a hydrogen-burning hot-air heater that emits no clean gas, a hydrogen-burning hot-air generating method, and a burner used in the method.
  • the oil-fired hot air heater has a problem such as generation of CO (—carbon oxide) due to incomplete combustion of the liquid fuel, and the gas-fired hot air heater that burns gas fuel such as propane gas. Development is underway (see, for example, Patent Documents 1 to 5).
  • these gas-fired hot air heaters have a structure with a furnace inside the heating chamber.
  • gas fuel is burned inside the furnace body to heat the furnace body itself, outside air is taken into the heating chamber, and the outside air taken in by the furnace body in the heated state is heated to generate hot air. It is discharged into the greenhouse.
  • the exhaust gas generated by the combustion of the gaseous fuel is usually exhausted out of the greenhouse by providing a chimney etc. directly in the furnace body so as not to mix with the hot air.
  • Some of these gas-fired hot air heaters include CO (CO) necessary for growing plants such as greenhouse vegetables.
  • CO is generated inside the hot air heater separately from the outside air combustion heating system.
  • Patent Document 1 Japanese Patent Publication No. 57-37292
  • Patent Document 2 Japanese Patent Publication No. 51-31725
  • Patent Document 3 Japanese Utility Model Publication No. 62-35319
  • Patent Document 4 JP 2003-74984
  • Patent Document 5 JP-A-2002-228264
  • the present invention has been made to overcome the above-mentioned problems against the background of the actual situation.
  • a hydrogen-burning hot-air heater that discharges clean gas without burning a greenhouse effect gas (particularly C ⁇ ) by heating the outside air by burning hydrogen gas
  • hydrogen gas has the advantage of generating only water vapor (or water) and not generating CO even if it is burned at a high combustion temperature.
  • propane gas easily ignites and explodes.
  • the present invention also aims to overcome such problems.
  • a further object of the present invention is to provide a burner for burning hydrogen obtained by electrolysis of water by using oxygen obtained by the electrolysis.
  • the hydrogen-burning hot-air heater according to claim 1 includes an electrolyzing section for decomposing water into hydrogen gas and oxygen gas by electrolysis, and a hydrogen gas generated in the electrolyzing section. internal And a heating chamber provided so as to surround the periphery of the furnace body, for taking in outside air, heating the furnace body, and discharging the heated air. I do.
  • a hydrogen-fired hot-air heater according to claim 2 is the hydrogen-fired hot-air heater according to claim 1, wherein the furnace body is formed in a substantially cylindrical shape to suck air.
  • a burner for burning hydrogen gas provided with a fan of the type described above, and a spiral guide plate for guiding the air heated by heat by the combustion of hydrogen gas by the burner to move spirally inside the furnace body. And an exhaust pipe for blowing out the heated air.
  • the hydrogen-fired hot-air heater according to claim 3 is the hydrogen-fired hot-air heater according to claim 1 or 2, further comprising: a preheating chamber that covers the heating chamber; And a dedicated passage for allowing the discharged reaction gas to flow directly into the preheating chamber.
  • the hydrogen-fired hot-air heater according to claim 4 is the hydrogen-fired hot-air heater according to claim 3, wherein the reaction gas in the preheating chamber is supplied to the heating chamber. A return flow path for returning is provided.
  • the hydrogen-burning type hot air generation method wherein the electrolysis step of electrolyzing water into hydrogen gas and oxygen gas, and mixing the hydrogen gas generated in the electrolysis step with the oxygen gas.
  • the hydrogen combustion type hot air generation method according to claim 6 is different from the hydrogen combustion type hot air generation method according to claim 5 in that the hydrogen gas and the oxygen generated in the electrolysis step are different from each other. It has a separation and recovery step of separating and recovering gas.
  • the hydrogen combustion type hot air generation method according to claim 7 is the same as the hydrogen combustion type hot air generation method according to claim 6, wherein the hydrogen gas recovered in the separation and recovery step and the hydrogen gas A drying step for drying the oxygen gas and the oxygen gas, respectively.
  • the hydrogen combustion type hot air generation method according to claim 8 is the hydrogen combustion type hot air generation method according to claim 5.
  • the combustion step is performed using a burner.
  • the reaction gas generated in the combustion step is introduced into the furnace.
  • the guide plate is provided in a spiral shape. It is characterized by having.
  • the heating chamber is covered by a preheating chamber and discharged from the furnace body.
  • the reaction gas is directly introduced into the preheating chamber.
  • the hydrogen-burning type hot air generation method according to claim 12 is similar to the hydrogen-burning type hot air generation method according to claim 11, and returns the reaction gas from the preheating chamber to the heating chamber. It is characterized by
  • the hydrogen-burning type hot air generating method according to claim 13 differs from the hydrogen-burning type hot air generating method according to claim 5 in that hydrogen gas that has not reacted in the combustion step is removed from the furnace. It is characterized in that it is pulled out through a valve through a valve.
  • a hydrogen-burning type hot air generation method is characterized in that, in the hydrogen-burning type hot air generation method according to claim 5, moisture generated in the combustion step is removed from the inside of the furnace.
  • a burner used in the hydrogen combustion type hot air generation method according to claim 15 is provided with an air transport pipe and a cutout for air passage provided so as to cover an opening at the tip of the air transport pipe.
  • an oxygen transport pipe is provided with an air transport pipe and a cutout for air passage provided so as to cover an opening at the tip of the air transport pipe.
  • a burner used in the hydrogen-burning type hot air generating method has an air transport pipe and a cutout for air passage provided to cover an opening at the tip of the air transport pipe.
  • a flange portion provided in the air transport tube, a hydrogen transport tube penetrating through the flange portion and projecting from the flange portion, and an oxygen transport tube provided in the hydrogen transport tube and projecting from a tip of the hydrogen transport tube. And having the following.
  • the burner used in the hydrogen combustion type hot air generation method according to claim 17 is the burner used in the hydrogen combustion type hot air generation method according to claim 15 or 16, protruding from the flange.
  • a plurality of small holes are formed in the outer peripheral wall of the projecting portion of the hydrogen transport pipe along the circumferential direction.
  • the burner used in the hydrogen combustion type hot air generation method according to claim 18 is the burner used in the hydrogen combustion type hot air generation method according to claim 17, which is formed on the distal end side of the hydrogen transport pipe.
  • the plurality of fine holes are provided at equal intervals in the circumferential direction, and the cutouts formed in the flange portion are equally provided in the circumferential direction by the same number as the fine holes.
  • the burner used in the hydrogen combustion type hot air generation method according to claim 19 is the burner used in the hydrogen combustion type hot air generation method according to claim 17, wherein a tip of the oxygen transport pipe is closed.
  • a plurality of oxygen gas ejection ports are formed at equal intervals in the circumferential direction on the outer peripheral wall of the oxygen transport pipe in the vicinity thereof.
  • water is decomposed into hydrogen gas and oxygen gas in the electrolysis section, and the hydrogen gas obtained by the decomposition is burned inside the furnace body, and the furnace body
  • the outside air that has flowed into the heating chamber provided so as to surround the surroundings is heated by the combustion heat and sent to the outside of the heating chamber.
  • a hydrogen-burning hot-air heater that heats the outside air by burning hydrogen gas and discharges a clean gas containing no greenhouse gas (especially, CO 2) in the exhaust gas.
  • the furnace body is formed in a substantially cylindrical shape, and includes a burner for hydrogen gas combustion provided with a fan for sucking air, and combustion of hydrogen gas by the burner. And a spiral guide plate for guiding the air heated by the burner to move spirally inside the furnace body, so that the air heated by the burner is spirally swept. It flows smoothly.
  • the furnace body has a substantially cylindrical shape, that is, an axially symmetric shape, heat can be evenly transmitted to the periphery of the furnace body, and the stability of the temperature of the air discharged from the exhaust pipe provided in the heating chamber is improved. Can be improved.
  • the preheating chamber that covers the heating chamber is provided, and the outside air outside the preheating chamber and the heating chamber are separated by the double wall, and the heating chamber is outside air.
  • the cooling power is stopped.
  • the relatively high-temperature reactant gas discharged from the furnace provided in the heating chamber is allowed to flow directly into the preheating chamber via the dedicated passage, the heat retaining effect of the heating chamber can be further improved. it can.
  • the warm air discharged from the preheating chamber is provided. Can be used as warm air generated in the heating room, and effective use of energy can be achieved.
  • hydrogen gas generated by decomposing water in the electrolysis step is burned in the combustion step. Then, the temperature inside the furnace is raised by the heat generated by the combustion, and the furnace is heated.
  • a heating chamber is provided around the furnace body so as to surround the furnace body, and a double container is formed. Outside air is taken into a space formed by the outer wall surface of the furnace body, which is the inner vessel, and the inner wall surface of the heating chamber, which is the outer vessel. From the outside to the outside air. Then, the heated outside air is discharged outside the heating chamber.
  • a heater that generates warm air is formed.
  • This heater uses water as a raw material. After the water is electrolyzed, hydrogen generated by the electrolysis is chemically reacted with air (oxygen content 21%) or oxygen generated by the electrolysis to produce a reaction. Since the substance is water, it does not emit harmful substances. Therefore, it is possible to perform clean heating without greenhouse gases (especially C ⁇ ) in the exhaust gas.
  • the separation and recovery step of separating and recovering the hydrogen gas and the oxygen gas generated in the electrolysis step since the separation and recovery step of separating and recovering the hydrogen gas and the oxygen gas generated in the electrolysis step is provided, the hydrogen gas and the oxygen gas react with each other. The danger of explosion. If hydrogen gas is stored in a gas cylinder, it will be convenient for transportation and its use will be expanded. Forms of storage include gaseous hydrogen, liquid hydrogen, metal hydrides, and hydrogenation-inducing chemicals such as methanol and ammonia.
  • the hydrogen gas recovered in the separation and recovery step is dried.
  • hydrogen gas contains water vapor
  • energy is absorbed in the combustion process, so that the combustion efficiency of the hydrogen gas decreases.
  • the drying of the hydrogen gas can suppress the decrease in the combustion efficiency.
  • a spiral guide plate is provided inside the furnace, and the reaction gas generated in the combustion step is spirally guided. Therefore, the reaction gas stays in the furnace for a longer time, and the heat exchange between the reaction gas flowing on the guide plate and the outside air taken into the heating chamber is efficiently performed.
  • the guide plate itself functions as a fin, and can promote heat absorption of the reaction gas.
  • the reaction gas generated by the combustion of the hydrogen gas is discharged into the heating chamber after flowing through the furnace, so that the reaction gas and the outside air are exchanged via the furnace. Since the reaction gas and the outside air that are not only subjected to heat exchange are directly mixed with each other, the temperature rise of the outside air can be further promoted. If the reaction gas and the outside air are directly mixed without installing a furnace body in the heating chamber, the temperature of the exhaust gas may become high or low, resulting in instability. You. The reason is that it takes time S for the fluid flow in the heating chamber to stabilize, and if the flow rate of hydrogen gas etc. supplied to the outside air furnace is adjusted, it takes time for the fluid flow to stabilize. Because it takes.
  • the heating chamber is covered with the preheating chamber and a double-structured wall is formed, the air layer of the preheating chamber functions as a heat insulating layer. As a result, the heat insulation properties of the heating chamber are enhanced.
  • the heating chamber is kept warm, and even if the apparatus is installed in a cold region, the combustion efficiency can be improved without cooling the heating chamber by external cold air.
  • the relatively high-temperature reactant gas discharged from the furnace body flows directly into the preheating chamber, the amount of heat that is linearly transmitted from the furnace inside the heating chamber and the preheating chamber to the outside of the preheating chamber should be reduced. And the temperature of the heating chamber can be reliably maintained.
  • the reaction gas discharged to the outside of the preheating chamber flows into the heating chamber through the return flow path, so that a relatively high-temperature reaction gas flowing through the return flow path is provided.
  • the gas can be mixed with the outside air taken into the heating chamber, and it is possible to generate hot air with good thermal efficiency.
  • a valve for discharging unreacted hydrogen gas in the combustion step from the furnace is provided. If hydrogen gas accumulates, there is a danger of explosion, but safety can be ensured by discharging light hydrogen with a valve provided above the furnace body. Since hydrogen is a harmful substance that destroys the ozone layer, it is necessary to pay close attention to the management of discharged hydrogen.
  • moisture generated in the combustion step is discharged from the furnace. If water droplets adhere to the furnace body, the water droplets absorb the heat of the combustion air and the heating efficiency of the furnace body is reduced. Water droplets are generated as follows.
  • a flange is provided at the tip of the air transport pipe so as to cover an opening formed at the tip.
  • a cutout is formed in the flange so that the transported air can pass through.
  • a hydrogen transport pipe is provided in the air transport pipe, and the hydrogen transport pipe penetrates the flange and projects from the flange. As a result, the air that has passed through the flange is disturbed and moves forward in a swirl while entraining the hydrogen gas ejected from the hydrogen transport pipe. At the same time, ignition is performed.
  • the tip force of the hydrogen transport pipe provided in the hydrogen transport pipe and the protruding oxygen transport pipe force are supplied with oxygen, and the temperature of the combustion gas can be further increased.
  • the same operation and effect as those of the eleventh aspect are obtained, and the oxygen transport pipe is provided inside the air transport pipe, and the hydrogen transport pipe is further provided inside the oxygen transport pipe. Therefore, the structure can be made axially symmetric, and hydrogen gas and oxygen gas can be evenly mixed with the air ejected from the air transport pipe. Therefore, the shape of the flame during combustion can be made uniform in the circumferential direction, and the position of the flame can be stabilized at one place.
  • the gas is ejected from the small holes. Hydrogen gas can be evenly mixed with the turbulent air passing through the notch little by little.
  • the plurality of small holes formed on the distal end side of the hydrogen transport pipe are provided at equal intervals in the circumferential direction, and the notch formed in the flange portion also has a small hole. Since the air and hydrogen gas are provided evenly in the circumferential direction by the same number as that in the above, the mixing of the air and the hydrogen gas can be surely made uniform in the circumferential direction.
  • FIG. 1 is a schematic diagram showing a first embodiment of a hydrogen combustion type hot air heater of the present invention (only the caro heat chamber D is shown so that the inside can be seen).
  • the hydrogen combustion type hot air heater A mainly comprises an electrolysis section B (electrolysis step) for decomposing water into hydrogen gas and oxygen gas by electrolysis, and hydrogen gas generated in the electrolysis section B. And oxygen gas are separated and recovered (separation and recovery step), dried (drying step), and this hydrogen gas is burned inside using the oxygen gas generated in the electrolysis section B and heated. And a heating chamber D that is provided so as to surround the periphery of the furnace body C, takes in outside air P, heats the furnace body C, and discharges the heated air.
  • the outside air P is taken in from the suction port D1 of the heating chamber D (see the arrow in FIG. 1), and the taken outside air P is heated by the furnace body C in a high temperature state. Thereafter, the heated outside air P is discharged from the hot air outlet D2 to the outside (see the arrow in FIG. 1) to generate the hot air Q.
  • the hydrogen combustion type hot air heater A of the present invention burns hydrogen gas inside the furnace body C in order to heat the furnace body C itself, which is a heating means of the outside air P, to a high temperature state. In this respect, it differs greatly from conventional hot air heaters.
  • the oxygen gas generated in the electrolysis section B is also supplied by sending it to the mounting pipe C21 of the furnace body C (see FIG. 5) via the oxygen supply pipe E2.
  • a blower E3 and a blower E4 are provided in the hydrogen supply pipe E1 and the oxygen supply pipe E2, respectively, and hydrogen and oxygen are supplied from the electrolysis section B to the furnace body C.
  • the oxygen gas supplied from the oxygen supply pipe E2 also chemically reacts with the hydrogen gas and burns.
  • the heated air R passes through the inside of the furnace body C and is blown out from the exhaust pipe C3 (see the arrow in Fig. 1).
  • the high-temperature combustion air S comes into contact with the inner wall surface C7 of the furnace body C (see FIG. 5A) to heat the furnace body C.
  • the outside air P itself is heated by the outside air P coming into contact with the outer wall surface C2 of the heated furnace body C [the outside air heating step].
  • reaction gas generated in the combustion step is guided by a spiral guide plate in the furnace body C, and is discharged from an exhaust pipe C3 formed in an octopus shape in the heating chamber D. Mixing with the outside air taken into heating room D, heat exchange is performed efficiently.
  • the hydrogen combustion type hot air heater A of the present invention heats the furnace body C by burning the hydrogen gas, the greenhouse effect is generated in the combustion air S (ie, exhaust gas) blown out from the exhaust pipe C3. It is characterized by the fact that it does not contain waste gas (especially C ⁇ ) and the exhaust gas is very clean.
  • the exhaust pipe C3 of the furnace body C is formed so as to open into the heating chamber D, and the combustion air S is blown into the heating chamber D to be mixed with the outside air P.
  • fuel The green air is not contained in the baked air s.
  • the exhaust pipe C3 of the furnace body C is formed so as to open into the heating chamber D, the exhaust pipe C3 mixes the hot combustion air S blown out with the outside air P, and mixes the outside air P (or the outside air P). This is extremely useful because the heating efficiency of wind Q) can be increased.
  • the combustion air S blown out from the exhaust pipe C3 necessarily contains steam (water) generated by burning hydrogen gas.
  • the hydrogen combustion type hot air heater A may be formed as shown in Fig. 1 and dehumidifying means (for example, a dehumidifying filter or the like) may be attached to the hot air outlet D2 of the heating chamber D.
  • dehumidifying means for example, a dehumidifying filter or the like
  • Fig. 2 is a schematic diagram illustrating the structure of the electrolysis section B of the hydrogen-burning hot air heater A.
  • the positional relationship in the figure of each device is the same as that of the electrolytic section B. is not.
  • each device is appropriately provided with a pressure gauge for measuring gas pressure in the device, a safety valve for venting gas when the gas pressure in the device becomes excessive, and the like.
  • the electrolysis section B is mainly composed of electrolyzer B1, separator B2 (hydrogen separator B2a and oxygen separator B2b), aggregator B3 (hydrogen coagulator B3a and oxygen Dryer B3b) and dryer B5 (hydrogen dryer B5a and oxygen dryer B5b) Prepare.
  • the electrolysis section B mainly includes a pure water production apparatus B6 and a cooler B7 as a water purification / circulation system, and further includes a power supply B8 as a power supply source.
  • water pure water
  • the electrolyzer B1 water
  • the generated hydrogen gas and oxygen gas are independently separated from each other by the hydrogen separator B2a and the oxygen separator. Collected by B2b.
  • the hydrogen gas collected in the hydrogen separator B2a and the oxygen gas collected in the oxygen separator B2b are cooled in the separator B2 by pure water, which will be described later. To remove the water vapor in the gas.
  • FIG. 3 is an explanatory diagram of the internal structure of the hydrogen coagulator B3a, which is partially broken.
  • baffle plates B31 are arranged in the hydrogen aggregator B3a so as to be alternately inclined downward.
  • the hydrogen gas sent from the hydrogen separator B2a rises in the hydrogen aggregator B3a while colliding with the baffle plate B31.
  • the water vapor in the hydrogen gas adheres to the baffle plate B31 and forms dew, forms water droplets, flows down the hydrogen aggregator B3a, and is collected by the cooler B7 via the lower water collection pipe B32 (Fig. 2). reference).
  • the hydrogen aggregator B3a removes as much water vapor from the hydrogen gas as possible, and the hydrogen gas is roughly dried.
  • the oxygen gas is also roughly dried.
  • the hydrogen gas and the oxygen gas roughly dried by the hydrogen condensing device B3a and the oxygen condensing device B3b are sent to the differential pressure regulator B4.
  • the differential pressure regulator B4 the pressure of the hydrogen gas and the pressure of the oxygen gas are compared.
  • the hydrogen gas and the oxygen gas of the differential pressure regulator B4 are sent to the hydrogen dryer B5a and the oxygen dryer B5b, respectively.
  • the inside of the hydrogen dryer B5a and the oxygen dryer B5b is mainly filled with calcium chloride as a desiccant, and the hydrogen gas and the oxygen gas undergo final drying here. After the flow rate of at least hydrogen gas is adjusted via a flowmeter (not shown), the hydrogen gas is sent to the combustion section C1 of the furnace body C through a hydrogen supply pipe E1 (see FIG. 1).
  • the water in order to promote the electrolysis of water, the water is appropriately added with a water-soluble rhodium.
  • Tap water W is sent to the pure water production apparatus B6 (see Fig. 2) through the water pipe F (see Fig. 1).
  • tap water W is used for electrolysis as it is, chlorine gas in tap water W will be mixed with hydrogen gas or oxygen gas generated by electrolyzer B1 and each device in electrolyzer B, especially Corrosion of electrode of decomposition device B1.
  • tap water W be purified (dechlorinated) and used with the above-described pure water production apparatus B6 or the like.
  • pure water (hereinafter, referred to as pure water) may be directly sent to the electrolyzer B1, but in this embodiment, as described above, the hydrogen separator B2a and the oxygen It is sent to the vessel B2b and used for cooling hydrogen gas and oxygen gas.
  • Heat is removed from the hydrogen gas, etc. by the hydrogen separator B2a, etc. It is sent to the cooler B7 together with the water recovered from the hydrogen condensing device B3a and the like (this water is also pure water because it is also the water for the electrolyzer B1 and the hydrogen separator B2a, etc.) and cooled.
  • the air mixed with the pure water enters the hydrogen separator B2a together with the pure water and mixes with the hydrogen gas. It may be done.
  • the supply of pure water to the hydrogen separator B2a may be stopped.
  • the hydrogen separator B2a may be formed so that the wall surface is doubled, pure water is supplied between the inner wall and the outer wall, and the internal hydrogen gas is cooled through the inner wall. It is possible.
  • the electrolyzer B1 be capable of independently recovering hydrogen gas and oxygen gas, respectively, as described above.
  • electrolyzers B1 are commercially available, and are capable of generating an amount of hydrogen gas capable of heating the temperature of the furnace body C (see FIG. 1) to a required temperature. , Any type can be used.
  • an electrolyzer B1 (see FIG. 4) formed by stacking a plurality of electrode plates
  • the electrode plate Bla is made of stainless steel, and the surface is polished to a mirror surface.
  • the amount of generated hydrogen gas or the like can be increased.
  • the electrolysis apparatus B1 of the type in which the electrode plates Bla are stacked is used.
  • the amount of generated gas is reduced to hydrogen gas (concentration 98. 8%) in 2. 27m 3 or more Z h, oxygen gas (concentration 98.6%) in 1. 13m 3 or more Z hours, and found that it is possible to improve, respectively.
  • Fig. 5 is a schematic diagram showing the structure of the furnace body C of the hydrogen combustion type hot air heater A. 1 is a cross-sectional view when the furnace body C is viewed from the back of FIG. 1, and (B) is a cross-sectional view taken along line X-X of (A).
  • the furnace body C is formed in a substantially cylindrical shape.
  • the furnace body C mainly includes the combustion portion C1, the cylindrical wall (the outer wall surface C2, the inner wall surface C7), and the plurality (in this case, six) of exhaust pipes C3. I have.
  • the combustion section C1 includes a fan C11 for sucking air R, and a burner C12 for burning hydrogen gas using oxygen contained in the air R.
  • the fan C11 sucks air R from the air intake CI la and sends the air R to the burner C12 by rotation of an internal fan (not shown).
  • the burner C12 is mounted via a flange C13 so as to fit into the mounting pipe C21 of the furnace body C.
  • Fig. 6 is a schematic diagram showing a state of combustion by the burner C12 in the mounting pipe.
  • the burner C12 has a hydrogen transport pipe 1 provided with a flange 2 for sending hydrogen gas forward of the burner C12.
  • an air transport pipe 3 is formed so as to be connected to the flange 2, and surrounds the periphery of the hydrogen transport pipe 1.
  • the hydrogen transport pipe 1 is provided so as to penetrate the flange 2, and a tip portion thereof is closed.
  • the rear end portion of the hydrogen transport pipe 1 is connected to the hydrogen supply pipe E1 shown in FIG.
  • a plurality of injection holes 4 which are small holes are provided on the side surface of the portion protruding from the flange portion 2 of the hydrogen transport pipe 1, and the hydrogen gas passing through the hydrogen transport pipe 1 is radiated from the injection holes 4. It is injected.
  • the flange 2 has a plurality of cutouts 5 provided with eaves for spirally ejecting the air R.
  • An oxygen supply pipe E2 is connected to the burner C12, and oxygen is also supplied from the oxygen supply pipe E2.
  • a solenoid valve E6 (see Fig. 5 (A)) is installed near the connection between the burner C12 and the oxygen supply pipe E2 to control the amount of oxygen gas flowing into the burner C12.
  • the oxygen gas generated by the electrolysis in the electrolysis section B can be supplied.
  • the generated hydrogen gas and oxygen gas can be used effectively.
  • FIG. 7 is a schematic diagram showing another embodiment of the burner.
  • the burner C12 has a hydrogen transport pipe 1 provided with a flange 2 for sending hydrogen gas forward of the burner C12.
  • an air transport pipe 3 is formed so as to be connected to the flange 2, and surrounds the periphery of the hydrogen transport pipe 1.
  • the hydrogen transport pipe 1 is provided so as to penetrate the flange 2, and a tip portion thereof is closed.
  • the rear end portion of the hydrogen transport pipe 1 is connected to the hydrogen supply pipe E1 shown in FIG.
  • a plurality of injection holes 4 are provided on the side of the portion of the hydrogen transport pipe 1 protruding from the flange portion 2, and the hydrogen gas passing through the hydrogen transport pipe 1 is radially injected from the injection holes 4. .
  • an oxygen transport pipe 6 to which oxygen gas is supplied from an oxygen supply pipe E2 (see Fig. 1) is provided inside the hydrogen transport pipe 1.
  • the oxygen transport pipe 6 penetrates through the tip of the hydrogen transport pipe 1, and oxygen gas is supplied from the tip of the oxygen transport pipe 6.
  • the flange 2 is provided with a plurality of cutouts 5 provided with eaves for ejecting the air R spirally.
  • the notches 5 are provided in the same number as the number of the injection holes 4, so that the mixed hydrogen gas and the air R are uniformed in the circumferential direction.
  • the air R is heated to a high temperature.
  • the combustion air S in the high temperature state becomes the combustion air S, and moves forward so as to swirl inside the mounting pipe C21 of the furnace body C.
  • the burner C12 of this embodiment is formed axially symmetrically, and the mixture of hydrogen gas and oxygen gas with the air R is also performed axially, so that the shape of the flame during combustion can be made uniform in the circumferential direction. It is possible, and the position of the flame can be stabilized in one place.
  • oxygen transport pipe 6 may be closed at its tip, and similarly to the hydrogen transport pipe 1, oxygen gas outlets may be formed in the outer peripheral wall at equal intervals in the circumferential direction.
  • the outer wall C2 of the furnace body C cannot be heated to a sufficiently high temperature and evenly if it is blown out of the upper exhaust pipe C3 while rising inside C.
  • a guide plate spirally mounted inside furnace body C is shown in Fig. 5 (A) in order to sufficiently increase the residence time of combustion air S inside furnace body C. C4 is provided.
  • the guide plate C4 is attached to the inner wall surface C7 of the furnace body C by welding or the like so as to be spiral.
  • the guide plate C4 causes the combustion air S heated by the combustion of the hydrogen gas by the burner C12 of the combustion section C1 to spirally move along the inner wall surface C7 of the furnace body C. I can guide you. [0103] Therefore, the residence time of the high-temperature combustion air S in the furnace body C is prolonged, and the outer wall C2 of the furnace body C is evenly heated, so that the outside air P flowing around the furnace can be efficiently heated. You can.
  • the direction of the flame emission from the burner C12 generated by the combustion of the hydrogen gas (same as the direction of the injection of the combustion air S and the axial direction of the mounting pipe C21) Force The tangential direction of the circular inner wall surface C7 of the furnace body C It is preferable that the burner C12 and the mounting pipe C21 are attached so as to face (see FIG. 5B).
  • the combustion air S can be opened in the mounting pipe C21. It is possible to prevent the diffusion of the combustion air S from the part C22 into the furnace body C, and to make the combustion air S travel straight in the furnace body C.
  • the mounting pipe C21 is mounted so as to face the tangential direction of the inner wall surface C7 of the furnace body C as described above, the state is shifted to a state where the combustion air S moves more smoothly in a spiral manner. Therefore, the inner wall C7 of the furnace body C is more uniformly and efficiently heated.
  • the burner C12 is ignited to operate the hydrogen-fired hot air heater A in this state, the hydrogen gas accumulated in the furnace body C may explode.
  • a valve C5 for discharging accumulated hydrogen gas was provided at the upper part of the furnace body C (see Fig. 5 (A)). It is preferable to open to the public (see Fig. 1).
  • valve C5 it is more preferable to control the valve C5 to open automatically when the hydrogen-burning type hot air heater A is stopped, and to close the valve during operation because it is simple and safe.
  • a window C6 for draining water is formed below the furnace body C (see FIG. 5 (A)).
  • the combustion air S contains steam generated by the combustion of hydrogen gas
  • the furnace body C cools when the hydrogen-burning type hot air heater A is stopped, the steam is generated inside the furnace body C. May cause dew condensation.
  • the drainage window C6 is shown as being opened in a cylindrical shape.
  • an electromagnetic valve E5 is provided near the connection between the hydrogen supply pipe E1 and the combustion section C1 of the furnace body C, and hydrogen gas is supplied. Is controlled to flow into the combustion section C1.
  • a solenoid valve E6 is provided in the oxygen supply pipe E2 near the connection with the attachment pipe C21 of the furnace body C to control the flow of hydrogen gas into the combustion section C1.
  • the function of the heating chamber D (see Fig. 1) is as described in the hot air generation mechanism of the hydrogen combustion type hot air heater A above.
  • the exhaust pipe C3 of the furnace body C is formed so as to open into the heating chamber D as shown in FIG. 1, the heating efficiency of the outside air P taken in from the suction port D1 can be increased. Therefore, he also stated that it was preferable.
  • a suction port D1 is attached to the heating chamber D so that the taken-in outside air P turns around the furnace body C.
  • FIG. 8 is a diagram showing a heating chamber D and a furnace body C formed so that the taken in outside air P swirls around the furnace body C.
  • A) is a cross-section of only the heating chamber D.
  • B) is (A)
  • the heating chamber D mainly includes a cylindrical side wall D3, a top wall D4, and a bottom wall D3.
  • the heating chamber D is fixed to the upper part of the gantry G.
  • a furnace body C is disposed, a mounting pipe C21 and an oxygen supply pipe E2 penetrate the side wall D3, a valve C5 penetrates the upper wall D4, and a window C6 is formed on the bottom wall D5. It is installed so that it penetrates.
  • Each part of the furnace body C penetrates through each wall of the heating chamber D, and the part that is welded or sealed as appropriate is kept airtight.
  • the suction port D1 is simultaneously tangentially mounted on the upper portion of the cylindrical side wall D3 of the heating chamber D. ing.
  • the sufficiently heated outside air P that is, the hot air Q, is discharged to the outside from the hot air outlet D2 provided below the side wall D3 of the heating chamber D.
  • the amount of hydrogen gas generated in the electrolyzer B1 of the electrolyzer B was increased to 2.27 m 3 / hour (concentration 98.8%). Electrolysis section Even if hydrogen gas is burned only with air R without using oxygen gas generated in B, hot air Q of at least 70 ° C-130 ° C is generated at hot air outlet D2 of heating chamber D I know I can do that.
  • a blower D6 for taking in outside air P is attached to the suction port D1.
  • the outside air P is sent from the outside of the heating chamber D into the heating chamber D by the blower D6, and is provided with a driving force for turning around the furnace body C in the heating chamber D.
  • the blower D6 may be a so-called fan type or a blow type, and may be attached to the hot air outlet D2, or to both the suction port D1 and the hot air outlet D2.
  • the temperature of the hot air Q is basically adjusted by the combustion temperature of the hydrogen gas in the combustion section C1 of the furnace body C. Further, the air volume of the blower D6 is adjusted. Change the flow rate when using oxygen gas (concentration is almost 100%) generated in the electrolysis section B for hydrogen gas combustion, or form so that the exhaust pipe C3 of the furnace body C is blown out of the heating chamber D For example, the temperature can be adjusted to be higher or lower than the above temperature range.
  • a means such as attaching a heat insulating material to the upper and lower surfaces of the side wall D3 and the upper wall D4 of the heating chamber D shown in FIG. It is possible to prevent heat from escaping from the space, and it is possible to further improve the heating efficiency.
  • a vinyl pipe, duct, etc. (hereinafter collectively referred to as a ventilation pipe H) is attached to the hot air outlet D2, and the hot air Q blown out from the hot air outlet D2 is The air is supplied to the inside of the greenhouse (house) or the room through the ventilation pipe H.
  • the power supply B8 is turned on to supply electricity to various electric systems.
  • blowers D6, E3 and E4 are started.
  • step S1 tap water W is supplied to the water pipe F, and the pure water producing apparatus B6 is connected to the tap water W. Pure water is supplied to the electrolyzer B1 via the separator B2 and the cooler B7.
  • step S2 the pure water is decomposed into hydrogen gas and oxygen gas by the electrolyzer B1, and the process proceeds to step S3 and step S4.
  • step S3 the hydrogen gas generated in the electrolyzer B1 is supplied to the hydrogen separator B2a, and the hydrogen gas is cooled.
  • step S4 the oxygen gas generated in the electrolyzer B1 is supplied to the oxygen separator B2b to cool the oxygen gas.
  • step S5 the water vapor contained in the hydrogen gas supplied from the hydrogen separator B2a is removed by the hydrogen aggregator B3a.
  • step S6 the water vapor contained in the oxygen gas supplied from the oxygen separator B2b is removed by the oxygen aggregator B3b.
  • step S7 the pressures of the hydrogen gas and the oxygen gas from the hydrogen condenser B3a and the oxygen condenser B3b are compared.
  • step S8 the hydrogen gas that has passed through the differential pressure regulator B4 flows into the hydrogen dryer B5a, and the hydrogen gas undergoes final drying.
  • step S9 the oxygen gas that has passed through the differential pressure regulator B4 flows into the oxygen dryer B5b, and the oxygen gas undergoes final drying.
  • step S10 hydrogen gas flows into the solenoid valve E5 from the hydrogen dryer B5a via the hydrogen supply pipe E1, and the flow rate is adjusted.
  • step S11 oxygen gas flows into the electromagnetic valve E6 from the oxygen dryer B5b via the oxygen supply pipe E2, and the flow rate is adjusted.
  • step S12 the hydrogen gas from the hydrogen supply pipe E1 (e.g., 3m 3 Zh) and the oxygen gas from the oxygen supply pipe E2, air R a combustion portion C1 aspirated from the fan C11 (e.g., 30 000kcal / h).
  • the hydrogen gas from the hydrogen supply pipe E1 e.g., 3m 3 Zh
  • the oxygen gas from the oxygen supply pipe E2 air R a combustion portion C1 aspirated from the fan C11 (e.g., 30 000kcal / h).
  • step S13 the reaction gas burned in the combustion section C1 heats the furnace C (the upper temperature in the furnace becomes, for example, about 250 ° C.).
  • step S14 the reaction gas discharged from the exhaust pipe C3 of the furnace body C and the outside air P sucked from the blower D6 are mixed in the heating chamber D (for example, about 130 ° C.). It becomes).
  • step S15 the mixed gas of the reaction gas and the outside air P is heated through the ventilation pipe H. It is discharged as wind (eg, about 60 ° C, outside air at 15 ° C).
  • the second embodiment differs from the first embodiment only in the structure of the hydrogen-burning type hot air heater A, only the differences will be described in detail.
  • FIG. 10 is a schematic view showing a second embodiment of the hydrogen combustion type hot air heater of the present invention (only the heating chamber D is shown so that the inside can be seen).
  • FIG. 11 is an explanatory diagram showing a heating chamber and a furnace body formed so that the taken in outside air swirls around the furnace body.
  • FIG. 11 (A) is a cross-sectional view of a heating chamber and a preheating chamber
  • FIG. 11 (B) is a cross-sectional view along the line ZZ of FIG. 11 (A).
  • the hydrogen-burning type hot-air heater A of the second embodiment takes in outside air P into the suction port D1 of the heating chamber D (see the arrow in FIG. 10), and takes in the outside air P into the furnace body C in a high-temperature state. Then, the heated outside air P is discharged from the hot air outlet D2 to the outside (see the arrow in FIG. 10) to generate hot air Q.
  • the suction port D1 is provided on the lower wall surface of the heating chamber D by utilizing the property that the air becomes lighter as the temperature increases, and the hot air outlet D2 is provided at the center of the upper surface of the heating chamber D.
  • connection part D7 is formed in the hot air outlet D2, and the direction of the hot air outlet D2 can be freely rotated. Can be changed.
  • a cylindrical preheater is provided outside the heating chamber D.
  • the return flow path J1 is connected to the upper end side of the preheating, and the preheating is connected to the suction port D1.
  • a window C6 for draining water is provided at the lower end of the furnace body C, and a through-hole C61 is formed on the peripheral surface of the window C6, and the inside of the furnace body C is compared through the through-hole C61.
  • the reaction gas with extremely high temperature is released outside the furnace C.
  • reaction gas flows directly into the preheater via the dedicated passage K.
  • reaction gas that has flowed into the preheater [] flows into the above-described return / recirculation path J1, and is returned to the suction port 01.
  • the preheating plays a role as a heat insulating layer, and high heat insulating properties are obtained. It is demonstrated.
  • the heating chamber D is kept warm, and even if the apparatus is installed in a cold region, the combustion efficiency can be improved without the heating chamber D being cooled by external cold air.
  • the relatively high-temperature reactant gas discharged into the heating chamber D flows directly into the preheater via the dedicated passage K so as not to mix with the air in the heating chamber D, and After passing around the outer wall of D, it is discharged to the outside of the preheater 3 ⁇ 4, so the amount of heat transmitted from the furnace body C to the outside of the preheater through the heating chamber D and the preheater ⁇ ⁇ ⁇ can be reduced, D can be kept warm.
  • the reaction gas discharged to the outside of the preheater flows into the heating chamber D via the return circulation path J1, the relatively high temperature reaction gas flowing through the return circulation path J1 is supplied to the heating chamber D. It can be mixed with the outside air taken in and can generate hot air with good thermal efficiency.
  • furnace body C is a so-called vertical type, that is, the case where combustion air S in furnace body C flows generally in a vertical direction (from bottom to top) has been described.
  • Force The present invention naturally includes a so-called horizontal type.
  • a spiral guide plate C4 is formed in the furnace body C similarly to the present invention, and the combustion air
  • the same effect as that of the present invention can be obtained by forming the S so as to guide the inside of the furnace body C so as to flow downward from above.
  • the mounting position of the warm air outlet D2 to the heating chamber D is not limited to the mounting position shown in Figs. 8 (A) and 8 (B). It is appropriately selected, for example, to be attached to the cylindrical side wall D3 of the chamber D in the tangential direction.
  • the combustion part C1 of the furnace body C (omitted in FIG. 8) is attached to the outside of the side wall D3 of the heating chamber D, and the air R outside the heating chamber D is sucked.
  • the outside air P is sucked from the inside of the heating chamber D shown in FIG.
  • Fig. 10 and Fig. 11 an example is described in which the return flow path J1 and the dedicated path K are provided one by one, but a plurality of return flow paths J1 and dedicated passages K may be provided.
  • the present invention relates to a hydrogen-burning type hot-air heater and a hydrogen-burning type hot-air generating method.
  • the principle is used, for example, not only for heating a greenhouse, but also for general buildings, Naturally, it can be applied to air conditioning of plants, ships, etc.
  • FIG. 1 is an explanatory diagram showing a first embodiment of a hydrogen combustion type hot air heater according to the hydrogen combustion type hot air generation method of the present invention.
  • FIG. 2 is an explanatory view showing a structure of an electrolysis section of the hydrogen combustion type hot air heater of FIG. 1.
  • FIG. 3 is an explanatory view showing the internal structure of the hydrogen coagulator of FIG. 2.
  • FIG. 4 is an explanatory diagram showing a perspective view of the electrolysis apparatus of FIG. 1.
  • FIG. 5 is an explanatory view showing the structure of the furnace body of FIG. 1, (A) is a cross-sectional view when the furnace body is viewed from the back side, and (B) is a cross-sectional view along line XX of (A). It is.
  • FIG. 6 is an explanatory diagram showing a state of combustion by a burner in the installation pipe of FIG. 5.
  • FIG. 7 is an explanatory view showing another embodiment of the burner.
  • FIG. 8 is an explanatory view showing a heating chamber and a furnace body formed so that the taken-in outside air swirls around the furnace body.
  • FIG. () Is a cross-sectional view taken along the line YY of (A).
  • FIG. 9 is an explanatory diagram showing a processing flow of the hydrogen combustion type hot air heater of FIG. 1.
  • FIG. 10 is an explanatory view showing a second embodiment of the hydrogen combustion type hot air heater according to the hydrogen combustion type hot air generation method of the present invention.
  • FIG. 11 is an explanatory view showing a heating chamber and a furnace body formed so that intake air swirls around the furnace body.
  • FIG. 11A is a cross-sectional view of the heating chamber and an external view of the furnace body.
  • (B) is a sectional view taken along the line ZZ in (A).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Air Supply (AREA)
  • Direct Air Heating By Heater Or Combustion Gas (AREA)

Abstract

 水素ガスを燃焼させることで外気を加熱し、排ガス中に温室効果ガス(特にCO2 )が含まれないクリーンなガスを排出する水素燃焼型温風暖房機、水素燃焼型温風発生方法及びその方法に用いるバーナーを提供すること。  電気分解により水を水素ガス及び酸素ガスに分解するための電気分解部Bと、該電気分解部Bで発生させた水素ガスを内部で燃焼させて加熱される炉体Cと、該炉体Cの周囲を取り囲むように設けられ、外気Pを取り入れて該炉体で加熱した後排出するための加熱室Dと、を備える水素燃焼型温風暖房機。  また、加熱室Dを覆う予熱室が設けられている。

Description

明 細 書
水素燃焼型温風暖房機、水素燃焼型温風発生方法及びその方法に用 いるバーナー
技術分野
[0001] 本発明は、水素燃焼型温風暖房機、水素燃焼型温風発生方法及びその方法に用 いるバーナーに関し、更に詳しくは、排ガス中に温室効果ガス(特に c〇)が含まれ
2 ないクリーンなガスを排出する水素燃焼型温風暖房機、水素燃焼型温風発生方法 及びその方法に用いるバーナーに関する。
背景技術
[0002] 従来、温室野菜や温室メロン等の農業用栽培では、温室 (ハウスを含む)内の室温 を比較的高温に保っために、かっては、重油や灯油等の液体燃料を燃焼させて温 室内の空気を暖める、いわゆる油焚き温風暖房機が用いられてきた。
[0003] しかし、油焚き温風暖房機は、液体燃料の不完全燃焼による CO (—酸化炭素)の 発生等の問題があり、プロパンガス等のガス燃料を燃焼させるガス焚き温風暖房機 の開発が進められている(例えば、特許文献 1ないし特許文献 5参照)。
これらのガス焚き温風暖房機は、概略的に言えば、加熱室の内部に炉体を備えた 構造をしている。
[0004] そして、炉体の内部でガス燃料を燃焼させて炉体自体を加熱しておき、加熱室に 外気を取り入れて、その加熱状態の炉体で取り入れた外気を加熱し、温風として温 室内に排出するものである。
その際、ガス燃料の燃焼により発生する排ガスは、通常、温風に混合しないように、 炉体に、直接、煙突等を設け、温室の外に排気される。
[0005] これらのガス焚き温風暖房機の中には、温室野菜等の植物の育成に必要な CO (
2 二酸化炭素)を温室内に供給するため、排ガスの一部を積極的に外気に混合させて 温室内に排気するようにしたものもある(特許文献 1及び特許文献 2参照)。
[0006] また、温風暖房機の内部に、外気の燃焼加熱系統とは別に、 CO を発生させるた
2
めのガス燃焼系統を形成したものも提案されている(特許文献 3参照)。 [0007] 特許文献 1 :特公昭 57— 37292号公報
特許文献 2 :特公昭 51 - 31725号公報
特許文献 3 :実公昭 62— 35319号公報
特許文献 4 :特開 2003— 74984号公報
特許文献 5:特開 2002 - 228264号公報
発明の開示
発明が解決しょうとする課題
[0008] しかし、こうしたガス焚き温風暖房機においても、ガス燃料の燃焼により発生した C o 1 結局は、排ガスとして大量に外気中に排気されることに変わりがない。
2
今日、温室効果ガス(地球温暖化ガス)の排気削減が世界的規模で求められ、特 に C〇の排出削減が緊急の課題となっている。
2
[0009] 本発明は、かかる実状を背景に、上記の問題点を克服するためになされたものであ る。
即ち、本発明は、水素ガスを燃焼させることで外気を加熱し、排ガス中に温室効果 ガス(特に C〇 )が含まれなレ、クリーンなガスを排出する水素燃焼型温風暖房機、水
2
素燃焼型温風発生方法及びその方法に用いるバーナーを提供することを目的とす る。
[0010] しかし、水素ガスは、燃焼温度が高ぐし力 燃焼しても水蒸気(又は水)になるだけ で COを発生しないという利点がある反面、少量でも引火して爆発し易ぐプロパンガ
2
ス等と比較して漏れ出し易いという欠点がある。
また、水素ガスを温風暖房機の燃料として用いるには、水素ガスを効率良く発生さ せることが必要である。
本発明は、そうした問題点の克服をも目的としている。
更に本発明は、水の電気分解により得られた水素を同電気分解により得られた酸 素をも利用して燃焼させるバーナーを提供することをも目的とする。
課題を解決するための手段
[0011] 請求項 1に記載の水素燃焼型温風暖房機は、電気分解により水を水素ガス及び酸 素ガスに分解するための電気分解部と、該電気分解部で発生させた水素ガスを内部 で燃焼させて加熱される炉体と、該炉体の周囲を取り囲むように設けられ、外気を取 り入れて該炉体で加熱した後排出するための加熱室と、を備えることを特徴とする。
[0012] 請求項 2に記載の水素燃焼型温風暖房機は、請求項 1に記載の水素燃焼型温風 暖房機において、前記炉体は、略円筒形に形成され、空気を吸引するためのファン を備えた水素ガス燃焼用のバーナーと、該バーナーによる水素ガスの燃焼によりカロ 熱された該空気が炉体の内部で螺旋状に移動するように案内するための螺旋状の 案内板と、該加熱された空気を吹き出すための排気管とを備えることを特徴とする。
[0013] 請求項 3に記載の水素燃焼型温風暖房機は、請求項 1又は請求項 2に記載の水素 燃焼型温風暖房機において、前記加熱室を覆う予熱室と、前記炉体から排出された 反応ガスを直接、前記予熱室に流入させるための専用通路と、が設けられたことを特 徴とする。
[0014] 請求項 4に記載の水素燃焼型温風暖房機は、請求項 3に記載の水素燃焼型温風 暖房機において、前記予熱室には、該予熱室の反応ガスを前記加熱室に戻すため の返還流路が設けられたことを特徴とする。
[0015] 請求項 5に記載の水素燃焼型温風発生方法は、水を水素ガスと酸素ガスとに電気 分解する電気分解工程と、この電気分解工程で発生した水素ガスを前記酸素ガスと 混合させた状態で燃焼させて炉体内の温度を上昇させる燃焼工程と、前記炉体の周 囲を取り囲むように設けられた加熱室に外気を取り入れ、この外気を前記水素ガスの 燃焼により加熱された前記炉体の外壁面に接触させ前記外気を昇温させる外気昇 温工程と、この外気昇温工程で昇温された外気を前記加熱室外へ排出する温風排 出工程と、を有することを特徴とする。
[0016] 請求項 6に記載の水素燃焼型温風発生方法は、請求項 5に記載の水素燃焼型温 風発生方法にぉレ、て、前記電気分解工程により発生した前記水素ガスと前記酸素ガ スとを分離して回収する分離回収工程を有することを特徴とする。
[0017] 請求項 7に記載の水素燃焼型温風発生方法は、請求項 6に記載の水素燃焼型温 風発生方法にぉレ、て、前記分離回収工程で回収された前記水素ガスと前記酸素ガ スとをそれぞれ乾燥させる乾燥工程を有することを特徴とする。
[0018] 請求項 8に記載の水素燃焼型温風発生方法は、請求項 5に記載の水素燃焼型温 風発生方法において、前記燃焼工程は、バーナーを用いて行うことを特徴とする。
[0019] 請求項 9に記載の水素燃焼型温風発生方法は、請求項 5に記載の水素燃焼型温 風発生方法において、前記炉体内には、前記燃焼工程で発生した反応ガスを導くた めに螺旋状に案内板が設けられ、前記外気昇温工程において、前記案内板上を流 れる前記反応ガスと、前記加熱室内に取り入れられた外気と、の熱交換が効率的に 行われることを有することを特徴とする。
[0020] 請求項 10に記載の水素燃焼型温風発生方法は、請求項 9に記載の水素燃焼型温 風発生方法において、前記水素ガスの燃焼により発生した反応ガスは、前記炉体内 を流通した後、前記加熱室内に排出されることを特徴とする。
[0021] 請求項 11に記載の水素燃焼型温風発生方法は、請求項 10に記載の水素燃焼型 温風発生方法において、前記加熱室は予熱室によって覆われ、前記炉体から排出 された反応ガスは、直接、前記予熱室に流入されることを特徴とする。
[0022] 請求項 12に記載の水素燃焼型温風発生方法は、請求項 11に記載の水素燃焼型 温風発生方法にぉレ、て、前記予熱室から前記加熱室へ前記反応ガスを戻すことを 特徴とする。
[0023] 請求項 13に記載の水素燃焼型温風発生方法は、請求項 5に記載の水素燃焼型温 風発生方法にぉレ、て、前記燃焼工程で未反応の水素ガスを前記炉体内から弁を介 して抜くことを特徴とする。
[0024] 請求項 14に記載の水素燃焼型温風発生方法は、請求項 5に記載の水素燃焼型温 風発生方法において、前記燃焼工程で発生した水分を前記炉体内から抜くことを特 徴とする。
[0025] 請求項 15に記載の水素燃焼型温風発生方法に用いるバーナーは、空気輸送管と 、この空気輸送管の先端の開口部を覆うように設けられ空気通過用の切欠部が形成 された鍔部と、前記空気輸送管内に設けられ前記鍔部を貫通して前記鍔部から突出 した水素輸送管と、この水素輸送管の先端よりも前方に酸素を供給するように配置さ れた酸素輸送管と、を有することを特徴とする。
[0026] 請求項 16に記載の水素燃焼型温風発生方法に用いるバーナーは、空気輸送管と 、この空気輸送管の先端の開口部を覆うように設けられ空気通過用の切欠部が形成 された鍔部と、前記空気輸送管内に設けられ前記鍔部を貫通して前記鍔部から突出 した水素輸送管と、前記水素輸送管内に設けられ前記水素輸送管の先端から突出 した酸素輸送管と、を有することを特徴とする。
[0027] 請求項 17に記載の水素燃焼型温風発生方法に用いるバーナーは、請求項 15又 は請求項 16に記載の水素燃焼型温風発生方法に用いるバーナーにおいて、前記 鍔部より突出した前記水素輸送管の突出部分の外周壁に周方向に沿って複数の細 穴が形成されたことを特徴とする。
[0028] 請求項 18に記載の水素燃焼型温風発生方法に用いるバーナーは、請求項 17に 記載の水素燃焼型温風発生方法に用いるバーナーにおいて、前記水素輸送管の 先端側に形成された前記複数の細穴は周方向に均等の間隔で設けられ、前記鍔部 に形成された前記切欠部も前記細穴と同数だけ周方向に均等に設けられていること を特徴とする。
[0029] 請求項 19に記載の水素燃焼型温風発生方法に用いるバーナーは、請求項 17に 記載の水素燃焼型温風発生方法に用いるバーナーにおいて、前記酸素輸送管の 先端は閉蓋されており、その近傍の前記酸素輸送管の外周壁に周方向に等間隔で 複数の酸素ガス噴出口が形成されていることを特徴とする。
発明の効果
[0030] 請求項 1に記載の発明によれば、電気分解部において水が水素ガス及び酸素ガス に分解され、該分解されて得られた水素ガスが炉体内部で燃焼させられ、該炉体の 周囲を取り囲むように設けられた加熱室に流入した外気は該燃焼熱により昇温させら れ、加熱室外へ送られる。
従って、水素ガスを燃焼させることで外気を加熱し、排ガス中に温室効果ガス(特に CO )が含まれないクリーンなガスを排出する水素燃焼型温風暖房機を提供するこ
2
とができる。
[0031] 請求項 2に記載の発明によれば、炉体は、略円筒形に形成され、空気を吸引する ためのファンを備えた水素ガス燃焼用のバーナーと、該バーナーによる水素ガスの 燃焼により加熱された該空気が炉体の内部で螺旋状に移動するように案内するため の螺旋状の案内板と、が設けられたので、バーナーで加熱された空気は螺旋状にス ムーズに流れる。
また、炉体が略円筒形、即ち軸対象形状であることから、炉体周囲に均等に熱を伝 達することができ、加熱室に設けられた排気管から排出される空気温度の安定性を 向上させることができる。
[0032] 請求項 3に記載の発明によれば、加熱室を覆う予熱室が設けられ、予熱室の外側 の外気と加熱室とは二重の壁で隔てられることになり、加熱室が外気により冷却され ること力 卬止される。
しかも、加熱室に設けられた炉体力 排出された比較的高温の反応ガスを直接、専 用通路を介して予熱室内に流入させるようにしたので、加熱室の保温効果を更に向 上させることができる。
[0033] 請求項 4に記載の発明によれば、予熱室には、該予熱室の反応ガスを加熱室に戻 すための返還流路が設けられたので、予熱室から排出される温風を加熱室で発生さ せる温風として利用することができ、エネルギーの有効活用を図ることができる。
[0034] 請求項 5に記載の発明によれば、電気分解工程で水を分解することにより発生した 水素ガスが燃焼工程で燃焼される。そして、この燃焼により発生した熱により炉体内 の温度が昇温され、炉体が加熱される。炉体の周囲には、加熱室が炉体を取り囲む ように設けられており、二重の容器が形成されている。内側の容器である炉体の外壁 面と、外側の容器である加熱室の内壁面とにより形成される空間には、外気が取り込 まれ、この外気は炉体の外壁面と接触し炉体から外気への熱伝達が行われる。そし て、この昇温された外気は、加熱室外へ排出される。
[0035] この方法を装置に取り入れることで、温風が発生する暖房機が形成される。この暖 房機は水を原料とするが、水を電気分解した後、電気分解で発生した水素を空気( 酸素含有率 21 %)や電気分解で発生した酸素と化学反応させれば、反応生成物は 水であるため、有害な物質を排出することがない。従って、排ガス中に温室効果ガス (特に C〇)が含まれないクリーンな暖房を行うことが可能であるので、例えば、ビニ
2
ールハウス(温室)内の野菜や果物を育成させるために用いるのに好適である。
[0036] また、水素ガスを燃焼させる際に酸素ガスを混合させるので、より多くの水素ガスが 酸素と化学反応を起こし激しい燃焼が行われる。そのため、炉体がより高温になり、よ り高温の温風を発生させることができる。
[0037] 請求項 6に記載の発明によれば、電気分解工程により発生した水素ガスと酸素ガス とを分離して回収する分離回収工程が設けられているので、水素ガスと酸素ガスとが 反応して爆発する危険を避けることができる。また、水素ガスをガスボンベに貯蔵す れば、輸送に便利であり、利用範囲が広がる。貯蔵の形態としては、気体水素、液体 水素、金属水素化物、及びメタノールやアンモニア等の水素化誘導化学物質等があ る。
[0038] 請求項 7に記載の発明によれば、分離回収工程で回収された水素ガスは乾燥させ られる。水素ガスに水蒸気が含まれると、燃焼工程においてエネルギーを吸収するの で、水素ガスの燃焼効率は低下するが、水素ガスが乾燥させられることにより燃焼効 率の低下を抑止することができる。
[0039] 請求項 8に記載の発明によれば、燃焼工程は、バーナーを用いて行われるので、 バーナーから水素ガスを噴射すれば、その噴射方向に沿った火炎が形成される。従 つて、バーナーの向きを変更することで火炎の方向を自由自在に決めることができ、 水素ガスと反応させる空気や酸素の流れと水素ガスの噴出方向とを一致させれば、 長い尾をひいた火炎を得ることができ、局所的な火炎を発生させる場合に比べ、周 辺材料の加熱 (例えば、金属材料の融点に達するような発熱)を抑えることができ、装 置の熱負荷から見て、より大きな発熱を行わせることができる。
[0040] 請求項 9に記載の発明によれば、炉体内には、螺旋状に案内板が設けられ、燃焼 工程で発生した反応ガスが螺旋状に導かれる。そのため、反応ガスが炉体内に滞在 する時間が長くなり、案内板上を流れる反応ガスと加熱室内に取り入れられた外気と の熱交換が効率的に行われる。また、案内板自体がフィンの役割を果たし、反応ガス の吸熱を促進することができる。
[0041] 請求項 10に記載の発明によれば、水素ガスの燃焼により発生した反応ガスが、炉 体内を流通した後、加熱室内に排出されるので、炉体を介して反応ガスと外気との熱 交換が行われるだけでなぐ反応ガスと外気とが直接混ざり合うので、外気の昇温を より促進することができる。なお、加熱室内に炉体を設置せず、直接反応ガスと外気 とを混ぜる場合には、排ガスの温度が高温になったり低温になったりし、不安定にな る。その理由は、加熱室内の流体の流れが安定するまでに時間力 Sかかるし、また、外 気ゃ炉体に供給される水素ガス等の流量を調整すると、流体の流れが安定するまで に時間がかかるからである。
[0042] 請求項 11に記載の発明によれば、加熱室を予熱室によって覆レ、、二重構造の壁を 形成するようにしたのでので、予熱室の空気層が断熱層としての役割を果たし、加熱 室にっレ、ての高い断熱特性を発揮するようになる。
このようにすれば、加熱室が保温されると共に、装置を寒冷地に設置しても外部の 冷気により加熱室が冷やされることもなぐ燃焼効率の向上を図ることができる。 また、炉体力 排出された比較的高温の反応ガスは、直接予熱室に流入されるの で、炉体内から加熱室及び予熱室を伝わり予熱室外部へ直線的に伝達される熱量 を小さくすることができ、加熱室の保温を確実に行うことができる。
[0043] 請求項 12に記載の発明によれば、予熱室の外側へ排出される反応ガスは、返還 流路を介して加熱室へ流入されるので、返還流路を流れる比較的高温の反応ガスを 加熱室に取り入れられる外気と混合することができ、熱効率の良い温風の発生を行う こと力 Sできる。
[0044] 請求項 13に記載の発明によれば、燃焼工程で未反応の水素ガスを炉体内から排 出するための弁が設けられている。水素ガスが蓄積すると、爆発の危険性があるが、 比重の軽い水素を炉体の上方に設けた弁を介し排出することで安全性を確保するこ とができる。なお、水素はオゾン層を破壊する有害物質であるため、排出された水素 の管理には十分留意する必要がある。
[0045] 請求項 14に記載の発明によれば、燃焼工程で発生した水分が炉体内から排出さ れる。炉体内に水滴が付着していると、燃焼空気の熱を水滴が吸収してしまい炉体 の加熱効率が低下してしまうが、力かる問題を解消することができる。なお、水滴は以 下のように発生する。
水素ガスの燃焼を止め、その瞬間に炉体への空気の供給を中止すると、炉体内に 水分を含んだ気体が滞留する。そして、徐々に炉体が冷却されてレ、くと、炉体内で水 蒸気が結露する。
また、装置を停止している場合でも、夜間等に急に外気の温度が低下し炉体内の 空気との温度差が生じると、水滴が発生する。
[0046] 請求項 15に記載の発明によれば、空気輸送管の先端には、その先端に形成され た開口部を覆うように鍔部が設けられている。そして、この鍔部には、輸送されてきた 空気が通過できるように切欠部が形成されている。また、空気輸送管内には水素輸 送管が設けられ、この水素輸送管は鍔部を貫通して鍔部から突出している。そのた め、鍔部を通過した空気は攪乱され、水素輸送管から噴出した水素ガスを巻き込み ながら、渦を巻いて前方へ移動する。また、同時に着火も行われる。
[0047] このように渦を卷くように前進させると、燃焼空気が炉体内に入った際に、炉体の内 部で燃焼空気が一気に拡散してしまうのを防ぐことができる。ひいては、燃焼空気を 炉体内に設けられた案内板に沿ってスムーズに移動させることができ、性能の良い 熱交換機を形成することができる。
また、水素輸送管内に設けられ水素輸送管の先端力、ら突出した酸素輸送管力 も 、酸素が供給され、燃焼ガスの温度をより高温にすることができる。
[0048] 請求項 16に記載の発明によれば、請求項 11と同様の作用効果を奏する上、空気 輸送管の内側に酸素輸送管が設けられ、更にその内側に水素輸送管が設けられて いるので、軸対象な構造にすることができ、水素ガスや酸素ガスを空気輸送管から噴 出した空気に均等に混合させることができる。そのため、燃焼中の炎の形状を周方向 に均一にすることが可能であり、また、炎の位置を一箇所で安定させることができる。
[0049] 請求項 17に記載の発明によれば、鍔部より突出した水素輸送管の突出部分の外 周壁に周方向に沿って複数の細穴が形成されるので、この細穴から噴出する水素ガ スを切欠部を通過する攪乱空気に少量ずつ均等に混合させることができる。
[0050] 請求項 18に記載の発明によれば、水素輸送管の先端側に形成された複数の細穴 は周方向に均等の間隔で設けられ、鍔部に形成された切欠部も細穴と同数だけ周 方向に均等に設けられているので、空気と水素ガスとの混合を確実に周方向に均等 にすることができる。
[0051] 請求項 19に記載の発明によれば、酸素輸送管の先端側の外周壁に周方向に等 間隔で複数の酸素ガス噴出口が形成されているので、水素ガスと空気との混合ガス に対し確実に均等に酸素を追加することができる。 [0052] なお、本発明の目的に添ったものであれば、上記請求項を適宜組み合わせた構成 も採用可能である。
発明の実施するための最良の形態
[0053] 以下、本発明の実施形態を図面に基づいて説明する。
〔第 1実施形態〕
〔水素燃焼型温風暖房機 Aの全体構造〕
図 1は、本発明の水素燃焼型温風暖房機の第 1実施形態を示す概略図である (カロ 熱室 Dのみ内部が見えるように図示した)。
水素燃焼型温風暖房機 Aは、主として、電気分解により水を水素ガスと酸素ガスと に分解するための電気分解部 B〔電気分解工程〕と、この電気分解部 Bで発生させた 水素ガスと酸素ガスとを分離して回収し〔分離回収工程〕、乾燥させ〔乾燥工程〕、こ の水素ガスを電気分解部 Bで発生させた酸素ガスをも利用して、内部で燃焼させて 加熱される炉体 Cと、この炉体 Cの周囲を取り囲むように設けられ、外気 Pを取り入れ て炉体 Cで加熱した後排出するための加熱室 Dと、を備えている。
[0054] 〔水素燃焼型温風暖房機 Aの温風発生機構〕
先ず、電気分解部 Bゃ炉体 C、加熱室 Dの構造等の詳細な説明に入る前に、この 水素燃焼型温風暖房機 Aの機能について簡単に説明する。
この第 1実施形態の水素燃焼型温風暖房機 Aは、外気 Pを加熱室 Dの吸込口 D1 から取り入れ(図 1の矢印参照)、取り入れた外気 Pを高温状態の炉体 Cで加熱した 後、加熱された外気 Pを温風吹出口 D2から外部に排出する(図 1の矢印参照)ことに より温風 Qを発生させるものである。
[0055] しかし、本発明の水素燃焼型温風暖房機 Aは、外気 Pの加熱手段である炉体 C自 体を高温状態に加熱するために、炉体 Cの内部で水素ガスを燃焼させる点で、従来 の温風暖房機とは、大きく異なる。
この点が、本発明の水素燃焼型温風暖房機 Aの大きな特徴である。
[0056] 水素ガスの燃焼による炉体 Cの加熱の機構やそのための構造等については、後で 詳しく述べるが、本発明の水素燃焼型温風暖房機 Aの全体的な理解のために、この 点を、ここで簡単に述べておく。 図 1に示すように、電気分解部 Bで発生した水素ガスは、水素供給管 E1を通って炉 体 Cの燃焼部 C1に送られる。
[0057] この燃焼部 C1で水素ガスが燃焼されるのである力 この水素ガスの燃焼に必要な 酸素は、燃焼部 C1のファン(図 5のファン C11参照)により燃焼部 C1内に吸引された 空気 の中に含まれてレ、る(図 1の矢印参照)。
また、電気分解部 Bで発生した酸素ガスを、酸素供給管 E2を介して炉体 Cの取付 管 C21 (図 5参照)に送ることによつても供給される。
[0058] 水素供給管 E1及び酸素供給管 E2にはそれぞれブロワ一 E3とブロワ一 E4とが設 けられ、電気分解部 Bから炉体 Cへ向けて水素と酸素とが供給される。
そして、水素ガスの燃焼により空気 R中の一部の酸素が消費されて、残りの空気 R は同時に加熱されることになる〔燃焼工程〕。
また、酸素供給管 E2から供給される酸素ガスも水素ガスと化学反応し、燃焼する。
[0059] そして、この加熱された空気 Rが炉体 Cの内部を通過して、排気管 C3から吹き出さ れる(図 1の矢印参照)。
その間、この高温の燃焼空気 Sが炉体 Cの内壁面 C7 (図 5 (A)参照)と接触して炉 体 Cが加熱される。
[0060] そして、この加熱された炉体 Cの外壁面 C2に外気 Pが接触することにより、外気 P自 体が加熱されるのである〔外気昇温工程〕。
また、前記燃焼工程で発生した反応ガスを炉体 C内で螺旋状の案内板により導き、 加熱室 D内に蛸足状に形成された排気管 C3から排出し、この排出された反応ガスと 加熱室 D内に取り入れられた外気と混合され、熱交換が効率的に行われる。
最後に、外気昇温工程で昇温された外気を加熱室 D外へ排出する〔温風排出工程 ] 0
このように、本発明の水素燃焼型温風暖房機 Aは、炉体 Cの加熱を水素ガスの燃 焼により行うため、排気管 C3から吹き出される燃焼空気 S (即ち排ガス)中に温室効 果ガス(特に C〇 )が含まれず、排ガスが非常にクリーンであるという特徴を有する。
2
[0061] そのため、この実施の形態のように、炉体 Cの排気管 C3を加熱室 D内に開口するよ うに形成し、燃焼空気 Sを加熱室 D内に吹き出して外気 Pと混合するようにしても、燃 焼空気 sに温室効果ガスが含まれることがない。
寧ろ、炉体 Cの排気管 C3を加熱室 D内に開口するように形成すれば、排気管 C3 力 吹き出される高温の燃焼空気 Sが外気 Pに混合し合レ、、外気 P (又は温風 Q)の 加熱効率を高めることができるため極めて有用である。
[0062] なお、排気管 C3から吹き出される燃焼空気 Sには、水素ガスが燃焼して発生する 水蒸気 (水)が必然的に含まれてレ、る。
この実施の形態では、水素燃焼型温風暖房機 Aは温室 (ハウス)の暖房用に用いる ことを想定しているため、燃焼空気 Sが外気 Pに混合し、温風 Qが水蒸気を含む状態 となっても何ら問題はない。
[0063] しかし、この水素燃焼型温風暖房機 Aを、例えば、家庭やオフィス等の室内暖房に 使用する場合のように、温風 Qに水蒸気が含まれない方が良い場合などには、排気 管 C3を加熱室 Dの壁面を貫通するように形成し、加熱室 Dの外部に吹き出す (排気 する)ようにすることも当然可能である。
[0064] 又は、水素燃焼型温風暖房機 Aを図 1に示したように形成し、加熱室 Dの温風吹出 口 D2に除湿手段 (例えば、除湿フィルタ等)を取り付けるようにすることも可能である
[0065] 〔電気分解部 Bの構造等〕
次に、電気分解部 Bゃ炉体 C、加熱室 Dの構造等を説明する。
最初に、電気分解部 Bの構造等について述べる。
図 2は、水素燃焼型温風暖房機 Aの電気分解部 Bの構造を説明する概略図である なお、各機器の図中の位置関係が、そのまま電気分解部 Bにおける位置関係を示 すものではない。
[0066] また、図示しないが、各機器には機器内のガス圧を計測する圧力計や、機器内の ガス圧が過大となった場合にガス抜きを行うための安全弁等が適宜備えられている。 電気分解部 Bは、水素及び酸素の発生 ·精製系統として、主に、電気分解装置 B1 、分離器 B2 (水素分離器 B2a及び酸素分離器 B2b)、凝集器 B3 (水素凝集器 B3a 及び酸素凝集器 B3b)、及び乾燥器 B5 (水素乾燥器 B5a及び酸素乾燥器 B5b)を 備える。
[0067] また、電気分解部 Bは、水の純水化'循環系統として、主に、純水製造装置 B6及び 冷却器 B7を備え、更に電力供給源として電源 B8を備える。
水素及び酸素の発生'精製系統について述べると、先ず、電気分解装置 B1で水( 純水)が電気分解され、発生した水素ガス及び酸素ガスがそれぞれ独立して水素分 離器 B2a及び酸素分離器 B2bに回収される。
[0068] 図 2においては、電気分解装置 B1は 2機設けられているが、特に 2機に限定する理 由はなく、効率等の観点から必要に応じて何機設置しても良レ、。
但し、水素ガスと酸素ガスを混合した状態で回収すると、何らかの原因で水素ガス が爆発する危険性があるため、双方のガスをそれぞれ独立して回収できるものである ことが望ましい。
[0069] 電気分解装置 B1については、後で更に詳しく述べる。
水素分離器 B2aに回収された水素ガス及び酸素分離器 B2bに回収された酸素ガ スは、分離器 B2内で後述する純水により冷却された後、それぞれ水素凝集器 B3a及 び酸素凝集器 B3bに送られ、ガス中の水蒸気が除去される。
[0070] 水素ガス及び酸素ガス中から水蒸気を除去するのは、ガス中に水蒸気があると、水 素ガスの燃焼効率を低下させる可能性があるからである。
図 3は、一部破断した水素凝集器 B3aの内部構造の説明図である。
このように、水素凝集器 B3a内には交互に下方に傾斜するように邪魔板 B31が複 数配設されている。
[0071] 水素分離器 B2aから送られてきた水素ガスは、この邪魔板 B31に衝突しながら水 素凝集器 B3a内を上昇する。
この間、水素ガス中の水蒸気が邪魔板 B31に付着して結露し、水滴となって水素 凝集器 B3a内を流下し、下方の水回収管 B32を介して冷却器 B7に回収される(図 2 参照)。
[0072] このようにして、水素凝集器 B3aにより水素ガス中から、極力、水蒸気が除去され、 水素ガスの粗乾燥が行われるのである。
酸素凝集器 B3bにおいても、同様に、酸素ガスの粗乾燥が行われる。 水素凝集器 B3a及び酸素凝集器 B3bにより粗乾燥された水素ガス及び酸素ガスは 、差圧調整器 B4に送られる。
差圧調整器 B4では、水素ガスと酸素ガスとの圧力の比較が行われ、所定比率範囲 を超えたら気圧が高レ、方のガスを外部へ排出する。
そして、差圧調整器 B4の水素ガスと酸素ガスとは、それぞれ水素乾燥器 B5aと酸 素乾燥器 B5bとに送られる。
[0073] 水素乾燥器 B5a及び酸素乾燥器 B5bの内部には、乾燥剤として主に塩化カルシゥ ムが充填されており、水素ガス及び酸素ガスは、ここで最終的な乾燥を受ける。 そして、少なくとも水素ガスは、図示しない流量計を介して流量を調整された後、水 素供給管 E1 (図 1参照)を通って炉体 Cの燃焼部 C1に送られる。
[0074] 次に、電気分解部 Bにおける水の純水ィ匕'循環系統について述べる(図 2中の矢印 参照)。
電気分解装置 B1では、分解して水素ガスと酸素ガスを得るための水の供給が必要 である。
また、電気分解装置 B1では、水の電気分解を促進するために、水に水酸化力リウ ムが適宜加えられている。
[0075] 送水管 F (図 1参照)を通じて水道水 Wが純水製造装置 B6 (図 2参照)に送られる。
その際、電気分解に水道水 Wをそのまま使用すると、水道水 W中の塩素ガスが電 気分解装置 B1により発生した水素ガスや酸素ガスに混入したり電気分解部 Bの各機 器、特に電気分解装置 B1の電極を腐食させたりする。
[0076] そのため、水道水 Wを上記のような純水製造装置 B6等で純水化(脱塩素化)して 使用することが望ましい。
ところで、純水化された水(以下、純水という)を、電気分解装置 B1に直接送っても 良いが、この実施の形態では、先述したように、一旦、水素分離器 B2a及び酸素分 離器 B2bに送られて、水素ガス及び酸素ガスの冷却に使われる。
[0077] これは、電気分解装置 B1による電気分解の際に熱が発生し、電気分解により生じ た水素ガス等が高い温度状態になるからである。
水素分離器 B2a等で水素ガス等から熱を奪レ、、温度が上昇した純水は、先述した 水素凝集器 B3a等から回収された水 (この水も電気分解装置 Blや水素分離器 B2a 等の水であるから純水である)とともに、冷却器 B7に送られて冷却される。
[0078] その後、電気分解装置 B1に送られて、電源 B8から送電された電力により電気分解 されるのである。
なお、図 2に示したように、純水製造装置 B6から水素分離器 B2aに純水を送る際に 、純水に混入した空気が純水とともに水素分離器 B2a内に入り、水素ガスに混入して しまう可能性がある。
[0079] そうした場合には、水素分離器 B2aへの純水の送水を止めても良い。
また、例えば、水素分離器 B2aを壁面が二重になるように形成して、内壁と外壁の 間に純水を送水し、内壁を介して内部の水素ガスを冷却するように形成することも可 能である。
[0080] 最後に、電気分解装置 B1について簡単に述べる。
電気分解装置 B1が、水素ガスと酸素ガスとをそれぞれ独立して回収できるものであ ることが望ましレ、ことは既に述べた。
このような電気分解装置 B1は、種々のタイプのものが市販されており、炉体 C (図 1 参照)の温度を必要な温度にまで加熱できる量の水素ガスを発生し得る能力のあるも のであれば、どのようなタイプのものでも使用可能である。
[0081] 例えば、複数の電極板を積層するようにして形成される電気分解装置 B1 (図 4参照
)では、電極板 Bl aをステンレス製にして表面を鏡面状になるように磨いたり、電極板
Blaの枚数を適宜調整したりすることにより、水素ガス等の発生量を増大させることが できる。
[0082] この実施の形態において、こうした電極板 Blaを積層するタイプの電気分解装置 B 1を用レ、、上記のような調整を行った場合、ガスの発生量を、水素ガス (濃度 98. 8% )では 2. 27m3Z時間以上に、酸素ガス(濃度 98. 6%)では 1. 13m3Z時間以上に 、それぞれ向上させることができることが分かっている。
[0083] 〔炉体 Cの構造等〕
次に、炉体 Cの構造等について述べる。
図 5は、水素燃焼型温風暖房機 Aの炉体 Cの構造を示す概略図であり、 (A)は図 1 の炉体 Cを図 1の背面から見た場合の断面図、(B)は (A)の X— X線に沿う断面図で める。
この実施の形態においては、炉体 Cは、略円筒形に形成されている。
[0084] 炉体 Cは、先述したように、主に、燃焼部 C1と、円筒壁 (外壁面 C2、内壁面 C7)と、 複数 (この場合は 6本)の排気管 C3とを備えている。
燃焼部 C1は、空気 Rを吸引するためのファン C11を備え、また、その空気 Rに含ま れる酸素を使って水素ガスを燃焼するためのバーナー C12を備えている。
[0085] ファン C11は、空気取込口 CI laから空気 Rを吸引し、内部のファン(図示しない) の回転により空気 Rをバーナー C12に送る。
バーナー C12は、炉体 Cの取付管 C21に嵌め込むようにして、フランジ C13を介し て取り付けられている。
[0086] 図 6は、取付管内のバーナー C12による燃焼の状態を示す模式図である。
バーナー C12は、水素ガスをバーナー C12の前方へ送るための、鍔部 2を備えた 水素輸送管 1を有している。
[0087] また、鍔部 2の後方には、空気輸送管 3が鍔部 2と連結した状態で形成され、水素 輸送管 1の周囲を取り囲んでいる。
水素輸送管 1は、鍔部 2を貫通した状態に設けられ、その先端部分は封鎖されてい る。
[0088] 因みに、水素輸送管 1の後端部分は、図 5に示した水素供給管 E1と連結されてい る。
水素輸送管 1の鍔部 2から突出した部分の側面には、細穴である噴射穴 4が複数 設けられており、水素輸送管 1内を通ってきた水素ガスがこの噴射穴 4から放射状に 噴射される。
[0089] また鍔部 2には、空気 Rを螺旋状に噴出させるために、ひさし部が設けられた切欠 部 5が複数形成されている。
このように形成されたバーナー C12に水素ガスを送って点火すると、噴射穴 4から 噴射された水素ガスは、空気輸送管 3内を通って輸送され切欠部 5から噴出された 空気 Rに含まれる酸素によって燃焼され、同時に空気 Rが加熱される。 [0090] そして、高温状態の燃焼空気 Sとなって、炉体 Cの取付管 C21内を渦を卷くようにし て前方に移動する。
このように渦を卷くように前進させると、燃焼空気 Sが取付管 C21を通り抜けて炉体 C本体に入った際に、炉体 Cの内部で一気に拡散してしまうのを防止できるため好ま しいのであるが、この点については後述する。
[0091] バーナー C12には、酸素供給管 E2が連結され、酸素供給管 E2からも酸素が供給 される。バーナー C12と酸素供給管 E2との連結部付近には電磁弁 E6 (図 5 (A)参 照)が配設され、酸素ガスのバーナー C12への流入量を制御している。
ここで、図 1に示した酸素供給管 E2を燃焼部 C1や取付管 C21に連結することで、 電気分解部 Bで電気分解により発生した酸素ガスを供給することができ、電気分解部 Bで発生した水素ガス及び酸素ガスを有効に活用することができる。
[0092] 図 7は、バーナーの他の実施形態を示す模式図である。
バーナー C12は、水素ガスをバーナー C12の前方へ送るための、鍔部 2を備えた 水素輸送管 1を有している。
[0093] また、鍔部 2の後方には、空気輸送管 3が鍔部 2と連結した状態で形成され、水素 輸送管 1の周囲を取り囲んでいる。
水素輸送管 1は、鍔部 2を貫通した状態に設けられ、その先端部分は封鎖されてい る。
[0094] 因みに、水素輸送管 1の後端部分は、図 5に示した水素供給管 E1と連結されてい る。
水素輸送管 1の鍔部 2から突出した部分の側面には、噴射穴 4が複数設けられてお り、水素輸送管 1内を通ってきた水素ガスがこの噴射穴 4から放射状に噴射される。
[0095] 水素輸送管 1の内側には、酸素供給管 E2 (図 1参照)から酸素ガスが供給されてく る酸素輸送管 6が設けられている。この酸素輸送管 6は、水素輸送管 1の先端部分を 突き抜けており、酸素輸送管 6の先端力、ら酸素ガスが供給される。
[0096] 鍔部 2には、空気 Rを螺旋状に噴出させるために、ひさし部が設けられた切欠部 5 が複数形成されている。この切欠部 5は、噴射穴 4と同数設けられ、混合される水素 ガスと空気 Rとの周方向における均一化が図られている。 このように形成されたバーナー C12に水素ガスを送って点火すると、噴射穴 4から 噴射された水素ガスは、切欠部 5から噴出された空気 Rに含まれる酸素によって燃焼 され、更に、酸素輸送管 6から噴出する酸素が燃焼を増大させる。
そして、空気 Rが高温に加熱される。
[0097] そして、高温状態の燃焼空気 Sとなって、炉体 Cの取付管 C21内を渦を卷くようにし て前方に移動する。
[0098] この実施形態のバーナー C12は軸対象に形成され、空気 Rに対する水素ガス及び 酸素ガスの混合も軸対象に行われるので、燃焼中の炎の形状を周方向に均一にす ることが可能であり、また、炎の位置を一箇所で安定させることができる。
[0099] なお、酸素輸送管 6の先端を閉蓋し、水素輸送管 1と同様に、その外周壁に周方向 に等間隔で酸素ガス噴出口を形成するようにしても良い。
このようにすれば、水素ガスと空気 Rとの混合ガスに対し確実に均等に酸素を追加 すること力 Sできる。
[0100] さて、燃焼部 C1での水素ガスの燃焼により加熱された燃焼空気 Sは、炉体 Cの内 部を上昇する(図 5 (A)参照)。
その際、燃焼空気 Sが取付管 C21から炉体 C内に入った後、そのまま支障なく炉体
C内を上昇して上方の排気管 C3から吹き出されるのでは、炉体 Cの外壁面 C2を十 分に高温に且つ均等に加熱することができない。
[0101] そして、結果的に、加熱室 D (図 1参照)で取り入れた外気 Pを効率良く加熱すること ができない。
そのため、炉体 Cには、炉体 C内部での燃焼空気 Sの滞留時間を十分に長くするた めに、図 5 (A)に示したように、その内部に螺旋状に取り付けた案内板 C4が備えられ ている。
[0102] 具体的には、例えば、螺旋状になるように、案内板 C4を炉体 Cの内壁面 C7に溶接 等により取り付ける。
このように形成すると、この案内板 C4により、燃焼部 C1のバーナー C12による水素 ガスの燃焼で加熱された燃焼空気 Sを、炉体 Cの内壁面 C7に沿う状態で螺旋状に 移動するように案内することができる。 [0103] そのため、高温の燃焼空気 Sの炉体 C内での滞留時間が長くなるとともに、炉体 C の外壁面 C2が均等に加熱され、その周囲を流れる外気 Pを効率良く加熱することが できるのである。
また、その際、水素ガスの燃焼により生じるバーナー C12の火炎の噴出方向(燃焼 空気 Sの噴射方向や取付管 C21の軸線方向と同じ)力 炉体 Cの断面円形状の内壁 面 C7の接線方向を向くように、バーナー C12や取付管 C21が取り付けられていると 好ましい(図 5 (B)参照)。
[0104] このように取り付けると、取付管 C21から炉体 C内に入った燃焼空気 Sが、非常にス ムーズに螺旋状に移動する状態に移行できるからである。
また、先述したように、バーナー C12等の構造を工夫して、取付管 C21内で燃焼空 気 Sが渦を卷くように前進するようにしておけば、燃焼空気 Sが取付管 C21の開口部 C22から炉体 C内に拡散するのを防止し、燃焼空気 Sを炉体 C内で直進するようにす ること力 Sできる。
[0105] そして、取付管 C21が上記のように炉体 Cの内壁面 C7の接線方向を向くように取り 付けられていれば、燃焼空気 Sがよりスムーズに螺旋状に移動する状態に移行させ ること力 Sでき、炉体 Cの内壁面 C7がより均等に効率良く加熱されるのである。
[0106] なお、水素燃焼型温風暖房機 Aの稼動を停止すると、水素供給管 E1内に溜まって レ、る水素ガス力 バーナー C12の水素輸送管 1を通って炉体 C内に溜まる場合があ る。
その状態で、水素燃焼型温風暖房機 Aを稼動するためにバーナー C12を点火す ると、炉体 C内に溜まった水素ガスが爆発する可能性がある。
[0107] そうした事態を防止するため、炉体 Cの上部に、溜まった水素ガスを抜くための弁 C 5を設け(図 5 (A)参照)、その管部を加熱室 Dの外側で大気に開放するようにするこ とが好ましい(図 1参照)。
その際、水素燃焼型温風暖房機 Aの停止に合わせて自動的に弁 C5が開くように 制御し、稼動時に閉じるようにすれば、簡単で且つ安全であるためより好ましい。
[0108] また、炉体 Cの下方に、水抜き用の窓部 C6が形成されていれば、好ましい(図 5 (A )参照)。 先述したように、燃焼空気 Sは、水素ガスの燃焼により生じた水蒸気を含むので、水 素燃焼型温風暖房機 Aを停止した際に炉体 Cが冷えると、水蒸気が炉体 Cの内部で 結露する場合がある。
[0109] 炉体 Cの内部や案内板 C4に水滴が付着していると、水素燃焼型温風暖房機 Aの 稼動開始時に、燃焼空気 Sの熱を水が吸収してしまうため、炉体 Cの加熱効率が低 下してしまう可能性がある。
炉体 Cの下方に水抜き用の窓部 C6を設けると、そうした余分な水を抜くことができる
[0110] また、窓部 C6を介して空気が出入りできるため、炉体 C内の圧力調整を自動的に 行うことが可能となるという効果もある。
なお、図 5 (A)において、水抜き用の窓部 C6は筒状に開口された状態に示したが
、必要に応じて開閉窓を備えることも当然可能である(後述する図 8 (A)参照)。
[0111] 因みに、この実施の形態では、図 5 (A)に示したように、水素供給管 E1と炉体 Cの 燃焼部 C1との連結部付近に電磁弁 E5が配設され、水素ガスの燃焼部 C1への流入 を制御している。
また、酸素供給管 E2には、炉体 Cの取付管 C21との連結部付近に電磁弁 E6が配 設され、水素ガスの燃焼部 C1への流入を制御している。
本発明者らの実験では、この電磁弁 E5, E6として、例えば、プロパンガス用の電磁 弁を用いた場合、この電磁弁から水素ガスが漏出するケースがあった。
[0112] これは、水素分子がプロパン分子より小さい等の原因によると考えられ、電磁弁 E5 には、より高い気密性が求められることが分かった。
[0113] 〔加熱室 Dの構造等〕
加熱室 D (図 1参照)の機能については、上記の水素燃焼型温風暖房機 Aの温風 発生機構で述べた通りである。
また、炉体 Cの排気管 C3が、図 1に示したように、加熱室 D内に開口するように形成 されていれば、吸込口 D1から取り入れた外気 Pの加熱効率を高めることができるため 、好ましいことも述べた。
[0114] さて、外気 Pの加熱効率を更に高めるためには、加熱室 D内に取り入れた外気 と 上記のように加熱された炉体 cとの接触時間を長くする等の工夫が必要である。 そのために、この実施の形態においては、加熱室 Dに、取り入れた外気 Pが炉体 C の周囲を旋回する状態になるように吸込口 D1が取り付けられている。
[0115] 図 8は、取り入れた外気 Pが炉体 Cの周囲を旋回する状態になるように形成された 加熱室 Dと炉体 Cを示す図であり、 (A)は加熱室 Dのみ断面とした正面図、 (B)は (A
)の Y— Y線に沿う断面図である。
この実施の形態では、加熱室 Dは、主に、円筒状の側壁 D3、上壁 D4、及び底壁 D
5よりなる。
[0116] 加熱室 Dは、架台 Gの上部に固定されている。
また、加熱室 Dの内部には、炉体 Cが配置され、取付管 C21及び酸素供給管 E2が 側壁 D3を貫通し、弁 C5が上壁 D4を貫通し、更に窓部 C6が底壁 D5を貫通する状 態に設置されている。
炉体 Cの各部が加熱室 Dの各壁を貫通してレ、る部分は、適宜溶接されたりシーリン グが施されたりして、気密が保たれている。
[0117] なお、図 8 (A)及び図 8 (B)では、フランジ C13を介して取付管 C21に取り付けられ るべき燃焼部 C1を便宜上省略した。
この実施の形態では、炉体 Cに対して取付管 C21が接線方向に取り付けられるのと 同様に、吸込口 D1力 加熱室 Dの円筒状の側壁 D3の上部に同時に接線方向に取 り付けられている。
[0118] このように吸込口 D1を取り付けることにより、吸込口 D1から取り入れた外気 P力 炉 体 Cの周囲を旋回しながら加熱された炉体 Cの熱を十分に吸収することができる。 またその際、炉体 Cの排気管 C3が加熱室 D内に開口するように形成されていれば 、外気 Pが炉体 Cの熱を吸収すると同時に、排気管 C3から吹き出される高温でタリー ンな燃焼空気 Sが外気 Pに混合し合うため、外気 Pの加熱効率が向上するのである。
[0119] このようにして十分に加熱された外気 P、即ち温風 Q力 加熱室 Dの側壁 D3の下方 に設けられた温風吹出口 D2から外部に排出されるのである。
本発明者らの実験では、電気分解部 Bの電気分解装置 B1での水素ガスの発生量 を 2. 27m3/時間(濃度 98. 8%)にまで高め、炉体 Cの燃焼部 C1では電気分解部 Bで発生した酸素ガスを用いずに空気 Rのみで水素ガスを燃焼するように形成しても 、加熱室 Dの温風吹出口 D2で、少なくとも 70°C— 130°Cの温風 Qを発生させること ができることが分かっている。
[0120] この実施の形態では、図 1に示したように、吸込口 D1に外気 Pを取り入れるための ブロワ一 D6が取り付けられている。
外気 Pは、加熱室 Dの外部からブロワ一 D6により加熱室 D内に送り込まれ、加熱室 D内で炉体 Cの周囲を旋回するための駆動力を与えられる。
このブロワ一 D6は、いわゆるファン式のものでもブロー式のものでも良ぐまた、温 風吹出口 D2に取り付けたり、或いは吸込口 D1と温風吹出口 D2の双方に取り付ける ことも可能である。
[0121] 上記の温風 Qの温度は、基本的には、炉体 Cの燃焼部 C1での水素ガスの燃焼温 度で調整するが、更に、このブロワ一 D6の風量を調整したり、電気分解部 Bで発生し た酸素ガス (濃度はほぼ 100%)を水素ガスの燃焼に用いる場合の流量を変えたり、 或いは炉体 Cの排気管 C3を加熱室 Dの外部に吹き出すように形成したりすること等 により、上記の温度範囲より更に高くし、或いは更に低くなるように調整することも可 能である。
[0122] また、図 8 (A)に示した加熱室 Dの側壁 D3上部や上壁 D4の内面及び外面、又は その両面を、断熱材を付設する等の手段を講じ、加熱室 Dの上方から熱が逃げない ようにすることも可能であり、更に加熱効率を向上させることができる。
なお、図 1に示したように、温風吹出口 D2にはビニールパイプやダクト等(以下まと めて通気管 Hという)が取り付けられて、温風吹出口 D2から吹き出された温風 Qは、 この通気管 Hを通して温室 (ハウス)内や室内等に供給される。
[0123] 先述したように、炉体 Cの排気管 C3から吹き出される燃焼空気 Sには水蒸気が含ま れるので、温風吹出口 D2やその通気管 Hに除湿手段を設けることも可能である。
[0124] 次に、図 9を用いて、水素燃焼型温風暖房機 Aの処理の流れについて説明する。
先ず、電源 B8をオンにし各種電気系統に電気を流す。
また、ブロワ一 D6, E3, E4を起動する。
[0125] 次いで、ステップ S1において、送水管 Fに水道水 Wを流し、純水製造装置 B6、分 離器 B2、及び冷却器 B7を介して電気分解装置 B1に純水を供給する。 次いで、ステップ S2において、電気分解装置 B1により純水を水素ガスと酸素ガス に分解し、ステップ S3及びステップ S4に進む。
[0126] ステップ S3では、電気分解装置 B1で発生した水素ガスが水素分離器 B2aに供給 され、水素ガスが冷却される。
一方、ステップ S4では、電気分解装置 B1で発生した酸素ガスが酸素分離器 B2b に供給され、酸素ガスが冷却される。
[0127] ステップ S5では、水素分離器 B2aから供給される水素ガスの中に含まれる水蒸気 が水素凝集器 B3aにより除去される。
一方、ステップ S6では、酸素分離器 B2bから供給される酸素ガスの中に含まれる 水蒸気が酸素凝集器 B3bにより除去される。
[0128] ステップ S7では、水素凝縮器 B3a及び酸素凝縮器 B3bからの水素ガスと酸素ガス との圧力の比較が行われる。
この圧力差が所定比率範囲を超えると、圧力が高い側のガスが外部へ排出される
[0129] ステップ S8では、差圧調整器 B4を経てきた水素ガスが水素乾燥器 B5aに流入し、 水素ガスは最終的な乾燥を受ける。
一方、ステップ S9では、差圧調整器 B4を経てきた酸素ガスが酸素乾燥器 B5bに流 入し、酸素ガスは最終的な乾燥を受ける。
[0130] ステップ S10では、水素乾燥器 B5aから水素供給管 E1を介して、電磁弁 E5に水 素ガスが流入し、流量が調整される。
一方、ステップ S 11では、酸素乾燥器 B5bから酸素供給管 E2を介して、電磁弁 E6 に酸素ガスが流入し、流量が調整される。
[0131] ステップ S12では、水素供給管 E1からの水素ガス(例えば、 3m3Zh)と、酸素供給 管 E2からの酸素ガスと、ファン C11から吸引された空気 Rとが燃焼部 C1 (例えば、 3 0, 000kcal/h)に流入される。
なお、このステップでは酸素供給管 E2からの酸素ガスを燃焼部 C1に供給しなレ、場 合もある。 [0132] 次いで、ステップ S13において、燃焼部 C1で燃焼した反応ガスが炉体 Cを加熱す る(炉体内上部温度は例えば 250°C程度となる)。
[0133] 次いで、ステップ S14において、炉体 Cの排気管 C3から排出された反応ガスと、ブ ロワ一 D6から吸引された外気 Pとが加熱室 D内で混合する(例えば、 130°C程度とな る)。
また、この混合したガスは炉体 Cの外壁面 C2と接触し、炉体 Cから熱が伝達される 最後に、ステップ S15において、反応ガスと外気 Pとの混合ガスが、通気管 Hから温 風 (例えば、 60°C程度、外気 15°C)として排出される。
[0134] 〔第 2実施形態〕
この第 2実施形態は第 1実施形態と比べて水素燃焼型温風暖房機 Aの構造のみ異 なるため、その相違部分についてのみ詳細に説明する。
なお、第 1実施形態と同一の構成部材には同一の符号を付しその詳細な説明を省 略する。
図 10は、本発明の水素燃焼型温風暖房機の第 2実施形態を示す概略図である( 加熱室 Dのみ内部が見えるように図示した)。
図 11は、取り入れた外気が炉体の周囲を旋回する状態になるように形成された加 熱室と炉体を示す説明図である。
図 11 (A)は加熱室及び予熱室の断面図、図 11 (B)は図 11 (A)の Z— Z線に沿う断 面図である。
[0135] この第 2実施形態の水素燃焼型温風暖房機 Aは、外気 Pを加熱室 Dの吸込口 D1 力 取り入れ(図 10の矢印参照)、取り入れた外気 Pを高温状態の炉体 Cで加熱した 後、加熱された外気 Pを温風吹出口 D2から外部に排出する(図 10の矢印参照)こと により温風 Qを発生させるものである。
この実施形態では、空気は温度が高くなると軽くなる性質を利用して吸込口 D1が 加熱室 Dの下側壁面に設けられ、温風吹出口 D2が加熱室 Dの上面中央に設けられ ている。
温風吹出口 D2には連結部 D7が形成され、温風吹出口 D2の向きを自由に回転さ せ変更させることができるようにされている。
[0136] 加熱室 Dの外側には、筒状の予熱 が設けられている。
この予熱 の上端側には返還流路 J1が連通され、予熱 と吸込口 D1とが連通さ れている。
炉体 Cの下端には、水抜き用の窓部 C6が設けられており、この窓部 C6の周面には 貫通穴 C61が形成され、この貫通穴 C61を介して炉体 C内の比較的高温の反応ガ スが炉体 C外へ放出される。
そして、この反応ガスは専用通路 Kを介して直接予熱 ¾ [に流入する。
この予熱 ¾ [に流入した反応ガスは、上述した返還流路 J1に流入し、吸込口 01に 戻される。
[0137] 上述したように、加熱室 Dを予熱 ¾ [によって覆レ、、二重構造の壁を形成するように すれば、予熱 が断熱層としての役割を果たすようになり、高い断熱特性が発揮さ れる。
そして、加熱室 Dが保温されると共に、装置を寒冷地に設置しても外部の冷気によ り加熱室 Dが冷やされることもなぐ燃焼効率の向上を図ることができる。
[0138] また、加熱室 D内に排出された比較的高温の反応ガスは、加熱室 D内の空気と混 ざり合わないように直接、専用通路 Kを介して予熱 内に流入し、加熱室 Dの外壁 周囲を通過してから予熱 ¾の外側へ排出されるので、炉体 C内から加熱室 D及び予 熱 ¾を伝わり予熱 の外側へ伝達される熱量を小さくすることができ、加熱室 Dの 保温を確実に行うことができる。
[0139] また、予熱 の外部へ排出される反応ガスは、返還流路 J1を介して加熱室 Dへ流 入されるので、返還流路 J1を流れる比較的高温の反応ガスを加熱室 Dに取り入れら れる外気と混合することができ、熱効率の良い温風の発生を行うことができる。
[0140] 以上、本発明を説明してきたが、本発明は上述した実施形態にのみ限定されるもの ではなぐその本質を逸脱しない範囲で、他の種々の変形例が可能であることは言う までもない。
[0141] 例えば、必要な量の水素ガスの発生量が得られるならば、電気分解装置 B1に代え て、例えば、炭化水素等から水素ガスを取り出す装置等を用いることも可能である。 [0142] また、上記の実施の形態では、炉体 Cがいわゆる縦型、即ち炉体 C内での燃焼空 気 Sが概して縦方向に(下から上に)流れるものである場合について説明した力 本 発明は、いわゆる横型のものも当然含まれる。
[0143] 更に、例えば、炉体 C内に本発明と同様に螺旋状の案内板 C4を形成し、燃焼空気
Sが炉体 Cの内部を上方から下方に向けて流れるように案内するように形成しても、 本発明と同様の効果が得られる。
[0144] また、温風吹出口 D2の加熱室 Dへの取付位置は、図 8 (A)及び図 8 (B)に示した 取付位置に限定されず、例えば、吸込口 D1と同様に、加熱室 Dの円筒状の側壁 D3 にその接線方向に取り付ける等、適宜選ばれる。
[0145] 更に、図 1及び図 8においては、炉体 Cの燃焼部 C1 (図 8では省略)を加熱室 Dの 側壁 D3の外側に取り付け、加熱室 Dの外部の空気 Rを吸引する状態に図示されて いる力 加熱室 Dの内部から外気 Pを吸引するように形成することも当然可能である。
[0146] また、図 10及び図 11において、返還流路 J1や専用通路 Kは 1本ずつ設けた例に ついて説明したが、複数本設けるようにしても良い。
産業上の利用可能性
[0147] 本発明は、水素燃焼型温風暖房機、水素燃焼型温風発生方法に関するものであ るが、その原理を利用する限り、例えば、温室の暖房用のみならず、一般建築物、ェ 場、船舶等の空調用に適用することも当然可能である。
図面の簡単な説明
[0148] [図 1]本発明の水素燃焼型温風発生方法に係る水素燃焼型温風暖房機の第 1実施 形態を示す説明図である。
[図 2]図 1の水素燃焼型温風暖房機の電気分解部の構造を示す説明図である。
[図 3]図 2の水素凝集器の内部構造を示す説明図である。
[図 4]図 1の電気分解装置を斜視的に示す説明図である。
[図 5]図 1の炉体の構造を示す説明図であり、 (A)は炉体を裏側から見た場合の断面 図であり、 (B)は (A)の X-X線に沿う断面図である。
[図 6]図 5の取り付管内のバーナーによる燃焼の状態を示す説明図である。
[図 7]バーナーの他の実施形態を示す説明図である。 [図 8]取り入れた外気が炉体の周囲を旋回する状態になるように形成された加熱室と 炉体を示す説明図であり、(A)は加熱室のみ断面とした正面図、(B)は (A)の Y-Y 線に沿う断面図である。
[図 9]図 1の水素燃焼型温風暖房機の処理の流れを示す説明図である。
[図 10]本発明の水素燃焼型温風発生方法に係る水素燃焼型温風暖房機の第 2実施 形態を示す説明図である。
[図 11]取り入れた外気が炉体の周囲を旋回する状態になるように形成された加熱室 と炉体を示す説明図であり、 (A)は加熱室を断面図とし炉体を外観図とした正面図、 (B)は (A)の Z-Z線に沿う断面図である。
符号の説明
A…水素燃焼型温風暖房機
B…電気分解部
B1…電気分解装置
Bla…電極板
B2…分離器
B2a…水素分離器
B2b…酸素分離器
B3…凝集器
B3a…水素凝集器
B3b…酸素凝集器
B31…邪魔板
B32…水回収管
B4…差圧調整器
B5…乾燥器
B5a…水素乾燥器
B5b…酸素乾燥器
B6…純水製造装置
B7…冷却器 Β8··•電源
C…炉体
CI'- •燃焼部
Cll …ファン
Clla…空気取込口
C12 …ハーナー
C13
C2-- -外壁面
C21 …取付管
C22 …開口部
C3-- -排気管
C4-- -案内板
C5-- '弁
C6--
C61 ··貫通穴
C7-- •内壁面
D…加熱室
D1-- -吸込口
D2-- •温風吹出口
D3-- '側壁
D4-- •上壁
D5-- -底壁
D6-- -ブロワ
D7-- -連結部
E1--水素供給管
Ε2-·酸素供給管
Ε3-·ブロワ
Ε4-·ブロワ Ε5· · ·電磁弁
Ε6…電磁弁 F…送水管 G…架台
Η…通気管 J…予熱室 J1…返還流路 K…専用通路 P…外気
Q…温風
R…空気
S…燃焼空気 W…水道水 1…水素輸送管 2…鍔部
3…空気輸送管 4…噴射穴 5…切欠部 6…酸素輸送管

Claims

請求の範囲
[1] 電気分解により水を水素ガス及び酸素ガスに分解するための電気分解部と、 該電気分解部で発生させた水素ガスを内部で燃焼させて加熱される炉体と、 該炉体の周囲を取り囲むように設けられ、外気を取り入れて該炉体で加熱した後排 出するための加熱室と、
を備えることを特徴とする水素燃焼型温風暖房機。
[2] 請求項 1に記載の水素燃焼型温風暖房機にぉレ、て、
前記炉体は、略円筒形に形成され、空気を吸引するためのファンを備えた水素ガ ス燃焼用のバーナーと、
該バーナーによる水素ガスの燃焼により加熱された該空気が炉体の内部で螺旋状 に移動するように案内するための螺旋状の案内板と、
該加熱された空気を吹き出すための排気管とを備えることを特徴とする水素燃焼型
[3] 請求項 1又は請求項 2に記載の水素燃焼型温風暖房機において、
前記加熱室を覆う予熱室と、
前記炉体から排出された反応ガスを直接、前記予熱室に流入させるための専用通 路と、
が設けられたことを特徴とする水素燃焼型温風暖房機。
[4] 請求項 3に記載の水素燃焼型温風暖房機において、
前記予熱室には、該予熱室の反応ガスを前記加熱室に戻すための返還流路が設 けられたことを特徴とする水素燃焼型温風暖房機。
[5] 水を水素ガスと酸素ガスとに電気分解する電気分解工程と、
この電気分解工程で発生した水素ガスを前記酸素ガスと混合させた状態で燃焼さ せて炉体内の温度を上昇させる燃焼工程と、
前記炉体の周囲を取り囲むように設けられた加熱室に外気を取り入れ、この外気を 前記水素ガスの燃焼により加熱された前記炉体の外壁面に接触させ前記外気を昇 温させる外気昇温工程と、
この外気昇温工程で昇温された外気を前記加熱室外へ排出する温風排出工程と を有することを特徴とする水素燃焼型温風発生方法。
[6] 請求項 5に記載の水素燃焼型温風発生方法において、
前記電気分解工程により発生した前記水素ガスと前記酸素ガスとを分離して回収 する分離回収工程を有することを特徴とする水素燃焼型温風発生方法。
[7] 請求項 6に記載の水素燃焼型温風発生方法において、
前記分離回収工程で回収された前記水素ガスと前記酸素ガスとをそれぞれ乾燥さ せる乾燥工程を有することを特徴とする水素燃焼型温風発生方法。
[8] 請求項 5に記載の水素燃焼型温風発生方法において、
前記燃焼工程は、バーナーを用いて行うことを特徴とする水素燃焼型温風発生方 法。
[9] 請求項 5に記載の水素燃焼型温風発生方法において、
前記炉体内には、前記燃焼工程で発生した反応ガスを導くために螺旋状に案内板 が設けられ、
前記外気昇温工程において、前記案内板上を流れる前記反応ガスと、前記加熱室 内に取り入れられた外気と、の熱交換が効率的に行われることを有することを特徴と する水素燃焼型温風発生方法。
[10] 請求項 9に記載の水素燃焼型温風発生方法において、
前記水素ガスの燃焼により発生した反応ガスは、前記炉体内を流通した後、前記 加熱室内に排出されることを特徴とする水素燃焼型温風発生方法。
[11] 請求項 10に記載の水素燃焼型温風発生方法において、
前記加熱室は予熱室によって覆われ、
前記炉体力も排出された反応ガスは、直接、前記予熱室に流入されることを特徴と する水素燃焼型温風発生方法。
[12] 請求項 11に記載の水素燃焼型温風発生方法にぉレ、て、
前記予熱室から前記加熱室へ前記反応ガスを戻すことを特徴とする水素燃焼型温 風発生方法。
[13] 請求項 5に記載の水素燃焼型温風発生方法において、 前記燃焼工程で未反応の水素ガスを前記炉体内から弁を介して抜くことを特徴と する水素燃焼型温風発生方法。
[14] 請求項 5に記載の水素燃焼型温風発生方法において、
前記燃焼工程で発生した水分を前記炉体内から抜くことを特徴とする水素燃焼型 温風発生方法。
[15] 空気輸送管と、
この空気輸送管の先端の開口部を覆うように設けられ空気通過用の切欠部が形成 された鍔部と、
前記空気輸送管内に設けられ前記鍔部を貫通して前記鍔部から突出した水素輸 送管と、
この水素輸送管の先端よりも前方に酸素を供給するように配置された酸素輸送管と を有することを特徴とする水素燃焼型温風発生方法に用いるバーナー。
[16] 空気輸送管と、
この空気輸送管の先端の開口部を覆うように設けられ空気通過用の切欠部が形成 された鍔部と、
前記空気輸送管内に設けられ前記鍔部を貫通して前記鍔部から突出した水素輸 送管と、
前記水素輸送管内に設けられ前記水素輸送管の先端から突出した酸素輸送管と 、を有することを特徴とする水素燃焼型温風発生方法に用いるバーナー。
[17] 請求項 15又は請求項 16に記載の水素燃焼型温風発生方法に用いるバーナーに おいて、
前記鍔部より突出した前記水素輸送管の突出部分の外周壁に周方向に沿って複 数の細穴が形成されたことを特徴とする水素燃焼型温風発生方法に用いるパーナ
[18] 請求項 17に記載の水素燃焼型温風発生方法に用いるバーナーにおいて、
前記水素輸送管の先端側に形成された前記複数の細穴は周方向に均等の間隔 で設けられ、 前記鍔部に形成された前記切欠部も前記細穴と同数だけ周方向に均等に設けら れていることを特徴とする水素燃焼型温風発生方法に用いるバーナー。
[19] 請求項 17に記載の水素燃焼型温風発生方法に用いるバーナーにおいて、 前記酸素輸送管の先端は閉蓋されており、その近傍の前記酸素輸送管の外周壁 に周方向に等間隔で複数の酸素ガス噴出口が形成されていることを特徴とする水素 燃焼型温風発生方法に用いるバーナー。
PCT/JP2004/007630 2003-06-02 2004-06-02 水素燃焼型温風暖房機、水素燃焼型温風発生方法及びその方法に用いるバーナー WO2004109193A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005506765A JP4671232B2 (ja) 2003-06-02 2004-06-02 水素燃焼型温風発生方法及び水素燃焼型温風暖房機
KR1020057023024A KR101125580B1 (ko) 2003-06-02 2004-06-02 수소연소형 온풍난방기, 수소연소형 온풍발생 방법 및 그방법에 사용하는 버너

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003156910 2003-06-02
JP2003-156910 2003-06-02

Publications (1)

Publication Number Publication Date
WO2004109193A1 true WO2004109193A1 (ja) 2004-12-16

Family

ID=33508333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007630 WO2004109193A1 (ja) 2003-06-02 2004-06-02 水素燃焼型温風暖房機、水素燃焼型温風発生方法及びその方法に用いるバーナー

Country Status (3)

Country Link
JP (1) JP4671232B2 (ja)
KR (1) KR101125580B1 (ja)
WO (1) WO2004109193A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009032190A2 (en) * 2007-08-28 2009-03-12 Transphorm, Inc. Compact electric appliance for providing gas for combustion
ITRE20080123A1 (it) * 2008-12-31 2010-07-01 Orles Ferretti Gestione di un sistema di alimentazione di un forno industriale
CN113503579A (zh) * 2021-07-02 2021-10-15 宁波宝工电器有限公司 一种适应性强的取暖装置
EP4151922A1 (en) * 2021-09-17 2023-03-22 Tieluk B.V. Hot water installation and method for heating water

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100780517B1 (ko) * 2006-11-10 2007-11-30 김상남 농업용 브라운가스 온풍기
KR100818211B1 (ko) * 2006-12-27 2008-03-31 김용철 수소버너를 이용한 보일러 장치
KR100848399B1 (ko) * 2007-01-26 2008-07-29 농업회사법인 주식회사 파워그린 워터가스 발생기를 이용한 농업용 온풍 및 난방 겸용가열장치
US20220394935A1 (en) * 2021-06-09 2022-12-15 Hgci, Inc. Heater for an indoor grow facility

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157665A (ja) * 1991-10-09 1993-06-25 Kobe Steel Ltd 空気加熱装置
JPH0946802A (ja) * 1995-07-31 1997-02-14 Nippon Soken Inc 電気自動車用暖房装置
JPH10238712A (ja) * 1997-02-28 1998-09-08 Kozo Sekimoto 燃焼装置および加熱装置
JPH11281160A (ja) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd 水素燃料暖房システム
JP3220607B2 (ja) * 1995-01-18 2001-10-22 三菱商事株式会社 水素・酸素ガス発生装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05157665A (ja) * 1991-10-09 1993-06-25 Kobe Steel Ltd 空気加熱装置
JP3220607B2 (ja) * 1995-01-18 2001-10-22 三菱商事株式会社 水素・酸素ガス発生装置
JPH0946802A (ja) * 1995-07-31 1997-02-14 Nippon Soken Inc 電気自動車用暖房装置
JPH10238712A (ja) * 1997-02-28 1998-09-08 Kozo Sekimoto 燃焼装置および加熱装置
JPH11281160A (ja) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd 水素燃料暖房システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009032190A2 (en) * 2007-08-28 2009-03-12 Transphorm, Inc. Compact electric appliance for providing gas for combustion
WO2009032190A3 (en) * 2007-08-28 2009-06-25 Transphorm Inc Compact electric appliance for providing gas for combustion
ITRE20080123A1 (it) * 2008-12-31 2010-07-01 Orles Ferretti Gestione di un sistema di alimentazione di un forno industriale
CN113503579A (zh) * 2021-07-02 2021-10-15 宁波宝工电器有限公司 一种适应性强的取暖装置
EP4151922A1 (en) * 2021-09-17 2023-03-22 Tieluk B.V. Hot water installation and method for heating water

Also Published As

Publication number Publication date
JPWO2004109193A1 (ja) 2006-07-20
JP4671232B2 (ja) 2011-04-13
KR101125580B1 (ko) 2012-03-23
KR20060017624A (ko) 2006-02-24

Similar Documents

Publication Publication Date Title
CN1107838C (zh) 一种燃烧燃料气体的燃烧室和燃烧方法及燃气轮机系统
WO1986000389A1 (en) Process for combustion or decomposition of pollutants and equipment therefor
US6612301B2 (en) Water heater
CA2101239A1 (en) Gas-fired heaters with burners which operate without secondary air
US4481889A (en) Method and apparatus for afterburning flue gases
WO2004109193A1 (ja) 水素燃焼型温風暖房機、水素燃焼型温風発生方法及びその方法に用いるバーナー
CA2126127C (en) Water heating apparatus with passive flue gas recirculation
KR20010056546A (ko) 배기가스 재순환방식에 의한 저질소산화물 소형 응축식가스보일러 및 연소 방법
CN208365552U (zh) 一种乏氧高浓度voc处理系统
RU74689U1 (ru) Огневой нейтрализатор промышленных стоков
JP2005016929A (ja) 水素燃焼型温風発生方法及びその方法に用いるバーナー
EP2065570B1 (en) Burner for generating reductive atmosphere of exhaust gas in engine cogeneration plant having denitrification process
CN105861000A (zh) 一种高温炭化物的出炉方法
CN206037389U (zh) 燃气热水器
CN212566326U (zh) 一种燃烧器和燃气换热设备
JP2001049262A (ja) 炭焼窯排煙の無煙無害化処理装置と廃熱利用プラント
CN105588323A (zh) 燃气热水器
US6464491B2 (en) Gas flare
CN105864776B (zh) 动物热解炭化过程中的紧急控温方法及装置
CN216953052U (zh) 全预混燃烧装置及燃气热水设备
CN213453680U (zh) 热回收式废气焚化炉
CN205079244U (zh) 一种油气热力燃烧与排放控制装置
CN218893621U (zh) 一种活性炭干馏炭化热循环系统
CN215808545U (zh) 一种rto蓄热式热力焚化炉
CN212640004U (zh) 高浓度废水处理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506765

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057023024

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057023024

Country of ref document: KR

122 Ep: pct application non-entry in european phase