WO2004104058A1 - 耐熱性含フッ素光学材料およびそれを用いた光伝送用媒体 - Google Patents

耐熱性含フッ素光学材料およびそれを用いた光伝送用媒体 Download PDF

Info

Publication number
WO2004104058A1
WO2004104058A1 PCT/JP2004/006826 JP2004006826W WO2004104058A1 WO 2004104058 A1 WO2004104058 A1 WO 2004104058A1 JP 2004006826 W JP2004006826 W JP 2004006826W WO 2004104058 A1 WO2004104058 A1 WO 2004104058A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
structural unit
fluorine
group
heat
Prior art date
Application number
PCT/JP2004/006826
Other languages
English (en)
French (fr)
Inventor
Yoshito Tanaka
Takayuki Araki
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2004104058A1 publication Critical patent/WO2004104058A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02033Core or cladding made from organic material, e.g. polymeric material

Definitions

  • the present invention relates to a fluorine-containing optical material having excellent heat resistance in addition to optical characteristics.
  • the optical material of the present invention is suitable, for example, as an optical transmission medium, in particular, a clad material such as a plastic clad optical fiber using a quartz or optical glass material as a core material.
  • the communication cables for LAN for in-vehicle LAN mounted on these vehicles are required to have heat resistance in high-temperature parts such as engine rooms and ceilings. In some cases, the distance becomes longer, and an optical fiber for automobiles having both heat resistance and signal transmission capability is required.
  • optical fibers examples include an all-glass optical fiber using a quartz or optical glass-based material for both the core material and the clad material, an all-plastic optical fiber using a plastic material for both the core material and the clad material, and the like.
  • a plastic clad optical fiber using a quartz or optical glass material as a core material and a plastic material as a clad material is known.
  • polymethyl methacrylate PMMA
  • PMMA polymethyl methacrylate
  • 6FNPM hexafluoroneopentyl methacrylate
  • Tg glass transition temperature
  • copolymers obtained by using 6FNPM as a copolymer component have a limited effect of a high Tg and a low refractive index with a combination of monomers described in those patent documents.
  • JP-A-63-33405 discloses an optical material comprising a copolymer of 6FNPM and methyl methacrylate (MMA) at 50/50 (weight ratio) (27/73 (molar ratio)). It has a relatively high refractive index.
  • Japanese Patent Application Laid-Open No. 59-1518 discloses that the weight of 6FNPM and MMA is 90Z10 (weight ratio) (77/23 (molar ratio)). Although an optical material made of a united material is described, it is inferior in flexibility. Further, Japanese Patent Application Laid-Open No. 61-36307 describes only a copolymer containing 6 FNPM up to 20 mol%.
  • these 6FNPM copolymers do not have a cured portion and are molded as a thermoplastic resin by melt extrusion or the like.
  • JP-A-63-43104 discloses a fluoroalkyl ester of (meth) acrylic acid, a bifunctional atalylate as a crosslinking monomer, and a photopolymerization initiator.
  • JP-A-63-208805 discloses a technique using a fluoroalkyl ester of ⁇ -fluoroacrylic acid.
  • fluoroalkyl groups in the fluoroalkyl ester are straight-chain alkyl groups, and have satisfactory Tg, low refractive index, mechanical strength, transparency, and core material adhesion. It does not do.
  • 63-43104 further discloses, as examples of monomers, 1,1_dimethyl-2,2,3,3-tetraphnole lopropinoleatalylate, 1,1-dimethinole-1,2 2,3,3,4,4,5,5—Octafluoropentyl acrylate, 1, 1-Dimethinolee 2, 2, 3, 4, 4, 4 Fluoroalkyl acrylates are also described, but these are difficult to lower the refractive index if designed to have a high Tg, and difficult to increase the Tg if the refractive index is to be lowered. And it is difficult to simultaneously achieve a high Tg and a low refractive index.
  • JP-A-8-248242 discloses that 2_ (perfluorooctyl) ethyl acrylate, hexafluoroisopropyl acrylate, trimethylolpropane triatalylate , a photopolymerization initiator and An ultraviolet curable resin composition for optical fiber cladding comprising one mercaptopropyltrimethoxysilane is disclosed.
  • Tg a cured product having a low refractive index can be obtained, Tg cannot be increased, and the heat resistance is insufficient.
  • the present inventors have conducted intensive studies, and as a result, by combining specific monomers, a high Tg, low refractive index, mechanical strength, and transparency, which had not been found hitherto, have been well-balanced and high.
  • the inventors have invented a heat-resistant fluorine-containing optical material satisfying the above requirements.
  • a first aspect of the present invention is a formula (M_l):
  • the structural unit M is represented by the formula (1): [0020] [Formula 1]
  • X 1 is a group consisting of H, CH, F, CI and CF; at least one selected from the group consisting of Rf 1 and Rf 1)
  • Rf 2 are the same or different and are a perfluoroalkyl group having 15 to 15 carbon atoms;
  • R 1 is a carbon atom having 15 to 15 carbon atoms in which part or all of the hydrogen atoms may be substituted by fluorine atoms.
  • the structural unit N is represented by the formula (2):
  • X 2 and X 3 are the same or different, and are selected from the group consisting of H, CH, F, CI, and CF
  • N is an integer of 1 to 6, for example 1 to 3;
  • R 2 is a monomer represented by 1 to 50 carbon atoms, for example 1 to 30 (n + 1) -valent organic group) Structural units derived from at least one species,
  • the structural unit A is a structural unit derived from at least one of other monomers copolymerizable with the monomers of the formulas (1) and (2)].
  • Heat-resistant fluorinated optics consisting of a cured polymer having a structural unit M-1 containing 199 mol% of structural unit N and 0-98 mol% of structural unit A, and having a glass transition temperature of 100 ° C or higher.
  • a second aspect of the present invention is an optical transmission medium using the above-mentioned heat-resistant fluorine-containing optical material, particularly a quartz or optical glass-based core and a clad made of the above-mentioned heat-resistant fluorine-containing optical material.
  • the present invention relates to a plastic clad optical fiber constituted. [0025]
  • a strong optical fiber is suitable as a plastic optical fiber for LAN mounted on a vehicle.
  • X 1 is a group consisting of H, CH, F, CI and CF; at least one selected from the group consisting of Rf 1 and Rf 1)
  • Rf 2 are the same or different and are a perfluoroalkyl group having 15 carbon atoms;
  • R 1 is a hydrocarbon group having 115 carbon atoms which may be substituted with a fluorine atom)
  • X 2 and X 3 are the same or different and are selected from the group consisting of H, CH, F, CI and CF
  • N is an integer of 1 to 6, for example 1 to 3;
  • R 2 is a monomer represented by 1 to 50 carbon atoms, for example, 1 to 30 (n + 1) -valent organic group) At least one of the following:
  • a fourth aspect of the present invention relates to a method for producing an optical transmission medium, which comprises applying the third curable composition of the present invention to quartz or optical glass and then curing the composition.
  • the polymer cured product has the formula (M-1):
  • the structural unit M which is an essential component in the structural unit M-1 is represented by the formula (1):
  • X 1 , Rf 2 and R 1 are structural units derived from a fluoroaltalate derivative containing a fluoroalkyl group having a branched chain, having a high Tg and a low refractive index. It contributes to imparting mechanical strength.
  • X 1 is H, CH, F, CF or Cl, particularly CH, F, and further CH
  • Rf 1 and Rf 2 are the same or different, and have a carbon number of 1 to 5, a perfluoroalkyl group, specifically white skewer CF, CF CF, CF CF CF, CF CF CF CF, CF CF CF C
  • F especially CF, a hydrocarbon group having 15 carbon atoms, wherein R 1 may be substituted with a fluorine atom,
  • CH is CH, CH CF, CH CH CF, CH CF CF, especially CH.
  • CH 3 C CH 3 , 3
  • 6FNPM and 6FNPF are preferred because of their excellent heat resistance and easy synthesis, and 6FNPM is particularly preferred.
  • the content of the structural unit M in the structural unit M-1 is 119 mol%, and the lower limit is preferably 5 mol%, more preferably 10 mol%.
  • the content of the structural unit M decreases, the transparency tends to decrease and the heat resistance (Tg) tends to decrease.
  • a preferred upper limit is 85 mol%, even 7 It is 0 mol%, and when it is increased, the flexibility tends to decrease.
  • the structural unit N is represented by the formula (2):
  • R 2 , X 2 , X 3 and n are the same as those described above), and are structural units derived from the polyfunctional atalylate represented by the following formula: Heat resistance (high Tg) and mechanical strength.
  • X 2 and X 3 are H, CH is CH
  • a structural unit containing a urethane bond and a structural unit containing a Z or aromatic unit and / or a structural unit containing an alicyclic structure impart flexibility and increase Tg.
  • a structural unit containing a phenyl group or a derivative thereof which may contain a fluorine atom is preferable in terms of increasing the Tg, and a cyclo group which may contain a fluorine atom is preferred.
  • a structural unit containing a xyl group or a derivative thereof or an alicyclic hydrocarbon group having a multiple ring structure which may contain a fluorine atom or a derivative thereof is preferable.
  • R 2 may not be substituted by a fluorine atom, but can lower the refractive index by the use of which is substituted by fluorine atom, also to enhance the transparency in the near infrared region it can.
  • n is 1 one 6, for example 1 one 3 integers, when n is 2 or 3, Atari rate sites bound to addition to an intermediate position of the R 2 molecule end-les, Ru.
  • R 2 in one hundred and one R 2 - ⁇ one form, but is not limited thereto.
  • Equation (1-1) A unit represented by -0 (CH) _ (CF) _ (C (CH)) _ ⁇ _ (n + m + p: -30) can be exemplified.
  • R 7 , R 8 , R 9 and R 1Q are the same or different and each have an alkyl group having 115 carbon atoms or a fluorine-containing alkyl group having 115 carbon atoms;
  • Z 3 is an alkyl group;
  • p is an integer of 1 to 4).
  • Bz is an alkyl group, a fluorinated alkyl group, a functional group or a halogen atom, or a divalent benzene ring
  • n and m represent 30 carbon atoms of R 2. Is greater than or equal to 0 or an integer of 1 or more.
  • Equation (3_1) [0060] [Formula 10]
  • R 5 and R 6 are the same or different and each have an alkyl group having 115 carbon atoms or a fluorine-containing alkyl group having 15 carbon atoms;
  • Z 1 and Z 2 are the same or different, and Group, fluorine-containing alkyl group, functional group or halogen atom;
  • p and q are the same or different, and a unit containing a moiety represented by 1 to 4 integers), or
  • R 7 , R 8 , R 9 and R 1Q are the same or different and each have an alkyl group having 115 carbon atoms or a fluorine-containing alkyl group having 115 carbon atoms;
  • Z 3 is an alkyl group;
  • p is an integer of 1 to 4).
  • cHx is substituted with an alkyl group, a fluorinated alkyl group, a functional group, or a halogen atom
  • n and m are 0 or an integer of 1 or more that makes the number of carbon atoms of R 2 not exceed 30.
  • R 5 and R 6 are the same or different and each have an alkyl group having 15 to 15 carbon atoms or a fluorine-containing alkyl group having 15 to 15 carbon atoms; Z 1 and Z 2 are the same or different; Group, fluorine-containing alkyl group, functional group or halogen atom; p and q are the same or different, and a unit containing a site represented by 1 to 4 integers), or
  • R 7 , R 8 , R 9 and R 1Q are the same or different and each have an alkyl group having 115 carbon atoms or a fluorine-containing alkyl group having 115 carbon atoms;
  • Z 3 is an alkyl group;
  • p is an integer of 1 to 4).
  • NB is an alkyl group, a fluorinated alkyl group, a divalent norbornene ring optionally substituted with a functional group or a halogen atom, and n and m are such that the number of carbon atoms of R 2 does not exceed 30. It is an integer of 0 or 1 or more.
  • R 2 in the polyfunctional acrylate polymer represented by the formula (2) that gives the structural unit N is arranged as follows from a slightly different viewpoint. In the following description of R 2, there are described that overlap with the description so far, in terms of organizing, described without dare willing to duplicate.
  • R 2 is an (nl + 1) -valent organic group having 1 to 50 carbon atoms, and specifically,
  • (1) may have a linear or branched ether bond (nl + 1) valent organic group,
  • hydrogen atoms forming carbon-hydrogen bonds may be partially or entirely substituted with fluorine atoms.
  • R 2 a divalent or higher organic compound comprising a linear or branched alkylene group exemplified above.
  • the group is preferable because it can impart flexibility and elasticity to the polymer. Further, when a fluorine atom is introduced, it can be introduced at a high content, which is advantageous in terms of transparency and low refractive index, which is preferable.
  • R 21 and R 22 are the same or different, and are an alkyl group having 15 carbon atoms or a carbon number
  • Equation (R2-7) [0118] [Formula 29]
  • RR and are the same or different and have an alkyl group having 115 carbon atoms or a fluorine-containing alkyl group having 115 carbon atoms; R 31 and R 32 are the same or different and have 11 carbon atoms.
  • R4 and r5 are the same or different, an integer of 1 to 4; r6 is an integer of 1 to 2; r7 and r8 are the same or different, 1 to 3 of a fluorine alkyl group, a functional group, a hydrogen atom or a halogen atom; It is an integer and can take different groups or integers even if they have the same sign but different formulas.
  • Z 21, Z 22, Z 23 , Z 24, Z 25 and Z 26 are, for example, a hydrogen atom, a fluorine atom, a methyl group can be exemplified.
  • fluorine atoms are preferable because of high transparency in a wide wavelength band including light in the near infrared region.
  • introduction of fluorine atoms further reduces the refractive index. It is preferable because it works effectively.
  • R 33 and R 34 are the same or different and have an alkyl group having 115 carbon atoms or a fluorinated alkyl group having 15 carbon atoms;
  • Z 27 and Z 28 are the same or different, and Alkyl group of number 5 to 15, fluorine-containing alkyl group of carbon number of 15 to 15, functional group, hydrogen atom or halogen atom;
  • si and s2 are the same or different and include a site represented by an integer of 14
  • R 35 , R 36 , R 37 and R 38 are the same or different and have an alkyl group of 115 carbon atoms or a fluorine-containing alkyl group of 115 carbon atoms;
  • Z 29 is A divalent organic group containing a moiety represented by the following formula: an alkyl group having the number of 115, a fluorine-containing alkyl group having the carbon number of 115, a functional group, a hydrogen atom or a halogen atom; s3 is an integer of 114. .
  • Equation (R2-18) [0170]
  • R 0 R 4U , R 41 and are the same or different, and are an alkyl group having 115 carbon atoms or a fluorinated alkyl group having 115 carbon atoms;
  • R 43 and R 44 are the same force Or different, an alkyl group having 15 to 15 carbon atoms, a fluorine-containing alkyl group having 15 to 15 carbon atoms, and a hydrogen atom;
  • Z 3Q , Z 31 and Z 32 are the same or different and have an alkyl group having 15 to 15 carbon atoms.
  • a fluorine-containing alkyl group having 15 to 15 carbon atoms, a functional group, a hydrogen atom or a halogen atom; s4 and s5 are the same or different, and an integer of 114; s6 is an integer of 112; s7 and s8 are the same Or different, they are 1 to 3 integers, and even if they have the same sign, they can take different groups or integers if the formulas are different.
  • Z 28, Z 29 , Z 3Q, specific examples of Z 31 and Z 32 are, for example, a hydrogen atom, a fluorine atom, a methyl group can be exemplified.
  • divalent or higher valent organic groups having an aliphatic cyclic structure are preferable because they can set a high glass transition temperature and are excellent in heat resistance and mechanical properties. Further, they are preferable in that they have high transparency to ultraviolet light and are excellent in ultraviolet light resistance.
  • those having a fluorine atom are preferable because of high transparency over a wide wavelength band in which transparency to near-infrared light is high.
  • the introduction of a fluorine atom It is preferable because it works effectively in reducing the refractive index.
  • [0202] include: can be exemplified as specific examples of the polyfunctional Atari rate indicated by the force expression described mainly R 2 (2) above.
  • Preferable examples thereof include polyfunctional atalay H conjugates.
  • the content of the structural unit N in the structural unit M_l is 1 one 99 mole%, preferably lower limit is 2 mol 0/0, even at 5 mol%. As the content of the structural unit N decreases, the heat resistance tends to decrease.
  • a preferred upper limit is 80 mol%, and more preferably 70 mol%, and when it is increased, flexibility tends to decrease.
  • X is at least one selected from the group consisting of H, CH, F, CI, and CF; R is a monovalent hydrocarbon group having 6 to 30 carbon atoms including an aromatic ring, Provided that at least some or all of the hydrogen atoms in R 3 may be replaced by fluorine atoms).
  • Structural unit A-1 derived from at least one of the following monomers: Equation (4):
  • Structural unit M-1 contains 1-98 mol% of structural unit A-1 and structural unit A-2 in total and 0-97 mol% of structural unit A-3 to improve heat resistance It is preferable in that it increases the mechanical strength.
  • X 4 in the structural unit A-1 is a structural unit derived from ⁇ -fluoroatalylate, which is a fluorine atom, the heat resistance and the mechanical strength, particularly the bending strength, and the flexibility are further reduced. It is preferable in that it can be provided.
  • the structural unit derived from the above monomer is preferred in that it can impart further heat resistance and low water absorption.
  • Specific examples of the structural unit A-1 include:
  • H, F, and C are an alkyl group having 1-14 carbon atoms which may be substituted with a halogen atom;
  • R 6f is an alkylene having 1-6 carbon atoms which may have a bond or a branched chain. Group), etc., and specifically,
  • phenyl methacrylate and phenyl ⁇ -methacrylate are preferred in terms of improving heat resistance.
  • the structural unit having an alicyclic hydrocarbon moiety represented by the formula (4) ⁇ -2 is a polymer cured product Heat resistance (high Tg) and mechanical strength, especially heat resistance.
  • R 4 forming the side chain in the formula (4) is an organic group having 3 to 30 carbon atoms and having an alicyclic hydrocarbon moiety therein.
  • the alicyclic hydrocarbon moiety may be a monocyclic hydrocarbon moiety, a multicyclic hydrocarbon moiety, or a hydrocarbon moiety containing any of them.
  • R 4 is effectively heat resistance than connexion by it is preferable device is an organic group on the number 7 or more carbon atoms Can be granted.
  • R 4 can effectively imparting heat resistance and transparency than is preferred instrument is an organic group containing a hydrocarbon portion having polycyclic structure.
  • R 4 contains a hydrocarbon moiety having a monocyclic structure
  • hydrocarbon atoms of these exemplified hydrocarbon groups may be substituted with an alkyl group having 115 carbon atoms, a fluorine atom, or a functional group.
  • R 4 in the case of containing a hydrocarbon moiety having a multiple ring structure is specifically (6) an organic group having adamantane and a derivative thereof,
  • hydrocarbon atoms of these exemplified hydrocarbon groups may be substituted with an alkyl group having 115 carbon atoms, a fluorine atom, or a functional group.
  • the monomer represented by the structural units A- formula capable of forming a structural unit having a hydrocarbon moiety of alicyclic structure is a 2 (4), specifically, at least one selected from the R 4 It is an acrylic monomer having a kind of side chain structure, and examples thereof include the following.
  • R 2 R 3a , R 4a , R 5 R 6a , R 7 R 8 R 9a and R 1Qa are the same or different and are replaced by H, F, C or other halogen atoms with 1 to 14 carbon atoms
  • R Ua includes a bond or a branched chain;
  • R Ua is an alkylene group having 16 carbon atoms;
  • n is an integer of 0 or 112).
  • R 4b , R 5b is an alkylene group having 16 carbon atoms which may have a bond or a branched chain;
  • R 3b is H, CH or. H;
  • n is 0 or an integer of 1-2).
  • R Uc , R 12c , R 13c , R 14e and R 15e are the same or different, and H, F, and C are substituted with halogen atoms, or may have 11 to 14 carbon atoms.
  • An alkyl group; R 16e is an alkylene group having 16 carbon atoms which may include a bond or a branched chain),
  • R 1M , R ′′ d , R and R 13d are the same or different, and H, F, and C are replaced by halogen atoms, or may be a C 11 -C 14 alkyl group; 14d is a C16 alkylene group which may include a bond or a branched chain).
  • R 4 in the structural unit A-2 is cyclohexyl optionally containing a fluorine atom. Or a derivative thereof, or an alicyclic hydrocarbon group having a multiple ring structure which may contain a fluorine atom or a derivative thereof is preferable from the viewpoint of increasing Tg and improving mechanical strength.
  • Structural units A-1 and A-2 are optional components. When introducing a force, it is preferable that a total of 1 to 98 mol% be contained in structural unit M-1. Preferred upper limit (total) is 50 mol%, more is 30 mol 0/0, preferably lower limit is 2 mol 0/0, even at 5 mol 0/0.
  • the monomer forming the structural unit A-3 in the structural unit A of the present invention is a monomer having a chain hydrocarbon group in the side chain (provided that it is represented by the formula (1)) Monomers are excluded).
  • n is an integer of 1 to 6
  • m is an integer of 0 to 29.
  • Y is H or F; R le , R 2 ⁇ R 3e are the same or different, H is the number of carbon atoms Alkyl group optionally containing 1-29 ether bond or fluorinated alkyl group optionally containing 1-29 ether bond
  • methacrylic acid, ⁇ -fluoroacrylic acid, acrylic acid, methyl methacrylate ( ⁇ ), and methyl ⁇ -fluoratalylate are excellent in the effects of improving transparency, heat resistance, and mechanical strength. Is preferred. In particular, ⁇ is excellent in improving the optical and mechanical properties.
  • the other structural unit III-3 include a structural unit for improving adhesion to a base material (an inorganic base material such as quartz or optical glass, an organic base material, etc.).
  • a base material an inorganic base material such as quartz or optical glass, an organic base material, etc.
  • a structural unit derived from a monomer having a functional group such as a hydroxyl group, a silanol group, an amino group, or a cyano group, particularly an acrylic monomer.
  • a structural unit derived from a monomer having a functional group such as a hydroxyl group, a silanol group, an amino group, or a cyano group, particularly an acrylic monomer.
  • Examples of the structural unit A-3 include a glycidyl group-containing monomer.
  • the structural unit A-3 accounts for at most 97 mol%, preferably 1 mol% or more and 50 mol% or less, more preferably 30 mol% or less, in the structural unit M-1.
  • the polymer cured product has the structural unit M-1 by mixing the above-mentioned monomer and, in some cases, an oligomer thereof, and irradiating the mixture with an active energy ray to cure the mixture. . That is, a polymer directly cured from monomers, like epoxy resins and unsaturated polyesters, which do not polymerize some monomers into a curable polymer and then cure the curable polymer. Is to manufacture.
  • the monomer of formula (1) is a liquid at room temperature
  • the monomer of formula (2) is a viscous liquid or solid at room temperature.
  • the monomer giving the structural unit A may be liquid at room temperature or solid. These are made into a composition having a uniform composition that can be applied or molded.
  • the monomer of the formula (1) acts as a diluent (reactive diluent) for the monomer of the formula (2).
  • the monomer giving the structural unit A is added as a reactive diluent.
  • another compound may be separately added as a simple viscosity modifier.
  • the amount of addition is within a range that does not impair the effects aimed at by the present invention.
  • the viscosity of the coating composition is desirably set to 100 lOOcps in order to make the workability and the film thickness thin and uniform.
  • the above monomer may be oligomerized or polymerized, or another oligomer or polymer which does not impair the effect aimed at by the present invention may be used.
  • these are polymerizable compounds they are the structural units A-3 of the cured polymer of the present invention.
  • an amorphous fluorine-containing polymer having a fluorine content of 25% by weight or more shown below can be preferably used.
  • the amorphous fluorine-containing polymer (D) exemplified in the specification of Japanese Patent Application No. 2003-364751 can be exemplified.
  • (D_l) An amorphous fluorine-containing acrylic polymer having a fluorine content of 25% by weight or more, which is a polymer obtained by polymerizing only acrylic monomers.
  • X 6 and R 11 contains a fluorine atom).
  • X 6 is preferably a fluorine atom from the viewpoint that the fluorine content of the fluorine-containing acrylic polymer (D), heat resistance (high glass transition temperature), and transparency in the near infrared region are good. .
  • Some or all of the hydrogen atoms including the branched structure may be substituted with fluorine, a saturated hydrocarbon group,
  • an aromatic hydrocarbon group which has a hetero atom may be, or may be partially or entirely hydrogen-substituted and optionally substituted by fluorine,
  • (4) having a hetero atom may be, an aliphatic monocyclic structure which may be partially or entirely hydrogen-substituted fluorine may be substituted,
  • an aliphatic bicyclic structure which may have a hetero atom, may have a hydrogen atom, and may have a part or all of hydrogen atoms substituted by fluorine to form a hetero atom;
  • (D-2) An amorphous fluorine-containing aryl ether-based polymer having a fluorine content of 25% by weight or more, which is a polymer obtained by polymerizing a fluorine-containing aryl ether-based monomer.
  • the polymer (D-2) is disclosed in pamphlets of W95 / 33782, WO02 / 18457, WO02 / 73255, and the like.
  • the polymer (D-2) shows an amorphous property in spite of a high fluorine content, and has extremely high solubility in a fluorine-containing monomer giving the structural unit (A).
  • carbon-charcoal A curing site that can react with a fluorinated acrylic monomer that provides the structural unit (A-1), such as an elemental double bond can be easily provided at the side chain terminal. If there is a cured site that can react with the atarinole-based monomer, the cured product will form an interconnected network as a whole, and will exhibit even better cured product performance such as solvent resistance, low linear expansion coefficient, and heat resistance. .
  • (D-3) An amorphous fluorine-containing cyclic polymer having a cyclic structure in the main chain and having a fluorine content of 25% by weight or more.
  • the polymer (D-3) is preferred because the glass transition temperature is extremely high and the heat resistance of the cured product is increased.
  • Examples of such a polymer (D-3) preferably include a polymer having a fluorine-containing aliphatic cyclic structural unit and a polymer having a non-fluorinated alicyclic monomer structural unit.
  • an amorphous fluorine-containing polymer containing a non-fluorine-based alicyclic monomer structural unit (D-3-2) can achieve a higher glass transition temperature and higher hardness of a cured product.
  • (D-4) An amorphous fluorine-containing copolymer having a fluorine content of 25% by weight or more, which is a copolymer comprising a fluorine-containing olefin and a hydrocarbon-based ether.
  • (D-5) An amorphous fluorine-containing polystyrene-based polymer having a fluorine content of about 5% by weight or more, which is a polymer obtained by polymerizing a fluorine-containing polystyrene-based monomer.
  • (D-6) An amorphous vinylidene fluoride copolymer having a fluorine content of 25% by weight or more, which is a vinylidene fluoride copolymer.
  • the amorphous vinylidene fluoride copolymer (D-6) is preferably a copolymer of vinylidene fluoride and one or more other monomers copolymerizable therewith.
  • Representative examples of other monomers include tetrafluoroethylene, chlorofluoroethylene, trifluoroethylene, butylfluoride, hexafluoropropylene, and pentafluoroethylene.
  • the content of the other monomers is not particularly limited, but it is preferable that the copolymerization is usually 10 to 60% by weight and the fluorine content is 25% by weight or more.
  • the polymer (D-6) is particularly preferred in that it has excellent transparency in the visible region and gives impact resistance to the cured product.
  • the number average molecular weight of the amorphous polymer (D) is, from the viewpoint of solubility and compatibility with other components, at most 500,000, preferably at most 100,000, particularly preferably at most 100,000. 50,000.
  • the lower limit is not particularly limited, but from the same viewpoint, it is preferable that the oligomer is a monomer, and specifically, it is preferably about 300, more preferably about 500.
  • Adjustment of the refractive index can usually be dealt with by appropriately selecting the type and amount of the structural unit ⁇ , the structural unit ⁇ , and furthermore, the structural unit ⁇ .
  • a low molecular weight compound may be added.
  • Specific examples of these include benzyl phthalate_n_butyl (refractive index: 1.575), 1-methoxypheninole_1_phenylene (refractive index: 1.571), and benzyl benzoate (refractive index: 1.568) ), Bromobenzene (refractive index: 1.557), o-dichlorobenzene (refractive index: 1.551), m-dichlorobenzene (refractive index: 1.543), 1,2'_dibromoethane (refractive index) : 1.538), 3_phenyl_1_propanol (refractive index: 1.532), diphenylphthalic acid (CH (COOCH)), triphenylphosphine ((
  • additives As other additives, known additives may be appropriately used depending on the application and required characteristics. Other additives include, for example, leveling agents, antioxidants and the like.
  • the cured polymer constituting the heat-resistant fluorine-containing optical material of the present invention is prepared by mixing the above-mentioned monomers in a predetermined amount and further adding a polymerization initiator and other additives as necessary.
  • the composition can be produced by molding or applying the composition to a substrate, and then initiating a curing reaction.
  • a method for inducing the curing reaction known methods such as a method of irradiating an active energy ray or a method of adding a compound (such as a radical polymerization initiator) for initiating a radical polymerization and heating, for example, are used. Can be adopted.
  • Examples of the active energy rays include electromagnetic waves in a wavelength region of 350 nm or less, that is, ultraviolet rays, X-rays, ⁇ -rays, and electron beams, and ultraviolet rays are preferably used.
  • an active energy linear curing initiator is usually used.
  • An active energy ray curing initiator generates radical cations and the like only when exposed to an active energy ray, and initiates polymerization of a polymerizable carbon-carbon double bond (curing reaction) of a monomer.
  • Those which act as a catalyst, and which generally generate radical percation by ultraviolet light, particularly those which generate radicals are generally used.
  • the active energy ray curing initiator according to the present invention includes a type of carbon-carbon double bond (radical reactive force or cationic reactivity) of the monomer and a type of active energy ray used (wavelength region). Etc.) and the intensity of irradiation are appropriately selected.
  • examples of the initiator for curing the monomer having a radically reactive carbon-carbon double bond using an active energy ray in the ultraviolet region include the following. Can be exemplified.
  • Benzophenone benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, hydroxypropyl benzophenone, acrylated benzophenone, Michler's ketone, etc.
  • photoinitiating aids such as amines, sulfones and sulfines may be added.
  • Examples of the initiator for curing the monomer having a cation-reactive carbon-carbon double bond include the following.
  • Eodonium salt sulfonium salt, phosphonium salt, diazonium salt, ammonium salt, pyridinium salt, etc.
  • Sulfonates such as ⁇ -ketoesters, ⁇ -sulfonylsulfones and their polyazo compounds
  • Estenole of anolequinolenosolefonic acid Estenole of nodroanolequinolenosolefonic acid, arinoresnolefonic acid ester, iminosulfonate, etc.
  • the amount of the active energy ray curing initiator is usually preferably 0.1 to 10% by weight based on the total amount of the monomers.
  • a method of adding a compound that initiates radical polymerization a method of generating radicals using, for example, a known radical polymerization initiator is preferable.
  • radical polymerization initiator peroxides, azo-based initiators, and the like can be used.
  • peroxides having a fluorine atom can also be used, and fluorine-containing disil peroxides, fluorine-containing peroxydicarbonates, fluorine-containing peroxydiesters, and fluorine-containing dialkyl peroxides can be used.
  • fluorine-containing disil peroxides fluorine-containing peroxydicarbonates, fluorine-containing peroxydiesters, and fluorine-containing dialkyl peroxides
  • One or two or more selected from are preferred.
  • pentafluoropropionyl peroxide CF CF COO
  • difluoroacetic acid peroxides such as heptafluorobutyryl peroxide (CF CF CF COO) and 7H-dodecafluoro heptanyl peroxide (CHF CF CF CF CF COO).
  • Examples of the azo radical polymerization initiator include 2,2, -azobisisobutyronitrile, 2,2, -azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis ( 2-methylvaleronitrile), 2,2'-azobis (2-cyclopropylpropionitrile), 2,2, -azobisisobutyric acid dimethinole, 2,2'-azobis [2- (hydroxymethyl) propionitrile ], 4,4, -azobis (4-monocyanopentenoic acid) and the like.
  • radical polymerization initiators peroxydicarbonates, difluoro Preferred are acyl peroxides, oxyperesters, and persulfates.
  • the amount of the radical polymerization initiator to be used is, based on 1 mol of the total of all the monomers used, a lower limit of 0.0001 monole, preferably 0.01 monole, more preferably 0.03 monole. , Particularly preferably 0.
  • the amount is 05 monoles, and the upper limit is f: 0.9 monoles, preferably f: 0.5 monoles, more preferably f: 0.1 monoles, and particularly preferably 0.08 mol.
  • the molecular weight of the heat-resistant fluorine-containing optical material of the present invention cannot be specified because it has a crosslinked structure by the polyfunctional acrylate (structure unit ⁇ ) of the formula (2).
  • the heat-resistant fluorine-containing optical material of the present invention has heat resistance of 100 ° C or more as a glass transition temperature Tg. Further, by selecting each monomer component, the Tg can be increased to 105 ° C. or higher, further 110 ° C. or higher, further 120 ° C. or higher, and further 130 ° C. or higher. To increase Tg, for example, a ring structure may be introduced into the structural unit N.
  • the glass transition temperature Tg defined in the present invention is obtained by raising the first run to 200 ° C at a heating rate of 10 ° C / min using a DSC (differential scanning calorimeter), and then heating at 200 ° C for 1 minute. Cooling rate after maintaining
  • the heat-resistant fluorine-containing optical material of the present invention has heat resistance of 180 ° C or more as the thermal decomposition temperature Td. Further, by selecting each monomer component, Td can be increased to 200 ° C or more, and further to 230 ° C or more.
  • thermobalance TGA
  • the heat-resistant fluorine-containing optical material of the present invention is amorphous as a whole because the structural unit M forms an amorphous polymer, depending on the selection of the structural unit A.
  • An amorphous structure is advantageous in that it has excellent transparency and can reduce transmission loss in an optical transmission medium such as an optical fiber.
  • amorphous means that, in the above-mentioned DSC analysis, an endothermic peak substantially due to melting is not observed or the heat of fusion is measured when measured at a heating rate of 10 ° C / min in the second run. Is less than ljZg.
  • the heat-resistant fluorine-containing optical material of the present invention may have a refractive index of 1.44 or less. It is possible. To further reduce the refractive index, for example to 1.42 or less, use a fluorine-substituted structural unit as R 1 of structural unit M, or use a structural unit A having a fluoroalkyl group as a further requirement. Can be achieved by adding a refractive index adjusting component, etc.
  • the refractive index a value measured using an Abbe refractometer at 25 ° C using sodium D line as a light source is used.
  • the heat-resistant fluorine-containing optical material of the present invention has high transparency to light in the visible region, and particularly has high transparency to light having a wavelength of 650 nm (further 850 nm).
  • the light transmittance of light having a wavelength of 650 nm or 850 nm) is preferably 90% or more, more preferably 92% or more, and particularly preferably 94% or more.
  • the light transmittance is a value measured using a self-recording spectrophotometer (U-3310 (trade name) manufactured by Hitachi, Ltd.).
  • the optical material of the present invention also differs from conventional optical materials in that it has excellent flexibility. Flexibility is an important requirement for flexible devices such as optical fiber, optical interconnection, and flexible circuits.
  • the monomer was sealed together with an initiator in a glass tube having an inner diameter of lmm, and irradiated with an active energy ray such as an ultraviolet ray, for example, and polymerized and cured, taken out of the glass tube, and then placed in a lmm-diameter tube. Is wrapped around a steel round bar having a different radius in an environment of 25 ° C for one round, and the radius of the round bar when the copolymer fiber is cracked is evaluated. In the present invention, round bars having a radius of 6 mm, 10 mm, 15 mm, 20 mm, and 30 mm are used.
  • the flexibility of the heat-resistant fluorine-containing optical material of the present invention is 15 mm (round bar radius) or more, and the flexibility is further adjusted to 10 mm or less while satisfying the above characteristics.
  • less than 6 mm (radius of round bar) that is, cracking does not occur even when wound around a round bar with a radius of 6 mm.
  • the optical material of the present invention exhibits excellent properties such as the thermal decomposition temperature Td. These will be described in Examples.
  • the optical material of the present invention is useful as a material for various optical devices, for example, an optical transmission medium.
  • cladding material for plastic clad optical fiber whose core material is quartz or optical glass
  • cladding material for all plastic optical fiber whose core material is plastic anti-reflection coating material
  • lens material optical waveguide material
  • prism Optical materials such as materials, optical window materials, optical storage disk materials, non-linear optical elements, hologram materials, photo-tris dative materials, etc., materials for sealing members, and curing obtained by curing these materials It can be used for optical devices including objects.
  • the optical fiber clad material in particular, an optical fiber whose core material is quartz or optical glass, It is suitable as a cladding material for a plastic clad optical fiber.
  • a plastic lad optical fiber using quartz or optical glass as a core material and an optical material of the present invention as a cladding material has a high Tg, high heat resistance, and high strength in addition to the properties as an optical fiber. Since it has excellent flexibility, it is particularly useful as an optical fiber to be disposed in a narrow place under a high temperature environment.
  • heat resistance is required when laying a plastic clad optical fiber close to a halogen light source.
  • heat resistance is required when detecting high temperature areas such as the detection of car headlight illumination and the positioning sensor of a melting press. The same applies to sensors for industrial robots.
  • heat resistance of 100 ° C or more is required, for example, when wiring inside the engine room, the ceiling of a car, or the instrument panel where the temperature is high in an in-vehicle LAN. The same is true for the case where it is mounted on an aircraft.
  • Plastic clad optical fiber wiring in factory automation (FA) applications also needs to be heat resistant when exposed to high temperatures.
  • heat resistance is required because of the environment without ordinary air conditioning equipment, such as a distribution panel room on the roof of a building or a communication base station.
  • the heat-resistant fluorine-containing optical material of the present invention can be effectively used for these uses.
  • the above monomer composition is coated by a die coating method, a spray coating method or the like.
  • Apply to the core material using the method described in A plastic clad optical fiber can be manufactured by irradiating a line of energy and curing to form a clad material.
  • the light dose is usually 10-5000 mj / cm 2 .
  • the core diameter is typically 10-1000 / im.
  • the thickness of the cladding is usually 1 to 100 ⁇ m, preferably 550 ⁇ m.
  • the present invention also provides a compound of the formula (I):
  • Rf 2 are the same or different and are a perfluoroalkyl group having 15 carbon atoms;
  • R 1 is a hydrocarbon group having 115 carbon atoms which may be substituted with a fluorine atom)
  • X 2 and X 3 are the same or different and are selected from the group consisting of H, CH, F, CI, and CF
  • N is an integer of 1 to 6, for example 1 to 3;
  • R 2 is a monomer represented by 1 to 50 carbon atoms, for example, 1 to 30 (n + 1) -valent organic group) At least one of the following:
  • the present invention relates to a curable composition (the third of the present invention), each of which contains 1 to 99 mol%, 1 to 99 mol%, and 0 to 98 mol%.
  • the component ( ⁇ ) is employed as it is, including the specific examples described as the structural units M, N and A in the heat-resistant fluorine-containing optical material of the first invention.
  • polymerization initiator (IV) those described above as the active energy ray curing initiator and the radical polymerization initiator can be employed as they are including the specific examples.
  • the combination of the component (1), the component ( ⁇ ), the component (III) and the component (IV) and their amounts are the same as those described in the heat-resistant fluorine-containing optical material of the first invention. It is adopted as it is.
  • Examples of the material for the sealing member include light-emitting elements such as light-emitting diodes (LEDs), EL elements, non-linear optical elements, photorefractive elements, and photonic crystal, light-receiving elements, wavelength conversion elements, optical branching and insertion elements, Materials used for packaging (encapsulation) of optical functional devices such as optical cross-connect devices and modulators, and materials used for surface mounting and the like.
  • light-emitting elements such as light-emitting diodes (LEDs), EL elements, non-linear optical elements, photorefractive elements, and photonic crystal, light-receiving elements, wavelength conversion elements, optical branching and insertion elements, Materials used for packaging (encapsulation) of optical functional devices such as optical cross-connect devices and modulators, and materials used for surface mounting and the like.
  • the optical device sealed with the material of the present invention is extremely excellent in that the sealing portion has little moisture shrinkage due to polymerization and curing due to the presence of the polymer component in addition to the excellent moisture resistance derived from the fluoropolymer. It has high humidity resistance reliability. It is also a material that has both excellent transparency and heat resistance in the used wavelength band.
  • These sealed optical elements are used in various places.
  • non-limiting examples include a remote control, a mount stop lamp, a meter panel, a backlight of a mobile phone, and a remote control of various electric appliances.
  • Light-emitting elements such as light sources for devices; auto-focus for cameras; and light-receiving elements for optical pickups for CDZDVDs.
  • the material for a sealing member using the material of the present invention may optionally contain additives such as a photooxidant, a curing accelerator, a dye, a denaturant, a deterioration inhibitor, and a release agent. It can be manufactured by mixing, kneading, pulverizing, and, if necessary, tableting by combining conventional, dry blending and melt blending methods.
  • Sealing with a sealing member material can be performed by an ordinary method. It can be carried out by filling and molding a portion to be sealed by any known molding method.
  • the active energy ray-curable composition of the present invention is particularly suitable for optical applications.
  • an organic polymer obtained by curing it can be used for applications other than optical applications, such as adhesives. It is also useful as a material for manufacturing agents, paints, various molding materials, dental materials, etc.
  • the curable composition of the present invention may contain, in addition to various additives for optical use, a pigment, a filler, a photocatalyst such as titanium oxide, and the like.
  • the differential scanning calorimeter used is a differential scanning calorimeter manufactured by Seiko Denshi Co., Ltd.
  • thermobalance manufactured by Shimadzu Corporation, measure the temperature at which weight loss starts at a heating rate of 10 ° CZ.
  • the fibrous sample is wrapped around a steel round bar of different radius in an environment of 25 ° C one round, and evaluated by the radius of the round bar when the copolymer fiber is cracked.
  • the curable composition was applied on an aluminum foil using an applicator so as to have a film thickness of about 100 / im, and the resulting coating was irradiated with ultraviolet light at a strength of 1000 mj / cm 2 U using a high-pressure mercury lamp. After irradiating with a line, the aluminum foil was dissolved with dilute hydrochloric acid to obtain a sample film.
  • the flexibility was evaluated by preparing a fibrous sample having a diameter of lmm by the above-mentioned manufacturing method.
  • composition was prepared as a monomer mixture.
  • An active energy ray-curable resin composition was prepared in the same manner as in Example 1 except for using this monomer mixture, and various physical properties were measured in the same manner as in Example 1. The results are shown in Table 1.
  • composition was prepared as a monomer mixture.
  • An active energy ray-curable resin composition was prepared in the same manner as in Example 1 except that this monomer mixture was used, and various physical properties were measured in the same manner as in Example 1. The results are shown in Table 1.
  • composition was prepared as a monomer mixture.
  • An active energy ray-curable resin composition was prepared in the same manner as in Example 1 except that this monomer mixture was used, and various physical properties were measured in the same manner as in Example 1. The results are shown in Table 1.
  • composition was prepared as a monomer mixture.
  • An active energy ray-curable resin composition was prepared in the same manner as in Example 1 except that this monomer mixture was used, and various physical properties were measured in the same manner as in Example 1. The results are shown in Table 1.
  • composition was prepared as a monomer mixture.
  • An active energy ray-curable resin composition was prepared in the same manner as in Example 1 except that this monomer mixture was used, and various physical properties were measured in the same manner as in Example 1. The results are shown in Table 1.
  • composition was prepared as a monomer mixture.
  • An active energy ray-curable resin composition was prepared in the same manner as in Example 1 except that this monomer mixture was used, and various physical properties were measured in the same manner as in Example 1. The results are shown in Table 1.
  • composition was prepared as a monomer mixture.
  • An active energy ray-curable resin composition was prepared in the same manner as in Example 1 except that this monomer mixture was used, and various physical properties were measured in the same manner as in Example 1. The results are shown in Table 1.
  • composition was prepared as a monomer and polymer mixture.
  • dcP untanyl group
  • NB norbornene group
  • x: y: z l: 8: l
  • molecular weight about 10,000
  • Example 1 The curable composition of Example 1 was uniformly applied to a quartz core (refractive index: 1.46) having a diameter of 200 ⁇ m (film thickness: about 20 ⁇ m), and cured by irradiating ultraviolet rays in the same manner as in Example 1. I let it.
  • the obtained plastic clad optical fiber was measured for initial transmission loss at 650 nm wavelength and transmission loss after a heat resistance test (held at 125 ° C for 24 hours). Table 2 shows the results.
  • a plastic-clad optical fiber was prepared in the same manner as in Example 6 except that the curable composition of Comparative Example 2 was used, and the transmission loss of the obtained optical fiber and the transmission loss after the heat resistance test were compared with those of Example 6. It measured similarly. Table 2 shows the results.
  • composition was prepared as a monomer mixture.
  • An active energy ray-curable resin composition was prepared in the same manner as in Example 1 except that the obtained mixture was used, and various physical properties were measured in the same manner as in Example 1. Table 3 shows the results.
  • An active energy ray-curable resin composition was prepared in the same manner as in Example 1 except that the obtained mixture was used, and various physical properties were measured in the same manner as in Example 1. Table 3 shows the results.
  • the heat-resistant fluorinated optical material of the present invention is a material having a well-balanced combination of high Tg, low refractive index, good flexibility, and low cost, which could not be achieved by the conventional method. It is extremely effective as a clad material for fibers, especially for plastic clad optical fibers for vehicles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 高Tgでかつ低屈折率、機械的強度、透明性をバランスよく満足する耐熱性含フッ素光学材料、特に自動車のエンジンルームなどで要求される高温環境で利用可能でかつ曲げ損失が低いプラスチック光ファイバーのクラッド材を提供する。アクリル酸の分岐鎖を有するフルオロアルキルエステル単位と、多官能アクリレート単位とを含み、ガラス転移温度が100°C以上のポリマー硬化物からなる耐熱性含フッ素光学材料。

Description

明 細 書
耐熱性含フッ素光学材料およびそれを用いた光伝送用媒体
技術分野
[0001] 本発明は、光学的特性に加えて耐熱性に優れた含フッ素光学材料に関する。本発 明の光学材料は、たとえば光伝送用媒体、特に石英系または光学ガラス系材料をコ ァ材とするプラスチッククラッド光ファイバ一などのクラッド材として好適である。
^景技術
[0002] 近年、 自動車の車内外の通信に関しては、高級化、 自動化および安全性の確保を 目指した種々のセンサ、信号処理装置、照明等が用いられるようになつている。その 結果、信号処理量の増大、それに伴う電線ケーブルの肥大化が生じ、車体軽量化を 阻害するとレ、う問題が生じてレ、る。
[0003] そうした問題の解消のため、電線ケーブルに代わって多重化 ·高速通信を実現する ことができる光ファイバ一の利用が望まれている。
[0004] し力 ながら、これら車両に搭載する LAN用(車載 LAN用)の通信ケーブルにはェ ンジンルームや天井など高温になる部分での耐熱性が要求され、また、車両設計上 の要請から長距離化となる場合もあり、耐熱性と信号伝送能力を兼ね備えた自動車 用光ファイバ一が必要となる。
[0005] こうした光ファイバ一としては、コア材およびクラッド材共に石英系または光学ガラス 系材料を使用する全ガラス系光ファイバ一、コア材およびクラッド材共にプラスチック 材料を使用する全プラスチック光ファイバ一、コア材に石英系または光学ガラス系材 料を使用しクラッド材としてプラスチック材料を使用するプラスチッククラッド光ファイバ 一が知られている。
[0006] 全ガラス系光ファイバ一は耐熱性は優れているが高価でありかつ可撓性に劣るた め、全プラスチック光ファイバ一およびプラスチッククラッド光ファイバ一に耐熱性を持 たす試みが提案されてレ、る。
[0007] 全プラスチック光ファイバ一にはコア材として透明性に優れ高屈折率であることから ポリメチルメタタリレート(PMMA)が使用されている。そして、クラッド材としては、高 ガラス転移温度 (Tg)で低屈折率の共重合体を与えることから、へキサフルォロネオ ペンチルメタタリレート(6FNPM)を共重合成分とする共重合体が提案されている( 特開昭 63 - 33405号公報、特開昭 59 - 1518号公報、特開昭 61-36307号公報)。
[0008] しかし、 6FNPMを共重合成分として得られる共重合体は、それらの特許文献に記 載されている単量体の組合せでは高 Tgかつ低屈折率という効果にも限界がある。
[0009] たとえば特開昭 63—33405号公報には 6FNPMとメチルメタタリレート(MMA)の 5 0/50 (重量比) (27/73 (モル比) )の共重合体からなる光学材料が記載されてレ、る 力 このものは屈折率が比較的高ぐまた特開昭 59—1518号公報には 6FNPMと M MAの 90Z10 (重量比)(77/23 (モル比))の共重合体からなる光学材料が記載さ れているが、可撓性に劣る。さらに特開昭 61—36307号公報には 6FNPMが 20モ ル%までの共重合体しか記載されてレ、なレ、。
[0010] さらに、これらの 6FNPM系共重合体は硬化部位を有さず熱可塑性樹脂として溶 融押出などで成形されている。
[0011] プラスチッククラッド光ファイバ一としては、たとえば特開昭 63— 43104号公報に (メ タ)アクリル酸のフルォロアルキルエステルと架橋性単量体としての 2官能アタリレート と光重合開始剤とからなる組成物を光硬化させてクラッド材とする技術が、また特開 昭 63—208805号公報には α—フルォロアクリル酸のフルォロアルキルエステルを使 用する技術が開示されている。
[0012] し力し、フルォロアルキルエステルのフルォロアルキル基の例示の多くは直鎖のァ ルキル基であり、高 Tgと低屈折率、機械的強度、透明性、コア材密着性を く満足するものではない。
[0013] たとえば特開昭 63—43104号公報では、 CH =CHCOOC H C F という長鎖の
2 2 4 8 17
フルォロアルキル基をもつ単量体が CH =CHCOOCH C Fとレ、う短鎖のフルォロ
2 2 2 5
アルキル基をもつ単量体よりも低い屈折率を達成している。しかし、長鎖のフルォロ アルキル基はポリマーとなった場合結晶性を示すため、クラッドとしての透明性が低 下することがあり、また、 Tgも長鎖のフルォロアルキル基部分が 50 60°Cと低いた め、得られるポリマー分子全体の Tgが低下してしまレ、、耐熱性の点で改善の余地が ある。 [0014] また特開昭 63-43104号公報ではさらに、単量体の例示として 1 , 1_ジメチルー 2, 2, 3, 3—テトラフノレ才ロプロピノレアタリレート、 1 , 1—ジメチノレ一 2, 2, 3, 3, 4, 4, 5, 5 —ォクタフルォロペンチルアタリレート、 1 , 1—ジメチノレー 2, 2, 3, 4, 4, 4 キサフ ルォロブチルアタリレートなどの側鎖を有するフルォロアルキルアタリレートも記載さ れているが、これらは Tgを高くしょうと設計すると屈折率を下げることが困難になり、ま た屈折率を下げようとすると Tgを高くすることが困難になり、高 Tgと低屈折率とを同 時に達成することが難しい。
[0015] 特開平 8—248242号号公報には、 2_ (パーフルォロォクチル)ェチルアタリレート、 へキサフルォロイソプロピルアタリレート、トリメチロールプロパントリアタリレート、光重 合開始剤および Ί一メルカプトプロピルトリメトキシシランからなる光ファイバ一のクラッ ド用の紫外線硬化性樹脂組成物が開示されている。しかし、このものは低屈折率の 硬化物は得られるが、 Tgを高くすることができず、耐熱性の点で不充分である。
[0016] また、 Tgを高くするために脂環式炭化水素基や芳香族環を分子内にもつ成分を導 入する提案もある(特開平 5— 222136号公報)力 目的とする Tgになるまで添加する と機械的強度(可撓性)が低下してしまう。
[0017] 本発明者らは鋭意検討した結果、特定の単量体を組み合わせることにより、従来見 出されていなかった、高 Tgでかつ低屈折率、機械的強度、透明性をバランスよく高 レ、レベルで満足する耐熱性含フッ素光学材料を発明するに至った。
[0018] 特に、 自動車のエンジンルームで要求される高温環境で利用可能でかつ曲げ損失 が低い光学材料を用いてなるプラスチック光ファイバ一のクラッド材として有用である ことを見出した。
発明の開示
[0019] すなわち本発明の第 1は、式 (M_l) :
-[M]-[N]-[A]- (M-l)
[式中、
構造単位 Mは式(1) : [0020] [化 1] し
Figure imgf000005_0001
[0021] (式中、 X1は H、 CH、 F、 CIおよび CFよりなる群力、ら選ばれる少なくとも 1種; Rf1
3 3
よび Rf2は同じかまたは異なり、炭素数 1一 5のパーフルォロアルキル基; R1は水素原 子の一部または全部がフッ素原子で置換されていてもよい炭素数 1一 5の炭化水素 基)で示される単量体の少なくとも 1種に由来する構造単位、
構造単位 Nは式(2):
[0022] [化 2]
CH.-CX2 o
し"" 0— R 2■ (Q-C-CX3=CHJ 1' n
O
[0023] (式中、 X2および X3は同じかまたは異なり、 H、 CH、 F、 CIおよび CFよりなる群から
3 3
選ばれる少なくとも 1種; nは 1一 6、たとえば 1一 3の整数; R2は炭素数 1一 50、たとえ ば 1一 30の(n+ 1)価の有機基)で示される単量体の少なくとも 1種に由来する構造 単位、
構造単位 Aは式(1)および式(2)の単量体と共重合可能な他の単量体の少なくとも 1 種に由来する構造単位]で示され、構造単位 Mを 1一 99モル%、構造単位 Nを 1一 9 9モル%および構造単位 Aを 0— 98モル%含む構造単位 M-1からなり、かつガラス 転移温度が 100°C以上のポリマー硬化物からなる耐熱性含フッ素光学材料に関する
[0024] 本発明の第 2は、上記の耐熱性含フッ素光学材料を用いてなる光伝送用媒体、特 に石英系または光学ガラス系のコアおよび上記の耐熱性含フッ素光学材料からなる クラッドから構成されるプラスチッククラッド光ファイバ一に関する。 [0025] 力かる光ファイバ一は車両に搭載される LAN用プラスチック光ファイバ一として好 適である。
[0026] 本発明の第 3は、(I)式(1):
[0027] [化 3]
R f
1 ―し Λ. し— 0—し n2—し— R_ f "
o
R 11 1
[0028] (式中、 X1は H、 CH、 F、 CIおよび CFよりなる群力、ら選ばれる少なくとも 1種; Rf1
3 3
よび Rf2は同じかまたは異なり、炭素数 1一 5のパーフルォロアルキル基; R1はフッ素 原子で置換されていてもよい炭素数 1一 5の炭化水素基)で示される単量体の少なく とも 1種;
(Π)式 (2):
[0029] [化 4]
CH.-CX2 o
し"" 0— R 2■ (Q-C-CX3=CHJ
O
[0030] (式中、 X2および X3は同じかまたは異なり、 H、 CH、 F、 CIおよび CFよりなる群から
3 3
選ばれる少なくとも 1種; nは 1一 6、たとえば 1一 3の整数; R2は炭素数 1一 50、たとえ ば 1一 30の(n + 1)価の有機基)で示される単量体の少なくとも 1種;
(III)式(1)および式(2)の単量体と共重合可能な他の単量体の少なくとも 1種;およ び
(IV)重合開始剤
からなり、全単量体中に単量体 (1)、単量体 (Π)および単量体 (III)が占める割合がそ れぞれ 1一 99モル%、 1一 99モル%および 0— 98モル%である硬化性組成物に関 する。 [0031] 本発明の第 4は、石英または光学ガラスに本発明の第 3の硬化性組成物を塗布し た後、硬化することを特徴とする光伝送用媒体の製造方法に関する。
発明を実施するための最良の形態
[0032] 本発明の第 1の耐熱性含フッ素光学材料を構成するポリマー硬化物について説明 する。
[0033] まず、ポリマー硬化物は、式(M— 1) :
-[M]-[N]-[A]- (M-1)
で示される構造単位からなる。ただし、構造単位 M、構造単位 Nおよび構造単位 Aは それぞれランダムに結合し、かつ構造単位 Nは架橋単位を形成している。
[0034] この構造単位 M— 1において必須成分である構造単位 Mは式(1) :
[0035] [化 5]
R f
丄 1 ―し Λ.
C - 0 - C H 2 - C - R f 1
O
R I 1 1
[0036] (式中 X1
Figure imgf000007_0001
Rf2および R1は前記と同じ)で示される分岐鎖を有するフルォロアルキ ル基を含むフルォロアタリレート誘導体に由来する構造単位であり、高 Tgと低屈折率 ィ匕、さらには適度な機械的強度を付与することに寄与する。
[0037] 構造単位 Mとしては、 X1が H、 CH 、 F、 CFまたは Cl、特に CH 、 F、さらには CH
3 3 3 3 であって、 Rf1および Rf2が同じかまたは異なり、炭素数 1一 5のパーフルォロアルキル 基、具体白勺 ίこ fま CF 、 CF CF 、 CF CF CF 、 CF CF CF CF 、 CF CF CF CF C
3 2 3 2 2 3 2 2 2 3 2 2 2 2
F、特に CF 、 R1がフッ素原子で置換されていてもよい炭素数 1一 5の炭化水素基、
3 3
具体的には CH 、 CH CH 、 CH CH CH 、 CH CH CH CH 、 CH CH CH CH
3 2 3 2 2 3 2 2 2 3 2 2 2 2
CH 、 CH CF 、 CH CH CF 、 CH CF CF、特に CHであるのが好ましい。
3 2 3 2 2 3 2 2 3 3
[0038] 構造単位 Mを与える非限定的な具体的単量体としては、へキサフルォロネオペン チルメタタリレート(6FNPM : X1 = CH 、 Rf^Rf^CF 、 Ι^ =〇Η )、 へキサフルォ
3 3 3
口ネオペンチル α—フルォロアタリレート(6FNPF : X1 = F、 Rf^Rf^CF 、 R1 = C
3 H )、 2, 2—ビストリフルォロメチルブチルメタタリレート(X^CH、 Rf^Rf^CF、
R1 = CH CH )、 2, 2—ビストリフルォロメチルブチル α—フルォロアタリレート(X1:?
、 Rf =Rf =CF、 R =CH CH )、
[0039] [化 6]
C 2 F 5
CH, = C CH3
C— O— CH2— C— C F3
o I
(X^CH, R f ^CF^ R f 2=C2FS, Rl = C Hs)
C2F
CH2 = C F 2 5
し一 O— CH2— — C F 3
o
し H ΐ¾
(X^F, R f ^CF^ R f 2 = C2F5、 R: = C H3)
r F
CH3 = C CH3 , 3
C— O— CH2— C— C F 3 CH2 C F 3
[0040] (X' = CH、 Rf = CF、 Rf2 = CF、 R1 = CH CF )
が例示できる。これらのうち、耐熱性に優れ、合成が容易な点から 6FNPM、 6FNPF が好ましぐ特に 6FNPMが好ましい。
[0041] 構造単位 M— 1における構造単位 Mの含有量は、 1一 99モル%であり、好ましい下 限は 5モル%、さらには 10モル%である。構造単位 Mの含有量が少なくなると透明性 が低下し、耐熱性 (Tg)も低下する傾向にある。好ましい上限は 85モル%、さらには 7 0モル%であり、多くなると可撓性が低下する傾向にある。
[0042] 構造単位 Nは、式(2):
[0043] [化 7]
CH2-CX2 Ο
I II
C-0-R2- (O— C— CX3=CH2) n
o
[0044] (式中、 R2、 X2、 X3および nは前記と同じ)で示される多官能アタリレートに由来する構 造単位であり、活性エネルギー線により架橋反応を惹き起こし、硬化物に耐熱性(高 Tg)と機械的強度を付与する。
[0045] 構造単位 Nにおいて、 X2および X3は H、 CH に CH
3、 F、 CFまたは Cl、特
3 3、 F、さら には CHが好ましい。
3
[0046] R2としては、ウレタン結合を含む構造単位および Zまたは芳香族単位を含む構造 単位および/または脂環式構造を含む構造単位であることが、可撓性を付与し、 Tg を高くする点で好ましぐまた、フッ素原子を含んでいてもよいフエニル基またはその 誘導体を含む構造単位であることが Tgを高くする点で好ましぐまた、フッ素原子を 含んでいてもよいシクロへキシル基またはその誘導体を含む構造単位またはフッ素 原子を含んでいてもよい複環構造を有する脂環式炭化水素基またはその誘導体を 含む構造単位であることが Tgを高くする点で好ましい。
[0047] R2はフッ素原子で置換されていなくてもよいが、フッ素原子で置換されているものを 使用することにより屈折率をより低くでき、また近赤外線領域での透明性を高めること ができる。
[0048] nは 1一 6、たとえば 1一 3の整数であり、 nが 2または 3のときは、アタリレート部位は 分子末端のほかに R2の中間の位置に結合してレ、る。
[0049] R2の具体例を一〇一 R2—〇一の形で例示するが、これらに限定されるものではない。
[0050] (1)ァノレキレン単位:
たとえば、
(1一 1)式: -0(CH ) _(CF ) _(C(CH )) _〇_(n + m + p: -30)で示される単位が例示 できる。
[0051] 具体例は、
-OCH CH O—、
-OCH CH(CH )0_、
-OCH CH CH (CH )〇一、
_〇 (CH ) 0_、
_〇 (CH ) 0_、
-0(CH ) (CF ) (CH )〇_、
-0(CH ) (CF ) (CH )〇_、
-OCH C(CH ) CH O—など。
[0052] (2)芳香族単位(Bz)を含む単位:
たとえば、
(2 - 1)式:
[0053] [化 8]
一 0
Figure imgf000010_0001
[0054] (式中、 R5および R6は同じかまたは異なり、炭素数 1一 5のアルキル基または炭素数 1 一 5の含フッ素アルキル基; Ζ1および Ζ2は同じかまたは異なり、アルキル基、含フッ素 アルキル基、官能基またはハロゲン原子; ρおよび qは同じかまたは異なり、 1一 4の整 数)で表わされる部位を含む単位、または
(2— 2)式: [0055] [化 9]
Figure imgf000011_0001
[0056] (式中、 R7、 R8、 R9および R1Qは同じかまたは異なり、炭素数 1一 5のアルキル基または 炭素数 1一 5の含フッ素アルキル基; Z3はアルキル基、含フッ素アルキル基、官能基 またはハロゲン原子; pは 1一 4の整数)で表わされる部位を含む単位があげられる。
[0057] (2— 1)の具体例としては、
-OBz-C (CH ) 一 BzO—、
-OBz-C (CF ) 一 Bz〇一、
-OCH CH (OH) CH O-Bz-C (CH ) 一 Bz— O— CH CH (OH) CH O—、
-OCH CH (OH) CH O-Bz-C (CF ) 一 Bz_〇_CH CH (OH) CH O—、
- (OCH CH ) O-Bz-C (CH ) 一 Bz— O—(CH CH〇) 一、
- (OCH CH ) O-Bz-C (CF ) 一 Bz_〇_ (CH CH〇) - などがあげられ、(2— 2)の具体例としては、
-O-C (CF ) -Bz-C (CF ) -O- などがあげられる。
[0058] 式中、 Bzはアルキル基、含フッ素アルキル基、官能基またはハロゲン原子で置換さ れてレ、てもよレ、2価のベンゼン環、 nおよび mは R2の炭素数を 30を超えなレ、ようにす る 0または 1以上の整数である。
[0059] (3)脂環式炭化水素単位 (cHx)を含む単位:
たとえば、
(3_1)式: [0060] [化 10]
Figure imgf000012_0001
[0061] (式中、 R5および R6は同じかまたは異なり、炭素数 1一 5のアルキル基または炭素数 1 一 5の含フッ素アルキル基; Z1および Z2は同じかまたは異なり、アルキル基、含フッ素 アルキル基、官能基またはハロゲン原子; pおよび qは同じかまたは異なり、 1一 4の整 数)で表わされる部位を含む単位、または
(3— 2)式:
[0062] [化 11]
Figure imgf000012_0002
[0063] (式中、 R7、 R8、 R9および R1Qは同じかまたは異なり、炭素数 1一 5のアルキル基または 炭素数 1一 5の含フッ素アルキル基; Z3はアルキル基、含フッ素アルキル基、官能基 またはハロゲン原子; pは 1一 4の整数)で表わされる部位を含む単位があげられる。
[0064] (3— 1)の具体例としては、
-O-cHx-C (CH )—cHx-O—、
-O-cHx-C (CF )—cHx-O—、
-OCH CH (OH) CH O-cHx-C (CH ) -cHx-O-CH CH (OH) CH O—、
-OCH CH (OH) CH O-cHx-C (CF ) 一 cHx_〇_CH CH (OH) CH O—、
- (OCH CH ) O-cHx-C (CH ) 一 cHx—O—(CH CH〇) 一、
- (OCH CH ) O-cHx-C (CF ) 一 ctix_〇_ (CH CH〇) - などがあげられ、(3— 2)の具体例としては、
-O-C (CF ) -cHx-C (CF ) _〇_
などがあげられる。
[0065] 式中、 cHxはアルキル基、含フッ素アルキル基、官能基またはハロゲン原子で置換 されていてもよい 2価のシクロへキサン環、 nおよび mは R2の炭素数を 30を超えなレ' ようにする 0または 1以上の整数である。
[0066] (4)複環 (NB)を含む単位:
たとえば、
(4—1)式:
[0067] [化 12]
一 0
0一
Figure imgf000013_0001
[0068] (式中、 R5および R6は同じかまたは異なり、炭素数 1一 5のアルキル基または炭素数 1 一 5の含フッ素アルキル基; Z1および Z2は同じかまたは異なり、アルキル基、含フッ素 アルキル基、官能基またはハロゲン原子; pおよび qは同じかまたは異なり、 1一 4の整 数)で表わされる部位を含む単位、または
(4一 2)式:
[0069] [化 13]
Figure imgf000013_0002
[0070] (式中、 R7、 R8、 R9および R1Qは同じかまたは異なり、炭素数 1一 5のアルキル基または 炭素数 1一 5の含フッ素アルキル基; Z3はアルキル基、含フッ素アルキル基、官能基 またはハロゲン原子; pは 1一 4の整数)で表わされる部位を含む単位があげられる。
[0071] (4一 1)の具体例としては、
-O-NB-C (CH ) _NB_〇_、
-O-NB-C (CF ) -NB-O- -OCH CH(OH)CH O-NB-C (CH ) NB_〇_CH CH(OH)CH〇一、
-OCH CH(OH)CH O-NB-C (CF ) NB— O— CH CH(OH)CH〇一、
-(OCH CH ) O-NB-C (CH ) _NB_〇_(CH CH O) 一、
-(OCH CH ) O-NB-C (CF ) _NB_0_(CH CH O) - などがあげられ、(4_2)の具体例としては、
-O-C (CF ) -NB-C (CF ) -O- などがあげられる。
[0072] 式中、 NBはアルキル基、含フッ素アルキル基、官能基またはハロゲン原子で置換 されていてもよい 2価のノルボルネン環、 nおよび mは R2の炭素数を 30を超えないよう にする 0または 1以上の整数である。
[0073] (5)ウレタン結合を含む単位
[0074] [化 14]
-OCH2
Figure imgf000014_0001
[0075] (6) n= 2— 3 (多官能)の例
[0076] [化 15]
CH20
-OCH?C-CH,0
CH20
— OCHUCH, CH2CH20
■NCH,CH,N
— OCH2CH2 h H 〇一
[0077] 式(2)で示される単量体の具体例としてはつぎのものが例示できる力 これらに限 定されるものではない。
Figure imgf000016_0001
C OAV
Figure imgf000017_0001
o o
[0080] [化 18]
CH, CH,
Figure imgf000018_0001
F F CH2 = C C = CH2
—c画, 霞 c
[0081] 構造単位 Nを与える式(2)で表される多官能アタリレート単量体における R2を若干 異なる観点から整理してみると、つぎのとおりとなる。なお、以下の R2の説明において 、これまでの説明と重複する記載があるが、整理という面から、敢えて重複をいとわず に説明する。
[0082] R2は、炭素数 1一 50の(nl + 1)価の有機基であり、具体的には、
(1)直鎖状または分枝状のエーテル結合を有していてもよい (nl + 1)価の有機基、
(2)芳香族環状構造を有する (nl + 1)価の有機基、
(3)脂肪族環状 (単環または多環)構造を有する (nl + 1)価の有機基、
(4)ウレタン結合を含む (nl + 1)価の有機基
などが挙げられ、これら有機基において、炭素一水素結合を形成する水素原子の一 部またはすべてがフッ素原子で置換されたものであってもよい。
[0083] まず、上記 R2のそれぞれの好ましい態様について、具体例を挙げて説明する。
[0084] ( 1 )直鎖状または分枝状のエーテル結合を有してレ、てもよい (nl + 1 )価の有機基: 前記多官能アタリレートを示す式(2)における nl = 1のもの(二官能アタリレート)と しては、たとえば
式(R2—1):
一(CH ) —(CF ) - (C (CH ) ) - (R2-1)
2 pi 2 p2 3 p3 (式中、 pl + p2 + p3 = 1— 30)で示される有機基が例示できる。
[0085] 具体例としては、
-CH CH一、
-CH CH(CH )―、
-CH CH CH(CH ) -
-(CH) -
-(CH) - 一(CH ) (CF ) (CH ) - 一(CH ) (CF ) (CH ) - 一(CH ) (CF ) (CH ) - 一 CHC(CH) CH—
などがあげられる。
[0086] また、式(R2—1—1):
[0087] [化 19]
(R 2 1)
Figure imgf000019_0001
[0088] (式中、 pl、 p2、 p3は前記式 (R2-1)と同じ)も挙げられる。
[0089] より具体的には、
[0090] [化 20]
一 CH2 CH2
I I
HOCHCH2OCH2CH2OCH2CHOH, — C H 2 C H 3 C H 2
I I I
HOCHCH2OCH2CHOCH2CHOH、
Figure imgf000020_0001
l-I
量 2 pし Π 2
I I
HOCHCH2OCH7- CF2i— 4CH2OCH2CHOH, ― C H 2 し ! —
I i
HOCHCH2OCHi™ CF2i~6CH2OCH2CHOH,
-CH2 CH2- HoiHCH2OCH2CH CF2 2CH2CH2OCH2CHOH,
― ^ 112 CHつ一
I i
HOCHCH2OCH2CHr-(CF2i-4 ί""ί 2し i I 2 ^-^し ί*ί -/ ί"ί、 一 CH2 CH2- I I
HOCHCH2OCH2CHF-<CF2-)-6CH2CH2OCH2CHOH,
— CH2 CH2
! 1
HOCHCH2OCH2CH -f F2- -8CH2CH2OCH2CHOH
[0091] などが好ましく挙げられる。
[0092] その他、式(R2_l_2)、(R2_l— 3): [0093] [化 21] z15 z16 z 17
— C H CH O C H C H2")" TO C H C H 2 (R 2— 1一 2)
-CH2 Z15 Z16 Z17 CH2
HOCHCH20CHCH2-iOCHCH2-)- 0CHCH2OCH2CHOH
(R2- 1 -3)
[0094] (式中、 p4は 0または 1一 20の整数、 Z15、 Z16、 Z17は同じかまたは異なり、 Hまたは CH
)なども挙げられる。
3
[0095] また、 nl = 2以上(三官能以上)のものとしては、式 (R2—2):
[0096] [化 22]
Figure imgf000021_0001
[0097] (式中、 p5は 0または 1一 5の整数)があげられる c
[0098] 具体的には、
[0099] [化 23]
CH.
-CH2CCH;
し X X
―し ri2
Figure imgf000021_0002
[0100] などが挙げられる。
[0101] また、式(R2-2)以外のものとして、たとえば [0102] [化 24]
し H 2
I
し H 3 H 2 Cし H 2
CH3CH2 CH3
Figure imgf000022_0001
[0103] などが挙げられる。
[0104] また、含フッ素アルキレン基を含むものとして、式 (R2—3)、 (R2-4):
[0105] [化 25]
— H C h 2
-Cli-iCHz) P 6 (CF2) p 7 (CH2- CH- (R2 3) 、 CH2-
Figure imgf000022_0002
CH— (R2— 4)
[0106] (式中、 p6、 p8は同じかまたは異なり、 1一 10の整数; p7は 1一 30の整数)などが挙 げられる。
[0107] 具体的には、
[0108] [化 26]
— CH2 CH2-
— I t Τ1Γ -f^ 1 -¾ IT I IT一
ΓΪ l 2 XU Γ 2^ 2 ^ ^ 2 ^ レ H
CHCH7~tCF2 ~4CH2CH - 、
Figure imgf000023_0001
—— c〜 CH20C
~ Al 2 し H2
一 CnCH2OCH 2™" ("C F 2" ~ ¾ CH 0 H2v H― 、
― 1 I 一
-CHCH2OCH2CHi-C F2-— 2CH2CH2OCH2CH- 、
-CHCH2OCH2CHi- CF2-— 4CH2CH3OCH2CH- 、
-CH2 CH2
-CHCH2OCH2CHi-(CF2--6CH2CH2OCH2CH~ 、
Figure imgf000023_0002
[0109] などが好ましく挙げられる。
[0110] R2としてこれら例示の直鎖または分枝状のアルキレン基からなる二価以上の有機 基は、重合体に柔軟性や弾性を付与できる点で好ましい。さらにフッ素原子を導入 する際、高含有率で導入でき、透明性、低屈折率の点で有利となるため好ましい。
[0111] (2)芳香族環状構造を含む (nl + 1)価の有機基:
たとえば、式(R2—5):
[0112] [化 27]
Figure imgf000024_0001
[0113] (式中、 R21および R22は同じ力 たは異なり、炭素数 1一 5のアルキル基または炭素数
1一 5の含フッ素アルキル基; Z21および Z22は同じかまたは異なり、炭素数 1一 5のアル キル基、炭素数 1一 5の含フッ素アルキル基、官能基、水素原子またはハロゲン原子 ; rlおよび r2は同じ力、または異なり、 1一 4の整数)で表わされる部位を含む二価の有 機基、
または式(R2—6):
[0114] [化 28]
Figure imgf000024_0002
[0115] (式中、 3
Figure imgf000024_0003
R25および R26は同じ力または異なり、炭素数 1一 5のアルキル基また は炭素数 1一 5の含フッ素アルキル基; Z23は炭素数 1一 5のアルキル基、炭素数 1一 5の含フッ素アルキル基、官能基、水素原子またはハロゲン原子; r3は 1一 4の整数) で表わされる部位を含む二価の有機基があげられる。
[0116] そのほか、つぎの式 (R2—7)—(R2—11)で表わされる部位を含む二価の有機基も あげられる。
[0117] 式(R2—7) : [0118] [化 29]
Figure imgf000025_0001
[0119] 式(R2—8) [0120] [化 30]
R31
Figure imgf000025_0002
[0121] 式(R2-9) [0122] [化 31]
Figure imgf000025_0003
[0125] 式(R2—11) [0126] [化 33]
Figure imgf000026_0001
[0127] 上記式中、 R R および は同じ力または異なり、炭素数 1一 5のアルキル 基または炭素数 1一 5の含フッ素アルキル基; R31および R32は同じかまたは異なり、炭 素数 1一 5のアルキル基、炭素数 1一 5の含フッ素アルキル基、水素原子; Z24、 Z25お よび Z26は同じかまたは異なり、炭素数 1一 5のアルキル基、炭素数 1一 5の含フッ素ァ ルキル基、官能基、水素原子またはハロゲン原子; r4および r5は同じ力または異なり 、 1一 4の整数; r6は 1一 2の整数; r7および r8は同じかまたは異なり、 1一 3の整数で あり、同じ符号であっても式が異なれば別異の基や整数をとりうる。
[0128] 式 (R2-5)の具体例としては、
SHD
Figure imgf000027_0001
Figure imgf000027_0002
[6210]X3d 92 8S0t0I請 OAV [0130] [化 35]
Figure imgf000028_0001
- CH2CH
Figure imgf000028_0002
[0131] (式中、 r4 r5は同じかまたは異なり、 1一 10の整数; Z21
Figure imgf000028_0003
rl r2は前記式(R2_
5)と同じ)などが好ましく挙げられる。
[0132] (R2— 6)の具体例としては、 [0133] [化 36]
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000029_0003
Figure imgf000029_0004
[0134] (式中、 Ζζ r3は前記式 (R2— 6)と同じ)などが好ましく挙げられる。 [0135] 式 (R2-7)の具体例としては、
[0136] [化 37]
Figure imgf000030_0001
[0137] (式中、 Z , r4および r5は前記式 (R2— 7)と同じ)などが好ましく挙げられる [0138] 式(R2— 8)の具体例としては、
[0139] [化 38]
Figure imgf000031_0001
[0140] (式中、 Z24および r6は前記式 (R2-8)と同じ)などが好ましく挙げられる c [0141] 式 (R2-9)の具体例としては、
[0142] [化 39]
Figure imgf000032_0001
Figure imgf000032_0002
[0143] (式中、 Z24、 r r4および r5は前記式 (R2— 9)と同じ)などが好ましく挙げられる。 [0144] 式(R2— 10)の具体例としては、 [0145] [化 40]
Figure imgf000033_0001
HOCHCH2〇一
Figure imgf000033_0002
Figure imgf000033_0003
[0146] [化 41]
Figure imgf000034_0001
H
Figure imgf000034_0002
Figure imgf000034_0003
[0147] (式中、 Z24、 Z25、 r7および r8は前記式 (R2—10)と同じ)などが好ましく挙げられる。
[0148] 式 (R2—11)の具体例としては、
2]
Figure imgf000035_0001
HOCHCH20—
Figure imgf000035_0002
Figure imgf000035_0003
[0150] [化 43]
Figure imgf000036_0001
HO
Figure imgf000036_0002
Figure imgf000036_0003
[0151] (式中、 Z24、 Z25
Figure imgf000036_0004
r6、 r7および r8は前記式 (R2— 11)と同じ)などが好ましく挙げ られる。
[0152] Z21、 Z22、 Z23、 Z24、 Z25および Z26の具体例としては、たとえば水素原子、フッ素原子、 メチル基などが例示できる。
[0153] これらの芳香族環状構造を有する二価以上の有機基は、耐熱性と機械的特性に 優れる点で好ましぐガラス転移点を高く設定でき、その結果、耐熱性の高い光学材 料が得られる点で好ましい。
[0154] なかでもフッ素原子を有するものが、近赤外領域の光も含めて広い波長帯域で透 明性が高い点で好ましい。また、フッ素原子の導入は、さらに屈折率の低減化にぉレ、 て効果的に作用するため好ましい。
[0155] (3)脂肪族環状 (単環または多環)構造を有する (nl + 1)価の有機基:
具体的には、式 (R2-12):
[0156] [化 44]
Figure imgf000037_0001
[0157] (式中、 R33および R34は同じ力または異なり、炭素数 1一 5のアルキル基または炭素数 1一 5の含フッ素アルキル基; Z27および Z28は同じかまたは異なり、炭素数 1一 5のアル キル基、炭素数 1一 5の含フッ素アルキル基、官能基、水素原子またはハロゲン原子 ; siおよび s2は同じかまたは異なり、 1一 4の整数)で表わされる部位を含む二価の 有機基、または式 (R2— 13) :
[0158] [化 45]
Figure imgf000037_0002
[0159] (式中、 R35、 R36、 R37および R38は同じ力、または異なり、炭素数 1一 5のアルキル基また は炭素数 1一 5の含フッ素アルキル基; Z29は炭素数 1一 5のアルキル基、炭素数 1一 5の含フッ素アルキル基、官能基、水素原子またはハロゲン原子; s3は 1一 4の整数) で表わされる部位を含む二価の有機基があげられる。
[0160] そのほか、つぎの式(R2-14)—(R2-18)で表わされる部位を含む二価の有機基 もあげられる。
[0161] 式(R2 - 14) : [0162] [化 46]
Figure imgf000038_0001
[0163] 式(R2—15)
[0164] [化 47]
[0165]
[0166]
(R 2— 1 6 )
Figure imgf000038_0002
[0167] 式(R2-17)
[0168] [化 49]
Figure imgf000038_0003
[0169] 式(R2—18) [0170] [化 50]
Figure imgf000039_0001
[0171] 上記式中、 R0 R4U、 R41および は同じ力、または異なり、炭素数 1一 5のアルキル 基または炭素数 1一 5の含フッ素アルキル基; R43および R44は同じ力 たは異なり、炭 素数 1一 5のアルキル基、炭素数 1一 5の含フッ素アルキル基、水素原子; Z3Q、 Z31お よび Z32は同じかまたは異なり、炭素数 1一 5のアルキル基、炭素数 1一 5の含フッ素ァ ルキル基、官能基、水素原子またはハロゲン原子; s4および s5は同じかまたは異なり 、 1一 4の整数; s6は 1一 2の整数; s7および s8は同じかまたは異なり、 1一 3の整数で あり、同じ符号であっても式が異なれば別異の基や整数をとりうる。
[0172] 式(R2-12)の具体例としては、
1]
Figure imgf000040_0001
Z28)S2 CH2-
HOCHCH, O OCH2し HOH
[0174] [化 52]
し .■ '/ s 5
C-,H112?-)" s 5
Figure imgf000041_0001
[0175] (式中、 s4、 s5は同じかまたは異なり、 1一 10の整数; Z27
Figure imgf000041_0002
sl、 s2は前記式(R2 —12)と同じ)
などが好ましく挙げられる。
[0176] (R2— 13)の具体例としては、
[0177] [化 53]
Figure imgf000042_0001
[0178] (式中、 Z29、 s3は前記式 (R2— 13)と同じ)などが好ましく挙げられる c [0179] 式 (R2-14)の具体例としては、 [0180] [化 54]
Figure imgf000043_0001
[0181] (式中、 Z3° Z31 s4および s5は前記式 (R2—14)と同じ)などが好ましく挙げられる c [0182] 式 (R2— 15)の具体例としては、
[0183] [化 55]
Figure imgf000044_0001
[0184] (式中、 Z3Qおよび s6は前記式 (R2— 15)と同じ)などが好ましく挙げられる。 [0185] 式 (R2-16)の具体例としては、
[0186] [化 56]
Figure imgf000045_0001
Figure imgf000045_0002
[0187] (式中、 Z3°、 Z31、 s4および s5は前記式 (R2-ie)と同じ)などが好ましく挙げられる c [0188] 式(R2— 17)の具体例としては、 [0189] [化 57]
Figure imgf000046_0001
HOCHCH,0-
Figure imgf000046_0002
Figure imgf000046_0003
[0190] [化 58]
Figure imgf000047_0001
一 CH2
HOCHCH20-
Figure imgf000047_0002
Figure imgf000047_0003
[0191] (式中、 Z3°、 Z31、 s7および s8は前記式 (R2—17)と同じ)などが好ましく挙げられる c [0192] 式(R2-18)の具体例としては、
Figure imgf000048_0001
[0194] [化 60]
Figure imgf000049_0001
一 CH2
HOCHCH20-
Figure imgf000049_0002
― CHつ
— CHCHク O—
Figure imgf000049_0003
[0195] (式中、 Z3°、 Z31、 Z32、 s6、 s7および s8は前記式 (R2—18)と同じ)などが好ましく挙げ られる。
[0196] Z28、 Z29、 Z3Q、 Z31および Z32の具体例としては、たとえば水素原子、フッ素原子、 メチル基などが例示できる。
[0197] これらの脂肪族環状構造を有する二価以上の有機基は、ガラス転移温度を高く設 定でき、耐熱性、機械的特性に優れる点で好ましい。また、紫外光に対して透明性が 高レ、点で好ましく、耐紫外線性にも優れる点でも好ましレ、。
[0198] なかでもフッ素原子を有するものが、近赤外領域の光に対して透明性が高ぐ広い 波長帯域にわたって透明性が高いため好ましい。また、フッ素原子の導入は、さらに 屈折率の低減化において効果的に作用するため好ましい。
[0199] (4)ウレタン結合を含む (nl + 1)価の有機基
具体的には、
[0200] [化 61]
— CH2CH2 (OCONH )]~NHCOOCH2CH2OCH2CH2~K
Figure imgf000050_0001
CH
— CH2Cn2 〉N
Figure imgf000050_0002
[0201] などの有機基が挙げられる。
[0202] 以上に R2を中心に説明した力 式(2)で示される多官能アタリレートの具体例として は次のものが例示できる。
o
o t
Figure imgf000051_0001
cvl C CH/ J — [0204] [化 63]
O CH3
r II I 3
CH,
CH¾ = C-COC
II
F
CH2 = C-COC
H 2 ^
Figure imgf000052_0001
O
C H 3 O CH3 h9 = COO
Figure imgf000052_0002
CH,
64]
Figure imgf000053_0001
65]
Figure imgf000054_0001
CF
CH, = CF-COO- CF3
CF C— OC— CF=CH
66]
Figure imgf000055_0001
o O
Figure imgf000055_0002
[0208] [化 67]
Figure imgf000056_0001
Figure imgf000056_0002
[0209] [化 68]
Figure imgf000056_0003
2
Figure imgf000056_0004
[0210] [化 69]
Figure imgf000057_0001
[0211] [化 70]
Figure imgf000057_0002
[0212] [化 71]
Figure imgf000058_0001
Figure imgf000058_0002
[0213] [化 72]
Figure imgf000058_0003
Figure imgf000058_0004
[0214] [化 73]
Figure imgf000059_0001
Figure imgf000059_0002
[0215] [化 74]
Figure imgf000059_0003
Figure imgf000059_0004
[0216] [化 75]
Figure imgf000060_0001
Figure imgf000060_0002
[0217] などの多官能アタリレー H匕合物が好ましく挙げられる。
[0218] 構造単位 M_lにおける構造単位 Nの含有量は 1一 99モル%であり、好ましい下限 は 2モル0 /0、さらには 5モル%である。構造単位 Nの含有量が少なくなると耐熱性が 低下する傾向にある。好ましい上限は 80モル%、さらには 70モル%であり、多くなる と可撓性が低下する傾向にある。
[0219] また本発明の式 (M— 1)において任意成分である構造単位 Aは、
式 (3) :
[0220] [化 76]
X '
C H = C
( 3 )
C— O— R :
O
[0221] (式中、 Xは H、 CH 、 F、 CIおよび CFよりなる群から選ばれる少なくとも 1種; Rは芳 香環を含む炭素数 6— 30の 1価の炭化水素基であって、ただし R3中の水素原子の 一部または全てがフッ素原子に置換されていてもよい)で示される単量体の少なくと も 1種に由来する構造単位 A— 1; 式 (4) :
[0222] [化 77]
C H 2 = C
I ( 4 )
C - O - R 4
O
[0223] (式中、 X5は H、 CH、 F、 CIおよび CFよりなる群力、ら選ばれる少なくとも 1種; R4は脂
3 3
環式炭化水素部位を有する炭素数 3 30の 1価の炭化水素基であって、ただし R4中 の水素原子の一部または全てがフッ素原子に置換されてレ、てもよレ、)で示される単量 体の少なくとも 1種に由来する構造単位 A— 2;および
式(1)一 (4)にそれぞれ示される単量体と共重合可能な単量体由来の構造単位 A - 3よりなる群から選ばれる少なくとも 1種であり、
構造単位 M - 1中に構造単位 A - 1と構造単位 A - 2を合わせて 1一 98モル%および 構造単位 A— 3を 0— 97モル%含む構造単位であることが、耐熱性を向上させ、かつ 機械的強度を高める点で好ましい。
[0224] 式(3)の単量体に由来する構造単位 A— 1を導入することで、さらなる耐熱性や機 械的特性、低吸水性を付与でき、さらには屈折率の調整が可能である。
[0225] 特に構造単位 A— 1において X4が CHであるメタタリレート由来の構造単位であると
3
きは、耐熱性と透明性および屈折率の調整機能をさらに効果的に付与できる点で好 ましい。
[0226] また、構造単位 A— 1において X4がフッ素原子である α—フロロアタリレート由来の構 造単位であるときは、耐熱性と機械的強度、特に曲げ強度、さらには可撓性を付与で きる点で好ましい。
[0227] また構造単位 Α— 1中の R3力 フッ素原子を含んでいてもよいフエニル基またはその 誘導体、特にフエニルメタタリレートおよびフエ二ルーひ—フロロアタリレートから選ばれ る少なくとも 1種の単量体由来の構造単位であるときは、さらなる耐熱性と低吸水性を 付与できる点で好ましい。 [0228] 構造単位 A— 1の具体例としては、
[0229] [化 78]
Figure imgf000062_0001
[0230] (式中、 ΧΊま H、 F、 Cl、 CHまたは CF ;R 、 R 、 R 、 Rおよび Rは同じかまたは異
3 3
なり、 H、 F、 Cほたはハロゲン原子で置換されていてもよい炭素数 1一 14のアルキル 基; R6fは結合手または分岐鎖を有していてもよい炭素数 1一 6のアルキレン基)など があげられ、具体的には
[0231] [化 79]
Figure imgf000062_0002
[0232] が好ましくあげられる。
[0233] なかでも、フエニルメタタリレート、フエニル α—メタタリレートが耐熱性を向上させる 点で好ましい。
[0234] 式 (4)で示される脂環式炭化水素部位を有する構造単位 Α - 2は、ポリマー硬化物 に耐熱性 (高 Tg)、機械的強度、特に耐熱性を付与する。
[0235] 式 (4)における側鎖を形成する R4は炭素数 3— 30の有機基であってその中に脂環 式の炭化水素部位を有しているものである。
[0236] 脂環式の炭化水素部位は単環構造の炭化水素部位であっても、複環構造の炭化 水素部位であっても、それらいずれをも含む炭化水素部位であってもよい。
[0237] 脂環式の炭化水素部位は単環構造の炭化水素部位を含む場合、 R4は炭素数 7以 上の有機基であることが好ましぐそれによつてより効果的に耐熱性を付与できる。
[0238] 特に、 R4は複環構造の炭化水素部位を含む有機基であることが好ましぐより効果 的に耐熱性と透明性を付与できる。
[0239] 単環構造の炭化水素部位を含む場合の R4は、具体的には、
(1)シクロペンチル基およびその誘導体を有する有機基、
(2)シクロへキシル基およびその誘導体を有する有機基、
(3)パーヒドロビフヱニル基およびその誘導体を有する有機基、
(4)スピロ〔4, 4〕ノナンおよびその誘導体を有する有機基、
(5)スピロ〔4, 5〕デカンおよびその誘導体を有する有機基
などが好ましくあげられ、それらの一部の例として、
[0240] [化 80]
Figure imgf000063_0001
Figure imgf000063_0002
[0241] などがあげられる。
[0242] またこれら例示の炭化水素基の水素原子を炭素数 1一 5のアルキル基やフッ素原 子、さらには官能基などで置換したものであってもよい。
[0243] 複環構造の炭化水素部位を含む場合の R4は、具体的には、 (6)ァダマンタンおよびその誘導体を有する有機基、
(7)ノルボルナンおよびその誘導体を有する有機基、
(8)パーヒドロアントラセンおよびその誘導体を有する有機基、
(9)パーヒドロナフタレンおよびその誘導体を有する有機基、
(10)トリシクロ〔5. 2. 1. 02'6〕デカンおよびその誘導体を有する有機基
などがあげられ、それらの一部の例として、
[0244] [化 81]
Figure imgf000064_0001
Figure imgf000064_0002
[0245] などがあげられる。
[0246] またこれら例示の炭化水素基の水素原子を炭素数 1一 5のアルキル基やフッ素原 子、さらには官能基などで置換したものであってもよい。
[0247] さらにこれら複環構造の炭化水素部位を含む有機基のうち、ァダマンタンおよびそ の誘導体、ノルボルナンおよびその誘導体、トリシクロ〔5. 2. 1. 02'6〕デカンおよび その誘導体を含むものが好ましぐこれらは特に耐熱性と透明性を効果的に重合体 に付与できる。
[0248] 構造単位 A— 2である脂環式構造の炭化水素部位を有する構造単位を形成できる 式 (4)で示される単量体は、具体的には、前記 R4から選ばれる少なくとも 1種の側鎖 構造を有するアクリル系単量体であり、たとえばつぎのものが例示できる。
[0249] (I)つぎの式で示されるノルボルナンおよびその誘導体を含む有機基を側鎖に有す る単量体: [0250] [化 82]
Figure imgf000065_0001
[0251] (式中、 X5は H、 F、 Cl、 CHまたは CF; Rla
3 3 、 R2 R3a、 R4a、 R5 R6a、 R7 R8 R9aお よび R1Qaは同じかまたは異なり、 H、 F、 Cほたは炭素数 1一 14のハロゲン原子で置換 されてレ、てもよレ、アルキル基; RUaは結合手または分岐鎖を含んでレ、てもよレ、炭素数 1一 6のアルキレン基; nは 0または 1一 2の整数)。
[0252] より具体的には、
[0253] [化 83]
Figure imgf000066_0001
Figure imgf000066_0002
[0254] などがあげられる。
[0255] (II)つぎの式で示されるァダマンタンおよびその誘導体を含む有機基を側鎖に有す る単量体:
[0256] [化 84]
Figure imgf000067_0001
[0257] または
[0258] [化 85]
X3
5b
Figure imgf000067_0002
[0259] (式中、 X5は H、 F、 Cl、 CHまたは CF; Rlb、 R は環に結合した置換基であり、 CH
、 C Hまたは OH ;R4b、 R5bは結合手または分岐鎖を有していてもよい炭素数 1一 6の アルキレン基; R3bは H、 CHまたは。 H; nは 0または 1一 2の整数)。
[0260] より具体的には、
[0261] [化 86]
Figure imgf000068_0001
Figure imgf000068_0002
Figure imgf000068_0003
[0262] などがあげられる。
[0263] (ΠΙ)つぎの式で示されるトリシクロ〔5. 2. 1. 02'6〕デカンおよびその誘導体を含む有 機基を側鎖に有する単量体: [0264] [化 87]
Figure imgf000069_0001
[0265] (式中、 Xは H、 F、 Cl、 CHまたは CF ;R 、 R 、 R 、 R 、 R 、 R 、 R 、 R 、 R 、 R
10c、 RUc、 R12c、 R13c、 R14eおよび R15eは同じ力、または異なり、 H、 F、 Cほたはハロゲン 原子で置換されてレ、てもよレ、炭素数 1一 14のアルキル基; R16eは結合手または分岐 鎖を含んでいてもよい炭素数 1一 6のアルキレン基)、
または
[0266] [化 88]
Figure imgf000069_0002
[0267] (式中、 X5は H、 F、 Cl、 CHまたは CF; Rld、 R2d、 R3d、 R4d、 R5d、 R6d、 R7d、 R8d、 RM
R1M、 R"d、 R および R13dは同じ力、または異なり、 H、 F、 Cほたはハロゲン原子で置 換されてレ、てもよレ、炭素数 1一 14のアルキル基; R14dは結合手または分岐鎖を含ん でいてもよい炭素数 1一 6のアルキレン基)。
[0268] より具体的には、 [0269] [化 89]
Figure imgf000070_0001
Figure imgf000070_0002
[0270] などがあげられる。
[0271] これらのうち構造単位 A— 2中の R4が、フッ素原子を含んでいてもよいシクロへキシ ル基またはその誘導体、またはフッ素原子を含んでいてもよい複環構造を有する脂 環式炭化水素基またはその誘導体であることが、 Tgを高くし、機械的強度を向上さ せる点で好ましい。
[0272] 構造単位 A— 1および A— 2は任意成分ではある力 導入するときは構造単位 M— 1 中に合計で 1一 98モル%含まれることが好ましレ、。好ましい上限(合計)は 50モル% 、さらには 30モル0 /0であり、好ましい下限は 2モル0 /0、さらには 5モル0 /0である。
[0273] 本発明の構造単位 Aにおける構造単位 A— 3を形成する単量体としては、鎖状の炭 化水素基を側鎖に有する単量体 (ただし、前記式(1)で示される単量体は除く)が好 ましくあげられる。
[0274] その具体例としては、
[0275] [化 90] wH。
I 3
n5 """"" 、
C-O— {CH2)n-{CF2)m-Y C— O— (CH2)n-(CF2)m-Y 0 O
H
CH CH— C
2 \
C-0-(CH2)n-(CF2)m-Y C~0™(CH2)n {CFOCF2)mC, 0 O CF
Figure imgf000072_0001
CH
I 。 3
M「し、 R i
C— 0 (CH2)m - ー R C-0 (CH2)m-C -R2e
O R3e O R3e
[0276] (式中、 nは 1一 6の整数、 mは 0— 29の整数を示す。また Yは Hもしくは F ;Rle、 R2\ R3eは同じ力または異なり、 H、炭素数 1一 29のエーテル結合を含んでいてもよいァ ルキル基または炭素数 1一 29のエーテル結合を含んでいてもよい含フッ素アルキル
などがあげられる。
[0277] より具体的には、 [0278] [化 91]
C。F,
Figure imgf000073_0001
CH,
/ 3
'i c
2 \
c-o- -CH, con -CH。
I I
o o
CH„
/ 3
CH, CH。 CH CH '3,
― KJ―し― Π C— O一 C— H
Ο CH, O CH。
[0279] があげられ、なかでもメタクリル酸、 α—フルォロアクリル酸、アクリル酸、メチルメタタリ レート(ΜΜΑ)、メチルー α—フルォロアタリレートが透明性、耐熱性、機械的強度の 向上効果に優れる点で好ましい。特に ΜΜΑは光学特性、機械特性の向上効果に 優れる。
[0280] そのほかの構造単位 Α— 3として好適なものとしては、基材(石英や光学ガラスなど の無機系基材、有機系基材など)との密着性を向上させる構造単位があげられる。た とえば無機系基材への密着性の向上のためには、水酸基、シラノール基、アミノ基、 シァノ基などの官能基を有する単量体、特にアクリル系単量体に由来する構造単位 が好ましい。 [0281] また、構造単位 A— 3としては、グリシジル基含有単量体なども例示できる。
[0282] 構造単位 A— 3は構造単位 M— 1中に最大で 97モル%、好ましくは 1モル%以上で 50モル%以下、さらには 30モル%以下が好ましい。
[0283] 本発明においてポリマー硬化物は上記の単量体、場合によってはそれらのオリゴマ 一を混合し、活性エネルギー線を照射して硬化させることにより、構造単位 M— 1をも つようになる。すなわち、ー且、一部の単量体を重合して硬化性ポリマーとし、ついで その硬化性ポリマーを硬化させるものではなぐエポキシ樹脂や不飽和ポリエステル などと同様に、単量体から直接硬化したポリマーを製造するものである。
[0284] 本発明において式(1)の単量体は常温で液体であり、式(2)の単量体は常温で粘 調な液体または固体である。また、構造単位 Aを与える単量体は常温で液体のものも あれば固体のものもある。これらを塗布または成形可能な均一な組成の組成物とする 。式(1)の単量体は式(2)の単量体に対して希釈剤(反応性希釈剤)として作用する 力 さらに構造単位 Aを与える単量体を反応性希釈剤として追加してもよいし、他の 化合物を単なる粘度調整剤として別途カ卩えてもよい。ただしその添加量は、本発明 が目的としている効果を損なわない範囲である。
[0285] たとえば塗布により光学材料を形成する場合は、作業性および膜厚を薄く均一に するためには、塗布用の組成物の粘度を 100— lOOOOcpsとすることが望ましい。粘 度を高くする場合は、上記の単量体をオリゴマーまたはポリマー化してもよいし、本発 明が目的としている効果を損なわない他のオリゴマーまたはポリマーを使用してもよ レ、。これらが重合性の化合物である場合は本発明のポリマー硬化物の構成単位 A— 3となる。
[0286] このような他のポリマーとしては、以下に示すフッ素含有率が 25重量%以上の非晶 性含フッ素ポリマーが好ましく使用できる。具体的にはたとえば特願 2003—364751 の明細書に例示の非晶性含フッ素ポリマー(D)が例示できる。
[0287] (D_l)アクリル系単量体のみを重合してなる重合体であって、フッ素含有率が 25重 量%以上の非晶性の含フッ素アクリル系ポリマー。
[0288] アクリル系単量体としては、具体的には式(D—1—1): [0289] [化 92]
C H = C X &
C— Q— (D ~ 1— 1 )
O
[0290] (式中、 X6は H、 F、 Cl、 CHまたは CF; Ruは炭素数 1
3 3 一 30の水素原子の一部また は全てがフッ素置換されてもよい飽和炭化水素基。ただし、 X6および R11の少なくとも 一方はフッ素原子を含む)があげられる。含フッ素アクリル系ポリマー(D)のフッ素含 有率、耐熱性 (高ガラス転移温度)、近赤外領域での透明性が良好であるとの観点か ら X6はフッ素原子が好ましレ、。
[0291] 好ましい R11としては、
(1)アルキレンエーテル結合を含む水素原子の一部または全てがフッ素置換されて いてもよい飽和炭化水素基、
(2)分岐構造を含む水素原子の一部または全てがフッ素置換されてもょレ、飽和炭化 水素基、
(3)ヘテロ原子を有してレ、てもよレ、水素原子の一部または全てがフッ素置換されてレヽ てもよい芳香族炭化水素基、
(4)ヘテロ原子を有してレ、てもよレ、水素原子の一部または全てがフッ素置換されてレヽ てもよい脂肪族単環構造、
(5)ヘテロ原子を有してレ、てもよレ、水素原子の一部または全てがフッ素置換されてレヽ てもよい脂肪族複環構造
である。
[0292] (D—2)含フッ素ァリルエーテル系単量体を重合してなる重合体であって、フッ素含 有率が 25重量%以上の非晶性の含フッ素ァリルエーテル系ポリマー。
[0293] ポリマー (D-2)は W〇95/33782、 WO02/18457、 WO02/73255各パンフ レット等に開示されている。
[0294] ポリマー(D-2)は高フッ素含有率にもかかわらず、非晶性を示し、かつ構造単位( A)を与える含フッ素単量体に対する溶解性が非常に高い。また、たとえば炭素-炭 素二重結合のような、構造単位 (A - 1)を与える含フッ素アクリル系単量体と反応し得 る硬化部位を容易に側鎖末端にもたせることが可能で、このような、含フッ素アタリノレ 系単量体と反応し得る硬化部位があれば、硬化物が全体として相互ネットワークを形 成するため、耐溶剤性、低線膨張係数、耐熱性等、さらに優れた硬化物性能を発現 する。
[0295] (D— 3)主鎖中に環状構造を有するフッ素含有率が 25重量%以上の非晶性の含フッ 素環状ポリマー。
[0296] ポリマー(D—3)はガラス転移温度が非常に高ぐ硬化物の耐熱性が高くなる点で 好ましレ、。このようなポリマー(D—3)としては、好ましくはフッ素を有する脂肪族環状 の構造単位をもつポリマーと非フッ素系の脂環式単量体構造単位をもつポリマーが 例示できる。
(D—3— 1)フッ素を有する脂肪族環状の構造単位:
この構造単位を導入すると、近赤外領域での透明性をより高くでき、さらに高ガラス 転移温度の非晶性の含フッ素環状ポリマー(D— 3)が得られ、硬化物のさらなる高硬 度化が期待できる点で好ましレ、。
(D-3-2)非フッ素系の脂環式単量体構造単位:
また、非フッ素系の脂環式単量体構造単位 (D-3— 2)を含有した非晶性の含フッ素 ポリマーは硬化物の高ガラス転移温度化やさらなる高硬度化が図られる。
[0297] (D— 4)含フッ素ォレフィンと炭化水素系ビュルエーテルからなる共重合体でフッ素 含有率が 25重量%以上の非晶性の含フッ素コポリマー。
[0298] (D— 5)含フッ素ポリスチレン系単量体を重合してなる重合体であって、フッ素含有率 力 ¾5重量%以上の非晶性の含フッ素ポリスチレン系ポリマー。
[0299] (D— 6)ビニリデンフルオライド系共重合体であって、フッ素含有率が 25重量%以上 の非晶性のビニリデンフルオライド系コポリマー。
[0300] 非晶性のビニリデンフルオライド系コポリマー(D— 6)は、ビニリデンフルオライドにこ れと共重合可能な他のモノマーの 1種または 2種以上を共重合したものが好ましい。
[0301] 他のモノマーの代表的な例としては、テトラフルォロエチレン、クロ口トリフルォロェ チレン、トリフルォロエチレン、ビュルフルオライド、へキサフルォロプロピレン、ペンタ フルォロプロピレン、へキサフルォロイソブテン、パーフルォロシクロブテン、パーフル ォロ(メチルシクロプロピレン)、パーフルォロアレン、パーフルォロアルキルビエルェ 一テル類(例えばパーフルォロメチルビ二ルエーテル、パーフルォロプロピルビニル エーテルなど)、パーフルォロビニル酢酸またはそのエステル、パーフルォロビニル エーテルスルホン酸、パーフルォロジェン類、エチレン、プロピレン、ビュル酢酸また はそのエステルなどがあげられる。他のモノマーの含有量は特に制限されなレ、が、通 常 10— 60重量%で、フッ素含有率が 25重量%以上となるように共重合することが好 ましい。
[0302] 非晶性のビニリデンフルオライド系コポリマーとしては特に、ビニリデンフルオライド /へキサフルォロプロピレン(85— 60/15— 40モル0 /0比)コポリマー、ビユリデンフ ノレオライド Zへキサフルォロプロピレン/テトラフルォロエチレン(84 20Z15 40 /1一 40モル0 /0比)コポリマー力 S、構造単位 (A)を与える含フッ素単量体への溶解 性、硬化物の相溶性に優れる点から好ましレ、。
[0303] ポリマー(D-6)は特に可視域の透明性に優れ、また、硬化物に耐衝撃性をあたえ る点で好ましい。
[0304] 非晶性ポリマー(D)の数平均分子量は、他の成分への溶解性、相溶性の観点から ίま、上限 ίま 500, 000、好ましく ίま 100, 000、特に好ましく ίま 50, 000である。下限 は特には制限されないが、同様の観点から、数量体であるオリゴマーであることが好 ましく、具体白勺に ίま 300、好ましく ίま 500である。
[0305] また、屈折率の調整は構造単位 Μ、構造単位 Ν、さらには構造単位 Αの種類や量 を適宜選定することで通常は対応できるが、そのほかに屈折率調整成分として、必要 に応じて低分子量化合物を添加してもかまわない。これらの具体例としては、フタル 酸べンジル _n_ブチル(屈折率: 1. 575)、 1—メトキシフエ二ノレ _1_フエニルェタン( 屈折率: 1. 571)、安息香酸ベンジル(屈折率: 1. 568)、ブロモベンゼン(屈折率: 1 . 557)、 o—ジクロ口ベンゼン(屈折率: 1. 551)、 m—ジクロロベンゼン(屈折率: 1. 5 43)、 1 , 2 ' _ジブロモェタン(屈折率: 1. 538)、 3_フエニル _1_プロパノール(屈折 率: 1. 532)、ジフヱニルフタル酸(C H (COOC H ) )、トリフヱニルフォスフィン((
C H ) P)、ジベンジノレフォスフェート((C H CH O) PHO )、4, 4,—ジブロモベン ジル、 4, 4 ' _ジブロモビフエニル、 2, 4 ' _ジブ口モアセトフエノン、 3 ' , 4 '—ジクロロア セトフヱノン、 3, 4—ジクロロア二リン、 2, 4 ジブ口モア二リン、 2, 6 ジブ口モア二リン 1 , 4 ジブロモベンゼンなどの化合物などがあげられる。
[0306] その他の添加剤として、用途や要求特性に応じて適宜公知の添加剤を使用しても よレ、。他の添加剤としては、たとえばレべリング剤、酸化防止剤などがあげられる。
[0307] 本発明の耐熱性含フッ素光学材料を構成するポリマー硬化物は、上記単量体を所 定の量で配合し、さらに必要に応じて重合開始剤や他の添加剤をカ卩えて組成物とし 、これを成形または基材に塗布したのち、硬化反応を開始させることにより製造できる
[0308] 硬化反応を惹き起こさせる方法としては、活性エネルギー線を照射する方法、ラジ カル重合を開始させる化合物(ラジカル重合開始剤など)を添加し、たとえば加熱す る方法など、公知の方法が採用できる。
[0309] まず、活性エネルギー線を照射する方法について説明する。
[0310] 活性エネルギー線としては、 350nm以下の波長領域の電磁波、つまり紫外光線、 X線、 γ線などのほか電子線があげられ、好ましくは紫外光線が用いられる。活性ェ ネルギ一線を照射して効率よく単量体を硬化させるためには、通常、活性エネルギ 一線硬化開始剤が用いられる。
[0311] 活性エネルギー線硬化開始剤は、活性エネルギー線に曝されることによって初め てラジカルゃカチオンなどを発生し、単量体の重合性炭素 炭素二重結合の重合( 硬化反応)を開始させる触媒として働くものであり、通常、紫外光線でラジカルゃカチ オンを発生させるもの、特にラジカルを発生するものが汎用される。
[0312] 本発明における活性エネルギー線硬化開始剤は、該単量体の炭素一炭素二重結 合の種類 (ラジカル反応性力 カチオン反応性か)、使用する活性エネルギー線の種 類 (波長領域など)、照射強度などによって適宜選択されるが、一般に紫外線領域の 活性エネルギー線を用いてラジカル反応性の炭素一炭素二重結合を有する該単量 体を硬化させる開始剤としては、たとえばつぎのものが例示できる。
[0313] ァセトフエノン系
ァセトフエノン、クロロアセトフエノン、ジェトキシァセトフエノン、ヒドロキシァセトフエノ ン、 α—アミノアセトフエノンなど
[0314] ベンゾイン系
ベンゾイン、ベンゾインメチルエーテル、ベンゾインェチルエーテル、ベンゾインイソ プロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタールなど [0315] ベンゾフエノン系
ベンゾフヱノン、ベンゾィル安息香酸、ベンゾィル安息香酸メチル、 4—フエニルベン ゾフエノン、ヒドロキシベンゾフエノン、ヒドロキシープロピルべンゾフエノン、アクリル化 ベンゾフエノン、ミヒラーケトンなど
[0316] チォキサンソン類
チォキサンソン、クロ口チォキサンソン、メチルチオキサンソン、ジェチルチオキサン ソン、ジメチルチオキサンソンなど
[0317] その他
ベンジル、 α—ァシルォキシムエステル、ァシルホスフィンオキサイド、グリオキシェ ステル、 3—ケトクマリン、 2—ェチルアンスラキノン、カンファーキノン、アンスラキノンな ど
[0318] また、必要に応じてアミン類、スルホン類、スルフィン類などの公知の光開始助剤を 添加してもよい。
[0319] また、カチオン反応性の炭素一炭素二重結合を有する該単量体を硬化させる開始 剤としては、つぎのものが例示できる。
[0320] ォニゥム塩
ョードニゥム塩、スルホニゥム塩、ホスホニゥム塩、ジァゾニゥム塩、アンモニゥム塩、 ピリジニゥム塩など
[0321] スルホン化合物
β—ケトエステル、 β一スルホニルスルホンとこれらのひ—ジァゾ化合物など [0322] スルホン酸エステル類
ァノレキノレスノレホン酸エステノレ、ノヽロアノレキノレスノレホン酸エステノレ、ァリーノレスノレホン 酸エステル、イミノスルホネートなど
[0323] そ _の他 スルホンイミド化合物類、ジァゾメタンィヒ合物類など
[0324] 活性エネルギー線硬化開始剤の量は単量体の全量に対して通常 0. 1— 10重量 %が好ましい。
[0325] また、ラジカル重合を開始させる化合物を添カ卩する方法としては、たとえば公知のラ ジカル重合開始剤を使用してラジカルを発生させる方法が好ましい。
[0326] ラジカル重合開始剤としては、パーオキサイド類、ァゾ系開始剤などが利用できる。
[0327] パーオキサイド類としては、たとえば n—プロピルパーォキシジカーボネート、 i一プロ ピルパーォキシジカーボネート、 n—ブチノレパーォキシジカーボネート、 tーブチルバ ーォキシジカーボネート、ビス(4_t—ブチルシクロへキシル)パーォキシジカーボネ ートなどのパーォキシジカーボネート類; ,—ビス(ネオデカノィルパーォキシ) ジイソプロピルベンゼン、タミルパーォキシネオデカノネイト、 1 1 , 3, 3—テトラメチル ブチルパーォキシネオデカノネイト、 1—シクロへキシルー 1一メチルェチルパーォキシ ネオデカノネイト、 t キシルパーォキシネオデカノネイト、 t一ブチルパーォキシネオ デカノネイト、 t キシルパーォキシビバレイト、 t一ブチルパーォキシビバレイト、 1, 1 , 3, 3—テトラメチルブチルパーォキシ一 2—ェチルへキサノネート、 2, 5—ジメチルー 2, 5—ビス(2—ェチルへキサノィルパーォキシ)へキサン、 t キシルパーォキシ一 2 一ェチルへキサノネイト、 t一ブチルパーォキシ一 2—ェチルへキサノネイト、 tーブチノレ パーォキシイソブチレート、 t一へキシルパーォキシイソプロピルモノカーボネート、 t- ブチルパーォキシマレイツクアシッド、 t一ブチルパーォキシ一 3, 5, 5—トリメチルへキ サノネイト、 t_ブチルパーォキシラウレイト、 2, 5_ジメチルー 2, 5_ビス(m_トルオイ ルパーォキシ)へキサン、 t_ブチルパーォキシイソプロピルモノカーボネイト、 t—ブチ ノレパーォキシ _2_ェチルへキシルモノカーボネイト、 t—へキシルバーォキシベンゾネ ート、 2, 5—ジメチルー 2 5_ビス(ベンゾィル)へキサン、 t一ブチルパーォキシァセテ ート、 t_ブチルパーォキシ _m_トノレレートとパーォキシベンゾエート混合物、 t—ブチ ノレパーォキシベンゾエート、ジ t_ブチルパーォキシイソフタレートなどのォキシパー エステル類;イソブチルパーオキサイド、 3, 5, 5_トリメチルへキサノィルパーォキサ イド、オタタノィルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーォキサ イド、サクシニックアシッドパーオキサイド、 m—トルオイルパーオキサイド、 - パーオキサイドなどのジァシルバーオキサイド類; 1 , 1 ビス(t一へキシルパーォキシ )—3, 3, 5—トリメチルシクロへキサン、 1 , 1—ビス(t—へキシルパーォキシ)シクロへキ サン、 1 , 1—ビス(t—ブチルパーォキシ )—3, 3, 5—トリメチルシクロへキサン、 1 , 1— ビス(t_ブチルパーォキシ) _2—メチルシクロへキサン、 1 , 1_ビス(t_ブチルバーオ キシ)シクロへキサン、 2, 2_ビス(t_ブチルパーォキシ)ブタン、 n—ブチルー 4, 4—ビ ス(t一ブチルパーォキシ)バレレート、 2, 2—ビス(4, 4ージ _t_ブチルパーォキシシク 口へキシル)プロパンなどのパーォキシケタール類;ひ、 α,—ビス(t_ブチルパーォキ シ)ジイソプロピルベンゼン、ジクミルパーオキサイド、 2, 5—ジメチノレー 2, 5ビス(t—ブ チルバーォキシ)へキサン、 t_ブチルタミルパーオキサイド、ジ一 t_ブチルパーォキ サイド、 2, 5_ジメチルー 2, 5ビス(t_ブチルパーォキシ)へキシン一 3などのジアルキ ルパーオキサイド類; P—メンタンハイド口パーオキサイド、ジイソプロピルベンゼンハイ ドロパーオキサイド、 1, 1 , 3, 3—テトラメチルブチルハイド口パーオキサイド、タメンノヽ イド口パーオキサイド、 t ブチルハイド口パーオキサイドなどのハイド口パーオキサイド 類;過硫酸アンモニゥム、過硫酸カリウム、過硫酸ナトリウムなどの過硫酸塩類;その 他、過塩素酸類、過酸化水素などがあげられる。
[0328] また、フッ素原子を有するパーオキサイド類も利用可能であり、含フッ素ジァシルパ 一オキサイド類、含フッ素パーォキシジカーボネート類、含フッ素パーォキシジエステ ル類、含フッ素ジアルキルパーオキサイド類から選ばれる 1種または 2種以上が好ま しレ、。なかでも例えば、ペンタフルォロプロピオノィルパーオキサイド(CF CF COO)
、ヘプタフルォロブチリルパーオキサイド(CF CF CF COO) 、 7H—ドデカフルォロ ヘプタノィルパーオキサイド(CHF CF CF CF CF CF COO)などのジフルォロア シノレパーオキサイド類が好ましくあげられる。
[0329] ァゾ系ラジカル重合開始剤としては、たとえば 2, 2,—ァゾビスイソブチロニトリル、 2 , 2,—ァゾビス(2, 4—ジメチルバレロニトリル)、 2, 2 '—ァゾビス(2—メチルバレロニトリ ル)、 2, 2 '—ァゾビス(2—シクロプロピルプロピオ二トリル)、 2, 2,—ァゾビスイソ酪酸 ジメチノレ、 2, 2' —ァゾビス [2— (ヒドロキシメチル)プロピオ二トリル]、 4, 4,—ァゾビス (4一シァノペンテン酸)などがあげられる。
[0330] ラジカル重合開始剤としては、なかでも、パーォキシジカーボネート類、ジフルォロ ァシルパーオキサイド類、ォキシパーエステル類、過硫酸塩類などが好ましい。
[0331] ラジカル重合開始剤の使用量は、使用する全単量体の合計 1モルに対して、下限 ίま 0. 0001モノレ、好ましく ίま 0. 01モノレ、より好ましく ίま 0. 03モノレ、特に好ましく ίま 0.
05モノレであり、上限 fま 0. 9モノレ、好ましく fま 0. 5モノレ、より好ましく fま 0. 1モノレ、特 ίこ 好ましくは 0. 08モルである。
[0332] 本発明の耐熱性含フッ素光学材料の分子量は、式(2)の多官能アタリレート(構造 単位 Ν)により架橋構造をとるため特定できない。
[0333] 本発明の耐熱性含フッ素光学材料は、ガラス転移温度 Tgとして 100°C以上の耐熱 性を有している。さらに、各単量体成分を選択することにより、 Tgを 105°C以上、さら には 110°C以上、またさらに 120°C以上、さらには 130°C以上にすることも可能であ る。 Tgを高くするには、たとえば構造単位 N中に環構造を導入すればよい。
[0334] 本発明で定義するガラス転移温度 Tgは、 DSC (示差走查熱量計)を用いて、 1st runを昇温速度 10°C/分で 200°Cまで上げ、 200°Cで 1分間維持したのち降温速度
10°C/分で 25°Cまで冷却し、ついで昇温速度 10°C/分で得られる 2nd runの吸熱 曲線の中間点を採用する。
[0335] また本発明の耐熱性含フッ素光学材料は、熱分解温度 Tdとして 180°C以上の耐 熱性を有している。さらに、各単量体成分を選択することにより、 Tdを 200°C以上、さ らには 230°C以上にすることも可能である。
[0336] 熱分解温度 Tdとしては、熱天秤 (TGA)を用い、室温下に昇温速度 10°C/分で室 温から加熱し、重量が 0. 1重量%減少したときの温度を採用する。
[0337] また本発明の耐熱性含フッ素光学材料は、構造単位 Aの選定にもよるが、構造単 位 Mが非晶性のポリマーを形成することから、全体として非晶性となる。非晶性の場 合は、透明性に優れ、光ファイバ一などの光伝送媒体における伝送損失を低減でき る点で有利である。
[0338] ここで、非晶性とは上記 DSC分析において、 2nd runで昇温速度 10°C/分の条件 で測定した際に実質的に融解に基づく吸熱ピークが観測されないか、もしくは融解 熱量が ljZg以下である性質を示す。
[0339] さらに本発明の耐熱性含フッ素光学材料は、その屈折率を 1. 44以下にすることが 可能である。屈折率をさらに下げる、たとえば 1. 42以下にするには構造単位 Mの R1 としてフッ素置換されたものを使用する、構造単位 Aとしてフルォロアルキル基を有す るものを使用する、さらに要すれば屈折率調整成分を添加するなどにより達成できる
[0340] 屈折率は、ナトリウム D線を光源として 25°Cにおいてアッベ屈折率計を用いて測定 した値を用レ、るものである。
[0341] 本発明の耐熱性含フッ素光学材料は可視領域の光に対して透明性が高レ、もので あり、特に 650nm (さらには 850nm)の波長の光に対して透明性が高レ、。この観点 から、本発明の耐熱性含フッ素光学材料では、 650nmほたは 850nm)波長光の光 透過率が 90%以上、さらには 92%以上、特に 94%以上であるのが好ましい。
[0342] 光透過率は、 自記分光光度計((株)日立製作所製の U-3310 (商品名))を用い て測定した値である。
[0343] 本発明の光学材料は、可撓性に優れている点でも従来の光学材料と異なる。可撓 性はフレキシブルデバイス、たとえば光ファイバ一や光インターコネクション、フレキシ ブル回路で重要な要求特性である。
[0344] 可撓性は、内径 lmmのガラス管内に該単量体を開始剤とともに封入し、例えば紫 外線等の活性エネルギー線を照射し、重合硬化したものをガラス管より取り出し、直 径 lmmの繊維を作製し、この繊維を 25°Cの環境下で半径の異なる鋼鉄製の丸棒に 1周卷きつけ、共重合体繊維にひびが入ったときの丸棒の半径で評価する。本発明 では丸棒として 6mm、 10mm, 15mm, 20mm, 30mmの半径のものを使用してレヽ る。
[0345] 本発明の耐熱性含フッ素光学材料の可撓性は 15mm (丸棒半径)以上であり、前 記の特性を満たしたうえで、可撓性を 10mm以下、組成をさらに調整することにより 6 mm (丸棒半径)未満、すなわち半径 6mmの丸棒に巻き付けてもひびが生じなレ、も のとなる。
[0346] そのほか本発明の光学材料は、熱分解温度 Tdなどの特性においても優れた性質 を奏する。これらについては実施例で示す。
[0347] 本発明の光学材料は各種の光デバイスの材料、たとえば光伝送用媒体として有用 である(本発明の第 2)。特にコア材が石英、もしくは光学ガラスであるプラスチッククラ ッド光学ファイバーのクラッド材料、コア材がプラスチックである全プラスチック光学フ アイバーのクラッド材料、反射防止コーティング材料、レンズ材料、光導波路材料、プ リズム材料、光学窓材料、光記憶ディスク材料、非線形型光素子、ホログラム材料、フ オトリソダラティブ材料などといった光学材料、また、封止部材用材料、さらにはそれら の材料を硬化して得られる硬化物を含む光デバイスなどに使用可能である。
[0348] 特に耐熱性で、低屈折率、かつ可撓性に優れているという特性を有しているので、 光学ファイバーのクラッド材料、とりわけコア材が石英または光学ガラスである光学フ アイバー、すなわちプラスチッククラッド光ファイバ一のクラッド材料として好適である。
[0349] 石英または光学ガラスをコア材とし本発明の光学材料をクラッド材とするプラスチッ クタラッド光ファイバ一は、光学ファイバーとしての特性に加えて Tgが高く耐熱性に富 み、し力、も可撓性にも優れるので、高温環境下で狭い場所に配設する光ファイバ一と して特に有用である。
[0350] たとえば、ライトガイドにおいては、ハロゲン光源に接近してプラスチッククラッド光フ アイバーを敷設する際に耐熱性が必要になる。センサー用途においては、たとえば 車のヘッドライト照明の検知ゃ溶融プレス機の位置決めセンサー等、雰囲気が高温 になる部分の検出の際に耐熱性が必要になる。産業用ロボットのセンサーも同様で ある。光通信用途においては、たとえば車載 LANにおいて高温になるエンジンルー ム内、車の天井部分、インスト一ルドパネル等に配線する際には 100°C以上の耐熱 性が必要となる。航空機に搭載される場合も同様である。ファクトリーオートメーション (FA)用途におけるプラスチッククラッド光ファイバ一配線に関しても高温の環境に曝 される場合、耐熱性が必要である。また、屋外にて使用する際や屋内であってもビル の屋上の配電盤室内や通信基地局等、通常の空調設備がない環境のため耐熱性 が要求されている。本発明の耐熱性含フッ素光学材料は、これらの用途に効果的に 利用できる。
[0351] 本発明の耐熱性含フッ素光学材料をコア材、たとえば石英系または光学ガラスから なるコア材の上に形成するには、たとえば上記単量体組成物をダイスコーティング法 やスプレーコーティング法などの方法でコア材に塗布し、これに紫外線などの活性ェ ネルギ一線を照射して硬化してクラッド材を形成することによって、プラスチッククラッ ド光ファイバ一を製造することができる。光の照射量は通常、 10— 5000mj/cm2で ある。コアの直径は通常、 10— 1000 /imである。クラッドの厚さは通常、 1一 100μ m、好ましくは 5 50 μ mである。
[0352] 本発明はまた、(I)式(1):
[0353] [化 93] 1 ―
R_ f "
Figure imgf000085_0001
[0354] (式中、 Xは H、 CH
3、 F、 CIおよび CFよりなる群力、ら選ばれる少なくとも 1種; Rf お
3
よび Rf2は同じかまたは異なり、炭素数 1一 5のパーフルォロアルキル基; R1はフッ素 原子で置換されていてもよい炭素数 1一 5の炭化水素基)で示される単量体の少なく とも 1種;
(Π)式 (2):
[0355] [化 94]
CH2-CX2 o
し"" 0— R 2■ (Q-C-CX3=CHJ
O
[0356] (式中、 X2および X3は同じかまたは異なり、 H、 CH、 F、 CIおよび CFよりなる群から
3 3
選ばれる少なくとも 1種; nは 1一 6、たとえば 1一 3の整数; R2は炭素数 1一 50、たとえ ば 1一 30の(n + 1)価の有機基)で示される単量体の少なくとも 1種;
(III)式(1)および式(2)の単量体と共重合可能な他の単量体の少なくとも 1種;およ び
(IV)重合開始剤
からなり、全単量体中に単量体 (1)、単量体 (Π)および単量体 (III)が占める割合がそ れぞれ 1一 99モル%、 1一 99モル%および 0— 98モル%である硬化性組成物(本発 明の第 3)に関する。
[0357] 単量体成分 (I)である式(1)で示される単量体、単量体成分 (II)である式(2)で示さ れる単量体および任意成分である単量体成分 (ΙΠ)は、いずれも第 1の発明の耐熱性 含フッ素光学材料において、構造単位 M、 Nおよび Aとして説明したもの力 具体例 も含めてそのまま採用される。
[0358] 重合開始剤 (IV)としても、上記に活性エネルギー線硬化開始剤およびラジカル重 合開始剤として説明したものが具体例も含めてそのまま採用できる。
[0359] 成分 (1)、成分 (Π)、成分 (III)および成分 (IV)の組合せおよびそれらの量は、第 1 の発明の耐熱性含フッ素光学材料で説明したものが、具体例も含めてそのまま採用 される。
[0360] 封止部材用材料としては、たとえば発光ダイオード (LED)、 EL素子、非線形光学 素子、フォトリフラクティブ素子、フォト二タス結晶などの発光素子ゃ受光素子や波長 変換素子、光分岐挿入素子、光クロスコネクト素子、モジュレーターなどの光機能素 子のパッケージ (封入)、表面実装などに用いられる材料などがあげられる。
[0361] 本発明の材料で封止された光デバイスは、封止部分が含フッ素ポリマーに由来す る優れた耐湿性に加え、ポリマー成分を有するため重合硬化に基づく硬化収縮が少 なぐ極めて優れた耐湿信頼性を有している。また、使用される波長帯域での優れた 透明性と耐熱性を兼ね備えた材料でもある。
[0362] これらの封止された光素子は種々の場所に使用される力 非限定的な例示として は、ノ、ィマウントストップランプやメーターパネル、携帯電話のバックライト、各種電気 製品のリモートコントロール装置の光源などといった発光素子;カメラのオートフォー カス、 CDZDVD用光ピックアップ用受光素子などがあげられる。
[0363] 本発明の材料を用いた封止部材用材料には、必要に応じて光酸化剤、さらに硬化 促進剤、染料、変性剤、劣化防止剤、離型剤などの添加剤を配合し、ドライブレンド 法、さらに溶融ブレンド法などを組み合わせて常法により混合 ·混練したのち粉砕し、 必要に応じて打錠することにより製造することができる。
[0364] 封止部材用材料による封止は常法により行なうことができ、トランスファー成形法な どの公知の成形法により封止すべき箇所に充填し成形することにより実施できる。
[0365] 本発明の活性エネルギー線硬化性組成物は、光学用途に特に好適であるが、そ のほか硬化して得られる有機ポリマーの特性を活用して、光学用途以外の用途、たと えば接着剤、塗料、各種成形材料、歯科用材料などを製造する材料としても有用で める。
[0366] したがって、本発明の硬化性組成物には、光学用途用の各種添加剤のほか、顔料 、充填剤、酸化チタンなどの光触媒などを配合することができる。
実施例
[0367] つぎに、実施例をあげて本発明を具体的に説明するが、本発明は以下の実施例に 限られるものではない。
[0368] まず、本実施例および比較例で使用した化合物(単量体)および各種特性の測定 方法を示す。
[0369] 化合物
化 95]
2丫\ C
Figure imgf000088_0001
CH。
6FNPF 6FNP
CH。
CH=C
C~0-CH C4F8H
O
8FH
8FF
FB-DFA
Figure imgf000088_0002
シクロへキシルな Fァクリレ一卜
Figure imgf000088_0003
UR-DMA [0371] [化 96]
:B-GMA
Figure imgf000089_0001
Bi sF-GM
Figure imgf000089_0002
Bi s-G A
CH。
CH=C
C~0-C2Hj-C8F17
0
17FMA
[0372] 測定法
(1)組成物の粘度
東京計器 (株)製の B型粘度計にて 25°Cにおける硬化前の組成物の粘度を測定す る。
[0373] (2)屈折率 前記の方法 (25°C)。使用する屈折率計は、(株)ァタゴ光学機器製作所製のアツ ベ屈折率計である。
[0374] (3)ガラス転移温度 (Tg)
前記の方法。使用する示差走査熱量計は、セイコー電子 (株)製の示差走査熱量 計である。
[0375] (4)熱分解温度 (Td)
(株)島津製作所製の TGA - 50型熱天秤を用い、 10°CZ分の昇温速度で重量減 少の始まる温度を測定する。
[0376] (5)光透過率 (T)
硬化した含フッ素有機ポリマーの約 lmm厚のフィルムを石英ガラス板に挟み、 自 記分光光度計((株)日立製作所製の U— 3310 (商品名))を用いて、波長 650nmお よび 850nmにおける透過率を測定する。
[0377] (6)可撓性 (F)
前記の方法。 (繊維状のサンプノレを 25°Cの環境下で半径の異なる鋼鉄製の丸棒 に 1周卷きつけ、共重合体繊維にひびが入ったときの丸棒の半径で評価する。本発 明では丸棒として 6mm、 10mm, 15mm, 20mm, 30mmの半径のものを使用する 。 )
[0378] (7)伝送損失
25m— 5mのカットバック法により、入射 ΝΑ=0· 1における波長 650nmの伝送損 失を光パワーメータ(アンリツ (株)製の ML9001A。検出器 MA9411A)により測定 する。
[0379] 実施例 1
つぎに示す単量体混合物を調製した。
6FNPF 50重量部
FB-DFA 20重量部
シクロへキシルひ—Fアタリレート 10重量部
UR-DMA 20重量部
[0380] この単量体混合物に活性エネルギー線硬化開始剤として 2—ヒドロキシー 2—メチル プロピオフエノンを 0. 1重量%加えて、活性エネルギー線硬化性組成物を調製した。
[0381] この硬化性組成物をアルミ箔上にアプリケーターを用いて膜厚が約 100 /i mとなる ように塗布し、得られた被膜に高圧水銀灯を用い、 1000mj/cm2Uの強度で紫外 線を照射して硬化させたのち、アルミ箔を希塩酸で溶かし、サンプルフィルムを得た。
[0382] このサンプノレフイルムについて、屈折率、ガラス転移温度、熱分解温度、光透過率 を調べた。結果を表 1に示す。
[0383] なお可撓性は、前述の作製方法で直径 lmmの繊維状サンプルを作製し、評価し た。
[0384] 実施例 2
単量体混合物として、つぎの組成のものを調製した。
6FNPM
8FF 10重量部
FB-DFA 20重量部
UR-DMA 20重量部
[0385] この単量体混合物を用いた以外は実施例 1と同様にして活性エネルギー線硬化性 樹脂組成物を調製し、各種物性を実施例 1と同様にして測定した。結果を表 1に示す
[0386] 実施例 3
単量体混合物として、つぎの組成のものを調製した。
6FNPF 60重量部
8FM 20重量部
FB-GMA 20重量部
[0387] この単量体混合物を用いた以外は実施例 1と同様にして活性エネルギー線硬化性 樹脂組成物を調製し、各種物性を実施例 1と同様にして測定した。結果を表 1に示す
[0388] 実施例 4
単量体混合物として、つぎの組成のものを調製した。
6FNPM 8FM 10重量部
BisF-GMA 10重量部
FC-DFA
UR-DMA
[0389] この単量体混合物を用いた以外は実施例 1と同様にして活性エネルギー線硬化性 樹脂組成物を調製し、各種物性を実施例 1と同様にして測定した。結果を表 1に示す
[0390] 実施例 5
単量体混合物として、つぎの組成のものを調製した。
6FNPF 40重量部
8FF 20重量部
FB-DFA 20重量部
FC-GMA 20重量部
[0391] この単量体混合物を用いた以外は実施例 1と同様にして活性エネルギー線硬化性 樹脂組成物を調製し、各種物性を実施例 1と同様にして測定した。結果を表 1に示す
[0392] 比較例 1
単量体混合物として、つぎの組成のものを調製した。
17FMA 40重量部
Bis-GMA 30重量部
UR-DMA 30重量部
[0393] この単量体混合物を用いた以外は実施例 1と同様にして活性エネルギー線硬化性 樹脂組成物を調製し、各種物性を実施例 1と同様にして測定した。結果を表 1に示す
[0394] 比較例 2
単量体混合物として、つぎの組成のものを調製した。
17FMA 50重量部
8FF 10重量部 FB-DFA 20重量部
UR-DMA 20重量部
[0395] この単量体混合物を用いた以外は実施例 1と同様にして活性エネルギー線硬化性 樹脂組成物を調製し、各種物性を実施例 1と同様にして測定した。結果を表 1に示す
[0396] 比較例 3
単量体混合物として、つぎの組成のものを調製した。
17FMA 60重量部
8FM 20重量部
FB-GMA 20重量部
[0397] この単量体混合物を用いた以外は実施例 1と同様にして活性エネルギー線硬化性 樹脂組成物を調製し、各種物性を実施例 1と同様にして測定した。結果を表 1に示す
[0398] 比較例 4
単量体とポリマー混合物として、つぎの組成のものを調製した。
式(10)に示す単量体 25重量部
式(11)に示す単量体 15重量部
式(12)に示すポリマー 60重量部
[0399] この混合物を用いた以外は実施例 1と同様にして活性エネルギー線硬化性樹脂組 成物を調製し、各種物性を実施例 1と同様にして測定した。結果を表 1に示す。 式(10):
[0400] [化 97]
CH2 = CHCOOCHCH2OCOCH = CH
し 2 V I p J γ -' I 3
[0401] 式(11): [0402] [化 98]
CH2 = CHCOOCHCH2OCOCH = CH;
CH2 (C F2) 5C F3
[0403] 式(12):
[0404] [化 99] ί"ί 2
I
COO-d c P 、
表 一 (CH2— C (CH3) ) y - I
COO ( ri 2 ) 2 (し1^ 2) 7 C F ¾
― (CH2— C (CH3) ) z
I
COO-NB
[0405] dcP = ンタニル基、 NB =ノルボルネン基、 x:y:z = l:8:l、分子量 =約 10000
[0406] [表 1]
Figure imgf000094_0001
[0407] 実施例 6
実施例 1の硬化性組成物を直径 200 μ mの石英コア(屈折率 1. 46)に均一に塗布 し (膜厚約 20 μ m)、実施例 1と同様にして紫外線を照射して硬化させた。
[0408] 得られたプラスチッククラッド光ファイバ一の 650nm波長の初期伝送損失および耐 熱試験(125°Cで 24時間保持)後の伝送損失を測定した。結果を表 2に示す。
[0409] 比較例 5
比較例 2の硬化性組成物を用いた以外は実施例 6と同様にしてプラスチッククラッド 光ファイバ一を作製し、得られた光ファイバ一の伝送損失および耐熱試験後の伝送 損失を実施例 6と同様にして測定した。結果を表 2に示す。
[0410] [表 2]
Figure imgf000095_0001
[0411] 実施例 7
単量体混合物として、つぎの組成のものを調製した
6FNPM
FB-GMA
8FM
MMA
[0412] この混合物にさらに、数平均分子量 80, 000の 8FM重合体を 8重量部溶解させた
[0413] 得られた混合物を用いた以外は実施例 1と同様にして活性エネルギー線硬化性樹 脂組成物を調製し、各種物性を実施例 1と同様にして測定した。結果を表 3に示す。
[0414] 実施例 8
単量体混合物として、つぎの組成のものを調製した。 6FNPM
FB-GMA
8FF
MMA
[0415] この混合物にさらに、数平均分子量 80, 000の 8FF重合体を 8重量部溶解させた。
[0416] 得られた混合物を用いた以外は実施例 1と同様にして活性エネルギー線硬化性樹 脂組成物を調製し、各種物性を実施例 1と同様にして測定した。結果を表 3に示す。
[0417] [表 3]
表 3
Figure imgf000096_0001
産業上の利用可能性
[0418] 本発明の耐熱性含フッ素光学材料は、従来では達成し得なかった高 Tg、低屈折 率、良好な可撓性、低コストをバランスよく兼ね備えた材料であり、耐熱性プラスチッ クタラッド光ファイバ一用のクラッド材、特に車載用のプラスチッククラッド光ファイバ一 として極めて有効である。

Claims

請求の範囲 [1] 式(M_l): _[M]_[N]_[A]- (M-l) [式中、 構造単位 Mは式(1)
[化 1]
Figure imgf000097_0001
(式中、 X1は H、 CH、 F、 CIおよび CFよりなる群から選ばれる少なくとも 1種; Rf1
3 3
よび Rf2は同じかまたは異なり、炭素数 1一 5のパーフルォロアルキル基; R1は水素原 子の一部または全部がフッ素原子で置換されていてもよい炭素数 1一 5の炭化水素 基)で示される単量体の少なくとも 1種に由来する構造単位、
構造単位 Nは式(2):
[化 2]
CH.-CX2 o
1 II
C-0-R2- (O— C— CX3=CH2) n
o
(式中、 X2および X3は同じかまたは異なり、 H、 CH
3、 F、 CIおよび CFよりなる群から
3
選ばれる少なくとも 1種; nは 1一 6の整数; R2は炭素数 1一 50の(n+1)価の有機基) で示される単量体の少なくとも 1種に由来する構造単位、
構造単位 Aは式(1)および式(2)の単量体と共重合可能な他の単量体の少なくとも 1 種に由来する構造単位]で示され、構造単位 Mを 1一 99モル%、構造単位 Nを 1一 9 9モル%および構造単位 Aを 0— 98モル%含む構造単位 M—1からなり、かつガラス 転移温度が 100°C以上のポリマー硬化物からなる耐熱性含フッ素光学材料。 [2] 前記式(2)において、 nが 1一 3の整数で R2が炭素数 1一 30の(n+ 1)価の有機基 である請求の範囲第 1項記載の耐熱性含フッ素光学材料。
[3] 前記式 (M— 1)中の構造単位 Nのうちの少なくとも 1種力 R2にウレタン結合を含む 構造単位および/または芳香族単位を含む構造単位および/または脂環式構造を 含む請求の範囲第 1項または第 2項記載の耐熱性含フッ素光学材料。
[4] 前記式 (M— 1)中の構造単位 Nのうちの少なくとも 1種力 R2に水素原子の一部ま たは全部がフッ素原子で置換されていてもよいフエニル基またはその誘導体を含む 請求の範囲第 1項一第 3項のいずれかに記載の耐熱性含フッ素光学材料。
[5] 前記式 (M— 1)中の構造単位 Nのうちの少なくとも 1種力 R2に水素原子の一部ま たは全部がフッ素原子で置換されていてもよいシクロへキシル基またはその誘導体を 含む請求の範囲第 1項一第 3項のいずれかに記載の耐熱性含フッ素光学材料。
[6] 前記式 (M— 1)中の構造単位 Nのうちの少なくとも 1種力 R2に水素原子の一部ま たは全部がフッ素原子で置換されていてもよい複環構造を有する脂環式炭化水素 基またはその誘導体を含む請求の範囲第 1項一第 3項のいずれかに記載の耐熱性 含フッ素光学材料。
[7] 前記構造単位 Aが、式 (3) :
[化 3]
V 4
I
C H 2 = C
i ( 3 ) C - O - R 3
O
(式中、 X4は H、 CH、 F、 CIおよび CFよりなる群から選ばれる少なくとも 1種; R3は芳
3 3
香環を含む炭素数 6— 30の 1価の炭化水素基であって、ただし R3中の水素原子の 一部または全てがフッ素原子に置換されていてもよい)で示される単量体の少なくと も 1種に由来する構造単位 A— 1;
式 (4) :
[化 4] X
C Η a = C
I ( 4 )
C一 Ο— R 4
Ο
(式中、 X5は Η、 CH、 F、 CIおよび CFよりなる群から選ばれる少なくとも 1種; R4は脂
3 3
環式炭化水素部位を有する炭素数 3— 30の 1価の炭化水素基であって、ただし R4中 の水素原子の一部または全てがフッ素原子に置換されてレ、てもよレ、)で示される単量 体の少なくとも 1種に由来する構造単位 A— 2;および
式(1)一 (4)にそれぞれ示される単量体と共重合可能な単量体由来の構造単位 A - 3
よりなる群から選ばれる少なくとも 1種であり、
構造単位 M - 1中に構造単位 A - 1と構造単位 A - 2を合わせて 1一 98モル%および 構造単位 A— 3を 0 97モル%含む構造単位である請求の範囲第 1項一第 6項のい ずれかに記載の耐熱性含フッ素光学材料。
[8] 前記構造単位 A— 1のうちの少なくとも 1種力 R3に水素原子の一部または全部がフ ッ素原子で置換されてレ、てもよレ、フエニル基またはその誘導体である請求の範囲第 7 項記載の耐熱性含フッ素光学材料。
[9] 前記構造単位 A— 2のうちの少なくとも 1種力 R4に水素原子の一部または全部がフ ッ素原子で置換されてレ、てもよレ、シクロへキシノレ基またはその誘導体である請求の 範囲第 7項記載の耐熱性含フッ素光学材料。
[10] 前記構造単位 A— 2のうちの少なくとも 1種力 R4に水素原子の一部または全部がフ ッ素原子で置換されてレ、てもよレ、複環構造を有する脂環式炭化水素基またはその誘 導体である請求の範囲第 7項記載の耐熱性含フッ素光学材料。
[11] 前記ポリマー硬化物の屈折率が 1. 44以下である請求の範囲第 1項一第 10項のい ずれかに記載の耐熱性含フッ素光学材料。
[12] 請求の範囲第 1項一第 11項のいずれかに記載の耐熱性含フッ素光学材料を用い てなる光伝送用媒体。
[13] 石英系または光学ガラス系のコアおよび請求の範囲第 1項 第 11項のいずれ力に 記載の耐熱性含フッ素光学材料からなるクラッドから構成されるプラスチッククラッド 光ファイバ
[14] 車両に搭載される LAN用プラスチック光ファイバ一である請求の範囲第 13項記載 のプラスチッククラッド光ファイバ
[15] (I)式 (1):
[化 5] — γ ■ R f
―し Λ.
し— 0—し ri2—し- -R^ f "
O R I1
(式中、 Xは H CH F CIおよび CFよりなる群力、ら選ばれる少なくとも 1種; Rf お
3 3
よび Rf2は同じかまたは異なり、炭素数 1 5のパーフルォロアルキル基; R1はフッ素 原子で置換されていてもよい炭素数 1 5の炭化水素基)で示される単量体の少なく とも 1種;
(Π)式 (2):
[化 6]
CH2-CX2 o
I II
C— 0 R2— (0-C-CX3=CH2) „
o
(式中、 X2および X3は同じかまたは異なり、 H CH F CIおよび CFよりなる群から
3 3
選ばれる少なくとも 1種; nは 1 6の整数; R2は炭素数 1 50の(n + 1 )価の有機基) で示される単量体の少なくとも 1種;
(III)式(1)および式(2)の単量体と共重合可能な他の単量体の少なくとも 1種;およ び
(IV)重合開始剤 からなり、全単量体中に単量体 (i)、単量体 (π)および単量体 (m)が占める割合がそ れぞれ 1一 99モル%、 1一 99モル%および 0— 98モル%である硬化性組成物。
[16] 前記式(2)において、 nが 1一 3の整数で R2が炭素数 1一 30の(n+ 1)価の有機基 である請求の範囲第 15項記載の硬化性組成物。
[17] 活性エネルギー線硬化性である請求の範囲第 15項または第 16項記載の硬化性 組成物。
[18] 石英または光学ガラスに請求の範囲第 15項一第 17項のいずれかに記載の硬化 性組成物を塗布した後、硬化することを特徴とする光伝送用媒体の製造方法。
PCT/JP2004/006826 2003-05-23 2004-05-20 耐熱性含フッ素光学材料およびそれを用いた光伝送用媒体 WO2004104058A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003146801 2003-05-23
JP2003-146801 2003-05-23
JP2003-365073 2003-10-24
JP2003365073 2003-10-24
JP2004029396 2004-02-05
JP2004-029396 2004-02-05

Publications (1)

Publication Number Publication Date
WO2004104058A1 true WO2004104058A1 (ja) 2004-12-02

Family

ID=33479650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006826 WO2004104058A1 (ja) 2003-05-23 2004-05-20 耐熱性含フッ素光学材料およびそれを用いた光伝送用媒体

Country Status (1)

Country Link
WO (1) WO2004104058A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149808A (ja) * 1987-12-04 1989-06-12 Daikin Ind Ltd 含フツ素ポリマー及びその用途
EP0331056A2 (en) * 1988-03-01 1989-09-06 Daikin Industries, Limited Fluorine-containing copolymer and process for preparing the same
JPH01266111A (ja) * 1988-04-15 1989-10-24 Daikin Ind Ltd 含フッ素ポリマーラテックス及びその用途
JPH02110112A (ja) * 1988-10-19 1990-04-23 Daikin Ind Ltd プラスチック光学材料
JPH09311230A (ja) * 1996-05-21 1997-12-02 Sumitomo Electric Ind Ltd プラスチッククラッド光ファイバ
JPH1010340A (ja) * 1996-06-25 1998-01-16 Sumitomo Electric Ind Ltd プラスチッククラッド光ファイバ
JP2001290033A (ja) * 2000-04-07 2001-10-19 Sumitomo Electric Ind Ltd プラスチック光伝送材料の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01149808A (ja) * 1987-12-04 1989-06-12 Daikin Ind Ltd 含フツ素ポリマー及びその用途
EP0331056A2 (en) * 1988-03-01 1989-09-06 Daikin Industries, Limited Fluorine-containing copolymer and process for preparing the same
JPH01266111A (ja) * 1988-04-15 1989-10-24 Daikin Ind Ltd 含フッ素ポリマーラテックス及びその用途
JPH02110112A (ja) * 1988-10-19 1990-04-23 Daikin Ind Ltd プラスチック光学材料
JPH09311230A (ja) * 1996-05-21 1997-12-02 Sumitomo Electric Ind Ltd プラスチッククラッド光ファイバ
JPH1010340A (ja) * 1996-06-25 1998-01-16 Sumitomo Electric Ind Ltd プラスチッククラッド光ファイバ
JP2001290033A (ja) * 2000-04-07 2001-10-19 Sumitomo Electric Ind Ltd プラスチック光伝送材料の製造方法

Similar Documents

Publication Publication Date Title
JP5378805B2 (ja) 光学物品用硬化性組成物
KR20080096537A (ko) 경화성 조성물로부터의 광학 용품
TW200533683A (en) Curable composition and process for producing cured fluorochemical
US7706658B2 (en) Copolymer and polymerizable composition
KR100268166B1 (ko) 함플루오르다관능(메타)아크릴산에스테르,조성물,저굴절률재료및감반사필름
KR20170015904A (ko) 광경화성 수지 조성물
JP2006152115A (ja) 硬化型樹脂組成物、耐光性光学部品および光学機器
WO2005040238A1 (ja) 硬化性含フッ素樹脂組成物およびそれを硬化してなる光学部材
KR100239329B1 (ko) 함플루오르 다관능 (메타)아크릴산에스테르, 함플루오르 단량체조성물, 저굴절률 재료 및 감반사 필름
JPH07126552A (ja) 含フッ素硬化性塗液及び含フッ素硬化被膜
WO2007010712A1 (ja) 光機能性組成物
TW201137021A (en) Composition for a low-refractive-index film
JP5852330B2 (ja) 硬化性樹脂組成物および成形体
JP2008511011A (ja) 光結合方法及び光送受信装置
JP3900170B2 (ja) 耐熱性含フッ素光学材料およびそれを用いた光伝送用媒体
TWI822888B (zh) 光學構件用膜狀物、光學構件用組成物及光學構件
WO2004104058A1 (ja) 耐熱性含フッ素光学材料およびそれを用いた光伝送用媒体
JP4868780B2 (ja) フッ素系共重合体、重合性組成物、硬化性樹脂組成物、反射防止フィルム、偏光板および画像表示装置
JPH04321660A (ja) ウレタン(メタ)アクリレート系液状樹脂組成物及び光ファイバー用コーティング剤
US20080015280A1 (en) Photosensitive Composition for Forming Optical Waveguide and Optical Waveguide
JP2004238487A (ja) フッ素置換脂環基含有(メタ)アクリル酸エステルおよびその硬化物
JPH10182745A (ja) 含フッ素単量体組成物及び減反射フィルム
JP3724132B2 (ja) 無機化合物微粒子含有含フッ素単量体組成物及び減反射フィルム
JP2004346125A (ja) 光学用硬化型樹脂組成物および耐光性光学部品
JP3724097B2 (ja) 含フッ素単量体組成物及び減反射フィルム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase