WO2004103565A2 - Vorrichtung und verfahren zur strukturierung von flüssigkeiten und zum zudosieren von reaktionsflüssigkeiten zu in separationsmedium eingebetteten flüssigkeitskompartimenten - Google Patents

Vorrichtung und verfahren zur strukturierung von flüssigkeiten und zum zudosieren von reaktionsflüssigkeiten zu in separationsmedium eingebetteten flüssigkeitskompartimenten Download PDF

Info

Publication number
WO2004103565A2
WO2004103565A2 PCT/DE2004/001056 DE2004001056W WO2004103565A2 WO 2004103565 A2 WO2004103565 A2 WO 2004103565A2 DE 2004001056 W DE2004001056 W DE 2004001056W WO 2004103565 A2 WO2004103565 A2 WO 2004103565A2
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
microchannel
liquids
separation medium
compartments
Prior art date
Application number
PCT/DE2004/001056
Other languages
English (en)
French (fr)
Other versions
WO2004103565A3 (de
Inventor
Gunter Gastrock
Andreas Grodrian
Thomas Henkel
Mark Kielpinski
Michael KÖHLER
Karen Lemke
Karin Martin
Josef Metze
Martin Roth
Thore Schön
Volker Baier
Original Assignee
Hans-Knöll-Institut für Naturstoff-Forschung e.V.
Institut für Physikalische Hochtechnologie e.V.
Institut Für Bioprozess- Und Analysentechnik E.V
Technische Universität Ilmenau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2003122893 external-priority patent/DE10322893A1/de
Priority claimed from DE10339452A external-priority patent/DE10339452A1/de
Application filed by Hans-Knöll-Institut für Naturstoff-Forschung e.V., Institut für Physikalische Hochtechnologie e.V., Institut Für Bioprozess- Und Analysentechnik E.V, Technische Universität Ilmenau filed Critical Hans-Knöll-Institut für Naturstoff-Forschung e.V.
Priority to DE112004001376T priority Critical patent/DE112004001376D2/de
Publication of WO2004103565A2 publication Critical patent/WO2004103565A2/de
Publication of WO2004103565A3 publication Critical patent/WO2004103565A3/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/302Micromixers the materials to be mixed flowing in the form of droplets
    • B01F33/3021Micromixers the materials to be mixed flowing in the form of droplets the components to be mixed being combined in a single independent droplet, e.g. these droplets being divided by a non-miscible fluid or consisting of independent droplets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7174Feed mechanisms characterised by the means for feeding the components to the mixer using pistons, plungers or syringes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0605Metering of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • B01L2300/165Specific details about hydrophobic, oleophobic surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/086Passive control of flow resistance using baffles or other fixed flow obstructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves

Definitions

  • the invention relates to a device and a method for structuring liquids and for metering reaction liquids into liquid compartments embedded in the separation medium, in particular for high-throughput analysis methods in microsystem technology.
  • document DE 298 01 523.4 discloses a pipette or microreactor consisting of at least one capillary channel which is formed by a trench which is introduced into a substrate and can be covered by means of a microstructuring method and which is connected on one side to a pressure chamber, a controllable electrical heating medium in the pressure chamber Form of a thin-film heating resistor applied to an outer wall of a pressure chamber wall in the form of a rigid membrane is assigned and an area of the connection between the capillary channel and the pressure chamber is provided with heat sink means and the capillary channel receives a liquid column or a plunger.
  • the document WO 98/16312 discloses a pipette which is provided in the pipette tip area with an integrated closure means and with at least one filter element.
  • a microdosing device for the defined delivery of small, self-contained liquid volumes is known from DE 100 10 208.5-52.
  • HPLC high pressure liquid chromatography
  • the document DE 101 45 568.2 discloses a method for the parallel cultivation of microorganisms in microcapillaries in a liquid two-phase system, liquid segments serving as recreation rooms for microorganisms to be cultivated.
  • microsystem-technical methods and devices consists in addressably structuring liquids carried in microcapillaries into defined concentration spaces within a liquid flow and metering reagents in a targeted manner into these concentration spaces (liquid compartments).
  • the invention is based on the object of specifying a device and a method for structuring liquids for analytical, microbiological and cell biological as well as (bio) chemical-combinatorial applications, which address liquids in microcapillaries and addressable structures in defined concentration spaces within a liquid flow and reagents direct to these concentration areas (liquid compartments).
  • FIG. 1 shows the schematic representation of a device according to the invention
  • FIG. 2 shows the schematic representation of a second embodiment of the device according to the invention
  • FIG. 3 shows the schematic representation of a third embodiment of the device according to the invention
  • FIG. 5 shows the schematic representation of a fifth embodiment of the device according to the invention
  • Fig. 6 is a schematic representation of a sixth
  • Fig. 7 is a schematic representation of a seventh
  • FIG. 8 shows the schematic representation of an eighth embodiment of the device according to the invention.
  • phase 9 the schematic representation of a dosing device during the dosing process (phase 1)
  • phase 2 the schematic representation of a dosing device during the dosing process
  • FIG. 11 shows the schematic representation of a dosing device during the dosing process (phase 3)
  • FIG. 12 shows the schematic representation of a dosing device during the dosing process (phase 4)
  • Figure 13 is a schematic representation of a conveyor in side view and sectional view along A-A
  • FIG. 15 the schematic representation of a microchannel course
  • (Detail) 16 shows the schematic representation of a device according to the invention for titration analysis
  • the device for structuring liquids consists of predetermined liquid guidance paths (1), at least one metering device (4) opening into the liquid guidance paths (1) (shown in FIG. 6) and in the liquid guidance paths (1) at least one fusionator (2) and / or splitter (3) is arranged.
  • the liquid conduits (1) are particularly advantageously designed as channels or tubes in the form of microstructures, fluid resistors (6) being provided in the area of the fusionator (2) and splitter (3), which are connected to a separation chamber (7) (shown in FIG 3) can open.
  • the dosing device (4) (shown schematically in FIG. 6) is designed as a mechanically, electrically or thermally controllable valve or as a microchannel which can be filled periodically with solid and / or liquid substrate and / or gas.
  • the fusionator (2) and the splitter (3) are each formed by at least one branch within the liquid guide paths (1), in the immediate vicinity of which there are advantageously fluid resistors (6).
  • At least one nozzle (5) can open into the gapator (3), which is particularly advantageously provided with a separation chamber (7) at this point (shown in FIG. 3), which leads into the liquid conduits (1).
  • This nozzle (5) can be flowed through in a pulsed manner with liquids or gases, it being possible for it to be arranged centrally or concentrically in a branching of the liquid guide paths (1).
  • the essence of the method for structuring liquids along predetermined liquid routes, in which the device according to the invention is used, is the combination between largely monotonous (ie continuously) variable flow rates through conventional fluid actuators (eg syringe pumps or Micropumps) and a kind of "digitization" of the sample manipulation or the synthesis volumes through the segmentation and the subsequent manipulation of individual liquid segment streams (segment sequences).
  • fluid actuators eg syringe pumps or Micropumps
  • digitalization of the sample manipulation or the synthesis volumes through the segmentation and the subsequent manipulation of individual liquid segment streams (segment sequences).
  • liquid segments (9) can also be formed by synchronously superimposed monotonically and periodically variable flow rates in, for example, computer-controlled fluid actuators in modular fluid systems
  • compositions are generated that cover areas of concentration or concentration ratios, which is very important for combinatorial chemistry or for screening processes under the synergetic effect of effectors.
  • the fusion device (2) which has two fluid conduits (1) in one, a fluid resistance (6) comprehensive, downstream liquid guide paths (1), the fluid resistance (6) being located in the immediate vicinity of the branching of the liquid guide paths (1) (FIG. 1), the fusion of segments located in two flowing liquids is possible in the device according to the invention ,
  • the separation chamber (7) of the splitter (3) which is provided with two or more pulse channels (8) for the pulsed introduction of liquid or gas into the separation chamber (7), is also a synchronous one Multiple division of the liquid segments (9) possible.
  • thermally modulated fluid-resistant fluid control can also be used in the device according to the invention.
  • a bypass arrangement FIG. 7
  • critical passenger resistances or carrier flows in the main liquid guide path (1) for the liquid segments (9) can be set by means of an electrically controlled thermally controlled viscosity in the bypass (10) (FIG. 7).
  • liquid segments (9) can be synchronized, controlled, held, released, possibly also split or fused, whereby the combination with separation chambers (7) and fluid resistors (6) can take place.
  • a combination of two bypasses (10) with a separation chamber (7) and fluid resistors (6) (not shown in more detail) is advantageous for stopping liquid segments (9) that are tolerant of segment sizes.
  • thermally controlled segment switch By combining thermal fluid control with a branching structure, advantageously provided with fluid resistors (6), a thermally controlled segment switch can also be implemented (FIG. 8).
  • the combination of the elements mentioned 8, as indicated schematically in FIG. 8, allows the construction of complex controllable channel architectures (microfluidic networks for entire populations of "fluidic sequences"), which are used, for example, in the microbiological and combinatorial screening of microorganism cultures against complex sets of stress factors.
  • Inorganic synthesis and screening for example in the coprecipitation of poorly soluble transition metal compounds for catalyst development, are also areas of application of the device and the method according to the invention.
  • the microchannel (11) with dosing device (4) is a central functional element which serves to transport the sequences of liquid compartments (115) embedded in the separation medium and in which one or more of second microchannels (14) opens, which has the task of metering the process liquid contained therein by means of a metering device (4) to the liquid compartments guided in the microchannel (11).
  • FIGS. 9 to 12 The course of metering is shown in FIGS. 9 to 12.
  • sequences of compartments are led past the mouth of the microchannel (14) (FIG. 9).
  • This metering is carried out by temporarily fusing a liquid compartment from the microchannel (11) with a process liquid (15) in the region of the mouth of the microchannel (14), shown in FIG. 10, in connection with the conveyance of the process liquid (15) with the aid of a suitable one Conveying device (19) (Fig. 13) achieved, as shown in Fig. 11.
  • the compartment is torn off (117 in FIG. 12), mediated by conveying the separation medium in the microchannel (11). This process can take place both continuously and discontinuously.
  • the defined drop tear-off forms the prerequisite for a high reproducibility and accuracy of the metered volume and thus determines the process reliability of the dosing process.
  • the energy input to be carried out for the controlled demolition of the fluid compartment corresponds to the sum of the interfacial energy to be generated for the production of the new interfaces in the region of the confluence of the microchannel (14) into the microchannel (11) and the surface to be newly created on the compartment and can be describe first approximation through the context
  • the arrangement according to the invention and the coordination according to the invention the dimensions of the microchannels, opening widths of the mouth, wetting properties of the surfaces for the specified liquids and the preferred shape of the mouth as a sharp-edged narrowing of the microchannel (14).
  • the arrangement according to the invention is particularly due to the sharp-edged design the entrance opening on both sides in the direction of the microchannel (11) effectively prevents the phase boundary from migrating into this channel.
  • the following criteria which define the wetting behavior of the inner surfaces in the area where the microchannel (14) opens into the microchannel (11), are required for reliable process control. These conditions may have to be implemented by suitable chemical surface functionalization and the coordination of the selection of the components used. The determination is made on the basis of the contact angle of the ternary systems, for the determination of which measuring devices are offered on the market.
  • the contact angle (114), determined according to FIG. 14, for a ternary system of liquid A (111), liquid B (112) and surface (HO) for the system test liquid (13), separation medium (12) and inner surface of the Micro channel (11) exceed 90 °, for the process liquid system (15),
  • Separation medium (12) and inner surface of the microchannel (11) exceed 60 °, and for the system separation medium (12), mixture (17) and inner surface of the microchannel (11) exceed 90 °, for the system separation medium (12), process liquid (15 ) and the inner surface of the microchannel (14) exceed 60 °.
  • the individual dosing of substances to individual and defined compartments, a series of compartments in connection with the use of one or more microchannels (14) is necessary for universal use of the method and the arrangement. According to the invention, this is achieved by reversing the conveying direction of the process liquid in question into the associated microchannel (14) in such a way that the phase boundary between the separation medium and process liquid shifts into the microchannel (14) and thereby the possibility of fluidic contact between in the microchannel (11) located compartments and the process liquid (15) located in the microchannel (14) is prevented.
  • FIG. 16 An arrangement according to FIG. 16 is used for the aforementioned determination, in which a microchannel (11) is guided through two microchannel chips and is fluidly connected on one side to a syringe pump for conveying the separation medium (SP) tetradecane, presented in a 5 ml glass syringe ,
  • SP separation medium
  • a second syringe which contains the test liquid (13), is fixed in the second receptacle of the syringe pump and is fluidly connected to a microchannel opening into the microchannel (11).
  • This system is used for the coupled delivery of separation medium and test liquid with a delivery ratio of tetradecane to test liquid of 5: 1.
  • a 1 ml syringe filled with process liquid (15) is fluidly connected to the microchannel (11) via a microchannel (14), the process liquid being conveyed independently of the conveyance of the first syringe pump.
  • the arrangement according to the invention realized as a microchip is characterized by the following parameters: width of the microchannel (11): 740 ⁇ m, height of the microchannel (11): 280 ⁇ m, width of the microchannel (14): 320 ⁇ m, height of the microchannel (14): 280 ⁇ m, all channel cross sections have the shape of a rectangle, the corners of which are rounded with a radius of 140 ⁇ m.
  • the opening of the opening of the microchannel (14) into the microchannel (11) is 70 ⁇ m x 300 ⁇ m (height x width). Capillaries made of PTFE were used to connect the chips.
  • the surfaces of the chip modules made of glass, were activated with a mixture of 25 vol% hydrogen peroxide and 75 vol% sulfuric acid, washed with water, dried in a drying cabinet at 120 ° C and in a solution of 2 mM octadecyltrichlorosilane in anhydrous toluene for 3 hours Implemented room temperature and rinsed with toluene and then ethanol.
  • the contact angle determined on an identically rinsed glass surface for the water / tetradecane / surface system according to FIG. 14 is 150 ° and corresponds to the criteria for the arrangement according to the invention and the method according to the invention.
  • compartments are continuously formed in the microchannel (11) of hydrochloric acid with a volume of 130 nl and a rate of 1.07 Hz.
  • the compartment volume is calibrated on the basis of the previously determined dependency of the compartment volume on the flow rate for the chip used in the experiment. This is shown as a box & whisker plot in FIG. 17.
  • the microchannel (11) is passed via an HPLC capillary with an inner diameter of 0.5 mm into an injection chip, through the microchannel (14) of which sodium hydroxide solution is continuously metered in at a concentration of 0.05 mol / l.
  • the delivery rate is gradually increased in increments of 0.1 ml.
  • the equivalence point can be recognized by a change in color of the indicator bromophenol blue to hydrochloric acid added to blue and is detected with a CCD camera and an upstream interference filter in the wavelength range 575 to 625 nm.
  • the color change is observed in 32 of 50 compartments (64%)
  • the color change takes place in 50 of the 50 compartments observed (100%).
  • the method was used analogously to the determination of the citric acid concentration by titration against sodium hydroxide solution.
  • the device according to the invention and the method according to the invention enable simple, rapid, reliable and inexpensive structuring of liquids for analytical, microbiological and cell biological as well as (bio) chemical-combinatorial applications that addressably structure liquids carried in microcapillaries into defined concentration spaces within a liquid flow.
  • the device and the method according to the invention firstly provide access to the generation of sample streams with a large number of different contents located in different compartments using principles of combinatorial chemistry or for the production of clones of pro or eukaryotic cells by culturing the each with a single cell inoculated liquid compartments, and on the other hand they enable the serial addition of test reagents, the serial analysis of the contents of the compartments and their change as a result of the addition of a component and carrying out cellular assays using compartments inoculated with a uniform cell population in connection with the metering of effectors. By adding different volumes, dose-effect dependencies can be investigated with the method according to the invention.

Abstract

Die Erfindung betrifft eine Vorrichtung und Verfahren zur Strukturierung von Flüssigkeiten und zum Zudosieren von Reaktionsflüssigkeiten zu in Separationsmedium eingebetteten Flüssigkeitskompartimenten. Die Aufgabe der Erfindung, eine Vorrichtung und ein Verfahren zur Strukturierung von Flüssigkeiten für analytische, mikro- und zellbiologische sowie (bio)chemisch-kombinatorische Anwendungen anzugeben, die in Mikrokapillaren geführte Flüssigkeiten adressierbar in definierte Konzentrationsräume innerhalb eines Flüssigkeitsstromes strukturieren und Reagenzien gezielt zu diesen Konzentrationsräumen (Flüssigkeitskompartimenten) zuführen, wird dadurch gelöst, dass die Vorrichtung aus vorgegebenen Flüssigkeitsleitwegen besteht, wobei in die Flüssigkeitsleitwege mindestens eine Dosierungsvorrichtung einmündet und/oder in den Flüssigkeitsleitwegen mindestens ein Fusionator und/oder mindestens ein Spaltator angeordnet ist.

Description

Vorrichtung und Verfahren zur Strukturierung von Flüssigkeiten und zum Zudosieren von Reaktionsflüssigkeiten zu in Separationsmedium eingebetteten Flussigkeitskompartimenten
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Strukturierung von Flüssigkeiten und zum Zudosieren von Reaktionsflüssigkeiten zu in Separationsmedium eingebetteten Flussigkeitskompartimenten, insbesondere für Hochdurchsatzanalyseverfahren in der Mikrosystemtechnik.
Im Rahmen von Hochdurchsatzanalyseverfahren ist es erforderlich, eine Vielzahl von Proben unter vergleichbaren und reproduzierbaren Bedingungnen mit einer Vielzahl von Testsubstanzen und einer relativ begrenzten Anzahl unterschiedlicher Prozessflüssigkeiten nach einem definierten Zeitprotokoll zu versetzen und der analytischen Bewertung zuzuführen.
Klassischer Ansatz zur Bewältigung dieser Analysevielfalt ist die Anordnung der Proben in Arrayform und die Nutzung automatisierter Verfahren zum parallelen Prozessieren der Proben, wie z. B. paralleler Flüssigkeitsübertrag unter Verwendung von hochparallelen Pipet- tierköpfen, Nadel- oder Spritzenarrays, zeitsynchrones Auslesen aller Proben mit Hilfe von kamerabasierten Detektoranordnungen und parallele programmierte Inkubation unter Verwendung von Stacker- Systemen.
Als alternativer Ansatz rückt in zunehmendem Maße die Nutzung serieller Probenströme in fluidischen Leitbahnen in den Blickpunkt des Interesses.
Die zugrundeliegende Strategie, welche seit den 20er Jahren des vergangenen ' Jahrhunderts mit der Einführung des Fließbandes in Fertigungsprozesse ihre Leistungsfähigkeit in produktiven Umgebungen demonstriert, ermöglicht das kontinuierliche Prozessieren einer als Pro- benstrom organisierten Vielzahl von Proben in seriellen Verfahren. Neben dem Managment von Flüssigkeitstropfen auf Oberflächen oder zwischen Glasplatten unter Verwendung von Gasen oder nicht mit Probenflüssigkeit mischbaren Separationsmedien werden Ansätze zu Führung derartiger Probenströme in Mikrokapillaren unter Trennung der Probenkompartimente durch ein mit der Probenflüssigkeit nicht mischbares Separationsmedium diskutiert, welche gleichzeitig die Förderung des Probenstromes durch das Kanalsystem mit Hilfe von Pumpen ermöglicht.
Das Strukturieren von Flüssigkeiten durch definiertes Dosieren von Flüssigkeitssegmenten, bspw. vermittels Pipetten, ist seit langem bekannt.
So offenbart die Schrift DE 298 01 523.4 eine Pipette oder Mikroreaktor bestehend aus wenigstens einem Kapillarkanal, der durch einen mittels Mikrostrukturierungsverfahren in ein Substrat eingebrachten und abdeckbaren Graben gebildet ist, der einseitig mit einer Druckkammer in Verbindung gebracht ist, der Druckkammer ein ansteuerbares elektrisches Heizmittel in Form eines auf eine Außenwandung einer als steife Membran ausgebildeten Druckkammerwandung aufgebrachten Dünnschichtheizwiderstandes zugeordnet ist und ein Bereich der Verbindung zwischen dem Kapillarkanal und der Druckkammer mit Wärmesenkenmitteln versehen ist und der Kapillarkanal eine Flüssigkeitssäule oder einen Stößel aufnimmt.
Die Schrift WO 98/16312 offenbart eine Pipette, die im Pipettenspitzenbereich mit einem integrierten Verschlussmittel und mit wenigstens einem Filterelement versehen ist.
Aus der Schrift DE 100 10 208.5-52 ist eine Mikrodosiervomchtung zur definierten Abgabe kleiner in sich geschlossener Flüssigkeitsvolumina bekannt.
Auch ist bekannt, dass ein Strukturieren von Flüssigkeiten in Kanälen oder Röhren durch definiertes Schalten von Ventilen o.a. in den zwangsgefuhrten Flüssigkeitsströmen möglich ist. So offenbart bspw. die Schrift DE 198 47 952.2-09 einen Fluidstromschalter zum Manipulieren von mindestens zwei Flüssigkeitsströmen.
Weiterhin ist bekannt, dass ein Strukturieren von Flüssigkeiten auf Oberflächen vermittels Ultraschall möglich ist. So offenbart die Schrift DE 100 55 318 AI bspw. ein Verfahren zur gezielten und gerichteten Manipulation kleiner Materialmengen auf Festkörper-oberflächen und aus der Schrift DE 100 62 246 CI entnimmt der Fachmann ein Verfahren und eine Vorrichtung zur Manipulation kleiner Flüssigkeitsmengen auf einer Festkörperoberfläche. Auf der Festkörperoberfläche gemäß DE 100 62 246 CI ist mindestens ein Aufenthaltsbereich vorgesehen, der andere Benetzungseigenschaften aufweist als die umgebende Oberfläche, so dass Flüssigkeitsleitwege vorgegeben sind, auf denen kleine Flüssigkeitsmengen bewegbar sind.
Von der Methode der Hochdruckflüssigkeitschromatographie (HPLC) ist bekannt, dass in einen permanenten Flüssigkeitsstrom (Träger) kleine Volumina von Flüssigkeiten (Proben) sequenziell über ein Ventil zu Analysezwecken eingesteuert werden.
Aus der Publikation von Burns u.a. ist eine integrierte Nanoliter-DNA- Analysevorrichtung bekannt, die aus Mikrokanälen, Heizern, Temperatursensoren und Floureszenzdetektoren besteht und der DNA- Vervielfältigung (PCR) und der anschließenden Geleelektrophorese dient (M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo and D. Burke,; An Integrated Nanoliter DNA Analysis Device; Sience, Vol. 282, 18.10.1998; Seiten 484-487).
Aus der Publikation von I. Schneegass u.a. ist ein miniaturisierter Chip- Thermozykler aus Silicon bekannt, der für die Durchfluß-PCR verwendet wird. Durch diesen Chip ist ein serieller Fluß von Flüssigkeiten in Mikrokanälen durch gezieltes Einbringen von Probenflüssigkeit in einen Trägerflüssigkeitsstrom möglich (I. Schneegass, R. Bräutigam, J. M. Köhler; Flow-through polymerase chain reactions in chip thermocyclers; Reviews in Molecular Biotechnology 82; 2001; 1001-121).
Weiterhin ist aus den Veröffentlichungen von Köhler, J. M., Dillner, U., Mokansky, A., Poser, S. and Schulz, T. ["Micro Channel reactors for fast thermocycling". In: 2nd International Conference on Microreaction Technology (ed. Ehrfeld, W.) p. 241-247 (Springer, New Orleans, LA, USA, 1998)], Poser, S., Ehricht, R„ Schulz, T„ Uebel, S., Dillner, U., and Köhler, J. M.["Rapid PCR in flow-through Si chip thermocyclers." 3th International Conference on Microreaction Technology, Frankfurt a.M., 294-301 (1999)] und Schneegaß, L, Bräutigam R., Köhler J.M. ["Miniaturized flow-through PCR with different template types in a Silicon chip thermocycler." Lab-on-a-chip 1: 42-49 (2001)] bekannt, dass Mineralöl als Trägermedium für den seriellen Fluß von Flüssigkeitströpfchen in einem Flüssigkeitsträgerstrom Verwendung finden kann, da die Flüssigkeitströpfchen nicht mit der Flüssigkeit des Trägerstroms mischbar sind (bspw. PCR-Lösung in Mineralöl).
Die Schrift DE 101 45 568.2 offenbart ein Verfahren zur Parallelkultivierung von Mikroorganismen in Mikrokapillaren in einem flüssigen Zweiphasensystem, wobei Flüssigkeitssegmente als Aufenthaltsräume für zu kultivierende Mikroorganismen dienen.
Das Problem aller bisher bekannten mikrosytemtechischen Verfahren und Vorrichtungen besteht darin, in Mikrokapillaren geführte Flüssigkeiten adressierbar in definierte Konzentrationsraume innerhalb eines Flüssigkeitsstromes zu strukturieren und Reagenzien gezielt zu diesen Konzentrationsraumen (Flussigkeitskompartimenten) zuzu- dosieren.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung und ein Verfahren zur Strukturierung von Flüssigkeiten für analytische, mikro- und zellbiologische sowie (bio)chemisch-kombinatorische Anwen- düngen anzugeben, die in Mikrokapillaren geführte Flüssigkeiten adressierbar in definierte Konzentrationsraume innerhalb eines Flüssigkeitsstromes strukturieren und Reagenzien gezielt zu diesen Konzentrationsraumen (Flussigkeitskompartimenten) zuführen.
Erfindungsgemäß wird die Aufgabe durch eine Vorrichtung gemäß Anspruch 1 und ein Verfahren gemäß Anspruch 30 gelöst. Vorteilhafte Ausgestaltungen sind in den untergeordneten Ansprüchen 2 bis 29 sowie 31 bis 37 angegeben. Die Erfindung wird nachstehend an Hand der schematischen Zeichnungen der Ausführungsbeispiele näher erläutert. Es zeigen:
Fig. 1 die schematische Darstellung einer erfindungsgemäßen Vorrichtung, Fig. 2 die schematische Darstellung einer zweiten Ausführungsform der erfindungsgemäßen Vorrichtung,
Fig. 3 die schematische Darstellung einer dritten Ausführungsform der erfindungsgemäßen Vorrichtung,
Fig. 4 die schematische Darstellung einer vierten Ausführungsform der erfindungsgemäßen Vorrichtung,
Fig. 5 die schematische Darstellung einer fünften Ausführungsform der erfindungsgemäßen Vorrichtung,
Fig. 6 die schematische Darstellung einer sechsten
Ausführungsform der erfindungsgemäßen Vorrichtung, Fig. 7 die schematische Darstellung einer siebenten
Ausführungsform der erfindungsgemäßen Vorrichtung und
Fig. 8 die schematische Darstellung einer achten Ausführungsform der erfindungsgemäßen Vorrichtung,
Fig. 9 die schematische Darstellung einer Dosierungsvorrichtung beim Dosiervorgang (Phase 1),
Fig.10 die schematische Darstellung einer Dosierungsvorrichtung beim Dosiervorgang (Phase 2),
Fig.11 die schematische Darstellung einer Dosierungsvorrichtung beim Dosiervorgang (Phase 3), Fig.12 die schematische Darstellung einer Dosierungsvorrichtung beim Dosiervorgang (Phase 4),
Fig.13 die schematische Darstellung einer Fördervorrichtung in Seitenansicht und Schnittdarstellung entlang A-A
Fig.14 die schematische Darstellung eines Kontaktwinkels, Fig.15 die schematische Darstellung eines Mikrokanalsverlaufs
(Ausschnitt), Fig.16 die schematische Darstellung einer erfindungsgemäßen Vorrichtung zur Titrationsanalyse,
Fig.17 die graphische Darstellung der Abhängigkeit des Segmentvolumens von der Förderrate.
Die Vorrichtung zur Strukturierung von Flüssigkeiten besteht, wie in den Figuren 1 und 2 beispielhaft dargestellt, aus vorgegebenen Flussigkeitsleitwegen (1), wobei in die Flüssigkeitsleitwege (1) mindestens eine Dosierungsvorrichtung (4) einmündet (gezeigt in Fig. 6) und in den Flussigkeitsleitwegen (1) mindestens ein Fusionator (2) und/oder Spaltator (3) angeordnet ist.
Besonders vorteilhaft sind die Flüssigkeitsleitwege (1) als Kanäle bzw. Röhren in Form von MikroStrukturen ausgeführt, wobei im Bereich des Fusionator (2) und Spaltator (3) Fluidwiderstände (6) vorgesehen sind, die in eine Trennkammer (7) (gezeigt in Fig. 3) münden können.
Die Dosierungsvorrichtung (4) (schematisch dargestellt in Fig. 6) ist als ein mechanisch, elektrisch oder thermisch steuerbares Ventil bzw. als ein Mikrokanal ausgeführt, der periodisch mit Festkörper- und/oder Flüssigsubstrat und/ oder Gas befüllbar ist. Der Fusionator (2) sowie der Spaltator (3) werden jeweils durch mindestens eine Verzweigung innerhalb der Flüssigkeitsleitwege (1) gebildet, in deren unmittelbarer Nähe sich vorteilhafter Weise Fluidwiderstände (6) befinden.
Alternativ dazu kann in den Spaltator (3), der an dieser Stelle besonders vorteilhaft mit einer Trennkammer (7) (in Fig. 3 dargestellt) versehen ist, mindestens eine Düse (5) einmünden, die in die Flüssigkeitsleitwege (1) führt. Diese Düse (5) ist pulsartig mit Flüssigkeiten bzw. Gasen durchströmbar, wobei sie zentrisch oder konzentrisch in einer Verzweigung der Flüssigkeitsleitwege (1) angeordnet sein kann. Das Wesen des Verfahrens zur Strukturierung von Flüssigkeiten entlang vorgegebener Flüssigkeitsleitwege, bei dem die erfindungsgemäße Vorrichtung Verwendung findet, besteht in der Kombination zwischen weitgehend monoton (d.h. kontinuierlich) veränderlichen Flußraten durch konventionelle Fluidaktoren (z.B. Spritzenpunpen oder Mikropumpen) und einer Art "Digitalisierung" der Probenmanipulation bzw. der Synthesevolumina durch die Segmentierung und die nachfolgende Manipulation von einzelnen Flüssigkeitssegmentströmen (Segment-Sequenzen) gestattet. Daraus ergibt sich eine prozess-methodische Lösung für die Adressierung von zwei- und mehrdimensionalen Konzentrationsraumen. Ein Beispiel für solch eine Lösung sind Ketten von Flüssigkeitssegmenten (9), die durch Zeichenketten codiert werden können bzw. solche repräsentieren ("nanofluidische strings"). Diese lassen sich z.B. komplex aus Flüssigkeitssegmentsequenzen mit monoton abgestuften Konzentrationen durch wahlweise Zuschaltung (gesteuertes "Stapeln von Sequenzen") herstellen. In analoger Weise können durch synchron überlagerte monoton und periodisch veränderliche Flußraten bei bspw. rechnerangesteuerten Fluidaktoren in modularen Fluidsystemen Flüssigkeitssegmente (9) mit
Zusammensetzungen erzeugt werden, die flächenhaft Konzentrationsraume bzw. Konzentrationsverhältnisräume abdecken, was sehr bedeutsam für die kombinatorische Chemie bzw. für Screeningprozesse unter synergetischer Wirkung von Effektoren ist Durch den Fusionator (2), der zwei Flüssigkeitsleitwege (1) in einen, einen Fluidwiderstand (6) umfassenden, nachgeschalteten Flüssigkeitsleitwege (1) umwandelt, wobei sich der Fluidwiderstand (6) in unmittelbarer Nähe der Verzweigung der Flüssigkeitsleitwege (1) befindet (Fig. 1), ist die Fusion von Segmenten, befindlich in zwei strömenden Flüssigkeiten, in der erfindungsgemäße Vorrichtung möglich.
Durch den Spaltator (3), der einen Flüssigkeitsleitweg (1) in zwei Flüssigkeitsleitwege (1) umwandelt, wobei sich je ein Fluidwiderstand (6) in unmittelbarer Nähe der Verzweigung des Flüssigkeitsleitwegs (1) befindet (Fig. 2), ist die Spaltung von Flüssigkeitssegmenten (9), befindlich in einer strömenden Flüssigkeit, in der erfindungsgemäße Vorrichtung möglich.
Durch diese Splittingoperationen können ganze Sequenzen von Flüssigkeitssegmenten (9) dupliziert werden ("Sequenz-Cloning"). Die Selbstjustierung im Kombination mit einer gesteuerten Segmentspaltung im Spaltator (3) wird durch die Verwendung einer Trennkammer (7) möglich, die über die Fluidwiderständen (6) mit den zu- und abführenden Flussigkeitsleitwegen (1) in Verbindung steht (Fig. 3).
Durch den Pulskanal (8), der symmetrisch bzw. asymmetrisch in die Trennkammer (7) münden kann, ist es durch pulsartiges Einbringen von Flüssigkeit bzw. Gas in die Trennkammer (7) des Spaltators (3) möglich, gleich große bzw. unterschiedlich große Flüssigkeitssegmente (9) zu erzeugen (Fig. 3 bzw. Fig. 4).
Wie in der Fig. 5 dargestellt, ist durch die Trennkammer (7) des Spaltators (3), die mit zwei oder mehreren Pulskanälen (8) zum pulsartiges Einbringen von Flüssigkeit bzw. Gas in die Trennkammer (7) versehen ist, auch eine synchrone Mehrfachteilung der Flüssigkeitssegmente (9) möglich.
In der erfindungsgemäßen Vorrichtung kann auch das Prinzip der thermisch modulierten fluidresistiven Fluidsteuerung angewendet werden. Durch eine Bypass-Anordnung (Fig. 7) können kritische Passagewiderstände bzw. Trägerströmungen im Hauptflüssigkeitsleit- weg (1) für die Flüssigkeitssegmente (9) durch eine elektrisch angesteuerte thermisch-kontrollierte Viskosität im Bypass (10) eingestellt werden (Fig. 7). So können mit Hilfe integrierter Thermoaktoren Flüssigkeitssegmente (9) synchronisiert, gesteuert gehalten, freigesetzt, ggf. auch gespalten oder fusioniert werden, wobei die Kombination mit Trennkammern (7) und Fluidwiderständen (6) erfolgen kann.
Eine Kombination von zwei Bypässen (10) mit einer Trennkammern (7) und Fluidwiderständen (6) (nicht näher dargestellt) ist für ein segmentgrößentolerantes Stoppen von Flüssigkeitssegmente (9) vorteilhaft.
Durch die Kombination von thermischer Fluidsteuerung mit einer Verzweigungsstruktur, vorteilhafterweise mit Fluidwiderständen (6) versehen, lässt sich auch ein thermisch gesteuerter Segmentschalter realisieren (Fig. 8). Die Kombination von den genannten Elementen erlaubt, wie in Fig. 8 schematisch angedeutet, den Aufbau komplexer steuerbarer Kanalarchitekturen (mikrofluidische Netze für ganze Populationen von "fluidischen Sequenzen"), die bspw. beim mikrobiologischen und kombinatorischen Screening von Mikroorganismenkulturen gegenüber komplexen Sätzen von Streßfaktoren Verwendung finden.
Auch die anorganische Synthese und das Screening, bspw. bei der Coprecipitation von schwerlöslichen Übergangsmetallverbindungen für die Katalysatorentwicklung, sind Anwendungsgebiete der erfindungsgemäßen Vorrichtung und des erfindungsgemäßen Verfahrens.
Für die Zudosierung von Reaktionslösungen zu den im Separationsmedium eingebetteten Flussigkeitskompartimenten stellt der Mikrokanal (11) mit Dosiervorrichtung (4) ein zentrales funktionelles Element dar, welches dem Transport der in Separationsmedium eingebetteten Sequenzen von Flussigkeitskompartimenten (115) dient und in welchen eine Ein- oder Mehrzahl von zweiten Mikrokanälen (14) einmündet, die die Aufgabe des Zudosierens der in ihnen geführten Prozessflüssigkeit vermittels Dosiervorrichtung (4) zu den im Mikrokanal (11) geführten Flussigkeitskompartimenten zukommt.
Der Ablauf des Zudosierens ist in Fig. 9 bis 12 dargestellt. In dem Mikrokanal (11) werden Sequenzen von Kompartimenten an der Einmündung des Mikrokanals (14) vorbeigeführt (Fig. 9). Dieses Zudosieren wird durch temporäres Fusionieren eines Flüssigkompartimentes aus dem Mikrokanal (11) mit einer Prozessflüssigkeit (15) im Bereich der Einmündung des Mikrokanals (14), dargestellt in Fig. 10, in Verbindung mit der Förderung der Prozessflüssigkeit (15) mit Hilfe einer geeigneten Fördervorrichtung (19) (Fig. 13) erzielt, wie in Fig. 11 dargestellt. Nach Beendigung des Zudosierens erfolgt der Abriss des Kompartimentes (117 in Fig. 12), vermittelt durch die Förderung des Separationsmediums im Mikrokanal (11). Dieser Prozess kann sowohl kontinuierlich als auch diskontinuierlich erfolgen. Bei kontinuierlicher Förderung einer Sequenz (115) der Kompartimente und der Prozessflüssigkeit ergibt sich das einem einzelnen Kompartiment zudosierte Volumen als Produkt aus Kompartimentabstand, Wanderungsgeschwindigkeit und Förderrate der Prozessflüssigkeit (15). Bei individuell gesteuerter Dosierung muss zur Ermittlung des zudosierten Volumens das durch die Fördereinrichtung geforderte Volumen sowie die Auslenkung der Phasengrenze an der Einmündung des Kanals vor Fusionierung des Kompartimentes mit der Flüssigkeit und nach dem Abriss des Kompartimentes berücksichtigt werden. Dies kann durch in den Kanal integrierte Sensoren sowie durch Beobachtung mit Hilfe eines integrierten oder peripheren Systems, welches Bilddatenerfassung, Erfassung von Sensorsignalen, Verarbeitung und Auswertung in Verbindung mit einer Gerätesteuerung zum voll- oder teilautomatischen Betrieb der erfindungsgemäßen Anordnung beinhaltet, realisiert werden. Der definiert erfolgende Tropfenabriss bildet die Voraussetzung für eine hohe Reproduzierbarkeit und Genauigkeit des zudosierten Volumens und bestimmt somit die Prozessicherheit des Dosierverfahrens. Der für den kontrollierten Abriss des Fluidkompartimentes zu leistende Energieeintrag entspricht der Summe der für die Erzeugung der neuen Grenzflächen zu erbringenden Grenzflächenenergie im Bereich der Einmündung des Mikrokanals (14) in den Mikrokanal (11) und der am Kompartiment neu zu erzeugenden Oberfläche und lässt sich in erster Näherung beschreiben durch den Zusammenhang
E = (SigmaTF.SF + SigmaPF.SF )* A wobei SigmaTF.SF als die Grenzflächenspannung der Grenzfläche zwischen Testflüssigkeit (13) und Separationsmedium (12), SigmaPF.SF als die Grenzflächenspannung der Grenzfläche zwischen
Prozessflüssigkeit (13) und Separationsmedium (12) und A als der
Querschnitt der Einmündung des Mikrokanals (14) in den Mikrokanal
(11) definiert ist. Demgemäß erfolgt der Abriss dann definiert und mit minimalen
Energieaufwand, wenn die sich ausbildende Phasengrenze beim Abriss genau an der Einmündung des Mikrokanals (14) in den Mikrokanal (11) ausbildet und der Querschnitt der Einmündung möglichst klein ist.
Der störungsfreie Ablauf dieses Prozesses wird durch die erfindungsgemäße Anordnung und die erfindungsgemäße Abstimmung der Dimensionen der Mikrokanäle, Öffhungsweiten der Einmündung, Benetzungseigenschaften der Oberflächen für die bezeichneten Flüssigkeiten sowie die vorzugsweise Ausformung der Einmündung als scharfkantig begrenzte Verengung des Mikrokanals (14) erreicht. Im Gegensatz zum Stand der Technik bei der Erzeugung und Einbettung von Fluidkompartimenten in ein Separationsmedium, bei welchen die Phasengrenze aufgrund mangelhafter Abstimmung von Benetzungseigenschaften und Geometrie der Einmündung beim Abriss in den Mikrokanal (14) einwandert, wird bei der erfindungsgemäßen Anordnung insbesondere durch die scharfkantige Ausführung der Eintrittsöffhung beidseitig in Richtung des Mikrokanals (11) das Einwandern der Phasengrenze in diesen Kanal wirksam unterbunden. Für eine sichere Prozessführung ist die Einhaltung folgender Kriterien, die das Benetzungsverhalten der inneren Oberflächen im Bereich der Einmündung des Mikrokanals (14) in den Mikrokanal (11) definieren, erforderlich. Diese Bedingungen müssen gegebenenfalls durch geeignete chemische Oberflächenfiinktionalisierung und die Abstimmung der Auswahl der verwendeten Komponenten aufeinander umgesetzt werden. Die Festlegung erfolgt auf Grundlage des Kontaktwinkels der ternären Systeme, für dessen Bestimmung Messgeräte am Markt angeboten werden.
Erfindungsgemäß muss der Kontaktwinkel (114), bestimmt entsprechend Fig. 14, für ein ternäres System aus Flüssigkeit A (111), Flüssigkeit B (112) und Oberfläche (HO) für das System Testflüssigkeit (13), Separationsmedium (12) und Innenfläche des Mikrokanals (11) 90° übersteigen, für das System Prozessflüssigkeit (15),
Separationsmedium (12) und Innenfläche des Mikrokanals (11) 60° übersteigen, und für das System Separationsmedium (12), Mischung (17) und Innenfläche des Mikrokanals (11) 90° übersteigen, für das System Separationsmedium (12), Prozessflüssigkeit (15) und Innenfläche des Mikrokanals (14) 60° übersteigen.
Die individuelle Dosierung von Substanzen zu individuellen und definierten Kompartimenten, einer Serie von Kompartimenten in Verbindung mit der Verwendung einer Ein- oder Mehrzahl von Mikrokanälen (14) ist für einen universellen Einsatz des Verfahrens und der Anordnung erforderlich. Erfindungsgemäß wird dies dadurch erreicht, dass durch Umkehr der Förderrichtung der betreffenden Prozessflüssigkeit in den zugehörigen Mikrokanal (14) in der Weise, dass sich die Phasengrenze zwischen Separationsmedium und Prozessflüssigkeit in den Mikrokanal (14) verschiebt und dadurch die Möglichkeit eines fluidischen Kontaktes zwischen im Mikrokanal (11) befindlichen Kompartimenten und der im Mikrokanal (14) befindlichen Prozessflüssigkeit (15) unterbunden wird.
Ausführungsbeispiel Verfahren zur Bestimmung des Säuregehaltes in Flussigkeitskompartimenten mittels Titrationsanalyse
Für die genannte Bestimmung wird eine Anordnung gemäß Fig. 16 eingesetzt, bei welcher ein Mikrokanal (11) durch zwei Mikrokanalchips geführt und einseitig mit einer Spritzenpumpe zur Förderung des Separationsmediums (SP) Tetradekan, vorgelegt in einer 5-ml- Glasspritze, fluidisch verbunden ist.
Eine zweite Spritze, welche die Testflüssigkeit (13) enthält, ist in der zweiten Aufnahme der Spritzenpumpe fixiert und fluidisch mit einem in den Mikrokanal (11) einmündenden Mikrokanal verbunden. Dieses System dient der gekoppelten Förderung von Separationsmedium und Testflüssigkeit mit einem Förderverhältnis von Tetradekan zu Testflüssigkeit von 5:1. Eine 1-ml-Spritze, befüllt mit Prozessflüssigkeit (15), ist mit dem Mikrokanal (11) über einen Mikrokanal (14) fluidisch verbunden, wobei die Förderung der Prozessflüssigkeit unabhängig von der Förderung der ersten Spritzenpumpe erfolgt. Die als Mikrochip realisierte erfindungsgemäße Anordnung zeichnet sich durch folgende Parameter aus: Breite des Mikrokanals (11): 740 μm, Höhe des Mikrokanals (11): 280 μm, Breite des Mikrokanals (14): 320 μm, Höhe des Mikrokanals (14): 280 μm, alle Kanalquerschnitte haben die Form eines Rechteckes, dessen Ecken mit einem Radius von 140 μm verrundet sind. Die Öffnung der Einmündung des Mikrokanals (14) in den Mikrokanal (11) beträgt 70 μm x 300 μm (Höhe x Breite). Zur Verbindung der Chips wurden Kapillaren aus PTFE verwendet. Die Oberflächen der Chipmodule, hergestellt aus Glas, wurden mit einem Gemisch aus 25 Vol% Wasserstoffperoxid und 75 Vol% Schwefelsäure aktiviert, mit Wasser gewaschen, im Trockenschrank bei 120 °C getrocknet und in einer Lösung von 2 mM Oktadecyltrichlorsilan in wasserfreiem Toluol 3 h bei Raumtemperatur umgesetzt und mit Toluol und nachfolgend Äthanol gespült. Der an einer identisch gespülten Glasoberfläche bestimmte Kontaktwinkel für das System Wasser/Tetradekan/Oberfläche gemäß Fig. 14 beträgt 150° und entspricht den Kriterien für die erfindungsgemäße Anordnung und das erfindungsgemäße Verfahren.
In dem Mikrokanal (11) werden durch kontinuierliches Applizieren des Separationsmediums (12) Tetradekan und kontinuierliches Zudosieren von Salzsäure (0,01 mol/1) mit einem Förderverhältnis 5 zu 1 und einer Förderrate von 0,5 ml/h bezogen auf Salzsäure kontinuierlich Kompartimente von Salzsäure mit einem Volumen von 130 nl und einer Rate von 1,07 Hz erzeugt.
Die Kalibrierung des Kompartimentvolumens erfolgt auf Grundlage der im Vorfeld ermittelten Abhängigkeit des Kompartimentvolumens von der Flussrate für den im Experiment eingesetzten Chip. Diese ist als Box&Whisker-Plot in Fig. 17 dargestellt.
Der Mikrokanal (11) wird über eine HPLC-Kapillare mit einem Innendurchmesser von 0,5 mm in einen Injektionschip geführt, durch dessen Mikrokanal (14) kontinuierlich Natriumhydroxidlösung mit einer Konzentration von 0,05 mol/1 zudosiert wird.
Beginnend mit einer Förderrate von 0,05 ml/h erfolgt die schrittweise Erhöhung der Förderrate in Schritten von je 0,1ml. Der Äquivalenzpunkt ist erkennbar an einem Farbumschlag des der Salzsäure beigefügten Indikators Bromophenolblau nach blau und wird mit einer CCD-Kamera und vorgeschaltetem Interferenzfilter im Wellenlängenbereich 575 bis 625 nm detektiert. Bei einer Förderrate von 0,1 ml/h wird, der Farbumschlag bei 32 von 50 Kompartimenten (64 %) beobachtet, bei einer Förderrate von 0,11 ml/h erfolgt der Farbumschlag bei 50 der 50 beobachteten Kompartimente (100%). Diese Versuchsanordnung und dieses Verfahren ermöglichen, als Beispiele für die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren, die Ermittlung der Säurekonzentration in Mikrokompartimenten durch Titrationsanalyse unter Einsatz der erfindungsgemäßen Anordnung und des erfindungsgemäßen Verfahrens und stellen somit eine Möglichkeit zur Nutzung des Verfahrens zur Bestimmung von Inhaltsstoffen von in Separationsmedium eingebetteten Kompartimenten dar. Aufgrund von statistischen Schwankungen des Volumens der erzeugten Kompartimente wird am Equivalenzpunkt nicht bei allen Flussigkeitskompartimenten der Farbumschlag beobachtet. Nach Übertitrieren über den Equivalenzpunkt hinaus wird der Farbumschlag bei allen Kompartimenten beobachtet.
Das Verfahren wurde analog zur Bestimmung der Zitronensäurekonzentration durch Titration gegen Natronlauge eingesetzt.
Alle in der Beschreibung, den nachfolgenden Ansprüchen und der Zeichnung dargestellten Merkmale können sowohl einzeln als auch in beliebiger Kombination miteinander erfindungswesentlich sein.
Die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren ermöglichen mit einfachen Mitteln eine schnelle, zuverlässige und kostengünstige Strukturierung von Flüssigkeiten für analytische, mikro- und zellbiologische sowie (bio)chemisch-kombinatorische Anwendungen, die in Mikrokapillaren geführte Flüssigkeiten adressierbar in definierte Konzentrationsraume innerhalb eines Flüssigkeitsstromes strukturieren.
Darüber hinaus eröffnen die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren zum eine den Zugang zur Erzeugung von Probenströmen mit einer Vielzahl von in unterschiedlichen Kompartimenten lokalisierten verschiedenartigen Inhalten unter Nutzung von Prinzipien der kombinatorischen Chemie oder zur Erzeugung von Klonen von Pro- oder Eukaryonten-Zellen durch Kultivierung der mit jeweils einer Einzelzelle beimpften Flüssigkeitskompartimente, und zum anderen ermöglichen sie durch das serielle Zudosieren von Testreagenzien, die serielle Analyse der Inhaltsstoffe der Kompartimente und deren Veränderung im Ergebnis des Zudosierens einer Komponente sowie die Durchführung zellulärer Assays unter Verwendung von mit einer einheitlichen Zellpopulation beimpften Kompartimenten in Verbindung mit dem Zudosieren von Effektoren. Durch Zudosieren unterschiedlicher Volumina können mit dem erfindungsgemäßen Verfahren Dosis- Wirkungs- Abhängigkeiten untersucht werden.
Neben zellulären Objekten ist auch die Einbettung von Festkörperpartikeln mit speziellen Funktionseigenschaften als Inhaltsstoffe in die Kompartimente möglich. Auf der anderen Seite ermöglicht die Einbettung von Inhaltsstoffen, bestehend aus oberflächenfunktionalisierten Funktionspartikeln auf der Basis organischer Polymere, Komposite oder anorganischer Feststoffe bzw. funktionalisierter Hydrogel-Partikel die Übertragung der auf diesen Partikeln lokalisierten chemischen, biochemischen oder biologischen Vielfalt auf die Flüssigkeitskompartimente. Durch Einbettung magnetischer Mikropartikel in die Kompartimente werden eine magnetkraft-basierte Förderung der Kompartimente im Kanal sowie magnetkraft-vermittelte Sortierverfahren ermöglicht. Durch magnet-basierte Positionierung von Kompartimenten im Bereich der Einmündung von Kanälen in den Hauptkanal können solche temporär verschlossen werden.
Bezugszeichenliste
1 - Flüssigkeitsleitwege
2 - Fusionator
3 - Spaltator
4 - Dosierungsvorrichtung
5 - Düse
6 - Fluidwiderstand
7 - Trennkammer
8 - Pulskanal
9 - Flüssgkeitssegmente
10 - Bypass
11 - Mikrokanal
12 - Separationsmedium
13 - Testflüssigkeit
14 - Mikrokanal für Prozessflüssigkeit
15 - Prozessflüssigkeit
16 - Phasengrenze Prozessflüssigkeit/Separationsflüssigkeit
17 - Mischung Prozess- und Testflüssigkeit
18 - Fördereinrichtung Separationsmedium
19 - Fördereinrichtung Prozessflüssigkeit
110 - planare Oberfläche
111 - Flüssigkeit A
112 - Flüssigkeit B
113 - Grenzfläche zwischen A und B
114 - Kontaktwinkel
115 Sequenz von in Separationsmedium eingebetteten Kompartimenten einer oder mehrerer Testflüssigkeiten und Mischungen aus Testflüssigkeiten und Prozessmedien
116 - Flüssigkeitskompartiment beinhaltende Testflüssigkeit
117 - Flüssigkeitskompartiment beinhaltend eine Mischung aus Testflüssigkeit und Prozessflüssigkeit
A, B: , C, D Flüssigkeiten

Claims

Patentansprüche
1. Vorrichtung zur Strukturierung von Flüssigkeiten bestehend aus vorgegebenen Flussigkeitsleitwegen (1), dadurch gekennzeichnet, dass in die Flüssigkeitsleitwege (1) mindestens eine Dosierungsvorrichtung (4) einmündet und/oder in den Flussigkeitsleitwegen (1) mindestens ein Fusionator (2) und/oder mindestens ein Spaltator (3) angeordnet ist.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Oberfläche der Flüssigkeitsleitwege (1) für das Separationsmedium (12) benetzende Eigenschaften aufweist.
3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Oberfläche der Flüssigkeitsleitwege (1) für die Testflüssigkeit (13) nichtbenetzende Eigenschaften aufweist.
4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Oberfläche der Flüssigkeitsleitwege (1) für die Mischungen (17) aus Prozess- und Testflüssigkeit (13) nichtbenetzende Eigenschaften aufweist.
5. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass sich in unmittelbarer Nähe des Fusionators (2) bzw. Spaltators (3) Fluidwiderstände (6), die Bestandteil der Flüssigkeitsleitwege (1) sind, befinden.
6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Fluidwiderstände (6) in eine gemeinsame Trennkammer (7) münden.
7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Flüssigkeitsleitwege (1) Mikrokanäle (11) sind.
8. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Flüssigkeitsleitwege (1) Röhren sind.
. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Flüssigkeitsleitwege (1) einen Querschnitt von 3 mm2 bis 0,3 x 10" mm aufweisen.
10. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Dosierungsvorrichtung (4) ein Ventil ist.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass das Ventil mechanisch steuerbar ist.
12. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass das Ventil elektrisch steuerbar ist.
13. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass das Ventil thermisch steuerbar ist.
H.Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Dosierungsvorrichtung (4) ein Mikrokanal (14) ist, der periodisch mit Festkörper- und/oder Flüssigsubstrat und/oder Gas befüllbar ist.
15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass eine Mehrzahl von Mikrokanälen (14) für das Zudosieren unterschiedlicher Prozessflüssigkeiten (15) integriert sind.
16. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass der Mikrokanal (14) scharfkandig in die Flüssigkeitsleitwege (1) führt.
17. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass der Mikrokanal (14) eine zu den Flussigkeitsleitwegen (1) scharfkandig, mit einem Krümmungsradius kleiner als 50μm begrenzte Düse ist.
18. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Fusionator (2) durch mindestens eine Verzweigung innerhalb der Flüssigkeitsleitwege (1) gebildet ist, wobei sich eine Verengung der Flüssigkeitsleitwege (1) nach der Verzweigung und unmittelbarer Nähe dieser befindet.
19. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Spaltator (3) durch mindestens eine Verzweigung innerhalb der Flüssigkeitsleitwege (1) gebildet ist, wobei sich Verengungen der Flüssigkeitsleitwege (1) nach der Verzweigung und unmittelbarer Nähe dieser befinden.
20. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Spaltator (3) durch mindestens eine Düse (5), die in die Flüssigkeitsleitwege (1) führt, gebildet ist.
21. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, dass die Düse (5) mit Flüssigkeiten durchströmbar ist.
22. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, dass die Düse (5) mit Gas durchströmbar ist.
23.Vorrichtung nach den Ansprüchen 21 und/oder 22, dadurch gekennzeichnet, dass die Düse (5) zentrisch in einer Verzweigung der Flüssigkeitsleitwege (1) angeordnet ist.
24. Vorrichtung nach den Ansprüchen 21 und/oder 22, dadurch gekennzeichnet, dass die Düse (5) konzentrisch in einer Verzweigung der Flüssigkeitsleitwege angeordnet ist.
25. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Spaltator (3) durch mindestens einen Pulskanal (8), der in die
Flüssigkeitsleitwege (1) führt, gebildet ist.
26.Vorrichtung nach Anspruch 25, dadurch gekennzeichnet, dass der Pulskanal (8) mit Flüssigkeiten durchströmbar ist.
27. Vorrichtung nach Anspruch 25, dadurch gekennzeichnet, dass der Pulskanal (8) mit Gas durchströmbar ist.
28. Vorrichtung nach den Ansprüchen 26 und/oder 27, dadurch gekennzeichnet, dass der Pulskanal (8) zentrisch in einer Verzweigung der Flüssigkeitsleitwege (1) angeordnet ist.
29.Vorrichtung nach den Ansprüchen 26 und/oder 27, dadurch gekennzeichnet, dass der Pulskanal (8) konzentrisch in einer Verzweigung der Flüssigkeitsleitwege (1) angeordnet ist.
30.Verfahren zur Strukturierung von Flüssigkeiten entlang vorgegebener Flüssigkeitsleitwege, dadurch gekennzeichnet, dass eine Vorrichtung gemäß einem oder mehreren der voranstehenden Ansprüche mit einer Trägerflüssigkeit befüllt wird, die nicht mit einer zu transportierenden Flüssigkeit mischbar ist.
31.Verfahren zur Strukturierung von Flüssigkeiten entlang vorgegebener
Flüssigkeitsleitwege, dadurch gekennzeichnet, dass die Vorrichtung gemäß einem oder mehreren der voranstehenden Ansprüche mit einer
Trägerflüssigkeit befüllt wird, die schwer mit einer zu transportierenden Flüssigkeit mischbar ist.
32. Verfahren zur Strukturierung von Flüssigkeiten entlang vorgegebener Flüssigkeitsleitwege, dadurch gekennzeichnet, dass in das Separationsmedium (12) Kompartimente eines oder mehrerer Testflüssigkeiten (13) und eines Gemisches (17) aus einer
Testflüssigkeit (13) und einer Prozessflüssigkeit (15), welche Sequenzen (115) von Kompartimenten bilden, eingebettet sind, wobei innerhalb dieser Sequenzen das Verhältnis aus Separationsmedium und der Summe der in den Sequenzen enthaltenen Test- und Prozessflüssigkeiten den Wert 1,0 übersteigt.
33. Verfahren zur Strukturierung von Flüssigkeiten entlang vorgegebener Flüssigkeitsleitwege, dadurch gekennzeichnet, dass der
Mikrokanal (11) mindestens einseitig mit einer Vorrichtung (18) zur Förderung des Separationsmediums (12) und der darin eingebetteten Kompartimente fluidisch verbunden ist oder diese integriert und die Förderung der Kompartimente mit einer maximalen Geschwindigkeit zwischen 1 und 500 mm/s ermöglicht.
34. Verfahren zur Strukturierung von Flüssigkeiten entlang vorgegebener Flüssigkeitsleitwege, dadurch gekennzeichnet, dass der Kontaktwinkel (14) für ein ternäres System aus Flüssigkeit A (11), Flüssigkeit B ( 12) und Oberfläche (10) für das System Testflüssigkeit (3), Separationsmedium (2) und
Innenfläche des Mikrokanals (1) 90° übersteigt, für das System Prozessflüssigkeit (5), Separationsmedium (2) und
Innenfläche des Mikrokanals (1) 60° übersteigt und für das System Separationsmedium (2), Mischung (7) und
Innenfläche des Mikrokanals (1) 90° übersteigt.
35. Verfahren zur Strukturierung von Flüssigkeiten entlang vorgegebener Flüssigkeitsleitwege, dadurch gekennzeichnet, dass die Löslichkeit der Testflüssigkeit (13) im Separationsmedium (12) kleiner als 20 g/1 ist, die Löslichkeit der Prozessflüssigkeit (15) im Separationsmedium (12) kleiner als 20 g/1 ist und die Prozessflüssigkeit (15) mit der Testflüssigkeit (13) mischbar ist.
36. Verfahren zur Strukturierung von Flüssigkeiten entlang vorgegebener Flüssigkeitsleitwege, dadurch gekennzeichnet, dass
Flüssigkeitskompartimente (116) einer Testflüssigkeit (13), eingebettet in ein Separationsmedium (12) mittels einer Fördervorrichtung für das Separationsmedium in einem Mikrokanal (11) relativ zu einer Einmündung bewegt und an dieser vorbeigeführt oder vor dieser positioniert werden und dabei für einen begrenzten Zeitraum mit der aus dem Mikrokanal (14) austretenden Prozessflüssigkeit (15) fusionieren und während dieser Zeit ein durch einen funktionalen Zusammenhang zwischen Fusionszeit, Flussrate und Auslenkung der Phasengrenze (16) zum 5 Fusionszeitpunkt und Abrisszeitpunkt berechenbares Volumen der
Prozessflüssigkeit (15) aufnehmen, wobei die Förderung der Prozessflüssigkeit wahlweise kontinuierlich, periodisch oder synchronisiert mit der Platzierung der Kompartimente relativ zur Einmündung des Mikrokanals durch eine l o Fördereinrichtung (19) moduliert erfolgt, der Abriss des Kompartimentes durch den Transport des Separationsmediums (12) im Mikrokanal (11) bewirkt wird, der Abriss des Kompartimentes wahlweise durch gepulste Förderung der Prozessflüssigkeit (15) unterstützt wird und
15 das Zudosieren zu vorbeiströmenden oder im Bereich der
Einmündung befindlichen Kompartimenten dadurch unterbunden wird, dass die Phasengrenze (16) zwischen Prozessflüssigkeit (15) und Separationsmedium (12) durch Flussrichtungsumkehr der Prozessflüssigkeit (15) mittels der Fördereinrichtung (19) in den
20 Mikrokanal (14) hinein verschoben wird.
37. Verfahren zur Strukturierung von Flüssigkeiten entlang vorgegebener Flüssigkeitsleitwege, dadurch gekennzeichnet, dass die Synchronisation und Steuerung der Verfahrensabläufe 25 computergesteuert ist.
38. Verwendung der Vorrichtung und des Verfahrens nach einem oder mehreren der voranstehenden Ansprüche zur Strukturierung von
Flüssigkeiten in der Mikrosystemtechnik für analytische, mikro- und
30 zellbiologische sowie (bio)chemisch-kombinatorische Anwendungen.
PCT/DE2004/001056 2003-05-19 2004-05-18 Vorrichtung und verfahren zur strukturierung von flüssigkeiten und zum zudosieren von reaktionsflüssigkeiten zu in separationsmedium eingebetteten flüssigkeitskompartimenten WO2004103565A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112004001376T DE112004001376D2 (de) 2003-05-19 2004-05-18 Vorrichtung und Verfahren zur Strukturierung von Flüssigkeiten und zum zudosieren von Reaktionsflüssigkeiten zu in Separationsmedium eingebetteten Flüssigkeitskompartimenten

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2003122893 DE10322893A1 (de) 2003-05-19 2003-05-19 Vorrichtung und Verfahren zum Zudosieren von Reaktionsflüssigkeiten zu in Separationsmedium eingebetteten Flüssigkeitskompartimenten
DE10322893.4 2003-05-19
DE10339452A DE10339452A1 (de) 2003-08-22 2003-08-22 Vorrichtung und Verfahren zur Strukturierung von Flüssigkeiten
DE10339452.4 2003-08-22

Publications (2)

Publication Number Publication Date
WO2004103565A2 true WO2004103565A2 (de) 2004-12-02
WO2004103565A3 WO2004103565A3 (de) 2005-04-21

Family

ID=33477510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/001056 WO2004103565A2 (de) 2003-05-19 2004-05-18 Vorrichtung und verfahren zur strukturierung von flüssigkeiten und zum zudosieren von reaktionsflüssigkeiten zu in separationsmedium eingebetteten flüssigkeitskompartimenten

Country Status (2)

Country Link
DE (1) DE112004001376D2 (de)
WO (1) WO2004103565A2 (de)

Cited By (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007011310A1 (en) * 2005-07-21 2007-01-25 Nanyang Technological University Methods and apparatus for microfluidic mixing
WO2009157863A1 (en) * 2008-06-26 2009-12-30 Wigstroem Joakim Microfluidic device
WO2011056546A1 (en) * 2009-10-27 2011-05-12 President And Fellows Of Harvard College Droplet creation techniques
WO2012109138A1 (en) * 2011-02-07 2012-08-16 President And Fellows Of Harvard College Systems and methods for splitting droplets
US8337778B2 (en) 2002-06-28 2012-12-25 President And Fellows Of Harvard College Method and apparatus for fluid dispersion
WO2014011985A1 (en) 2012-07-13 2014-01-16 Berkeley Lights, Inc. Combining biological micro-objects
US8748094B2 (en) 2008-12-19 2014-06-10 President And Fellows Of Harvard College Particle-assisted nucleic acid sequencing
WO2014117088A1 (en) 2013-01-25 2014-07-31 Gnubio, Inc. System and method for performing droplet inflation
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
US8871444B2 (en) 2004-10-08 2014-10-28 Medical Research Council In vitro evolution in microfluidic systems
US9012390B2 (en) 2006-08-07 2015-04-21 Raindance Technologies, Inc. Fluorocarbon emulsion stabilizing surfactants
US9017623B2 (en) 2007-02-06 2015-04-28 Raindance Technologies, Inc. Manipulation of fluids and reactions in microfluidic systems
US9017948B2 (en) 2007-03-07 2015-04-28 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9038919B2 (en) 2003-04-10 2015-05-26 President And Fellows Of Harvard College Formation and control of fluidic species
US9068699B2 (en) 2007-04-19 2015-06-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
WO2015097300A1 (fr) * 2013-12-24 2015-07-02 Espci Innov Dispositif microfluidique de manipulation des fluides non miscible
US9074242B2 (en) 2010-02-12 2015-07-07 Raindance Technologies, Inc. Digital analyte analysis
EP2691676A4 (de) * 2011-03-30 2015-08-26 Gnubio Inc Injektion mehrerer volumen in oder aus tröpfchen
US9150852B2 (en) 2011-02-18 2015-10-06 Raindance Technologies, Inc. Compositions and methods for molecular labeling
US9273308B2 (en) 2006-05-11 2016-03-01 Raindance Technologies, Inc. Selection of compartmentalized screening method
US9328344B2 (en) 2006-01-11 2016-05-03 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9364803B2 (en) 2011-02-11 2016-06-14 Raindance Technologies, Inc. Methods for forming mixed droplets
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US9388465B2 (en) 2013-02-08 2016-07-12 10X Genomics, Inc. Polynucleotide barcode generation
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
US9410201B2 (en) 2012-12-14 2016-08-09 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9448172B2 (en) 2003-03-31 2016-09-20 Medical Research Council Selection by compartmentalised screening
US9475013B2 (en) 2012-02-08 2016-10-25 President And Fellows Of Harvard College Droplet formation using fluid breakup
US9498759B2 (en) 2004-10-12 2016-11-22 President And Fellows Of Harvard College Compartmentalized screening by microfluidic control
US9562897B2 (en) 2010-09-30 2017-02-07 Raindance Technologies, Inc. Sandwich assays in droplets
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
US9689024B2 (en) 2012-08-14 2017-06-27 10X Genomics, Inc. Methods for droplet-based sample preparation
CN106914203A (zh) * 2017-02-22 2017-07-04 上海交通大学 基于微混合器的环丁烷四甲酸二酐连续制备装置及方法
US9694361B2 (en) 2014-04-10 2017-07-04 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9789482B2 (en) 2003-08-27 2017-10-17 President And Fellows Of Harvard College Methods of introducing a fluid into droplets
US9797010B2 (en) 2007-12-21 2017-10-24 President And Fellows Of Harvard College Systems and methods for nucleic acid sequencing
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
US9839890B2 (en) 2004-03-31 2017-12-12 National Science Foundation Compartmentalised combinatorial chemistry by microfluidic control
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9975122B2 (en) 2014-11-05 2018-05-22 10X Genomics, Inc. Instrument systems for integrated sample processing
CN108070582A (zh) * 2012-10-31 2018-05-25 伯克利之光生命科技公司 用于生物微目标的围栏
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10052605B2 (en) 2003-03-31 2018-08-21 Medical Research Council Method of synthesis and testing of combinatorial libraries using microcapsules
US10221436B2 (en) 2015-01-12 2019-03-05 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
EP3461559A1 (de) 2015-06-11 2019-04-03 Neofluidics LLC Manuelle oder elektronische pipettenbetriebene mikrotiterplatte für nanolitertröpfchenlagerung und verfahren zur verwendung davon
CN109689005A (zh) * 2016-07-08 2019-04-26 康沃特克科技公司 流体流量感测
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10287623B2 (en) 2014-10-29 2019-05-14 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US10395758B2 (en) 2013-08-30 2019-08-27 10X Genomics, Inc. Sequencing methods
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10400235B2 (en) 2017-05-26 2019-09-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US10428326B2 (en) 2017-01-30 2019-10-01 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US10471016B2 (en) 2013-11-08 2019-11-12 President And Fellows Of Harvard College Microparticles, methods for their preparation and use
US10520500B2 (en) 2009-10-09 2019-12-31 Abdeslam El Harrak Labelled silica-based nanomaterial with enhanced properties and uses thereof
US10533998B2 (en) 2008-07-18 2020-01-14 Bio-Rad Laboratories, Inc. Enzyme quantification
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
US10650912B2 (en) 2015-01-13 2020-05-12 10X Genomics, Inc. Systems and methods for visualizing structural variation and phasing information
US10697000B2 (en) 2015-02-24 2020-06-30 10X Genomics, Inc. Partition processing methods and systems
US10732649B2 (en) 2004-07-02 2020-08-04 The University Of Chicago Microfluidic system
US10745742B2 (en) 2017-11-15 2020-08-18 10X Genomics, Inc. Functionalized gel beads
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10774370B2 (en) 2015-12-04 2020-09-15 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
US10839939B2 (en) 2014-06-26 2020-11-17 10X Genomics, Inc. Processes and systems for nucleic acid sequence assembly
US10837883B2 (en) 2009-12-23 2020-11-17 Bio-Rad Laboratories, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
US10854315B2 (en) 2015-02-09 2020-12-01 10X Genomics, Inc. Systems and methods for determining structural variation and phasing using variant call data
US11081208B2 (en) 2016-02-11 2021-08-03 10X Genomics, Inc. Systems, methods, and media for de novo assembly of whole genome sequence data
US11084036B2 (en) 2016-05-13 2021-08-10 10X Genomics, Inc. Microfluidic systems and methods of use
US11123297B2 (en) 2015-10-13 2021-09-21 President And Fellows Of Harvard College Systems and methods for making and using gel microspheres
US11155881B2 (en) 2018-04-06 2021-10-26 10X Genomics, Inc. Systems and methods for quality control in single cell processing
US11174509B2 (en) 2013-12-12 2021-11-16 Bio-Rad Laboratories, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US11193176B2 (en) 2013-12-31 2021-12-07 Bio-Rad Laboratories, Inc. Method for detecting and quantifying latent retroviral RNA species
US11268887B2 (en) 2009-03-23 2022-03-08 Bio-Rad Laboratories, Inc. Manipulation of microfluidic droplets
US11274343B2 (en) 2015-02-24 2022-03-15 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequence coverage
US11401550B2 (en) 2008-09-19 2022-08-02 President And Fellows Of Harvard College Creation of libraries of droplets and related species
US11511242B2 (en) 2008-07-18 2022-11-29 Bio-Rad Laboratories, Inc. Droplet libraries
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US11629344B2 (en) 2014-06-26 2023-04-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11773389B2 (en) 2017-05-26 2023-10-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US11898206B2 (en) 2017-05-19 2024-02-13 10X Genomics, Inc. Systems and methods for clonotype screening
US11898193B2 (en) 2011-07-20 2024-02-13 Bio-Rad Laboratories, Inc. Manipulating droplet size
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4253846A (en) * 1979-11-21 1981-03-03 Technicon Instruments Corporation Method and apparatus for automated analysis of fluid samples
GB2097692A (en) * 1981-01-10 1982-11-10 Shaw Stewart P D Combining chemical reagents
WO2001028670A1 (en) * 1999-10-20 2001-04-26 The University Of Sheffield Fluidic mixer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4253846A (en) * 1979-11-21 1981-03-03 Technicon Instruments Corporation Method and apparatus for automated analysis of fluid samples
GB2097692A (en) * 1981-01-10 1982-11-10 Shaw Stewart P D Combining chemical reagents
WO2001028670A1 (en) * 1999-10-20 2001-04-26 The University Of Sheffield Fluidic mixer

Cited By (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8986628B2 (en) 2002-06-28 2015-03-24 President And Fellows Of Harvard College Method and apparatus for fluid dispersion
US8337778B2 (en) 2002-06-28 2012-12-25 President And Fellows Of Harvard College Method and apparatus for fluid dispersion
US11187702B2 (en) 2003-03-14 2021-11-30 Bio-Rad Laboratories, Inc. Enzyme quantification
US10052605B2 (en) 2003-03-31 2018-08-21 Medical Research Council Method of synthesis and testing of combinatorial libraries using microcapsules
US9448172B2 (en) 2003-03-31 2016-09-20 Medical Research Council Selection by compartmentalised screening
US9857303B2 (en) 2003-03-31 2018-01-02 Medical Research Council Selection by compartmentalised screening
US11141731B2 (en) 2003-04-10 2021-10-12 President And Fellows Of Harvard College Formation and control of fluidic species
US20150283546A1 (en) 2003-04-10 2015-10-08 President And Fellows Of Harvard College Formation and control of fluidic species
US9038919B2 (en) 2003-04-10 2015-05-26 President And Fellows Of Harvard College Formation and control of fluidic species
US10293341B2 (en) 2003-04-10 2019-05-21 President And Fellows Of Harvard College Formation and control of fluidic species
US9789482B2 (en) 2003-08-27 2017-10-17 President And Fellows Of Harvard College Methods of introducing a fluid into droplets
US11383234B2 (en) 2003-08-27 2022-07-12 President And Fellows Of Harvard College Electronic control of fluidic species
US10625256B2 (en) 2003-08-27 2020-04-21 President And Fellows Of Harvard College Electronic control of fluidic species
US9878325B2 (en) 2003-08-27 2018-01-30 President And Fellows Of Harvard College Electronic control of fluidic species
US11821109B2 (en) 2004-03-31 2023-11-21 President And Fellows Of Harvard College Compartmentalised combinatorial chemistry by microfluidic control
US9925504B2 (en) 2004-03-31 2018-03-27 President And Fellows Of Harvard College Compartmentalised combinatorial chemistry by microfluidic control
US9839890B2 (en) 2004-03-31 2017-12-12 National Science Foundation Compartmentalised combinatorial chemistry by microfluidic control
US10732649B2 (en) 2004-07-02 2020-08-04 The University Of Chicago Microfluidic system
US11786872B2 (en) 2004-10-08 2023-10-17 United Kingdom Research And Innovation Vitro evolution in microfluidic systems
US8871444B2 (en) 2004-10-08 2014-10-28 Medical Research Council In vitro evolution in microfluidic systems
US9186643B2 (en) 2004-10-08 2015-11-17 Medical Research Council In vitro evolution in microfluidic systems
US9029083B2 (en) 2004-10-08 2015-05-12 Medical Research Council Vitro evolution in microfluidic systems
US9498759B2 (en) 2004-10-12 2016-11-22 President And Fellows Of Harvard College Compartmentalized screening by microfluidic control
WO2007011310A1 (en) * 2005-07-21 2007-01-25 Nanyang Technological University Methods and apparatus for microfluidic mixing
US9534216B2 (en) 2006-01-11 2017-01-03 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9328344B2 (en) 2006-01-11 2016-05-03 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9410151B2 (en) 2006-01-11 2016-08-09 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
US9273308B2 (en) 2006-05-11 2016-03-01 Raindance Technologies, Inc. Selection of compartmentalized screening method
US11351510B2 (en) 2006-05-11 2022-06-07 Bio-Rad Laboratories, Inc. Microfluidic devices
US9498761B2 (en) 2006-08-07 2016-11-22 Raindance Technologies, Inc. Fluorocarbon emulsion stabilizing surfactants
US9012390B2 (en) 2006-08-07 2015-04-21 Raindance Technologies, Inc. Fluorocarbon emulsion stabilizing surfactants
US9017623B2 (en) 2007-02-06 2015-04-28 Raindance Technologies, Inc. Manipulation of fluids and reactions in microfluidic systems
US10603662B2 (en) 2007-02-06 2020-03-31 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US11819849B2 (en) 2007-02-06 2023-11-21 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US9440232B2 (en) 2007-02-06 2016-09-13 Raindance Technologies, Inc. Manipulation of fluids and reactions in microfluidic systems
US10508294B2 (en) 2007-03-07 2019-12-17 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9017948B2 (en) 2007-03-07 2015-04-28 President And Fellows Of Harvard College Assays and other reactions involving droplets
US10221437B2 (en) 2007-03-07 2019-03-05 President And Fellows Of Harvard College Assays and other reactions involving droplets
US10941430B2 (en) 2007-03-07 2021-03-09 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9816121B2 (en) 2007-03-07 2017-11-14 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9850526B2 (en) 2007-03-07 2017-12-26 President And Fellows Of Harvard College Assays and other reactions involving droplets
US10683524B2 (en) 2007-03-07 2020-06-16 President And Fellows Of Harvard College Assays and other reactions involving droplets
US10738337B2 (en) 2007-03-07 2020-08-11 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9029085B2 (en) 2007-03-07 2015-05-12 President And Fellows Of Harvard College Assays and other reactions involving droplets
US9068210B2 (en) 2007-03-07 2015-06-30 President And Fellows Of Harvard College Assay and other reactions involving droplets
US10675626B2 (en) 2007-04-19 2020-06-09 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US10960397B2 (en) 2007-04-19 2021-03-30 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US10357772B2 (en) 2007-04-19 2019-07-23 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US11618024B2 (en) 2007-04-19 2023-04-04 President And Fellows Of Harvard College Manipulation of fluids, fluid components and reactions in microfluidic systems
US9068699B2 (en) 2007-04-19 2015-06-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US11224876B2 (en) 2007-04-19 2022-01-18 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US9797010B2 (en) 2007-12-21 2017-10-24 President And Fellows Of Harvard College Systems and methods for nucleic acid sequencing
US10633701B2 (en) 2007-12-21 2020-04-28 President And Fellows Of Harvard College Systems and methods for nucleic acid sequencing
WO2009157863A1 (en) * 2008-06-26 2009-12-30 Wigstroem Joakim Microfluidic device
US11511242B2 (en) 2008-07-18 2022-11-29 Bio-Rad Laboratories, Inc. Droplet libraries
US11596908B2 (en) 2008-07-18 2023-03-07 Bio-Rad Laboratories, Inc. Droplet libraries
US10533998B2 (en) 2008-07-18 2020-01-14 Bio-Rad Laboratories, Inc. Enzyme quantification
US11534727B2 (en) 2008-07-18 2022-12-27 Bio-Rad Laboratories, Inc. Droplet libraries
US11401550B2 (en) 2008-09-19 2022-08-02 President And Fellows Of Harvard College Creation of libraries of droplets and related species
US10457977B2 (en) 2008-12-19 2019-10-29 President And Fellows Of Harvard College Particle-assisted nucleic acid sequencing
US8748094B2 (en) 2008-12-19 2014-06-10 President And Fellows Of Harvard College Particle-assisted nucleic acid sequencing
US11268887B2 (en) 2009-03-23 2022-03-08 Bio-Rad Laboratories, Inc. Manipulation of microfluidic droplets
US10520500B2 (en) 2009-10-09 2019-12-31 Abdeslam El Harrak Labelled silica-based nanomaterial with enhanced properties and uses thereof
EP3461558A1 (de) * 2009-10-27 2019-04-03 President and Fellows of Harvard College Tröpfchenbildungsverfahren
US9839911B2 (en) 2009-10-27 2017-12-12 President And Fellows Of Harvard College Droplet creation techniques
CN102648053A (zh) * 2009-10-27 2012-08-22 哈佛学院院长等 液滴生成技术
US11000849B2 (en) 2009-10-27 2021-05-11 President And Fellows Of Harvard College Droplet creation techniques
WO2011056546A1 (en) * 2009-10-27 2011-05-12 President And Fellows Of Harvard College Droplet creation techniques
EP3842150A1 (de) * 2009-10-27 2021-06-30 President and Fellows of Harvard College Tröpfchenbildungsverfahren
US9056289B2 (en) 2009-10-27 2015-06-16 President And Fellows Of Harvard College Droplet creation techniques
US10837883B2 (en) 2009-12-23 2020-11-17 Bio-Rad Laboratories, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
US9074242B2 (en) 2010-02-12 2015-07-07 Raindance Technologies, Inc. Digital analyte analysis
US11254968B2 (en) 2010-02-12 2022-02-22 Bio-Rad Laboratories, Inc. Digital analyte analysis
US11390917B2 (en) 2010-02-12 2022-07-19 Bio-Rad Laboratories, Inc. Digital analyte analysis
US10808279B2 (en) 2010-02-12 2020-10-20 Bio-Rad Laboratories, Inc. Digital analyte analysis
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US9228229B2 (en) 2010-02-12 2016-01-05 Raindance Technologies, Inc. Digital analyte analysis
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
US11635427B2 (en) 2010-09-30 2023-04-25 Bio-Rad Laboratories, Inc. Sandwich assays in droplets
US9562897B2 (en) 2010-09-30 2017-02-07 Raindance Technologies, Inc. Sandwich assays in droplets
WO2012109138A1 (en) * 2011-02-07 2012-08-16 President And Fellows Of Harvard College Systems and methods for splitting droplets
CN105689030A (zh) * 2011-02-07 2016-06-22 哈佛学院院长等 分裂液滴的系统和方法
US11077415B2 (en) 2011-02-11 2021-08-03 Bio-Rad Laboratories, Inc. Methods for forming mixed droplets
US9364803B2 (en) 2011-02-11 2016-06-14 Raindance Technologies, Inc. Methods for forming mixed droplets
US11768198B2 (en) 2011-02-18 2023-09-26 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US11747327B2 (en) 2011-02-18 2023-09-05 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US9150852B2 (en) 2011-02-18 2015-10-06 Raindance Technologies, Inc. Compositions and methods for molecular labeling
US11965877B2 (en) 2011-02-18 2024-04-23 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US11168353B2 (en) 2011-02-18 2021-11-09 Bio-Rad Laboratories, Inc. Compositions and methods for molecular labeling
US10569268B2 (en) 2011-03-30 2020-02-25 Bio-Rad Laboratories, Inc. Injection of multiple volumes into or out of droplets
US9861979B2 (en) 2011-03-30 2018-01-09 Bio-Rad Laboratories, Inc. Injection of multiple volumes into or out of droplets
EP2691676A4 (de) * 2011-03-30 2015-08-26 Gnubio Inc Injektion mehrerer volumen in oder aus tröpfchen
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
US11754499B2 (en) 2011-06-02 2023-09-12 Bio-Rad Laboratories, Inc. Enzyme quantification
US11898193B2 (en) 2011-07-20 2024-02-13 Bio-Rad Laboratories, Inc. Manipulating droplet size
US9475013B2 (en) 2012-02-08 2016-10-25 President And Fellows Of Harvard College Droplet formation using fluid breakup
EP2872615A4 (de) * 2012-07-13 2016-03-30 Berkeley Lights Inc Kombination biologischer mikroobjekte
WO2014011985A1 (en) 2012-07-13 2014-01-16 Berkeley Lights, Inc. Combining biological micro-objects
US10669583B2 (en) 2012-08-14 2020-06-02 10X Genomics, Inc. Method and systems for processing polynucleotides
US9695468B2 (en) 2012-08-14 2017-07-04 10X Genomics, Inc. Methods for droplet-based sample preparation
US11021749B2 (en) 2012-08-14 2021-06-01 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10400280B2 (en) 2012-08-14 2019-09-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11035002B2 (en) 2012-08-14 2021-06-15 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10752950B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10450607B2 (en) 2012-08-14 2019-10-22 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10752949B2 (en) 2012-08-14 2020-08-25 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11359239B2 (en) 2012-08-14 2022-06-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10597718B2 (en) 2012-08-14 2020-03-24 10X Genomics, Inc. Methods and systems for sample processing polynucleotides
US11591637B2 (en) 2012-08-14 2023-02-28 10X Genomics, Inc. Compositions and methods for sample processing
US9689024B2 (en) 2012-08-14 2017-06-27 10X Genomics, Inc. Methods for droplet-based sample preparation
US10221442B2 (en) 2012-08-14 2019-03-05 10X Genomics, Inc. Compositions and methods for sample processing
US10053723B2 (en) 2012-08-14 2018-08-21 10X Genomics, Inc. Capsule array devices and methods of use
US10323279B2 (en) 2012-08-14 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11078522B2 (en) 2012-08-14 2021-08-03 10X Genomics, Inc. Capsule array devices and methods of use
US10626458B2 (en) 2012-08-14 2020-04-21 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10273541B2 (en) 2012-08-14 2019-04-30 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11441179B2 (en) 2012-08-14 2022-09-13 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10584381B2 (en) 2012-08-14 2020-03-10 10X Genomics, Inc. Methods and systems for processing polynucleotides
CN108070582A (zh) * 2012-10-31 2018-05-25 伯克利之光生命科技公司 用于生物微目标的围栏
CN108070582B (zh) * 2012-10-31 2021-09-14 伯克利之光生命科技公司 用于生物微目标的围栏
US10253364B2 (en) 2012-12-14 2019-04-09 10X Genomics, Inc. Method and systems for processing polynucleotides
US9856530B2 (en) 2012-12-14 2018-01-02 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9567631B2 (en) 2012-12-14 2017-02-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11421274B2 (en) 2012-12-14 2022-08-23 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9701998B2 (en) 2012-12-14 2017-07-11 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10533221B2 (en) 2012-12-14 2020-01-14 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10612090B2 (en) 2012-12-14 2020-04-07 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9410201B2 (en) 2012-12-14 2016-08-09 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10676789B2 (en) 2012-12-14 2020-06-09 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11473138B2 (en) 2012-12-14 2022-10-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10227648B2 (en) 2012-12-14 2019-03-12 10X Genomics, Inc. Methods and systems for processing polynucleotides
WO2014117088A1 (en) 2013-01-25 2014-07-31 Gnubio, Inc. System and method for performing droplet inflation
US10730045B2 (en) 2013-01-25 2020-08-04 Bio-Rad Laboratories, Inc. System and method for performing droplet inflation
EP2948703A4 (de) * 2013-01-25 2016-09-21 Gnubio Inc System und verfahren zur durchführung einer tropfeninflation
US10159977B2 (en) 2013-01-25 2018-12-25 Bio-Rad Laboratories, Inc. System and method for performing droplet inflation
EP3473905A1 (de) * 2013-01-25 2019-04-24 Bio-rad Laboratories, Inc. System und verfahren zur durchführung einer tropfenvergrösserung
US9388465B2 (en) 2013-02-08 2016-07-12 10X Genomics, Inc. Polynucleotide barcode generation
US9644204B2 (en) 2013-02-08 2017-05-09 10X Genomics, Inc. Partitioning and processing of analytes and other species
US11193121B2 (en) 2013-02-08 2021-12-07 10X Genomics, Inc. Partitioning and processing of analytes and other species
US10150964B2 (en) 2013-02-08 2018-12-11 10X Genomics, Inc. Partitioning and processing of analytes and other species
US10150963B2 (en) 2013-02-08 2018-12-11 10X Genomics, Inc. Partitioning and processing of analytes and other species
US10395758B2 (en) 2013-08-30 2019-08-27 10X Genomics, Inc. Sequencing methods
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US10471016B2 (en) 2013-11-08 2019-11-12 President And Fellows Of Harvard College Microparticles, methods for their preparation and use
US11174509B2 (en) 2013-12-12 2021-11-16 Bio-Rad Laboratories, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US9824068B2 (en) 2013-12-16 2017-11-21 10X Genomics, Inc. Methods and apparatus for sorting data
WO2015097300A1 (fr) * 2013-12-24 2015-07-02 Espci Innov Dispositif microfluidique de manipulation des fluides non miscible
US11193176B2 (en) 2013-12-31 2021-12-07 Bio-Rad Laboratories, Inc. Method for detecting and quantifying latent retroviral RNA species
US10071377B2 (en) 2014-04-10 2018-09-11 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US10343166B2 (en) 2014-04-10 2019-07-09 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US9694361B2 (en) 2014-04-10 2017-07-04 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US10150117B2 (en) 2014-04-10 2018-12-11 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US10137449B2 (en) 2014-04-10 2018-11-27 10X Genomics, Inc. Fluidic devices, systems, and methods for encapsulating and partitioning reagents, and applications of same
US11133084B2 (en) 2014-06-26 2021-09-28 10X Genomics, Inc. Systems and methods for nucleic acid sequence assembly
US10030267B2 (en) 2014-06-26 2018-07-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11713457B2 (en) 2014-06-26 2023-08-01 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10337061B2 (en) 2014-06-26 2019-07-02 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10457986B2 (en) 2014-06-26 2019-10-29 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10480028B2 (en) 2014-06-26 2019-11-19 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11629344B2 (en) 2014-06-26 2023-04-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10839939B2 (en) 2014-06-26 2020-11-17 10X Genomics, Inc. Processes and systems for nucleic acid sequence assembly
US10041116B2 (en) 2014-06-26 2018-08-07 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10344329B2 (en) 2014-06-26 2019-07-09 10X Genomics, Inc. Methods and systems for processing polynucleotides
US9951386B2 (en) 2014-06-26 2018-04-24 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10208343B2 (en) 2014-06-26 2019-02-19 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10760124B2 (en) 2014-06-26 2020-09-01 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10287623B2 (en) 2014-10-29 2019-05-14 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US11739368B2 (en) 2014-10-29 2023-08-29 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequencing
US11135584B2 (en) 2014-11-05 2021-10-05 10X Genomics, Inc. Instrument systems for integrated sample processing
US9975122B2 (en) 2014-11-05 2018-05-22 10X Genomics, Inc. Instrument systems for integrated sample processing
US10245587B2 (en) 2014-11-05 2019-04-02 10X Genomics, Inc. Instrument systems for integrated sample processing
US10221436B2 (en) 2015-01-12 2019-03-05 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US11414688B2 (en) 2015-01-12 2022-08-16 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US10557158B2 (en) 2015-01-12 2020-02-11 10X Genomics, Inc. Processes and systems for preparation of nucleic acid sequencing libraries and libraries prepared using same
US10650912B2 (en) 2015-01-13 2020-05-12 10X Genomics, Inc. Systems and methods for visualizing structural variation and phasing information
US10854315B2 (en) 2015-02-09 2020-12-01 10X Genomics, Inc. Systems and methods for determining structural variation and phasing using variant call data
US11603554B2 (en) 2015-02-24 2023-03-14 10X Genomics, Inc. Partition processing methods and systems
US10697000B2 (en) 2015-02-24 2020-06-30 10X Genomics, Inc. Partition processing methods and systems
US11274343B2 (en) 2015-02-24 2022-03-15 10X Genomics, Inc. Methods and compositions for targeted nucleic acid sequence coverage
EP3461559A1 (de) 2015-06-11 2019-04-03 Neofluidics LLC Manuelle oder elektronische pipettenbetriebene mikrotiterplatte für nanolitertröpfchenlagerung und verfahren zur verwendung davon
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
US11123297B2 (en) 2015-10-13 2021-09-21 President And Fellows Of Harvard College Systems and methods for making and using gel microspheres
US11873528B2 (en) 2015-12-04 2024-01-16 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US10774370B2 (en) 2015-12-04 2020-09-15 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US11473125B2 (en) 2015-12-04 2022-10-18 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US11624085B2 (en) 2015-12-04 2023-04-11 10X Genomics, Inc. Methods and compositions for nucleic acid analysis
US11081208B2 (en) 2016-02-11 2021-08-03 10X Genomics, Inc. Systems, methods, and media for de novo assembly of whole genome sequence data
US11084036B2 (en) 2016-05-13 2021-08-10 10X Genomics, Inc. Microfluidic systems and methods of use
CN109689005B (zh) * 2016-07-08 2022-03-04 康沃特克科技公司 流体流量感测
CN109689005A (zh) * 2016-07-08 2019-04-26 康沃特克科技公司 流体流量感测
US10480029B2 (en) 2016-12-22 2019-11-19 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10011872B1 (en) 2016-12-22 2018-07-03 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10858702B2 (en) 2016-12-22 2020-12-08 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11180805B2 (en) 2016-12-22 2021-11-23 10X Genomics, Inc Methods and systems for processing polynucleotides
US10550429B2 (en) 2016-12-22 2020-02-04 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10323278B2 (en) 2016-12-22 2019-06-18 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10793905B2 (en) 2016-12-22 2020-10-06 10X Genomics, Inc. Methods and systems for processing polynucleotides
US10815525B2 (en) 2016-12-22 2020-10-27 10X Genomics, Inc. Methods and systems for processing polynucleotides
US11193122B2 (en) 2017-01-30 2021-12-07 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
US10428326B2 (en) 2017-01-30 2019-10-01 10X Genomics, Inc. Methods and systems for droplet-based single cell barcoding
CN106914203B (zh) * 2017-02-22 2019-01-25 上海交通大学 基于微混合器的环丁烷四甲酸二酐连续制备装置及方法
CN106914203A (zh) * 2017-02-22 2017-07-04 上海交通大学 基于微混合器的环丁烷四甲酸二酐连续制备装置及方法
US11898206B2 (en) 2017-05-19 2024-02-13 10X Genomics, Inc. Systems and methods for clonotype screening
US10400235B2 (en) 2017-05-26 2019-09-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US11773389B2 (en) 2017-05-26 2023-10-03 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US10927370B2 (en) 2017-05-26 2021-02-23 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US11198866B2 (en) 2017-05-26 2021-12-14 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US11155810B2 (en) 2017-05-26 2021-10-26 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US10844372B2 (en) 2017-05-26 2020-11-24 10X Genomics, Inc. Single cell analysis of transposase accessible chromatin
US10876147B2 (en) 2017-11-15 2020-12-29 10X Genomics, Inc. Functionalized gel beads
US10745742B2 (en) 2017-11-15 2020-08-18 10X Genomics, Inc. Functionalized gel beads
US11884962B2 (en) 2017-11-15 2024-01-30 10X Genomics, Inc. Functionalized gel beads
US10829815B2 (en) 2017-11-17 2020-11-10 10X Genomics, Inc. Methods and systems for associating physical and genetic properties of biological particles
US11155881B2 (en) 2018-04-06 2021-10-26 10X Genomics, Inc. Systems and methods for quality control in single cell processing

Also Published As

Publication number Publication date
DE112004001376D2 (de) 2006-04-13
WO2004103565A3 (de) 2005-04-21

Similar Documents

Publication Publication Date Title
WO2004103565A2 (de) Vorrichtung und verfahren zur strukturierung von flüssigkeiten und zum zudosieren von reaktionsflüssigkeiten zu in separationsmedium eingebetteten flüssigkeitskompartimenten
US10589274B2 (en) Microfluidic devices and methods of their use
DE10228767B4 (de) Mikrovorrichtung und Verfahren für eine Komponententrennung in einem Fluid
EP1054735B1 (de) Miniaturisierter temperaturzonen flussreaktor
Vyawahare et al. Miniaturization and parallelization of biological and chemical assays in microfluidic devices
DE60018733T2 (de) Vorrichtung und verfahren zur probenanalyse
US20040043506A1 (en) Cascaded hydrodynamic focusing in microfluidic channels
DE102014224664B3 (de) Vorrichtung und verfahren zur tropfenerzeugung
Angelescu et al. Microfluidic capillary separation and real-time spectroscopic analysis of specific components from multiphase mixtures
DE10106008A1 (de) PCR-Mikroreaktor zum Vermehren von DNA unter Verwendung von Mikromengen eines Probenfluids
DE102011083920B4 (de) Verfahren und vorrichtung zum erzeugen von fluidisch voneinander separierten teilvolumina einer flüssigkeit
WO2016064755A2 (en) Rapid modulation of droplet composition with membrane microvalves
DE19935433A1 (de) Mikrofluidischer Reaktionsträger
DE60201257T2 (de) Verfahren und vorrichtung zur kontinuerlichen durchführung einer biologischen, chemischen oder biochemischen reaktion
JP6796067B2 (ja) スペーサによって分離された液体体積の配列を処理するためのマイクロ流体プローブ・ヘッド
DE10339452A1 (de) Vorrichtung und Verfahren zur Strukturierung von Flüssigkeiten
CN112439467A (zh) 用于制备乳化液滴的芯片及装置
DE60201017T2 (de) Mikrokanalvorrichtung und verfahren
DE19910392B4 (de) Mikrosäulenreaktor
EP1075326B1 (de) Vorrichtung für den transport von flüssigkeiten entlang vorgegebener leitwege
DE10322893A1 (de) Vorrichtung und Verfahren zum Zudosieren von Reaktionsflüssigkeiten zu in Separationsmedium eingebetteten Flüssigkeitskompartimenten
DE102009005925B4 (de) Vorrichtung und Verfahren zur Handhabung von Biomolekülen
WO2009152997A2 (de) Stopped-flow-chip
CN106076446A (zh) 一种双支路实现间隔微液滴融合功能的微通道
Rhee et al. Versatile on-demand droplet generation for controlled encapsulation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REF Corresponds to

Ref document number: 112004001376

Country of ref document: DE

Date of ref document: 20060413

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 112004001376

Country of ref document: DE

122 Ep: pct application non-entry in european phase