WO2004102127A1 - Inkrementeller antrieb - Google Patents

Inkrementeller antrieb Download PDF

Info

Publication number
WO2004102127A1
WO2004102127A1 PCT/EP2004/050605 EP2004050605W WO2004102127A1 WO 2004102127 A1 WO2004102127 A1 WO 2004102127A1 EP 2004050605 W EP2004050605 W EP 2004050605W WO 2004102127 A1 WO2004102127 A1 WO 2004102127A1
Authority
WO
WIPO (PCT)
Prior art keywords
contour
driver element
drive according
disk
incremental
Prior art date
Application number
PCT/EP2004/050605
Other languages
English (en)
French (fr)
Inventor
Jürgen Adams
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP04729441A priority Critical patent/EP1625362A1/de
Publication of WO2004102127A1 publication Critical patent/WO2004102127A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/105Cycloid or wobble motors; Harmonic traction motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/60Instruments characterised by their location or relative disposition in or on vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D13/00Component parts of indicators for measuring arrangements not specially adapted for a specific variable
    • G01D13/22Pointers, e.g. settable pointer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/02Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means
    • G01D5/04Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using mechanical means using levers; using cams; using gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • B60K35/50Instruments characterised by their means of attachment to or integration in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K37/00Dashboards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/327Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear with orbital gear sets comprising an internally toothed ring gear

Definitions

  • the present invention relates to an incremental drive, in particular for a pointer instrument of a motor vehicle, with an axis of rotation.
  • pointer instruments are usually integrated in an instrument panel, which signal a large amount of information to a driver, such as, for example, the speed of the vehicle, the speed of the engine or the fill level.
  • a driver such as, for example, the speed of the vehicle, the speed of the engine or the fill level.
  • these instruments must be arranged in the driver's constant field of vision, which means that the installation space available in the dashboard is often very limited or insufficient.
  • Pointer instruments generally have motors or moving-coil or moving-iron drives and cross-wound drives. Both DC motors and stepper motors are used as motors. Both types of motor have reduction gears, so that a position of a pointer can be changed in the smallest steps or angles. The hands are controlled by means of stepper motors controlled by digital circuits and brought to the position of a dial corresponding to a measured value without adjustment.
  • Common pointer drives are usually designed so that sufficient adjustment and display dynamics can be achieved for all applications.
  • the drives designed for this purpose are also used for pointer instruments with low display dynamics for manufacturing reasons. Pointer instruments with low to very low display dynamics are, for example, the displays for the oil level or the oil temperature.
  • a disadvantage of the pointer instruments listed above is the large installation space required in relation to the pointer flag of a pointer for accommodating the drive or the motor. Furthermore, high manufacturing costs due to a large number of components and increased assembly costs are disadvantageous.
  • the object of the present invention is to provide an incremental drive, in particular for a pointer instrument of a motor vehicle, which requires a reduced installation space while at the same time simplifying the construction and reducing the production outlay.
  • an incremental drive in which the axis of rotation is connected to a disk drive and the disk drive has a contour disk with an outer contour, which is arranged concentrically to the axis of rotation and is connected to it, with a driver element surrounding the contour disk has an inner contour that is movable in an x and y direction with movement components transverse to the axis of rotation, the movement of the Inner contour of the driver element with the outer contour of the contour disk can be brought m top cover and the contour disk can be driven with the axis of rotation.
  • the proposed incremental drive has the advantage that it enables a very compact and flat construction and a pointer instrument having this drive requires a very small volume of space in a dashboard when it is installed, for example, in the dashboard of a motor vehicle.
  • the flat design of the disk drive allows a plurality of disk drives to be stacked in a pointer instrument.
  • the construction of double-pointer or multiple-pointer displays with pointers that can move independently of one another is thus significantly favored.
  • the disk drive advantageously has a transducer which exerts a mechanical force on the driver element.
  • the converter can be based here, for example, on the basis of a thermal or electromagnetic conversion of electrical variables into a mechanical movement.
  • the converter preferably has a bending beam which is heated by suitable heating means, for example by heating due to the supply of a current, by wrapping with a heating wire or by the arrangement of heating resistors, and the expansion exerts a mechanical force on the driver element.
  • the bending beam can be made as a bimetal or from a composite plastic. The use of a plastic with a high expansion coefficient enables free design and, moreover, simplified production. tion process in connection with the production of the contour disk and the driving element.
  • Guide pins are advantageously arranged in the driver element, which prevent the driver element from disengaging from the contour disk when the driver element moves, or prevent the contours of the contour disk and driver element from tilting.
  • the mechanical force causes a movement of the
  • FIG. 1 shows a schematic sectional illustration of a pointer instrument with two stacked disk drives
  • FIG. 2 shows a first exemplary embodiment of a drive in a schematic plan view
  • FIG. 3 shows a second exemplary embodiment of a drive in a schematic plan view
  • Figure 4 is a front view of the one shown in Figure 3
  • Figure 5 shows another embodiment of a drive in a schematic plan view
  • FIG. 1 shows a sectional view of a pointer instrument 1 with two disk drives 2 stacked in the pointer instrument 1.
  • the pointer instrument 1 is arranged on a carrier or printed circuit board 3, which has circuit arrangements (not shown here) which supply the pointer instrument 1 with voltages, for example and transmit the measured values to the analog pointer instrument 1.
  • An axis of rotation 4, 5 is assigned to each disk drive 2, so that the axes of rotation 4, 5 can rotate independently of one another.
  • the axis of rotation 4 is designed as a sleeve for the concentrically received axis of rotation 5.
  • a first pointer 6 is arranged radially on the axis of rotation 5 and a second pointer 7 is arranged radially on the axis of rotation 4.
  • Hands 6, 7 are conditions m different, spaced from each other to a dial 8 parallel planes.
  • Each of the two pointers 6, 7 can be rotated via a drive 2 at a possible angle of rotation of 0 ° to 360 ° in any angle section to display analog values shown on the dial 8.
  • the swivel ranges of the pointer flags of the individual pointers 6, 7 can also be of different sizes, so that, for example, the swivel range of the pointer flag of the first pointer 6 includes 90 ° and the swivel range of the pointer flag of the second pointer 7 270 °.
  • both axes of rotation 4, 5 shown here can also be designed as sleeves, which allow the passage of further axes of rotation or sleeves for further pointers, not shown here.
  • the first exemplary embodiment shown in FIG. 2 shows a drive according to the invention in a schematic plan view.
  • a round contour disk 9 with an outer contour is concentrically arranged on the axis of rotation 5 and is surrounded by a driver element 10 with a circular inner contour.
  • the driver element 10 is movable in the x or y direction with movement components transverse to the axis of rotation 5.
  • the inner contour of the driver element 10 engages in the outer contour of the contour disk 9 em and, by means of tangential force introduction, causes a drive m in the y direction perpendicular to the x direction, so that a rotational movement of the contour disk 9 is generated sequential control of the drive causes an elliptical movement pattern of the driver element 10.
  • the driver element 10 is provided on its outer opposite sides with a transducer 11 and a counter bearing 12.
  • the transducer 11 has a bending beam 14 arranged on the driver element 10 and a bending beam beams 14 receiving bearing block 15.
  • the counter bearing 12 is also designed as a bending beam 16 bearing against the driving element 10 with a bearing block 17 receiving the bending beam 16. If one of the bending beams 14 of the transducer 11 is heated by appropriate measures, such as the supply of a current, it expands and causes a mechanical force that acts on the driver element 10 and a linear movement in the direction of the one transducer 11 assigned and opposite thrust bearing 12. The linear movement causes an engagement of the inner contour of the driver element 10 m, the outer contour of the contour disk 9 such that the engagement causes a rotational movement of the contour disk 9.
  • the contoured disk 9 also rotates the axis of rotation 5, so that a pointer which is arranged on the axis of rotation 5 and is not visible here is gradually rotated.
  • the movable driver element 10 has guide pins 18 which prevent the contours of driver element 10 and contour disk 9 from disengaging or tilting, in particular when the contours are formed as teeth.
  • FIG. 3 shows a second exemplary embodiment of a drive according to the invention in a schematic plan view.
  • Adjacent sides of the driver element 10, which is of square design here, have the transducer 11 with the outwardly bent bending beam 14, the bearing block 15 receiving the bending beam 14, and heating resistors 19 arranged in sections on the bending beam 14.
  • the heating resistors 19 heat one of the bending beams 14 as a function of a desired direction of movement, so that it expands and the driver element 10 m in the direction of one of the transducers 11 assigned, arranged on the opposite side of the transducer 11 counter bearing 13 moves.
  • the counter bearing 13 is designed in this exemplary embodiment as a spring element 20 with a bearing block 21 receiving the spring element 20.
  • FIG. 4 shows the front view of the drive shown in FIG. 3.
  • the bending bar 14 is bent and touches the driver element 10 with its two ends.
  • the heating resistors 19 are each arranged below the bending bar 14.
  • FIG. 5 shows a further exemplary embodiment of a drive according to the invention in a schematic plan view.
  • the arrangement corresponds to that in FIG. 3, with another converter 22 being used.
  • the converter 22 comprises a hot wire 23 which is arranged parallel to an outer side of the driver element 10 and is under tension, the first end of which is fastened to a bearing block 24 and the other end of which is fastened to a deflection lever 25 which is arranged in parallel on the driver element 10.
  • the hot wire 23 can be designed as a thin resistance wire with a high coefficient of expansion. If the hot wire 23 is heated, it expands and enables the deflection lever 25 to be deflected by the spring force of the opposite spring element 20.
  • FIGS. 6a to 6e illustrate the rotary movement of the contour disk 9 which is generated due to the movement of the driver element 10.
  • FIG. 6a shows the inner contour of the driver element 10, which is in engagement with one another, with the outer contour of the contour disk 9, this position of the driver element 10 and the contour disk 9, for example, as the zero position of a pointer not shown here can be defined can.
  • a zero position of the pointer can also be defined by the fact that the inner contour of the driver element 10 is not in engagement with the outer contour of the contour disk 9, in which case the return of the pointer to the zero position is basically done in a simple manner via a return spring 26 arranged on the axis of rotation 4 can be achieved.
  • FIGS. 6b to 6e the zero position of the pointer is indicated by the representation of a first arrow 27 in all FIGS. 6a to 6e.
  • the driver element 10 and the contour disk 9 are shown in FIG. 6a in a coordinate system with x and Y axes for a simplified description of the force acting on the driver element 10.
  • the following description always assumes that the forces acting on the driver element 10 by means of a converter 11, 22 act parallel to the x or y axis
  • FIGS. 6b to 6d the incremental step action of the pointer is represented by a second arrow 28 which, owing to a force action from the left (in the x direction), FIG. 6b, a force action from above (against the y direction), FIG. 6c, an action of force from the right (counter to the x direction), FIG. 6d, and a further action of force from below (in the y direction), FIG. 6e, on the driver element 10, are gradually moved clockwise.
  • the action of force for example on the driver element 10 of FIG. 6a in the x direction, causes the movement of the driver element 10 m to the position shown in FIG. 6b.
  • the inner contour of the driver element 10 is covered with the outer contour of the contour disk 9 m, so that a Tangential force perpendicular to the x direction is effective, which moves the driver element 10 against the y direction and rotates the contour plate 9 about the axis of rotation 4.
  • the driver element 10 executes an elliptical movement pattern due to the alternating force action in the x or y direction.
  • the proposed drive can be used in particular with pointer instruments that have double or multiple pointers. Due to its compact design, it can be stacked in a pointer instrument and thus requires a small amount of space. It can be used for displays with low dynamics that do not have high requirements for the resolution of the analog value display, as well as for displays with high adjustment dynamics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Instrument Panels (AREA)

Abstract

Die vorliegende Erfindung betrifft einen inkrementellen Antrieb, insbesondere für ein Zeigerinstrument (100) eines Kraftfahrzeugs, mit einer Drehachse (4, 5) und einem an der Drehachse (4, 5) angeordneten Zeiger (6, 7). Die Drehachse (4, 5) ist mit einem Scheibenantrieb (2) verbunden, wobei der Scheibenantrieb (2) eine Konturscheibe (9) mit einer Aussenkontur und ein die Konturscheibe (9) umgebendes Mitnehmerelement (12) mit einer Innenkontur aufweist, das in eine x- und y-Richtung mit Bewegungsanteilen quer zur Drehachse (4, 5) bewegbar ist und die Innenkontur des Mitnehmerelementes (10) mit der Aussenkontur der Konturscheibe (9) in Überdeckung bringbar ist. Durch die Bewegung des Mitnehmerelementes (10) ist die Konturscheibe (9) mit der Drehachse (4,5) antreibbar.

Description

Beschreibung
Inkrementeller Antrieb
Die vorliegende Erfindung betrifft einen mkrementellen Antrieb, insbesondere für ein Zeigerinstrument eines Kraftfahrzeugs, mit einer Drehachse.
In modernen Kraftfahrzeugen sind üblicherweise in einem Arma- turenbrett verschiedenste Zeigerinstrumente integriert, die einem Fahrer eine Vielzahl von Informationen, wie beispielsweise Geschwindigkeit des Fahrzeugs, Drehzahl des Motors oder Tankfullgrad signalisieren. Aus Gründen der Verkehrssicherheit müssen diese Instrumente im standigen Blickfeld des Fah- rers angeordnet sein, wodurch der zur Verfugung stehende Einbauraum im Armaturenbrett oftmals stark eingegrenzt bzw. nicht ausreichend ist.
Zeigerinstrumente weisen in der Regel Motoren beziehungsweise Drehspulen- oder Dreheisen-Antriebe sowie Kreuzspul-Antriebe auf. Als Motoren kommen sowohl Gleichstrom-Motoren als auch Schrittmotoren zum Einsatz. Beide Motorenarten weisen Untersetzungsgetriebe auf, so dass sich eine Position eines Zeigers in kleinsten Schritten bzw. Winkeln verandern lasst. Mittels über digitale Schaltungen angesteuerte Schrittmotoren werden die Zeiger kontrolliert und ohne Abgleich an die einem Messwert entsprechende Position eines Zifferblattes gebracht. Gebräuchliche Zeigerantriebe sind in der Regel so konzipiert, dass für alle Anwendungen eine ausreichende Verstell- bzw. Anzeigedynamik erreicht werden kann. Die hierfür konzipierten Antriebe werden aus fertigungstechnischen Gründen auch für Zeigerinstrumente mit geringer Anzeigedynamik verwendet. Zeigerinstrumente mit geringer bis sehr geringer Anzeigedynamik sind bekannter Weise zum Beispiel die Anzeigen f r den ϊank- fullstand oder die Oltemperatur . Nachteilig bei den oben aufgeführten Zeigerinstrumenten ist der im Verhältnis zur Zeigerfahne eines Zeigers benotigte große Bauraum zur Unterbrin- gung des Antriebs bzw. des Motors. Weiterhin sind hohe Herstellungskosten aufgrund einer großen Anzahl an Bauteilen und erhöhtem Montageaufwand nachteilig.
Es ist daher bereits vorgeschlagen worden, ahnlich einer ühr, zwei unabhängige, koaxiale Zeiger in ein Zeigerinstrument zu integrieren, um so den vorhandenen Platz optimal zu nutzen. Hierbei werden die Antriebe für die Zeiger nebeneinander m dem Zeigerinstrument angeordnet, wobei jeweils ein Zeiger durch jeweils einen Antrieb angetrieben wird. Die m einem Zeigerinstrument angeordneten Antriebe benotigen jedoch weiterhin einen sehr großen Bauraum, so dass sich das Zeigerinstrument vergrößert und somit einen größeren Rauminhalt beim Einbau in ein Armaturenbrett einnimmt .
Aufgabe der vorliegenden Erfindung ist es, einen mkrementellen Antrieb, insbesondere für ein Zeigerinstrument eines Kraftfahrzeugs vorzusehen, der einen reduzierten Bauraum bei gleichzeitiger Vereinfachung des Aufbaus und Reduzierung des Fertigungsaufwands benotigt.
Die Aufgabe wird erfindungsgemaß durch einen mkrementellen Antrieb gelost, bei dem die Drehachse mit einem Scheibenantrieb verbunden ist und der Scheibenantrieb eine Konturscheibe mit einer Außenkontur aufweist, die zur Drehachse konzen- trisch angeordnet und mit dieser verbunden ist, ein die Kon- turscheibe umgebendes Mitnehmerelement mit einer Innenkontur aufweist, das in eine x- und y-Richtung mit Bewegungsanteilen quer zur Drehachse bewegbar ist, wobei durch die Bewegung die Innenkontur des Mitnehmerelementes mit der Außenkontur der Konturscheibe m Oberdeckung bringbar ist und die Konturscheibe mit der Drehachse antreibbar ist.
Der vorgeschlagene inkrementelle Antrieb weist den Vorteil auf, dass er einen sehr kompakten und flachen Aufbau ermöglicht und ein diesen Antrieb aufweisendes Zeigerinstrument beim Einbau beispielsweise in em Armaturenbrett eines Kraftfahrzeugs em sehr geringes Raumvolumen in einem Armaturen- brett benotigt.
Besonders vorteilhaft ist es, dass der flache Aufbau des Scheibenantriebs ein Stapeln von mehreren Scheibenantrieben m einem Zeigerinstrument erlaubt. Somit wird der Aufbau von Doppelzeiger- oder Mehrfach-Zeigeranzeigen mit unabhängig voneinander beweglichen Zeigern wesentlich begünstigt.
In vorteilhafter Weise weist der Scheibenantrieb einen Wandler auf, der eine mechanische Krafteinwirkung auf das Mitneh- merelement ausübt. Der Wandler kann hier beispielsweise auf der Basis einer thermischen oder elektromagnetischen Umwandlung von elektrischen Großen in eine mechanische Bewegung basieren. Bevorzugt weist der Wandler hierzu einen Biegebalken auf, welcher durch geeignete Heizmittel, beispielsweise durch Erhitzung aufgrund der Zufuhrung eines Stroms, durch Umwicklung mit einem Heizdraht oder durch die Anordnung von Heizwiderstanden aufgeheizt wird und die Ausdehnung eine mechanische Krafteinwirkung auf das Mitnehmerelement ausübt. Der Biegebalken kann als Bimetall oder aus einem Verbund- Kunststoff hergestellt sein. Die Verwendung eines Kunststoffes mit einem hohen Dehnungskoeffizienten ermöglicht eine freie Gestaltung und darüber hinaus ein vereinfachtes Ferti- gungsverfahren in Verbindung mit der Herstellung der Konturscheibe und dem Mitnehmerelement.
In vorteilhafter Weise sind im Mitnehmerelement Fuhrungszap- fen angeordnet, die verhindern, dass bei einer Bewegung des Mitnehmerelemeπtes das Mitnehmerelement außer Eingriff zur Konturscheibe gelangt oder eine Verkantung der Kontuπerungen von KonturScheibe und Mitnehmerelement eintritt.
Die mechanische Krafteinwirkung bewirkt eine Bewegung des
Mitnehmerelementes in die x- oder y-Richtung radial zur Drehachse, wobei die Innenkontur des Mitnehmerelementes in die Außenkontur der KonturScheibe eingreift bzw. eine Uberdeckung der Konturen in einer Richtung erzielt wird, so dass sich die Konturscheibe bei phasengerechter Bewegung des Mitnehmerelementes nach einem vollständigen Zyklus um einen Winkel:
= 360 * (dM] tnehmerelement-0 ontυrscheιbe) / (dκontυrscheιbe)
bewegt, wobei "dmtnehmei-eiement" der Durchmesser des Mitnehmerelementes und "dκ0nturscheibe" der Durchmesser der Konturscheibe
Figure imgf000006_0001
Weitere vorteilhafte Ausgestaltungen sind in den Unteranspru- chen angegeben.
Die Erfindung wird anhand von Ausfuhrungsbeispielen m den nachfolgenden Figuren naher erläutert.
Es zeigen:
Figur 1 eine schematische Schnittdarstellung eines Zeigerinstrumentes mit zwei gestapelten Scheibenantrieben,
Figur 2 ein erstes Ausfuhrungsbeispiel eines Antriebs m einer schematischen Draufsicht,
Figur 3 ein zweites Ausfuhrungsbeispiel eines Antriebs einer schematischen Draufsicht,
Figur 4 die Vorderansicht des in der Figur 3 dargestellten
Antriebs,
Figur 5 ein weiteres Ausfuhrungsbeispiel eines Antriebs in einer schematischen Draufsicht und
Figur 6a bis 6e
Phasenbilder von Drehbewegungen des erfmdungsgema- ßen Antriebs .
Die Figur 1 zeigt eine Schnittdarstellung eines Zeigerinstrumentes 1 mit zwei in dem Zeigerinstrument 1 gestapelten Scheibenantrieben 2. Das Zeigerinstrument 1 ist auf einer Trager- bzw. Leiterplatte 3 angeordnet, die hier nicht ge- zeigte Schaltungsanordnungen aufweist, die das Zeigerinstrument 1 beispielsweise mit Spannungen versorgen und eine Übertragung der Messwerte an das analoge Zeigerinstrument 1 bewirken. Jedem Scheibenantrieb 2 ist eine Drehachse 4, 5 zugeordnet, so dass die Drehachsen 4, 5 unabhängig voneinander rotieren können. Die Drehachse 4 ist als Hülse f r die konzentrisch aufgenommene Drehachse 5 ausgebildet. Ein erster Zeiger 6 ist radial an der Drehachse 5 und ein zweiter Zeiger 7 radial an der Drehachse 4 angeordnet. Die Zeiger 6, 7 lie- gen dabei m verschiedenen, voneinander beabstandeten zu einem Zifferblatt 8 parallelen Ebenen. Über jeweils einen Antrieb 2 kann jeder der beiden Zeiger 6, 7 einem möglichen Verdrehwinkel von 0° bis 360° in beliebigen Winkelschπtten zur Anzeige von auf dem Zifferblatt 8 abgebildeten Analogwerten verdreht werden. Die Schwenkbereiche der Zeigerfahnen der einzelnen Zeiger 6, 7 können aber auch unterschiedlich groß sein, so dass beispielsweise der Schwenkbereich der Zeigerfahne des ersten Zeigers 6 90° und der Schwenkbereich der Zeigerfahne des zweiten Zeigers 7 270° einschließt. Wie bereits vorab erwähnt, können beide hier dargestellten Drehachsen 4, 5 auch als Hülsen ausgeführt sein, die den Durchtritt weiterer Drehachsen oder Hülsen für weitere, hier nicht gezeigte Zeiger ermöglichen.
Das in der Figur 2 dargestellte erste Ausfu rungsbeispiel zeigt einen er indungsgemaßen Antrieb einer schematischen Draufsicht. An der Drehachse 5 ist konzentrisch eine runde Konturscheibe 9 mit Außenkontur angeordnet, die von einem Mitnehmerelement 10 mit kreisrunder Innenkontur umgeben ist. Das Mitnehmerelement 10 ist dabei m die x- oder y-Richtung mit Bewegungsanteilen quer zur Drehachse 5 bewegbar. Bei einer Bewegung beispielsweise x-Richtung greift die Innenkontur des Mitnehmerelementes 10 in die Außenkontur der Kon- turscheibe 9 em und bewirkt mittels tangentialer Krafteinleitung senkrecht zur x-Richtung einen Antrieb m die y- Richtung, so dass eine Drehbewegung der Konturscheibe 9 erzeugt wird Eine sequentielle Ansteuerung des Antriebs bewirkt ein elliptisches Bewegungsmuster des Mitnehmerelementes 10. Das Mitnehmerelement 10 ist jeweils an seinen äußeren gegenüberliegenden Seiten mit einem Wandler 11 und einem Gegenlager 12 versehen. Der Wandler 11 weist einen am Mitnehmerelement 10 angeordneten Biegebalken 14 und einen den Biege- balken 14 aufnehmenden Lagerbock 15 auf. Das Gegenlager 12 ist in diesem Ausfuhrungsbeispiel ebenfalls als ein am Mitnehmerelement 10 anliegender Biegebalken 16 mit einem den Biegebalken 16 aufnehmenden Lagerbock 17 ausgeführt. Wird ei- ner der Biegebalken 14 des Wandlers 11 durch entsprechende Maßnahmen, wie beispielsweise die Zufuhrung eines Stroms, erhitzt, dehnt er sich aus und verursacht eine mechanische Kraft, die auf das Mitnehmerelement 10 einwirkt und eine lineare Bewegung, in Richtung des dem einen Wandler 11 zugeord- neten und gegenüberliegenden Gegenlagers 12, bewirkt. Die lineare Bewegung bewirkt einen Eingriff der Innenkontur des Mitnehmerelementes 10 m die Außenkontur der Konturscheibe 9 dergestalt, dass der Eingriff eine Drehbewegung der Konturscheibe 9 verursacht. Dies hat zur Folge, dass die Kontur- Scheibe 9 auch die Drehachse 5 verdreht, so dass em an der Drehachse 5 angeordneter, hier nicht sichtbarer Zeiger schrittweise verdreht wird. Zur besseren Fuhrung weist das bewegliche Mitnehmerelement 10 Fuhrungszapfen 18 auf, die verhindern, dass die Kontuπerungen von Mitnehmerelement 10 und Konturscheibe 9, insbesondere bei Ausbildung der Kontu- πerungen als Verzahnung, außer Eingriff geraten oder sich verkanten.
In der Figur 3 ist ein zweites Ausfuhrungsbeispiel eines er- fmdungsgemaßen Antriebs in einer schematischen Draufsicht dargestellt. Benachbarte Seiten des hier viereckig ausgeführten Mitnehmerelementes 10 weisen den Wandler 11 mit dem nach außen gebogenen Biegebalken 14, den den Biegebalken 14 aufnehmenden Lagerbock 15 und am Biegebalken 14 abschnittsweise angeordnete Heizwiderstande 19 auf. Die Heizwiderstande 19 heizen in Abhängigkeit einer gewünschten Bewegungsrichtung einen der Biegebalken 14 auf, so dass dieser sich ausdehnt und das Mitnehmerelement 10 m Richtung eines dem Wandler 11 zugeordneten, an der gegenüberliegenden Seite des Wandlers 11 angeordneten Gegenlager 13 bewegt. Das Gegenlager 13 ist in diesem Ausfuhrungsbeispiel als Federelement 20 mit einem das Federelement 20 aufnehmenden Lagerbock 21 ausgeführt.
Die Figur 4 zeigt die Vorderansicht des in der Figur 3 dargestellten Antriebs. Der Biegebalken 14 ist gebogen und berührt mit seinen beiden Enden jeweils das Mitnehmerelement 10. Die Heizwiderstände 19 sind jeweils unterhalb des Biegebalkens 14 angeordnet.
In der Figur 5 ist ein weiteres Ausfu rungsbeispiel eines er- fmdungsgemaßen Antriebs in einer schematischen Draufsicht gezeigt. Die Anordnung entspricht derjenigen in Figur 3, wo- bei em anderer Wandler 22 eingesetzt ist. Der Wandler 22 um- fasst einen parallel zu einer äußeren Seite des Mitnehmerelementes 10 angeordneten, unter Zugspannung stehenden Hitzedraht 23, dessen erstes Ende an einem Lagerbock 24 und dessen anderes Ende an einem parallel am Mitnehmerelement 10 ange- ordneten Umlenkhebel 25 befestigt ist. Der Hitzedraht 23 kann hierbei als dunner Widerstandsdraht mit hohem Ausdehnungskoeffizienten ausgebildet sein. Wird der Hitzedraht 23 erhitzt, dehnt er sich aus und ermöglicht eine Auslenkung des Umlenkhebels 25 durch die Federkraft des gegenüberliegenden Feder- elementes 20.
Die Figuren 6a bis 6e verdeutlichen die aufgrund der Bewegung des Mitnehmerelementes 10 erzeugte Drehbewegung der Konturscheibe 9. Die Figur 6a zeigt die im Eingriff miteinander stehende Innenkontur des Mitnehmerelementes 10 mit der Außenkontur der Konturscheibe 9, wobei diese Lage von Mitnehmerelement 10 und Konturscheibe 9 beispielsweise als die Nullstellung eines hier nicht gezeigten Zeigers definiert sein kann. Eine Nullstellung des Zeigers kann auch dadurch definiert sein, dass die Innenkontur des Mitnehmerelementes 10 nicht mit der Außenkontur der Konturscheibe 9 im Eingriff steht, wobei in diesem Fall das Zurückfuhren des Zeigers die Nullstellung grundsätzlich ber eine an der Drehachse 4 angeordnete Ruckstellfeder 26 auf einfache Weise erzielt werden kann .
Um die in den nachfolgenden Figuren 6b bis 6e erfolgte Bewe- gung eines Zeigers zu verdeutlichen, ist in allen Figuren 6a bis 6e die Nullstellung des Zeigers durch die Darstellung eines ersten Pfeils 27 angezeigt. Das Mitnehmerelement 10 und die Konturscheibe 9 sind in der Figur 6a in einem Koordinatensystem mit x- und Y-Achse zur vereinfachten Beschreibung der auf das Mitnehmerelement 10 einwirkenden Kraft dargestellt. Zur Vereinfachung wird bei der nachfolgenden Beschreibung stets davon ausgegangen, dass die durch einen Wandler 11, 22 auf das Mitnehmerelement 10 einwirkenden Kr fte parallel zur x- oder Y-Achse einwirken
In den Figuren 6b bis 6d ist die krementelle Schrittwirkung des Zeigers durch einen zweiten Pfeil 28 dargestellt, der aufgrund einer Krafteinwirkung von links (in x-Richtung) , Figur 6b, einer Krafteinwirkung von oben (entgegen der y- Richtung) , Figur 6c, einer Krafteinwirkung von rechts (entgegen der x-Richtung) , Figur 6d und einer weiteren Krafte wir- kung von unten (in y-Richtung) , Figur 6e, auf das Mitnehmerelement 10, schrittweise rechtsdrehend bewegt wird. Die Krafteinwirkung beispielsweise auf das Mitnehmerelement 10 der Figur 6a in x-Richtung bewirkt die Bewegung des Mitne - merelementes 10 m die der Figur 6b gezeigte Position. Die Innenkontur des Mitnehmerelementes 10 wird mit der Außenkontur der Konturscheibe 9 m Uberdeckung gebracht, so dass eine tangentiale Kraft senkrecht zur x-Richtung wirksam wird, die das Mitnehmerelement 10 entgegen der y-Richtung bewegt und die Konturscheibe 9 um die Drehachse 4 verdreht. Bei den in den Figuren 6b bis 6d dargestellten Bewegungsabläufen des Mitnehmerelementes 10 fuhrt das Mitnehmerelement 10 durch die wechselnde Krafteinwirkung in x- oder y-Richtung em elliptisches Bewegungsmuster aus . Die vorangehend beschriebene Funktionsweise ermöglicht durch eine Umkehr der Sequenz sowohl eine links- als auch rechtsdrehende Bewegungsrichtung Kontur- Scheibe 9 um die Drehachse 4, 5 und der daran angeordneten Zeiger 6, 7.
Der vorgeschlagene Antrieb kann insbesondere Verwendung m Zeigerinstrumenten finden, die Doppel- oder Mehrfach-Zeiger aufweisen. Aufgrund seiner kompakten Bauweise kann er in einem Zeigerinstrument gestapelt werden und benotigt somit einen geringen Bauraum. Er kann sowohl für Anzeigen mit geringer Dynamik, die keine hohen Anforderungen an die Auflosung der Analogwert-Anzeige, als auch für Anzeigen mit hoher Ver- stelldynamik zum Einsatz kommen.

Claims

Patentansprüche
1. Inkrementeller Antrieb, insbesondere für em Zeigerinstrument (1) eines Kraftfahrzeugs, mit einer Drehachse (4, 5), dadurch gekennzeichnet , dass die Drehachse (4 , 5) mit einem Scheibenantrieb (2) verbunden ist, der Scheibenantrieb (2)
- eine Konturscheibe (9) mit einer Außenkontur aufweist, die zur Drehachse (4, 5) konzentrisch angeordnet und mit dieser verbunden ist,
- em die Konturscheibe (9) umgebendes Mitnehmerelement (10) mit einer Innenkontur aufweist, das in eine x- und eine y-Richtung mit Bewegungsanteilen quer zur Drehachse (4, 5) bewegbar ist und die Innenkontur des Mitnehmer- elementes (10) mit der Außenkontur der Konturscheibe (9) m Uberdeckung bringbar ist und
- durch die Bewegung des Mitnehmerelementes (10) die Konturscheibe (9) mit der Drehachse (4,5) antreibbar
Figure imgf000013_0001
Inkrementeller Antrieb nach Anspruch 1, dadu rch ge kenn zeichne t , dass der Scheibenantrieb (2) einen an der Drehachse (4, 5) angeordneten Zeiger (6, 7) aufweist.
3. Inkrementeller Antrieb nach Anspruch 1 oder 2, dadurch gekenn z e ichnet , dass der Scheibenantrieb (2) einen Wandler (11, 22) aufweist, der eine mechanische Kraftemwirkung auf das Mitnehmerele- ment (10) zur Bewegung in die x- oder y-Richtung ausübt, wobei die Bewegung des Mitnehmerelementes (10) in die eine Richtung eine senkrechte tangentiale Krafteinlei- tung in Bewegungsrichtung und einen Antrieb der Konturscheibe (9) in die jeweilige andere Richtung bewirkt.
4. Inkrementeller Antrieb nach Anspruch 3, dadurch ge kennze ichnet , dass der Wandler (11, 22) e elektromechamscher Wandler auf der Basis thermischer Ausdehnung ist.
5. Inkrementeller Antrieb nach Anspruch 3, dadurch ge kenn ze ichnet , dass der Wandler (11, 22) em elektromagnetischer Wandler ist.
6. Inkrementeller Antrieb nach Anspruch 3, dadurch ge kenn zei ch net , dass der Wandler (11, 22) em Piezo-Wandler ist.
7. Inkrementeller Antrieb nach Anspruch 4, dadurch ge kenn zeichnet , dass der Wandler (11, 22) einen an einem Ende elektrische Anschlüsse aufweisenden Biegebalken (14) aufweist, dem ein Strom zufuhrbar ist.
8. Inkrementeller Antrieb nach Anspruch 4, dadurch ge kenn zeichnet , dass der Wandler (11, 22) einen Biegebalken (14) aufweist, welcher von einem Heiz- draht umwickelt ist.
9. Inkrementeller Antrieb nach Anspruch 4, dadu rch ge kenn ze i chnet , dass der Wandler (11, 22) einen Biegebalken (14) aufweist, welcher von einer An- Ordnung von Heizwiderstanden umgeben ist.
10. Inkrementeller Antrieb nach einem der Ansprüche 7 bis 9, dadurch gekennz e i chnet , dass der Biegebalken (14) em Bimetall ist.
11. Inkrementeller Antrieb nach einem der Ansprüche 7 bis 9, dadurch gekenn z ei chnet , dass der Biegebalken (14) aus Kunststoff hergestellt ist und sich unter Hitzeeinwirkung ausdehnt.
12. Inkrementeller Antrieb nach Anspruch 3, dadurch ge kennzeichne t , dass der Wandler (11, 22) einen sich unter Warme ausdehnenden Hitzdraht (23) aufweist, der eine Zugentlastung auf einen am Mitnehmerelement (10) angeordneten Umlenkhebel (25) bewirkt
13. Inkrementeller Antrieb nach einem der Ansprüche 3 b s
12, dadurch gekenn zei chnet , dass der Scheibenantrieb (2) ein auf der dem Wandler (11, 22) gegenüberliegenden Seite angeordnetes Gegenlager (12, 13) aufweist, welches eine durch den Wandler (11, 22) in x- oder y-Richtung bewirkte Verschiebung des Mitnehmerelementes (10) durch ein Federelement (20) aufnimmt.
14 Inkrementeller Antrieb nach einem der Ansprüche 1 bis 13, dadurch gekenn zei chnet , dass im Mitnehmerelement (10) Fuhrungszapfen (18) einer den Scheibenantrieb (2) aufnehmenden Trager- oder Leiterplatte (3) verlaufen, die sicherstellen, dass die Innenkontur des Mitnehmerelementes (10) zumindest teilweise im Eingriff mit der Außenkontur der Konturscheibe (9) steht .
15. Inkrementeller Antrieb nach einem der Ansprüche 3 bis
14, dadurch gekenn zeichnet , dass das Verhältnis des Durchmessers des Mitnehmerelementes (10) zum Durchmesser der Konturscheibe (9) so gewählt ist, dass be entsprechender Anregung des Wandlers (11, 22) die Innenkontur des Mitnehmerelementes (10) nicht im Eingriff mit der Außenkontur der Konturscheibe (9) steht.
16. Inkrementeller Antrieb nach Anspruch 15, adurch gekenn zeichnet , dass die Konturscheibe (9) an der Drehachse (4, 5) eine Ruckstellfeder (26) aufweist, die eine Ruckstellung des Zeigers (6, 7) auf eine Nullstellung bewirkt.
17. Inkrementeller Antrieb nach einem der Ansprüche 1 bis 16, dadurch gekenn zeichnet , dass m dem Zeigerinstrument (1) zumindest zwei der Scheibenantriebe (2) übereinander gestapelt sind.
18. Inkrementeller Antrieb nach Anspruch 17, dadurch ge kennzei chnet , dass bei gestapelten Ξchei- benantr eben (2) zumindest e ne Drehachse (4, 5) als Hülse ausgebildet ist.
PCT/EP2004/050605 2003-05-19 2004-04-26 Inkrementeller antrieb WO2004102127A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04729441A EP1625362A1 (de) 2003-05-19 2004-04-26 Inkrementeller antrieb

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10322836A DE10322836A1 (de) 2003-05-19 2003-05-19 Inkrementeller Antrieb
DE10322836.5 2003-05-19

Publications (1)

Publication Number Publication Date
WO2004102127A1 true WO2004102127A1 (de) 2004-11-25

Family

ID=33441054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/050605 WO2004102127A1 (de) 2003-05-19 2004-04-26 Inkrementeller antrieb

Country Status (3)

Country Link
EP (1) EP1625362A1 (de)
DE (1) DE10322836A1 (de)
WO (1) WO2004102127A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034651A1 (de) 2006-09-19 2008-03-27 Siemens Aktiengesellschaft Elektromechanischer stellantrieb
WO2008104365A1 (de) * 2007-02-27 2008-09-04 Johnson Controls Automotive Electronics Gmbh Konisch skaliertes anzeigeinstrument für ein kraftfahrzeug
WO2008119681A1 (de) 2007-04-03 2008-10-09 Continental Automotive Gmbh Festkörperaktorischer, insbesondere piezoelektrischer antrieb und verfahren zum gewinnen von sensordaten aus einem festkörperaktorischen, insbesondere piezoelektrischen antrieb
WO2012013257A3 (de) * 2010-07-29 2012-04-26 Johnson Controls Automotive Electronics Gmbh Anzeigevorrichtung
US8166907B2 (en) 2007-02-07 2012-05-01 Johnson Controls Automotive Motor vehicle display instrument having an embracing indicator
US8219348B2 (en) 2009-01-22 2012-07-10 Johnson Controls Technology Company Method for calibrating and/or correcting a display device having a needle, the needle being able to move in rotation about an axis of rotation
US8579448B2 (en) 2010-01-25 2013-11-12 Johnson Controls Technology Company Pointer structure of an instrument cluster

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007023200B4 (de) 2007-05-18 2011-07-28 Continental Automotive GmbH, 30165 Elektromechanischer Motor, insbesondere piezoelektrischer Mikroschrittantrieb
DE102007023201A1 (de) 2007-05-18 2008-11-20 Continental Automotive Gmbh Elektromechanischer Motor, insbesondere piezoelektrischer Mikroschrittantrieb
DE102007023199B4 (de) 2007-05-18 2011-07-28 Continental Automotive GmbH, 30165 Elektromechanischer Motor, inbesondere piezoelektrischer Mikroschrittantrieb
DE102007023217B4 (de) * 2007-05-18 2011-07-21 Continental Automotive GmbH, 30165 Elektromechanischer Motor, insbesondere piezoelektrischer Mikroschrittantrieb
DE102008021904A1 (de) 2008-05-02 2009-11-05 Siemens Aktiengesellschaft Rotationsantrieb

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1613087A1 (de) * 1967-12-15 1971-01-07 Dr Helmuth Frenk Elektromotor mit hochfrequenter Wechselstromspeisung
WO1997026702A1 (en) * 1996-01-18 1997-07-24 Nicholas Binos Motor
US5726520A (en) * 1993-08-02 1998-03-10 Bonneville Scientific Incorporated Direct drive field actuator motors
DE19952946A1 (de) * 1999-11-03 2001-05-17 Siemens Ag Elektromechanischer Motor
DE10063875A1 (de) * 2000-12-21 2002-07-04 Siemens Ag Anzeigeinstrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1613087A1 (de) * 1967-12-15 1971-01-07 Dr Helmuth Frenk Elektromotor mit hochfrequenter Wechselstromspeisung
US5726520A (en) * 1993-08-02 1998-03-10 Bonneville Scientific Incorporated Direct drive field actuator motors
WO1997026702A1 (en) * 1996-01-18 1997-07-24 Nicholas Binos Motor
DE19952946A1 (de) * 1999-11-03 2001-05-17 Siemens Ag Elektromechanischer Motor
DE10063875A1 (de) * 2000-12-21 2002-07-04 Siemens Ag Anzeigeinstrument

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034651A1 (de) 2006-09-19 2008-03-27 Siemens Aktiengesellschaft Elektromechanischer stellantrieb
US8166907B2 (en) 2007-02-07 2012-05-01 Johnson Controls Automotive Motor vehicle display instrument having an embracing indicator
WO2008104365A1 (de) * 2007-02-27 2008-09-04 Johnson Controls Automotive Electronics Gmbh Konisch skaliertes anzeigeinstrument für ein kraftfahrzeug
US8550026B2 (en) 2007-02-27 2013-10-08 Johnson Controls Automotive Electronics Conically graduated display instrument for a motor vehicle
WO2008119681A1 (de) 2007-04-03 2008-10-09 Continental Automotive Gmbh Festkörperaktorischer, insbesondere piezoelektrischer antrieb und verfahren zum gewinnen von sensordaten aus einem festkörperaktorischen, insbesondere piezoelektrischen antrieb
US8219348B2 (en) 2009-01-22 2012-07-10 Johnson Controls Technology Company Method for calibrating and/or correcting a display device having a needle, the needle being able to move in rotation about an axis of rotation
US8579448B2 (en) 2010-01-25 2013-11-12 Johnson Controls Technology Company Pointer structure of an instrument cluster
WO2012013257A3 (de) * 2010-07-29 2012-04-26 Johnson Controls Automotive Electronics Gmbh Anzeigevorrichtung

Also Published As

Publication number Publication date
EP1625362A1 (de) 2006-02-15
DE10322836A1 (de) 2004-12-23

Similar Documents

Publication Publication Date Title
WO2004102127A1 (de) Inkrementeller antrieb
DE102011051863A9 (de) Schaltvorrichtung für ein Handschaltgetriebe
DE69300831T2 (de) Stellglied der Art Ausdehnungs-Zusammenziehungs-Mechanismus.
EP1019260B1 (de) Messwerk, insbesondere für anzeigeeinrichtungen in der kfz-technik
EP2616872A1 (de) Head-up-display mit einem projektionsschirm und einer vorrichtung zur bewegung und positionierung eines projektionsschirms und verfahren zum betrieb eines solchen head-up-displays
DE102013213923A1 (de) Anzeigeeinheit für Head-up-Display
WO2010070014A1 (de) Winkelsensor
EP1805435B1 (de) Wählantrieb für automatisierte schaltgetriebe von kraftfahrzeugen
DE3903460A1 (de) Anzeigeanordnung fuer eingelegten getriebegang
WO2022033641A1 (de) Linearantrieb und linearantriebsanordnung
EP0726639B1 (de) Schrittmotor
EP0769841B1 (de) Elektromotor und Messwerk, insbesondere für Anzeigeinstrumente in Kraftfahrzeugen
DE102010029199A1 (de) Fahrpedal für Kraftfahrzeuge
EP1634040A2 (de) Linearzeiger
EP2277210B1 (de) Rotationsantrieb
DE202016005830U1 (de) Drehsteller zur Bedienung von Funktionen eines Kraftfahrzeugs, Kraftfahrzeug
DE102016104775A1 (de) Modulares Aktorsystem, das eine Formgedächtnislegierung verwendet
DE10257906A1 (de) Schrittmotor mit mehreren Statoren
EP1019675B1 (de) Messwerk, insbesondere für anzeigeeinrichtung in der kfz-technik
EP1651835B1 (de) Getriebe-antriebseinheit
DE102019209646B3 (de) Skulpturale Anzeigevorrichtung
WO2019072880A1 (de) Lenkwinkelsensorvorrichtung zum bestimmen eines lenkwinkels einer lenkwelle mit einem beweglichen leiterplattenelement, kraftfahrzeug sowie verfahren
DE3010678C2 (de)
WO1991019119A1 (de) Untersetzungsgetriebe für anzeigeinstrument
EP2138397B1 (de) Kommandogeber und Verfahren zur Fernsteuerung eines Schiffsantriebes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004729441

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004729441

Country of ref document: EP