WO2004096166A1 - Verwendung von alpha-hydroxycarbonsäureestern ethoxylierter alkohole - Google Patents

Verwendung von alpha-hydroxycarbonsäureestern ethoxylierter alkohole Download PDF

Info

Publication number
WO2004096166A1
WO2004096166A1 PCT/EP2004/004208 EP2004004208W WO2004096166A1 WO 2004096166 A1 WO2004096166 A1 WO 2004096166A1 EP 2004004208 W EP2004004208 W EP 2004004208W WO 2004096166 A1 WO2004096166 A1 WO 2004096166A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
alcohol
oil
alkyl
esters
Prior art date
Application number
PCT/EP2004/004208
Other languages
English (en)
French (fr)
Inventor
Ansgar Behler
Hans-Udo KRÄCHTER
Hermann Hensen
Original Assignee
Cognis Ip Management Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Ip Management Gmbh filed Critical Cognis Ip Management Gmbh
Priority to JP2006505208A priority Critical patent/JP2006524652A/ja
Priority to US10/554,969 priority patent/US20070081966A1/en
Priority to EP04728541A priority patent/EP1620184A1/de
Publication of WO2004096166A1 publication Critical patent/WO2004096166A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/39Derivatives containing from 2 to 10 oxyalkylene groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin

Definitions

  • the present invention relates to the use of hydroxycarboxylic acid esters of ethoxylated alcohols as moisturizers for the skin in cosmetic, in particular surfactant-containing, preparations.
  • Cosmetic preparations containing surfactants show a strong degreasing effect for many users when used frequently, as is usual with shower and hair shampoos.
  • cosmetic products like to add moisturizing additives such as low molecular weight ⁇ -hydroxycarboxylic acids.
  • moisturizing additives such as low molecular weight ⁇ -hydroxycarboxylic acids.
  • these low molecular weight ⁇ -hydroxycarboxylic acids such as glycolic acid or lactic acid have an extremely good effect as a moisturizer on the skin, they lead to skin irritation and have no surfactant properties themselves.
  • Hydroxycarboxylic acid esters of ethoxylated alcohols have been known for a long time and are also used in cosmetics as mono-, di- and / or triesters.
  • European Patent EP 0 852 944 B1 describes the use of citric acid esters to improve the washability of oil-containing cosmetic compositions.
  • citric acid esters are surfactants that can be used in cosmetic products such as hair shampoos.
  • US Pat. No. 6,413,527 discloses nanoemulsions of an oil and alkyl ether citrates as an anionic surfactant in cosmetics.
  • the object of the present invention was to provide compounds for cosmetic, in particular surfactant-containing, preparations which both act as moisturizers and do not cause any irritation to the skin.
  • the compounds should themselves have surfactant properties if possible.
  • the compounds sought should have other skin benefits, such as tightening the skin and reducing wrinkles.
  • esters of ⁇ -hydroxycarboxylic acids and ethoxylated alcohols both act as moisturizers for the skin, have no skin irritation and also have a firming effect on the skin and reduce wrinkles.
  • they are anionic surfactants. It is also particularly advantageous that these compounds, when mixed with anionic surfactants, in particular with ether sulfates, have a synergistic foaming action.
  • the invention relates to the use of ⁇ -hydroxycarboxylic acid esters of ethoxylated alcohols of the formula (I)
  • R 1 represents a linear or branched alkyl and / or alkenyl radical with 6 to 22 carbon atoms and n for numbers from 1 to 50, as a moisturizer for the skin in cosmetic preparations.
  • ⁇ -Hydroxycarboxylic acids are organic acids that contain at least one OH group in addition to at least one COOH group in the molecule. They can be present as monohydroxycarboxylic acids with one OH group, with two as di- or with more than two OH groups as polyhydroxycarboxylic acids. According to the position of the OH group to the COOH group, a distinction is made between alpha, beta and gamma-hydroxycarboxylic acids.
  • Preferred ⁇ -hydroxycarboxylic acids in the present invention are tartaric acid, mandelic acid, lactic acid, malic acid, citric acid and their salts and also their self-condensation products.
  • Citric acid is particularly preferred for the purposes of the present invention.
  • the ⁇ -hydroxycarboxylic acid esters are derived from ethoxylated alcohols having 6 to 22 carbon atoms of the general formula (I)
  • R 1 is a linear or branched alkyl and / or alkenyl radical having 6 to 22 carbon atoms and n is a number from 1 to 50.
  • the degree of ethoxylation n is preferably from 1 to 20, preferably 1 to 10 and in particular 3 to 8.
  • Hydroxycarboxylic acid esters derived from ethoxylated alcohols of the formula (I) in which R 1 is particularly suitable is a linear alkyl radical.
  • Typical examples are the adducts of on average 1 to 20, preferably 1 to 10 and in particular 3 to 8, moles of ethylene oxide with capron alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostyl alcohol , Elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures, which are used, for example, in the high-pressure hydrogenation of technical methyl esters based on fats and oils or aldehydes from Roelen oxosynthesis and as a monomer fraction in the dimerization unsaturated fatty alcohols.
  • R 1 O in formula (I) is derived from a fatty alcohol mixture containing 65-75% by weight of C12, 20 to 30% by weight of C14, 0-5% by weight of C16 and 0 to 5% by weight of C18 alcohols.
  • This alcohol mixture is commercially available, for example as Dehydol LS TM, a commercial product from Cognis GmbH & Co. KG.
  • Hydroxycarboxylic acid esters based on this fatty alcohol mixture preferably have an average degree of ethoxylation n of 4.
  • R 1 O in formula (I) is derived from a fatty alcohol mixture containing 45-60% by weight of C12-, 15-30% by weight of C14-, 5-15% by weight of C16- and 8 - 20% by weight C18 alcohol.
  • the ⁇ -hydroxycarboxylic acids can be completely or, in particular, partially esterified.
  • the partial esterification is a compound which still carries at least one free carboxyl group. Accordingly, it can be acidic esters or their neutralization products.
  • the partial esters are preferably in the form of the alkali metal, alkaline earth metal, ammonium, alkylammonium, alkanolammonium and / or glucammonium salts.
  • citric acid esters these are preferably mixtures of isomeric compounds of the general formula (II) H 2 C-COOR '
  • R ', R ", R'” stands for X and / or an ethoxylated alkyl radical R1 with the meaning given in formula (I)
  • R ', R ", R'” stands for X and / or an ethoxylated alkyl radical R1 with the meaning given in formula (I)
  • the citric acid ester mixtures preferred according to the invention thus necessarily contain mono- and diesters, preferably in amounts of 50 to 90% by weight, in particular 60 to 80% by weight - calculated as mono- and diesters and based on the mixture.
  • the mixtures may contain triester and free citric acid as the remainder, which is missing by 100% by weight.
  • the mixtures preferably contain little free citric acid, with less than 10% by weight, based on mixtures, being preferred.
  • the citric acid esters preferred according to the invention are mainly partial esters of citric acid which still contain at least one free carboxyl group. Accordingly, they can also be acidic esters or their neutralization products, and X in formula (II) can be hydrogen or a cation.
  • the partial esters are then preferably in the form of alkali metal, alkaline earth metal, ammonium, alkylammonium, alkanolammonium and / or glucammonium salts (ie X stands for alkali metal, alkaline earth metal, ammonium, alkylammonium, alkanolammonium and / or glucammonium ion).
  • citric acid with the alcohol ethoxylates of the formula (I) in a molar ratio of 0.9: " ⁇ to 1, 1: 1, especially 1: be esterified.
  • the process conditions as such correspond to the prior art, and it may be essential that the reaction takes place in a nitrogen atmosphere. Furthermore, it can be advantageous to set the temperatures in the reaction in the range from 150 to 170 ° C. and preferably from 160 ° C.
  • the citric acid ester mixtures preferred according to the invention are obtained as the end product.
  • the esters can be free or in the form of salts.
  • a small proportion of unesterified citric acid usually results, preferably less than 10% by weight.
  • Reaction products which contain a maximum of 8% and in particular a maximum of 5% of unesterified citric acid are particularly preferred.
  • moisturizer for the skin in cosmetic, in particular surfactant-containing, preparations.
  • moisturizer means that these compounds protect the skin from drying out and at the same time ensure that the natural moisture content of the skin is retained.
  • the natural moisturizing substances NEF
  • washing away the natural skin lipids there is a measurable temporary drying reaction of the skin after surfactant treatments.
  • Mild surfactants and surfactant combinations are usually used to reduce this effect.
  • the ⁇ -hydroxycarboxylic acid esters of the ethoxylated alcohols are not only particularly mild, but active moisturizers. This not only goes beyond the usual function, but also enables diverse new application possibilities in formulations or extended functions due to this biological mode of action, which is unusual for surfactants.
  • the compounds used according to the invention can be used for cosmetic preparations, such as hair shampoos, hair lotions, foam baths, shower baths, creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat masses, stick preparations, powders or ointments. They show equally convincing effects in water-free and in water-containing formulations.
  • ⁇ -hydroxycarboxylic acid esters used according to the invention are preferably used in amounts of 0.01 to 20, in particular 0.1 to 10% by weight, based on the cosmetic preparation
  • the cosmetic preparations contain nonionic, anionic, cationic and / or amphoteric or amphoteric surfactants.
  • anionic surfactants are soaps, alkyl benzene sulfonates, alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether, ⁇ - methyl ester sulfonates, sulfofatty acids, alkyl sulfates, fatty alcohol ether sulfates, Glycerinethersul- sulfates, Fettklareethersulfate, Hydroxymischethersulfate, monoglyceride (ether) sulfates, fatty re 'amide ( ether) sulfates, mono- and dialkyl sulfosuccinates, mono- and dialkyl sulfosuccinamates, sulfot
  • anionic surfactants contain polyglycol ether chains, these can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol dipo lyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosides or glucoronic acid derivatives, fatty acid-N-alkyl glucolate acid (vegetable oil) products, vegetable hydrolysate (vegetable hydrolysate), especially vegetable, polyhydric alkyl glucamide acid (vegetable oil) polyglycol acid ester (vegetable oil) polyglycol acid-based (vegetable-based) products, polyhydric alkylglucate (protein)
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of cationic surfactants are quaternary ammonium compounds and ester quats, in particular quaternized fatty acid trialkanolamine ester salts.
  • Typical examples of amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amido betaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. Alkyl polyglycosides may be mentioned as particularly preferred nonionic surfactants.
  • the hydroxycarboxylic acid esters are used in cosmetic preparations which preferably contain anionic surfactants, in particular alkyl and / or alkenyl sulfates and / or alkyl ether sulfates.
  • Alkyl and / or alkenyl sulfates which are also often referred to as fatty alcohol sulfates, are to be understood as meaning the sulfation products of primary alcohols which follow the formula (III)
  • R 2 is a linear or branched, aliphatic alkyl and / or alkenyl radical having 6 to 22, preferably 12 to 18 carbon atoms and M is an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • alkyl sulfates which can be used in the context of the invention are the sulfation products of capron alcohol, caprylic alcohol, capric alcohol, 2-ethylhexyl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, aryl selyl alcohol, elaidyl alcohol Gadoleyl alcohol, behenyl alcohol and erucyl alcohol and their technical mixtures, which are obtained from high pressure hydrogenation of technical methyl ester fractions or aldehydes from Roelen oxosynthesis.
  • the sulfation products can preferably be used in the form of their alkali metal salts and in particular their sodium salts.
  • Particularly preferred are alkyl sulfates based on C 16 / i 8 tallow or vegetable fatty alcohols of comparable carbon chain distribution in the form of their sodium salts.
  • ether sulfates are known anionic surfactants which are produced on an industrial scale by SO 3 - or chlorosulfonic acid (CSA) sulfation of fatty alcohol or oxo alcohol polyglycol ethers and subsequent neutralization.
  • CSA chlorosulfonic acid
  • ether sulfates which follow the formula (IV) are suitable
  • R 3 O- (CH 2 CH 2 O) m SO 3 Z (IV) in which R 3 represents a linear or branched alkyl and / or alkenyl radical having 6 to 22 carbon atoms, m represents numbers from 1 to 10 and Z represents an alkali and / or alkaline earth metal, ammonium, alkylammonium, alkanolammonium or glucammonium.
  • Typical examples are the sulfates of addition products with an average of 1 to 10 and in particular 1 to 5 moles of ethylene oxide with capron alcohol, caprylic alcohol, 2-ethylhexyl alcohol, capric alcohol, lauryl alcohol, isotridecyl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, oleyl alcohol, elaalyl alcohol, ela-alcohol alcohol, ela-alcohol alcohol, ela-alcohol alcohol, ela-alcohol alcohol, ela-alcohol alcohol, Petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol and brassidyl alcohol and their technical mixtures in the form of their sodium and / or magnesium salts.
  • the ether sulfates can have both a conventional and a narrow homolog distribution. It is particularly preferred to use ether sulfates based on adducts of an average of 1.5 to 2.5 moles of ethylene oxide with technical C 12/14 or C 12 / ⁇ s coconut fatty alcohol fractions in the form of their sodium and / or magnesium salts.
  • hydoxycarboxylic acid esters used according to the invention and the surfactants are preferably used in a weight ratio of 1:20 to 10: 1, preferably 1:20 to 1: 1.
  • hydroxycarboxylic acid esters used according to the invention are very particularly preferably used in cosmetic preparations which contain alkyl ether sulfate as the anionic surfactant. In such preparations, good synergistic effects with regard to moisture regulation, foaming power or skin tolerance are observed.
  • the cosmetic preparations can also contain, as further auxiliaries and additives, oil bodies, emulsifiers, superfatting agents, pearlescent waxes, consistency agents, thickeners, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, stabilizers, biogenic active ingredients, deodorants, antiperspirants, antidandruff agents, film formers, swelling agents Contain UV protection factors, antioxidants, hydrotropes, preservatives, insect repellents, self-tanners, tyrosine inhibitors (depigmentation agents), solubilizers, perfume oils, dyes and the like.
  • oil bodies emulsifiers, superfatting agents, pearlescent waxes, consistency agents, thickeners, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, stabilizers, biogenic active ingredients, deodorants, antiperspirants, antidandruff agents, film formers, swelling agents Contain UV protection factors, antioxidants
  • Guerbet alcohols based on fatty alcohols having 6 to 18, preferably 8 to 10 carbon atoms, esters of linear C 6 -C 22 fatty acids with linear C 6 -C 22 fatty alcohols, esters of branched C 6 -C 13 carboxylic acids are, for example, oil bodies with linear C 6 -C 22 fatty alcohols, such as, for example, myristyl myristate, myristyl palmitate, myristyl stearate, myristyl isostearate, myristyl oleate, myristyl behenate, myristyl erucate, cetyl myristate, cetyl palmitate, cetyl stearate, cetyl isolate, cetyl isolate, cetyl isolate, cetyl isolate, cetyl isolate, cetyl behenate, Stearylerucat, isostearyl, isostearyl palmitate, Isostearyl, isostearyl palmitate, Iso
  • esters of linear C 6 -C 22 fatty acids with branched alcohols in particular 2-ethylhexanol, esters of hydroxycarboxylic acids with linear or branched C 6 -C 22 fatty alcohols are particularly suitable.
  • esters of linear and / or branched fatty acids with polyhydric alcohols such as propylene glycol, dimer diol or trimer triol
  • polyhydric alcohols such as propylene glycol, dimer diol or trimer triol
  • Guerbet alcohols triglycerides based on C 6 -C 10 fatty acids, liquid mono- / di- / triglyceride mixtures based on C 6 -C 8 fatty acids, esters of C 6 -C 22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, in particular benzoic acid, esters of C 2 -C 12 dicarboxylic acids with linear or branched alcohols with 1 to 22 carbon atoms or polyols with 2 to 10 carbon atoms and 2 to 6 hydroxyl groups, vegetable oils, branched primary alcohols, substituted cyclohexanes, linear and branched C 6 -C 22 fatty alcohol carbonates, Guerbet carbonates,
  • Suitable emulsifiers are, for example, nonionic surfactants from at least one of the following groups:
  • Partial esters of polyglycerol (average degree of self-condensation 2 to 8), polyethylene glycol (molecular weight 400 to 5000), trimethylolpropane, pentaerythritol, sugar alcohols (eg sorbitol), alkyl glucosides (eg methyl glucoside, butyl glucoside, lauryl glucoside) as well as polyglucosides (eg cellulose) saturated and / or unsaturated, linear or branched fatty acids with 12 to 22 carbon atoms and / or hydroxycarboxylic acids with 3 to 18 carbon atoms and their adducts with 1 to 30 moles of ethylene oxide;
  • the adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols or with castor oil are known, commercially available products. These are mixtures of homologs, the average degree of alkoxylation of which is the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate, with which the addition reaction is carried out.
  • G 12 / i 8 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE 2024051 PS as refatting agents for cosmetic preparations.
  • Suitable partial glycerides are hydroxystearic acid monoglyceride, hydroxystearic acid diglyceride, isostearic acid, Isostearinklarediglycerid, oleic acid monoglyceride, oleic acid diglyceride, Ricinolklaremoglycerid, Ricinolklarediglycerid, linoleic acid monoglyceride, Linolklarediglycerid, LinolenTalkremonoglycerid, Linolenchurediglycerid, Erucaklaremonoglycerid, Erucaklarediglycerid, Weinklaremonoglycerid, Weinklarediglyce- chloride, Citronenklamonoglycerid, Citronendiglycerid, ⁇ pfelklamonoglycerid, Malic acid diglyceride and its technical mixtures, which may still contain small amounts of triglyceride from the manufacturing process. Addition products of 1 to 30, preferably 5
  • polyglycerol esters are polyglyceryl-2 dipolyhydroxystearates (Dehymuls® PGPH), polyglycerol-3 diisostearates (Lameform® TGI), polyglyceryl-4 isostearates (Isolan® Gl 34), polyglyceryl-3 oleates, diisostearoyl polyglyearyl-3 diisostearates (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Gera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010 / 90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) and Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate I
  • polystyrene resin examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol which are optionally reacted with 1 to 30 mol of ethylene oxide Lauric acid, coconut fatty acid, tallow fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example the coconut acylaminopropyldimethylammonium glycinate, and 2-alkyethyl -3 carboxylm 3-hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glyc
  • fatty acid amide derivative known under the CTFA name Cocamidopropyl Betaine is particularly preferred.
  • Suitable emulsifiers are ampholytic surfactants.
  • -Acyl group contain at least one free amino group and at least one -COOH or -SO 3 H group in the molecule and are capable of forming internal salts.
  • suitable ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamidopropylglycines, N-alkyltaurins, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids, each with about 8 to 18 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are the N-coconut alkyl aminopropionate, the coconut acyl aminoethyl aminopropionate and the C 2 / i 8 acyl sarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the esterquat type, preferably methylquaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Pearlescent waxes that can be used are, for example: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15
  • Suitable consistency agents are primarily fatty alcohols or hydroxyfatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and also partial glycerides, fatty acids or hydroxyfatty acids. A combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, Aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates, ( e.g.
  • surfactants such as ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with narrowed homolog distribution or alkyl oligoglucosides and electrolytes such as cooking salts.
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, e.g. a quaternized hydroxyethyl cellulose available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers such as e.g.
  • Luviquat® condensation products of polyglycols and amines, quaternized collagen polypeptides, such as, for example, lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, e.g. Amodimethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid with dimethyldiallylammonium chloride (Merquat® 550 / Chemviron), polyaminopolyamides, e.g.
  • cationic chitin derivatives such as quaternized chitosan, optionally microcrystalline, condensation products from dihaloalkylene, such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1, 3-propane, cationic guar gum, e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese, quaternized ammonium salt polymers such as e.g. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 from Miranol.
  • dihaloalkylene such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1, 3-propane
  • cationic guar gum e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese
  • quaternized ammonium salt polymers such as e.g. Mira
  • Anionic, zwitterionic, amphoteric and nonionic polymers include, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and their polyols, uncrosslinked polyesters and non-crosslinked polyesters , Acrylamidopropyltrimethylammonium chloride / acrylate copolymers, octylacrylamide / methyl methacrylate / tert.butylaminoethyl methacrylate / 2-hydroxyproyl methacrylate copolymers, polyvinyl pyrrolidone, vinyl pyrrolidone / vinyl acetate copolymers, vinyl pyrrolidone / teraminate / vinyl acrylate and vinyl methacrylate / vinyl
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds which can be both liquid and resinous at room temperature.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
  • fats are glycerides
  • waxes include natural waxes such as Candelilla wax, carnauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice-germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walrate, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax), petrolatum, paraffin waxes chemically modified waxes (hard waxes), e.g.
  • natural waxes such as Candelilla wax, carnauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice-germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walrate, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax), petrolatum,
  • Montanester waxes Montanester waxes, Sasol waxes, hydrogenated jojoba waxes and synthetic waxes, such as Polyalkylene waxes and polyethylene glycol waxes in question.
  • fat-like substances such as lecithins and phospholipids can also be used as additives.
  • lecithins as those glycerophospholipids which are formed from fatty acids, glycerol, phosphoric acid and choline by esterification. Lecithins are therefore often referred to in the professional world as phosphatidylcholines (PC).
  • Examples of natural lecithins are the cephalins, which are also referred to as phosphatidic acids and are derivatives of 1,2-diacyl-sn-glycerol-3-phosphoric acids.
  • phospholipids are usually understood to be mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally classed as fats. Sphingosins or sphingolipids are also suitable.
  • Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate can be used.
  • Biogenic active substances are, for example, tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, deoxyribonucleic acid, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamins.
  • Cosmetic deodorants counteract, mask or eliminate body odors.
  • Body odors arise from the action of skin bacteria on apocrine sweat, whereby unpleasant smelling breakdown products are formed. Accordingly, deodorants contain active ingredients that act as germ inhibitors, enzyme inhibitors, odor absorbers or odor maskers.
  • germ-inhibiting agents such as.
  • Esterase inhibitors are suitable as enzyme inhibitors. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Dusseldorf / FRG). The substances inhibit enzyme activity and thereby reduce odor.
  • trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Dusseldorf / FRG).
  • the substances inhibit enzyme activity and thereby reduce odor.
  • esterase inhibitors include sterolsulfates or phosphates, such as, for example, lanosterol, cholesterol, campesterin, stigmastyrene and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as, for example, glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, Adipic acid, adipic acid monoethyl ester, adipic acid diethyl ester, malonic acid and malonic acid diethyl ester, hydroxycarboxylic acids and their esters such as citric acid, malic acid, tartaric acid or tartaric acid diethyl ester, and zinc glycinate.
  • dicarboxylic acids and their esters such as, for example, glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, Adipic acid, adipic acid monoethyl ester
  • Suitable as odor absorbers are substances which absorb odor-forming compounds and can retain them to a large extent. They lower the partial pressure of the individual components and thus also reduce their speed of propagation. It is important that perfumes have to remain unaffected. Odor absorbers are not effective against bacteria. They contain, for example, a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known to the person skilled in the art as "fixers”, such as eg. B. extracts of labdanum or styrax or certain abietic acid derivatives. Fragrance agents or perfume oils act as odor maskers and, in addition to their function as odor maskers, give the deodorants their respective fragrance.
  • Perfume oils are, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts from flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and twigs as well as resins and balms. Animal raw materials, such as civet and castoreum, are also suitable. Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, p-tert-butylcyclohexyl acetate, linalyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyidxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones, for example the jonones and methylcedryl ketone, and the alcohols Anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, for example sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, Labdanum oil and Lavandin oil.
  • Antiperspirants reduce sweat formation by influencing the activity of the eccrine sweat glands and thus counteract armpit wetness and body odor.
  • Aqueous or anhydrous formulations of antiperspirants typically contain the following ingredients:
  • non-aqueous solvents such as As ethanol, propylene glycol and / or glycerin.
  • Salts of aluminum, zirconium or zinc are particularly suitable as astringent antiperspirant active ingredients.
  • suitable antiperspirant active ingredients are e.g. Aluminum chloride, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate and their complex compounds z.
  • B. with amino acids such as glycine.
  • oil-soluble and water-soluble auxiliaries can be present in smaller amounts in antiperspirants.
  • oil soluble aids can e.g. his:
  • water-soluble additives are e.g. Preservatives, water-soluble fragrances, pH adjusters, e.g. Buffer mixtures, water soluble thickeners, e.g. water-soluble natural or synthetic polymers such as Xanthan gum, hydroxyethyl cellulose, polyvinyl pyrrolidone or high molecular weight polyethylene oxides.
  • Octopirox® (1-hydroxy-4-methyl-6- (2,4,4-trimythylpentyl) -2- (1H) -pyridone-monoethanolamine
  • Baypival Pirocton Olamin
  • Ketoconazol® (4-acetyl - 1 - ⁇ - 4- [2- (2.4-dichlorophenyl) r-2- (1 H -imidazol-1-ylmethyl) -1, 3-dioxylan-c-4-ylmethoxyphenyl ⁇ piperazine, selenium disulfide, sulfur colloidal, sulfur polyethyleneglycolsor - bitan monooleate, sulfur ricinole polyhexylate, sulfur tar distillates, salicylic acid (or in combination with hexachlorophene), undexylene acid monoethanolamide sulfosuccinate sodium salt, Lamepon® UD (protein undecylenic acid condensate, zinc pyrethione,
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Montmorillonites, clay minerals, pemulene and alkyl-modified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • UV light protection factors are, for example, organic substances (light protection filters) which are liquid or crystalline at room temperature and which are able to absorb ultraviolet rays and absorb the energy in the form of longer-wave radiation, e.g. To give off heat again.
  • UVB filters can be oil-soluble or water-soluble. As oil-soluble substances e.g. to call:
  • 4-aminobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
  • esters of cinnamic acid preferably 2-ethylhexyl 4-methoxycinnamate, propyl 4-methoxycinnamate, isoamyl 4-methoxycinnamate, 2-ethylhexyl 2-cyano-3,3-phenylcinnamate (octocrylene);
  • esters of salicylic acid preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-isopropylbenzyl ester, salicylic acid homomethyl ester;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
  • esters of benzalmalonic acid preferably di-2-ethylhexyl 4-methoxybenzmalonate
  • Triazine derivatives e.g. 2,4,6-trianilino- (p-carbo-2'-ethyl-1'-hexyloxy) -1, 3,5-triazine and 'octyl triazon.
  • dioctyl butamido triazone Uvasorb® HEB
  • UV-A filters such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1, 3-dione, 4-tert
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1, 3-dione, 4-tert
  • -Butyl-4'- methoxydibenzoylmethane Parsol 1789
  • 1-phenyl-3- (4'-isopropylphenyl) propane-1, 3-dione and enamine compounds are particularly suitable as typical UV-A filters.
  • -Butyl-4'- methoxydibenzoylmethane Parsol 1789
  • 1-phenyl-3- (4'-isopropylphenyl) propane-1, 3-dione and enamine compounds The UV-A and UV-B filters can of course also be used in mixtures.
  • insoluble light protection pigments namely finely dispersed metal
  • suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • Silicates (talc), barium sulfate or zinc stearate can be used as salts.
  • the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm. They can have a spherical shape, but it is also possible to use particles which have an ellipsoidal shape or a shape which differs in some other way from the spherical shape.
  • the pigments can also be surface treated, i.e. are hydrophilized or hydrophobized.
  • Typical examples are coated titanium dioxides, e.g. Titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or simethicones, are particularly suitable as hydrophobic coating agents. So-called micro- or nanopigments are preferably used in sunscreens. Micronized zinc oxide is preferably used.
  • secondary light stabilizers of the antioxidant type which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • amino acids e.g. glycine, histidine, tyrosine, tryptophan
  • imidazoles e.g. urocanic acid
  • peptides such as D, L-carnosine, D-camosine, L-carnosine and their derivatives (e.g.
  • carotenoids carotenoids
  • carotenes eg ⁇ -carotene, ⁇ -carotene, lycopene
  • chlorogenic acid and their derivatives lipoic acid and their derivatives (eg dihydroliponic acid)
  • aurothioglucose propylthiouracil and other thiols (eg thioredoxin, Glutathione, cysteine, cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters ) as well as their salts, dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nu
  • buthioninsulfoximines homocysteine sulfoximine, butioninsulfones, pentathion, very sulfa-, hi- peptone
  • gerin compatible doses e.g. pmol to ⁇ mol / kg
  • metal chelators e.g. ⁇ -hydroxy fatty acids, palmitic acid, phytic acid, lactoferrin
  • ⁇ -hydroxy acids e.g.
  • citro- nenoic acid lactic acid, malic acid
  • humic acid bile acid, bile extracts, bilirubin, biliquinin, EDTA, EGTA and their derivatives
  • unsaturated fatty acids and their derivatives eg ⁇ -linolenic acid, linoleic acid, oleic acid
  • folic acid and their derivatives ubiquinone and ubiquinol and their derivatives
  • vitamin C and derivatives e.g. ascorbyl palmitate, Mg ascorbyl phosphate, ascorbyl acetate
  • tocopherols and derivatives e.g.
  • vitamin E acetate
  • vitamin A and derivatives vitamin A palmitate
  • coniferyl benzoate of benzoin, rutinic acid and their Derivatives ⁇ -glycosyl rutin, ferulic acid, furfurylidene glucitol, camosin, butyl hydroxytoluene, butyl hydroxyanisole, nordihydroguajak resin acid, nordihydroguajaretic acid, trihydroxybutyrophenone, uric acid and its derivatives, mannose and their derivatives, eg zinc oxide dismutase, superoxide-dismutase, superoxide-dismutase, Selenium and its derivatives (eg selenium methionine), stilbenes and their derivatives (eg stilbene oxide, trans-stilbene oxide) and the gee according to the invention ignite derivatives (salts, esters, ethers, sugars, nucleotides, nucleosides, peptides
  • Hydrotropes such as, for example, ethanol, isopropyl alcohol, or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols can also contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as, in particular, trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Lower alkyl glucosides in particular those with 1 to 8 carbons in the alkyl radical, such as methyl and butyl glucoside;
  • Dialcohol amines such as diethanolamine or 2-amino-1,3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Regulation.
  • N, N-diethyl-m-toluamide, 1, 2-pentanediol or ethyl butylacetylaminopropionate are suitable as insect repellents, and dihydroxyacetone is suitable as a self-tanning agent.
  • Arbutin, kojic acid, coumaric acid and ascorbic acid (vitamin C) can be used as tyrosine inhibitors, which prevent the formation of melanin and are used in depigmenting agents.
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, y-lang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peels (bergamot, Lemon, oranges), roots (Meuse, angelica, celery, cardamom, costus, iris, calmus), woods (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme ), Needles and twigs (spruce, fir, pine, mountain pines), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutylate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenylglycinate, allylcyclohexyl benzylatepylpropylate, stylate propionate, stylate propionate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals with 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones, for example, the jonones, ⁇ -isomethylionone and methylcedryl ketone, the alcohols anethol, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpinol, the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • the total proportion of auxiliaries and additives can be 1 to 50% by weight, preferably 5 to 40% by weight, based on the cosmetic preparations.
  • the agents can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used. Examples
  • Dehydol LT 7 TM is a fatty alcohol mixture, ethoxylated with an average of 7 moles of ethylene oxide.
  • the fatty alcohol mixture has the following chain distribution in% by weight: ⁇ C12: 0-3%; C12: 48-58%; C14: 18-24%; C16: 8-12%; C18: 11-15%; > C18: 0-1%
  • the saponification number (VZ) was determined according to DGF C-V 3.
  • the acid number (SZ) was determined according to DIN 53402
  • the stratum corneum is found in the epidermis of human skin.
  • the stratum corneum is a dielectric medium with little electrical conduction.
  • the water content leads to increased dielectric conductivity and the determination of the di-electrical conductivity of the stratum corneum can thus serve as a measure of the degree of moisture in human skin.
  • the increase in the dielectric conductivity of the stratum corneum reflects an increased level of moisture in the human skin.
  • the dielectric conductivity of the stratum corneum was determined using a skin surface hygrometer (SKICON 200, IBS CO. Hamamatsu, Japan) at 3.5 MHz.
  • the treatment with the preparations was carried out 3 times at intervals of 30 minutes.
  • the application amount was 1 mg / cm 2 .
  • the conductivity was measured before treatment and then up to 24 hours after the 3rd treatment.
  • Table 2 shows the moisturizing effect, determined by measuring the dielectric conductivity of the moisturizing citric acid ester described above (in ⁇ S); Average of 10 examinations (the standard deviation is shown in brackets).
  • a dose-dependent moisture-regulating activity can be seen from the results.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Emergency Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

Vorgeschlagen wird die Verwendung von Hydroxycarbonsäuresstern ethoxylierter Alkohole als Feuchtigkeitsspender für die Haut in kosmetischen, insbesondere tensidhaltigen Zubereitungen.

Description

VERWENDUNG VON ALPHA-HYDROXYCARBONSAÄUREESTERN ETHOXYLIERTER ALKOHOLE
Gebiet der Erfindung
Die vorliegende Erfindung betrifft die Verwendung von Hydroxycarbonsäureestern ethoxylier- ter Alkohole als Feuchtigkeitsspender für die Haut in kosmetischen, insbesondere tensidhal- tigen Zubereitungen.
Stand der Technik
Tensidhaltige kosmetische Zubereitungen, insbesondere solche mit anionischen Tensiden, zeigen bei häufigem Gebrauch wie bei Dusch- und Haarshampoos üblich, bei vielen Anwendern eine stark entfettende Wirkung. Um dem entgegenzuwirken werden in kosmetischen Mitteln gerne feuchtigkeitsspendende Zusatzstoffe wie niedermolekulare α- Hydroxycarbonsäuren zugesetzt. Diese niedermolekularen α-Hydroxycarbonsäuren wie Gly- kolsäure oder Milchsäure weisen zwar eine extrem gute Wirkung als Feuchtigkeitsspender der Haut auf, führen jedoch zu Hautirritationen und haben selber keine tensidischen Eigenschaften.
Hydroxycarbonsäureester ethoxylierter Alkohole sind seit langem bekannte Verbindungen, die als Mono-, Di- und/oder Triester auch in der Kosmetik zum Einsatz kommen. So beschreibt beispielsweise die Europäische Patentschrift EP 0 852 944 B1 die Verwendung von Citronensäureestem zur Verbesserung der Auswaschbarkeit ölhaltiger kosmetischer Zusammensetzungen.
Gemäß der Europäischen Veröffentlichung EP 0 199 131 A2 sind Citronensäureester Tensi- de, die in kosmetischen Mitteln wie Haarshampoos verwendet werden können.
Aus dem US-Patent US 6,413,527 sind Nanoemulsionen von einem Öl und Alkylethercitra- ten als anionisches Tensid in der Kosmetik bekannt.
Schließlich sind nach dem Artikel von R. Diez et al. In: Proceedings, 4. Welt-Tensidkongreß, Barcelona (1996), Bd. 2, S. 129 ff Alkylethercitrate anionische Tenside, die für kosmetische Anwendungen geeignet sind. Untersucht wurden Citronensäureester von Laurylalkohol mit verschiedenen Ethoxylierungsgraden (3,6 und 9), die als Mono-, Di- und/oder Triester vorliegen können.
Aufgabe der vorliegenden Erfindung bestand darin, Verbindungen für kosmetische, insbesondere tensidhaltige, Zubereitungen zur Verfügung zu stellen, die sowohl als Feuchtigkeitsspender wirken als auch keine Irritationen der Haut bewirken. Gleichzeitig sollten die Verbindungen möglichst selber tensidische Eigenschaften aufweisen. Weiterhin sollten die gesuchten Verbindungen möglichst weitere Vorteile für die Haut aufweisen, wie Straffung der Haut und Reduzierung von Falten. Überraschenderweise wurde gefunden, dass Ester von α-Hydroxycarbonsäuren und ethoxy- lierten Alkoholen sowohl als Feuchtigkeitsspender für die Haut wirken, keinerlei Hautirritationen aufweisen und auch noch eine straffende Wirkung für die Haut und Reduzierung von Fältchen bewirken. Gleichzeitig handelt es sich um anionische Tenside. Besonders vorteilhaft ist zudem, dass diese Verbindungen in Mischung mit anionischen Tensiden, insbesondere mit Ethersulfaten, eine synergistische Schaumwirkung aufweisen.
Beschreibung der Erfindung
Gegenstand der Erfindung ist die Verwendung von α-Hydroxycarbonsäureester ethoxylierter Alkohole der Formel (I)
R1O(CH2CH2O)nH (I)
in der R1 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen und n für Zahlen von 1 bis 50 steht, als Feuchtigkeitsspender für die Haut in kosmetischen Zubereitungen.
α-Hvdroxycarbonsäureester
α-Hydroxycarbonsäuren sind organische Säuren, die neben mindestens einer COOH- Gruppe im Molekül mindestens eine OH-Gruppe enthalten. Sie können als Monohydroxycar- bonsäuren mit einer OH-Gruppe vorliegen, mit zwei als Di-, oder mit mehr als zwei OH- Gruppen als Polyhydroxycarbonsäuren vorliegen. Nach der Stellung der OH-Gruppe zur COOH-Gruppe unterscheidet man alpha-, beta-, und gamma-Hydroxycarbonsäuren.
In der vorliegenden Erfindung bevorzugte α-Hydroxycarbonsäuren sind die Weinsäure, Mandelsäure, Milchsäure, Äpfelsäure, Citronensäure und deren Salze sowie deren Eigen- kondensationsprodukte. Besonders bevorzugt im Sinne der vorliegenden Erfindung ist die Citronensäure.
Die α-Hydroxycarbonsäureester leiten sich ab von ethoxylierten Alkoholen mit 6 bis 22 Kohlenstoffatomen der allgemeinen Formel (I)
R1O(CH2CH2O)nH (I)
in der R1 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen und n für Zahlen von 1 bis 50 steht. Bevorzugt steht in der Formel (I) der Ethoxylierungsgrad n für Zahlen von 1 bis 20, vorzugsweise 1 bis 10 und insbesondere 3 bis 8. Insbesondere geeignet sind Hydroxycarbonsäureester, die sich ableiten von ethoxylierten Alkoholen der Formel (I), in der R1 für einen linearen Alkylrest steht. Typische Beispiele sind die Addukte von durchschnittlich 1 bis 20, vorzugsweise 1 bis 10 und insbesondere 3 bis 8 Mol Ethylenoxid an Capronalkohol, Caprylalkohol, 2- Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylal- kohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roe- len'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Bevorzugt sind Addukte von 1 bis 10, insbesondere 3 bis 8 Mol Ethylenoxid an technische Fettalkohole mit 12 bis 18 Kohlenstoffatomen, wie beispielsweise Ko- kos-, Palm-, Palmkern- oder Taigfettalkohol.
Einer Ausführungsform der vorliegenden Erfindung entsprechend leitet sich R1O in Formel (I) ab von einer Fettalkoholmischung enthaltend 65 - 75 Gew.% C12-, 20 bis 30 Gew.% C14-, 0 - 5 Gew.% C16- und 0 bis 5 Gew.% C18- Alkohole. Diese Alkoholmischung ist kommerziell erhältlich, beispielsweise als Dehydol LS™, ein Handelsprodukt der Cognis Deutschland GmbH & Co. KG. Hydroxycarbonsäureester auf Basis dieser Fettalkoholmischung weisen vorzugsweise einen Ethoxylierungsgrad n von durchschnittlich 4 auf.
Einer weiteren Ausführungsform der vorliegenden Erfindung entsprechend leitet sich R1O in Formel (I) ab von einer Fettalkoholmischung enthaltend 45 - 60 Gew.% C12-, 15 - 30 Gew.% C14-, 5 - 15 Gew.% C16- und 8 - 20 Gew.% C18- Alkohol. Diese Alkoholmischung ist ebenfalls kommerziell erhältlich, beispielsweise als Dehydol LT™, ein Handelsprodukt der Cognis Deutschland GmbH & Co. KG. Hydroxycarbonsäureester auf Basis dieser ausgewählten Fettalkoholmischung sind vorzugsweise mit durchschnittlich 7 Mol Ethylenoxid etho- xyliert worden (n = 7).
Im Sinne der vorliegenden Erfindung können die α-Hydroxycarbonsäuren vollständig oder insbesondere partiell verestert sein. Bei der partiellen Veresterung handelt es sich um Verbindungen, die noch mindestens eine freie Carboxylgruppe tragen. Dem entsprechend kann es sich um saure Ester oder deren Neutralisationsprodukte handeln. Vorzugsweise liegen die Partialester in Form der Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammo- nium- und/oder Glucammoniumsalze vor.
Im Zusammenhang mit den ganz besonders bevorzugten Citronensäureestern handelt es sich vorzugsweise um Mischungen von isomeren Verbindungen der allgemeinen Formel (II) H2C-COOR'
I
HOC-COOR" (II)
I
H2C-COOR'"
in der R', R", R'" für X und/oder einen ethoxylierten Alkylrest R1 mit der in Formel (I) angegebenen Bedeutung steht, wobei die Verteilung der Reste R', R" bzw. R'" mit der Maßgabe erfolgt, dass das Gewichtsverhältnis von Monoester : Diester im Bereich von 3 : 1 bis 10 : 1 liegt, vorzugsweise liegt das Gewichtsverhältnis von Monoester : Diester im Bereich von 5 : 1 bis 8 : 1.
Die erfindungsgemäß bevorzugten Citronensäureestermischungen enthalten somit zwingend Mono- und Diester, vorzugsweise in Mengen von 50 bis 90 Gew.%, insbesondere von 60 bis 80 Gew.% - berechnet als Mono- und Diester und bezogen auf Mischung. Die Mischungen können als den zu 100 Gew.% fehlenden Rest noch Triester und freie Citronensäure enthalten. Vorzugsweise enthalten die Mischungen aber wenig freie Citronensäure, wobei weniger als 10 Gew.% - bezogen auf Mischungen - bevorzugt sind.
Somit stellen die erfindungsgemäß bevorzugten Citronensäureester hauptsächlich Partiales- ter der Citronensäure dar, die noch mindestens eine freie Carboxylgruppe enthalten. Dementsprechend kann es sich auch um saure Ester oder deren Neutralisationsprodukte handeln, und X kann in Formel (II) für Wasserstoff oder ein Kation stehen. Vorzugsweise liegen die Partialester dann in Form von Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkano- lammonium- und/oder Glucammoniumsalze vor (d.h. X steht für Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und/oder Glucammonium-Ion).
Zur Herstellung der erfindungsgemäß bevorzugten Citronensäureester ist es wesentlich, dass die Citronensäure mit den Alkoholethoxylaten der Formel (I) in einem molaren Verhältnis von 0,9 :"ϊ bis 1 ,1 : 1 , insbesondere 1 : 1 verestert werden.
Die Verfahrensbedingungen als solches entsprechen dem Stand der Technik, wobei es wesentlich sein kann, dass die Reaktion in einer Stickstoffatmosphäre stattfindet. Weiterhin kann es vorteilhaft sein, die Temperaturen bei der Reaktion im Bereich von 150 bis 170 °C und vorzugsweise von 160° C einzustellen. Als Endprodukt werden die erfindungsgemäß bevorzugten Citronensäureestermischungen erhalten. Die Ester können frei oder als Salze vorliegen. Verfahrensbedingt resultiert auch meist ein geringer Anteil an unveresterer Citronensäure, vorzugsweise weniger als 10 Gew.%. Besonders bevorzugt sind solche Reaktionsprodukte, die maximal 8 und insbesondere maximal 5 % unveresterter Citronensäure enthalten. Kosmetische Zubereitungen
Im Sinne der Erfindung werden die α-Hydroxycarbonsäureester der ethoxylierten Alkohole gemäß Formel (I) als Feuchtigkeitsspender für die Haut in kosmetischen, insbesondere ten- sidhaltigen, Zubereitungen verwendet. Im Sinne der Erfindung bedeutet Feuchtigkeitsspender, dass diese Verbindungen die Haut vor dem Austrocknen schützen und gleichzeitig dafür sorgen, dass der natürliche Feuchtigkeitsgehalt der Haut erhalten bleibt.
Durch Elution der natürlichen feuchtigkeitsspendenden Substanzen (NMF) sowie durch Fortwaschen der natürlichen Hautlipide kommt es nach Tensidbehandlungen zu einer messbaren temporären Austrocknungsreaktion der Haut. Üblicherweise werden milde Tenside und Tensidkombinationen eingesetzt, um diesen Effekt zu verkleinern. Im hier vorliegenden Fall sind die α-Hydroxycarbonsäureester der ethoxylierten Alkohole nicht nur besonders mild, sondern aktive Feuchtigkeitsspender. Dies geht nicht nur über die übliche Funktion hinaus, sondern ermöglicht durch diese tensidunübliche biologische Wirkungsweise auch noch vielfältige neue Anwendungsmöglichkeiten in Formulierungen oder erweiterten Funktionen.
Dementsprechend können die erfindungsgemäß verwendeten Verbindungen für kosmetische Zubereitungen, wie beispielsweise Haarshampoos, Haarlotionen, Schaumbäder, Duschbäder, Cremes, Gele, Lotionen, alkoholische und wässrig/alkoholische Lösungen, Emulsionen, Wachs/ Fett-Massen, Stiftpräparaten, Pudern oder Salben dienen. Sie zeigen gleichermaßen überzeugende Wirkungen in wasserfreien wie in wasserhaltigen Formulierungen.
Die erfindungsgemäß verwendeten α-Hydroxycarbonsäureester werden vorzugsweise in Mengen von 0,01 bis 20, insbesondere 0,1 bis 10 Gew.% - bezogen auf kosmetische Zubereitung - verwendet
Einer Ausführungsform der vorliegenden Erfindung entsprechend enthalten die kosmetischen Zubereitungen nichtionische, anionische, kationische und/oder amphotere bzw. amphotere Tenside. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsul- fonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α- Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersul- fate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäu- re'amid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactyla- te, Acyltartrate, Acylglutamate und Acyl-aspartate, Alkyloligoglucosidsulfate, Alkyloligogluco- sidcarboxylate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkohoipo- lyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglyco- lether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäu- re-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, A- minoglycinate, Imidazoliniumbetaine und Sulfobetaine. Als besonders bevorzugte nichtionische Tenside seien u.a. die Alkylpolyglycoside genannt.
Im Sinne der vorliegenden Erfindung werden die Hydroxycarbonsäureester in kosmetischen Zubereitungen verwendet, die vorzugsweise Aniontenside enthalten, insbesondere Alkyl- und/oder Alkenylsulfate und/oder Alkylethersulfate.
Unter Alkyl- und/oder Alkenylsulfaten, die auch häufig als Fettalkoholsulfate bezeichnet werden, sind die Sulfatierungsprodukte primärer Alkohole zu verstehen, die der Formel (III) folgen,
R2O-SO3 (III)
in der R2 für einen linearen oder verzweigten, aliphatischen Alkyl- und/oder Alkenylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen und M für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele für Alkylsulfate, die im Sinne der Erfindung Anwendung finden können, sind die Sulfatierungsprodukte von Capronalkohol, Caprylalkohol, Caprinalkohol, 2- Ethylhexylalkohol, Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylal- kohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol und Erucylalkohol sowie deren technischen Gemischen, die durch Hochdruckhydrierung technischer Methylesterfraktionen oder Aldehyden aus der Roe- len'schen Oxosynthese erhalten werden. Die Sulfatierungsprodukte können vorzugsweise in Form ihrer Alkalisalze und insbesondere ihrer Natriumsalze eingesetzt werden. Besonders bevorzugt sind Alkylsulfate auf Basis von C16/i8-Talgfettalkoholen bzw. pflanzliche Fettalkohole vergleichbarer C-Kettenverteilung in Form ihrer Natriumsalze.
Alkylethersulfate ("Ethersulfate") stellen bekannte anionische Tenside dar, die großtechnisch durch SO3- oder Chlorsulfonsäure (CSA)-Sulfatierung von Fettalkohol- oder Oxoalkoholpo- lyglycolethem und nachfolgende Neutralisation hergestellt werden. Im Sinne der Erfindung kommen Ethersulfate in Betracht, die der Formel (IV) folgen,
R3O-(CH2CH2O)mSO3Z (IV) in der R3 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen, m für Zahlen von 1 bis 10 und Z für ein Alkali- und/oder Erdalkalimetall, Ammonium, Alkylammonium, Alkanolammonium oder Glucammonium steht. Typische Beispiele sind die Sulfate von Anlagerungsprodukten von durchschnittlich 1 bis 10 und insbesondere 1 bis 5 Mol Ethylenoxid an Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalko- hol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Ara- chylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen in Form ihrer Natrium- und/oder Magnesiumsalze. Die Ethersulfate können dabei sowohl eine konventionelle als auch eine eingeengte Homologenverteilung aufweisen. Besonders bevorzugt ist der Einsatz von Ethersulfaten auf Basis von Adduk- ten von durchschnittlich 1 ,5 bis 2,5 Mol Ethylenoxid an technische C12/14- bzw. C12/ιs- Kokosfettalkoholfraktionen in Form ihrer Natrium- und/oder Magnesiumsalze.
Die erfindungsgemäß verwendeten Hydoxycarbonsäureester und die Tenside, insbesondere Alkyl- und/oder Alkenylsulfate und/oder Alkylethersulfate, werden vorzugsweise in einem Gewichtsverhältnis von 1 : 20 bis 10 : 1 verwendet, bevorzugt 1 : 20 bis 1 : 1.
Ganz besonders bevorzugt werden die erfindungsgemäß verwendeten Hydroxycarbonsäureester in kosmetischen Zubereitungen verwendet, die als anionisches Tensid Alkylethersul- fat enthalten. In derartigen Zubereitungen werden gute synergistische Wirkungen hinsichtlich Feuchtigkeitsregulierung, Schaumvermögen oder Hautverträglichkeit beobachtet.
Die kosmetischen Zubereitungen können ferner als weitere Hilfs- und Zusatzstoffe Ölkörper, Emulgatoren, Überfettungsmittel, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Polymere, Siliconverbindungen, Fette, Wachse, Lecithine, Phospholipide, Stabilisatoren, biogene Wirkstoffe, Deodorantien, Antitranspirantien, Antischuppenmittel, Filmbildner, Quellmittel, UV-Lichtschutzfaktoren, Antioxidantien, Hydrotrope, Konservierungsmittel, Insektenrepellentien, Selbstbräuner, Tyrosininhibitoren (Depigmentierungsmittel), Solubilisatoren, Parfümöle, Farbstoffe und dergleichen enthalten.
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen C6-C22-Fettalkholen, Ester von verzweigten C6-C13-Carbonsäuren mit linearen C6-C22- Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Ce- tylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stea- rylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat, Isostearyloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleyl- behenat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Hydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbe- sondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoho- len, Triglyceride auf Basis C6-C10-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von C6-C 8-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-C12-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22- Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von e- poxidierten Fettsäureestern mit Polyolen, Siliconöle und/oder aliphatische bzw. naphtheni- sche Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
> Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest; Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polye- thylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Laurylgluco- sid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Me- thylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
> Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
> Wollwachsalkohole;
> Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
> Polyalkylenglycole sowie > Glycerincarbonat.
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. G12/i8-Fettsäurβmono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rück- fettungsmittel für kosmetische Zubereitungen bekannt.
Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglycerid, Hydroxystearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäurediglycerid, Öl- säuremonoglycerid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäurediglycerid, Linol- säuremonoglycerid, Linolsäurediglycerid, Linolensäuremonoglycerid, Linolensäurediglycerid, Erucasäuremonoglycerid, Erucasäurediglycerid, Weinsäuremonoglycerid, Weinsäurediglyce- rid, Citronensäuremonoglycerid, Citronendiglycerid, Äpfelsäuremonoglycerid, Äpfelsäure- diglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungspro- zess noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.
Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitandii- sostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitandioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrie- rucat, Sorbitanmonoricinoleat, Sorbitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricino- leat, Sorbitanmonohydroxystearat, Sorbitansesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sorbitanmonotartrat, Sorbitansesquitartrat, Sorbitanditartrat, Sor- bitantritartrat, Sorbitanmonocitrat, Sorbitansesquicitrat, Sorbitandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitandimaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.
Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystea- rate (Dehymuls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostearate (Isolan® Gl 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Isolan® PDI), Polyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Gera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polygly- ceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische.
Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Taigfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behen- säure und dergleichen.
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldi- methylammoniumglycinat, N-Acylaminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alky!-3-carboxylmethyl- 3-hydroxyethylimida-zoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylamino-ethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensi- den werden solche oberflächenaktiven Verbindungen verstanden, die außer einer C8/ι8-Alkyl- oder
-Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N- Alkylaminobutter-säuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N- alkylamidopropylglycine, N-Alkyltau-rine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacyla- minoethylaminopropionat und das Cι2/i8-Acylsarcosin.
Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind.
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monogly- ceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethy- lenglycoldistearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialgly- ceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydro- xysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearin- säure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen. Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten.
Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylengly- colmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® von Goodrich oder Synthalene® von Sigma), Polyacrylamide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpoly- peptide, wie beispielsweise Lauryldimonium Hydroxypropyl Hydrolyzed Collagen (Lame- quat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amodimethicone, Copolymere der Adipinsäure und Dimethylaminohydro- xypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl- diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialky- laminen, wie z.B. Bis-Dimethylamino-1 ,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz- Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1 , Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/ Isobornylacrylat-Copolymere, Methylvinylether/ Maleinsäurean- hydrid-Copolymere und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäu- ren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/ Me- thylmethacrylat/ tert.Butylaminoethylmethacrylat/2-Hydroxyproyl-methacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylami- noethylmethacrylat/ Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.
n Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpo- lysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt.
Typische Beispiele für Fette sind Glyceride, als Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reis-keimölwachs, Zuckerrohrwachs, Ouricury wachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholipide in Frage. Unter der Bezeichnung Lecithine versteht der Fachmann diejenigen Glycero-Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phospha- tidylcholine (PC) bezeichnet. Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1 ,2-Diacyl-sn- glycerin-3-phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerin- phosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphin- gosine bzw. Sphingolipide in Frage.
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocophe- rolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Geruchsüberdecker fungieren.
Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4- Chlorphenyl)-N'-(3,4 dichlorphenyl)harnstoff, 2,4,4'-Trichlor-2'-hydroxydiphenylether (Triclo- san), 4-Chlor-3,5-dimethylphenol, 2,2'-Methylen-bis(6-brom-4-chlorphenol), 3-Methyl-4-(1- methylethyl)phenol, 2-Benzyl-4-chlorphenol, 3-(4-Chlorphenoxy)-1 ,2-propandiol, 3-lod-2- propinylbutylcarbamat, Chlorhexidin, 3,4,4'-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Farnesol, Phenoxyethanol, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n-decylamid.
Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düssel- dorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmaste- rin- und Sitosterinsulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipin- säuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbnonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester, sowie Zinkglycinat.
Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, dass dabei Parfüms unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinol- säure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixa- teure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietin- säurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronelly- Idxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Keto- nen z.B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Min- zenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cycla- menaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß- Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe:
> adstringierende Wirkstoffe,
> Ölkomponenten,
> nichtionische Emulgatoren,
> Co-Emulgatoren,
> Konsistenzgeber,
> Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder
> nicht wässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.
Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z.B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquich- lorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1 ,2. Aluminiumhydroxyal- lantoinat, Aluminiumchloridtartrat, Aluminium-Zirkonium-Trichlorohydrat, Aluminium- Zirkonium-tetrachlorohyd-rat, Aluminium-Zirkonium-pentachlorohydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Glycin.
Daneben können in Antitranspirantien übliche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z.B. sein:
> entzündungshemmende, hautschützende oder wohlriechende ätherische Öle,
> synthetische hautschützende Wirkstoffe und/oder
> öllösliche Parfümöle.
Übliche wasserlösliche Zusätze sind z.B. Konservierungsmittel, wasserlösliche Duftstoffe, pH-Wert-Stellmittel, z.B. Puffergemische, wasserlösliche Verdickungsmittel, z.B. wasserlösliche natürliche oder synthetische Polymere wie z.B. Xanthan-Gum, Hydroxyethylcellulose, Polyvinylpyrrolidon oder hoch-molekulare Polyethylenoxide.
Als Antischuppenmittel können Octopirox® (1-Hydroxy-4-methyl-6-(2,4,4-trimythylpentyl)- 2-(1H)-pyridon-monoethanolaminsal∑), Baypival, Pirocton Olamin, Ketoconazol®, (4-Acetyl- 1-{-4-[2-(2.4-dichlorphenyl)r-2-(1 H-imidazol-1-ylmethyl)-1 ,3-dioxylan-c-4- ylmethoxyphenyl}piperazin, Selendisulfid, Schwefel kolloidal, Schwefelpolyehtylenglykolsor- bitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwefelteer Destillate, Salicylsäure (bzw. in Kombination mit Hexachlorophen), Undexylensäure Monoethanolamid Sulfosuccinat Na- Salz, Lamepon® UD (Protein-Undecylensäurekondensat, Zinkpyrethion, Aluminiumpyrition und Magnesiumpyrithion / Dipyrithion-Magnesiomsulfat eingesetzt werden.
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quater- niertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
Als Quellmittel für wässrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkylmodifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden.
Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
> 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4- Methylbenzyliden)campher ;
> 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2- ethylhexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4- (Dimethylamino)benzoesäureamylester;
> Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4- Methoxyzimtsäurepropylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3- phenylzimtsäure-2~ethylhexylester(Octocrylene);
> Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4- isopropylbenzylester, Salicylsäurehomomenthylester;
> Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2- Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
> Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2- ethylhexylester;
> Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1 ,3,5-triazin und ' Octyl Triazon.oder Dioctyl Butamido Triazone (Uvasorb® HEB);
> Propan-1 ,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1 ,3-dion;
> Ketotricyclo(5.2.1.0)decan-Derivate.
Als wasserlösliche Substanzen kommen in Frage:
> 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze; > Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzo- phenon-5-sulfonsäure und ihre Salze;
> Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornyliden- methyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bomyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Ben∑oylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3-dion, 4-tert.-Butyl-4'- methoxydibenzoylmethan (Parsol 1789), 1-Phenyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion sowie Enaminverbindungen. Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikei sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Euso- lex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikro- nisiertes Zinkoxid verwendet.
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryp- tophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Camosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Caro- tine (z.B. α-Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthi- ouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ- Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distea- rylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α- Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citro- nensäure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Bili- verdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Camosin, Butylhydroxytoluol, Butyl- hydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophe- non, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnSO ) Selen und dessen Derivate (z.B. Selen- Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Etha- nol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
> Glycerin;
> Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Buty- lenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
> technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
> Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethy- lolbutan, Pentaerythrit und Dipentaerythrit;
> Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
> Zuckeralkohole mit 5. bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
> Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
> Aminozucker, wie beispielsweise Glucamin;
> Dialkoholamine, wie Diethanolamin oder 2-Amino-1,3-propandiol.
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen. Als Insekten-Repellentien kommen N,N- Diethyl-m-toluamid, 1 ,2-Pentandiol oder Ethyl Butylacetylaminopropionate in Frage, als Selbstbräuner eignet sich Dihydroxyaceton. Als Tyrosinhinbitoren, die die Bildung von Melanin verhindern und Anwendung in Depigmentierungsmitteln finden, kommen beispielsweise Arbutin, Kojisäure, Cumarinsäure und Ascorbinsäure (Vitamin C) in Frage. Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Y- lang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Maas, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, E- lemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobuty- rat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethyla- cetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoff atomen, Citral, Citronel- lal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-lsomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpi- neol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylace- tat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die kosmetischen Zubereitungen - betragen. Die Herstellung der Mittel kann durch übliche Kalt- oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode. Beispiele
Eingesetzte Substanzen
1. Dehydol LT 7™, ein Handelsprodukt der Cognis Deutschland GmbH & Co. KG, ist eine Fettalkoholmischung, ethoxyliert mit durchschnittlich 7 Mol Ethylenoxid. Die Fettalkoholmischung weist folgende Kettenverteilung auf in Gew.%: < C12: 0-3%; C12: 48-58%; C14: 18-24%; C16: 8-12%; C18: 11-15 %; > C18: 0-1%
Beispiel 1 Citronensäureester eines C12-18-Älkohols+7EO; Monoester: Diester 6:1
28,05 kg (0,146 kmol) wasserfreie Citronensäure wurde mit 75,16 kg (0,146 Kmol) Dehydol LT 7 ™ in einem Rührbehälter unter Stickstoff auf 160 °C aufgeheizt und solange bei dieser Temperatur gerührt, bis die theoretische Menge an Wasser freigesetzt worden war (5,5 Stunden). Man erhielt ein hellgelbes, klares und flüssiges Produkt mit folgenden Kennzahlen:
Kennzahlen des Citronensäureester nach Beispiel 1
Verseifungszahl 222
Säurezahl 132
Freie Citronensäure 2,8 Gew.%
Gewichtsverhältnis Monoester : Diester 6 : 1
Die Verseifungszahl (VZ) wurde bestimmt gemäß DGF C-V 3 Die Säurezahl (SZ) wurde bestimmt gemäß DIN 53402
Bestimmung des Irritationspotentials nach dem RBC-Test
Der RBC-Test wurde durchgeführt nach der Methode von W. Pape, U. Hoppe in : Arzneim. ForschJDrug Res. 40(1), Nr. 4 (1990); S. 498ff. Tabelle 2: RBC-Test
Figure imgf000021_0001
Anwendungstest: Feuchtigkeit der Haut
Hintergrund: In der Epidermis menschlicher Haut findet sich die Homschicht (das Stratum corneum). Das Stratum corneum ist ein dielektrisches Medium von geringer elektrischer Leitung. Der Wassergehalt führt zur erhöhten dielektrischen Leitfähigkeit und die Bestimmung der di-elektrischen Leitfähigkeit des Stratum corneum kann somit als Maß für den Grad der Feuchtigkeit menschlicher Haut dienen. Die Erhöhung der dielektrischen Leitfähigkeit des Stratum corneum reflektiert einen erhöhten Feuchtigkeitsgrad der menschlichen Haut. Bestimmt wurde die dielektrische Leitfähigkeit des Stratum corneum mittels eines Hautoberflächenhygrometers (SKICON 200, IBS CO. Hamamatsu, Japan) bei 3,5 MHz.
Methode:
Proben von normaler Haut, erhalten aus der plastischen Chirurgie, wurden für diesen Test verwendet. Das Stratum corneum aus diesen Hautproben wurde in Kammern mit definierter relativer Feuchtigkeit (44 %, gesättigte Lösung von Kaliumcarbonat) gelagert und standardisiert. Jede Probe des Stratum corneums wurde unter fünf Bedingungen vergleichend getestet.
1) ohne Behandlung;
2) Behandlung mit Placebo;
3) Behandlung mit einer Zubereitung, die aus einem Hydrogel besteht (Hydrogel LS von der Firma Laboratoire Serobiologique LS), enthaltend 1% w/v des oben beschriebenen feuchtigkeitsspendenden Citronensäureesters;
4) Behandlung mit einer Zubereitung, die aus einem Hydrogel besteht (Hydrogel LS von der Firma Laboratoire Serobiologique LS), enthaltend 2% w/v des oben beschriebenen feuchtigkeitsspendenden Citronensäureesters;
5) Behandlung mit einer Zubereitung, die aus einem Hydrogel besteht (Hydrogel LS von der Firma Laboratoire Serobiologique LS), enthaltend 5% w/v des oben beschriebenen feuchtigkeitsspendenden Citronensäureesters. Als Placebo diente das Hydrogel (Hydrogel LS der Firma Laboratoire Serobiologique LS) ohne den oben beschriebenen feuchtigkeitsspendenden Citronensäureester.
Die Behandlung mit den Zubereitungen erfolgte im Abstand von 30 Minuten 3 Mal. Die Auftragsmenge betrug 1 mg/cm2. Die Leitfähigkeitsmessung erfolgte vor Behandlung und dann bis 24 Stunden nach der 3. Behandlung. In Tabelle 2 ist der feuchtigkeitsspendende Effekt, bestimmt durch die Messung der dielektrischen Leitfähigkeit des oben beschriebenen feuchtigkeitsspendenden Citronensäureesters (in μS); Mittelwert aus 10 Untersuchungen (in Klammern findet sich die Standardabweichung) wiedergegeben.
Aus den Ergebnissen lässt sich eine Dosis-abhängige feuchtigkeitsregulierende Aktivität erkennen.
Tabelle 2 Feuchtigkeitsspendender Effekt in μS
Figure imgf000022_0001
Tabelle 3: Prozentuale Steigerung der Feuchtigkeit im Vergleich zu Placebo (in %)
Figure imgf000023_0001
Die Messung der Feuchtigkeit ergibt, dass der getestete Citronensäureester eindeutig einen sehr guten und signifikanten Effekt aufweist.

Claims

Patentansprüche
1. Verwendung von α-Hydroxycarbonsäureester ethoxylierter Alkohole der Formel (I)
R1O(CH2CH2O)nH (I)
in der R1 für einen linearen oder verzweigten Alkyl- und/oder Alkenylrest mit 6 bis 22 Kohlenstoffatomen und n für Zahlen von 1 bis 50 steht, als Feuchtigkeitsspender für die Haut in kosmetischen Zubereitungen.
2. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass in Formel (I) n für Zahlen von 1 bis 10, vorzugsweise 3 bis 8 steht.
3. Verwendung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass in Formel (I) R1 für einen linearen Alkylrest steht.
4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, in Formel (I) R O sich ableitet von einer Fettalkoholmischung enthaltend 65 - 75 Gew.%) C12-, 20 bis 30 Gew.% C14-, 0 - 5 Gew.% C16- und 0 bis 5 Gew.% C18- Alkohol.
5. Verwendung nach Anspruch 4, dadurch gekennzeichnet, in Formel (I) n für die durchschnittliche Zahl 4 steht.
6. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, in Formel (I) R1O sich ableitet von einer Fettalkoholmischung enthaltend 45 -60 Gew.% C12-, 15 bis 30 Gew.% C14-, 5 - 15 Gew.% C16- und 8 bis 20 Gew.% C18- Alkohol.
7. Verwendung nach Anspruch 6, dadurch gekennzeichnet, in Formel (I) n für die durchschnittliche Zahl 7 steht.
8. Verwendung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die α- Hydroxycarbonsäureester in kosmetischen tensidhaltigen Zubereitungen verwendet werden.
9. Verwendung nach Anspruch 8, dadurch gekennzeichnet, dass die α- Hydroxycarbonsäureester in kosmetischen Aniontensid-haltigen Zubereitungen verwendet werden.
10. Verwendung nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass die α-Hydroxycarbonsäureester in kosmetischen Alkyl- und/oder Alkenylsulfate und/oder Alkyl-ethersulfate enthaltenden Zubereitungen verwendet werden. Verwendung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die α-Hydoxycarbonsäureester und die Tenside, insbesondere Alkyl- und/oder Alkenylsulfate und/oder Alkylethersulfate, in einem Gewichtsverhältnis von 1 : 20 bis 10 : 1 verwendet werden.
PCT/EP2004/004208 2003-04-30 2004-04-21 Verwendung von alpha-hydroxycarbonsäureestern ethoxylierter alkohole WO2004096166A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006505208A JP2006524652A (ja) 2003-04-30 2004-04-21 α−ヒドロキシカルボン酸エステルによってエトキシル化されたアルコールの使用
US10/554,969 US20070081966A1 (en) 2003-04-30 2004-04-21 Use of alcohols ethoxylated by alpha-hydroxycarboxylic acid esters
EP04728541A EP1620184A1 (de) 2003-04-30 2004-04-21 Verwendung von alpha-hydroxycarbons ureestern ethoxylierter alkohole

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10319400.2 2003-04-30
DE10319400A DE10319400A1 (de) 2003-04-30 2003-04-30 Verwendung von Hydroxycarbonsäureestern

Publications (1)

Publication Number Publication Date
WO2004096166A1 true WO2004096166A1 (de) 2004-11-11

Family

ID=33305039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/004208 WO2004096166A1 (de) 2003-04-30 2004-04-21 Verwendung von alpha-hydroxycarbonsäureestern ethoxylierter alkohole

Country Status (5)

Country Link
US (1) US20070081966A1 (de)
EP (1) EP1620184A1 (de)
JP (1) JP2006524652A (de)
DE (1) DE10319400A1 (de)
WO (1) WO2004096166A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8997048B1 (en) 2007-02-14 2015-03-31 Oracle America, Inc. Method and apparatus for profiling a virtual machine
WO2011036048A1 (en) 2009-09-24 2011-03-31 Unilever Nv Disinfecting agent comprising eugenol, terpineol and thymol
CN103354741B (zh) 2010-12-07 2016-01-13 荷兰联合利华有限公司 口腔护理组合物
IN2014MN00808A (de) 2011-11-03 2015-09-04 Unilever Plc

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146649A (en) * 1976-10-14 1979-03-27 Faberge, Incorporated Skin moisturizing composition containing a polyethoxy fatty alcohol and a polyethoxy glycoside
US5302377A (en) * 1992-04-02 1994-04-12 Croda, Inc. Fatty alkoxylate esters of aliphatic and aromatic dicarboxylic and tricarboxylic acids as emollients
EP0750904A1 (de) * 1995-06-08 1997-01-02 Wella Aktiengesellschaft Verwendung einer Betainester und alpha-Hydroxysäuren enthaltenden Zubereitung zur Pflege der Haut

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172887A (en) * 1973-11-30 1979-10-30 L'oreal Hair conditioning compositions containing crosslinked polyaminopolyamides
DE4413686C2 (de) * 1994-04-20 1996-10-24 Henkel Kgaa Kationische Zuckertenside, Verfahren zu ihrer Herstellung und deren Verwendung
US5961999A (en) * 1995-06-08 1999-10-05 Wella Aktiengesellschaft Method of skin care using a skin care preparation containing a betaine ester and an α-hydroxy acid
US6284230B1 (en) * 1996-12-30 2001-09-04 The Procter & Gamble Company Hair conditioning shampoo compositions comprising primary anionic surfactant
FR2758261A1 (fr) * 1997-01-10 1998-07-17 Oreal Compositions cosmetiques presentant une rincabilite amelioree
DE19856555A1 (de) * 1998-12-08 2000-06-15 Cognis Deutschland Gmbh Ölbäder
FR2788449B1 (fr) * 1999-01-14 2001-02-16 Oreal Nanoemulsion a base de citrates d'alkylether, et ses utilisations dans les domaines cosmetique, dermatologique, pharmaceutique et/ou ophtalmologique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4146649A (en) * 1976-10-14 1979-03-27 Faberge, Incorporated Skin moisturizing composition containing a polyethoxy fatty alcohol and a polyethoxy glycoside
US5302377A (en) * 1992-04-02 1994-04-12 Croda, Inc. Fatty alkoxylate esters of aliphatic and aromatic dicarboxylic and tricarboxylic acids as emollients
EP0750904A1 (de) * 1995-06-08 1997-01-02 Wella Aktiengesellschaft Verwendung einer Betainester und alpha-Hydroxysäuren enthaltenden Zubereitung zur Pflege der Haut

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R.DIEZ ET AL.: "Alkyl ether citrate surfactants", PROCEEDINGS OF THE 4TH WORLD SURFACTANT CONGRESS, vol. 2, June 1996 (1996-06-01), BARCELONA, pages 129 - 138, XP008032701 *

Also Published As

Publication number Publication date
US20070081966A1 (en) 2007-04-12
DE10319400A1 (de) 2004-11-18
JP2006524652A (ja) 2006-11-02
EP1620184A1 (de) 2006-02-01

Similar Documents

Publication Publication Date Title
DE10059239A1 (de) Kosmetische und/oder pharmazeutische Emulsionen
DE19929511C2 (de) Hochkonzentriert fließfähige Aniontensidmischungen
EP1286758A2 (de) Emulgatoren
WO2001072264A2 (de) Pro-liposomal verkapselte zubereitungen (iv)
WO2001074302A1 (de) Pro-liposomal verkapselte zubereitungen
EP1200043B1 (de) Sonnenschutzmittel enthaltend alkoxylierte carbonsäureester
WO2001074303A1 (de) Pro-liposomal verkapselte zubereitung
EP1283854B1 (de) Lösungsvermittler
EP1235546A1 (de) Verwendung von nanoskaligen wachsen
DE19928112A1 (de) Guerbetalkohole
DE10044662A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen mit Salicysäure
WO2001010391A2 (de) Verwendung von alkoxylierten carbonsäureestern als schaumbooster
DE19950497B4 (de) Kosmetische und/oder pharmazeutische Zubereitungen und deren Verwendung
WO2004096166A1 (de) Verwendung von alpha-hydroxycarbonsäureestern ethoxylierter alkohole
EP1235553B1 (de) Kosmetische und/oder pharmazeutische zubereitungen enthaltend dicarbonsäuremonoester
WO2004096963A1 (de) Kosmetische und/oder pharmazeutische zubereitungen
DE10004644B4 (de) Verwendung von Inulinderivaten als Verdickungsmittel
WO2001021140A2 (de) Kosmetische und/oder pharmazeutische zubereitungen
EP1309311A2 (de) Kosmetische zubereitungen, die dicarbonsäuren enthalten
EP1374845A1 (de) Kosmetische Zubereitungen
WO2001074304A1 (de) Pro-liposomal verkapselte zubereitungen
EP1237893A1 (de) Magnesium(ether)sulfat-pasten
DE10055518A1 (de) Verwendung von amphoteren Tensiden
DE19959917A1 (de) Hydroxyether
WO2001010396A1 (de) Kosmetische zubereitungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004728541

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006505208

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004728541

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007081966

Country of ref document: US

Ref document number: 10554969

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10554969

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2004728541

Country of ref document: EP