WO2004092578A1 - サボニウスタービン - Google Patents

サボニウスタービン

Info

Publication number
WO2004092578A1
WO2004092578A1 PCT/JP2004/005459 JP2004005459W WO2004092578A1 WO 2004092578 A1 WO2004092578 A1 WO 2004092578A1 JP 2004005459 W JP2004005459 W JP 2004005459W WO 2004092578 A1 WO2004092578 A1 WO 2004092578A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
rotating shaft
blade
slot
rotation axis
Prior art date
Application number
PCT/JP2004/005459
Other languages
English (en)
French (fr)
Inventor
Yoshio Shimizu
Original Assignee
Tokai University Educational System
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University Educational System filed Critical Tokai University Educational System
Publication of WO2004092578A1 publication Critical patent/WO2004092578A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/40Use of a multiplicity of similar components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the present invention relates to a Savonius turbine, and particularly to a device for converting fluid energy such as wind or water flow into mechanical energy (power), known as a Savonius type turbine or a water turbine.
  • the present invention relates to a Savonius turbine for a car. Background art
  • the Savonius turbine includes a rotating shaft 1 rotatably supported, and two blades 2 having a circular cross section arranged symmetrically with respect to the rotation axis.
  • the end 1 ⁇ of the wing 2 on the rotating shaft 1 side has a gap 3 with the rotating shaft 1 interposed therebetween, or as shown in FIG. It is known that three wings 2 are arranged like this.
  • the rotating shaft 1 is arranged in the vertical direction, it becomes omnidirectional, has a simple structure, is easy to manufacture, and has a large starting torque, but it is widely used, but its maximum efficiency (fluid passing through the wing 2
  • the disadvantage is that the ratio of the turbine output to the energy possessed by the fuel is as small as 10% or less.
  • a Sabous wind turbine having a blade 2 provided with a slit 2a as shown in FIG. 10 is described in Japanese Patent Application Laid-Open No. Hei 6-323237.
  • the slit 2a reduces the shape of the vortex that causes the lift of the wing 2 to decrease, such as the vortex street separating from the wing 2 and the vortex existing between the wings 2, thereby improving the efficiency.
  • the Savonius wind turbine described above has a rotating shaft side blade 2b arranged on the rotating shaft 1 side with the slit 2a interposed therebetween, and a rotating shaft side blade 2b on the opposite side of the rotating shaft 1.
  • the arranged opposite wing 2c is formed in the same arc shape, whereby the slit 2a is provided in the radial direction of the arc formed by the wing 2. Therefore, it passes through slit 2a The flow thus accelerated and flows outward in the radial direction of the arc as shown by the arrow Y1, so it cannot be said that the separation from the wing 2 is effectively prevented.
  • this effort focuses on the above problems, and aims to provide a Savonius turbine that improves the starting torque and the efficiency of converting mechanical energy from fluid energy.
  • the present invention relates to a Savonius turbine having a rotating shaft rotatably supported, and a plurality of blades arranged rotationally symmetrically about the rotating shaft and having an arc-shaped cross section perpendicular to the rotating shaft.
  • the wing has a slot provided on the side opposite to the rotation axis, and the slot is provided from the slot in a direction along a convex surface of the rotation axis wing constituting the rotation axis side.
  • the Savonius turbine is characterized in that: BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram # 4 illustrating the Savonius turbine of the present invention in the first embodiment.
  • FIG. 2 is a simplified sectional view taken along the line II-III of the Savonius turbine of FIG.
  • FIG. 3 is an enlarged view of the vicinity of the slot 20a shown in FIG.
  • FIG. 4 is a simplified cross-sectional view of a Savonius turbine in the second embodiment.
  • FIG. 5 is a simplified cross-sectional view of the Savonius turbine in the third embodiment.
  • FIG. 6 is a perspective view of the Savonius turbine in the fourth embodiment.
  • FIG. 7 is a simplified X-X line sectional view of the savonize turbine in the fourth embodiment.
  • FIGS. 8 (a) and (b) are simplified cross-sectional views of a Savonius turbine in another embodiment.
  • 9 (a) to 9 (c) are simplified cross-sectional views showing an example of a conventional Sabous turbine.
  • FIGS. 10 (a) and 10 (b) are views showing an example of a conventional Sabous turbine having a blade 2 provided with a slit 2a.
  • FIG. 1 is a perspective view of a Savonius turbine of the present invention in a first embodiment
  • FIG. The figure is a simplified X-x fountain cross section of the Savonius turbine of FIG.
  • the Savonius turbine is rotatably supported by a rotating shaft 10 and 180 degrees apart from each other about the rotating shaft 10.
  • two plate-like wings 20 As shown in FIG. 2, the blade 20 has an arc-shaped cross section perpendicular to the rotation axis 10. Also,. End T 2 of the rotary shaft 1 side 0 of the blade 2 0 are spaced each other across the rotary shaft 1 0.
  • each wing 20 is provided with a slot 20a on the side opposite to the rotation axis 10 indicated by the arrow ⁇ 2.
  • the first wing portion 2 Ob is disposed outside the convex surface of the second wing portion 20c, that is, on the arrow Y4 side.
  • the slot 20a faces in the direction along the convex surface of the second wing portion 20c (the upper surface of the second wing portion 20c on the upper side in FIG. 2). It will be provided.
  • the Savonius turbine with the configuration described above creates a high-lift by creating an accelerated airflow on the upper surface of the clearance wing (sut) 1 used in high-lift equipment of aircraft, and preventing airflow separation on the upper surface of the wing.
  • the starting torque is increased by the same principle as that realized.
  • the airflow in the direction of the arrow Y 7 generated in the slot 20a relieves the positive pressure of the convex surface of the wing 20 and reduces the negative torque of the right wing 20. Reduce. In this way, the slot 20a causes an increase in the starting torque in the left and right wings 20.
  • the first blade portion 2 0 b ends T 4 of the rotary shaft 1 side 0 of the above, the second wing portion 2 0c Rotation axis 10 End opposite to 0 Arranged from T 3 to the rotary shaft 1 0 side shown by an arrow Y 3, it is also conceivable to further accelerate the flow of air flow through the slot 2 0 a.
  • the end T 2 of the blade 20 on the rotation axis 10 side is provided with the slot 20 a in the blade 20 of the Savonius turbine which is separated with the rotation axis 10 interposed therebetween.
  • One wing 20 was provided with one slot 20a.
  • a slot may be provided in the blade 20 of the Savonius turbine in which the end T 2 of the blade 20 on the rotation axis 10 side is coupled to the rotation axis 10. Conceivable. It is also conceivable to provide two slots 20 a 1 and 20 a 2 in one wing 20.
  • the wing 20 is, as shown in the figure, a first wing portion 20 b constituting the opposite side to the rotation axis 10 indicated by an arrow Y 2 from the slot 20 a 1, and a slot 20 0 a 1 to the rotating shaft 10 side indicated by an arrow Y3, and a second wing portion 20c from the power, slot 20a2 to the opposite side to the rotating shaft 10 from the slot 20a;
  • a third wing portion 20 d constituting the rotation axis 10 side from the slot 20 a 2.
  • the first wing portion 20b corresponds to the opposite wing in the claims
  • the second wing portion 20c corresponds to the rotating shaft side wing.
  • the second wing portion 20c corresponds to the opposite wing
  • the third wing portion 20d corresponds to the rotating shaft.
  • first wing portion 2 Ob is disposed outside the convex surface of the second wing portion 20c
  • second wing portion 20c is disposed outside the convex surface of the third wing portion 20d.
  • the slot 20a1 is provided in the direction along the convex surface of the second wing portion 20c
  • the slot 20a2 is provided along the convex surface of the third wing portion 20c. It is provided facing the direction.
  • the airflow in the directions of arrows Y10 and ⁇ 11 generated in the slots 20a1 and 20a2 relaxes the positive pressure of the convex surface of the wing 20. Reduce the negative torque of right wing 20. In this way, the slots 20a1 and 20a2 increase the starting torque in the left and right wings 20.
  • the slots are provided in the Savonius turbine having two blades.
  • a Saboewster having three blades 20 is provided. It is also conceivable to provide slots in the bins.
  • the fluctuation of the wind turbine torque with respect to the wind direction is 180 degrees.
  • a Savonius bin with three wings 20 can reduce the fluctuation of the starting torque with respect to the wind direction to 120 degrees, and can start smoothly. it can.
  • the plate-like blade 20 having a substantially uniform thickness has been described.
  • the first wing portion 20 b has one end T 5 on the convex surface side opposite to the rotation axis 10 and the other end T on the rotation axis 10 side.
  • 5 2 or distance in L n is also conceivable to provide a streamlined shape thickness distribution Una O is longer than the distance 2 from the one end T 5 i to the other 5 2 in the concave side.
  • the second blade section 2 0 c, the distance L 2 i from one end T 6 1 of the rotary shaft 1 0 opposite the convex surface side to the other T 6 2 of the rotary shaft 1 0 side, concave side it is conceivable to provide a streamlined type like thickness distribution such that greater than the distance L 2 2 from one end T s i to the other s 2 in.
  • the first wing part 20b and the second wing part 20c a streamlined thickness distribution
  • the first wing part 2b and the second wing part 20c Smooth airflow along the surface of the
  • the separation of the fluid on the convex surfaces of the first wing portion 2b and the second wing portion 2c can be more effectively prevented. For this reason, it is possible to further improve the starting torque and improve the conversion efficiency of mechanical energy from fluid energy.
  • the thickness of the first wing portion 20b and the second wing portion 20c is smaller than in the case of not forming the streamlined shape as shown in the first to third embodiments.
  • the bending rigidity of the first wing portion 20b and the second wing portion 20b can be increased.
  • the distance L is longer than the distance 2 on the concave side, and the distance L 2 i on the convex side in the second wing part 20 c is are formed in the distance L 2 2 becomes longer as streamlined shape.
  • the distance increases the flow velocity Yan ivy fluid on the convex side becomes longer, the pressure becomes lower than the convex side on the concave side, which As a result, a force from the concave surface to the convex surface is generated in the first wing portion 20b and the second wing portion 20c. It is possible to improve the starting torque and the conversion efficiency of mechanical energy 1 "from fluid energy.
  • this flow-foil-shaped wing can be applied to a case where a plurality of slots are provided or a case where three or more wings are provided.
  • the blade is provided with the slot near the side opposite to the rotation axis. Further, the slot is provided from the slot in a direction along the convex surface of the rotary shaft-side blade constituting the rotary shaft side.
  • the slot creates a flow accelerated in the direction along the convex surface of the rotating shaft-side wing, and can efficiently prevent fluid separation on the convex surface of the rotating shaft-side wing, thereby improving the starting torque and improving the starting torque.
  • the efficiency of converting mechanical energy from fluid energy can be improved.
  • the rotating shaft-side wing is formed in a streamlined shape, the flow of airflow along the rotating shaft-side wing surface can be smoothed, and the separation of fluid on the convex surface of the rotating shaft-side wing can be more effectively prevented. It is possible to further improve the starting torque and the efficiency of converting mechanical energy from fluid energy. Moreover, by forming a streamlined shape, the thickness is increased as compared with a case where the streamlined shape is not formed, and the bending rigidity of the rotary shaft side blade can be increased.
  • the opposite wing is formed in a streamlined shape, the flow of airflow on the surface of the other wing can be smoothed, and the separation of the fluid on the concave surface of the other wing can be more effectively prevented. It is possible to improve the torque and increase the efficiency of converting mechanical energy from fluid energy. Moreover, by forming a streamlined shape, the thickness is increased as compared with a case where the streamlined shape is not formed, and the bending rigidity of the opposite wing can be increased.
  • the wing has a distance force from one end on the convex side opposite to the rotation axis to the other end on the rotation axis side, and is longer than a distance from one end opposite to the rotation axis on the concave side to the other end on the rotation axis side. It is formed in a streamlined shape. Therefore, the force generated from the concave side to the convex side by the air flow can be increased, so that the starting torque can be further improved and the conversion efficiency of the mechanical energy from the fluid energy can be improved.
  • the slot is formed by arranging the opposite wing opposite to the rotation axis from the slot outside the convex surface of the rotation wing. Therefore, a slot oriented in the direction along the convex surface of the rotary shaft side wing can be provided with a simple configuration.
  • the end on the rotation axis side of the opposite wing is disposed closer to the rotation axis than the end on the opposite side to the rotation axis of the rotation axis wing.
  • the slot creates an accelerated flow in the direction along the convex surface of the rotating shaft side blade, and the convex surface of the rotating shaft side blade.
  • multiple slots are provided on one wing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

翼20には、回転軸10とは反対側寄りにスロット20aが設けられている。また、翼20において、スロット20aから回転軸10の反対側を構成する反対側翼20bが、スロット20aから回転軸側を構成する回転軸側翼20cの凸面外側(矢印Y4)に配置されている。以上のような配置により、スロット20aは、回転軸側翼20cの凸面に沿った方向に向いて設けられる。

Description

明 細 書 サボ二ウスタービン
技術分野
この発明は、 サボ二ウスタービンに係わり、 特に、 風或いは水流などの流体エネルギ 一を機械的エネルギー (動力) に変換する装置の中で、 サボ二ウス型として知られてい る風車或 ヽは水車用のサボ二ウスタービンに関する。 背景技術
上述した従来のサボ二ウスタービンとして、 第 9図 (a ) ~ ( c ) に示すものが知ら れている。 同図 (a ) に示すように、 サボ二ウスタービンは、 回転可能に支持された回 転軸 1と、 回転軸対称に配置された断面円弧状の 2枚の翼 2とを備えている。 また、 同 図 (b ) に示すように、 翼 2の回転軸 1側の端部 1\に、 回転軸 1を挟んで互いにギヤ ップ 3を持たせるものや、 同図 (c ) に示すように 3枚の翼 2が配置されているものが 知られている。
何れも回転軸 1を鉛直方向に配置すれば無指向性となり、 構造が単純で製作し易くし かも大きな起動トルクを持つことから広く使用されているが、 最大効率 (翼 2を通過す る流体の持つエネルギーに対するタービン出力の比) は最大 1 0 %強と小さいのが欠点 とされている。
そこで、 効率向上を図るために、 第 1 0図に示すように、 翼 2にスリット 2 aを設け たサボ-ウス風車が特開平 6 _ 3 2 3 2 3 7号公報に記載されている。 このサボ二ウス 風車によれば、 スリット 2 aにより、 翼 2から剥離する渦列や翼 2間に存在する渦等、 翼 2の揚力を低下させる要因となる渦の形状を小さくして、 効率向上を図っている。 しかしながら、 上述したサボ二ウス風車は、 第 1 0図 (b ) に示すように、 スリット 2 aを挟んで回転軸 1側に配置された回転軸側翼 2 bと、 回転軸 1の反対側に配置され た反対側翼 2 cとが同一の円弧状に形成され、 これにより、 スリット 2 aは、 翼 2が形 成する円弧の半径方向に向いて設けられることになる。 このため、 スリット 2 aを通過 した流れは、 矢印 Y 1に示すように、 円弧の半径方向の外側に向かって加速して流れて しまうため、 翼 2からの剥離を効率良く防止しているとは言い難い。
そこで、. 本努明は、 上記のような問題点に着目し、 起動トルクの向上及び流体エネル ギ一から機械エネルギーの変換効率向上を図つたサボニゥスタービンを提供することを 課題とする。
発明の開示
本発明は、 回転可能に支持された回転軸と、 前記回転軸を中心として回転対称に配置 され、 前記回転軸と垂直方向の断面弧状の複数の翼とを備えたサボ二ウスタービンであ つて、 前記翼は、 前記回転軸とは反対側寄りに設けられたスロットを有し、 該スロット は、 当該スロットから前記回転軸側を構成する回転軸側翼の凸面に沿った方向に向いて 設けられていることを特徴とするサボ二ウスタービンに存する。 図面の簡単な説明
第 1図は、 第 1実施形態における本発明のサボ二ウスタービンの杀4示図である。 第 2 図は、 第 1図のサボ二ウスタービンの簡略 Χ— Χ線断面図である。 第 3図は、 第 1図に 示すスロット 2 0 a付近の拡大図である。 第 4図は、 第 2実施形態におけるサボ二ウス タービンの簡略断面図である。 第 5図は、 第 3実施形態におけるサボ二ウスタービンの 簡略断面図である。 第 6図は、 第 4実施形態におけるサボ二ウスタービンの斜示図であ る。 第 7図は、 第 4実施形態におけるサボニゥズタービンの簡略 X— X線断面図である。 第 8図 (a ) 及び (b ) は、 他の実施形態におけるサボ二ウスタービンの簡略断面図で ある。 第 9図 (a ) 〜 (c ) は、 従来のサボ-ウスタービンの一例を示す簡略断面図で ある。 第 1 0図 (a ) 及ぴ (b ) は、 従来のスリット 2 aが設けられた翼 2を有するサ ボ-ウスタービンの一例を示す図である。 発明を実施するための最良の形態
第 1実施形態
以下、 この発明の一実施の形態を、 図面を参照して説明する。
第 1図は、 第 1実施形態における本発明のサボ二ウスタービンの斜示図であり、 第 2 図は第 1図のサボ二ウスタービンの簡略 X— x泉断面図である。 これらの図に示すよう に、 サボ二ウスタービンは、 回転可能に支持された回転軸 1 0と、 回転軸 1 0を中心と して、 互いに 1 8 0度.離れて、 回転対称に配置された 2枚の板状の翼 2 0.とを備える。 この翼 2 0は、 第 2図に示すように、 回転軸 1 0と垂直方向の断面が円弧状に形成さ れている。 また、.翼 2 0の回転軸 1 0側の端部 T 2は、 回転軸 1 0を挟んで互いに離間 して配置されている。
さらに、 各翼 2 0には、 矢印 Υ 2で示す回転軸 1 0とは反対側寄りにスロット 2 0 a が設けられている。 今、 翼 2 0において、 スロッ ト 2 0 aから、 矢印 Y 2で示す回転軸 1 0とは反対側を構成する部分を第 1の翼部 2 0 b (=請求項中の反対側翼に相当す る) とし、 スロット 2 0 aから、 矢印 Y 3で示す回転軸 1 0側を構成する部分を第 2の 翼部 2 0 c (=請求項中の回転軸側翼に相当する) とする。 上記第 1の翼部 2 O bは、 第 2図に示すように、 第 2の翼部 2 0 cの凸面より外側、 つまり、 矢印 Y 4側に配置さ れている。 これにより、 スロット 2 0 aは、 第 2の翼部 2 0 cの凸面 (第 2図中の上側 にある第 2の翼部 2 0 cについては上側にある面) に沿った方向に向いて設けられるこ とになる。
上述した構成のサボ二ウスタービンは、 航空機の高揚力装置に用いられている隙間翼 (ス ット) 1 翼上面に加速した気流を作り、 翼上面における気流剥離を防ぐことに より高い揚力を実現するものと同様の原理で、 起動トルクを大きくしている。
ここで起動時風向きが矢印 Y 6 (第 2図参照) にあるとすれば、 第 2図中左側の翼 2 0のスロッ ト 2 0 aでは、 矢印 Y 5に示すように、 負圧状態にある第 2の翼部 2 0 cの 凸面に沿った方向に加速した流れが発生する。 この流れにより、 第 2の翼部 2 0 cの凸 面における気流の剥離を防止あるいは遅らせることができ、 大きな起動トルクが発生す る。
一方、 第 2図中右側の翼 2 0においてはスロット 2 0 aに生じる矢印 Y 7方向の気流 はその翼 2 0の凸面の正圧を緩和して右側の翼 2 0の持つ負のトルクを低減する。 この 様にしてスロット 2 0 aは左右両翼 2 0において起動トルクの増大をもたらす。
なお、 スロッ ト 2 0 aとしては、 第 3図の拡大図に示すように、 上述した第 1の翼部 2 0 bの回転軸 1 0側の端部 T 4を、 第 2の翼部 2 0 cの回転軸 1 0とは反対側の端部 T 3より矢印 Y 3で示す回転軸 1 0側に配置して、 スロッ ト 2 0 aを通過する気流の流 れをより一層加速することも考えられる。
第 2実施形態
また、 上述した第 1実施形態では、 翼 2 0の回転軸 1 0側の端部 T 2が、 回転軸 1 0 を挟んで離間しているサボ二ウスタービンの翼 2 0にスロット 2 0 aを設けていた。 ま た、 一つの翼 2 0に、 一つのスロット 2 0 aを設けていた。 しかしながら、 例えば、 第 4図に示すように、 翼 2 0の回転軸 1 0側の端部 T 2が回転軸 1 0に結合されているサ ボニウスタービンの翼 2 0にスロットを設けることも考えられる。 また、 一つの翼 2 0 に、 2つのスロット 2 0 a 1、 2 0 a 2を設けることも考えられる。
この場合、 翼 2 0は、 同図に示すように、 スロット 2 0 a 1から矢印 Y 2で示す回転 軸 1 0とは反対側を構成する第 1の翼部 2 0 bと、 スロット 2 0 a 1から矢印 Y 3で示 す回転軸 1 0側を構成し、 力つ、 スロッ ト 2 0 a 2から回転軸 1 0とは反対側を構成す る第 2の翼部 2 0 cと、 スロット 2 0 a 2から回転軸 1 0側を構成する第 3の翼部 2 0 dとから成る。 このことから明らかなように、 スロット 2 0 a 1に対しては、 第 1の翼 部 2 0 bが請求項中の反対側翼に相当して、 第 2の翼部 2 0 cが回転軸側翼に相当する。 一方、 スロット 2 0 a 2に対しては、 第 2の翼部 2 0 cが反対側翼に相当し、 第 3の翼 部 2 0 dが回転軸.側翼に相当する。
また、 第 1の翼部 2 O bは、 第 2の翼部 2 0 cの凸面より外側に配置され、 第 2の翼 部 2 0 cは、 第 3の翼部 2 0 dの凸面より外側に配置されている。 これにより、 スロッ ト 2 0 a 1は、 第 2の翼部 2 0 cの凸面に沿った方向に向いて設けられ、 スロット 2 0 a 2は、 第 3の翼部 2 0 cの凸面に沿った方向に向いて設けられる。
今、 ここで起動時風向きが矢印 Y 6にあるとすれば、 第 4図中左側の翼 2 0のスロッ ト 2 0 a 1では、 矢印 Y 8に示すように、 負圧状態にある第 2及び第 3の翼部 2 0 c、 2 0 dの凸面に沿った方向に加速した流れが発生する。 さらに、 スロッ ト 2 0 a 2では、 矢印 Y 9に示すように、 負圧状態にある第 3の翼部 2 0 dの凸面に沿った方向に加速し た流れが発生する。 これらの流れにより、 第 2及び第 3の翼部 2 0 c、 2 0 dの凸面に おける気流の剥離を防止あるいは遅らせることができ、 大きな起動トルクが発生する。 また、 この様に、 スロットを 2つ又は 2つ以上の複数設けることにより広い範囲で剥離 を防ぐことができる。
一方、 第 4図中右側の翼 2 0においてはスロット 2 0 a 1、 2 0 a 2に生じる矢印 Y 1 0、 Υ 1 1方向の気流はその翼 2 0の凸面の正圧を緩和して右側の翼 2 0の持つ負の トルクを低減する。 この様にしてスロット 2 0 a 1、 2 0 a 2は左右両翼 2 0において 起動トルクの増大をもたらす。
第 3実施形態
上述した第 1及び第 2実施形態においては、 2枚の翼を持つサボ二ウスタービンにス ロットを設けていたが、 例えば、 第 5図に示すように 3枚の翼 2 0を持つサボェウスタ ―ビンにスロットを設けることも考えられる。 上記第 1及び第 2実施形態で示した 2枚 の翼を持つサボユウスタービンにおいては風向き対する風車トルクの変動は 1 8 0度周 期である。 これに対して、 第 5図に示すような、 3枚の翼 2 0を持つサボ二ウスタービ ンは、 風向きに対する起動トルクの変動を 1 2 0度とすることができ起動を円滑に行う ことができる。
なお、 上述した第 1〜第 3実施形態においてはサボ二ウスタービンを風車に適用した 場合について説明したが、 これを水車に適用することも可能である。 この場合水あるい は海水の粘性係数は空気に比べて数百強であるので、 スロットの位置及び幅については 適切に設定する。 . . 第 4実施形態
上述した第 1〜第 3実施形態においては、 厚さがほぼ均一の板状の翼 2 0について説 明していた。 しかしながら、 例えば、 第 6図及び第 7図に示すように、 第 1の翼部 2 0 bに、 凸面側における回転軸 1 0と反対側の一端 T 5 から回転軸 1 0側の他端 T 5 2ま での距離 L nが、 凹面側における一端 T 5 iから他端 5 2までの距離 2より長くなるよ うな流線型状の厚み分布を与えることも考えられる。 さらに、 第 2の翼部 2 0 cに、 凸 面側における回転軸 1 0と反対側の一端 T 6 1から回転軸 1 0側の他端 Τ 6 2までの距離 L 2 iが、 凹面側における一端 T s iから他端 s 2までの距離 L 2 2より長くなるような流線 型状の厚み分布を与えることも考えられる。
以上のように、 第 1の翼部 2 0 b及び第 2の翼部 2 0 cに流線型状の厚み分布を与え ることにより、 第 1の翼部 2 b、 第 2の翼部 2 0 cの表面に沿つた気流の流れを円滑に し、 第 1の翼部 2 b、 第 2の翼部 2 cの凸面での流体の剥離をより効果的に防ぐことが できる。 このため、 より一層の起動トルクの向上及び流体エネルギーから機械工ネルギ 一の変換効率向上を図ることができる。
しかも、 流線型状に形成することにより、 第 1〜第 3実施形態に示すように流線型状 に形成しない場合に比べて第 1の翼部 2 0 b、 第 2の翼部 2 0 cの厚みが増し、 第 1の 翼部 2 0 b、 第 2の翼部 2 0 bの曲げ剛性を高めることもできる。
さらに、 第 1の翼部 2 0 bにおいて凸面側の距離 L„が凹面側の距離 2より長く なるように、 また、 第 2の翼部 2 0 cにおいて凸面側の距離 L 2 iが凹面側の距離 L 2 2 より長くなるように流線型状に形成している。 これにより、 距離が長くなる凸面側に沿 つた流体の流速が増加し、 凸面側が凹面側に比べて気圧が低くなり、 これに伴って第 1 の翼部 2 0 b、 第 2の翼部 2 0 cには、 凹面から凸面に向かう力が発生する。 従って、 この力がサボ二ウスタービンの回転トルクとなるため、 一層起動トルクの向上及び流体 エネルギーから機械工ネルギ1 "の変換効率向上を図ることができる。
この流 f泉型状の翼は、 第 8図 (a ) 及び (b ) に示すように、 スロットを複数設けた 場合や、 翼を 3つ以上設けた場合にも適用することができる。 産業上の利用可能性
以上のように、 本発明に係るサボ二ウスタービンによれば、 翼には、 回転軸とは反対 側寄りにスロットが設けられている。 また、 スロットは、 このスロットから回転軸側を 構成する回転軸側翼の凸面に沿った方向に向いて設けられている。 以上の構成により、 スロットによって、 回転軸側翼の凸面に沿った方向に加速した流れを作り、 回転軸側翼 の凸面での流体の剥離を効率的に防ぐことができるので、 起動トルクの向上及ぴ流体ェ ネルギーから機械エネルギーの変換効率向上を図ることができる。
また、 回転軸側翼が流線型状に形成されているので、 回転軸側翼表面に沿った気流の 流れを円滑にして、 回転軸側翼の凸面での流体の剥離をより効果的に防ぐことができ、 より一層の起動トルクの向上及び流体エネルギーから機械エネルギーの変換効率向上を 図ることができる。 しかも、 流線型状に形成することにより、 流線型状に形成しない場 合に比べて厚みが増し、 回転軸側翼の曲げ剛性を高めることができる。 また、 反対側翼が流線型状に形成されているので、 反対側翼表面の気流の流れを円滑 にして、 反対側翼の凹面での流体の剥離をより効果的に防ぐことができ、 より一層の起 動トルクの向上及び流体エネルギーから機械エネルギーの変換効率を図ることができる。 しかも、 流線型状に形成することにより、 流線型状に形成しない場合に比べて厚みが増 し、 反対側翼の曲げ剛性を高めることができる。
また、 翼は、 凸面側における回転軸と反対側の一端から回転軸側の他端までの距離力 凹面側における回転軸と反対側の一端から回転軸側の他端までの距離より長くなるよう な流線型状に形成されている。 従って、 気流により、 凹面側から凸面側に発生する力を 増すことができるので、 より一層の起動トルクの向上及び流体エネルギーから機械エネ ルギ一の変換効率を図ることができる。
また、 スロットから回転軸とは反対側の反対側翼を、 回転側翼の凸面より外側に配置 することにより、 スロットが形成されている。 従って、 簡単な構成で回転軸側翼の凸面 に沿った方向に向いたスロットを設けることができる。
また、 反対側翼の回転軸側の端部が、 回転軸側翼の回転軸と反対側の端部より回転軸 側に配置されている。 以上の構成により、 スロットによって、 回転軸側翼の凸面に沿つ た方向に、 より一層、 加速した流れを作ることができるので、 より一層、 起動トルクの 肉上及び変換効率の向上を図ることができる。 ·
また、 翼の回転軸側の端部が回転軸を挟んで互いに離間しているサボ二ウスタービン においても、 スロットによって、 回転軸側翼の凸面に沿った方向に加速した流れを作り、 回転軸側翼の凸面での流体の剥離を効率的に防ぐことができ
また、 翼の回転軸側の端部が回転軸に結合されているサボ二ウスタービンにおいても、 スロットによって、 回転軸側翼の凸面に沿った方向に加速した流れを作り、 回転軸側翼 の凸面での流体の剥離を効率的に防ぐことができ、 起動ト クの向上及び変換効率の向 上を図ることができる。
また、 スロットが、 一つの翼に複数設けられている。 以上の構成により、 広い範囲で 流体の剥離を防ぐことができるので、 より一層、 起動ト^/レクの向上及び変換効率の向上 を図ることができる。

Claims

請 求 の 範 囲
1 . 回転可能に支持された回転軸と、 前記回転軸を中心として回転対称に配置され、 前 記回転軸と垂直方向の断面弧状の複数の翼とを備えたサボ二ウスタービンであつて、 前記翼は、 前記回転軸とは反対側寄りに設けられたスロットを有し、
該スロットは、 当該スロットから前記回転軸側を構成する回転軸側翼の凸面に沿った 方向に向いて設けられていることを特徴とするサボニウスタービン。
2. 請求の範囲第 1項記載のサポニウスタービンであって、
前記回転軸側翼は、 流線型状に形成することを特徴とするサボ二ウスタービン。
3 . 請求の範囲第 1又は第 2項記載のサボ二ウスタービンであって、
前記スロットから前記回転軸とは反対側の反対側翼を、 流線型状に形成することを特 徴とするサボ二ウスタービン。
4. 請求の範囲第 2項又は第 3項記載のサボ二ウスタービンであって、
前記翼は、 前記凸面側における前記回転軸と反対側の一端から前記回転軸側の他端ま での距離が、 前記凹面側における前記回転軸と反対側の一端から前記回転軸側の他端ま での距離より長くなるような流線型状に形成することを特徴とするサボ二ウスタービン。
5 . 請求の範囲第 1〜第 4何れか 1項記載のサボ二ウスタービンであって、
前記スロットは、 当該スロットから前記回転軸とは反対側の反対側翼を、 前記回転側 翼の凸面より外側に配置することにより形成されていることを特徴とするサボ二ウスタ 一ビン。
6 . 請求の範囲第 5項記載のサボ二ウスタービンであつて、
前記反対側翼の前記回転軸側の端部は、 前記回転軸側翼の前記回転軸と反対側の端部 より回転軸側に配置されていることを特徴とするサボ二ウスタービン。
7 . 請求の範囲第 1項〜第 6項何れか 1項記載のサボ二ウスタービンであつて、
前記翼の回転軸側の端部は、 前記回転軸を挟んで互いに離間していることを特徴とす るサボ二ウスタービン。
8 - 請求の範囲第 1項〜第 6項何れか 1項記載のサボ二ウスタービンであって、
前記翼の回転軸側の端部は、 前記回転軸に結合されていることを特徴とするサボユウ スタービン。
9 . 請求の範囲第 1〜第 8何れか 1項記載のサボ二ウスタービンであつて、 前記スロットは、 一つの翼に複数設けられていることを特徴とするサボ二ウスタービ ン。
PCT/JP2004/005459 2003-04-18 2004-04-16 サボニウスタービン WO2004092578A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-113756 2003-04-18
JP2003113756 2003-04-18
JP2003376644A JP4482649B2 (ja) 2003-04-18 2003-11-06 サボニウスタービン
JP2003-376644 2003-11-06

Publications (1)

Publication Number Publication Date
WO2004092578A1 true WO2004092578A1 (ja) 2004-10-28

Family

ID=33302237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005459 WO2004092578A1 (ja) 2003-04-18 2004-04-16 サボニウスタービン

Country Status (2)

Country Link
JP (1) JP4482649B2 (ja)
WO (1) WO2004092578A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006063380A1 (en) * 2004-10-20 2006-06-22 Vortech Energy & Power Pty Limited Vertical axis wind turbine with twisted blade or auxiliary blade
WO2007115353A1 (en) * 2006-04-07 2007-10-18 Vortech Energy & Power Pty Ltd A vertical axis wind turbine
WO2008092191A1 (en) * 2007-02-01 2008-08-07 Water Un Limited A wind turbine
WO2009021485A2 (de) 2007-08-10 2009-02-19 Gunter Krauss Strömungsenergieanlage
WO2011045820A1 (en) * 2009-10-13 2011-04-21 Roberto Bolelli Energy conversion assembly
ITGE20100015A1 (it) * 2010-02-09 2011-08-10 Alberto Ticconi Aerogeneratore verticale con deflettori statici e dinamici
DE102012014627A1 (de) 2012-07-17 2014-02-06 Christiane Bareiß Segovia Konischer Rotor zur Aufladung von Akkumulatoren bei Verkehrsmitteln mit Elektro- und Hybridantrieb
DE102012017863B4 (de) 2012-09-06 2018-05-24 Franz Popp Rotor zur Umwandlung von Strömungsenergie eines strömenden gasförmigen Fluids in Rotationsenergie und Anlage zur Erzeugung von elektrischer Energie damit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5251458B2 (ja) * 2008-11-27 2013-07-31 国立大学法人 琉球大学 屈曲羽根のサボニウス風車
JP5858376B2 (ja) * 2011-06-20 2016-02-10 公立大学法人大阪市立大学 波力発電システム
JP5240883B1 (ja) * 2012-10-11 2013-07-17 かしま野管理サービス株式会社 風洞回転羽根

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493740A (en) * 1978-01-04 1979-07-25 Hiroki Baba Method of increasing turning force of rotary disc wheel
JPH06323237A (ja) * 1993-05-12 1994-11-22 Oval Corp サボニウス風車
JPH1162813A (ja) * 1997-08-22 1999-03-05 Zefuaa Kk サボニウス型風車及びサボニウス型風車を利用した風力発電装置
JP2001065446A (ja) * 1999-08-24 2001-03-16 Hitoshi Iijima 垂直軸型風車用翼列構造および垂直軸型風車

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5493740A (en) * 1978-01-04 1979-07-25 Hiroki Baba Method of increasing turning force of rotary disc wheel
JPH06323237A (ja) * 1993-05-12 1994-11-22 Oval Corp サボニウス風車
JPH1162813A (ja) * 1997-08-22 1999-03-05 Zefuaa Kk サボニウス型風車及びサボニウス型風車を利用した風力発電装置
JP2001065446A (ja) * 1999-08-24 2001-03-16 Hitoshi Iijima 垂直軸型風車用翼列構造および垂直軸型風車

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006063380A1 (en) * 2004-10-20 2006-06-22 Vortech Energy & Power Pty Limited Vertical axis wind turbine with twisted blade or auxiliary blade
US8469665B2 (en) 2004-10-20 2013-06-25 Windworks Engineering Limited Vertical axis wind turbine with twisted blade or auxiliary blade
WO2007115353A1 (en) * 2006-04-07 2007-10-18 Vortech Energy & Power Pty Ltd A vertical axis wind turbine
US8297930B2 (en) 2006-04-07 2012-10-30 Windworks Engineering Limited Vertical axis wind turbine
US20090317255A1 (en) * 2006-04-07 2009-12-24 Windworks Engineering Limited Vertical axis wind turbine
WO2008092191A1 (en) * 2007-02-01 2008-08-07 Water Un Limited A wind turbine
US8154145B2 (en) 2007-08-10 2012-04-10 Gunter Krauss Flow energy installation
WO2009021485A3 (de) * 2007-08-10 2009-04-09 Gunter Krauss Strömungsenergieanlage
WO2009021485A2 (de) 2007-08-10 2009-02-19 Gunter Krauss Strömungsenergieanlage
WO2011045820A1 (en) * 2009-10-13 2011-04-21 Roberto Bolelli Energy conversion assembly
CN102630275A (zh) * 2009-10-13 2012-08-08 罗伯托·博莱利 能量转换组件
ITGE20100015A1 (it) * 2010-02-09 2011-08-10 Alberto Ticconi Aerogeneratore verticale con deflettori statici e dinamici
WO2011098957A1 (en) * 2010-02-09 2011-08-18 Naturamica Societa Cooperativa Vertical axis wind generator
DE102012014627A1 (de) 2012-07-17 2014-02-06 Christiane Bareiß Segovia Konischer Rotor zur Aufladung von Akkumulatoren bei Verkehrsmitteln mit Elektro- und Hybridantrieb
DE102012017863B4 (de) 2012-09-06 2018-05-24 Franz Popp Rotor zur Umwandlung von Strömungsenergie eines strömenden gasförmigen Fluids in Rotationsenergie und Anlage zur Erzeugung von elektrischer Energie damit

Also Published As

Publication number Publication date
JP4482649B2 (ja) 2010-06-16
JP2004332716A (ja) 2004-11-25

Similar Documents

Publication Publication Date Title
KR100933790B1 (ko) 수직축형 다리우스 풍차
EP2510228B1 (en) Vertical axis wind turbine with self-starting capabilities
TWI280323B (en) Thin fan motor
WO2005116446A1 (ja) 垂直軸風車用ブレードおよび垂直軸風車
WO2004092578A1 (ja) サボニウスタービン
WO2004027259A1 (ja) 風力発電用の風車
MXPA06010807A (es) Montaje de rotor de turbina de viento y paleta con una aleta acustica.
JP2011521169A (ja) 風力タービンまたは水力タービンのロータ用の羽根
WO2009151736A1 (en) Wind / fluid turbine
JP2009074447A (ja) 垂直軸型風車
WO2018168689A1 (ja) 回転装置、推進装置及び発電装置
WO2018194105A1 (ja) 垂直軸型タービン
CN109424584A (zh) 叶片导流装置
US10167845B2 (en) Blade flow deflector
JPWO2010087178A1 (ja) 風力発電装置
JP4184847B2 (ja) 風車装置及びそれを用いた風力発電装置
JP2004084522A (ja) 翼及びこれを備える風力発電装置
JP2009191744A (ja) 垂直軸型風車
KR101073096B1 (ko) 수직축형 다리우스 풍차
JPH06323237A (ja) サボニウス風車
JP2010133416A (ja) ロータ−ステータ配列の発電タービン
JP6063445B2 (ja) 垂直軸風車
JP7469126B2 (ja) 風車翼アセンブリ及び風車
WO2018168744A1 (ja) 垂直軸風車、その翼、および風力発電装置
CN213574810U (zh) 离心叶轮

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application