WO2004092087A1 - 光弾性定数が小さいガラス - Google Patents

光弾性定数が小さいガラス Download PDF

Info

Publication number
WO2004092087A1
WO2004092087A1 PCT/JP2004/005120 JP2004005120W WO2004092087A1 WO 2004092087 A1 WO2004092087 A1 WO 2004092087A1 JP 2004005120 W JP2004005120 W JP 2004005120W WO 2004092087 A1 WO2004092087 A1 WO 2004092087A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
photoelastic constant
small
wavelength
Prior art date
Application number
PCT/JP2004/005120
Other languages
English (en)
French (fr)
Inventor
Junko Ishioka
Masahiro Onozawa
Original Assignee
Kabushiki Kaisha Ohara
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Ohara filed Critical Kabushiki Kaisha Ohara
Priority to JP2005505378A priority Critical patent/JPWO2004092087A1/ja
Publication of WO2004092087A1 publication Critical patent/WO2004092087A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron

Definitions

  • the present invention is suitable for use in optical elements such as prisms and lenses.
  • the present invention is applicable to prisms and substrates which constitute polarization control elements such as polarization beam splitters and spatial light modulators which are optical elements of a polarization optical system. It relates to a glass with a small photoelastic constant suitable for use. Background art
  • polarized optical systems that is, polarized optical systems
  • a spatial light modulator that spatially modulates polarized light
  • a polarized beam splitter that separates s-polarized light and p-polarized light are used in liquid crystal projectors and the like. It is desired to control characteristics more precisely o
  • a member having optical anisotropy is used for the prism, substrate, etc. of the polarization control element, which is required to maintain polarization characteristics, such as a polarization beam splitter and a spatial light modulator.
  • polarization characteristics such as a polarization beam splitter and a spatial light modulator.
  • phase difference optical path difference
  • the phase difference between the transmitted chief ray and the extraordinary ray orthogonal thereto changes compared to before transmission through the material, and the polarization characteristics cannot be maintained.
  • the glass When the glass has a large photoelastic constant when added to those glasses, the glass exhibits optical anisotropy due to the photoelastic effect, that is, birefringence, and as a result, it becomes difficult to obtain desired polarization characteristics There is a problem.
  • the mechanical stress is caused, for example, by bonding a material having a coefficient of thermal expansion different from that of glass to glass, and the thermal stress is, for example, absorbing heat generated by peripheral devices and energy of transmitted light. This is caused by the heat generated by the glass itself.
  • the magnitude of the birefringence of the glass can be indicated by the optical path difference. Assuming that the optical path difference is (5 (nm), the thickness of the glass is d (cm), and the stress is F (P a), the following equation (1) holds, and the larger the optical path difference, the larger the birefringence o
  • the proportionality constant ( ⁇ ) in the above equation (1) is called the photoelastic constant, and its value differs depending on the type of glass. As shown in the above equation (1), when the stress (F) applied to the glass and the thickness (d) of the glass are the same, the glass having a smaller absolute value of the photoelastic constant (?) Has an optical path difference ( ⁇ ), Refraction is small.
  • kappa photoelastic constant (nm / mm ⁇ mm 2 Roh New;), the linear thermal expansion coefficient (1 0- 6 / ⁇ ), Young's modulus ⁇ (1 0 3 N / mm 2), input Is the wavelength of the light used (nm), T is the internal transmittance of the member at the wavelength, p is the specific gravity of the member (g / cm 3 ), C p is the specific heat of the member (J / g'k), and the formula ( The integration range in 2) is the main absorption wavelength band ([420 nm;] to [500 nm]) of the member.
  • the photoelastic constant has wavelength dependence, and is not constant over the entire visible light region (400 nm to 750 nm). Therefore, if the photoelastic constant at a wavelength of 546 nm, which is a representative value of the photoelastic constant in the visible region, is small, but the wavelength dependence is large, the polarization characteristics vary depending on the wavelength.
  • a glass having a high Pb0 content as disclosed in Japanese Unexamined Patent Application Publication No. 11-1333528 as a polarizing beam splitter and a light-transmitting member for a prism component is disclosed in The wavelength dependence of the photoelastic constant is large, and in particular, the shorter the wavelength, the smaller the photoelastic constant.
  • the change amount ⁇ 5 of the optical conductivity constant of up to 700 nm is about 0.8 ⁇ 1 CT 5 nm ′ c nT 1 -Pa ” 1.
  • a glass is used, for example, in a polarizing beam splitter in a liquid crystal projector.
  • green (G) light (wavelength around 550 nm)
  • blue (B) light (5 x 0.0 x 10-5 nm 'c nT 1 -P a' 1 )
  • R red
  • the absolute value of? Is approximately 0.4 x 10—5 nm 'cm— 1 -Pa ”about 1 . Since the refractive index of B light is large, the optical path difference due to birefringence is large. There is a problem that it becomes worse.
  • P b O _S i 0 2 + B 2 0 3 + a 1 2 0 3 system of the optical glass in JP-a 1 1 3 3 5 1 3 5 Patent Publication No., P 2 0 5 - P b O system glass and P 2 0 5 one: While P b O _B a O system glass is disclosed, these glasses are both have a P b 0 in order to reduce the photoelastic constant contains a large amount.
  • glass containing lead component e.g., P b O, etc. P b F 2
  • P b O, etc. P b F 2 glass containing lead component
  • Japanese Patent Application Laid-Open No. 9-48633 discloses an optical glass for a polarizing optical system of a fluoride phosphoric acid type having a small photoelastic constant, and the publication discloses a specific glass composition. Is not shown at all.
  • Japanese Patent Application Laid-Open No. H11-33515 describes that the Ba0 component has an effect of reducing the photoelastic constant of glass, and does not contain a lead component.
  • Japanese Patent Application Laid-Open Nos. Hei 11-35 15-35, Hei 11-1992 69, and Hei 2000-34 1 3 2 and JP 2 0 0 2 - 1 2 8 5 4 0 JP, but P 2 0 5 -B a 0-based glass is disclosed, the in these publications , + 0. 32 x 1 0- 5 nm'cn 1 ' glasses of Examples having a P a- 1 smaller photoelastic constant (beta) is not disclosed.
  • photoelastic constant (?) is small wavelength dependence of the prism, for use in an optical element such as a lens
  • the Rukoto contain a T l 2 0 component P 2 0 5 one B aO-based glass of a specific composition range, lead components
  • the inventors have found that a glass having a very small photoelastic constant can be obtained without containing the same, and the present invention has been accomplished.
  • the present invention is, in terms of% by mass on the oxide basis, [rho 2 0 5 than 35-49%, B aO-3 0 to 5 5% of T 1 2 0 containing more than 0.5%, NamariNaru min
  • the photoelastic constant () at a wavelength of 546 nm is — 0.25 X 10 “ 5 nm'cm— 1 'P a- 1 to + 0.30 x 10” 5 nm'cm— 1 -Provide a first glass having a small photoelastic constant, which is in the range of Pa- 1 and has a refractive index (nd) of 1.60 or more.
  • the content of P 2 0 5 3 5 to less than 49% , B a 0 3 0 ⁇ 5 5 %, T 1 2 0 containing more than 0.5%, containing no lead component, photoelastic constant in the wavelength 5 4 6 nm is (?) - 0.1 5 x 10 " 5 nm 'cm— 1 ' P a- 1 to +0.3 0 x 10 nm 'cm— 1 ⁇ Pa"
  • a second glass having a small photoelastic constant wherein the second glass has a refractive index (nd) of 1.60 or more.
  • the present invention is, in terms of% by mass on the oxide basis, P 2 0 5 3 5 ⁇ 4 below 9%, B a 0 3 0 ⁇ 5 5%, the T 1 2 0 containing more than 0.5%, lead Contains no components and has a photoelastic constant (?) At a wavelength of 546 nm of -0.10 x 10 "" nm ⁇ cm " 1 'Pa- 1 to +0.30 x 10-.
  • the mass ratio A value indicated by T 1 20 is in the range of greater than 0.50 and less than 1.00, and the photoelastic constant at a wavelength of 546 nm.
  • the present invention is, in terms of% by mass on the oxide basis, P 2 0 5 3 5 ⁇ less than 4 9%, B a 0 3 0 ⁇ 5 5%, the T 1 2 0 containing 1% or more, including lead components 0 ⁇ A two (T 1 2 ⁇ - (B 2 0 3 + (A 1 2 0 3) 2 + C a 0 + Y 2 0 3 + G d 2 without a + N b 2 05 + M g O + Lu 2 0 3 + B i 2 0 3 ))
  • the mass ratio A value indicated by ⁇ T 12 ⁇ ⁇ is greater than 0.50 and less than 1.00 , And the photoelastic constant in the wavelength 5 4 6 nm () gar 0.
  • T 1 2 More than 0.5% up to 25%
  • the total amount of P 2 05 + B a 0 + A 1 2 0 3 is located at 9 6% or less
  • the first to sixth glasses having a small photoelastic constant are provided.
  • T 1 2 More than 0.5% up to 25%
  • P 2 0 5 + B a 0 + a total amount of A 1 2 0 3 is not more than 9 3% fluoride was replaced with some or all of the one or two or more oxides of the respective metal elements
  • the first to third glasses having a small photoelastic constant characterized by containing a total amount of 0 to 5% as F and containing no lead component.
  • dollar total amount of P 2 0 5 + B a 0 + A 12 0 3 is not more than 9 3%, which is partially or entirely and substitution of one or two or more oxides of the respective metal elements
  • the first to sixth glasses having a small photoelastic constant, characterized by containing 0 to 5% of the total amount of F as a fluoride and not containing a lead component.
  • T 1 2 More than 0.5% up to 25%
  • the first to third glasses having a small elastic constant are provided.
  • the first to sixth glasses having a small elastic constant are provided.
  • a glass provided by the present invention, wherein a photoelastic constant (/ 5) at a wavelength of 644 nm and a photoelastic constant (?) At a wavelength of 436 nm are used.
  • the absolute value of the difference is 0 X 10-5 nmcm
  • a glass provided by the present invention, wherein the glass having a spectral transmittance of 80% including a reflection loss of the glass having a thickness of 10 mm.
  • a glass having a small photoelastic constant characterized by having a length of 380 nm or less is provided.
  • T 1 2 glass photoelastic constant is small of the present invention which is 0 in P 2 0 5 -B a 0 system glass containing the photoelastic constant at wavelength 546 nm (?) Gar 0. 2 5 X 1 (K 5 nm * c ⁇ 1 ⁇ ⁇ a- 1 ⁇ tens 0. 30 x 1 0 - 5 nm -c m- 1 -P a '1 range or, - 0. 1 5 x 1 0 - 5 nm'cm- 1 'P a— 1 to +0.
  • oxide equivalent means that oxides, composite salts, metal fluorides, and the like used as a raw material of the glass constituting part of the present invention are completely decomposed when melted. In the case where it is assumed to change to, each component contained in the glass is converted into the mass of the generated oxide. When the glass composition is expressed in terms of mass% in terms of oxide, the total sum of the masses of the produced oxide is set to 100 as a standard.
  • the first embodiment of the present invention is suitable for use in an optical element such as a prism or a lens.
  • a polarizing beam splitter which is an optical element of a polarization optical system, a prism constituting a polarization control element such as a spatial light modulation element, and the like.
  • the lower limit is (?) - 0. 2 5 X 1 0- 5 nm- c Hi "1 -P a"
  • the Ru with P a- 1 is preferably a P a '1, + 0. 2 5 xl O- Oh more preferably Ru with 5 nm-cm- 1 -P a- 1 , + 0. 20 x 1 0- 5 11 m ⁇ c ⁇ "1 -P a" Oh Ru is most preferred 1.
  • the desired range of the photoelastic constant (?) At the wavelength of 546 nm is as described above. Is the range that can be obtained by selecting the lower and upper limits, respectively.
  • glass having a small elastic constant for, for example, a substrate or a prism of a polarization controlling element such as a lens, a prism or other optical elements, a polarizing beam splitter, or a spatial light modulator, thermal stress or mechanical stress can be reduced.
  • Optical elements such as lenses and prisms that generate a small amount of birefringence due to stress, polarization control such as polarizing beam splitters and spatial light modulators An element can be manufactured.
  • the photoelastic constant () at the wavelength of 546 nm described above is -0.1 O xl O- 5 nm ⁇ cm " 1 -Pa" 1 to +0.25 x 10 " 5 nm ⁇ cm” 1 ⁇
  • substrates such as optical elements such as prisms, polarization beam splitters, polarization control elements such as spatial light modulators, and prisms
  • the amount of birefringence caused by thermal stress and mechanical stress is extremely small.
  • Optical elements such as lenses and prisms, and polarization control elements such as polarizing beam splitters and spatial light modulators can be created.
  • Optical elements such as lenses and prisms for devices with high internal temperatures such as liquid crystal projectors It is suitable for use in polarization control elements such as polarization beam splitters and spatial light modulation elements, such as substrates and prisms.
  • the absolute value of the difference between the photoelastic constant (?) At a wavelength of 644 nm and the photoelastic constant (?) At a wavelength of 436 nm is 0.1 x 10 — S nm'cm ⁇ 'P a " 1 or less
  • the glass having a small photoelastic constant according to the present invention has three primary colors of light: red (R) light (wavelength around 640 nm), green (G) light (wavelength near 550 nm), and blue (B ) Since the wavelength dependency between light (wavelengths around 430 nm) is very small, this glass can be used as a polarization control element such as a polarizing beam splitter for a color projection type display device such as a liquid crystal projector, or a spatial light modulator.
  • polarization beams such as polarization beam splitters and spatial light modulators maintain the polarization characteristics as designed in the three primary colors.
  • a control element can be manufactured.
  • the content is preferably 35% or more, more preferably 36% or more, and more preferably 37%. It is most preferable to set the above. On the other hand, the content is preferably set to less than 49% in order to sufficiently contain other components that lower the photoelastic constant (5) and to easily obtain a desired photoelastic constant ( ⁇ ), and to be up to 45%. More preferably, it is most preferably up to 44%.
  • the BaO component is an essential component because it has a large effect of reducing the photoelastic constant (?).
  • the lower limit of the Ba0 component is more preferably 32%, and most preferably 34%.
  • the upper limit of the Ba0 component exceeds 55%, it approaches the limit of the vitrification range.To obtain more stable glass, the upper limit is preferably up to 55%, more preferably up to 54%. Is more preferred, and most preferably up to 52%.
  • T 1 2 0 component in the present invention is an important component effect of reducing the photoelastic constant was found to be very large, and to improve the meltability and stability of glass, increasing the refractive index effect Therefore, it is an essential component in the glass having a small photoelastic constant of the present invention.
  • the lower limit of the minute is more preferably l% or more, and most preferably 2% or more.
  • the Ti 20 component should be contained at 0.5% or more, and the mass ratio A value defined by the following formula (3) should be larger than 0.50 and smaller than I.00. is preferably in the range, the T 1 2 0 component is contained 1% 'or more, large 1.00, more preferably the range and be Rukoto than 0.50 the ⁇ value, the T l 2 0 component 2 %, And the ⁇ value is most preferably in the range of more than 0.50 and 1.00 or less.
  • T 1 2 0 refers to content by mass% of the oxide equivalent of T 1 2 0 component is the same for the other oxides.
  • the formula weight ratio ⁇ value represented by (3) shows the actual efficiency of T 1 2 0 component, the second parentheses of the right side, the sum of the mass% of oxides which increase the photoelastic constant It is.
  • a 1 2 0 3 component in the oxide has the effect of increasing the photoelastic constant for action to ⁇ the photoelastic constant is large, contributing the square.
  • T 1 2 0 component by the photoelastic constant reduction effect is exhibited effectively, conversely, the larger the sum of the second parentheses of the right side, by T 1 2 0 component in order to obtain a sufficient photoelastic constant reduction effect, meaning that it is necessary to include a large amount of T 1 2 ⁇ component.
  • the Tl 20 component by allowing the Tl 20 component to be contained in an amount of more than 0.5%, and by setting the mass ratio ⁇ value defined by the above equation (3) to a range of more than 0.50 and not more than 1.00, preferably be contained at least 1% of T l 2 0 component, by a range of the ⁇ value 0. greater than 50 1.00 or less, and most preferably is contained more than 2% T 1 2 ⁇ component, wherein A value from 0.50
  • T 1 2 ⁇ component A value from 0.50
  • T 1 2 0 amount of component is large and the glass is colored than 2 5%, the chemical durability tends to decrease, it is good Mashiku to the amount up to 25%, more preferably Is up to 23%, most preferably up to 21%.
  • a 1 2 0 3 component can be in order to obtain the effect of adjusting the optical constants, effect and of improving the chemical durability and mechanical strength, the effect of reducing the average coefficient of linear expansion, to be contained in any .
  • a l 2 0 3 component is significantly larger light ⁇ constants, and to reduce the stability of the glass, it is not preferable to contain more than 3%. More preferably, the content of the A1233 component is set to 2.5 % or less.
  • the total amount of P 2 05 + B a 0 + a 12 0 3 is not more 9 6% or less preferable. If the total amount is more than 96%, the type and content of other components that can be contained are limited, so that the effect of stabilizing the glass cannot be obtained by increasing the number of components constituting the glass. no longer easily lead to the production of deterioration, also to reduce the T 1 2 0 component and the photoelastic constants like L a 2 0 3 component and S r 0 component section later effect It is difficult to effectively introduce a fruit component, and it is difficult to obtain a desired photoelastic constant.
  • the photoelastic constant effectively introducing component having the effect of reducing, in order to easily obtain a desired photoelastic constant of P 2 0 5 + B a 0 + A 1 2 0 3
  • the total amount is more preferably 94% or less, most preferably 93% or less.
  • B 2 0 3 component has an effect of improving the meltability and stability of glass, since it becomes particularly easy to contain L a 2 0 3, although it is possible Rukoto be contained if necessary, If it is 5% or more, it becomes difficult to obtain a desired photoelastic constant (?). Therefore, the content is preferably set to less than 5%. Further, in order to easily obtain a glass having a small photoelastic constant, the content is more preferably 3% or less, and most preferably not contained.
  • L a 2 0 3 component a photoelastic constant is small and the effect of improving chemical durability and mechanical strength of, when it exceeds 6%, there is a tendency to increase devitrification of the glass. Therefore, it is preferable that up to 6% upper limit, more preferably to up to 5%, and most preferably up to 4% addition, Y 2 0 3, G d 2 0 3 and N b 2 0 5 Each component has the effect of increasing the refractive index, which is useful for adjusting the optical constant, and has the effect of improving the chemical durability and mechanical strength, so that it can be arbitrarily contained. However, an excessive content not only increases the photoelastic constant but also decreases the stability of the glass.
  • the content of each of these three components is preferably up to 5%, and 3%, respectively. It is more preferable to do so.
  • the MgO component can be arbitrarily contained in order to obtain an effect of adjusting an optical constant, an effect of improving chemical durability and mechanical strength, and an effect of reducing an average linear expansion coefficient.
  • the Mg0 component has an effect of increasing the photoelastic constant, and if contained excessively, the stability of the glass is reduced. Therefore, the content is preferably less than 1%. Further, in order to easily obtain a glass having a small photoelastic constant, the content is more preferably 0.5% or less, and most preferably not contained.
  • the C a O component can be arbitrarily contained in order to obtain an effect of adjusting an optical constant, an effect of improving chemical durability and mechanical strength, and an effect of reducing an average linear expansion coefficient.
  • the CaO component has the effect of increasing the photoelastic constant, and if contained excessively, the stability of the glass is reduced. Therefore, the content is preferably up to 3%, and preferably up to 2%. Is more preferred. In order to make it easy to obtain a glass having a small photoelastic constant, it is most preferable not to include the glass.
  • the Sr0 component is a component that reduces the photoelastic constant like the Ba0 component, and can be arbitrarily contained.However, if it exceeds 15%, the stability of the glass is significantly reduced. . Therefore, it is preferably up to 15%, more preferably up to 13%, and most preferably up to 10%.
  • Each component of Li 20 , Na 20 and K 20 is a component that has an effect of promoting melting of glass raw materials and improving defoaming properties when clarifying molten glass, and is optional as required. However, if the content of any of the components exceeds 3%, the chemical durability deteriorates. Therefore, the content of each of these components is preferably set to 3% or less. , Up to 2.5%, most preferably up to 2%.
  • C s 2 0 component is an optional additive component having an effect of adjusting the left refractive index maintaining the photoelastic constant, when the excessive content for the stability of the glass deteriorates, the upper limit is made 5% that Is preferably, up to 4%, more preferably up to 3%.
  • L u 2 0 3 component a refractive index adjusting effect, since in particular has the effect of increasing index of refraction, may be contained in any, because an effect of increasing the photoelastic constant, and 5% upper limit It is preferable that the content be up to 3%. In order to make it easy to obtain a glass having a small photoelastic constant, it is most preferable not to include the glass.
  • a refractive index adjusting effect especially since it has the effect of increasing index of refraction, may be contained optionally, has the effect of increasing photoelastic constant and, in addition, the adding amount is small Since coloring of the glass becomes remarkable, it is preferably up to 5%, more preferably up to 3%. In order to make it easy to obtain a glass having a small photoelastic constant, it is most preferable not to contain the glass.
  • the content is preferably 4% or less, more preferably 3% or less, and most preferably 2% or less.
  • the F (fluorine) component has the effect of increasing the melting property of glass and promoting defoaming, and also has the effect of reducing the photoelastic constant. However, when contained in a large amount, the desired refractive index can be obtained. In addition, the striae is likely to be generated due to the volatilization of fluorine, and the characteristics of the glass fluctuate remarkably. Therefore, fluoridation in which one or more oxides of the above-mentioned metal elements are partially or entirely replaced.
  • the total amount of the product as F is preferably up to 5%, more preferably up to 4.5%, and most preferably up to 4% .o
  • S i 0 2, Z r 0 2, Z n O, T e 0 2, T a 2 0 5, G e 0 2, Y b 2 0 3, W0 3 and T i 0 2 component present invention Can be contained within a range that does not impair the effect of the above, but considering the realization of the desired physical properties and the stability of the glass, S i 0 2 , Z r 0 2 , Z n O, T e 0 2 , each component of T a 2 0 5, G e 0 2, Y b 2 0 3, W0 3 and T i 0 2 are each, preferably less than the content of 3%, less than 2% and a child Is more preferable, and it is most preferable not to contain it.
  • the coloring component is not contained. However, not containing here means that it is not artificially contained unless it is mixed in as an impurity. "5" ⁇ ⁇ > o
  • Arsenic Ingredients known defoaming agents has the effect of refining and homogenizing the glass (e.g., A s 2 ⁇ 3), in addition environmental impact like the lead component is a high component der Rukoto, P the inclusion in the 2 0 5 one B a O-based glass, in order to deteriorate the light transmittance in the visible light area (especially 4 0 0 to 5 5 0 nm), preferably Ri good may not be contained.
  • lead components are components with a high environmental load as described above, and it is necessary to take environmental measures when manufacturing, processing, and discarding glass containing lead components.
  • lead components are components with a high environmental load as described above, and it is necessary to take environmental measures when manufacturing, processing, and discarding glass containing lead components.
  • the glass having a small photoelastic constant of the present invention in which the wavelength showing a spectral transmittance including a reflection loss of 80% and having a spectral transmittance of 80% and having a wavelength of 380 nm or less of the glass having a thickness of 10 mm, is in the visible light region (400 nm to 75 (nm), it can be used as an optical glass for a wide variety of applications because it has sufficient light transmittance, and it can reduce the heat generated by the glass itself due to light absorption.
  • lenses and prisms for liquid crystal projectors When used in the above optical element, the thermal stress generated in the optical element can be reduced, so that the amount of birefringence generated in the optical element decreases, and excellent optical characteristics and polarization control characteristics can be obtained, which is preferable.
  • examples and comparative examples of the glass having a small photoelastic constant according to the present invention will be specifically described.
  • the glass having a small photoelastic constant of the present invention is not limited to the
  • Table 1 Table 2 shows the compositions of preferred examples (No. 1 to No. 16) of the glass having a small photoelastic constant of the present invention, the refractive index (nd) of the obtained glass, and Numerical values (d), photoelastic constants (/ 5), and values of the wavelength (e80) at which the spectral transmittance including the reflection loss of a 10 mm thick glass is 80% are shown.
  • Each of the glasses of the examples according to the present invention shown in Tables 1 and 2 uses ordinary optical glass materials such as phosphoric acid compounds, oxides, carbonates, nitrates, fluorine compounds and hydroxides.
  • the prepared raw materials weighed and mixed at a predetermined ratio are put into a quartz crucible, melted in an electric furnace at 110 to 1300 ° C for 1 to 2 hours, and then the glass melt is transferred to a platinum crucible. Clarify in an electric furnace at 1200-1300 ° C, stir to homogenize (1-2 hours), lower to a suitable temperature in the range of 1,000-1200 ° C, and then mold the glass melt into a mold. And slowly cooled.
  • Table 3 shows the composition, refractive index (nd), Abbe number (so d), and photoelastic constant of comparative examples (No.A to No.H) of conventional glasses having a small photoelastic constant.
  • Comparative Example N0.A is the glass of Example 1 of JP-A-2000-34132
  • Comparative Example No.B is the glass of Example 3 of the same publication
  • Comparative Example No.C is Example No. 8 glass of Comparative Example No. 8 and glass of Example 4 of Japanese Unexamined Patent Publication No. Hei 11-33515
  • Comparative Example N o.E is the glass of Example 5 of JP-A-2002-128540
  • Comparative Example N o.F is the glass of sample No.6 of JP-A-11-133528
  • Comparative Example N o.G is the glass of Sample No. 21 of JP-A-2000-34132
  • Comparative Example No. H is the glass of Sample No. 9 of JP-A-2002-128540. is there.
  • Comparative Examples N0.A to N0.E and No.GsNo.H are glasses containing no lead component and having a small photoelastic constant.
  • Japanese Patent Application Laid-Open No. 11-199269 does not describe the photoelastic constants (?) At wavelengths of 436 nm and 644 nm of the glass of the working composition examples of the same publication. Glass so that the composition of No.C It was fabricated and the photoelastic constant (5) at wavelengths of 4336 nm and 644 nm was determined.
  • Example No.E Comparative example No.G and Comparative example No.H have photoelastic constants () at wavelengths of 436 nm, 546 nm and 644 nm.
  • the thickness (d) in the above formula (1) is 0.8 cm, and the compressive load (F) is applied to the glass sample from the outside in a straight line.
  • the photoelastic constant of the comparative example No. C at wavelengths of 4336 nm and 644 nm is the light transmission thickness of a glass sample (2.5 cm in diameter, 0.8 cm in thickness polished face-to-face).
  • the thickness (d) in equation (1) is set to 0.8 cm, and a compressive load (F) is applied to the glass sample in a straight line from the outside, and the g line (wavelength 4336 nm) and the C £ line (644 (nm) was obtained by measuring the optical path difference due to birefringence generated when the light of (nm) was transmitted.
  • the glasses of the preferred examples of the glass having a small photoelastic constant (No. 1 No. 16) of the present invention all have a photoelastic constant at a wavelength of 546 ⁇ m. (?) value of - 0. 2 5 X 1 0- 5 nm 'cm- 1 - P a + 0.
  • SO xl O- S nm'cm ⁇ ' is in the range of P a- 1, the refractive index ( nd) is 1.60 or more, and the absolute value of the difference between the photoelastic constant ( ⁇ ) at 644 nm and the photoelastic constant (?) at 436 nm is 0.1 x 10 ' 5 nm'cnT 1 ' P a -1 or less, and the wavelength (human 80) at which the spectral transmittance including reflection loss of 80 mm thick glass including reflection loss is 80% or less is 380 nm or less.
  • the T 1 2 0 containing 1% or more, and the mass ratio A value defined by the formula (3) is 0.50 Glasses of the examples (N 0.1-No.4, No.7, No.9-No.13, No.15 and No.16) which are larger and in the range of 1.00 or less the photoelastic constant at wavelength of 546 nm () is one 0 ⁇ 1 5 x 1 0- 5 nm ⁇ cm "1 -P a" 1 ⁇ tens 0.
  • Comparative Examples ⁇ 0. ⁇ to ⁇ 0. ⁇ , ⁇ .G and ⁇ . ⁇ , and Examples No. 9, No. 11, No. 12 and No. 1 of the present invention. 6 it is known that Examples No. 9, N 0.11, N 0.12 and N 0.16 of the present invention have a high effect of reducing the photoelastic constant (?).
  • Comparative Examples No.A-N0.E, N0.G and No.H Comparative Examples No.A-N0.E, No.G and N0.H has a small photoelastic constant (?) than, obviously, by T 1 2 0 component contained in the effect, it can be seen photoelastic constant (?) is summer small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Polarising Elements (AREA)

Description

明細: 光弾性定数が小さいガラス 技術分野
本発明は、 プリズム、 レンズ等の光学素子に使用するのに適し、 特に 、 偏光光学系の光学素子である偏光ビームスプリッ夕、 空間光変調素子 などの偏光制御素子を構成するプリズム及び基板等に使用するのに好適 な光弾性定数が小さいガラスに関する。 背景技術
近年、 偏光を利用した光学系、 すなわち偏光光学系は、 液晶プロジェク 夕をはじめとして様々な分野において利用されている。 例えば、 偏光を 空間的に変調する空間光変調素子や、 s偏光と P偏光とを分離する偏光 ビームスプリ ッ夕などが液晶プロジェクタなどに利用されており、 これ らの偏光光学系においては、 偏光特性をより高精度に制御することが望 まれている o
偏光光学系中の光学素子のうち、 偏光ビームスプリ ッ夕ゃ空間光変調 素子などの偏光特性の保持が要求される偏光制御素子のプリズムゃ基板 等に、 光学的異方性を有する部材を用いると、 透過した主光線とこれに 直交する異常光線との間の位相差 (光路差) が材料を透過する前と比較 して変化し、 偏光特性が保持できなくなるので、 それらの素子には光学 的に等方性を有する部材を使用する必要がある。 十分にァニールされ、 除歪された光学的等方性を有する従来の光学ガ ラスを偏光光学系中の偏光特性の保持が要求される光学素子に用いた場 合でも、 機械的応力や熱応力がそれらのガラスに加わったときに、 ガラ スの光弾性定数が大きいと光弾性効果による光学的異方性、 すなわち複 屈折性を示すようになり、 その結果、 所望の偏光特性が得難くなるとい う問題がある。 上記機械的応力は、 たとえば、 熱膨張率がガラスのそれ と異なる材料をガラスと接合したりすることにより生じ、 また、 上記熱 応力は、 たとえば、 周辺機器の発熱や、 透過光のエネルギーを吸収する ことによるガラス自体の発熱により生じる。 これらの応力がガラスにカロ わることによりガラスが示す複屈折性の大きさは光路差で示すことがで きる。 光路差を(5 (nm) 、 ガラスの厚さを d ( cm) 、 応力を F ( P a) とすると下記の式 ( 1 ) が成り立ち、 光路差が大きいほど複屈折量 が大きい o
(5 = ? · d · F 式 ( 1 )
上記式 ( 1 ) における比例定数 (^) は光弾性定数と呼ばれており、 その値はガラスの種類によって異なる。 上記式 ( 1 ) に示すとおり、 ガ ラスに加わる応力 ( F ) およびガラスの厚さ ( d ) が同じ場合、 光弾性 定数 ( ?) の絶対値が小さいガラスほど光路差 ( δ ) 、 すなわち複屈折 量が小さい。
偏光光学系に用いる部材の光弾性定数の寄与に関する論述は、 例えば 、 特開平 7 - 30 63 14号公報や特閧平 8 - 234 1 79号公報ゃ特 開平 9— 1 2 746 1号公報などに記述されているとおりである。 より 具体的な数値解析としては、 例えば、 特開 2000— 1 7 1 770号公 報に開示されているような下記の関係式 ( 2 ) を満たす部材が偏光光学 系に望まれる。 式 ( 2) の右辺は、 熱応力による複屈折量を示す。 5. 0 0 χ 1 02 ≥ Κ · α · Ε · S ( 1一 T ) ά λ/ p/C p 式 ( 2 )
ここで、 Κは光弾性定数 ( nm/mm · mm2ノ Ν;) 、 は線熱膨張係 数 ( 1 0— 6 /Κ) 、 Εはヤング率 ( 1 03 N/mm2 ) 、 入は使用光の 波長 (nm) 、 Tは波長人における部材の内部透過率、 pは部材の比重 ( g/c m3 ) 、 C pは部材の比熱 ( J/g ' k) であり、 式 ( 2 ) 中 の積分範囲は、 部材の主たる吸収波長帯 ([4 2 0 nm;]〜 [ 5 0 0 nm] ) である。
式 ( 2 ) に示されるとおり、 熱応力による複屈折量は、 光弾性定数の絶 対値がゼロに近いほど低減できることが明らかである。
また、 光弾性定数には波長依存性があり、 可視光領域 ( 4 0 0 nm~ 7 5 0 nm) 全般に渡って一定ではない。 よって、 光弾性定数の可視領 域での代表値である波長 5 4 6 n mにおける光弾性定数が小さくても波 長依存性が大きいと、 波長によって偏光特性にばらつきが生じる。 例え ば、 特開平 1 1 — 1 3 3 5 2 8号公報に、 偏光ビームスプリ ッ夕ならび にプリズム構成部材用の透光性部材として開示されているような P b 0 高含有のガラスは、 光弾性定数の波長依存性が大きく、 特に短波長にな るほど光弾性定数が小さくなる波長依存性があり、 4 0 0 ηπ!〜 7 0 0 nmの光弹性定数の変化量 Δ 5は 0. 8 x 1 CT 5 nm' c nT 1 -P a" 1 前後となる。 そのようなガラスを、 例えば、 液晶プロジェクタにおける 偏光ビームスプリ ッ夕として使用した場合、 緑色 ( G) 光 (波長 5 5 0 nm近傍) で 5 = 0. 0 x 1 0 - 5 nm' c nT 1 -P a' 1 としても、 青色 (B ) 光 (波長 4 3 0 nm近傍) や赤色 ( R ) 光 (波長 6 4 0 nm近傍 ) では、 ?の絶対値は概算で 0. 4 x 1 0— 5 nm' c m— 1 -P a" 1 程度 となり、 特に B光では屈折率が大きいため、 複屈折による光路差が大き くなってしまうという問題がある。
P b 0は、 ガラスの光弾性定数を小さくする効果が大きい成分である ため、 上述のような、 偏光光学系を構成する光学部材に使用するための 光弾性定数が小さいガラスとして、 従来、 前記特開平 1 1一 1 3 3 5 2 8号に開示されている S i 02 - P b 0系のガラスの他に、 例えば、 特 開平 9— 4 8 6 3 1号公報には、 P b O _ S i 02 + B 2 03 + A 12 03 系の光学ガラス、 特開平 1 1— 3 3 5 1 3 5号公報には、 P 2 05 — P b O系のガラスおよび P 2 05 一: P b O _B a O系のガラスが開示 されているが、 これらのガラスは、 いずれも、 光弾性定数を小さくする ために P b 0を大量に含有している。
しかし、 鉛成分は環境負荷が高い成分であり、 鉛成分を含有するガラ スを製造、 加工、 廃棄するに際には、 環境対策上の措置を講じる必要が あり、 そのためのコス トを要するうえ、 近年、 鉛成分を含有するガラス に対する規制をさらに厳しくする動きがあるため、 鉛成分 (例えば、 P b O、 P b F2 など) を含有するガラスは、 実用上好ましくないという 欠点がある。
特開平 9 -4 8 6 3 3号公報には、 光弾性定数が小さい、 弗化物燐酸系 の偏光光学系用光学ガラスが開示されているが、 同号公報には、 具体的 なガラスの組成が一切閧示されていない。
また、 上述した、 特開平 1 1 -3 3 5 1 3 5号公報には、 B a 0成分が ガラスの光弾性定数を小さくする効果を有することが記載されており、 鉛成分を含有せず、 かつ、 光弾性定数が小さいガラスとして、 上記特閧 平 1 1 -3 3 5 1 3 5号公報、 特開平 1 1— 1 9 9 2 6 9号公報、 特開 2 0 0 0 - 34 1 3 2号公報および特開 2 0 0 2 - 1 2 8 5 4 0号公報に 、 P 2 05 -B a 0系のガラスが開示されているが、 これらの公報中には 、 + 0. 32 x 1 0- 5 nm'cn 1 'P a-1 より小さい光弾性定数 ( β ) を有する実施例のガラスは開示されていない。
本発明の目的は、 上記従来技術の実情を鑑み、 鉛成分を含有せず、 か つ、 光弾性定数 ( ?) がー 0. 2 5 X 1 0— 5 nm'cm—1 -P a"1 〜十 0. 30 x 1 0— 5 nm'cm- 1 'P a— 1 の範囲、 または一 0. 1 5 x 1 0 - 5 n m · c m" 1 'P a- 1 〜十 0. 30 x 1 0— 5 nm'cm—1 - P a" 1 の範囲、 または— 0. 1 0 x l 0-5 nm'cn 1 'P a-1 〜+ 0. 3 O x l 0- 5 nm'cn 1 'P a-1 の範囲であり、 1. 60以上の屈折率 (nd) を有し、 光弾性定数 ( ?) の波長依存性が小さく、 プリズム、 レンズ等の光学素子に使用するのに適し、 特に、 偏光光学系の光学素子 である偏光ビ一ムスプリ ッ夕、 空間光変調素子などの偏光制御素子を構 成するプリズム及び基板等に使用するのに好適な光弾性定数が小さいガ ラスを提供することにある。
発明の開示
本発明者等は、 前記目的を達成するために鋭意試験研究を重ねた結果 、 特定組成範囲の P 2 05 一 B aO系ガラスに T l 2 0成分を含有させ ることによって、 鉛成分を含有することなく、 非常に小さな光弾性定数 を有するガラスが得られることを見出し、 本発明をなすに至った。
すなわち、 本発明は、 酸化物換算の質量%で、 Ρ2 05 35〜49 % 未満、 B aO 3 0〜5 5 %、 T 12 0を 0. 5 %より多く含有し、 鉛成 分を含有せず、 波長 546 nmにおける光弾性定数 ( ) が— 0. 2 5 X 1 0 " 5 nm'cm—1 'P a -1 〜 + 0. 30 x 1 0 " 5 nm'cm—1 - P a— 1 の範囲であり、 屈折率 ( n d ) が 1. 60以上であることを特徴と する光弾性定数が小さい第 1のガラスを提供する。
また本発明は、 酸化物換算の質量%で、 P 2 05 3 5 ~49 %未満 、 B a 0 3 0〜 5 5 %、 T 12 0を 0. 5 %より多く含有し、 鉛成分を 含有せず、 波長 5 4 6 nmにおける光弾性定数 ( ?) が— 0. 1 5 x 1 0 " 5 nm' c m— 1 'P a - 1 〜 + 0. 3 0 x 1 0 nm' c m— 1 · P a"
1 の範囲であり、 屈折率 (n d) が 1 . 6 0以上であることを特徴とす る光弾性定数が小さい第 2のガラスを提供する。
また本発明は、 酸化物換算の質量%で、 P 2 05 3 5〜4 9 %未満 、 B a 0 3 0〜 5 5 %、 T 12 0を 0. 5 %より多く含有し、 鉛成分を 含有せず、 波長 5 4 6 nmにおける光弾性定数 ( ?) が— 0. 1 0 x 1 0 " " n m■ c m" 1 'P a - 1 〜 + 0. 3 0 x 1 0—。 n m · c m" 1 · P a " 1 の範囲であり、 屈折率 (n d) が 1. 6 0以上であることを特徴とす る光弾性定数が小さい第 3のガラスを提供する。
また本発明は、 酸化物換算の質量%で、 P 2 05 3 5〜 4 9 %未満 、 B a 0 3 0〜 5 5 %、 T 12 0を 1 %以上含有し、 鉛成分を含有せず ヽ A= ( T 12 0 - (B 23 + (A 12 03 " + C a 0 + Y 2 03 + G d 2 03 + N b 2 05 +M g 0 + L u 2 03 + B i 2 03 ) ) ÷ T 1 2 0で示される質量比 A値が、 0. 5 0より大きく 1. 0 0以下の範囲 であり、 波長 5 4 6 n mにおける光弾性定数 ( ^ ) がー 0. 2 5 x 1 0 " S nm' c m^ 'P a―1〜 + 0. 3 0 x 1 O—S nm- c nT^P a-1の範囲で あり、 屈折率 ( n d) が 1 · 6 0以上であることを特徴とする光弹性定 数が小さい第 4のガラスを提供する。
また本発明は、 酸化物換算の質量%で、 P 2 05 3 5〜 4 9 %未満 、 B a 0 3 0〜 5 5 %、 T 12 0を 1 %以上含有し、 鉛成分を含有せず ヽ A二 ( T 12 〇— (B 2 03 + (A 12 03 ) 2 + C a 0 + Y 2 03 + G d 2 0 a + N b 2 05 +M g O + L u 2 03 + B i 2 03 ) ) ÷ T 1 2 〇で示される質量比 A値が、 0. 5 0より大きく 1 . 0 0以下の範囲 であり、 波長 5 4 6 nmにおける光弾性定数 ( ) がー 0. 1 5 x 1 0— Snm' c m i 'P a -1〜 + 0. 3 0 x 1 O^ nm' c m-i 'P a-1の範囲で あり、 屈折率 ( n d ) が 1 . 6 0以上であることを特徴とする光弾性定 数が小さい第 5のガラスを提供する。
また本発明は、 酸化物換算の質量%で、 P 2 05 3 5〜 4 9 %未満 、 B a 0 3 0〜 5 5 %、 T 12 0を 1 %以上含有し、 鉛成分を含有せず 、 A= ( T 12 0 - (B 2 03 +(A l 2 03 )2 + C a O + Y2 03 + G d 2 0 a +N b 2 05 +M g O + L u 2 03 +B i 23 ) ) ÷T 1 2 0で示される質量比 Α値が、 0. 5 0より大きく 1 . 0 0以下の範囲 であり、 波長 5 4 6 nmにおける光弾性定数 (^ ) がー 0. 1 0 x 1 0— 5 n m · c m"1 · P a- 1〜十 0. 3 O x l 0— 5 n m · c m— 1 · P a 1の範囲で あり、 屈折率 ( n d ) が 1 . 6 0以上であることを特徴とする光弾性定 数が小さい第 6のガラスを提供する。
本発明の他の側面においては、 酸化物換算の質量%で、
T 12 0 0. 5 %より多く 2 5 %まで、
P 2 05 3 5 〜 4 9 %未満、
B a 0 3 0 〜 5 5 %
を含有し、 さら
A 12 03 0 3 %、 および/または、
B 2 03 0 5 %未満、 および/または、 -b 2 0 a 0 6 %、 および/または、
Υ , 0 0 5 %、 および/または、
G d 2 03 0 5 %、 および/または、
N b 2 05 0 5 %、 および/または、
Μ g 0 0 1 %未満、 および/または、 C a 0 0 3 % および/または、 S r 0 0 1 5 %、 および/または、
L i 2 0 0 3 %、 および/または、
N a 2 0 0 3 %、 および/または、 K2 0 0 3 %、 および/または、
C s 2 0 0 5 %、 および/または、
B i 2 03 0 5 %、 および/または、
L u 2 0 a 0 5 %、 および/または、
S b2 03 0 4 % を含有し、
ただし、 P2 05 +B a 0 + A 12 03 の合計量が 9 6 %以下であり、 上記各金属元素の一種または 二種以上の酸化物の一部または全部と置換 した弗化物の Fとしての合計量 0〜 5 %を含有し、 鉛成分を含有しな いことを特徴とする光弾性定数が小さい前記第 1〜第 3のガラスが提供 される。
本発明の他の側面においては、 酸化物換算の質量%で、
T 12 0 1 %〜 2 5 %、
P 2 05 3 5 〜 49 %未満、
B a 0 30 〜 5 5 %
を含有し、 さらに
A 12 03 0 3 %、 および/または、 B 23 0 5 %未満、 および/または. L a 2 。3 0 6 %、 および/または、
Υ2 ο 3 0 5 %、 および/または、
Gd2 03 0 5 %、 および/または、 Nb2 05 0 5 %、 および/または、 M g 0 0 1 %未満、 および/または、 C a 0 0 3 %、 および/または、 S r 0 0 1 5 %、 および/または、 L i 2 0 0 3 %、 および/または、 N a 2 0 0 3 %、 および/または、 K2 0 0 3 %、 および/または、 C s 2 0 0 5 %、 および/または、 B i 2 03 0 5 %、 および/または、 L u 2 03 0 5 %、 および/または、 S b2 03 0 4%を含有し、
ただし、 P2 05 + B a 0 + A 12 03 の合計量が、 9 6 %以下であり
、 上記各金属元素の一種または 二種以上の酸化物の一部または全部と置 換した弗化物の Fとしての合計量 0〜 5 %を含有し、 鉛成分を含有し ないことを特徴とする光弾性定数が小さい前記第 1〜第 6のガラスが提 供される。
本発明の他の側面においては、 酸化物換算の質量%で、
T 12 0 0. 5 %より多く 25 %まで、
P 0 3 5 〜 49 %未満、
B a 0 30 〜 55 %
を含有し、 さらに
A 2 0^ 3 0 3 %、 および/または、
B 〇 0 5 %未満、 および/または. J a, 2 3 0 6 %、 および/または、
2 ο 3 0 5 %、 および/または、
Gd2 03 0 5 %、 および/または、 N b 2 0 5 0 5 %、 および/または、 M g 0 0 1 %未満、 および/または、 C a 0 0 3 % および/または、 S r 0 0 1 5 %、 および/または、
L 0 0 3 %、 および/または、
N a 9 0 0 3 %、 および/または、
K 0 0 3 %、 および/または、
C s 9 0 0 5 %、 および/または、
B 0 0 5 %、 および/または、
L u 2 0 a 0 5 %、 および/または、 S b 2 0 3 0 4 % を含有し、
ただし、 P 2 0 5 + B a 0 + A 1 2 0 3 の合計量が 9 3 %以下であり、 上記各金属元素の一種または 二種以上の酸化物の一部または全部と置換 した弗化物の Fとしての合計量 0〜 5 %を含有し、 鉛成分を含有しな いことを特徴とする光弾性定数が小さい前記第 1〜第 3のガラスが提供 される。
本発明の他の側面においては. 酸化物換算の質量%で、
T 1 2 0 1 %〜 2 5 %、
P 2 o 5 3 5 〜 4 9 %未満、
B a 0 3 0 〜 5 5 %
を含有し、 さらに、
A 1 2 0 3 0 〜 3 %、 および/または、 B 2 0 3 0 〜 5 %未満、 および/または.
0 〜 6 %、 および/または、
Υ , 0 0 〜 5 %、 および/または、 Gd2 03 0 5 %、 および/または、 Nb2 05 0 5 %、 および/または、 M g 0 0 1 %未満、 および/または、 C a 0 0 3 %、 および/または、 S r 0 0 1 5 %、 および/または、
L 0 0 3 %、 および/または、
N a 2 0 0 3 %、 および/または、 K2 0 0 3 %、 および/または、
C s 2 0 0 5 %、 および/または、
B i 2 03 ひ 5 %、 および/または、
L u 2 03 0 5 %、 および/または、
0 4%を含有し、
ただし、 P2 05 + B a 0 + A 12 03 の合計量が、 9 3 %以下であり 、 上記各金属元素の一種または 二種以上の酸化物の一部または全部と置 換した弗化物の Fとしての合計量 0〜 5 %を含有し、 鉛成分を含有し ないことを特徴とする光弾性定数が小さい前記第 1〜第 6のガラスが提 供される。
本発明の他の側面においては、 酸化物換算の質量%で、
T 12 0 0. 5 %より多く 2 5 %まで、
P 2 05 3 5 〜 49 %未満、
B a 0 30 〜 5 5 %、
A 12 03 0 〜 3 %、
ただし、 P2 05 + B a 04- A 12 03 の合計量が 9 3 %以下、
B 2 03 0 〜 5%未満、
L a 2 0 a 0 〜 6 %、 Y2 o3 0 5 %、
Gd2 03 0 5 %、
Nb2 05 0 5 %、
M g 0 0 1 %未満、
C a 0 0 3 %、
S r 0 0 1 5 %、
L 0 0 3 %、
N a 2 0 0 3 %、
K2 0 0 3 %、
10 C s 2 0 0 5 %、
B i 2 03 0 5 %、
Figure imgf000013_0001
S b 2 03 0 4 %、
上記各金属元素の一種または 二種以上の酸化物の一部または全部と置 換した弗化物の Fとしての合計量 0〜5 %を含有し、 鉛成分を含有し ないことを特徴とする光弾性定数が小さい前記第 1〜第 3のガラスが提 供される。
本発明の他の側面においては酸化物換算の質量%で、
12 0 1 % 2 5 %、
20 P2 05 3 5 49 %未満、
B a 0 30 5 5 %、
A „ 〇„ 0 3 %、
ただし、 P2 05 + B a〇+A l 2 03 の合計量が、 9 3 %以下
25 B 9 2 0 ^ 3 0 5 %未満、 L a 2 03 0 6 %、
Y2 o 3 0 5 %、
Gd2 03 0 5 %、
Nb2 05 0 5 %、
M g 0 0 1 %未満、
C a 0 0 3 %、
S r 0 0 1 5 %、
L i 2 0 0 3 %、
N a 2 0 0 3 %、
K2 0 0 3 %、
C s 2 0 0 5 %
B i 2 03 0 5 %、
L U 2 〇 3 0 5 % s
S b 9 0 0 4 %、
上記各金属元素の一種または 二種以上の酸化物の一部または全部と置 換した弗化物の Fとしての合計量 0〜 5 %を含有し、 鉛成分を含有し ないことを特徴とする光弾性定数が小さい前記第 1〜第 6のガラスが提 供される。
本発明の他の側面においては、 前記本発明により提供されるガラスで あって波長 6 4 4 nmにおける光弾性定数 ( /5 ) と、 波長 4 3 6 nmに おける光弾性定数 ( ?) との差の絶対値が 0 X 1 0 - 5 n m · c m
■P a—1 以下であることを特徴とする光弾性定数が小さいガラスが提供 される。
本発明の他の側面においては前記本発明により提供されるガラスであ つて 1 0 mm厚のガラスの反射損失を含む分光透過率が 8 0 %を示す波 長が 380 nm以下である.ことを特徴とする光弾性定数が小さいガラス が提供される。
T 12 0を含有する P 2 05 —B a 0系ガラスである本発明の光弾性 定数が小さいガラスは、 波長 546 nmにおける光弾性定数 ( ?) がー 0. 2 5 X 1 (K 5 nm* c π 1 ·Ρ a- 1 〜十 0. 30 x 1 0- 5 nm-c m— 1 -P a'1 の範囲、 または— 0. 1 5 x 1 0 - 5 nm'cm— 1 'P a— 1 〜+ 0. S O x l O- S n m'cm- i 'P a-1 の範囲、 または一 0 · 1 O x l 0 " 5 nm- c m" 1 -P a"1 〜十 0. 30 x 1 0 " 5 nm'cnT1 ' P a_ 1 の範囲であり、 屈折率 (n d ) が 1. 60以上であり、 光弾性定 数 ( 5) の波長依存性も小さいため、 プリズム、 レンズ等の光学素子に 使用するのに適しており、 特に、 偏光光学系の光学素子である偏光ビー ムスプリッ夕、 空間光変調素子などの偏光制御素子を構成するプリズム 及び基板等に使用するのに好適である。 さらに、 鉛成分を含有していな いため、 環境負荷が低く、 環境対策上の措置に要するコス トを大幅に低 減できる効果も有する。 発明を実施するための最良の形態
以下、 本発明について詳細に説明する。
なお、 本明細書中において、 「酸化物換算」 とは、 本発明のガラス構 成部分の原料として使用される酸化物、 複合塩、 金属弗化物等が溶融時 にすベて分解され酸化物へ変化すると仮定した場合において、 ガラス中 に含有される各成分を当該生成酸化物の質量に換算したものである。 酸 化物換算の質量%としてガラス組成を表わすときは当該生成酸化物の質 量の総和を基準 = 1 00としている。
また、 本明細書中において 「各金属元素の一種または二種以上の酸化 物の一部または全部と置換した弗化物の Fとしての合計量」 とは、 「本 発明のガラス組成物中に存在しうるフッ素の含有量を F原子として計算 した場合の質量」 を Xとし、 「前記酸化物換算によって示される生成酸 化物の質量の総和」 を yとしたとき、 x÷y x l 0 0で示される百分率 で表わしたものである。
本発明の 1つめ態様において、 プリズム、 レンズ等の光学素子に使用 するのに適し、 特に、 偏光光学系の光学素子である偏光ビームスプリツ 夕、 空間光変調素子などの偏光制御素子を構成するプリズム及び基板等 に使用するのに好適なガラスを得るためには、 波長 546 nmにおける 光弾性定数 ( ? ) は、 下限が— 0. 2 5 X 1 0— 5 nm- c Hi" 1 -P a"1 で あ る の が好ましく、 一 0. 1 5 X 1 0— 5 nm- c m" 1 -P a"1 で あるのがより好ましく、 一 0. l O x l O— S nm'cm- i 'P a— 1 で あ る の が最も好ましく、 上限が、 + 0. 3 0 X 1 0— 5 nm- c in" 1 - P a'1 であるのが好ましく、 + 0. 2 5 x l O-5 nm-cm-1 -P a- 1 で あ る の がより好ましく、 + 0. 20 x 1 0- 5 11 m■ c πι" 1 -P a" 1 で あ る の が最も好ましい。 本発明において、 波長 546 nmにおけ る光弾性定数 ( ?) の所望の範囲とは上述の下限と上限をそれぞれ選択 する事により得られる範囲である。
上述した波長 546 nmにおける光弾性定数 (^) が所望 の範囲で あり、 かつ、 光学設計上、 特に偏光制御素子の偏光膜作成に有効な 1. 6 0以上の屈折率 (nd) を有する光弾性定数が小さいガラスを、 例え ば、 レンズ、 プリズム等の光学素子、 偏光ビームスプリ ッタ、 空間光変 調素子などの偏光制御素子の基板やプリズム等に使用することによって 、 熱応力や機械的応力により生じる複屈折量が小さいレンズ、 プリズム 等の光学素子、 偏光ビームスプリ ツ夕、 空間光変調素子などの偏光制御 素子を作製することができる。
また、 上述した波長 546 nmにおける光弾性定数 ( ) が— 0. 1 O x l O— 5 n m · c m" 1 -P a"1 〜+ 0. 25 x 1 0 " 5 n m · c m" 1 ·
P a—1 の範囲であり、 かつ、 光学設計上、 特に偏光制御素子の偏光膜作 成に有効な 1. 60以上の屈折率 (nd) を有する光弾性定数が小さい ガラスを、 例えば、 レンズ、 プリズム等の光学素子、 偏光ビ一ムスプリ ッ夕、 空間光変調素子などの偏光制御素子の基板やプリズム等に使用す ることによって、 熱応力や機械的応力により生じる複屈折量が非常に小 さいレンズ、 プリズム等の光学素子、 偏光ビームスプリ ツ夕、 空間光変 調素子などの偏光制御素子を作成できるため、 液晶プロジェクタ等の機 内温度が高温になる装置のレンズ、 プリズム等の光学素子、 偏光ビーム スプリ ツ夕、 空間光変調素子などの偏光制御素子の基板ゃプリズム等に 使用するのに適している。
波長 644 nmにおける光弾性定数 ( ? ) と、 波長 43 6 nmにおけ る光弾性定数 ( ?) との差の絶対値が 0. 1 x 1 0— S nm'cm^ 'P a" 1 以下である本発明の光弾性定数が小さいガラスは、 光の 3原色であ る赤色 (R) 光 (波長 640 nm近傍) 、 緑色 (G) 光 (波長 5 5 0 η m近傍) および青色 (B) 光 (波長 430 nm近傍) 間における波長依 存性が非常に小さいため、 このガラスを、 例えば、 液晶プロジェクタ等 のカラーの投射型表示装置の偏光ビームスプリツ夕、 空間光変調素子な どの偏光制御素子の基板やプリズム等に使甩すると、 上記 3原色におけ る複屈折量の差がほとんど無く、 上記 3原色において設計どおりの偏光 特性を保持する偏光ビームスプリ ッ夕、 空間光変調素子などの偏光制御 素子を作製できるという利点がある。
本発明の光弾性定数が小さいガラスにおいて、 P 2 05 成分は、 ガラ ス形成酸化物であるため、 必須の成分であり、 安定なガラスを形成する ため、 その量を 3 5 %以上とすることが好ましく、 3 6 %以上とするこ とがより好ましく、 3 7 %以上とすることが最も好ましい。 その一方、 光弾性定数 ( 5) を低下させる他の成分を十分に含有させ、 所望の光弾 性定数 (^) を得やすくするため、 4 9 %未満とすることが好ましく、 4 5 %までとすることがより好ましく、 4 4 %までとすることが最も好 ましい。
本発明の光弾性定数が小さいガラスにおいて、 B a O成分は、 光弾性 定数 ( ?) を小さくする効果が大きいため、 必須の成分である。 所望の 光弾性定数 ( ?) を得やすくするには 3 0 %以上含有させることが好ま しい。 特に所望の光弾性定数を容易に得るには B a 0成分の下限は 3 2 %がより好ましく、 3 4 %が最も好ましい。 また、 B a 0成分の上限は 5 5 %を越えるとガラス化範囲の限界に近づくため、 より安定なガラス を得るには、 5 5 %までとすることが好ましく、 5 4 %までとすること がより好ましく、 5 2 %までとすることが最も好ましい。
T 12 0成分は、 本発明において、 光弾性定数を小さくする効果が非 常に大きいことを見出した重要な成分であり、 かつ、 ガラスの溶融性や 安定性を向上させ、 屈折率を高める効果を有するため、 本発明の光弾性 定数が小さいガラスにおいて、 必須の成分である。 T 12 0成分を 0. 5 %より多く含有させることにより、 陽イオンとしては大きな分極率を もつタリ ウム ( T 1 ) イオンがガラス中に導入されると、 波長 5 4 6 η mにおける光弾性定数 ( 5) が所望の範囲であり、 かつ、 光学設計上、 特に偏光制御素子の偏光膜作成に有効な 1 . 6 0以上の屈折率 ( n d ) を有する光弾性定数が小さいガラスが得やすくなる。
上記光弾性定数が小さいガラスをより得やすくするためには T 12 0成 分の下限は l %以上がより好ましく、 2 %以上が最も好ましい。 . さらに光弾性定数の小さいガラスを得る上で T I 2 0成分を 0. 5% 以上含有させ、 下記式 ( 3 ) で定義される質量比 A値を、 0. 50より 大きく I . 00以下の範囲とすることが好ましく、 T 12 0成分を 1 %' 以上含有させ、 前記 Α値を 0. 50より大きく 1. 00以下の範囲とす ることがより好ましく、 T l 2 0成分を 2 %以上含有させ、 前記 Α値を 0. 50より大きく 1. 00以下の範囲とすることが最も好ましい。
A= (T 12 〇_ (B 2 03 + (A 12 03 )2 +C aO + Y 2 03 + G d 2 03 +N b 2 05 +MgO + Lu 2 03 +B i 2 03 ) ) ÷T 1 2 0 式 ( 3 )
上記式 ( 3 ) で、 Τ 12 0と示した量は、 Τ 12 0成分の酸化物換算の 含有質量%を意味し、 他の酸化物についても同様である。
上記式 (3) で示される質量比 Α値は、 T 12 0成分の実効率を示す ものであり、 右辺の第二括弧内は、 光弾性定数を大きくする酸化物の質 量%の和である。 光弾性定数を大きくする効果がある酸化物の中でも、 特に A 12 03 成分は、 光弾性定数を增大する作用が大きいため、 二乗 で寄与する。 右辺の第二括弧内の和が小さければ、 T 12 0成分による 光弾性定数低下効果が効率よく発揮され、 逆に、 右辺の第二括弧内の和 が大きければ、 T 12 0成分による光弾性定数低下効果を十分に得るた めに、 T 12 ◦成分を多く含有させる必要があることを意味する。
すなわち、 T l 2 0成分を 0. 5%より多く含有させ、 上記式 ( 3) で定義される質量比 Α値を 0. 50より大きく 1. 0 0以下の範囲とす ることにより (より好ましくは T l 2 0成分を 1 %以上含有させ、 前記 Α値を 0. 50より大きく 1. 00以下の範囲とすることにより、 最も 好ましくは T 12 ◦成分を 2 %以上含有させ、 前記 A値を 0. 50より 大きく 1 . 0 0以下の範囲とすることにより) 、 陽イオンとしては大き な分極率をもつタ リウム ( T 1 ) イオンがガラス中にさらに多く導入さ れ、 波長 5 4 6 nmにおける光弹性定数 ( ? ) が所望の範囲であり、 か つ、 光学設計上、 特に偏光制御素子の偏光膜作成に有効な 1. 6 0以上 の屈折率 (n d ) を有する光弾性定数が小さいガラスがよ り得やすくな る o
また、 T 12 0成分の量が 2 5 %より多いとガラスが着色し、 化学的 耐久性が低下する傾向があるため、 その量を 2 5 %までとすることが好 ましく、 より好ましくは 2 3 %までとし、 2 1 %までとすることが最も 好ましい。
A 12 03 成分は、 光学定数を調整する効果、 化学的耐久性及び機械 的強度を向上させる効果や、 平均線膨張係数を小さくする効果を得るた めに、 任意に含有させることができる。 しかし、 A l 2 03 成分は光弹 性定数を著しく大きく し、 かつ、 ガラスの安定性を低下させるため、 3 %より多く含有させることは好ましくない。 より好ましくは A 12 03 成分の含有量を 2. 5 %以下とすることであり、 また、 光弾性定数が小 さいガラスを得やすくするためには、 含有させないことが最も好ましい 所望の光弾性定数 (/3) および光学特性 (屈折率など) を有するガラ スを得やすくするためには、 P 2 05 + B a 0 + A 12 03 の合計量は 、 9 6 %以下であることが好ましい。 この合計量が 9 6 %より多いと、 含有させうる他の成分の種類や含有量が限定されるため、 ガラスを構成 する成分を多成分にすることによってガラスを安定化させる効果が得に く くなり、 生産性の悪化につながりやすく、 また、 T 12 0成分や、 後 述する L a 2 03 成分や S r 0成分のような光弾性定数を小さくする効 果をもつ成分を効果的に導入しにく くなり、 所望の光弾性定数が得にく くなる。 より生産性が良く、 光弾性定数を小さくする効果をもつ成分を 効果的に導入し、 所望の光弾性定数を得やすくするためには P 2 0 5 + B a 0 + A 1 2 0 3 の合計量は、 9 4 %以下がより好ましく、 9 3 %以 下が最も好ましい。
B 2 0 3 成分は、 ガラスの溶融性や安定性を良好にする効果があり、 特に L a 2 0 3 を含有させやすくなることから、 必要に応じて含有させ ることが可能であるが、 5 %以上であると所望の光弾性定数 ( ? ) を得 にく くなる。 よって、 5 %未満とすることが好ましい。 また、 小さな光 弾性定数をもつガラスを得やすくするためには、 3 %以下とすることが より好ましく、 含有させないことが最も好ましい。
L a 2 0 3 成分は、 光弾性定数を小さく し、 化学的耐久性や機械的強 度を向上させる効果があるが、 6 %を超えると、 ガラスの失透性を増大 させる傾向がある。 よって、 上限を 6 %までとすることが好ましく、 5 %までとすることがより好ましく、 4 %までとすることが最も好ましい また、 Y 2 0 3 、 G d 2 0 3 及び N b 2 0 5 の各成分は、 屈折率を高 める効果があるため、 光学定数の調整に有用であり、 また、 化学的耐久 性及び機械的強度を向上させる効果があるため、 任意に含有させること ができるが、 過度に含有させると、 光弾性定数を増大させるばかりでな く、 ガラスの安定性を低下させるので、 これら 3成分の含有量は、 それ それ、 5 %までとすることが好ましく、 3 %までとすることがより好ま しい。 また、 小さな光弾性定数をもつガラスを得やすくするためには、 これら 3成分の一種または 二種以上を含有させないことが最も好ましい M g O成分は、 光学定数を調整する効果、 化学的耐久性及び機械的強 度を向上させる効果や平均線膨張係数を小さくする効果を得るために、 任意に含有させることができる。 しかし、 M g 0成分は光弾性定数を大 きくする作用があり、 かつ、 過度に含有させるとガラスの安定性が低下 するため、 1 %未満とすることが好ましい。 また、 小さな光弾性定数を もつガラスを得やすくするためには、 0 . 5 %以下がより好ましく、 含有 させないことが最も好ましい。
C a O成分は、 光学定数を調整する効果、 化学的耐久性及び機械的強 度を向上させる効果や平均線膨張係数を小さくする効果を得るために、 任意に含有させることができる。 しかし、 C a O成分は、 光弾性定数を 大きくする作用があり、 かつ、 過度に含有させるとガラスの安定性が低 下するため、 3 %までとすることが好ましく、 2 %までとすることがよ り好ましい。 また、 小さな光弾性定数をもつガラスを得やすくするため には、 含有させないことが最も好ましい。
S r 0成分は、 B a 0成分と同様に光弾性定数を小さ くする成分であ り、 任意に含有させることが可能であるが、 1 5 %を越えるとガラスの 安定性が著しく低下する。 よって、 1 5 %までとすることが好ましく、 1 3 %までとすることがよ り好ましく、 1 0 %までとすることが最も好 ましい。
L i 2 0、 N a 2 0および K 2 0の各成分は、 ガラス原料の溶融促進 や溶融ガラスを清澄する際の脱泡性を向上させる効果がある成分であり 、 必要に応じて、 任意に含有させることが可能であるが、 いずれの成分 も含有量が 3 %を超えると、 化学的耐久性を悪化させるため、 これら 3 成分の含有量は、 それぞれ、 3 %までとすることが好ましく、 2 . 5 % までとすることがより好ましく、 2 %までとすることが最も好ましい。 C s 2 0成分は、 光弾性定数を維持したまま屈折率を調整できる効果 を有する任意添加成分であるが、 過度に含有させるとガラスの安定性が 悪化するため、 上限は 5 %とすることが好ましく、 4 %までとすること がより好ましく、 3 %までとすることが最も好ましい。
L u 2 0 3 成分は、 屈折率調整効果、 特に高屈折率化の効果を有する ため、 任意に含有させることができるが、 光弾性定数を大きくする作用 があるため、 上限を 5 %とすることが好ましく、 3 %までとすることが より好ましい。 また、 小さな光弾性定数をもつガラスを得やすくするた めには、 含有させないことが最も好ましい。
B i 2 0 3 成分は、 屈折率調整効果、 特に高屈折率化の効果を有する ため、 任意に含有させることができるが、 光弾性定数を大きくする作用 があり、 加えて、 少量の添加でもガラスの着色が顕著になるため、 5 % までとすることが好ましく、 3 %までとすることがより好ましい。 また 、 小さな光弾性定数をもつガラスを得やすくするためには、 含有させな いことが最も好ましい。
S b 2 0 3 成分は、 ガラスを清澄及び均質化する効果を有することに 加えて、 屈折率を調整する効果及び光弾性定数を調整する効果を有する ため任意に添加することができるが、 ガラス原料を溶融する際に過度な 発泡をおこすため、 含有量を 4 %以下とすることが好ましく、 よ り好ま しい上限は 3 %以下であり、 最も好ましい上限は 2 %以下である。
F (弗素) 成分は、 ガラスの溶融性を高めかつ脱泡を促進する効果が あり、 さらに、 光弾性定数を小さくする効果があるが、 多量に含有させ ると、 所望の屈折率を得がたくなるうえ、 弗素の揮発により脈理が生じ やすくやすくなり、 ガラスの特性変動も著しくなるため、 上述した各金 属元素の一種または 二種以上の酸化物の一部または全部と置換した弗化 物の Fとしての合計量は、 5 %を上限とすることが好ましく、 4. 5 % を上限とすることがより好ましく、 4 %を上限とすることが最も好まし い o
なお、 S i 02 、 Z r 02 、 Z n O、 T e 02 、 T a 2 05 、 G e 0 2 、 Y b 2 03 、 W03 および T i 02 成分は、 本発明の効果を損なわ ない範囲で含有させることが可能であるが、 所望の物性の実現及びガラ スの安定性を考慮すると、 S i 02 、 Z r 02 、 Z n O、 T e 02 、 T a 2 05 、 G e 02 、 Y b 2 03 、 W03 および T i 02 の各成分は、 それぞれ、 含有量を 3 %未満とすることが好ましく、 2 %未満とするこ とがより好ましく、 含有させないことが最も好ましい。
さらに本発明の光学ガラスにおいては、 V、 C r、 Mn、 F e、 C o 、 N i、 C u、 M o、 E u、 N d、 S m、 T b、 D y、 E r等の着色成 分は、 含有しない事が好ましい。 ただし、 ここでいう含有しないとは、 不純物として混入される場合を除き、 人為的に含有させないことを意味 "5" ·έ> o
ガラスを清澄及び均質化する効果を有する公知の脱泡剤である砒素成 分 (例えば、 A s 23 ) は、 鉛成分と同様に環境負荷が高い成分であ ることのほかに、 P 2 05 一 B a O系ガラスに含有させると、 可視光領 域 (特に 4 0 0〜 5 5 0 nm) の光線透過性を悪化させるため、 含有さ せないことがよ り好ましい。
また、 鉛成分は、 上述のとおり、 環境負荷が高い成分であり、 鉛成分 を含有するガラスを製造、 加工、 廃棄するに際には、 環境対策上の措置 を講じる必要があり、 そのためのコス トを要するうえ、 近年、 鉛成分を 含有するガラスに対する規制をさらに厳しくする動きがあるため、 本発 明の光弾性定数が小さいガラスに鉛成分を含有させるべきではない。 また、 1 0 mm厚のガラスの反射損失を含む分光透過率が 80 %を示 す波長が 380 nm以下である本発明の光弾性定数が小さいガラスは、 可視光領域 (40 0 nm〜 75 0 nm) において、 十分な光線透過性を 有するため、 多種多様な用途をもつ光学ガラスとして使用できるうえ、 光吸収によるガラス自体の発熱を低減できるため、 例えば、 液晶プロジ ェク夕のレンズやプリズムなどの光学素子に使用した場合、 光学素子に 生じる熱応力を小さくできるので光学素子に生じる複屈折量が小さくな り、 優れた光学特性や偏光制御特性を得ることができるため好ましい。 次に、 本発明の光弾性定数の小さいガラスにかかる実施例及び比較例 について具体的に説明する。 なお、 本発明の光弾性定数の小さいガラス は、 以下の実施例に限定されるものではない。
表 1ヽ 表 2に、 本発明の光弾性定数が小さいガラスの好適な実施例 ( N o .1〜N o .1 6 ) の組成ならびに得られたガラスの屈折率 (n d) 、 ァヅべ数 (レ d) 、 光弾性定数 (/5) 及び 1 0 mm厚のガラスの反射 損失を含む分光透過率が 80%を示す波長 (え 80) の数値を示した。 表 1、 表 2に示した本発明にかかる実施例のガラスは、 いずれも、 リ ン 酸化合物、 酸化物, 炭酸塩、 硝酸塩、 弗素化合物及び水酸化物等の通常 の光学ガラス原料を用いて所定の割合で秤量混合した調合原料を石英ル ヅボに投入し、 1 1 00〜 1 300 °Cの電気炉で 1〜 2時間溶融し、 そ の後、 ガラス融液を白金坩堝に移して 1 200〜 1 300 °Cの電気炉で 清澄、 攪拌して均質化し ( 1〜 2時間) 、 1 000〜 1 200 °Cの範囲 の適当な温度に下げてからガラス融液を金型に鎵込み、 徐冷することに より得た。
また、 表 3に、 従来の光弾性定数が小さいガラスの比較例 (N o .A〜 No .H) の組成ならびに屈折率 (nd) 、 アッベ数 (ソ d) 、 光弾性定 数 、β、 及び 1 0 mm厚のガラスの反射損失を含む分光透過率 (外部透 過率) が 80%を示す波長 (人 80) の再現実験値及び公報記載値 (表 3中、 ※ 1印を付点) を示した。
比較例 N 0. Aは特開 2000— 34 1 32号公報の実施例 1のガラス 、 比較例 N o .Bは同号公報の実施例 3のガラス、 比較例 N o . Cは特開 平 1 1— 1 9 9 26 9号公報の実施組成例 N o .8のガラス、 比較例 N o .Dは特開平 1 1— 33 5 1 3 5号公報の実施例 4のガラス、 比較例 N o . Eは特開 2002— 1 28 540号公報の実施例 5のガラス、 比較例 N o .Fは特開平 1 1— 1 3 3 528号公報の試料 N o .6のガラス、 比較 例 N o .Gは特開 2 000— 34 1 3 2号公報の試料 N o .2 1のガラス 、 比較例 N o .Hは特開 2002— 1 28 540号公報の試料 N o .9の ガラスである。 中でも、 比較例 N 0. A〜N 0. E、 N o . Gs N o . H は、 鉛成分を含まない光弾性定数の小さいガラスである。
特開 2000— 34 1 32号公報、 特開平 1 1一 33 5 1 3 5号公報 および特開 20 02— 1 28 540号公報では、 H e - N eレーザー (波 長 633 nm) によって、 これらの公載に記載されている実施例のガラ スの光弾性定数 ( ?) を求めているため、 比較例 N o .A、 比較例 N o . B、 比較例 N o .D、 比較例 N o .E、 比較例 N 0. G及び比較例 N o . H の組成となるように、 それぞれのガラスを作製し、 比較例 N o.A、 比較 例 No .B、 比較例 No .D、 比較例 N o .E、 比較例 N o . G及び比較例 N o . Hのガラスの波長 43 6 nm、 546 nmおよび 644 nmにおけ る光弾性定数 ( 5) を求め、 表 2に示した。
また、 特開平 1 1— 1 9 9 2 69号公報には、 同号公報の実施組成例 のガラスの波長 43 6 nmおよび 644 nmにおける光弾性定数 ( ? ) が記載されていないため、 比較例 N o . Cの組成となるように、 ガラスを 作製し、 波長 4 3 6 nmおよび 644 nmにおける光弾性定数 ( 5 ) を 求め、 表 2に示した。
また、 比較例 N o .Fについては、 特開平 1 1一 1 3 3 5 2 8号公報の図 3から波長 4 3 6 n m、 5 4 6 n mおよび 6 44 n mにおける光弾性定 数 ( 5) 値を読み取り表 3に示した (表 3中、 ※ 2印を付点) 。
本発明の光弾性定数が小さいガラスの好適な実施例 (N o .;!〜 N 0 . 1 6 ) ならびに比較例 N o . A、 比較例 N o .B、 比較例 N o . D、 比較 例 N o .E、 比較例 N o .G及び比較例 N 0.Hの波長 4 3 6 nm、 5 4 6 nmおよび 6 44 nmにおける光弾性定数 ( ) は、 ガラス試料 (直径 2.5 c m、 厚さ 0. 8 c mの対面研磨品) の光透過厚、 すなわち、 前 記式 ( 1 ) における厚さ ( d ) を 0. 8 c mとし、 外部からガラス試料 に一直線方向に圧縮荷重 (F) を加え、 それぞれ g線 (波長 4 3 6 nm ) 、 e線 (波長 5 4 6 n m) 、 C f線 ( 6 44 nm) の光を透過させた ときに生じた複屈折による光路差を測定することによって前記式 ( 1 ) により求めた。 また、 比較例 N o . Cの波長 4 3 6 n mおよび 6 44 n mにおける光弾性定数 は、 ガラス試料 (直径 2.5 c m、 厚さ 0 . 8 c mの対面研磨品) の光透過厚、 すなわち、 前記式 ( 1 ) における 厚さ ( d ) を 0. 8 c mとし、 外部からガラス試料に一直線方向に圧縮 荷重 (F) を加え、 それぞれ g線 (波長 4 3 6 nm) 、 C £線 ( 6 44 nm) の光を透過させたときに生じた複屈折による光路差を測定するこ とによって前記式 ( 1 ) により求めた。 【表 1 】
Figure imgf000028_0001
Figure imgf000029_0001
【表 3】
Figure imgf000030_0001
表 1、 表 2に示したとおり、 本発明の光弾性定数が小さいガラスの好適 な実施例 (N o .1 N o .1 6 ) のガラスは、 いずれも、 波長 546 η mにおける光弾性定数 ( ?) の値が— 0. 2 5 X 1 0— 5 nm' c m— 1 - P a + 0. S O x l O- S nm'cm^ 'P a-1 の範囲内であり、 屈折率 (nd) が 1. 6 0以上であり、 644 nmにおける光弾性定数 { β ) と 43 6 nmにおける光弾性定数 ( ?) との差の絶対値が 0. 1 x 10 ' 5 nm'cnT1 'P a- 1 以下であり、 1 0 mm厚のガラスの反射 損失を含む分光透過率が 80 %を示す波長 (人 8 0 ) が 380 nm以下 である。
また、 本発明の光弾性定数が小さいガラスの好適な実施例のうち、 T 12 0を 1 %以上含有し、 かつ、 前記式 ( 3) で定義される質量比 A値 が、 0. 50より大きく 1. 00以下の範囲である実施例 (N 0.1〜N o .4、 N o .7、 N o .9〜 N o .1 3、 N o .1 5および No .1 6) の ガラスは、 波長 546 nmにおける光弾性定数 ( ) が、 一 0 · 1 5 x 1 0-5 n m · c m" 1 -P a"1 〜十 0. 2 5 x 1 0— 5 nm'cm— 1 · P a-1 の範囲内であり、 屈折率 (nd) が 1. 6 0以上であり、 644 η mにおける光弾性定数 ( ?) と 43 6 nmにおける光弾性定数 ( ? ) と の差の絶対値が 0. 1 X 1 0— 5 nm' c πΓ 1 ' P a- 1 以下であり、 1 0 m m厚のガラスの反射損失を含む分光透過率が 8 0 %を示す波長 ( λ 8 0 ) が 380 nm以下である。
比較例 N 0 · A〜 N o . E、 N 0. Gおよび N o . Hは、 鉛成分を含有し ないガラスとしては、 比較的光弾性定数 ( ?) が小さいと言えるが、 光 弾性定数 ( ) 値が + 0. 30 X 1 0 - 5 nm- cm—1 -P a'1 以下では なく、 高精度に偏光制御を行う用途 (例えば、 液晶プロジェクタの偏光 ビ一ムスプリ ヅ夕等) には、 十分であるとは言えない。
比較例 N 0. A〜N o . Eヽ N o . Gおよび N o . Hのガラスと、 本発明の ガラスとの明確な違いは、 ガラス中の T l 2 0成分の有無である。 例え ば、 比較例 Ν 0.Α〜Ν 0.Ε、 Ν ο . Gおよび Ν ο . Ηと、 本発明の実施 例 No.9、 No .1 1、 N o .1 2および N o .1 6とを比較すると、 本 発明の実施例 N o .9、 N 0.1 1、 N 0.1 2および N 0.1 6は、 光弾 性定数 ( ?) を小さくする効果が高い事が知られている B a 0成分の含 有量が比較例 N o . A〜 N 0. E、 N 0. Gおよび N o . Hよりも少ないが 、 比較例 N o . A〜 N 0. E、 N o . Gおよび N 0. Hよりも小さな光弾性 定数 ( ?) を有しており、 明らかに、 T 12 0成分含有の効果によって 、 光弾性定数 ( ?) が小さくなつていることが分かる。
比較例 N o .Fの P b Oを多く含有するケィ酸ガラスは、 546 nmに おける光弾性定数 ( 5) は、 ほぼ 0 X 1 0— 5 nm- c in" 1 ·Ρ a 1 であ るが、 波長依存性が大きく、 (Δ 5 = 0. 5 X 10 - 5 nm- c m" 1 ·Ρ a— 1 ) 、 特に短波長 (43 6 nm) の光弾性定数 (^) の絶対値が約 0 . 4 X 1 0 - 5 nm'cm— 1 -P a"1 と大きい値を示し、 短波長領域での 複屈折量が増大し、 実用上好ましくない。 更に重大な問題は、 光弾性定 数 の波長依存性の観点から言って、 例えば、 比較例 No . Fのガラ スを用いて、 可視光領域全般を透過するレンズゃプリズムを作製した場 合、 透過波長によって生じる複屈折量が変化するため、 設計した光学特 性を可視光領域全般で均一に実現することができないので、 複雑な光学 設計を必要とするか、 或いは、 複数の光弾性定数 (^) の波長依存性を 持つガラスを組み合わせて光学系を作成しなくてはならない。 また、 大 量の P b 0を含有しており、 環境負荷が非常に高いという欠点がある。

Claims

請求の範囲
1.酸化物換算の質量%で、 P 2 05 3 5〜 4 9 %未満、 B a 0 3 0 〜 5 5 %、 T 12 0を 0. 5 %より多く含有し、 鉛成分を含有せず、 波 長 5 4 6 nmにおける光弾性定数 ( ?) が— 0. 2 5 x 1 0— 5 nm- c m- 1 -P a" 1 〜十 0. 3 0 x 1 0- 5 nm- c m' 1 -P a" 1 の範囲であ り、 屈折率 (n d) が 1. 6 0以上であることを特徴とする光弾性定数 が小さいガラス。
2.酸化物換算の質量%で、 P 2 05 3 5〜4 9 %未満、 :6 & 0 3 0 〜 5 5 %、 T 12 0を 0. 5 %より多く含有し、 鉛成分を含有せず、 波 長 5 4 6 nmにおける光弾性定数 ( ?) が— 0. 1 5 x 1 0— 5 nm- c πΓ 1 'P a - 1 〜 + 0. 3 0 x 1 0- 5 nm- c m" 1 'P a— 1 の範囲であ り、 屈折率 (n d) が 1. 6 0以上であることを特徴とする光弾性定数 が小さいガラス。
3,酸化物換算の質量%で、 P 2 05 3 5〜 4 9 %未満、 B a 0 3 0 〜 5 5 %、 T 12 0を 0. 5 %より多く含有し、 鉛成分を含有せず、 波 長 5 4 6 nmにおける光弾性定数 ( ? ) が一 0. 1 0 x 1 0 " 5 n m · c m— 1 -P a" 1 〜十 0. 3 0 x 1 0 - 5 nm- c m" 1 -P a" 1 の範囲であ り、 屈折率 (n d) が 1. 6 0以上であることを特徴とする光弾性定数 が小さいガラス。
4.酸化物換算の質量%で、 P 2 05 3 5〜 4 9 %未満、 B a◦ 3 0 〜 5 5 %、 T 12 0を 1 %以上含有し、 鉛成分を含有せず、 A= ( T 1 2 〇一 ( B 2 03 + ( A 12 03 + C a 0 + Y 2 03 + G d 2 03 + N b 2 05 +M g O + L u 2 03 +B i 2 03 ) ) ÷T 12 0で示され る質量比 Α値が、 0. 5 0より大きく 1. 0 0以下の範囲であり、 波長 546 nmにおける光弾性定数 ( ?) が— 0. S S x l O^nm'cnT1 •P a -1〜 + 0. 30 X 10 nm' c πΓ1 ·Ρ a-1の範囲であり、 屈折率
(nd) が 1. 60以上であることを特徴とする光弾性定数が小さいガ ラス。
5 5.酸化物換算の質量%で、 P 2 05 3 5〜 49 %未満、 B a 0 30 〜5 5 %、 T 12 0を 1 %以上含有し、 鉛成分を含有せず、 A= ( T 1 2 0— (B 2 03 + (A 12 03 " +C aO + Y 2 03 + G d 2 03 + N b 2 05 +Mg〇 + Lu2 03 + B i 2 〇 3 ) ) ÷ T 12 0で示され る質量比 A値が、 0. 50より大きく 1. 00以下の範囲であり、 波長 10 546 nmにおける光弾性定数 ( ?) が— 0. 1 5 x 1 0 "5 nm- c m"1 •P a -1〜 + 0. 30 x 1 0 - 5 n πι· c π 1 · P a-1の範囲であり、 屈折率 (nd) が 1. 60以上であることを特徴とする光弾性定数が小さいガ ラス。 ·
6.酸化物換算の質量%で、 P 2 05 3 5〜 49 %未満、 B a 0 30 15 ~5 5 %、 T 12 0を 1 %以上含有し、 鉛成分を含有せず、 A= ( T 1
2 0 - ( B 2 03 + ( A 12 03 " + C aO + Y2 03 +Gd2 03 + N b 2 05 + M g 0 + L u 2 0 a + B i 2 03 ) ) ÷ T 12 0で示され る質量比 A値が、 0. 50より大きく 1. 00以下の範囲であり、 波長 546 nmにおける光弾性定数 (^) がー 0. l O x l O^nm'cnT1 20 'P a -1〜 + 0. 30 X 1 0 nm' c π 1 ·Ρ a-1の範囲であり、 屈折率 • (nd) が 1. 60以上であることを特徴とする光弾性定数が小さいガ ラス。
7.酸化物換算の質量%で.
T 0 0. 5 %より多く 25 %まで
25 P , 0 3 5 49 %未満、
B a 0 30 5 5 %
を含有し、 さらに
A 12 03 0 3 %、 および/または、 B2 03 0 5 %未満、 および/または L a 2 0 g 0 6 %、 および/または、
2 〇 3 0 5 %、 および/または、
Gd2 03 0 5 %、 および/または、 Nb2 05 0 5 %、 および/または、 M g 0 0 1 %未満、 および/または、 C a 0 0 3 %、 および/または、
S r 0 0 1 5 %、 および/または、 L i 2 0 0 3 および/または、 N a 2 0 0 3 %、 および/または、
K 2 0 0 3 %、 および/または、
s 2 0 0 5 %、 および/または、 B i 2 03 0 5 %、 および/または、
L U 2 03 0 5 %、 および/または、
(3 l 3 0 4 % を含有し、
ただし、 P2 05 + B a 0 + A 12 03 の合計量が 9 6 %以下であり、 上記各金属元素の一種または 二種以上の酸化物の一部または全部と置換 した弗化物の Fとしての合計量 0~5 %を含有し、 鉛成分を含有しな いことを特徴とする請求項 1〜請求項 3に記載の光弾性定数が小さいガ ラス。
8,酸化物換算の質量%で、 T 12 0 1 %〜 2 5 %、
P 2 o 5 3 5 〜 4 9 %未満.
B a 0 3 0 〜 5 5 %
を含有し、 さら
A 12 03 0 3 %s および/または、
B 2 03 0 5 %未満、 および/または、
L a 〇 3 0 6 %、 および/または、
Y 2 o 3 0 5 %、 および/または、
G d 2 0 3 0 5 %、 および/または、
N b 2 05 0 5 %、 および/または、
M g 0 0 1 %未満、 および/または、
C i 0 0 3 %、 および/または、
S r 0 0 1 5 %、 および/または、 L i 2 0 0 3 %、 および/または、
N a 2 0 0 3 %s および/または、 K 0 0 3 %、 および/または、
C s 2 0 0 5 %、 および/または、
B 1 2 0 a 0 5 %、 および/または、
L u 2 03 0 5 %、 および/または、
S b 2 03 0 4 %を含有し、
ただし、 P 2 05 -t-B a 0 + A 12 03 の合計量が、 9 6 %以下であり 、 上記各金属元素の一種または 二種以上の酸化物の一部または全部と置 換した弗化物の Fとしての合計量 0〜 5 %を含有し、 鉛成分を含有し ないことを特徴とする請求項 1〜請求項 6に記載の光弾性定数が小さい ガラス。
9.酸化物換算の質量%で
T 12 0 0. 5 %より多く 2 5 %まで
P 2 05 3 5 〜 4 9 %未満、
B a 0 3 0 〜 5 5 %
を含有し、 さらに、
A 12 03 3 %、 および/または、
B 2 03 5 %未満、 および/または、
00 00000000000000 6 %、 および/または、
Y 23 5 %、 および/または、
G d 2 03 5 %、 および/または、
N b 2 05 5 %、 および/または、
M g 0 1 %未満、 および/または、
3 および/または、
S r 0 1 5 %、 および/または、
L i 2 0 3 %ヽ および/または、
N a 2 0 3 %、 および/または、
K2 0 3 %、 および/または、
C s 2 0 5 %、 および/または、
B i 2 03 5 %、 および/または、
L u 2 03 5 %、 および/または、
S b 2 03 4 % を含有し、
ただし、 P 2 05 + B a O + A l 2 03 の合計量が 9 3 %以下であり、 上記各金属元素の一種または 二種以上の酸化物の一部または全部と置換 した弗化物の Fとしての合計量 0〜 5 %を含有し、 鉛成分を含有しな いことを特徴とする請求項 1〜請求項 3に記載の光弾性定数が小さいガ ラス。
0.酸化物換算の質量%で、
T 0 1 %〜 25 %、
P , 0 3 5 〜 49 %未満、
B a 0 30 〜 5 5 %
を含有し、 さらに
A 12 03 0 〜 3 %、 および/または、
B 23 0 〜 5 %未満、 および/または、 L a 2 0 a 0 〜 6 %、 および/または、
2 ο 3 0 〜 5 %、 および/または、
Gd2 03 0 〜 5 %、 および/または、
Nb2 05 0 〜 5 %、 および/または、
M g 0 0 ~ 1 %未満、 および/または. C a 0 0 〜 3 %、 および/または、
S r 0 0 〜 1 5 %、 および/または、 L i 2 0 0 〜 3 %、 および/または、
N a 2 0 0 〜 3 %、 および/または、
K2 0 0 〜 3 %、 および/または、
C s 2 0 0 〜 5 %、 および/または、
B i 2 03 0 〜 5 %、 および/または、
L u 2 0 a 0 〜 5 %、 および/または、
S b2 03 0 〜 4%を含有し、
ただし、 P2 05 + B a 0 + A 12 03 の合計量が、 9 3 %以下であり 、 上記各金属元素の一種または 二種以上の酸化物の一部または全部と置 換した弗化物の Fとしての合計量 0〜5 %を含有し、 鉛成分を含有し ないことを特徴とする請求項 1〜請求項 6に記載の光弾性定数が小さい ガラス。
1 1.酸化物換算の質量%で
T 0 0. 5%より多く 2 5 %まで
P 2 o5 3 5 49 %未満、
B a 0 30 5 5 %
A 12 03 0 3 %
ただし、 P2 05 +B a 0 + A 12 03 の合計量が 9 3 %以下、
B 2 03 0 5 %未満、
Figure imgf000039_0001
Y , 0 0 5 %
ur d 2 0 a 0 5 %
Figure imgf000039_0002
M g 0 0 1 %; ^満'
a 0 0 3 %
S r 0 0 1 5 %
L i 2 0 0 3 %
N a 2 0 0 3 %
K2 0 0 3 %
C s 2 0 0 5 %
B i 2 03 0 5 %
Figure imgf000039_0003
S b2 03 0 4 %
上記各金属元素の一種または 二種以上の酸化物の一部または全部と置 換した弗化物の Fとしての合計量 0 5 %を含有し、 鉛成分を含有し ないことを特徴とする請求項 1〜請求項 3に記載の光弾性定数が小さい ガラス。
2.酸化物換算の質量%で
T 12 0 1 % 2 5 %、
P 2 05 3 5 4 9 %未満、
B a 0 3 0 5 5 %、
A 12 03 0 3 %、
ただし、 P 2 0 , + Β a 0 + A 03 の合計量が、 9 3 %以下.
B 2 03 0 5 %未満、
a 2 03 0 6 %、
Y, 0 0 5 %、
G d 2 03 0 5
Figure imgf000040_0001
M g 0 0 1 %未満、
し £10 0 3 %、
S r 0 0 1 5 %、
L i 2 0 0 3 %、
N a 2 0 0 3 %、
K 2 0 0 3 %ヽ
C s 2 0 0 5 %、
B i 2 03 0 5 %、
Figure imgf000040_0002
S b 2 03 0 4 %、
上記各金属元素の一種または 二種以上の酸化物の一部または全部と置 換した弗化物の Fとしての合計量 0〜 5 %を含有し、 鉛成分を含有し ないことを特徴とする請求項 1〜請求項 6に記載の光弾性定数が小さい ガラス。
1 3.波長 644 nmにおける光弾性定数 ( ) と、 波長 436 nmにお ける光弾性定数 ( ?) との差の絶対値が 0. 1 x 1 0— 5 nm*cm— P a—1 以下であることを特徴とする請求項 1〜請求項 1 2のいずれか一 項に記載の光弾性定数が小さいガラス。
14.1 0 mm厚のガラスの反射損失を含む分光透過率が 80 %を示す波 長が 380 nm以下であることを特徴とする請求項 1〜請求項 1 3のい ずれか一項に記載の光弾性定数が小さいガラス。
PCT/JP2004/005120 2003-04-15 2004-04-09 光弾性定数が小さいガラス WO2004092087A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505378A JPWO2004092087A1 (ja) 2003-04-15 2004-04-09 光弾性定数が小さいガラス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-110394 2003-04-15
JP2003110394 2003-04-15

Publications (1)

Publication Number Publication Date
WO2004092087A1 true WO2004092087A1 (ja) 2004-10-28

Family

ID=33295951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005120 WO2004092087A1 (ja) 2003-04-15 2004-04-09 光弾性定数が小さいガラス

Country Status (2)

Country Link
JP (1) JPWO2004092087A1 (ja)
WO (1) WO2004092087A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1516862A1 (en) * 2003-09-16 2005-03-23 Kabushiki Kaisha Ohara Optical glass having a small photoelastic constant
CN102372429A (zh) * 2010-08-06 2012-03-14 旭硝子株式会社 光学玻璃

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199269A (ja) * 1997-12-26 1999-07-27 Ohara Inc 光弾性定数が小さい光学ガラス
JPH11335135A (ja) * 1997-06-17 1999-12-07 Hoya Corp 光偏光制御素子
JP2000034132A (ja) * 1998-05-15 2000-02-02 Hoya Corp 低光弾性定数ガラス、及び光学ガラス
JP2002128540A (ja) * 2000-10-17 2002-05-09 Minolta Co Ltd 光学ガラス
JP2003246642A (ja) * 2002-02-26 2003-09-02 Daiden Co Ltd ガラス及びこれを用いた光ファイバ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335135A (ja) * 1997-06-17 1999-12-07 Hoya Corp 光偏光制御素子
JPH11199269A (ja) * 1997-12-26 1999-07-27 Ohara Inc 光弾性定数が小さい光学ガラス
JP2000034132A (ja) * 1998-05-15 2000-02-02 Hoya Corp 低光弾性定数ガラス、及び光学ガラス
JP2002128540A (ja) * 2000-10-17 2002-05-09 Minolta Co Ltd 光学ガラス
JP2003246642A (ja) * 2002-02-26 2003-09-02 Daiden Co Ltd ガラス及びこれを用いた光ファイバ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROYUKI IN ET AL.: "BAO-P2O5 Glass no Teidansei Tokusei", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 111, no. 6, 1 June 2003 (2003-06-01), pages 426 - 429, XP002984689 *
MATSUSHITA, K. ET AL.: "Photoelastic Effects in Phosphate Glasses", vol. 68, no. 7, July 1985 (1985-07-01), pages 389 - 391, XP002984690 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1516862A1 (en) * 2003-09-16 2005-03-23 Kabushiki Kaisha Ohara Optical glass having a small photoelastic constant
US7088903B2 (en) 2003-09-16 2006-08-08 Kabushiki Kaisha Ohara Optical glass having a small photoelastic constant
CN102372429A (zh) * 2010-08-06 2012-03-14 旭硝子株式会社 光学玻璃

Also Published As

Publication number Publication date
JPWO2004092087A1 (ja) 2006-07-06

Similar Documents

Publication Publication Date Title
JP6033486B2 (ja) 光学ガラス、プリフォーム材及び光学素子
JP5078272B2 (ja) 光学ガラス
JP4590386B2 (ja) 光学ガラス
US6709998B2 (en) Lead-free optical heavy flint glasses
JPH09188540A (ja) ソーラリゼーションのない光学ガラス
JP4671647B2 (ja) 光弾性定数が小さい光学ガラス
JPWO2007094373A1 (ja) ガラス組成物
WO2001072650A1 (fr) Verre optique et element optique
JP2007106627A (ja) 光学ガラス
EP1516862B1 (en) Optical glass having a small photoelastic constant
WO2011052687A1 (ja) 光学ガラス、プリフォーム及び光学素子
JP7371722B2 (ja) 光学ガラスおよび光学部品
JP2008133189A (ja) 光学ガラスの製造方法
JP2011057509A (ja) 光学ガラス
JP3653669B2 (ja) 光学ガラス
EP1262462B1 (en) Optical glass
JP3426488B2 (ja) 光弾性定数が小さい光学ガラス
JP2515672B2 (ja) 青色領域で正異常部分分散を示す光学ガラス
JP3301984B2 (ja) 低光弾性定数ガラス、及び光学ガラス
JP2018002520A (ja) 光学ガラス、光学素子ブランク、および光学素子
WO2004092087A1 (ja) 光弾性定数が小さいガラス
JP3321414B2 (ja) 光偏光制御素子
TW201817691A (zh) 光學玻璃、預成形體以及光學元件
JP2018002521A (ja) 光学ガラス、光学素子ブランク、および光学素子
JPH0948631A (ja) 偏光光学系用光学ガラス

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505378

Country of ref document: JP

122 Ep: pct application non-entry in european phase