WO2004091756A1 - Ceramics honeycomb filter and method of manufacturing the same - Google Patents

Ceramics honeycomb filter and method of manufacturing the same Download PDF

Info

Publication number
WO2004091756A1
WO2004091756A1 PCT/JP2004/001763 JP2004001763W WO2004091756A1 WO 2004091756 A1 WO2004091756 A1 WO 2004091756A1 JP 2004001763 W JP2004001763 W JP 2004001763W WO 2004091756 A1 WO2004091756 A1 WO 2004091756A1
Authority
WO
WIPO (PCT)
Prior art keywords
water collecting
ceramic honeycomb
honeycomb filter
fluid
cell
Prior art date
Application number
PCT/JP2004/001763
Other languages
French (fr)
Japanese (ja)
Inventor
Tomonori Ito
Tatsuo Baba
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Publication of WO2004091756A1 publication Critical patent/WO2004091756A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/003Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions including coalescing means for the separation of liquid
    • B01D46/0031Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions including coalescing means for the separation of liquid with collecting, draining means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24494Thermal expansion coefficient, heat capacity or thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2488Triangular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2492Hexagonal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/2496Circular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • B01D63/066Tubular membrane modules with a porous block having membrane coated passages
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms

Definitions

  • the present invention relates to a ceramic honeycomb filter and a method for manufacturing the same. More specifically, the present invention relates to a ceramic honeycomb filter capable of effectively preventing a fluid to be filtered and a filtration fluid from staying inside and supplying a high-purity filtration fluid, and a method for manufacturing the same.
  • a ceramic honeycomb filter having cells partitioned by porous partition walls has been used as a filter for solid-liquid separation or gas-solid separation.
  • This ceramic honeycomb filter has better physical strength, durability, corrosion resistance, etc. than organic polymer films used for similar applications. In a wide range of fields such as the field, it is suitably used for removing suspended substances, bacteria, dust and the like in liquids and gases.
  • a large number of parallel-shaped porous bodies formed in the longitudinal direction of the cylindrical porous body were used.
  • a filter membrane 22 having a smaller diameter than the porous body is formed on the inner peripheral surface of the flow path (cell) 21.
  • a slit-like void (water collecting slit) 23 is provided in the longitudinal direction of the porous body, and a flow path (water collecting cell) 21 communicating with the void (water collecting slit) 23 is formed at one end of a 2 a.
  • a flow passage (water collecting cell) whose end is sealed with a clogging member 24 Ritsuto) 2 3 ceramic honeycomb fill evening 2 0 capable of flowing out to the outside via has been proposed (e.g., JP-2 0 0 0 1 5 3 1 1 7 JP).
  • the filtration membrane 22 is formed. This improves filtration performance, and the provision of voids (water collection slits) 23 increases the flow rate.
  • the clogging member 24 that seals the end of the flow passage (water collecting cell) 21a simply has a structure in which the fluid to be filtered is merely a flow passage (water collecting cell) 21a. It was only recognized that it would be enough to prevent intrusion into the interior, and when the clogging member 24 was filled too deeply, the flow passage (collection cell) 21 a was filled Since the clogging member 24 protrudes from the gap (water collection slit) 23 and causes troubles and repairs, it is necessary to reach only the minimum necessary position where the inflow of the fluid to be filtered can be prevented. Was not filled. Therefore, in the flow passage (water collecting cell) 2 la, between the end of the clogging member 24 and the gap (water collecting slit) 23, the portion where the filtered fluid to be discharged stays (the liquid reservoir) 2) 25 were formed.
  • the ceramic honeycomb filter 20 may be periodically cleaned using a chemical solution.
  • the chemical solution used for this cleaning stays in the above-described liquid pool 25 and the ceramic honeycomb film 20 starts cleaning. It was not possible to completely remove the solution, and the accumulated drug solution gradually diffused and contaminated the filtered fluid.
  • the filtration membrane slurry containing a solid component to become the filtration membrane 22 is reduced to a predetermined pressure under reduced pressure.
  • the present invention has been made in view of the above problems, and has a ceramic honeycomb filter capable of effectively preventing a fluid to be filtered and a filtration fluid from staying inside and supplying a high-purity filtration fluid. A method for manufacturing the same is provided.
  • the present invention provides the following ceramic honeycomb filter and a method for manufacturing the same.
  • a plurality of membrane filtration cells serving as flow paths for a fluid to be filtered which are partitioned by a porous partition wall made of ceramics, and a filtration membrane is disposed inside the partition wall;
  • the membrane filtration cell and the water collection cell An outer wall surrounding the outer wall, and a portion separated by a predetermined length from both ends of each of the water collecting cells on the outer wall for allowing the filtered fluid that has passed through the water collecting cell to flow outside.
  • each of the plurality of communication holes formed in the clogging member has a portion having a hole diameter of 20 zm or less.
  • Each of the plurality of membrane filtration cells having a cross section perpendicular to the flow direction of the fluid to be filtered has a circular, elliptical, oval, triangular, quadrangular, pentagonal, hexagonal,
  • each of the plurality of water collection cells having a cross section perpendicular to the flow direction of the filtration fluid is from a circle, an ellipse, an oval, a triangle, a square, a pentagon, a hexagon, and a heptagon.
  • the raw material is extruded to obtain an unsintered filter molded body having a predetermined shape having cells serving as flow paths for the fluid to be filtered and the filtered fluid.
  • An unsintered filter molded body with a water collecting slit is obtained by forming a water collecting slit that penetrates the predetermined cell from one part and communicates with the other part to obtain an unsintered filter molded body with the water collecting slit.
  • a body is filled with a clogging material from each end face of the predetermined cell to the water collecting slit penetrating the predetermined cell to obtain a plugged material-filled unfired filled rubber molded body.
  • the ceramic honeycomb filter of the present invention can effectively prevent the fluid to be filtered and the filtration fluid from staying inside, and can supply the filtration fluid with high cleanliness.
  • FIGS. 1 (a) and 1 (b) are explanatory views schematically showing one embodiment of the ceramic honeycomb filter of the present invention, and FIG. 1 (a) shows a part of the ceramic honeycomb filter.
  • FIG. 1 (b) is a cross-sectional view cut along a plane including the central axis.
  • 2 (a) and 2 (b) are cross-sectional views showing a step of filling a predetermined cell with a plugging material in one embodiment of the method for manufacturing a ceramic honeycomb filter according to the present invention. .
  • FIG. 3 is a cross-sectional view schematically showing a conventional ceramic honeycomb filter.
  • FIG. 4 is a cross-sectional view showing a step of filling a predetermined cell with a plugging material in a conventional method for manufacturing a ceramic honeycomb filter.
  • FIGS. 1 (a) and 1 (b) are explanatory views schematically showing one embodiment of the ceramic honeycomb filter of the present invention, and FIG. 1 (a) is a part of the ceramic honeycomb filter.
  • FIG. 1 (b) is a cross-sectional view taken along a plane including the central axis.
  • the ceramic honeycomb filter 1 of the present embodiment is divided by a porous partition wall 2 made of ceramics, and a filtration membrane 3 is provided therein.
  • a plurality of membrane filtration cells 4 serving as flow paths for the fluid to be filtered, and a plurality of membrane filtration cells 4 which are partitioned by the partition walls 2 and are adjacent to the predetermined membrane filtration cells 4 with the partition walls 2 interposed therebetween.
  • a columnar ceramic honeycomb filter 1 is shown, but the shape of the ceramic honeycomb filter 1 of the present embodiment is not limited to a columnar shape, and is not limited to a central axis.
  • the shape of the cross section in the vertical plane may be a columnar shape such as a quadrangle.
  • the fluid to be filtered flows into the inside of the membrane filtration cell 4 from the end face, and passes through the filtration membrane 3 disposed inside the membrane filtration cell 4.
  • the fluid to be filtered is filtered, and the filtered fluid that has been filtered by the filtration membrane 3 flows into the water collecting cell 5 via the porous partition wall 2 and is collected from the water collecting cell 5 through the water collecting cell 5.
  • the water flows into the water slit 7 and flows out of the water collecting slit 7 formed in the outer wall 6 to the outside.
  • a configuration may be adopted in which a part of the filtration fluid filtered by the filtration membrane 3 does not flow into the water collecting cell 5 from the partition 2 but flows out through the outer wall 6 to the outside.
  • the ceramic honeycomb filter 1 of the present embodiment has a configuration including the water collecting slits 7 so that the water flow resistance is reduced and the ceramic honeycomb filter 1 has excellent water permeability. Also, in a conventional ceramic honeycomb filter provided with a water collecting cell, a portion of the water collecting cell in which the filtered fluid to flow out stagnates between the end of the clogging member and the water collecting slit (liquid reservoir). When some of the filtration fluid stays in the liquid pool, various bacteria and the like propagate and contaminate the entire filtration fluid, and the chemical used for cleaning the ceramic honeycomb filter becomes in the liquid pool.
  • the ceramic honeycomb filter 1 of the present embodiment has a problem that the clogging member 8 Since the space from each end face to the water collecting slit 7 is filled, a portion where the filtration fluid or the chemical solution stays is not formed, and the filtration fluid is not contaminated. No.
  • the fluid to be filtered flows directly from the partition 2 at the end face of the ceramic honeycomb filter 1 and is filtered by the filtration membrane 3 on the inner surface of the membrane filtration cell 4.
  • a seal portion 9 is formed so as to cover the partition 2 at the end face of the ceramic honeycomb fill 1.
  • the seal portion 9 is formed by applying a glaze such as silica glass to the end face of the ceramic honeycomb filter 1 and firing the same.
  • the shape of the ceramic honeycomb filter 1 Is cylindrical, its end face diameter is 180 mm and its axial length is 100 mm, the shape of the opening of the water collecting slit 7 formed in the outer wall 6 is one side
  • the length is 20 to 80 mm, which is oval, square or rectangular.
  • the clogging member 8 is filled in the space from each end face of the water collecting cell 5 to the water collecting slit 7, but in this embodiment,
  • the phrase "filled in the space from each end face of the water collecting cell 5 to the water collecting slit 7" means that the water collecting cell 5 is filled from the viewpoint of accuracy when filling the clogging member 8.
  • the partition wall 2 of the ceramic honeycomb fill 1 is made of, for example, a kneaded clay obtained by mixing an aggregate binder and an inorganic binder with an organic binder such as methylcellulose, a dispersant, and water. It can be formed by extrusion molding with a honeycomb molding machine.
  • a kneaded clay obtained by mixing an aggregate binder and an inorganic binder with an organic binder such as methylcellulose, a dispersant, and water. It can be formed by extrusion molding with a honeycomb molding machine.
  • the aggregate particles at least one compound selected from the group consisting of alumina, mullite, selven, and cordierite can be suitably used.
  • the inorganic binder at least one compound selected from the group consisting of alumina, silica, zirconia, titania, glass frit, feldspar, and cordierite can be suitably used.
  • the same material as that of the partition wall 2 described above can be suitably used, and for example, at least one selected from the group consisting of alumina, mullite, uß, and coalite It is preferably formed from a porous material containing one material.
  • the plugging material (plugging material slurry) used in the manufacturing process includes the plugging member 8 in the ceramics 82 cam filter 1 obtained from each end face of the water collecting cell 5 to the water collecting slit 7. It is preferable to use a material to which a binder, a thickener and a water retention agent are further added so that is filled.
  • the configuration of the plugging material (plugging material slurry) will be specifically described when a method for manufacturing a ceramic honeycomb filter is described.
  • the clogging member 8 is preferably coarse enough to discharge moisture contained in the filtration membrane slurry used when forming the filtration membrane 3, and more specifically, a plurality of communication holes are formed. It is preferable to be constituted by the formed porous body. Further, when the clogging member 8 is formed of a porous body having a plurality of communication holes formed therein, it is preferable that each of the plurality of communication holes has a portion having a hole diameter of 20 zm or less. In the present embodiment, it is preferable that the porosity of the clogging member 8 is 25 to 50%.
  • the filtration membrane 3 is formed.
  • the solid component contained in the filtration membrane slurry used for It may pass through and enter the water collection cell 5. If the porosity is less than 25%, it may be difficult to discharge water contained in the filtration membrane slurry used for forming the filtration membrane 3.
  • the communication hole in the present embodiment is a pore communicating from one part of the surface of the clogging member 8 to another part. Further, it is preferable that the clogging member 8 is uniformly filled so that there is no void whose volume exceeds 0.065 mm 3 . The volume 0.
  • the coefficient of thermal expansion of the clogging member 8 is lower than or equal to the coefficient of thermal expansion of the partition 2. If the coefficient of thermal expansion of the clogging member 8 is larger than the coefficient of thermal expansion of the partition 2, the clogging member 8 may expand during firing, and the partition 2 may be damaged.
  • each of the cross-sections of the plurality of membrane filtration cells 4 perpendicular to the flow direction of the fluid to be filtered is a circle
  • the shape of the membrane filtration cell 4 is The shape is not limited to this, and for example, is preferably at least one shape selected from the group consisting of a circle, an ellipse, an oval, a rectangle, a rectangle, a pentagon, a hexagon, and a heptagon.
  • the shape of the water collection cells 5 is not limited to this.
  • the shape is preferably at least one selected from the group consisting of a circle, an ellipse, an oval, a triangle, a rectangle, a pentagon, a hexagon, and a heptagon.
  • the filtration membrane 3 disposed inside the membrane filtration cell 4 preferably contains titania, alumina, or both.
  • the filtration membrane 3 has an average pore diameter smaller than the average pore diameter of the partition walls 2, and for example, preferably has an average pore diameter of 0.1 to 1.0 / zm.
  • the filtration membrane is an intermediate membrane having an average pore diameter in the middle between the partition wall and the upper filtration membrane, wherein the filtration membrane is an upper filtration membrane. Configuration further equipped with It may be.
  • the raw material is extruded using, for example, a vacuum extruder to obtain an unsintered filter molded body having a predetermined shape and having cells serving as flow paths of the fluid to be filtered and the filtered fluid.
  • the raw materials are described as a preferred material for the partition wall 2 of the ceramic honeycomb filter 1 shown in FIG. 1 (a), by adding an organic binder such as methyl cellulose, a dispersant, and water to the aggregate particles and the inorganic binder.
  • an organic binder such as methyl cellulose, a dispersant, and water
  • a kneaded clay that is mixed using a kneader or a kneader can be suitably used.
  • a water collecting slit is formed in the obtained green body from one part of the side surface of the green body through a predetermined cell to communicate with the other part, and the green body with the water collecting slit is formed.
  • the water collecting slit is formed by grooving the outer wall of the part where the water collecting slit is formed at the time of molding, breaking the water collecting cell wall at the outer periphery with a grindstone, and then collecting the water with a jig having a sharp tip. It can be formed by piercing a water cell.
  • the water collecting slit is used as a part for installing a sealing member that separates the fluid to be filtered from the filtered fluid at the end of the ceramic honeycomb filter, which is the final product, when it is installed in water purification equipment. If a defect occurs in the gripping part that grips the end face in the filtration film forming process described later, it is necessary to remove the defective part by a maximum of about 30 mm. In consideration of the occurrence of cracks, it is preferable to form the unsintered filter formed body with the water collecting slit on a side surface about 55 mm away from the end face. The steps so far can be performed according to a conventional method for manufacturing a ceramic honeycomb filter.
  • a predetermined cell 1 Fill the space up to the water collecting slit 7 penetrating 2 with the plugging material (plugging material slurry) 13 to obtain a plugged material-filled unfired filter molded body.
  • films 11 (masking) of polyester or the like are attached to both end surfaces of the unsintered filter molded body 10 with the water collecting slit, and holes are formed in portions corresponding to predetermined cells 12.
  • the end face of the unsintered filter molded body 10 with the water collecting slit, to which the film 11 is attached is pressed into a container 14 filled with the clogging material 13 and an air cylinder is further provided.
  • pressurization is performed at 200 kgf / cm 2 to fill a predetermined cell 12 with the clogging material.
  • the plugging material 13 used in the present embodiment includes an aggregate particle, an inorganic binder, and the like, so that the plugging material 13 can be filled in a predetermined cell 12 until it reaches the water collecting slit. It is preferable that the composition contains a binder, a thickener and a water retention agent.
  • the aggregate particles and the inorganic binder those similar to the aggregate particles and the inorganic binder used when producing the unfired filter molded body can be suitably used.
  • the binder that forms the plugging material 13 has the function of increasing the drying strength of the plugging material 13 at the time of drying and preventing the occurrence of cracks during drying, and is made of polyvinyl alcohol, polyethylene glycol, starch, and clay. It is preferably at least one compound selected from the group consisting of:
  • the filler 13 preferably contains 0.08 to 0.12 parts by mass of the binder with respect to 100 parts by mass of the aggregate particles. If the amount of the binder is less than 0.08 parts by mass, cracks may occur when the plugging material 13 is dried. When the amount of the binder exceeds 0.12 parts by mass, the strength of the plugging material 13 is increased, and cracks may be generated in the unsintered filled molded article 10 having the water collecting slit.
  • the thickening agent constituting the plugging material 13 is made of a filler 1 such that the plugging material 13 can be easily inserted into a predetermined cell 12 of the unsintered filter molded body 10 with a water collecting slit. 3 has the function of developing an appropriate viscosity, and methylcellulose, lipoxyl methylcellulose, and the like can be suitably used.
  • the filler 13 preferably contains the thickener in an amount of 0.04 to 0.1 part by mass with respect to 100 parts by mass of the aggregate particles. If the amount of the thickener is less than 0.04 parts by mass, the plugging material 13 does not enter the predetermined cell 12 smoothly, and it is difficult to fill the plugging material 13 to a predetermined depth. It can be. If the amount of the thickener exceeds 0.1 parts by mass, the depth of the plugging material 13 filled in each cell 12 differs, and the plugging material 13 is uniformly filled to a predetermined depth. Can be difficult.
  • the water retaining agent constituting the plugging material 13 absorbs the water content of the plugging material 13 into the dried green filter molded body 10 with the water collecting slit. It functions to prevent solidification and to allow the clogging material 13 to uniformly penetrate to a predetermined depth.
  • the water retention agent starch, glycerin and the like can be suitably used.
  • the plugging material 13 preferably contains 5 to 6 parts by mass of the water retention agent with respect to 100 parts by mass of the aggregate particles.
  • the water retention agent is less than 5 parts by mass, when filling the plugging material 13, the moisture of the plugging material 13 is instantaneously absorbed by the unsintered filled molded product 10 with the water collecting slit, and It may not be possible to fill the filling material 13 to the specified depth. If the water retention agent exceeds 6 parts by mass, the plugging material 13 may not be sufficiently dried by drying before firing, and cracks may be generated during firing.
  • the obtained unfired filter-filled filter molded product is fired, for example, at 900 to 140 ° C. to obtain a filter-filled filter molded product.
  • a filter membrane is formed on the inner peripheral surface of a predetermined cell constituting the obtained plugged material-filled filter molded body, and then fired.
  • a method for forming a filtration membrane for example, when forming a filtration membrane composed of an intermediate membrane and an upper filtration membrane having a smaller pore size than the intermediate membrane, first, an intermediate membrane is formed. Is formed.
  • the interlayer slurry is composed of 100 parts by mass of a ceramic raw material such as alumina, mullite, titania, cordierite, etc., having the same material as the green compact and having an average particle size of 3.2 m. It can be formed by adding 100 parts by mass of water.
  • an inorganic binder for film may be added to the intermediate film slurry in order to increase the film strength after firing.
  • the inorganic binder for the film clay, kaolin, titania sol, silica sol, glass frit, or the like can be used, and the addition amount is preferably 5 to 20 parts by mass from the viewpoint of the film strength.
  • This intermediate film slurry was formed on the surface of each cell using an apparatus disclosed in Japanese Patent Application Laid-Open No. Sho 61-238338, dried, and then dried at a predetermined firing temperature, for example, 900 It can be sintered at up to 150 ° C. and fixed to a plugging material-filled filter to form an intermediate film.
  • an upper filtration membrane slurry for forming an upper filtration membrane is formed.
  • the upper-layer filtration membrane slurry is, for example, a ceramic material such as alumina, mullite, titania, cordierite, or the like, having an average particle diameter of 0.4 m and the same material as the unfired filter molded body, or a coefficient of thermal expansion higher than these ceramic materials. It can be formed by adding 100 parts by mass of water to 100 parts by mass of a material having a small content. Also, this upper filtration membrane An inorganic binder for a film may be added to the slurry in order to increase the film strength after firing.
  • the inorganic binder for the film clay, kaolin, titania sol, silica sol, glass frit, or the like can be used.
  • the addition amount is preferably 5 to 20 parts by mass from the viewpoint of the film strength.
  • This upper-layer filtration membrane slurry was formed on the surface of the intermediate membrane using an apparatus disclosed in Japanese Patent Application Laid-Open No. Sho 61-238338, dried, and then dried at a predetermined firing temperature 90 °. It can be sintered at 0 to 150 ° C. and adhered to the intermediate film formed on the filter-filled filter molded body to form a filtration membrane.
  • the filtration membrane slurry (the intermediate membrane slurry and the upper filtration membrane slurry)
  • the water and the like contained in the water remain in the liquid pool and do not lift and separate the filtration membrane, and the filtration membrane can be formed normally over the entire area of the predetermined cell.
  • a defect may occur in the gripping portion that grips the end face, so that the end face of the formed clogging material-filled molded product is set to 30%. Cut about mm.
  • a glaze such as glass frit is applied to the cut and newly formed end face of the filler-filled molded product, dried once, and then fired at 900 to 140 ° C.
  • the conditions for applying and firing the glaze can be determined according to the conventional method of manufacturing ceramic honeycomb fillers.
  • the ceramic honeycomb filter thus obtained effectively prevents the fluid to be filtered and the filtered fluid from staying inside, and can supply a highly clean filtered fluid.
  • alumina having a predetermined average particle size as an aggregate particle and glass frit as an inorganic binder were mixed at a mass ratio of 9: 1.
  • Parts by mass, water and 4.5 parts by mass of methylcellulose as an organic binder, and 1 part by mass of a dispersant were added and kneaded to obtain a kneaded material.
  • electrofused alumina having a raw material particle size of 0.2 to 0.5 mm and an alumina purity of 99.8% was pulverized by a dry method for a predetermined time, and the average particle sizes were 30 rn and 50, respectively.
  • m, 100 m were designated as alumina A, alumina B, and alumina C.
  • a clogging material is placed in each of the obtained unsintered filter molded bodies with water collecting slits in a space from each end face of a predetermined cell to a water collecting slit penetrating the predetermined cell. Filling was performed to obtain a plugged material-filled green compact.
  • a material obtained by mixing aggregate particles, an inorganic binder, a binder, a thickener, and a water retention agent in the proportions shown in Tables 1 and 2 was used as a plugging material.
  • Example 1 Alumina A 30 95 5 0.1 0. 05 5.6 22
  • Example 2 Alumina A 30 90 10 0.1 0.15 5.6 22
  • Example 3 Alumina A 30 85 15 0. 1 0.05 5.6 22
  • Example 4 Alumina B 50 90 10 0.1 0.15 5.6 22
  • Example 5 Alumina C 100 90 10 0.1.05 5.6 22
  • Example 6 Alumina B 50 90 10 0.06 0.05 5.6 22
  • Example 7 Alumina B 50 90 10 0.08 0.05 5.6 22
  • Example 8 Alumina B 50 90 10 0.12 0.05 5.6 22
  • Example 9 Alumina B 50 90 10 0.14 14.05 5.6.22
  • Example 10 Alumina B 50 90 10 0.10.02 5.6.22 Example 11 Alumina B 50 90 10 0.1.08.6.22 Example 12 Alumina B 50 90 10 0. 1 0.10 5.6 22 Example 13 Alumina B 50 90 10 0.1 0.1 0.25 5.622 Example 14 Alumina B 50 90 10 0.1.05 4.8.22 Example 15 Alumina B 50 90 10 0.10.05 5.4 22 Example 16 Alumina B 50 90 10 0.1.05 6.022 Example 17 Alumina B 50 90 10 0.1.05 6.22 22
  • the ratio (%) of the shrinkage defect of the plugging material in the dried state of the plugging material-filled unsintered fill molding was measured.
  • the shrinkage defect of the plugging material is a defect in the center of the plugging material filling portion when moisture is supplied to the filling portion after the portion filled with the plugging material is dried.
  • the ratio of clogging defect of clogging material (%) is a value calculated by calculating the ratio (%) of the number of clogging defect of clogging material to the number of cells filled with clogging material. The results are shown in Tables 3 and 4.
  • Example 10 2 ⁇ 0.8 10.23 37 13 13 ⁇ Example 11 2 ⁇ 0 10.1 36 ⁇ 16 ⁇ Example 12 1 ⁇ 0.3.2 35 ⁇ 15 ⁇ Example 13 2 ⁇ 0. 5 9.93 6 ⁇ 17 ⁇ Example 14 3 ⁇ 2. 5 9.93 6 ⁇ 15 ⁇ Example 15 2 ⁇ 1.9 10.1 36 ⁇ 15 ⁇ Example 16 2 ⁇ 2. 1 10. 2 35 ⁇ 16 ⁇ Example 17 1 ⁇ 2. 5 10. 0 36 ⁇ 18 ⁇
  • the obtained plugged material-filled unfired filter molded body is fired to obtain a plugged material-filled filter molded product, and the inner peripheral surface of a predetermined cell constituting the obtained plugged material-filled filter molded product.
  • a filter membrane was formed, dried and fired, and the end face was cut to a predetermined length.
  • the dry processability of the fired filter material filled with plugging material was evaluated by checking whether sparks fly from the cutting blade that cuts each filter-filled plugging material. The results are shown in Tables 3 and 4. If the amount of the inorganic binder contained in the plugging material is large, the strength of the fired plugging material filled filter molded body increases and sparks may fly from the cutting blade at the time of cutting, resulting in poor machinability. The sample that could be cut well without cutting was marked as ⁇ , and the spark was slightly blown, but the cut was satisfactorily cut as ⁇ . Those that were no longer rated are X. The results are shown in Tables 3 and 4.
  • the crack occurrence rate (%) was measured at the portion filled with the plugging material.
  • the crack occurrence rate (%) is a value calculated by calculating the ratio (%) of the number of cracked cells to the number of cells filled with clogging material. The results are shown in Tables 3 and 4.
  • each ceramic honeycomb filter was molded into a block shape, and a test piece having a width of 10 mm, a thickness of 5 mm, and a length of 50 mm was cut out. A three-point bending strength measurement with a distance between supports of 30 mm was performed. The results are shown in Tables 3 and 4.
  • Each ceramic honeycomb filter is immersed in water, the water collecting slit provided near one end face of each ceramic honeycomb filter is closed, air is sent from the other water collecting slit, and foam is generated from each ceramic 82 cam filter.
  • the foaming test was performed by measuring the pressure at that time. The results are shown in Tables 3 and 4. In the foaming test evaluation, if no foaming is seen from the clogging member and the outer wall when pressurized at 8 kPa, it is judged as ⁇ , and if foaming is not seen when pressurized at 6 kPa Is indicated by ⁇ , and X is indicated when foaming is observed when pressurized at 3 kPa. The results are shown in Tables 3 and 4.
  • the fluid to be filtered flows in from one end face of each ceramic honeycomb filter. It was measured whether filtration fluid stayed between the water collecting slit and the clogging member when the purification was performed. If there was no stay, it was marked as ⁇ , and if there was stay, it was marked as X. The results are shown in Tables 3 and 4.
  • a ceramic honeycomb filter was manufactured in the same manner as in the above-described example except that a molded body was obtained, and the same measurement was performed. Tables 5 and 6 show the composition of the clogging material and the results of each measurement.
  • Binder Thickener Water retention agent Water Average particle size
  • the ceramic honeycomb filters of Examples 1 to 17 were obtained from each end face of a given cell until reaching the water collection slit penetrating the given cell. Since the space was filled with the clogging material, there was no stagnation of the filtered fluid in the above-mentioned space, and a highly clean filtered fluid could be supplied.
  • the ceramic honeycomb fills of Examples 1 to 17 show excellent values in the percentage of shrinkage defects of the plugging material (%), dry workability, crack occurrence rate (%), and foaming inspection.
  • the pore size (m) and the porosity (%) were suitable for use as a filter.
  • the ceramic honeycomb filter of the present invention can effectively prevent the fluid to be filtered and the filtered fluid from staying inside, and can supply a highly purified filtered fluid.
  • a wide range of fields such as water treatment, exhaust gas treatment, and pharmaceutical and food fields, it can be suitably used for removing suspended substances, bacteria, dust and the like in liquids and gases.

Abstract

A ceramics honeycomb filter (1), comprising a plurality of membrane filtration cells (4) separated from each other through a porous ceramics partition wall (2), having filtration membranes (3) disposed therein, and forming flow passages for filtrated fluid, a plurality of water collecting cells (5) separated from each other through the partition wall (2), positioned adjacent to the specified membrane filtration cells (4) through the partition wall (2), and forming the flow passages for the filtrated fluid produced by filtrating the fluid to be filtrated by the filtration membranes (3), an outer wall (6) surrounding the membrane filtration cells (4) and the water collecting cells (5), water collecting slits (7) passed from one portions of the outer wall (6) to the other portions of the outer wall (6) through the water collecting cells (5) at the positions of the outer wall (6) apart specified distances from both end parts of the water collecting cells (5) for flowing out the filtrated fluid passed through the water collecting cells (5) to the outside, and porous sealing member (8) filled in spaces ranging from the end faces of the water collecting cells to the water collecting slits (7). The ceramics honeycomb filter can supply the filtrated fluid with high cleanliness by effectively preventing the fluid to be filtrated and the filtrated fluid from accumulating therein.

Description

明 細 書  Specification
セラミックスハニカムフィルタ及びその製造方法 技術分野  Ceramic honeycomb filter and method for manufacturing the same
本発明は、 セラミックスハニカムフィルタ及びその製造方法に関する。 さらに 詳しくは、 被濾過流体及び濾過流体が内部に滞留することを有効に防止し、 清浄 度の高い濾過流体を供給することが可能なセラミックスハニカムフィルタ及びそ の製造方法に関する。 背景技術  The present invention relates to a ceramic honeycomb filter and a method for manufacturing the same. More specifically, the present invention relates to a ceramic honeycomb filter capable of effectively preventing a fluid to be filtered and a filtration fluid from staying inside and supplying a high-purity filtration fluid, and a method for manufacturing the same. Background art
近年、 固液分離あるいは気固分離用のフィル夕として、 多孔質の隔壁によって 区画されたセルを有するセラミックスハニカムフィルタが用いられている。 この セラミックスハニカムフィル夕は、 同様の用途に用いられる有機高分子膜等と比 較して、 物理的強度、 耐久性、 耐蝕性等に優れるため、 水処理ゃ排ガス処理、 あ るいは医薬 ·食品分野等の広範な分野において、 液体やガス中の懸濁物質、 細菌 、 粉塵等の除去に好適に用いられている。  In recent years, a ceramic honeycomb filter having cells partitioned by porous partition walls has been used as a filter for solid-liquid separation or gas-solid separation. This ceramic honeycomb filter has better physical strength, durability, corrosion resistance, etc. than organic polymer films used for similar applications. In a wide range of fields such as the field, it is suitably used for removing suspended substances, bacteria, dust and the like in liquids and gases.
このようなセラミックスハニカムフィル夕においては、 通水量を増加させると ともに、 濾過性能を向上させる観点から、 図 3に示すように、 筒状の多孔体の長 手方向に形成された、 多数の平行な流通路 (セル) 2 1の内周面に、 多孔体の孔 に比してさらに孔径の小さい濾過膜 2 2を形成するとともに、 多孔体中心近傍の 流通路からの通水量を増加するために、 多孔体の長手方向にスリット状の空隙部 (集水スリット) 2 3を設け、 かつ空隙部 (集水スリット) 2 3に連通する流通 路 (集水セル) 2 1 aの緣端部を目詰部材 2 4により封止し、 濾過膜 2 2を形成 した流通路 (膜濾過セル) 2 1 bに供給した被濾過流体を濾過膜 2 2で濾過し、 濾過した濾過流体を、 縁端部を目詰部材 2 4により封止した流通路 (集水セル) 2 1 aから空隙部 (集水スリツト) 2 3を経由して外部に流出することが可能な セラミックスハニカムフィル夕 2 0が提案されている (例えば、 特開 2 0 0 0— 1 5 3 1 1 7号公報) 。  In such a ceramic honeycomb filter, as shown in Fig. 3, from the viewpoint of increasing the water flow rate and improving the filtration performance, a large number of parallel-shaped porous bodies formed in the longitudinal direction of the cylindrical porous body were used. In order to increase the amount of water flowing from the flow passage near the center of the porous body, a filter membrane 22 having a smaller diameter than the porous body is formed on the inner peripheral surface of the flow path (cell) 21. In addition, a slit-like void (water collecting slit) 23 is provided in the longitudinal direction of the porous body, and a flow path (water collecting cell) 21 communicating with the void (water collecting slit) 23 is formed at one end of a 2 a. Is sealed by a clogging member 24, and the fluid to be filtered supplied to the flow path (membrane filtration cell) 21b in which the filtration membrane 22 is formed is filtered by the filtration membrane 22. A flow passage (water collecting cell) whose end is sealed with a clogging member 24 Ritsuto) 2 3 ceramic honeycomb fill evening 2 0 capable of flowing out to the outside via has been proposed (e.g., JP-2 0 0 0 1 5 3 1 1 7 JP).
上述したセラミックスハニカムフィルタ 2 0においては、 濾過膜 2 2を形成す ることで濾過性能を向上させ、 かつ空隙部 (集水スリット) 2 3を設けることで 通水量を増加させている。 In the above-described ceramic honeycomb filter 20, the filtration membrane 22 is formed. This improves filtration performance, and the provision of voids (water collection slits) 23 increases the flow rate.
しかしながら、 上述したセラミックスハニカムフィルタにおいては、 流通路 ( 集水セル) 2 1 aの緣端部を封止する目詰部材 2 4は、 単に被濾過流体が流通路 (集水セル) 2 1 a内に侵入することを防止することができればよいという程度 の認識しかされていなかつたため、 また、 余りにも深くまで目詰部材 2 4を充填 すると、 流通路 (集水セル) 2 1 aに充填した目詰部材 2 4が空隙部 (集水スリ ット) 2 3からはみ出して欠陥の原因や修正の手間が掛かるため、 被濾過流体の 侵入を防止することができる必要最低限の位置までにしか充填されていなかった 。 このため、 流通路 (集水セル) 2 l a内の、 目詰部材 2 4端部から空隙部 (集 水スリット) 2 3までの間に、 流出されるべき濾過流体が滞留する部分 (液溜ま り) 2 5が形成されていた。  However, in the above-described ceramic honeycomb filter, the clogging member 24 that seals the end of the flow passage (water collecting cell) 21a simply has a structure in which the fluid to be filtered is merely a flow passage (water collecting cell) 21a. It was only recognized that it would be enough to prevent intrusion into the interior, and when the clogging member 24 was filled too deeply, the flow passage (collection cell) 21 a was filled Since the clogging member 24 protrudes from the gap (water collection slit) 23 and causes troubles and repairs, it is necessary to reach only the minimum necessary position where the inflow of the fluid to be filtered can be prevented. Was not filled. Therefore, in the flow passage (water collecting cell) 2 la, between the end of the clogging member 24 and the gap (water collecting slit) 23, the portion where the filtered fluid to be discharged stays (the liquid reservoir) 2) 25 were formed.
このため、 前述した液溜まり 2 5に、 濾過流体の一部が滞留して雑菌等が繁殖 し、 濾過流体全体を汚染することが問題となっていた。 また、 セラミックスハニ カムフィル夕 2 0は、 定期的に薬液を用いて洗浄を行うことがあるが、 この洗浄 に使用した薬液が前述した液溜まり 2 5に滞留してセラミツクスハ二カムフィル 夕 2 0から完全に取り除くことができず、 滞留した薬液が徐々に拡散して濾過流 体を汚染することが問題となっていた。 また、 図 4に示すように、 セラミックス ハニカムフィル夕 2 0を構成する濾過膜 2 2の成膜工程は、 減圧下において、 濾 過膜 2 2となる固形成分を含んだ濾過膜スラリーを所定の流通路 (膜濾過セル) 2 1 bに流し込み、 流し込んだ濾過膜スラリーに含まれる固形成分 2 2 aを流通 路 (膜濾過セル) 2 1 bの内面に付着させた後に、 大気圧下において乾燥するこ とによって行われるが、 固形成分 2 2 aが除去された後の濾過膜スラリーの水分 2 2 bが前述した液溜まり 2 5に滞留し、 成膜終了後の大気圧への復元に伴い濾 過膜スラリーの水分 2 2 bが隔壁 2 6を透過して移動し、 流通路 (膜濾過セル) 2 1 bの内面に付着させたばかりの濾過膜 2 2を浮き上がらせて剥離させてしま うという問題があった。 ' 発明の開示 本発明は、 上述の問題に鑑みなされたもので、 被濾過流体及び濾過流体が内部 に滞留することを有効に防止し、 清浄度の高い濾過流体を供給することが可能な セラミックスハニカムフィル夕及びその製造方法を提供する。 For this reason, there has been a problem that a part of the filtration fluid stays in the above-mentioned liquid reservoir 25 and bacteria and the like propagate, and contaminate the entire filtration fluid. In addition, the ceramic honeycomb filter 20 may be periodically cleaned using a chemical solution. However, the chemical solution used for this cleaning stays in the above-described liquid pool 25 and the ceramic honeycomb film 20 starts cleaning. It was not possible to completely remove the solution, and the accumulated drug solution gradually diffused and contaminated the filtered fluid. In addition, as shown in FIG. 4, in the step of forming the filtration membrane 22 constituting the ceramic honeycomb filter 20, the filtration membrane slurry containing a solid component to become the filtration membrane 22 is reduced to a predetermined pressure under reduced pressure. Flowed into the flow channel (membrane filtration cell) 21b, solid components 22a contained in the poured filtration membrane slurry are attached to the inner surface of the flow channel (membrane filtration cell) 21b, and then dried under atmospheric pressure After the solid components 22a are removed, the water 22b of the filtration membrane slurry stays in the above-mentioned liquid pool 25, and is restored to the atmospheric pressure after the film formation is completed. The water 22 b of the filtration membrane slurry moves through the partition wall 26 and lifts and separates the filtration membrane 22 that has just adhered to the inner surface of the flow passage (membrane filtration cell) 21 b. There was a problem. '' Disclosure of the Invention SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a ceramic honeycomb filter capable of effectively preventing a fluid to be filtered and a filtration fluid from staying inside and supplying a high-purity filtration fluid. A method for manufacturing the same is provided.
上述の目的を達成するため、 本発明は、 以下のセラミックスハニカムフィル夕 及びその製造方法を提供するものである。  In order to achieve the above object, the present invention provides the following ceramic honeycomb filter and a method for manufacturing the same.
[1] セラミックスからなる多孔質の隔壁によって区画され、 その内部に濾過 膜が配設された、 被濾過流体の流路となる複数の膜濾過セルと、 前記隔壁によつ て区画されるとともに前記隔壁を挟んで所定の前記膜濾過セルに隣接し、 前記被 濾過流体が前記濾過膜によって濾過された濾過流体の流路となる複数の集水セル と、 前記膜濾過セル及び前記集水セルを取り囲む外壁と、 前記集水セルを通過し た前記濾過流体を外部に流出するための、 前記外壁の前記集水セルのそれぞれの 両端部から所定の長さ離れた箇所で、 前記外壁の一の部位から前記集水セルを貫 通して前記外壁の他の部位まで連通する集水スリットと、 前記集水セルのそれぞ れの端面から前記集水スリットに達するまでの空間内に充填された多孔質の目詰 部材とを備えたセラミックスハニカムフィル夕。  [1] A plurality of membrane filtration cells serving as flow paths for a fluid to be filtered, which are partitioned by a porous partition wall made of ceramics, and a filtration membrane is disposed inside the partition wall; A plurality of water collection cells adjacent to the predetermined membrane filtration cell with the partition wall interposed therebetween, the plurality of water collection cells serving as a flow path of the filtration fluid in which the fluid to be filtered is filtered by the filtration membrane; and the membrane filtration cell and the water collection cell An outer wall surrounding the outer wall, and a portion separated by a predetermined length from both ends of each of the water collecting cells on the outer wall for allowing the filtered fluid that has passed through the water collecting cell to flow outside. And a water collecting slit penetrating through the water collecting cell from the part of the water collecting cell to the other part of the outer wall, and filled in a space from each end face of the water collecting cell to the water collecting slit. With a porous clogging member Ceramics honeycomb fill evening.
[2] 前記目詰部材が、 複数の連通孔が形成された多孔質体から構成された前 記 [1] に記載のセラミックスハニカムフィルタ。  [2] The ceramic honeycomb filter according to the above [1], wherein the clogging member is formed of a porous body having a plurality of communication holes.
[3] 前記目詰部材が、 アルミナ、 ムライト、 セルベン、 及びコージエライト からなる群から選ばれる少なくとも一つの材料を含む多孔質材料から形成された 前記 [1] 又は [2] に記載のセラミックスハニカムフィル夕。  [3] The ceramic honeycomb fill according to [1] or [2], wherein the clogging member is formed from a porous material including at least one material selected from the group consisting of alumina, mullite, selven, and cordierite. evening.
[4] 前記目詰部材に形成された複数の前記連通孔のそれぞれが、 孔径が 20 zm以下の部位を有する前記 [2] 又は [3] に記載のセラミックスハニカムフ ィル夕。  [4] The ceramic honeycomb filter according to [2] or [3], wherein each of the plurality of communication holes formed in the clogging member has a portion having a hole diameter of 20 zm or less.
[5] 前記目詰部材の気孔率が、 25〜50%である前記 [1] 〜 [4] のい ずれかに記載のセラミックスハニカムフィルタ。  [5] The ceramic honeycomb filter according to any one of [1] to [4], wherein the porosity of the plugging member is 25 to 50%.
[6] 前記目詰部材の熱膨張率が、 前記隔壁の f¾膨張率より低いか又は同一で ある前記 [1] 〜 [5] のいずれかに記載のセラミックスハニカムフィル夕。  [6] The ceramic honeycomb filter according to any of [1] to [5], wherein the thermal expansion coefficient of the clogging member is lower than or equal to the f¾ expansion coefficient of the partition.
[7] 複数の前記膜濾過セルの、 前記被濾過流体の流れ方向に垂直な断面のそ れぞれの形状が、 円形、 楕円形、 長円形、 三角形、 四角形、 五角形、 六角形及び 七角形からなる群から選ばれる少なくとも一つの形状である前記 [1] 〜 [6] のいずれかに記載のセラミックスハニカムフィルタ。 [7] Each of the plurality of membrane filtration cells having a cross section perpendicular to the flow direction of the fluid to be filtered has a circular, elliptical, oval, triangular, quadrangular, pentagonal, hexagonal, The ceramic honeycomb filter according to any one of the above [1] to [6], wherein the ceramic honeycomb filter has at least one shape selected from the group consisting of a heptagon.
[8] 複数の前記集水セルの、 前記濾過流体の流れ方向に垂直な断面のそれぞ れの形状が、 円形、 楕円形、 長円形、 三角形、 四角形、 五角形、 六角形及び七角 形からなる群から選ばれる少なくとも一つの形状である前記 [1] 〜 [7] のい ずれかに記載のセラミックスハニカムフィルタ。  [8] The shape of each of the plurality of water collection cells having a cross section perpendicular to the flow direction of the filtration fluid is from a circle, an ellipse, an oval, a triangle, a square, a pentagon, a hexagon, and a heptagon. The ceramic honeycomb filter according to any one of the above [1] to [7], which has at least one shape selected from the group consisting of:
[9] 原材料を押出し成形して被濾過流体及び濾過流体の流路となるセルを有 する所定形状の未焼成フィルタ成形体を得、 得られた前記未焼成フィル夕成形体 に、 その側面の一の部位から所定の前記セルを貫通して他の部位まで連通する集 水スリットを形成して集水スリット付き未焼成フィルタ成形体を得、 得られた前 記集水スリット付き未焼成フィルタ成形体に、 所定の前記セルのそれぞれの端面 から、 所定の前記セルを貫通する前記集水スリツトに達するまでの空間内に目詰 材を充填して目詰材充填未焼成フィル夕成形体を得、 得られた前記目詰材充填未 焼成フィルタ成形体を焼成して目詰材充填フィルタ成形体を得、 得られた前記目 詰材充填フィルタ成形体を構成する所定の前記セルの内周面に濾過膜を成膜した 後に焼成するセラミックスハニカムフィルタの製造方法。  [9] The raw material is extruded to obtain an unsintered filter molded body having a predetermined shape having cells serving as flow paths for the fluid to be filtered and the filtered fluid. An unsintered filter molded body with a water collecting slit is obtained by forming a water collecting slit that penetrates the predetermined cell from one part and communicates with the other part to obtain an unsintered filter molded body with the water collecting slit. A body is filled with a clogging material from each end face of the predetermined cell to the water collecting slit penetrating the predetermined cell to obtain a plugged material-filled unfired filled rubber molded body. Calcining the obtained plugged material-filled unfired filter molded product to obtain a plugged material-filled filter molded product, and the inner peripheral surface of the predetermined cell constituting the obtained plugged material-filled filter molded product Baking after forming a filtration membrane Manufacturing method of La mix honeycomb filter.
[10] 前記目詰材が、 骨材粒子、 無機結合材、 バインダー、 増粘剤及び保水 剤を含んだものである前記 [9] に記載のセラミックスハニカムフィルタの製造 方法。  [10] The method for producing a ceramic honeycomb filter according to the above [9], wherein the plugging material includes an aggregate particle, an inorganic binder, a binder, a thickener, and a water retention agent.
[11] 前記目詰材を構成する前記バインダーが、 前記骨材粒子 100質量部 に対して、 0. 08〜.0. 12質量部含まれる前記 [10] に記載のセラミック スハニカムフィル夕の製造方法。  [11] The ceramic honeycomb filler according to [10], wherein the binder constituting the plugging material is contained in an amount of 0.08 to 0.12 parts by mass with respect to 100 parts by mass of the aggregate particles. Production method.
[12] 前記目詰材を構成する前記増粘剤が、 前記骨材粒子 100質量部に対 して、 0. 04〜0. 1質量部含まれる前記 [10] 又は [11] に記載のセラ ミックスハニカムフィル夕の製造方法。  [12] The method according to [10] or [11], wherein the thickener constituting the plugging material is contained in an amount of 0.04 to 0.1 part by mass with respect to 100 parts by mass of the aggregate particles. Manufacturing method of Sera Mix Honeycomb Filler.
[13] 前記目詰材を構成する前記保水剤が、 前記骨材粒子 100質量部に対 して、 5〜6質量部含まれる前記 [10] 〜 [12] のいずれかに記載のセラミ ックスハニカムフィル夕の製造方法。  [13] The ceramic according to any of [10] to [12], wherein the water retaining agent constituting the plugging material is contained in an amount of 5 to 6 parts by mass based on 100 parts by mass of the aggregate particles. Manufacturing method of Kus Honeycomb Fill.
[14] 前記目詰材充填フィルタ成形体に前記濾過膜を成膜した後に、 その両 端面を所定の長さ切断する前記 〖9] 〜 [13] のいずれかに記載のセラミック スハニカムフィル夕の製造方法。 [14] After forming the filtration membrane on the plugging material-filled filter molded body, The method for producing a ceramic honeycomb filter according to any one of the above [9] to [13], wherein the end face is cut by a predetermined length.
[15] 前記目詰材を構成する前記骨材粒子が、 アルミナ、 ムライト、 セルべ ン、 及びコ一ジェライ卜からなる群から選ばれる少なくとも一つの化合物である 前記 [10] 〜 [14] のいずれかに記載のセラミックスハニカムフィル夕の製 造方法。  [15] The above-mentioned [10] to [14], wherein the aggregate particles constituting the plugging material are at least one compound selected from the group consisting of alumina, mullite, celene, and cordierite. The method for producing a ceramic honeycomb fill according to any one of the above.
[16] 前記目詰材を構成する前記無機結合材が、 アルミナ、 シリカ、 ジルコ ニァ、 ガラスフリット、 長石、 及びコージエライトからなる群から選ばれる少な くとも一つの化合物である前記 [10] 〜 [1 5] のいずれかに記載のセラミツ クスハ二カムフィルタの製造方法。  [16] The inorganic binder described in [10] to [10], wherein the inorganic binder constituting the plugging material is at least one compound selected from the group consisting of alumina, silica, zirconia, glass frit, feldspar, and cordierite. 15] The method for producing a ceramic honeycomb filter according to any one of [1] to [5].
[17] 前記目詰材を構成する前記バインダーが、 ポリビニルアルコール、 ポ リエチレングリコール、 澱粉、 及び粘土からなる群から選ばれる少なくとも一つ の化合物である前記 [10] 〜 [16] のいずれかに記載のセラミックスハニカ ムフィルタの製造方法。  [17] The method according to any one of [10] to [16], wherein the binder constituting the filling material is at least one compound selected from the group consisting of polyvinyl alcohol, polyethylene glycol, starch, and clay. A method for producing the ceramic honeycomb filter described in the above.
このように、 本発明のセラミックスハニカムフィルタは、 被濾過流体及び濾過 流体が内部に滞留することを有効に防止し、 清浄度の高い濾過流体を供給するこ とができる。 図面の簡単な説明  As described above, the ceramic honeycomb filter of the present invention can effectively prevent the fluid to be filtered and the filtration fluid from staying inside, and can supply the filtration fluid with high cleanliness. BRIEF DESCRIPTION OF THE FIGURES
図 1 (a) 及び図 1 (b) は、 本発明のセラミックスハニカムフィルタの一の 実施の形態を模式的に示す説明図であって、 図 1 (a) はセラミックスハニカム フィル夕の一部を切り欠いた斜視図、 図 1 (b) は中心軸を含む平面で切断した 断面図である。  FIGS. 1 (a) and 1 (b) are explanatory views schematically showing one embodiment of the ceramic honeycomb filter of the present invention, and FIG. 1 (a) shows a part of the ceramic honeycomb filter. FIG. 1 (b) is a cross-sectional view cut along a plane including the central axis.
図 2 (a) 及び図 2 (b) は、 本発明のセラミックスハニカムフィル夕の製造 方法の一の実施の形態における、 所定のセルに目詰材を充填する工程を工程順に 示す断面図である。  2 (a) and 2 (b) are cross-sectional views showing a step of filling a predetermined cell with a plugging material in one embodiment of the method for manufacturing a ceramic honeycomb filter according to the present invention. .
図 3は、 従来のセラミックスハニカムフィルタを模式的に示す断面図である。 図 4は、 従来のセラミックスハニカムフィルタの製造方法における、 所定のセ ルに目詰材を充填する工程を示す断面図である。 発明を実施するための最良の形態 FIG. 3 is a cross-sectional view schematically showing a conventional ceramic honeycomb filter. FIG. 4 is a cross-sectional view showing a step of filling a predetermined cell with a plugging material in a conventional method for manufacturing a ceramic honeycomb filter. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明のセラミックスハニカムフィル夕及びその製造方法の実施の形態 を、 図面を参照しつつ具体的に説明する。  Hereinafter, embodiments of the ceramic honeycomb filter and the method for manufacturing the same according to the present invention will be specifically described with reference to the drawings.
図 1 ( a ) 及び図 1 ( b ) は、 本発明のセラミックスハニカムフィル夕の一の 実施の形態を模式的に示す説明図であって、 図 1 ( a ) はセラミックスハニカム フィル夕の一部を切り欠いた斜視図、 図 1 ( b ) は中心軸を含む平面で切断した 断面図である。 図 1 ( a ) 及び図 1 ( b ) に示すように、 本実施の形態のセラミ ックスハニカムフィル夕 1は、 セラミックスからなる多孔質の隔壁 2によって区 画され、 その内部に濾過膜 3が配設された、 被濾過流体の流路となる複数の膜濾 過セル 4と、 隔壁 2によって区画されるとともに隔壁 2を挟んで所定の膜濾過セ ル 4に隣接し、 被濾過流体が濾過膜 3によって濾過された濾過流体の流路となる 複数の集水セル 5と、 膜濾過セル 4及び集水セル 5を取り囲む外壁 6と、 集水セ ル 5を通過した濾過流体を外部に流出するための、 外壁 6における集水セル 5の それぞれの両端部から所定の長さ離れた箇所で、 外壁 6の一の部位から集水セル 5を貫通して外壁 6の他の部位まで連通する集水スリット 7と、 集水セルのそれ ぞれの端面から集水スリット 7に達するまでの空間内に充填された多孔質の目詰 部材 8とを備えたものである。 図 1 ( a ) においては、 円柱状のセラミックスハ 二カムフィル夕 1を示しているが、 本実施の形態のセラミックスハニカムフィル 夕 1の形状は、 円柱状に限定されることはなく、 中心軸に垂直な平面における断 面の形状が四角形等の柱状等の形状であつてもよい。  1 (a) and 1 (b) are explanatory views schematically showing one embodiment of the ceramic honeycomb filter of the present invention, and FIG. 1 (a) is a part of the ceramic honeycomb filter. FIG. 1 (b) is a cross-sectional view taken along a plane including the central axis. As shown in FIGS. 1 (a) and 1 (b), the ceramic honeycomb filter 1 of the present embodiment is divided by a porous partition wall 2 made of ceramics, and a filtration membrane 3 is provided therein. A plurality of membrane filtration cells 4 serving as flow paths for the fluid to be filtered, and a plurality of membrane filtration cells 4 which are partitioned by the partition walls 2 and are adjacent to the predetermined membrane filtration cells 4 with the partition walls 2 interposed therebetween. A plurality of water collection cells 5 that serve as a flow path of the filtration fluid filtered by the membrane 3, an outer wall 6 surrounding the membrane filtration cells 4 and the water collection cells 5, and a filtration fluid that has passed through the water collection cells 5 flows out to the outside. At a predetermined distance from both ends of the water collecting cell 5 on the outer wall 6 to communicate with one part of the outer wall 6 through the water collecting cell 5 to other parts of the outer wall 6. Reaching the slit 7 from the water collecting slit 7 and each end of the collecting cell It is obtained by a clogging member 8 of the filled porous space in. In FIG. 1 (a), a columnar ceramic honeycomb filter 1 is shown, but the shape of the ceramic honeycomb filter 1 of the present embodiment is not limited to a columnar shape, and is not limited to a central axis. The shape of the cross section in the vertical plane may be a columnar shape such as a quadrangle.
本実施の形態のセラミックスハニカムフィルタ 1においては、 被濾過流体が、 端面から膜濾過セル 4の内部に流入し、 膜濾過セル 4の内部に配設された濾過膜 3を通過することによつて被濾過流体が濾過され、 濾過膜 3によつて濾過された 濾過流体が、 多孔質の隔壁 2を経由して集水セル 5に流入し、 集水セル 5から集 水セル 5を貫通する集水スリット 7に流入し、 そして、 外壁 6に形成された集水 スリット 7の開口部から外部に流出するものである。 また、 濾過膜 3によって濾 過された濾過流体の一部が、 隔壁 2から集水セル 5に流入することなく、 そのま ま外壁 6を経由して外部に流出する構成としてもよい。 このように本実施の形態 のセラミックスハニカムフィルタ 1は、 集水スリット 7を備えた構成とすること で通水抵抗が軽減されており、 優れた通水性を有している。 また、 従来の集水セ ルを備えたセラミックスハニカムフィルタにおいては、 集水セル内の、 目詰部材 の端部から集水スリットまでの間に、 流出すべき濾過流体が滞留する部分 (液溜 まり) が形成され、 この液溜まりに一部の濾過流体が滞留することによって雑菌 等が繁殖して濾過流体全体を汚染することや、 セラミックスハニカムフィルタを 洗浄する際に使用する薬液が液溜まりに滞留し、 滞留した薬液が徐々に拡散して 濾過流体を汚染すること等が問題となっていたが、 本実施の形態のセラミックス ハニカムフィルタ 1においては、 目詰部材 8が、 集水セル 5のそれぞれの端面か ら集水スリット 7に達するまでの空間内に充填されているために、 濾過流体や薬 液等が滞留する部分が形成されず、 濾過流体が汚染されることがない。 In the ceramic honeycomb filter 1 of the present embodiment, the fluid to be filtered flows into the inside of the membrane filtration cell 4 from the end face, and passes through the filtration membrane 3 disposed inside the membrane filtration cell 4. The fluid to be filtered is filtered, and the filtered fluid that has been filtered by the filtration membrane 3 flows into the water collecting cell 5 via the porous partition wall 2 and is collected from the water collecting cell 5 through the water collecting cell 5. The water flows into the water slit 7 and flows out of the water collecting slit 7 formed in the outer wall 6 to the outside. Further, a configuration may be adopted in which a part of the filtration fluid filtered by the filtration membrane 3 does not flow into the water collecting cell 5 from the partition 2 but flows out through the outer wall 6 to the outside. Thus, the present embodiment The ceramic honeycomb filter 1 of the present embodiment has a configuration including the water collecting slits 7 so that the water flow resistance is reduced and the ceramic honeycomb filter 1 has excellent water permeability. Also, in a conventional ceramic honeycomb filter provided with a water collecting cell, a portion of the water collecting cell in which the filtered fluid to flow out stagnates between the end of the clogging member and the water collecting slit (liquid reservoir). When some of the filtration fluid stays in the liquid pool, various bacteria and the like propagate and contaminate the entire filtration fluid, and the chemical used for cleaning the ceramic honeycomb filter becomes in the liquid pool. There has been a problem that the retained chemical liquid gradually diffuses and contaminates the filtration fluid, but the ceramic honeycomb filter 1 of the present embodiment has a problem that the clogging member 8 Since the space from each end face to the water collecting slit 7 is filled, a portion where the filtration fluid or the chemical solution stays is not formed, and the filtration fluid is not contaminated. No.
また、 本実施の形態のセラミックスハニカムフィルタ 1は、 濾過されるべき被 濾過流体が、 セラミツクスハ二カムフィルタ 1の端面の隔壁 2部分から直接流入 し膜濾過セル 4の内面の濾過膜 3で濾過されることなく外部に流出することを防 止するために、 セラミックスハニカムフィル夕 1の端面の隔壁 2を覆うようにシ —ル部 9が形成されている。 このシ一ル部 9は、 セラミックスハニカムフィルタ 1の端面にシリカガラス等の釉薬を塗布し、 焼成して形成されたものである。 本実施の形態においては、 集水スリット 7を形成する位置及びその開口部の形 状については、 セラミックスハニカムフィル夕 1の大きさにより適宜設定するこ とが好ましく、 例えば、 セラミックスハニカムフィルタ 1の形状が円柱状で、 そ の端面の直径が 1 8 0 mm、 軸方向の長さが 1 0 0 0 mmの場合には、 外壁 6に 形成される集水スリット 7の開口部の形状は、 一辺の長さが 2 0〜8 0 mmの長 円形、 正方形又は長方形であることが好ましい。  Further, in the ceramic honeycomb filter 1 of the present embodiment, the fluid to be filtered flows directly from the partition 2 at the end face of the ceramic honeycomb filter 1 and is filtered by the filtration membrane 3 on the inner surface of the membrane filtration cell 4. In order to prevent the ceramic honeycomb fill 1 from flowing out without being sealed, a seal portion 9 is formed so as to cover the partition 2 at the end face of the ceramic honeycomb fill 1. The seal portion 9 is formed by applying a glaze such as silica glass to the end face of the ceramic honeycomb filter 1 and firing the same. In the present embodiment, it is preferable to appropriately set the position where the water collecting slit 7 is formed and the shape of the opening thereof according to the size of the ceramic honeycomb filter 1. For example, the shape of the ceramic honeycomb filter 1 Is cylindrical, its end face diameter is 180 mm and its axial length is 100 mm, the shape of the opening of the water collecting slit 7 formed in the outer wall 6 is one side Preferably, the length is 20 to 80 mm, which is oval, square or rectangular.
本実施の形態のセラミックスハニカムフィルタ 1は、 目詰部材 8が、 集水セル 5のそれぞれの端面から集水スリット 7に達するまでの空間内に充填されたもの であるが、 本実施の形態にいう、 「集水セル 5のそれぞれの端面から集水スリツ ト 7に達するまでの空間内に充填される」 とは、 目詰部材 8を充填する際の精度 上の観点から、 集水セル 5のそれぞれの端面から集水スリット 7に達するまでの 空間内の、 集水セル 5のそれぞれの端面から 8 0〜1 0 0 %の範囲に目詰部材 8 が充填されることをいう。 このように構成することによって、 被濾過流体及び濾 過流体が内部に滞留することを有効に防止し、 清浄度の高い濾過流体を供給する ことができるセラミックス八二カムフィル夕 1となる。 In the ceramic honeycomb filter 1 of the present embodiment, the clogging member 8 is filled in the space from each end face of the water collecting cell 5 to the water collecting slit 7, but in this embodiment, The phrase "filled in the space from each end face of the water collecting cell 5 to the water collecting slit 7" means that the water collecting cell 5 is filled from the viewpoint of accuracy when filling the clogging member 8. Clogging member 8 in the range of 80 to 100% from each end face of water collection cell 5 in the space from each end face of Is filled. With such a configuration, the ceramics 82 cam filter 1 can effectively prevent the fluid to be filtered and the filtration fluid from staying inside, and can supply a highly purified filtration fluid.
本実施の形態のセラミックスハニカムフィル夕 1の隔壁 2は、 例えば、 骨材粒 子と無機結合材とに、 メチルセルロース等の有機バインダー、 分散材及び水を加 えて混鍊した坏土を、 公知のハニカム成形機で押出し成形することで形成するこ とができる。 骨材粒子としては、 アルミナ、 ムライト、 セルベン、 及びコージェ ライ卜からなる群から選ばれる少なくとも一の化合物を好適に用いることができ る。 無機結合材としては、 アルミナ、 シリカ、 ジルコニァ、 チタニア、 ガラスフ リット、 長石、 及びコ一ジエライトからなる群から選ばれる少なくとも一の化合 物を好適に用いることができる。  The partition wall 2 of the ceramic honeycomb fill 1 according to the present embodiment is made of, for example, a kneaded clay obtained by mixing an aggregate binder and an inorganic binder with an organic binder such as methylcellulose, a dispersant, and water. It can be formed by extrusion molding with a honeycomb molding machine. As the aggregate particles, at least one compound selected from the group consisting of alumina, mullite, selven, and cordierite can be suitably used. As the inorganic binder, at least one compound selected from the group consisting of alumina, silica, zirconia, titania, glass frit, feldspar, and cordierite can be suitably used.
本実施の形態に用いられる目詰部材 8は、 上述した隔壁 2と同様の材料を好適 に用いることができ、 例えば、 アルミナ、 ムライト、 セルベン、 及びコ一ジエラ ィトからなる群から選ばれる少なくとも一つの材料を含む多孔質材料から形成さ れたものであることが好ましい。 なお、 製造過程に用いられる目詰材 (目詰材ス ラリー) には、 得られるセラミックス八二カムフィルタ 1において、 集水セル 5 のそれぞれの端面から集水スリット 7に達するまで目詰部材 8が充填されている ように、 バインダー、 増粘剤及び保水剤がさらに加えられたものを用いることが 好ましい。 目詰材 (目詰材スラリー) の構成については、 セラミックスハニカム フィルタの製造方法を説明する際に具体的に説明する。  For the clogging member 8 used in the present embodiment, the same material as that of the partition wall 2 described above can be suitably used, and for example, at least one selected from the group consisting of alumina, mullite, selben, and coalite It is preferably formed from a porous material containing one material. The plugging material (plugging material slurry) used in the manufacturing process includes the plugging member 8 in the ceramics 82 cam filter 1 obtained from each end face of the water collecting cell 5 to the water collecting slit 7. It is preferable to use a material to which a binder, a thickener and a water retention agent are further added so that is filled. The configuration of the plugging material (plugging material slurry) will be specifically described when a method for manufacturing a ceramic honeycomb filter is described.
また、 この目詰部材 8は、 濾過膜 3を成膜する際に用いられる濾過膜スラリー に含まれる水分が排出される程度に粗であることが好ましく、 具体的には、 複数 の連通孔が形成された多孔質体から構成されていることが好ましい。 さらに、 目 詰部材 8が、 複数の連通孔が形成された多孔質体から構成されている場合には、 複数の連通孔のそれぞれが、 孔径が 2 0 z m以下の部位を有することが好ましい 。 また、 本実施の形態においては、 目詰部材 8の気孔率が 2 5〜5 0 %であるこ とが好ましい。 複数の連通孔のそれぞれが、 孔径が 2 0 z m以下の部位を有して いない場合及び/又は目詰部材 8の気孔率が 5 0 %を超える場合には、 濾過膜 3 を成膜するために用いられる濾過膜スラリ一に含まれる固形成分が目詰部材 8を 通過して集水セル 5に侵入してしまうことがある。 また、 気孔率が 2 5 %未満の 場合には、 濾過膜 3を成膜する際に用いられる濾過膜スラリーに含まれる水分の 排出が困難となることがある。 なお、 本実施の形態における連通孔とは、 目詰部 材 8の表面の一の部位から他の部位に連通する細孔のことである。 また、 目詰部 材 8は、 その内部に体積が 0 . 0 6 5 mm3を超える空隙がないように、 均一に 充填されていることが好ましい。 体積が 0 . 0 6 5 mm3を超える空隙がある場 合には、 セラミックス八二カムフィル夕 1の端部における不良部分を切断した際 に、 その切断面に凹凸が形成されることがある。 セラミックスハニカムフィルタ 1の端面に凹凸が形成された場合、 シール部 9を形成する際に釉薬等を均一に塗 布することが困難となることがある。 なお、 気孔率は水銀圧入法によって測定す ることができる。 Further, the clogging member 8 is preferably coarse enough to discharge moisture contained in the filtration membrane slurry used when forming the filtration membrane 3, and more specifically, a plurality of communication holes are formed. It is preferable to be constituted by the formed porous body. Further, when the clogging member 8 is formed of a porous body having a plurality of communication holes formed therein, it is preferable that each of the plurality of communication holes has a portion having a hole diameter of 20 zm or less. In the present embodiment, it is preferable that the porosity of the clogging member 8 is 25 to 50%. When each of the plurality of communication holes does not have a portion having a hole diameter of 20 zm or less and / or when the porosity of the clogging member 8 exceeds 50%, the filtration membrane 3 is formed. The solid component contained in the filtration membrane slurry used for It may pass through and enter the water collection cell 5. If the porosity is less than 25%, it may be difficult to discharge water contained in the filtration membrane slurry used for forming the filtration membrane 3. In addition, the communication hole in the present embodiment is a pore communicating from one part of the surface of the clogging member 8 to another part. Further, it is preferable that the clogging member 8 is uniformly filled so that there is no void whose volume exceeds 0.065 mm 3 . The volume 0. 0 6 5 If there are gaps in excess of mm 3, when cutting the defective portion at the end of the ceramic eighty-two Kamufiru evening 1, sometimes irregularities are formed on the cut surface. If the end face of the ceramic honeycomb filter 1 has irregularities, it may be difficult to uniformly apply glaze or the like when forming the seal portion 9. The porosity can be measured by a mercury intrusion method.
また、 目詰部材 8の熱膨張率は、 隔壁 2の熱膨張率より低いか又は同一である ことが好ましい。 目詰部材 8の熱膨張率が隔壁 2の熱膨張率よりも大きいと焼成 の際に目詰部材 8が膨張して、 隔壁 2を破損することがある。  Further, it is preferable that the coefficient of thermal expansion of the clogging member 8 is lower than or equal to the coefficient of thermal expansion of the partition 2. If the coefficient of thermal expansion of the clogging member 8 is larger than the coefficient of thermal expansion of the partition 2, the clogging member 8 may expand during firing, and the partition 2 may be damaged.
また、 本実施の形態においては、 複数の膜濾過セル 4の、 被濾過流体の流れ方 向に垂直な断面のそれぞれの形状が円である場合を示しているが、 膜濾過セル 4 の形状はこれに限定されることはなく、 例えば、 円形、 楕円形、 長円形、 Ξ角形 、 四角形、 五角形、 六角形及び七角形からなる群から選ばれる少なくとも一つの 形状であることが好ましい。 また、 複数の集水セル 5の、 被濾過流体の流れ方向 に垂直な断面のそれぞれの形状が円である場合を示しているが、 集水セル 5の形 状もこれに限定されることはなく、 例えば、 円形、 楕円形、 長円形、 三角形、 四 角形、 五角形、 六角形及び七角形からなる群から選ばれる少なくとも一つの形状 であることが好ましい。  Further, in the present embodiment, a case is shown where each of the cross-sections of the plurality of membrane filtration cells 4 perpendicular to the flow direction of the fluid to be filtered is a circle, but the shape of the membrane filtration cell 4 is The shape is not limited to this, and for example, is preferably at least one shape selected from the group consisting of a circle, an ellipse, an oval, a rectangle, a rectangle, a pentagon, a hexagon, and a heptagon. Further, although the case where each of the cross-sections of the plurality of water collection cells 5 perpendicular to the flow direction of the fluid to be filtered is circular is shown, the shape of the water collection cells 5 is not limited to this. For example, the shape is preferably at least one selected from the group consisting of a circle, an ellipse, an oval, a triangle, a rectangle, a pentagon, a hexagon, and a heptagon.
また、 膜濾過セル 4の内部に配設された濾過膜 3は、 チタニア、 アルミナ、 又 はその両方を含むものであることが好ましい。 この濾過膜 3は、 隔壁 2の平均気 孔径よりも小さい平均気孔径を有しているものであり、 例えば、 その平均気孔径 が 0 . 1〜1 . 0 /z mであることが好ましい。 また、 図示は省略するが、 本実施 の形態においては、 濾過膜が、 上述した濾過膜を上層濾過膜とし、 隔壁と上層濾 過膜との間に、 その中間にあたる平均気孔径を有する中間膜をさらに備えた構成 であってもよい。 Further, the filtration membrane 3 disposed inside the membrane filtration cell 4 preferably contains titania, alumina, or both. The filtration membrane 3 has an average pore diameter smaller than the average pore diameter of the partition walls 2, and for example, preferably has an average pore diameter of 0.1 to 1.0 / zm. Although not shown, in the present embodiment, the filtration membrane is an intermediate membrane having an average pore diameter in the middle between the partition wall and the upper filtration membrane, wherein the filtration membrane is an upper filtration membrane. Configuration further equipped with It may be.
次に、 本実施の形態のセラミックスハニカムフィル夕の製造方法について説明 する。 まず、 原材料を、 例えば、 真空押出し成形機を用いて押出し成形して被濾 過流体及び濾過流体の流路となるセルを有する所定形状の未焼成フィルタ成形体 を得る。 原材料は、 図 1 ( a ) に示したセラミックスハニカムフィルタ 1の隔壁 2の好ましい材料として説明した、 骨材粒子と無機結合材とに、 メチルセルロー ス等の有機バインダー、 分散材及び水を加えて、 二一ダ一混練機等を用いて混鍊 した坏土を好適に用いることができる。  Next, a method for manufacturing the ceramic honeycomb filter of the present embodiment will be described. First, the raw material is extruded using, for example, a vacuum extruder to obtain an unsintered filter molded body having a predetermined shape and having cells serving as flow paths of the fluid to be filtered and the filtered fluid. The raw materials are described as a preferred material for the partition wall 2 of the ceramic honeycomb filter 1 shown in FIG. 1 (a), by adding an organic binder such as methyl cellulose, a dispersant, and water to the aggregate particles and the inorganic binder. A kneaded clay that is mixed using a kneader or a kneader can be suitably used.
次に、 得られた未焼成フィル夕成形体に、 その側面の一の部位から所定のセル を貫通して他の部位まで連通する集水スリットを形成して集水スリット付き未焼 成フィル夕成形体を得る。 この集水スリットは、 例えば、 成形時に集水スリット を形成する部位の外壁に溝加工を施し、 砥石等で外周部の集水セル壁を破り、 そ の後、 先端が鋭角な治具で集水セルを突き破ることによって形成することができ る。 集水スリットは、 最終製品であるセラミックスハニカムフィル夕を浄水設備 等に設置する際に、 その端部に被濾過流体と濾過流体とを隔離するシール部材を 配設するための部位として 2 5 mm程度確保することができ、 さらに、 後述する 濾過膜の成膜工程において、 その端面を把持する把持部分に不良が発生した場合 に、 この不良が発生した部分を最大で 3 0 mm程度除去する必要が生じることを 考慮して、 集水スリット付き未焼成フィルタ成形体の、 その端面から 5 5 mm程 度離れた側面に形成することが好ましい。 これまでの工程は、 従来のセラミック スハニカムフィルタの製造方法に準じて行うことができる。  Next, a water collecting slit is formed in the obtained green body from one part of the side surface of the green body through a predetermined cell to communicate with the other part, and the green body with the water collecting slit is formed. Obtain a molded body. For example, the water collecting slit is formed by grooving the outer wall of the part where the water collecting slit is formed at the time of molding, breaking the water collecting cell wall at the outer periphery with a grindstone, and then collecting the water with a jig having a sharp tip. It can be formed by piercing a water cell. The water collecting slit is used as a part for installing a sealing member that separates the fluid to be filtered from the filtered fluid at the end of the ceramic honeycomb filter, which is the final product, when it is installed in water purification equipment. If a defect occurs in the gripping part that grips the end face in the filtration film forming process described later, it is necessary to remove the defective part by a maximum of about 30 mm. In consideration of the occurrence of cracks, it is preferable to form the unsintered filter formed body with the water collecting slit on a side surface about 55 mm away from the end face. The steps so far can be performed according to a conventional method for manufacturing a ceramic honeycomb filter.
次に、 図 2 ( a ) 及び図 2 ( b ) に示すように、 得られた集水スリット付き未 焼成フィルタ成形体 1 0に、 所定のセル 1 2のそれぞれの端面から、 所定のセル 1 2を貫通する集水スリット 7に達するまでの空間内に目詰材 (目詰材スラリー ) 1 3を充填して目詰材充填未焼成フィルタ成形体を得る。 具体的には、 集水ス リット付き未焼成フィルタ成形体 1 0の両端面にポリエステル等のフィルム 1 1 (マスキング) を添付し、 所定のセル 1 2に対応する部分に孔を穿設する。 その 後に、 集水スリツト付き未焼成フィルタ成形体 1 0のフィルム 1 1を添付した端 面を、 目詰材 1 3が満たされた容器 1 4内に押し付け、 さらに、 エアシリンダー 等で、 例えば、 2 0 0 k g f / c m2で加圧して、 所定のセル 1 2に目詰材を充 填する。 Next, as shown in FIGS. 2 (a) and 2 (b), a predetermined cell 1 Fill the space up to the water collecting slit 7 penetrating 2 with the plugging material (plugging material slurry) 13 to obtain a plugged material-filled unfired filter molded body. Specifically, films 11 (masking) of polyester or the like are attached to both end surfaces of the unsintered filter molded body 10 with the water collecting slit, and holes are formed in portions corresponding to predetermined cells 12. Thereafter, the end face of the unsintered filter molded body 10 with the water collecting slit, to which the film 11 is attached, is pressed into a container 14 filled with the clogging material 13 and an air cylinder is further provided. For example, pressurization is performed at 200 kgf / cm 2 to fill a predetermined cell 12 with the clogging material.
本実施の形態に用いられる目詰材 1 3としては、 目詰材 1 3を、 集水スリット に達するまで、 所定のセル 1 2に充填することができるように、 骨材粒子、 無機 結合材、 バインダー、 増粘剤及び保水剤を含んだものであることが好ましい。 骨 材粒子及び無機結合材は、 未焼成フィルタ成形体を作製する際に用いられる骨材 粒子及び無機結合材と同様のものを好適に用いることができる。  The plugging material 13 used in the present embodiment includes an aggregate particle, an inorganic binder, and the like, so that the plugging material 13 can be filled in a predetermined cell 12 until it reaches the water collecting slit. It is preferable that the composition contains a binder, a thickener and a water retention agent. As the aggregate particles and the inorganic binder, those similar to the aggregate particles and the inorganic binder used when producing the unfired filter molded body can be suitably used.
目詰材 1 3を構成するバインダーは、 目詰材 1 3の乾燥時点での乾燥強度を持 たせ、 乾燥時にクラックの発生を防止する働きがあり、 ポリビニルアルコール、 ポリエチレングリコール、 澱粉、 及び粘土からなる群から選ばれる少なくとも一 つの化合物であることが好ましい。 また、 目詰材 1 3には、 このバインダーが、 骨材粒子 1 0 0質量部に対して 0 . 0 8〜0 . 1 2質量部含まれることが好まし い。 バインダーが 0 . 0 8質量部未満であると、 目詰材 1 3の乾燥時にクラック が発生することがある。 また、 バインダーが 0 . 1 2質量部を超えると、 目詰材 1 3の強度が高くなり集水スリット付き未焼成フィル夕成形体 1 0にクラックが 発生することがある。  The binder that forms the plugging material 13 has the function of increasing the drying strength of the plugging material 13 at the time of drying and preventing the occurrence of cracks during drying, and is made of polyvinyl alcohol, polyethylene glycol, starch, and clay. It is preferably at least one compound selected from the group consisting of: The filler 13 preferably contains 0.08 to 0.12 parts by mass of the binder with respect to 100 parts by mass of the aggregate particles. If the amount of the binder is less than 0.08 parts by mass, cracks may occur when the plugging material 13 is dried. When the amount of the binder exceeds 0.12 parts by mass, the strength of the plugging material 13 is increased, and cracks may be generated in the unsintered filled molded article 10 having the water collecting slit.
目詰材 1 3を構成する増粘剤は、 集水スリッ卜付き未焼成フィルタ成形体 1 0 の所定のセル 1 2の内部に目詰材 1 3を入り込ませ易いように、 目詰材 1 3に適 正な粘度を発現させる働きがあり、 メチルセルロースや力ルポキシルメチルセル ロース等を好適に用いることができる。 また、 目詰材 1 3には、 この増粘剤が、 骨材粒子 1 0 0質量部に対して、 0 . 0 4〜0 . 1質量部含まれることが好まし い。 増粘剤が 0 . 0 4質量部未満であると、 目詰材 1 3が所定のセル 1 2の内部 にスムーズに入らず、 所定の深さまで目詰材 1 3を充填することが困難になるこ とがある。 また、 増粘剤が 0 . 1質量部を超えると、 それぞれのセル 1 2に充填 した目詰材 1 3の深さが異なり、 所定の深さまで目詰材 1 3を均等に充填するこ とが困難になることがある。  The thickening agent constituting the plugging material 13 is made of a filler 1 such that the plugging material 13 can be easily inserted into a predetermined cell 12 of the unsintered filter molded body 10 with a water collecting slit. 3 has the function of developing an appropriate viscosity, and methylcellulose, lipoxyl methylcellulose, and the like can be suitably used. The filler 13 preferably contains the thickener in an amount of 0.04 to 0.1 part by mass with respect to 100 parts by mass of the aggregate particles. If the amount of the thickener is less than 0.04 parts by mass, the plugging material 13 does not enter the predetermined cell 12 smoothly, and it is difficult to fill the plugging material 13 to a predetermined depth. It can be. If the amount of the thickener exceeds 0.1 parts by mass, the depth of the plugging material 13 filled in each cell 12 differs, and the plugging material 13 is uniformly filled to a predetermined depth. Can be difficult.
目詰材 1 3を構成する保水剤は、 目詰材 1 3を充填する際に、 目詰材 1 3の水 分が、 乾燥した集水スリット付き未焼成フィルタ成形体 1 0に吸収されて固化す るのを防止し、 目詰材 1 3を均一に所定の深さまで入り込ませる働きがある。 こ の保水剤としては、 でんぷん、 グリセリン等を好適に用いることができる。 また 、 目詰材 1 3には、 この保水剤が、 骨材粒子 1 0 0質量部に対して、 5〜6質量 部含まれることが好ましい。 保水剤が 5質量部未満であると、 目詰材 1 3を充填 する際に、 目詰材 1 3の水分が集水スリツト付き未焼成フィル夕成形体 1 0に瞬 時に吸収されて、 目詰材 1 3を所定の深さまで充填することができないことがあ る。 また、 保水剤が 6質量部を超えると、 焼成前の乾燥にて、 目詰材 1 3が十分 に乾燥せず、 焼成時にクラックが発生することがある。 When filling the plugging material 13, the water retaining agent constituting the plugging material 13 absorbs the water content of the plugging material 13 into the dried green filter molded body 10 with the water collecting slit. It functions to prevent solidification and to allow the clogging material 13 to uniformly penetrate to a predetermined depth. This As the water retention agent, starch, glycerin and the like can be suitably used. The plugging material 13 preferably contains 5 to 6 parts by mass of the water retention agent with respect to 100 parts by mass of the aggregate particles. If the water retention agent is less than 5 parts by mass, when filling the plugging material 13, the moisture of the plugging material 13 is instantaneously absorbed by the unsintered filled molded product 10 with the water collecting slit, and It may not be possible to fill the filling material 13 to the specified depth. If the water retention agent exceeds 6 parts by mass, the plugging material 13 may not be sufficiently dried by drying before firing, and cracks may be generated during firing.
次に、 得られた目詰材充填未焼成フィルタ成形体を、 例えば、 9 0 0〜1 4 0 0 °Cで焼成して目詰材充填フィルタ成形体を得る。  Next, the obtained unfired filter-filled filter molded product is fired, for example, at 900 to 140 ° C. to obtain a filter-filled filter molded product.
次に、 得られた目詰材充填フィルタ成形体を構成する所定のセルの内周面に濾 過膜を成膜した後に焼成する。 濾過膜を成膜する方法としては、 例えば、 中間膜 と、 中間膜より気孔径の小さい上層濾過膜とから構成された濾過膜を形成する場 合には、 まず、 中間膜を成膜するための中間膜スラリーを形成する。 中間膜スラ リーは、 未焼成フィル夕成形体と同材質の、 例えば、 平均粒径 3 . 2 mの、 ァ ルミナ、 ムライト、 チタニア、 コ一ジエライト等のセラミックス原料 1 0 0質量 部に、 4 0 0質量部の水を加えて形成することができる。 また、 この中間膜スラ リ一には、 焼成後の膜強度を上げるために膜用無機結合材を添加してもよい。 膜 用無機結合材は粘土、 カオリン、 チタニアゾル、 シリカゾル、 ガラスフリット等 を用いることができ、 添加量は膜強度の点から 5〜2 0質量部添加することが好 ましい。 また、 セラミックス原料のみで焼結し膜強度が得られる場合は、 膜用無 機結合材を添加しなくてもよい。 この中間膜スラリーを特開昭 6 1 - 2 3 8 3 1 5号公報において開示される装置を用いて各セルの表面に成膜し、 乾燥した後、 所定の焼成温度、 例えば、 9 0 0〜1 0 5 0 °Cで焼結させ、 目詰材充填フィルタ 成形体に固着させて中間膜を形成することができる。  Next, a filter membrane is formed on the inner peripheral surface of a predetermined cell constituting the obtained plugged material-filled filter molded body, and then fired. As a method for forming a filtration membrane, for example, when forming a filtration membrane composed of an intermediate membrane and an upper filtration membrane having a smaller pore size than the intermediate membrane, first, an intermediate membrane is formed. Is formed. The interlayer slurry is composed of 100 parts by mass of a ceramic raw material such as alumina, mullite, titania, cordierite, etc., having the same material as the green compact and having an average particle size of 3.2 m. It can be formed by adding 100 parts by mass of water. Further, an inorganic binder for film may be added to the intermediate film slurry in order to increase the film strength after firing. As the inorganic binder for the film, clay, kaolin, titania sol, silica sol, glass frit, or the like can be used, and the addition amount is preferably 5 to 20 parts by mass from the viewpoint of the film strength. When the film strength can be obtained by sintering only with the ceramic raw material, it is not necessary to add an inorganic binder for the film. This intermediate film slurry was formed on the surface of each cell using an apparatus disclosed in Japanese Patent Application Laid-Open No. Sho 61-238338, dried, and then dried at a predetermined firing temperature, for example, 900 It can be sintered at up to 150 ° C. and fixed to a plugging material-filled filter to form an intermediate film.
一方、 上層濾過膜を成膜するための上層濾過膜スラリーを形成する。 上層濾過 膜スラリーは、 例えば、 平均粒径 0 . 4 mの、 未焼成フィルタ成形体と同材質 の、 例えば、 アルミナ、 ムライト、 チタニア、 コージエライト等のセラミックス 原料、 又はこれらのセラミックス原料よりも熱膨脹率が小さい材料 1 0 0質量部 に、 1 0 0 0質量部の水を加えて形成することができる。 また、 この上層濾過膜 スラリーには、 焼成後の膜強度を上げるために膜用無機結合材を添加してもよい 。 膜用無機結合材は粘土、 カオリン、 チタニアゾル、 シリカゾル、 ガラスフリツ ト等を用いることができ、 添加量は膜強度の点から 5〜2 0質量部添加すること が好ましい。 この上層濾過膜スラリーを特開昭 6 1 - 2 3 8 3 1 5号公報におい て開示される装置を用いて、 中間膜の表面に成膜し、 乾燥した後、 所定の焼成温 度 9 0 0〜1 0 5 0 °Cで焼結させ、 目詰材充填フィルタ成形体に成膜した中間膜 に固着させて濾過膜を形成することができる。 本実施の形態においては、 上述し たように構成された目詰材が、 集水スリツトに達するまでの空間内に充填されて いるために、 濾過膜スラリー (中間膜スラリー及び上層濾過膜スラリー) に含ま れる水分等が液溜まりに滞留して付着させたばかりの濾過膜を浮き上がらせて剥 離させることがなく、 所定のセルの全域にわたって濾過膜を正常に成膜すること ができる。 On the other hand, an upper filtration membrane slurry for forming an upper filtration membrane is formed. The upper-layer filtration membrane slurry is, for example, a ceramic material such as alumina, mullite, titania, cordierite, or the like, having an average particle diameter of 0.4 m and the same material as the unfired filter molded body, or a coefficient of thermal expansion higher than these ceramic materials. It can be formed by adding 100 parts by mass of water to 100 parts by mass of a material having a small content. Also, this upper filtration membrane An inorganic binder for a film may be added to the slurry in order to increase the film strength after firing. As the inorganic binder for the film, clay, kaolin, titania sol, silica sol, glass frit, or the like can be used. The addition amount is preferably 5 to 20 parts by mass from the viewpoint of the film strength. This upper-layer filtration membrane slurry was formed on the surface of the intermediate membrane using an apparatus disclosed in Japanese Patent Application Laid-Open No. Sho 61-238338, dried, and then dried at a predetermined firing temperature 90 °. It can be sintered at 0 to 150 ° C. and adhered to the intermediate film formed on the filter-filled filter molded body to form a filtration membrane. In the present embodiment, since the clogging material configured as described above is filled in the space before reaching the water collecting slit, the filtration membrane slurry (the intermediate membrane slurry and the upper filtration membrane slurry) The water and the like contained in the water remain in the liquid pool and do not lift and separate the filtration membrane, and the filtration membrane can be formed normally over the entire area of the predetermined cell.
また、 濾過膜を成膜する際は、 上述したように、 その端面を把持する把持部分 に不良が発生することがあるために、 成膜した目詰材充填フィル夕成形体の端面 を 3 0 mm程度切断する。 次に、 目詰材充填フィル夕成形体の、 切断して新たに 形成された端面にガラスフリット等の釉薬を塗布し、 一旦乾燥した後に、 9 0 0 〜 1 4 0 0 °Cで焼成してセラミックスハニカムフィルタを製造する。 釉薬の塗布 及び焼成の条件等は、 従来行われているセラミックスハ二カムフィル夕の製造方 法に準じて行うことが可能である。  In addition, when forming the filtration membrane, as described above, a defect may occur in the gripping portion that grips the end face, so that the end face of the formed clogging material-filled molded product is set to 30%. Cut about mm. Next, a glaze such as glass frit is applied to the cut and newly formed end face of the filler-filled molded product, dried once, and then fired at 900 to 140 ° C. To manufacture a ceramic honeycomb filter. The conditions for applying and firing the glaze can be determined according to the conventional method of manufacturing ceramic honeycomb fillers.
このようにして得られたセラミックスハニカムフィルタは、 被濾過流体及び濾 過流体が内部に滞留することを有効に防止し、 清浄度の高い濾過流体を供給する ことができる。  The ceramic honeycomb filter thus obtained effectively prevents the fluid to be filtered and the filtered fluid from staying inside, and can supply a highly clean filtered fluid.
以下、 本発明を実施例により具体的に説明するが、 本発明はこれらの実施例に 限定されるものではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
(実施例 1〜 1 7 )  (Examples 1 to 17)
全実施例を通じて、 骨材粒子としての所定の大きさの平均粒径のアルミナと、 無機結合材としてガラスフリットとを 9 : 1の質量比で混合し、 得られた混合粉 末 1 0 0質量部に対して、 水 1 5質量部、 有機バインダーとしてメチルセルロー ス 4 . 5質量部、 及び分散材 1質量部を加えて混練して坏土を得、 得られた坏土 をハニカム成形機で押出し成形した後乾燥して、 外径 φ 1 8 0 mm、 長さ 1 0 0 0 mm、 その内部に内径 Φ 2 . 3 mmセルを 2 0 7 0個有する未焼成フィルタ成 形体を得た。 本実施例においては、 原料粒度が 0 . 2〜0 . 5 mmでアルミナ純 度 9 9 . 8 %の電融アルミナを乾式で所定の時間粉砕し、 平均粒径がそれぞれ 3 0 rn, 5 0 m, 1 0 0 mのものをアルミナ A、 アルミナ B、 アルミナ Cと した。 Throughout all the examples, alumina having a predetermined average particle size as an aggregate particle and glass frit as an inorganic binder were mixed at a mass ratio of 9: 1. Parts by mass, water and 4.5 parts by mass of methylcellulose as an organic binder, and 1 part by mass of a dispersant were added and kneaded to obtain a kneaded material. Is extruded with a honeycomb molding machine and then dried to form an unsintered filter having an outer diameter of 180 mm, a length of 100 mm, and an inner diameter of Φ 2.3 mm inside the inside of the filter. Obtained the form. In the present example, electrofused alumina having a raw material particle size of 0.2 to 0.5 mm and an alumina purity of 99.8% was pulverized by a dry method for a predetermined time, and the average particle sizes were 30 rn and 50, respectively. m, 100 m were designated as alumina A, alumina B, and alumina C.
次に、 各未焼成フィルタ成形体の、 その側面の一の部位から所定のセルを貫通 して他の部位まで連通する集水スリットを形成して集水スリット付き未焼成フィ ル夕成形体を得た。 集水スリツトの形状は長方形とした。  Next, a water collecting slit that penetrates a predetermined cell from one part of the side surface of each green filter molded body and communicates with the other part is formed, and a green filter molded body with a water collecting slit is formed. Obtained. The shape of the catchment slit was rectangular.
次に、 得られた各集水スリット付き未焼成フィルタ成形体に、 所定のセルのそ れぞれの端面から、 所定のセルを貫通する集水スリツトに達するまでの空間内に 目詰材を充填して目詰材充填未焼成フィル夕成形体を得た。 各実施例においては 、 目詰材として、 骨材粒子、 無機結合材、 バインダー、 増粘剤及び保水剤を、 表 1及び表 2に示す割合で混合したものを用いた。 Next, a clogging material is placed in each of the obtained unsintered filter molded bodies with water collecting slits in a space from each end face of a predetermined cell to a water collecting slit penetrating the predetermined cell. Filling was performed to obtain a plugged material-filled green compact. In each of the examples, a material obtained by mixing aggregate particles, an inorganic binder, a binder, a thickener, and a water retention agent in the proportions shown in Tables 1 and 2 was used as a plugging material.
骨材粒子 Aggregate particles
無機結合材 バインダー 増粘剤 保水剤 水 平 ¼径 (質量部) (質量部) (質量部) (質量部) (質量部) 原料名 (質量部)  Inorganic binder Binder Thickener Water retention agent Horizontal diameter (parts by mass) (parts by mass) (parts by mass) (parts by mass) (parts by mass) Material name (parts by mass)
(^m) 実施例 1 アルミナ A 30 95 5 0. 1 0. 05 5. 6 22 実施例 2 アルミナ A 30 90 10 0. 1 0. 05 5. 6 22 実施例 3 アルミナ A 30 85 15 0. 1 0. 05 5. 6 22 実施例 4 アルミナ B 50 90 10 0. 1 0. 05 5. 6 22 実施例 5 アルミナ C 100 90 10 0. 1 0. 05 5. 6 22 実施例 6 アルミナ B 50 90 10 0. 06 0. 05 5. 6 22 実施例 7 アルミナ B 50 90 10 0. 08 0. 05 5. 6 22 実施例 8 アルミナ B 50 90 10 0. 12 0. 05 5. 6 22 実施例 9 アルミナ B 50 90 10 0. 14 0. 05 5. 6 22 (^ m) Example 1 Alumina A 30 95 5 0.1 0. 05 5.6 22 Example 2 Alumina A 30 90 10 0.1 0.15 5.6 22 Example 3 Alumina A 30 85 15 0. 1 0.05 5.6 22 Example 4 Alumina B 50 90 10 0.1 0.15 5.6 22 Example 5 Alumina C 100 90 10 0.1.05 5.6 22 Example 6 Alumina B 50 90 10 0.06 0.05 5.6 22 Example 7 Alumina B 50 90 10 0.08 0.05 5.6 22 Example 8 Alumina B 50 90 10 0.12 0.05 5.6 22 Example 9 Alumina B 50 90 10 0.14 14.05 5.6.22
DO 骨材粒子 DO aggregate particles
無機結合材 バインダ一 増粘剤 保水剤 水  Inorganic binder Binder Thickener Water retention agent Water
平均粒径  Average particle size
' (質量部) (質量部) (質量部) (質量部) (質量部) (質量部) 原料名  '' (Parts by mass) (parts by mass) (parts by mass) (parts by mass) (parts by mass) (parts by mass)
(^m) 実施例 10 アルミナ B 50 90 10 0. 1 0. 02 5. 6 22 実施例 11 アルミナ B 50 90 10 0. 1 0. 08 5. 6 22 実施例 12 アルミナ B 50 90 10 0. 1 0. 10 5. 6 22 実施例 13 アルミナ B 50 90 10 0. 1 0. 12 5. 6 22 実施例 14 アルミナ B 50 90 10 0. 1 0. 05 4. 8 22 実施例 15 アルミナ B 50 90 10 0. 1 0. 05 5. 4 22 実施例 16 アルミナ B 50 90 10 0. 1 0. 05 6. 0 22 実施例 17 アルミナ B 50 90 10 0. 1 0. 05 6. 2 22 (^ m) Example 10 Alumina B 50 90 10 0.10.02 5.6.22 Example 11 Alumina B 50 90 10 0.1.08.6.22 Example 12 Alumina B 50 90 10 0. 1 0.10 5.6 22 Example 13 Alumina B 50 90 10 0.1 0.1 0.25 5.622 Example 14 Alumina B 50 90 10 0.1.05 4.8.22 Example 15 Alumina B 50 90 10 0.10.05 5.4 22 Example 16 Alumina B 50 90 10 0.1.05 6.022 Example 17 Alumina B 50 90 10 0.1.05 6.22 22
各実施例におけにおける、 目詰材充填未焼成フィル夕成形体を乾燥した状態で の目詰材の引け欠陥の割合 (%) を測定した。 目詰材の引け欠陥とは、 目詰材を 充填した部分を乾燥した後、 充填部分に水分が供給された際の目詰材充填部分の 中央部の凹みの欠陥のことである。 目詰材の引け欠陥の割合 (%) は、 目詰材を 充填したセルの数に対する目詰材の引け欠陥の数の割合 (%) を算出した値であ る。 結果を表 3及び表 4に示す。 In each of the examples, the ratio (%) of the shrinkage defect of the plugging material in the dried state of the plugging material-filled unsintered fill molding was measured. The shrinkage defect of the plugging material is a defect in the center of the plugging material filling portion when moisture is supplied to the filling portion after the portion filled with the plugging material is dried. The ratio of clogging defect of clogging material (%) is a value calculated by calculating the ratio (%) of the number of clogging defect of clogging material to the number of cells filled with clogging material. The results are shown in Tables 3 and 4.
Figure imgf000020_0001
Figure imgf000020_0001
¾)3 曰日 ¾ロロt リ ¾) 3 Saying the day
クラック発生率 気孔径 気孔率 曲げ強度  Crack generation rate Pore diameter Porosity Bending strength
引け欠陥の割合 乾式加工性 発泡検査 滞留検査  Ratio of shrinkage defects Dry workability Foaming inspection Stagnation inspection
(%) ( m) (%) (kP a)  (%) (m) (%) (kP a)
(%)  (%)
実施例 10 2 〇 0. 8 10. 2 37 △ 13 〇 実施例 11 2 〇 0 10. 1 36 〇 16 〇 実施例 12 1 〇 0. 3 10. 2 35 〇 15 〇 実施例 13 2 〇 0. 5 9. 9 36 Δ 17 〇 実施例 14 3 〇 2. 5 9. 9 36 〇 15 〇 実施例 15 2 〇 1. 9 10. 1 36 〇 15 〇 実施例 16 2 〇 2. 1 10. 2 35 〇 16 〇 実施例 17 1 〇 2. 5 10. 0 36 Δ 18 〇 Example 10 2 〇 0.8 10.23 37 13 13 〇 Example 11 2 〇 0 10.1 36 〇 16 〇 Example 12 1 〇 0.3.2 35 〇 15 〇 Example 13 2 〇 0. 5 9.93 6 Δ17 〇 Example 14 3 〇 2. 5 9.93 6 〇 15 〇 Example 15 2 〇 1.9 10.1 36 〇 15 〇 Example 16 2 〇 2. 1 10. 2 35 〇 16 〇 Example 17 1 〇 2. 5 10. 0 36 Δ 18 〇
¾)4 次に、 得られた目詰材充填未焼成フィルタ成形体を焼成して目詰材充填フィル 夕成形体を得、 得られた目詰材充填フィルタ成形体を構成する所定のセルの内周 面に濾過膜を成膜して乾燥した後に焼成し、 その端面を所定の長さ切断した。 こ の際、 焼成した目詰材充填フィルタ成形体の乾式加工性について、 各目詰材充填 フィルタ成形体を切断する断刃から火花が飛ぶかを確認して評価した。 結果を表 3及び表 4に示す。 目詰材に含まれる無機結合材の量が多いと、 焼成した目詰材 充填フィルタ成形体の強度が上がり切断時に切断刃から火花が飛び切削性が悪く なることがあり、 火花が飛ぶことがなく切断加工を良好に行うことができたもの については〇とし、 多少火花が飛ぶことがあつたが切断加工を良好に行うことが できたものについては△とし、 火花が飛び散り切断加工が困難となったものにつ いては Xとした。 結果を表 3及び表 4に示す。 ¾) 4 Next, the obtained plugged material-filled unfired filter molded body is fired to obtain a plugged material-filled filter molded product, and the inner peripheral surface of a predetermined cell constituting the obtained plugged material-filled filter molded product. A filter membrane was formed, dried and fired, and the end face was cut to a predetermined length. At this time, the dry processability of the fired filter material filled with plugging material was evaluated by checking whether sparks fly from the cutting blade that cuts each filter-filled plugging material. The results are shown in Tables 3 and 4. If the amount of the inorganic binder contained in the plugging material is large, the strength of the fired plugging material filled filter molded body increases and sparks may fly from the cutting blade at the time of cutting, resulting in poor machinability. The sample that could be cut well without cutting was marked as 〇, and the spark was slightly blown, but the cut was satisfactorily cut as と. Those that were no longer rated are X. The results are shown in Tables 3 and 4.
実施例 1〜1 7のセラミックスハニカムフィル夕の、 目詰材を充填した部位に おける、 クラックの発生率 (%) を測定した。 クラックの発生率 (%) は、 目詰 材を充填したセルの数に対するクラックの発生したセルの数の割合 (%) を算出 した値である。 結果を表 3及び表 4に示す。  In the ceramic honeycomb fills of Examples 1 to 17, the crack occurrence rate (%) was measured at the portion filled with the plugging material. The crack occurrence rate (%) is a value calculated by calculating the ratio (%) of the number of cracked cells to the number of cells filled with clogging material. The results are shown in Tables 3 and 4.
また、 目詰材を焼成することで形成された目詰部材の気孔径 ( m) 及び気孔 率 (%) を測定した。 結果を表 3及び表 4に示す。  Further, the pore diameter (m) and porosity (%) of the clogging member formed by firing the clogging material were measured. The results are shown in Tables 3 and 4.
また、 各セラミックスハニカムフィルタを形成する際に用いた目詰材をブロッ ク状に铸込み成形を行い、 幅 1 0 mm、 厚さ 5 mm、 長さ 5 0 mmの試験片を切 り出し、 支持間距離が 3 0 mmの 3点曲げ強度測定を行った。 結果を表 3及び表 4に示す。  In addition, the plugging material used to form each ceramic honeycomb filter was molded into a block shape, and a test piece having a width of 10 mm, a thickness of 5 mm, and a length of 50 mm was cut out. A three-point bending strength measurement with a distance between supports of 30 mm was performed. The results are shown in Tables 3 and 4.
各セラミックスハニカムフィルタを水中に浸漬させ、 各セラミックスハニカム フィル夕の一方の端面近傍に設けられた集水スリットを塞ぎ、 他方の集水スリッ 卜から空気を送り込み、 各セラミックス八二カムフィルタから発泡する際の圧力 を計測して発泡検査を行った。 結果を表 3及び表 4に示す。 発泡検査の評価とし ては、 8 k P aで加圧した際に目詰部材及び外壁から発泡が見られない場合は〇 とし、 6 k P aで加圧した際に発泡が見られない場合は△とし、 3 k P aで加圧 した際に発泡が見られる場合は Xとした。 結果を表 3及び表 4に示す。  Each ceramic honeycomb filter is immersed in water, the water collecting slit provided near one end face of each ceramic honeycomb filter is closed, air is sent from the other water collecting slit, and foam is generated from each ceramic 82 cam filter. The foaming test was performed by measuring the pressure at that time. The results are shown in Tables 3 and 4. In the foaming test evaluation, if no foaming is seen from the clogging member and the outer wall when pressurized at 8 kPa, it is judged as 〇, and if foaming is not seen when pressurized at 6 kPa Is indicated by △, and X is indicated when foaming is observed when pressurized at 3 kPa. The results are shown in Tables 3 and 4.
また、 各セラミックスハニカムフィルタの一方の端面から被濾過流体を流入し て浄化を行った際の、 集水スリットと目詰部材との間に濾過流体が滞留するかに ついて測定した。 滞留がない場合には〇とし、 滞留があった場合には Xとした。 結果を表 3及び表 4に示す。 Also, the fluid to be filtered flows in from one end face of each ceramic honeycomb filter. It was measured whether filtration fluid stayed between the water collecting slit and the clogging member when the purification was performed. If there was no stay, it was marked as 〇, and if there was stay, it was marked as X. The results are shown in Tables 3 and 4.
(比較例 1及び 2 )  (Comparative Examples 1 and 2)
集水スリツト付き未焼成フィル夕成形体に、 所定のセルのそれぞれの端面から 、 所定のセルを貫通する集水スリットに達するまでの空間内の所定の位置、 比較 例 1においては、 端面から 4 0 mmの位置 (所定のセルの端面から集水スリット に達するまでの空間内の、 所定のセルの端面から 7 3 %の位置) まで、 また、 比 較例 2においては、 端面から 3 5 mmの位置 (所定のセルの端面から集水スリツ トに達するまでの空間内の、 所定のセルの端面から 6 4 %までの位置) まで、 目 詰材を充填して目詰材充填未焼成フィルタ成形体を得た以外は、 上述した実施例 と同様にしてセラミックスハニカムフィル夕を製造し、 同様の測定を行った。 目 詰材の構成及び各測定の結果を表 5及び表 6に示す。 A predetermined position in the space from each end face of a predetermined cell to a water collection slit penetrating the predetermined cell, in the green body formed with a water collection slit, and in the comparative example 1, four points from the end face 0 mm position (73% from the end surface of the specified cell in the space from the end surface of the specified cell to the water collecting slit), and 35 mm from the end surface in Comparative Example 2. Fill the filling material up to the position (up to 64% from the end surface of the specified cell in the space from the end surface of the specified cell to the water collection slit) and fill the unfilled filter with the filling material. A ceramic honeycomb filter was manufactured in the same manner as in the above-described example except that a molded body was obtained, and the same measurement was performed. Tables 5 and 6 show the composition of the clogging material and the results of each measurement.
骨材粒子 Aggregate particles
無機結合材 バインダ一 増粘剤 保水剤 水 平均粒径  Inorganic binder Binder Thickener Water retention agent Water Average particle size
原料名 (質量部) (質量部) (質量部) (質量部) (質量部) (質量部)  Raw material name (parts by mass) (parts by mass) (parts by mass) (parts by mass) (parts by mass) (parts by mass)
(^m) 比較例 1 アルミナ B 50 90 10 0. 1 0. 05 5. 6 22 比較例 2 アルミナ B 50 90 10 0. 1 0. 05 5. 6 22  (^ m) Comparative Example 1 Alumina B 50 90 10 0.10. 05 5.6 22 Comparative Example 2 Alumina B 50 90 10 0.1.
5 Five
目詰材の Of clogging material
クラック発生率 気孔径 気孔率 曲げ強度  Crack generation rate Pore diameter Porosity Bending strength
引け欠陥の割合 乾式加工性 発泡検査 滞留検査  Ratio of shrinkage defects Dry workability Foaming inspection Stagnation inspection
( ) ( m) (%) (kP a)  () (m) (%) (kP a)
( )  ()
比較例 1 5 〇 0 1 0. 2 3 7 X 1 5 X 比較例 2 6 〇 0 1 0. 1 3 6 X 14 X Comparative Example 1 5 〇 0 1 0.2 3 7 X 15 X Comparative Example 2 6 〇 0 1 0.1 3 6 X 14 X
¾6 表 3、 表 4及び表 6に示すように、 実施例 1〜1 7のセラミックスハニカムフ ィル夕は、 所定のセルのそれぞれの端面から、 所定のセルを貫通する集水スリツ トに達するまでの空間内に目詰材が充填されているために、 上述した空間に濾過 流体の滞留がなく、 清浄度の高い濾過流体を供給することができるものであった 。 また、 実施例 1〜1 7のセラミックスハニカムフィル夕においては、 目詰材の 引け欠陥の割合 (%) 、 乾式加工性、 クラック発生率 (%) 及び発泡検査におい ていずれも優れた値を示すものであり、 また、 気孔径 ( m) 及び気孔率 (%) についてもフィルタとして好適に用いることができるものであった。 比較例 1及 び 2のセラミックスハニカムフィルタは、 集水スリットと目詰部材との間に液溜 まりが形成されていることから、 濾過流体の滞留があり、 濾過流体の汚染を引き 起こすものであった。 また、 発泡検査において、 どちらも 3 k P aで加圧した際 に発泡が見られ、 フィルタとして用いた場合には、 被濾過流体が、 発泡を生じた 隙間を通過して濾過膜で濾過させることなく濾過流体に流入することとなり、 フ ィルタとして用いることができないものであった。 産業上の利用可能性 ¾6 As shown in Table 3, Table 4, and Table 6, the ceramic honeycomb filters of Examples 1 to 17 were obtained from each end face of a given cell until reaching the water collection slit penetrating the given cell. Since the space was filled with the clogging material, there was no stagnation of the filtered fluid in the above-mentioned space, and a highly clean filtered fluid could be supplied. In addition, the ceramic honeycomb fills of Examples 1 to 17 show excellent values in the percentage of shrinkage defects of the plugging material (%), dry workability, crack occurrence rate (%), and foaming inspection. In addition, the pore size (m) and the porosity (%) were suitable for use as a filter. In the ceramic honeycomb filters of Comparative Examples 1 and 2, since a liquid pool was formed between the water collecting slit and the clogging member, there was retention of the filtered fluid, which caused contamination of the filtered fluid. there were. In addition, in the foaming test, foaming is observed when both are pressurized at 3 kPa, and when used as a filter, the fluid to be filtered passes through the gap where the foaming occurred and is filtered by the filtration membrane. Therefore, they could flow into the filtration fluid without being used, and could not be used as filters. Industrial applicability
以上説明したように、 本発明のセラミックスハニカムフィル夕は、 被濾過流体 及び濾過流体が内部に滞留することを有効に防止し、 清浄度の高い濾過流体を供 給することが可能であり、 例えば、 水処理ゃ排ガス処理、 あるいは医薬 ·食品分 野等の広範な分野において、 液体やガス中の懸濁物質、 細菌、 粉塵等の除去に好 適に用いることができる。  As described above, the ceramic honeycomb filter of the present invention can effectively prevent the fluid to be filtered and the filtered fluid from staying inside, and can supply a highly purified filtered fluid. In a wide range of fields such as water treatment, exhaust gas treatment, and pharmaceutical and food fields, it can be suitably used for removing suspended substances, bacteria, dust and the like in liquids and gases.

Claims

請 求 の 範 囲 The scope of the claims
1 . セラミックスからなる多孔質の隔壁によって区画され、 その内部に濾過膜 が配設された、 被濾過流体の流路となる複数の膜濾過セルと、 前記隔壁によって 区画されるとともに前記隔壁を挟んで所定の前記膜濾過セルに隣接し、 前記被濾 過流体が前記濾過膜によって濾過された濾過流体の流路となる複数の集水セルと 、 前記膜濾過セル及び前記集水セルを取り囲む外壁と、 前記集水セルを通過した 前記濾過流体を外部に流出するための、 前記外壁における前記集水セルのそれぞ れの両端部から所定の長さ離れた箇所で、 前記外壁の一の部位から前記集水セル を貫通して前記外壁の他の部位まで連通する集水スリットと、 前記集水セルのそ れぞれの端面から前記集水スリットに達するまでの空間内に充填された多孔質の 目詰部材とを備えたセラミックスハニカムフィルタ。  1. A plurality of membrane filtration cells which are partitioned by a porous partition wall made of ceramics and in which a filtration membrane is disposed, and serve as flow paths for a fluid to be filtered, and are partitioned by the partition walls and sandwich the partition walls. A plurality of water collecting cells adjacent to the predetermined membrane filtration cell and serving as a flow path of the filtered fluid in which the fluid to be filtered is filtered by the filtration membrane; and an outer wall surrounding the membrane filtration cell and the water collection cell A part of the outer wall at a predetermined distance from both ends of the water collecting cell on the outer wall for flowing out the filtered fluid that has passed through the water collecting cell, A water collecting slit penetrating from the water collecting cell to the other part of the outer wall, and a pore filled in a space from each end face of the water collecting cell to the water collecting slit. Quality clogging material and Ceramic honeycomb filter provided with.
2 . 前記目詰部材が、 複数の連通孔が形成された多孔質体から構成された請求 項 1に記載のセラミックスハニカムフィルタ。  2. The ceramic honeycomb filter according to claim 1, wherein the clogging member is formed of a porous body having a plurality of communication holes.
3 . 前記目詰部材が、 アルミナ、 ムライト、 セルベン、 及びコ一ジエライトか らなる群から選ばれる少なくとも一つの材料を含む多孔質材料から形成された請 求項 1又は 2に記載のセラミックスハニカムフィルタ。  3. The ceramic honeycomb filter according to claim 1, wherein the clogging member is formed of a porous material including at least one material selected from the group consisting of alumina, mullite, selven, and cordierite. .
4. 前記目詰部材に形成された複数の前記連通孔のそれぞれが、 孔径が 2 0 n m以下の部位を有する請求項 2又は 3に記載のセラミツクスハ二カムフィル夕。 4. The ceramic honeycomb film according to claim 2, wherein each of the plurality of communication holes formed in the clogging member has a portion having a hole diameter of 20 nm or less.
5 . 前記目詰部材の気孔率が、 2 5〜5 0 %である請求項 2〜4のいずれかに 記載のセラミックスハニカムフィル夕。 5. The ceramic honeycomb filter according to any one of claims 2 to 4, wherein the porosity of the clogging member is 25 to 50%.
6 . 前記目詰部材の熱膨張率が、 前記隔壁の熱膨張率より低いか又は同一であ る請求項 1〜 5のいずれかに記載のセラミックスハニカムフィルタ。  6. The ceramic honeycomb filter according to any one of claims 1 to 5, wherein a thermal expansion coefficient of the clogging member is lower than or equal to a thermal expansion coefficient of the partition wall.
7 . 複数の前記膜濾過セルの、 前記被濾過流体の流れ方向に垂直な断面のそれ ぞれの形状が、 円形、 楕円形、 長円形、 三角形、 四角形、 五角形、 六角形及び七 角形からなる群から選ばれる少なくとも一つの形状である請求項 1〜 6のいずれ かに記載のセラミックスハニカムフィルタ。  7. Each of the plurality of membrane filtration cells having a cross section perpendicular to the flow direction of the fluid to be filtered is a circle, an ellipse, an oval, a triangle, a square, a pentagon, a hexagon, and a heptagon. The ceramic honeycomb filter according to any one of claims 1 to 6, wherein the ceramic honeycomb filter has at least one shape selected from a group.
8 . 複数の前記集水セルの、 前記濾過流体の流れ方向に垂直な断面のそれぞれ の形状が、 円形、 楕円形、 長円形、 三角形、 四角形、 五角形、 六角形及び七角形 からなる群から選ばれる少なくとも一つの形状である請求項 1〜 7のいずれかに 記載のセラミックスハニカムフィル夕。 8. Each of the cross sections of the plurality of water collection cells perpendicular to the flow direction of the filtration fluid is selected from the group consisting of a circle, an ellipse, an oval, a triangle, a square, a pentagon, a hexagon, and a heptagon. 8.A method according to claim 1, wherein the shape is at least one shape. The ceramic honeycomb fill evening described.
9 . 原材料を押出し成形して被濾過流体及び濾過流体の流路となるセルを有す る所定形状の未焼成フィルタ成形体を得、  9. Extruding the raw material to obtain a green filter molded body having a predetermined shape having cells serving as flow paths for the fluid to be filtered and the filtered fluid,
得られた前記未焼成フィルタ成形体に、 その側面の一の部位から所定の前記セ ルを貫通して他の部位まで連通する集水スリツトを形成して集水スリット付き未 焼成フィルタ成形体を得、  The obtained unsintered filter molded body is provided with a water collecting slit penetrating from one part of the side surface of the obtained unsintered filter molded body and passing through the predetermined cell to another part to form an unsintered filter molded body with a water collecting slit. Get
得られた前記集水スリツト付き未焼成フィルタ成形体に、 所定の前記セルのそ れぞれの端面から、 所定の前記セルを貫通する前記集水スリットに達するまでの 空間内に目詰材を充填して目詰材充填未焼成フィルタ成形体を得、  The obtained unsintered filter molded body with the water collecting slit is filled with a plugging material in a space from each end face of the predetermined cell to the water collecting slit penetrating the predetermined cell. Filling to obtain a plugged material-filled unfired filter molded body,
得られた前記目詰材充填未焼成フィル夕成形体を焼成して目詰材充填フィル夕 成形体を得、  The obtained plugged material-filled unfilled molded product is fired to obtain a plugged material-filled molded product,
得られた前記目詰材充填フィル夕成形体を構成する所定の前記セルの内周面に 濾過膜を成膜した後に焼成するセラミックスハニカムフィルタの製造方法。 A method for manufacturing a ceramic honeycomb filter, wherein a filtration membrane is formed on the inner peripheral surface of a predetermined cell constituting the obtained plugging material-filled molded article and fired.
1 0 . 前記目詰材が、 骨材粒子、 無機結合材、 バインダー、 増粘剤及び保水剤 を含んだものである請求項 9に記載のセラミックスハニカムフィルタの製造方法 10. The method for manufacturing a ceramic honeycomb filter according to claim 9, wherein the plugging material includes an aggregate particle, an inorganic binder, a binder, a thickener, and a water retention agent.
1 1 . 前記目詰材を構成する前記バインダ一が、 前記骨材粒子 1 0 0質量部に '対して、 0 . 0 8〜0 . 1 2質量部含まれる請求項 1 0に記載のセラミックスハ 二カムフィルタの製造方法。 11. The ceramic according to claim 10, wherein the binder constituting the clogging material contains 0.08 to 0.12 parts by mass with respect to 100 parts by mass of the aggregate particles. 11. Manufacturing method of honeycomb filter.
1 2 . 前記目詰材を構成する前記増粘剤が、 前記骨材粒子 1 0 0質量部に対し て、 0 . 0 4〜0 . 1質量部含まれる請求項 1 0又は 1 1に記載のセラミックス ハニカムフィルタの製造方法。  12. The thickener according to claim 10, wherein the thickener constituting the plugging material is contained in an amount of 0.04 to 0.1 part by mass based on 100 parts by mass of the aggregate particles. 11. Manufacturing method of ceramic honeycomb filter.
1 3 . 前記目詰材を構成する前記保水剤が、 前記骨材粒子 1 0 0質量部に対し て、 5〜 6質量部含まれる請求項 1 0〜1 2のいずれかに記載のセラミックスハ 二カムフィル夕の製造方法。  13. The ceramic carrier according to any one of claims 10 to 12, wherein the water retention agent constituting the plugging material is contained in an amount of 5 to 6 parts by mass based on 100 parts by mass of the aggregate particles. How to make two cam fill.
1 4 . 前記目詰材充填フィル夕成形体に前記濾過膜を成膜した後に、 その両端 面を所定の長さ切断する請求項 9〜 1 3のいずれかに記載のセラミックスハニ力 ムフィル夕の製造方法。  14. The ceramic honeycomb force filter according to any one of claims 9 to 13, wherein both end faces are cut to a predetermined length after the filtration membrane is formed on the plugging material-filled molded body. Production method.
1 5 . 前記目詰材を構成する前記骨材粒子が、 アルミナ、 ムライト、 セルベン 、 及びコージェライ卜からなる群から選ばれる少なくとも一つの化合物である請 求項 1 0〜1 4のいずれかに記載のセラミックスハニカムフィルタの製造方法。15 5. The aggregate particles constituting the plugging material are alumina, mullite, selven The method for producing a ceramic honeycomb filter according to any one of claims 10 to 14, which is at least one compound selected from the group consisting of, and cordierite.
1 6 . 前記目詰材を構成する前記無機結合材が、 アルミナ、 シリカ、 ジルコ二 ァ、 ガラスフリット、 長石、 及びコージエライトからなる群から選ばれる少なく とも一つの化合物である請求項 1 0〜1 5のいずれかに記載のセラミックスハニ カムフィルタの製造方法。 16. The inorganic binder constituting the plugging material is at least one compound selected from the group consisting of alumina, silica, zirconium, glass frit, feldspar, and cordierite. 6. The method for manufacturing a ceramic honeycomb filter according to any one of 5.
1 7 . 前記目詰材を構成する前記バインダーが、 ポリビニルアルコール、 ポリ エチレングリコール、 澱粉、 及び粘土からなる群から選ばれる少なくとも一つの 化合物である請求項 1 0〜1 6のいずれかに記載のセラミックスハニカムフィル 夕の製造方法。  17. The binder according to any one of claims 10 to 16, wherein the binder constituting the plugging material is at least one compound selected from the group consisting of polyvinyl alcohol, polyethylene glycol, starch, and clay. Ceramic honeycomb filter
PCT/JP2004/001763 2003-04-10 2004-02-18 Ceramics honeycomb filter and method of manufacturing the same WO2004091756A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003106712A JP3868391B2 (en) 2003-04-10 2003-04-10 Ceramic honeycomb filter and manufacturing method thereof
JP2003-106712 2003-04-10

Publications (1)

Publication Number Publication Date
WO2004091756A1 true WO2004091756A1 (en) 2004-10-28

Family

ID=33295846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001763 WO2004091756A1 (en) 2003-04-10 2004-02-18 Ceramics honeycomb filter and method of manufacturing the same

Country Status (2)

Country Link
JP (1) JP3868391B2 (en)
WO (1) WO2004091756A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687008B2 (en) 2006-01-27 2010-03-30 Hitachi Metals, Ltd. Method for producing ceramic honeycomb filter
CN102172477A (en) * 2011-03-24 2011-09-07 景德镇陶瓷学院 Combined honeycomb ceramic membrane filtering element
CN103285736A (en) * 2013-06-20 2013-09-11 景德镇陶瓷学院 Preparation method of inorganic membrane element having high membrane area/volume ratio, and preparation method of membrane assembly of inorganic membrane element
CN103657422A (en) * 2012-09-14 2014-03-26 浙江瑞普环境技术有限公司 Membrane core and membrane assembly comprising same
WO2014119742A1 (en) * 2013-02-01 2014-08-07 日本碍子株式会社 Method for using ceramic filter, and filter device
WO2017103473A1 (en) * 2015-12-18 2017-06-22 Saint-Gobain Centre De Recherches Et D'etudes Europeen Monolithic filter

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2761080C (en) * 2009-05-18 2015-03-31 Ngk Insulators, Ltd. Ceramic filter and ceramic vapor-permeable filter
JP5597579B2 (en) * 2011-02-28 2014-10-01 株式会社クボタ Membrane element, membrane module, and method for manufacturing membrane element
CN103827055B (en) * 2011-09-27 2016-04-27 陶氏环球技术有限责任公司 For joint cement and the skin material of ceramic honeycomb structural body
JP6023068B2 (en) * 2011-10-11 2016-11-09 日本碍子株式会社 Ceramic filter
EP2832429B1 (en) * 2012-03-30 2019-02-20 NGK Insulators, Ltd. Honeycomb shaped porous ceramic body, manufacturing method for same, and honeycomb shaped ceramic separation membrane structure
JP6102114B2 (en) * 2012-07-31 2017-03-29 株式会社明電舎 Monolith type ceramic filter substrate and manufacturing method thereof
JP6279891B2 (en) * 2013-11-27 2018-02-14 日本特殊陶業株式会社 Filter structure and manufacturing method thereof
MY179960A (en) * 2014-03-28 2020-11-19 Ngk Insulators Ltd Monolithic substrate, monolithic separation membrane structure, and method for producing monolithic substrate
JP6687438B2 (en) * 2016-03-25 2020-04-22 日本碍子株式会社 Honeycomb filter
WO2023153057A1 (en) * 2022-02-08 2023-08-17 日本碍子株式会社 Mixed gas separation device, mixed gas separation method, and membrane reactor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781831A (en) * 1986-12-19 1988-11-01 Goldsmith Robert L Cross-flow filtration device with filtrate flow conduits and method of forming same
JP2000153117A (en) * 1998-11-18 2000-06-06 Ngk Insulators Ltd Ceramic filter
US6214227B1 (en) * 1997-08-20 2001-04-10 Sumitomo Electric Industries, Ltd. Ceramic filter module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01501534A (en) * 1967-12-21 1989-06-01 セラメム コーポレーション cross flow filtration device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781831A (en) * 1986-12-19 1988-11-01 Goldsmith Robert L Cross-flow filtration device with filtrate flow conduits and method of forming same
US6214227B1 (en) * 1997-08-20 2001-04-10 Sumitomo Electric Industries, Ltd. Ceramic filter module
JP2000153117A (en) * 1998-11-18 2000-06-06 Ngk Insulators Ltd Ceramic filter

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687008B2 (en) 2006-01-27 2010-03-30 Hitachi Metals, Ltd. Method for producing ceramic honeycomb filter
CN102172477A (en) * 2011-03-24 2011-09-07 景德镇陶瓷学院 Combined honeycomb ceramic membrane filtering element
CN102172477B (en) * 2011-03-24 2013-04-17 景德镇陶瓷学院 Combined honeycomb ceramic membrane filtering element
CN103657422A (en) * 2012-09-14 2014-03-26 浙江瑞普环境技术有限公司 Membrane core and membrane assembly comprising same
WO2014119742A1 (en) * 2013-02-01 2014-08-07 日本碍子株式会社 Method for using ceramic filter, and filter device
CN104994939A (en) * 2013-02-01 2015-10-21 日本碍子株式会社 Method for using ceramic filter, and filter device
JPWO2014119742A1 (en) * 2013-02-01 2017-01-26 日本碍子株式会社 Method of using ceramic filter and filter device
CN104994939B (en) * 2013-02-01 2017-03-08 日本碍子株式会社 The using method of ceramic filter and filter for installation
CN103285736A (en) * 2013-06-20 2013-09-11 景德镇陶瓷学院 Preparation method of inorganic membrane element having high membrane area/volume ratio, and preparation method of membrane assembly of inorganic membrane element
WO2017103473A1 (en) * 2015-12-18 2017-06-22 Saint-Gobain Centre De Recherches Et D'etudes Europeen Monolithic filter
FR3045398A1 (en) * 2015-12-18 2017-06-23 Saint-Gobain Centre De Rech Et D'Etudes Europeen MONOLITHIC FILTER

Also Published As

Publication number Publication date
JP3868391B2 (en) 2007-01-17
JP2004305993A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
WO2004091756A1 (en) Ceramics honeycomb filter and method of manufacturing the same
JP2004299966A (en) Substrate for honeycomb filter and its manufacturing process, as well as honeycomb filter
US20120074061A1 (en) Ceramic pervaporation membrane and ceramic vapor-permeable membrane
US10669906B2 (en) Honeycomb filter
EP2502663B1 (en) Honeycomb filter and manufacturing method of the same
EP2116348B1 (en) Method for manufacturing sealing honeycomb structure
EP2116347A1 (en) Method for manufacturing sealed honeycomb structure
US20190301326A1 (en) Honeycomb filter
JP4800646B2 (en) Ceramic filter and manufacturing method thereof
US10557390B2 (en) Honeycomb filter
JP5523871B2 (en) Manufacturing method of honeycomb filter
JP2001300273A (en) Ceramic filter
US8011519B2 (en) Mullite module for liquid filtration
US11085342B2 (en) Honeycomb filter
JP7097294B2 (en) Monolith type separation membrane structure
EP1607131A1 (en) Ceramic filter
JP2005118771A (en) Cylindrical ceramic porous body, method for manufacturing the same, and ceramic filter using the same
JP2004275906A (en) Ceramic filter
KR100671380B1 (en) Ceramic filter
JP2011224538A (en) Honeycomb filter and apparatus for cleaning exhaust gas
JP2007229564A (en) Manufacturing method of ceramic filter
JP4685444B2 (en) Manufacturing method of honeycomb filter
JP2001260117A (en) Base material for honeycomb filter and manufacturing method for the same
JP4040427B2 (en) Manufacturing method of filter element
WO2020075605A1 (en) Honeycomb structure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase